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INTRODUCTION

The Navy operates and maintains many shore-based communication
facilities that employ large insulators in their antenna arrays. Due to
various problems with these insulators, an investigation of insulator
failures, alternative insulator design, and new concept development was
begun.

Electrical difficulties, such as arcing, corona, and heating or
burning of insulators, are associated with the presence of an extremely
high electric field. Therefore, when evaluating old and new insulator
designs, it is helpful to know the electric field distribution asso~
ciated with each insulator. The geometric complexity of insulators and
their associated electric fields precludes the use of classical analytical
methods to determine these fields. This report describes a computer
program developed to calculate and plot the electric potential distribu-
tion of insulator configurations.

Many antenna insulators have geometries that are axially symmetric;
that is, the insulator appears the same regardless of how it is turned
about its axis of symmetry. The same is true of the electric fields
associated with such an insulator. Thus, the problem can be reduced
from one involving three dimensions to one of two dimensioms.

The program calculates the potential distribution for multidielec-
tric media by numerically solving Laplace's equation. The potential
distribution is found in a direct manner by solution of simultaneous,
finite-difference equations. Computer drawings of equipotential lines
can then be made.

The program is capable of solving many other types of problems,
including electric flux lines, mechanical stress, and temperature dis-
tribution. Geometries that are strictly two dimensional can be treated
by making a minor modification to the program.

This report describes the mathematics behind and organization of
the computer program. A detailed users guide is not given here, although
one is being prepared. A listing of the computer statements is given in
the Appendix.

BACKGROUND

The electric fields of high voltage insulators satisfy Maxwell's
equations. But all of Maxwell's equations do not need to be solved in
order to obtain the desired information about the insulator fields. 1In
studying the electrical breakdown of insulator configurations, it is the
electric field intensity which is of interest. The electric field
intensity, E, consists of two components as shown in Equation 1.




E = -wW - — (1)

The scalar potential function, V, is related to the voltage applied
across the insulator, and the voltage gradient, VV, at a given point is
related to the dimensions of the insulator and the distance from the
electrodes of the insulator. The other component is the rate of change
of the magnetic vector potential, A, which is a function of the current
distribution on the antenna, the geometry of the insulator electrodes,
and the distance from the insulator electrodes.

Since insulators consist of one or more dielectric materials that
are different from air, it is necessary to apply the constituitive
relation to Equation 1 to get the displacement flux density, D.

5=ef=e<-w-§—‘:> (2)

where € is the dielectric constant of the material in which D is evalu-
ated.

In a region that contains no free electric charge, such as the
region around the insulator electrodes, Maxwell's divergence equation
for the electric field is written as

VeD = O (3)

Applying this condition to Equation 2 yields

S MY _
VD = - ¢ (v.vv + Ta Tt) = 0 (4)
or
- 2 9 - %
VeD = - E[V vV + & (V‘A)] = 0 (5)

VeA is defined by the Lorentz condition, Equation 6,

VeA + u e %% + oV = O (6)

where u and o are the permeability and conductivity of the medium,
respectively. Using Equation 6 to substitute for VeA, Equation 5
becomes
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2
= 2 37V v\ _
VeD = - ¢ <V v e ——2- = (of -8—t> 0 (8)

Since V, in the steady-state operating condition, is of the form

t

Vo= V (z, 2) & (9)
at any given point in space for some V (r, z), the time derivatives of V ]
o 4
are given by
Vb
e B \Y (10)
2
é—% = = wz \Y (11)
at

where @ is the angular frequency of the system. Table 1 shows approxi-
mate values for the constants in Equation 8 for the space between the
electrodes of most types of VLF antenna insulators.

Table 1. Constants for Regions Near Electrodes of
Most VLF Antenna Insulators

Constant Symbol Approximate Value
Angular frequency w 2 x 10° sec™!
Dielectric constant € 1x 10_11 F/m
Permeability u T 10_6 H/m
Conductivity o] 1x 10_ll (ohm—m)"1

Rewriting Equation 8 using Equations 10 and 11

VeD = - ¢ VZV + (ue mz -~ juocwv] = 0 (12)




S i

But

7

u e o = juow = 4x 10! = j 2 x 100 = uxi0 (13)

This implies that the jupowV term may be ignored when considering the
steady-state voltage of most insulators, since it is much smaller than
the uewz term. Equation 12 then becomes

WD = = stV 4 KU} =40 (14)

where

2 2

lesl= ile wl =g 1077

(15)

For the purpose of evaluating Equation 14 it is sufficient to approx-
imate the VLF antenna insulator as a parallel-plate capacitor shown in
Figure 1. In the cylindrical coordinate system Equation 14 is written
as

2 2

1 /9 Vv 1 9V 3V 2
- € = (-é—r) (r ﬁ) + =3 <—2-> + o + k V 0 (16)
r 39 3z

Since the problem has cylindrical symmetry, V is independent of ¢ and
82V/a¢2 = 0. To facilitate easy analysis, the problem can be simplified
by considering the region near the middle of the capacitor, far from the
edges. In this region, V is independent of r, and 3V/dr = 0. Equa-
tion 14 then becomes:

— 4+ kK°V =0 (17)

This equation has a simple solution which can be easily analyzed.

\'

o
P sin k z (18)

For a VLF insulator

k = 6 x 10_4 met:er_1

d = 1 meter




P (r,0,2)

Figure 1. Parallel-plate capacitor.
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But sin x = x when x < 5 x 10 ©. Therefore, a very good approximation
for the solution is

o z
vV = dkz = Vo—d- (19)

Equation 19 is the solution to Laplace's equation:
vy = @, (20)

It can be shown that the kZV term in Equation 14 and 16 has a minimal
effect on the solution.

Thus, for the size and frequency range of VLF antennas the potential
distribution, V, can be found to sufficient accuracy by solving Laplace's
equation.

The electric field intensity consists of another component due to
the magnetic vector potential as shown in Equation 1. In analyzing the
effect of this component, the region at the surface of an electrode,
as in Figure 2, will be considered. This is appropriate since the
electric field intensity will be maximum near the electrode, and it is
this region which will be most vulnerable to electrical breakdown.
Equation 14 is integrated over a small volume element through which the
electrode surface passes.

/V-B = - ¢ /(V2V+k2V) dv (21)

vol vol

The VeD and VZV terms in Equation 21 are converted to surface integral
terms by application of the divergence theorem.

fﬁ-dé = - fVVodE + /kZVdv (22)
S

s vol

If the region is considered to be an infinitesimal volume element so

that D, VV, and V are invariant throughout the region, the equation
becomes

—thds-=-e VVOfd§+k2V /dv (23)
o o o

s s vol







where ﬁo, Wy, Vo, are values at the surface of the electrode. Completing
the integration yields:

DeAE = =~ (W otF + B W AS A2) (24)
o 0 o

The approximate magnitudes of the various factors in the right-hand side
of Equation 24 for VLF antennas are given in Table 2, The voltage
gradient value is an average value and is conservative when compared to
the peak gradients, which are of greatest interest. Therefore,

R

IVVO.A§| las| @ x 10° V/m)

las 82| 2 x 1071 v/m)

R

|2 v, 4s AL

Keeping in mind that A2 is an infinitesimal length, it can be seen that
the k® V, term is insignificant when compared to the voltage gradient
term. Equation 24 can be approximated quite accurately by

DeAS = - & We AS (25)

o

or, simplifying

= - Vv (26)

Table 2. Factors in an Infinitesimal Volume Element at an
Electrode of a VLF Antenna Insulator

Factor Symbol Approximate Value
Voltage gradient o 1 x 10° V/m
Voltage V0 5% lO5 \

Wave number k 6 x 10_4 rn_l

In summarizing, the electric field intensity near the electrodes of
an insulator is very nearly equal to the voltage gradient at that point;
the component contributed by the magnetic vector potential in Equation 1
can be neglected. The electric field intensity can be interpreted from




the potential distribution by Equation 26. For example, if equipotential
lines are plotted, the regions where the lines are most dense are the
regions of highest potential gradient and highest electric field inten-
sity. It is easier to visualize the electric fields of insulators in
this manner than by plotting electric field lines themselves. For this
reason, the computer program is designed to calculate and plot the
potential distribution.

COMPUTER SOLUTION METHOD
Potential Distribution Problem

As described above, the potential distribution near an insulator
can be found accurately by solving Laplace's equation (Equation 20).
Laplage's equation can be rewritten in the form of Equation 14, ignoring
the k“V term, since its effect on the solution is negligible:

a(v2V) = VeD = 0 (27)

Coordinate Grid System. Finite-difference techniques are used to
solve the equation numerically. The geometry of the region near the
antenna insulator is described according to a grid system, such as the
one shown in Figure 3. The grid is drawn in a plane passing through the
axis of symmetry of the insulator so that a section view of the insulator
can be defined in terms of the grid points. The boundary of a material
(electrode or dielectric) is approximated by a series of line segments
that connect adjacent grid intersection points. These line segments can
be vertical, horizontal, or diagonmal. All line segments must start and
end on grid intersection points, and diagonals must connect two points
that are formed by the intersection of adjacent horizontal and vertical
grid lines. By properly choosing the spacing of grid lines and using
combinations of horizontal, vertical, and diagonal line segments, the
material boundaries of an insulator can be described quite accurately.

The ability to use variable grid density is an important feature.

If the entire grid region were composed of equally spaced grid lines,

the total number of grid lines would be determined by the density
required to accurately describe the smallest feature of the insulator
configuration. This often results in an excessively large number of

grid lines in regions where they are not necessary. Allowing a variable
grid density makes it possible to use a high grid density only in regions
where it is necessary to achieve an accurate description of the insulator
or where detailed information on the potential distribution solution is
required. The result is a substantial savings in computer memory require-
ments and program execution time. Also, if a uniform grid size is used,
it is often necessary to compute two or more solutions, using a finer
grid with each new solution in order to obtain the desired accuracy in a
given region of interest. When using a variable grid density, one
solution is usually all that is required.
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Formulation of Numerical Equations. Equation 27 is integrated over
a volume element surrounding each grid intersection as shown in Figure 4.

[s T de = fV-de = 0 (28)

vol vol

A surface integral is obtained by applying the divergence theorem to

Equation 28.
fﬁ-ﬁ dv = ff).d;;' =fe Veds = O (29)
S S

vol

This is an integral of the displacement flux densities crossing the
surface areas of the volume element. Equation 29 is applied to the
surfaces of the volume element in Figure 4. Due to cylindrical symmetry,
the voltage gradient in the ¢ direction is zero. Thus, the integrals
over the vertical faces in the ¢-plane are also zero. The gradients
across the remaining four faces are generally not zero. These remaining
faces are chosen such that they pass through the midpoints of the line
segments joining the central point, whose potential is ¢,, and the
corresponding horizontally or vertically adjacent point, ¢ through ¢,.
Each of the four faces can be divided by a boundary which separates two
different dielectric materials. There are, then, a total of eight possi-
ble dielectrics and eight different homogeneous segments through which
the flux, qi,j» may pass.

In calcuiating the integral in Equation 29 numerically, the flux
crossing the surfaces is approximated by a finite difference value for
the voltage gradient. The normal component of flux passing through a
given face is assumed to be uniform across that face. For example,

e (30)

Since this normal component of the voltage gradient is perpendicular to
the surface through which it passes, the dot product in Equation 29 is
roduced to simple multiplication. The integral in Equation 29, then, is
the sum of eight terms, each of which is a product of a displacement
flux density and the area through which the flux passes. The form in
which this equation is used in the program, with the coefficients of the
¢'s grouped together and a factor of m dropped, is
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Organization of Equations. There is one equation of the form of
Equation 31 for each grid intersection point. If the grid consists of m
horizontal and n vertical lines, as in Figure 3, there will be mn = m x n
equations. These simultaneous equations can be written in matrix form
as

Ad® = B (32)

where A is an mn by mn constant matrix, ¢ is a vector of mn unknowns,
and B is an mn-vector of constants. By carefully choosing the order of
the mn equations, A can be made a banded, symmetric matrix as shown
schematically in Figure 5. The ordering of the equations is indicated
by the subscripts of the ¢'s in Figure 3. The rth equation, whose
coefficients appear in the rth row of the A matrix, involve at most five
grid points whose subscripts fall between r = n and r + n, inclusive.
This means that the bandwidth of A is never larger than 2n + 1, with n
elements on each side of the diagonal. Furthermore, this arrangement
scheme yields a symmetric matrix so that only the diagonal elements and
the elements on one side of the diagonal need to be stored in the com-
puter in order to know the entire matrix. That means storage for only
mn x (n + 1) elements is required instead of mn x mn if all elements
were needed. This ordered numbering system results in a substantial
savings in computer storage. The bandwidth is narrowest and memory

13




Nonzero Zeros
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(r-n) r (r+n)
Zeros

Figure 5.

Symmetrical, banded matrix.
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requirements s.allest when n is less than m. Such is the case for most
axially symmetric antenna insulators, which tend to have diameters that
are smaller than their lengths. This usually results in the need for
fewer vertical grid lines than horizontal grid lines. Consequently,
the computer program is arranged such that the vertical grid lines are
parallel to the axis of symmetry.

There are few nonzero elements in B. These nonzero elements cor-
respond to equations which involve grid points that are of a known
specified potential. For example, if a given ¢, is a point on an elec-
trode of potential V,, Equation 31 is not used, and the equation for that
point is simply

g =¥ (33)

where Vo becomes an element of the B vector.

Solution of Equations. Once all of the mn equations are formulated,
the matrix equation (Equation 32) is converted to reduced echelon form
by the process of Gauss-Jordan elimination. The ¢ solutions are then
calculated by back substitution into the reduced set of equations.

Boundary Conditions. There are several grid points that must be
treated specially. One of these, in which a grid intersection is a
point on a conductor or electrode of known potential, has already been
discussed. Points along the edge of the grid must also be given special
consideration. If the potentials along the grid boundary are known,
those points can be treated as described above for Equation 33. If the
grid boundary potentials are unknown, other methods must be used since :
these boundary points have only two or three neighboring points instead :
of four as in the general case of Figure 4.

For a grid boundary that coincides with the axis of symmetry, there
are four grid points involved as in Figure 6. The same arguments apply
as for Figure 4, except that there are only four dielectric segments
through which flux passes. The displacement flux density through each
segment is multiplied by the surface area through which the flux passes.
With the sum of these four terms set equal to zero, a factor of =
1 dropped, and the coefficients of the ¢'s grouped together, an equation
: similar to 31 appears that corresponds to Equation 29.
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In many problems the bottom horizontal grid line represents a plane of
symmetry. For example, if the two ends of a guy line insulator are
mirror images of each other, the plane which passes through the midpoint
of the insulator and is perpendicular to the axis of symmetry is a plane
of symmetry. The method of images can be applied to simplify the problem
and obtain the boundary condition. Since both ends of the insulator are
identical, the solution needs only to be calculated from the plane of
symmetry toward one end. The boundary condition at the plane of symmetry
can be satisfied by assigning all points on the corresponding grid line
a potential equal to the value midway between the potentials of the two
insulator ends.

In all cases where an explicit boundary potential is unknown,
another means of satisfying the boundary condition requirements must be
found. A simple method of obtaining the boundary condition is to deter-
mine an approximation for a particular electric flux line that exists at
a large distance from the region of greatest interest. Figure 7 depicts
such a flux line for a guyline insulator which is not symmetrical about
its midpoint. The lack of end-to-end symmetry of the insulator assembly
requires that three of the grid boundaries (top, bottom, and right-hand
sides) must be treated in this manner. The location of the distant flux
line can be found easily by analytical methods, since most field problems
degenerate to a very simple problem when only the solution at a distant
point is required. In the case of a guyline insulator, the assembly
appears electrically as a simple needle gap when viewed from a large
distance. The needle gap problem is one for which the fields are easily
calculated. A flux line is by definition a line of direction of the
electric field. The flux is along and parallel to the line, and no flux
crosses the line. If the grid intersection labeled ¢ 1in Figure 4 were
located on or inside this flux line, it would experience no displacement
flux density from outside the flux line. This can be described mathe-
matically by assigning € = 0 for the region outside the flux line.

There is no known material having a dielectric constant of zero; this is
merely a mathematical technique that effectively satisfies the boundary
condition. As a result, the points beyond the flux line, in the region
where the dielectric constant is zero, have no bearing on the potential
solution in the interior region, and it is not necessary to know the
potentials along the outer grid boundary.

Treatment of Conductors. Conductors are fundamentally different
from dielectrics and must be given special treatment. If the potential
is known, as with insulator electrodes, the grid points in that conductor
are treated as in Equation 33. But some insulator assemblies have metal
components that are between the electrodes and are insulated from any
fixed potential. An example of such a "floating potential conductor" is
the pin that is used to connect one or more suspension insulators together
to form a chain of insulators. The potential of such a conductor is not
known and cannot be specified on input; it must be calculated during the
execution of the program. This is done by using the same method as for
other points, but a very high dielectric constant is used to describe

17
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Figure 7. Boundary condition at a distant electric flux line.
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the region of the conductor. If the relative dielectric constant is
nearly infinite when compared to the other dielectrics in the problem,
it is equivalent to requiring that the electric field be zero throughout
that region. That is, all points would be at the same potential, as in
a conductor. This method of representing floating potential conductors
makes it possible to solve the problem using Laplace's equation instead
of Poisson's equation as would be necessary if the free charge distribu-
tion on the conductors were considered. The theory behind the method is
illustrated in Figure 8. As the dielectric constant of the sphere is
increased in views (a) through (d), it begins to appear more like a
conductor until, in Figure 8d, all points in the region are at the same
potential. The exact magnitude of the dielectric constant that is
necessary to give satisfactory results may depend upon the particular
computer being utilized. Using a value approximately 108 times larger
than the other dielectric values involved in the problem has shown to be
successful,

Computer Plotting of Solutions

Calcomp plotting is used to give a pictorial representation of the
equipotential lines. From an equipotential plot it is easy to determine
the regions of highest electric field.

To plot a given equipotential line, a systematic search of the grid
is executed to determine the coordinates of points having the given
potential. A starting point for the line is determined by successively
searching along each grid line until two points are found such that
their potentials bracket the potential value to be plotted. The search
for this initial point on the equipotential line may include horizontal
or vertical grid lines or both. An example of a vertical grid line is
shown in Figure 9, where points A through F represent intersections with
horizontal grid lines. If a starting point for the equipotential line
of value 50.0 were desired, it would be found in the interval between
points C and D. The location of the intersection of the equipotential
line with this vertical grid line is determined approximately by inter-
polation between points C and D. Several methods of interpolation may
be used. The simplest is first degree or linear interpolation, which
assumes a linear variation in potential between C and D. A slightly
more sophisticated method involves using the data from points B and E in
addition to C and D. It is then possible to generate a third degree
polynomial approximation for the potential distribution between points B
and E. This polynomial can then be solved to determine an approximate
vertical coordinate for the 50.0 value. The type of interpolation that
is employed depends upon the accuracy required and the relative spacing
of the grid lines with respect to the smoothness of the equipotential
curves.
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Figure 10. Sample grid rectangle and potential solution at inter-
section points.
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Once an initial point of the equipotential line is obtained, the
next point is found by checking the remaining sides of the rectangle
formed by adjacent grid lines on one side of the line segment CD, as
shown in Figure 10. Since an equipotential line must be continuous
throughout the grid region, if it enters a rectangle through one side,
such as CD, it must then exit through one of the other three sides.

This assumes that the grid network is fine enough so that the equipo-
tential lines cannot enter and exit on the same side of a rectangle.
This requirement is satisfied if the grid is designed by the user to be
fine enough in regions where the electric field is sharply curved or
contorted. Subsequent equipotential points are found by searching
successive rectangles. For example, in Figure 10 the next rectangle to
be searched would be the rectangle above line segment DG. If the desired
potential occurs exactly at a corner of a rectangle, the potential of
that grid intersection is shifted by a finite, but small, increment.
This avoids numerical difficulties that would occur if the equipotential
line were to go through a corner of a rectangle instead of one of the
sides. The incremental shift is negligible so that the appearance of
the plot is unaffected.

The search process is repeated so that the equipotential is traced
throughout the entire grid until the line either ends at the grid bound-
ary or circles back to the initial point. The equipotential curves are
drawn by connecting these points.

There are several formats in which the equipotential plot can be
drawn. The equipotential lines can be plotted thoughout the entire grid
region, or small segments of the grid can be enlarged and plotted. The
half-section view of one side of the axis of symmetry can be '"rotated"
about the axis of symmetry so that a full section view of the insulator
can be plotted in one figure. Such a plot, showing the insulator on
both the right- and left-hand sides of the axis of symmetry is often
easier to interpret than if only one side were plotted. This can be
taken a step farther if the insulator assembly to be plotted has end-to-
end symmetry so that the two ends are mirror images about a plane of
symmetry. The view of one end may be '"reflected" across the plane of
symmetry such that a full-length view of the insulator is plotted. The
method used to interpolate potentials between grid intersections will
affect the appearance of the plot in regions where grid lines are sparse.
Where linear interpolation is unsatisfactory, polynomial interpolation
is often adequate to yield smooth plot curves.

Examples

Figcre 11 shows a guy line insulator having end-to-end symmetry.
The potential distribution need only be calculated for one-fourth of the
section view shown in Figure 11. The solution for the remaining three
quadrants can be obtained from the first quadrant solution using symmetry.




guy line
r,,

end houfing (steel)

large corona ring

small corona ring

— porcelain jacket (e = 6.5)

) .- tension rods/oil (e = 2.2)

Figure 11. Section view of a guy line insulator.
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The coordinate grid for one quadrant of the insulator assembly is
shown in Figure 12. The grid lines are very dense near the origin
(where the insulator is located), since this is the region where the
greatest accuracy is required. The grid lines are less dense in regions
away from the insulator where the electric field is smooth. The distant
boundary condition is satisfied by the curved dielectric boundary which
is an approximation of an electric flux line. The dielectric constant
is unity everywhere inside the boundary that is occupied by air. The
dielectric constant is zero outside this boundary to simulate the lack
of displacement flux density crossing the flux line. The boundary
conditions for the bottom and left-hand sides are satisfied by the
symmetry of the configuration.

Figure 13 is the equipotential plot for the quadrant of the insulator
shown in Figure 12. The voltage between adjacent equipotential lines is
2.5% of the voltage between the electrodes of the insulator in Figure 11. |
In general, the equipotential values that are to be plotted can be
chosen as necessary to give an adequate picture of the potential distri-
baution.

If a more detailed view of the region near the insulator (or any
other region) is desired, an enlarged view can be obtained. One way to
do this is to plot the same data on a larger scale. Figure 14 is the
grid in the region of the insulator in Figure 12 which has been plotted
on a larger scale.

The equipotential plot for the region of Figure 14 is given in
Figure 15. This plot was made using a portion of the same data that was
used to plot Figure 13.

If the grid is not of sufficient density in the region of the
insulator, it may not be possible to obtain an accurate enlarged plot
from that set of data. It is then necessary to obtain another potential
solution using a denser grid system that includes only the region to be
enlarged. The boundary conditions for this second grid can be obtained
from the potential solution for the original grid. Not all of the
boundary grid points in the denser grid will have existed in the coarse
grid and their potentials will not be explicitly known. The potentials
of those boundary grid points that did not exist in the original grid
can be found by interpolation between points of known potential.

It is often desirable to obtain a full view of an insulator plot,
rather than a view of one-half or one quadrant. The additional views
can be plotted by repeating the plotter pen commands two or four times
with the appropriate inversions to achieve the full view of the desired
region. Figure 16 is such a plot of the guy line insulator.

The suspension insulator string in Figure 17 is an example of an
insulator that does not have end-to-end symmetry and, hence, no plane of
symmetry midway between the end electrodes. In this problem, the bound-
ary conditions on three sides are unknown. By making an approximation
for the flux line shown, these boundary conditions are satisfied.

24




P ———

! —
B ' .
' ' -
" -
x
T + + »
o
) 4ot . + ) + "
-
. ' + ‘ N
+ . 4 + + s " IRV
. . 4 1 ' ' . -,
= ’ . + + - + 4 + ! fomsd
o441 + + 4 + + + + -
prc ++————+ + + + + + -+ e + .
= [ I f
T $+4 4 + + { ! 4 4 + 4 $t
) | !
~ 44t ——+ + + + + + + . +— + + 4t
- 13 1 T . S + " : 4 + 4 4 I - + + +——1
. 4t + + + + + + + + + B + - 4 +
bttt } 3 } } b + J i e = |
Sl { { 1 b B 3
== 4 = =43 L
g — , —— =
< REE== =———F — —F —F -
v.00 4.00 §.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 40.00
R-AXI { INCHES = | PLAN JF SYMMETRY

Figure 12. Coordinate grid for one quadrant of guy line
insulator problem.




Figure 13.

= | p—— - =
8.00 12.00 {
R-AXIS (INCH

Equipotential plot for one quadrant of

insulator.

“Zb.00  2¢.00  28.00
10) PLANE OF SYMMET

26

T
40.00

@l
o
o

guy line




o
o
- i )
s 5 SaBe oma e 20 ﬂ - ﬁ ! a - A g T - =
L RR _
b , | o =
KSR e
4 it EaE
| = 80
, | _ )
| | | ~
| ; | 1 Bt
1 | | [ 1 | ™ o
‘ L " 8,
| | | i | | | w —
| | { ‘ | ar
t—t—t— LJ\IY B I B = - Mun o0
7 “ ! 2=
| v _ _ [ _ O
|
| | i + | nu..nrv M
J_ _ | , | ) -~
[ | | | N T .
e T S
! _“ ] { o o
; | | = Q M
_ S0 | !ﬁ i —H T S
_, - =" B & ~
S S R 19 0 _ s °2 &
, .
e =S B e 0§ 4 g x v
— v rre———— — o P} — - — . o e
25 > s
—— ==== 5 o
—— === = JZ 9
= HESSS: B U8B
f 1 = © 80
= ES SR | e e
4 F 1 W%Lu =i , x do
W — R Samens .1H 4 — il | WHW
r t © .
b ar b { H | 1R 8 | 5
I i i T ! 1 4
i il 1
T =T p [ s I 3 i T S o )
= = © o
— ¢+ o s = 5
= g )
SO —— S . 1 31— m = - - SO e e N 0B =3 o)
I = T e W P = a1 R
1 | 1 B .H [ N 4 b4
- L] ALl T L i ] e
00° »9 00° 09 00° 95 00° 25 00° g8y 00" by 00° 0¥ 00° S€ 00" Z€ 00° 82 00" 2 00° 02 0091 00° 21 008 00" oo
AML3IWWAS 40 SIXy (01 = S3IHINI) SIXxy-7




AXIS OF SYMMETR
41.40 46.00 50.

1

36.80
i

( INCHES)

AX1S
32.20

27.60

o
/’/
o
i
_’//

=}

o

& ~1 - —t " i A T Sy e —

Q.00 4.60 9.20 13.80 18.40 23.00 27.60 32.20 36.80 41.40 46.00

R-AXIS ( INCHES) PLANE OF SYMMETRY

Equipotential plot of enlarged region of
guy line insulator.

Figure 15.

28







20.00

/

/

/
7

13.00

SYMMETRY
12.00
S

\
\
4 L O R

“v.00  1.00 2.00  3.00 _ 4.00 5.00  6.00 7.00 8 00 9 00
R-AXIS (INCHES = 10)

=3
o
=]

Figure 17. Grid region for chain of four suspension insulators.

30
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Figure 18.
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Figure 18 is an enlarged, full-section view, equipotential plot of
the suspension insulator chain. The voltage between each pair of adja-
cent equipotential lines is 2% of the total voltage across the end
electrodes. The potentials of the two end electrodes may be arbitrarily
specified, but the potentials of the interior electrodes are unknown
prior to execution of the program. These conductors must be treated as
dielectrics having an infinite dielectric constant. Their potentials
are then calculated in the same manner as for all other points.

Electric Flux Lines

In addition to the equipotential lines, the direction lines of the
electric field also give information about an electric field. These
lines of electric flux, which are orthogonal to the equipotential lines,
can also be found by solution of Laplace's Equation 35.

V' = 0 (35)

The computer program will calculate a value of U for each grid point in
a manner similar to that for electric potentials. However, unlike the
potential solution, the numerical values of U have no direct signifi~
cance. A line of equal U value is an electric field direction line,
but, in general, there is no clear relationship between the spacing of
these flux lines and the values of U along the lines. It is somewhat
difficult to determine the values of U that should be plotted to give an
accurate picture of the electric field intensity. This is in contrast
to the plotting of equipotential lines, where the potential values to be
plotted are equally spaced values of V. Also, care must be taken when
using the flux line plots to determine the regions of highest electric
field. This is because the electric flux is a volume field flow which
is difficult to represent clearly in a two-dimensional plot. Electric
flux distribution is shown by describing many tubes of flux, each of
which encloses a given amout of flux. The flux density is greatest
where the tubes are the narrowest. In a two~dimensional plot, a tube
may appear to be narrow, when, in fact, the dimension that is perpen-
dicular to the plotting surface may be very large. Thus, what appears
to be a high flux density region may actually be a low flux density
region. Knowledge of the three-dimensional geometry is necessary in
order to interpret a two-dimensional plot.

In spite of the difficulty in interpretation, plots of electric
flux lines are sometimes useful. They indicate the direction of the
electric field more clearly than equipotential plots and can also be
used with potential plots to more clearly define regions of high elec-
tric field intensity or distortion.

To obtain the solution to Equation 35 for the purpose of plotting
flux lines, the computer program is executed exactly as for the poten-
tial solution. All that needs to be changed are the boundary conditions
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and dielectric constants such that the equal U-value lines are ortho-
gonal to the equipotential lines. The potential function, V(r,z), has a
gradient that is perpendicular to lines of equal V at each point. The
negative of the gradient of V is the electric field vector function, E,
as in Equation 36.

E = -w (36)

For the function U(r,z) there can be defined a corresponding vector
function, F, given by Equation 37.

F = - VWU (37)

F is perpendicular to the lines of equal U at each point. The requirement
that lines of equal V be perpendicular to lines of equal U is equivalent
to requiring that vector function E be perpendicular to vector function F.
The requirement of having E perpendicular to F can be analyzed at a
boundary between two dielectrics as shown in Figure 19. 1In (a) the
dielectric constants €7 and €, are normal dielectric constants as they
would be used in the solution for the potential distribution, V. In (b)
the dielectric constants, €] and eé,ﬂare the values as they would be
used to obtain the U distribution. n and t are, respectively, unit
normal and unit tangent vectors to the boundary between the two media.
Since there is no current flowing along the boundary between the
dielectrics, the tangential electric fields on each side of the boundary
must be equal. This condition is expressed mathematically in Equa-
tion 38.

teE, = teE (38)

Also, the normal component of the displacement flux density must be
continuous across the dielectric boundary as expressed in Equation 39.

el(BOEl) = cz(ﬁOEz) (39)

Further, F corresponds to E, and both are actually solutions to the same
equations with only the boundary conditions differing. Therefore, F
must also meet conditions that correspond to Equations 38 and 39 for E.
These conditions for F are expressed in Equations 40 and 41.

t°F1 = t-F2 (40)
& o V' (heT
el(nOFl) = ¢ (n0F2) (41)
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Figure 19. Boundary between two dielectric media.
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E and F can be expressed in terms of their tangential and normal
components at the boundary between the two dielectrics, In medium 1 at
the boundary:

El = t‘E1 <+ noE1 (42)

E] w feF, & a-?l (43)
In medium 2 at the boundary:

E, = B, + 0k, (44)

Py = tOF2 + nOF2 (45)

The requirement that E and F be perpendicular must hold at the dielectric
boundary. The nonzero vectors E and F are perpendicular if and only if
their dot product is zero as in Equation 46.

EeF = 0 (46)

Substituting Equations 42 and 43 into Equation 46 gives the condition
for perpendicularity at the boundary in medium 1:

El.fl = (g.gl)(e.fl) # (a.El)(a.El) =0 (47)

The condition for medium 2 iy obtained by substituting Equations 44 and
45 into Equation 46 to yield:

EZ-FZ = (EoEz)(E-fz) + (ﬁ.Ez)(ﬁoFé) = 0 (48)

Equations 47 and 48 are equivalent and can be compared by substitution
of Equations 38, 39, 40, and_él into Equation 47. Equation 49 is Equa-
tion 47 written in terms of EZ and F2.

=< (a-ﬁz) - (nofz) = 0 (49)

Equations 48 and 49 can both be true only if the dielectric constants
satisfy Equation 50.
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ey * oy (50)

(i m

€5 5 (51)
Bl ek

e, = -EI (52)

For simplicity, a can be chosen to be unity. Equations 53 and 54 give
the dielectric constant changes used when it is desired to obtain the U
solution for plotting electric flux lines that are perpendicular to
electric potential lines for a given dielectric configuration. ]

| S
€] = & (53)

AT
1 €, = ‘ (54)

In addition to changing the dielectric constants, the boundary
conditions must also be chosen so as to give a solution of electric flux
lines that are perpendicular to equipotential lines. If a grid boundary
corresponds to what is known to be a flux line, that portion of the grid
boundary may be assigned a constant value, U;. This condition often
applies to the section of the axis of symmetry between the electrodes of
an insulator. For boundaries that are distant from the insulator assembly,
a curve that approximates a known electric flux line can be estimated as
described earlier for the equipotential solution. The points along this
curve may be assigned a second constant value, Up. Some portions of the
grid boundary may correspond to an equipotential line or an electrode or
other conductor. The electric flux lines must intersect these boundaries
in a perpendicular manner. This condition is met by describing the
s region beyond the equipotential line or electrode boundary as having a
dielectric constant of zero. The argument here is consistent with that
for the potential distribution problem where an electric flux line and
zero dielectric constant are used to satisfy certain boundary conditions.
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Figure 20 shows the boundary conditions for a potential distribu-
tion problem. The corresponding boundary conditions for obtaining the
electric flux line solution are shown in Figure 21. The geometry of the
problem and the dielectrics involved are designed to give a simple
illustration of the concept and represent no actual device.

The enlarged equipotential plot is given in Figure 22 while both
the equipotential lines and the lines of displacement flux density are
shown in Figure 23. They must be referred to as lines of displacement
flux density, D, since their density is continuous across the dielectric
boundaries. It is more practical to plot the flux as lines of D rather
than as lines of E, since E is not continuous across the boundaries ]
between dielectrics. If lines of E were plotted, they would need to
have a density in the dielectrics that is inversely proportional to each
dielectric constant. Thus, there would be fewer lines in the higher
dielectrics than are shown in Figure 23.

In order to interpret the displacement flux density plot, it is
important to understand the meaning of the line spacing. In Figure 23
the line spacing is determined according to the displacement flux density
which flows in the plane of the figure. Therefore, it gives only a two-
dimensional representation of the flux distribution. The third dimension
must be visualized by rotation of Figure 23 about the axis of symmetry.
The significance of this rotation is that the lines nearer the axis
sweep out a smaller volume than do the lines that are far from the axis
of symmetry. A given amount of flux in a smaller volume has a higher
flux density. Therefore, the regions near the axis of symmetry have a
higher relative flux density than appears in Figure 23.

DISCUSSION

The computer program is designed to yield a plot of equipotential
lines. From the equipotential plot it is easy to visually determine the
regions of highest electric field. These regions are characterized by
closely packed equipotential lines. 1In the equipotential plot there is
a fixed potential difference between any two adjacent equipotential
lines. A relatively short distance between lines indicates a high
voltage gradient. As discussed earlier, the voltage gradient is the
dominant component of the electric field near the insulator and electrodes
at VLF and lower frequencies. The regions having highest voltage gra-
dients are, therefore, most susceptible to electrical breakdown.

Since the equations used in the development of the computer program
are valid for all frequencies up to and including VLF, the program has a
wide range of application. Most notably, it is a powerful tool that can
be used in the analysis of most 60-Hertz power system insulators.
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Poisson's Equation

In determining the potential distribution, the program essentially
calculates the solution to Laplace's Equation 20. The program can
easily be adapted to solve Poisson's Equation 55, which applies to prob-
lems involving a free charge distribution.

2l
v'v = = (55)

In this case the charge density, p, must be integrated over each volume
element, and Equation 29 becomes:

/6-3 dv =ff)-d§ =[€ VVeds = /p dv (56)
S S

vol vol

This has the effect of replacing the zero on the right-hand side of

Equations 31 and 34 with a term that represents the net charge distrib-
uted throughout the volume element. Otherwise, the method of solution
is the same as described earlier. ]

Other Applications
The program is suitable for solving many other types of problems
that involve Laplace's or Poisson's equation. For example, Equaticn 57

is Laplace's equation as it applies to steady-state conduction heat
transfer in regions where there is no heat generation.

o =0 (57)

Here, u represents the heat energy or temperature as a function of
position in space.

In problems dealing with mechanical stress there sometimes arises
an equation of the form of Equation 58.

T (58)

This can be solved by the computer program through a two-step process if
there can be found an X such that

VA = X (59)
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If the boundary conditions for X are known, the complete solution for X
can be found by solving

VX = 0 (60)

Equation 60, which is Laplace's equation, is identical to Equation 58
with the substitution for A made as in Equation 59. Then A itself can
be found by solution of Equation 59, which is Poisson's equation, uti-
lizing the boundary conditions for A and the solution for X.

Two-Dimensional Geometries

If the geometry of a problem has only two dimensions, the equations
are much simpler than for three dimensions with one axis of symmetry.
The volume element of Figure 4 is reduced to a surface element as shown
in Figure 24 for a rectangular coordinate system. Instead of summing
the flux crossing surface areas, the sum of the flux which crosses the
boundaries of the surface in Figure 24 is taken. Equation 61 is the new
equation which corresponds to Equation 31.

L ¢
EI—(el h2 + €g h4) + E;—(sz h1 + €, h3)
4 4
+ h_3 (E:4 h2 + 85 h4) + hl‘ (66 h3 + €7 hl)
5 LS B e i el 6
2 T T €3 Ty B, 2.4 €32y
B R e B s e B B (61)
By 4 72 5 4 R, "% 3 7

Equation 61 is a numerical form of Equation 29 where the surfaces have
been reduced to straight-line boundaries, and a factor of one-half has
been removed from each term.
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Appendix

FVSOLVR and FVPLOT

The computer listing that follows is given in the form of two main
programs. The first, FVSOLVR, reads input data, formulates, and solves
the equations, giving the values of potentials at each grid intersection
point. The second program, FVPLOT, uses the potential distribution
solution from FVSOLVR to plot lines of equal potential. It is convenient
to separate the process into two programs so that the plotting is detached
from the solution calculation. Thus, it is easy for the user to obtain
several different plots for a given problem by specifying various equi-
potential value spacings or various regions of the grid to be plotted.
FVPLOT can plot equal value lines from up to two sets of data, such as
equipotential lines and flux lines, on one grid. If both equipotential
and flux lines are to be plotted, then two solutions from FVSOLVR are
required before FVPLOT is used.

FVPLOT is designed to produce Calcomp pen plots on drum plotters
having a width of 11 inches. 1In the form listed, FVPLOT utilizes the
CDC 7600 computer at the Lawrence Berkeley Laboratory via remote ter-
minal access.

Comment statements given throughout the listings indicate the
general organization of the programs. A detailed users manual is in
preparation.
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INSULATOR FIELD VALUE SOLVER (AXIAL SYMMETRY)

DIMENSION HX(100) oyHY(200) sHN(99) sHM(200) 1AN(99)
lEPSR(l99010)oEPSZ(99olO)oANE?S(99).RHN(99)oSYM(ZOOo«).
2LEPS1(99) 9V (1000200) ¢B(200)9AR(200+100)

DIMENSION GK(200)9VG(200)

INTEGER BOR(19991,)9802(99510)

INTEGER BLNK

COMMON/BANARG/NDPNoNUMBLK 9BoARyNNINN2sVINXINY 9| XoLY9IMyNCKS

COMMON/HORARG/BDRYEPSR

COMMON/VERARG/BDZYEPSZ

COMMON/SPARG/GHeVGeHM i

DATA BLNK/4K / 1

DATA AR/20000%0«0/9SYN/B00%020/98/200%0+0/9Y/20000%~140/

FORMAT STATEMENTS

FCRMAT () 0FB8.0)

FCRMAT (2014)

FORMA1 (16FS,0)

FCRMAT (BF10,3)

FORMAT (1H1 94HNX =914904X94HNY 3918)

FCRMAT (1H 9A]lo3HHX(91393H) Z9FB8e396(A696X93HHX(91393H) =9FBe3))
FORMAT(1H 9A193HHY (91393H) B9FB8e394(A496X93HHY (s1393H) =9FB8e3))
FORMAT (1HleGX9lHey14F8,.3)

FORMAT (10X9JH+914FB3)

FORMAT(10X9]lH*9]14 (BHm=eotan=))

FORMAT (1X9FBe392H +914F8,3)

FORMAT(1HQy9 1SHINITIAL VALUE 39FB8e3)
FORMAT (1H0 s gHNPTS =917)

FORMA | (1Xs TRNUMBLK=315)

FORMAT (1X9SHNCKSZ15)

FORMAT (1X96HNTEST34[5)

FORMAT (13K NONSYMMETRIC)

FORMAT (1H1)

FORMAT (1M )

FORMA| (1HO)

FORMAI (1H=)

FORMAI (}k ,27HREADY TO BEGIN CALCULATIONS)
FORMA[ (218494F12.3)

INITIALIZATION

READ 2 oNXgNYINEPRINEPZ9IFBLY
PRINT S enNXeNY

PRINT 20

NXM1ZnX=1

NYM]3NY=]

NAN=NX

NA2=Niveg

NAP1EnN¢]

REWIND 10

REwIND 33

Hhionh BEST AVAILAB!E COPY
o n § 50" §
READ GRID DaTA = hede SeWOSE 0

47




o000

100
1c0
130

140

150
170
180

200
ez0

240
260

280
300

320

340
360

380
400

READ 1 o(HAX(I)oI=19NX)

K1=0

NCOL=NXM] /5

GCTO 12¢

NCOL=ENCOL=]

INKENCOL#5¢

K1=sKle]

R2=K1eINK

PRINT 6 o (BLNKeK9HX(K) sK=K19K2950)
1F “‘lof-QoSOnORoKllgUoNx’ GO!O 140
IF (KZ2esEQeNX) 1009130

READ 1 o (HY(J)oJ=1oNY)

PRINT 18

K1=0

NCOL=NYM1/50

GOTO 170

NCOL=NCOL=])

INKaNCOL®#So

K1=Klel

K2=sK1le¢ INK

PRINT 7 9 (RLAK9KyHY (K) 9K=K19K2950)
IF (KleEQeSQeOReK1eEQsNY) GOTO 200
IF (K2+EQeNY) 1509180

READ 2 »((gDR(I9J)9Js]19NEPR) 9IZ19NYM])
READ 2 ¢KOyKN9KK

READ 3 o+ (EPSR(KO9¢K) 9K=]19KK)

IF (KUeEQexkN) GOTO 260

KI=K0+1

D0 24. I'KI’KN

DO 24y K=lekK

EPSR(IsK)BEPSR(KOIK)

IF (KKeEQeNEPR) GOTO 300

KP=KKe+1

DO 286 I‘KOQKN

DO 28, JsKP,NEPR
EPSR(IsJ)BEPSR(I9KK)

1F (KNeLTeNYM1) GOTO 229

READ 2 o((BDZ2(I9J) 9J21sNEPZ) 9I319NXM])
READ 2 9KOyKNyKK

READ 3 s (EPSZ(KO9K) sK=]sKK)

IF (KUsEQeKN) GOTU 360

KI=KO0+1

DO 34y I=KI,KN

D0 34y K=]lyKK

EPSZ(I9K)SEPSZ(KOyK)

IF (KReEQeNEPZ) GUTO 400

KPE2KK+1

DO 38y I=KQ4KN

DO 380 JsSKP,NEPZ

EPSZ(19J)SERSZ (I9KK)

IF (KiveLTeNXM1) GOTO 329

IF (IFBDYeEGeQ) GOTO S50

INTERPOLATE FINE GRID BOUNDARY POTENTIALS
FROM COARSE GRID POTENTIAL SOLUTION

BEST AVAILABLE
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450

| 500

(e NeXel

550

600

o000

650

(s Nale]

700

READ 2 oNGXsNGY

READ & o(GH(I)eIS19NGX)
READ 4 o(VG(I)eISlonGX)
CALL SPCOEF (NGX)

D0 457 I=mlenX
V(IeNY)ZSPLINE (NGXoHX(I))
READ & o (GH(I)eI=1oNGY)
READ & »(VG(I)eI=19NGY)
CALL SPCOEF (NGY)

DO 500 I=lynYM]

V(NXs [)SSPLINE (NGYsHY(I))

READ @OUNDARY CONDITIONS

READ 2 oNPQTS

PRINT 18

DO 60y N=31yAPOTS
KEAD 1 sPOT

PRINT 124PCT

READ 2 oNLINES
PRINT 2 oNLINES

DO 60y K=1lyNLINES
READ 2 osLlyL29M1l9M2
PRINT 2 osLlygL29M1gM2
DO 60y IsLlyL2

DO 60y JEM] M2
V(lesJ)=POT

PARAMETER INITIALIZATION

NUMBLK3g

NCK=0

NCK1=}

NCK4=NN

NCKS=,,

NCNT=3;

LY=2
Z=(HY (1) *RY (2)) /2.
CPH3(HY (2)enY (3))/2
NUMXENX=]

IF (HX(1)eNEoQeQ) NUMXZNX=2
NPTSENUMX® (AY=2)
PRINT 20

PRINT 13sNpPTS
NCKT7ESNPTS=NUMX
NDIAGS]
NCP1=NDIAGe)
NOPNENDIAGeANUMX
PRINT 18

DO 65y K=lynXM]
2EPS] (K)ZEPSZ(Kel)

CALCULATE DISTANCES BETWEEN GRID LINES
DO 700 J=1lenXM]

HA (D) SHX (Je ) ) =HX (J)
DC 72y J=lenvYM]

BEST AVAILABLE COPY
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eNalel

OO0

OO0

Oooo

70

750

8uo

900

850

1000

3000

3010

HM(J)EHY (e ) =HY (J)

CALCULATE AKEAS OF HURIZONTAL FACES, SET RHN ARRAY

KaHX(])
AN(1)=0e5*HN (1) # (KeHN(1) /4 4)
REN(1)=ReHN (1) /20

DO 75y J=29nXM]

REN(J§ = (HX (g) sHX (Je1)) /2,

AN (J) = (HHN () #82«rRHN(J=1) ##2) /2,

pCTTOM EDGE AREA = EPS DATA SET=UP

EPSI=EPSR(1,41)

R=HX(])

LXx=]

J=1

CALL MORTZ(19JIEPSTIRyRAN(LX) yANEPS (LX) sAN(LX) oL XoHX (L X))

DO 8Gy LX324NXM]

J=1

CALL HOKIZ(19J9EPSTIRKN(LX=1) gRHN(LX) 9 ANEPS (LX) o AN (LX) oL XomX(LX))
CONTINUE

PRINT 22
PRINT 20
GOTO 3000

SKIFT BLOCK UP AND ZERQ

D0 1030 K=l9NN
KPNN=g ¢NN

DO 95y I=ls4
SYM(KyI)=SYM(KPNNyI)
SYM(KPNNeI) =000
B(KPNN)=0e0

DC luih I=1yNN
hR‘KpNN’I)’OQO

CALCULATE BLOCK OF ARy B ARRAY VALUES

DO 3630 L=NAP1sNNgZ

IF (NCKeEGeg) GOTO 3010
LX=LXe)

REHX (LX)

IF (LXsLTex) GOTU 3400
LYSLY*)

IF (LYeEQeNY) GOTU 4000
L{=LPH

LPHEHY (LY) exM(LY) /20

J=1

NCK=NCK+]

EPS1=¢PSR(LYs1)

IF (HX(1)«NE«Ge0) GOTC 3200
Lx=}

R=040

IF (VALXyLY) eGEe0.0) GOTO 3300
SYM(Lsl)=0e0
SYM(Ly¢3)=ANEPS (1) /HM(LY=1)

BEST AVAILABLE (OPY
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T T T TR T

3170

31s0

3190

3200

327¢

3250

32990

3300

333¢

Jato

CALL HORTIZ(LY9JIEPSLIoR9RHN (LX) s ANEPS (LX) s ANCLX) oL X9HX(LX))
SYM(Lo4)=ANEPS (1) /HM(LY)

CALL VERT(LX9ZEPSI(LX)9Z9sZPHIRHANI(LX) 9AZEPSoLYsHY(LY))
SYM(L92)=AZEPS/HN(LX)
ARCLINDIAG)==SYM(L9l)=SYM(L92)=SYM(L93)=SYM(Ls4)

IF (VILXsLY=1)eLTe0e0) GOTO 3170
BIL)S=V(LXgLY=1)#SYM(Ls3)

SYM(L93)=0.0

IF (V(LX#1lyLY)eLTe0e0) GOTO 3180

BIL)SS (L) =V (LX*1sLY)®SYM(L2)

SYM(Ls2)=0.0

IF (V(LXgLY¢1)eLTe0s0) GOTO 31990

BIL)SS (L) =V (LXoLY+1)#SYM(Ly4)

SYM(Le4)=040

AR(LonDP])=SYM(Le2)

AR (Lo NDPN)=SSYM(L4)

GCTO 3600

Lx=2

RamX (LX)

IF (V(LXsLY)eGEeDe0) GOTO 3330

SYM(L93)=ANEPS(2)/HM(LY=1)

CALL mORIZ(LYsJsEPSLoRHN(LX=1) o RHN (LX) g ANEPS (LX) 9 AN (LX) oLXyHX (L X))
SYM(Le4) =ANEPS(2) /7HM(LY)

CALL VERT(Lx=19ZEPS1(LX=1) 9Z9ZPHIRHN(LX=]1) 9AZEPSyLYsHY(LY))
SYM(Ls1)=AZEPS/HN(LX=1)

CALL VERT(LX9ZEPSL (LX) 9ZoZPHIRHN (LX) sAZEPSILYsHY(LY))
SYM(L92)=AZEPS/HN(LX)

AR(LINDIAG) ==SYM(Lol)=SYM(L92)=SYM(L93)=SYM(Lg)
BIL)S=V(1oLY)®#SYM(LY])

SYM(Ls1)=0e0

IF (V(LXoLY=1)eLTags0) GOTO 3270

BIL)S3 (L) =V (LXsLY=1) #SYM(Ly3)

SYM(Ls3)=0e0

IF (V(LK¢lyLY)eLTeue0) GOTO 3280

BILYSS (L) =v(LX*1loLY)#SYM(Ly2)

SYM(Le2)=049

IF (V(LXeLY*l)eLTege0) GOTO 3290

BIL)Za (L) =V (LXoLY*1)#SYM(Ly4)

SYM(Le4)=0e0

AR(LeNDPY)=SYM(LY2)

ARLLIWDPN) =SYMI(L94)

GCTO 3600

AR(LoNDIAG) =1,

B(L)=vILXeLY)

CALL HORIZ(LY9JIEPSLokoRAN(LX) sANEPS(LK) 9 ANILX) oL XoHX(LX))
CALL VERTU(LX9ZEPSL (LX) 9ZoZPHIRHNI(LX) ¢AZEPSILYsHY(LY))

GCTO 3600

AR(LeNDIAG) =1

B(L)=v(LXeLY)

CALL HORIZ(LY9JoEPSLoRHNILX=1) o RHNILX) g ANEPS (LX) g AN(LX) sLXgHX(L X))
CALL VERT(LX9ZEPSI (LX) 9Z9ZPHIRHN(LX) ¢AZEPSLYsHY(LY))

GOTO 3640

IF (V(LXsLY)eGEe0Os0) GOTO 3330
SYM(Le3)=ANEPS (LX) /HM(LY=1)

CalL HORIZ(LYsJoEPSLoRHN(LX=1) 9 RHAN (LX) 9 ANEPS (LX) g AN(LX) sLXoHX(LX))
SYM(Leag)=ANEPS (LX) /ZHM(LY)

SYM(L91)=AZEPS/HN(LX=])

BEST AVAILABLE COPY




OO0

OO0

O0o0

3479

3460

3490

36060
4000

41300

4150
4200

4300

4500

4800
C

CALL VERT(LX92EPSL(LX) 9Z9ZPHIRHNILX) sAZEPSsLYsHY(LY))
SYM(Le2)SAZEPS/HN (LX)

AR (LINDIAG) 3=SYM(Lol)=SYM(L92)=SYM(Le3)=SYM(Lva)
IF (VILX=1lo4LY)eLTo0e0) GOTO 3460
BIL)S=V(LX=]oLY)®*SYM(Ls])

SYM(Lel)=040

IF (V(LXsLY=1)eLTe0e0) GOTO 3470

BIL)Sg (L) =V (LXoLY=])#SYM(Ly3)

SYM(Le3)=04y

IF (VILXeloLY)eLT,0e0) GOTO 3430
BL)Sg(L)=v (LX*1sL YT ®SYM(L,s2)

SYM(L92)=0e0

IF (VILXyLY®1l)elTeGeO) GOTO 3490

BILYZG (L) =v (LXoLY*1)®SYM(L va)

SYM(L"O)SOQG

AR(LonDPY)SSYM(Ly2)

AR(LaNDPN)=SYM (Low)

CONTINUVE

NTEST=3

wRITE BLOCK OF ARy 5 ARRAY VALUES ONTO TarE

WRITE(34) (B(N) 9 (AR(NeM) gM=]1 9NDPN) ¢y N=NNP1 oAN2)
NTEST=4

NUMBLRINUMBL K]

NCNTaNUMBLK#NN

IF (NUMBLKeEGe1)GOIO 4300

CHECK MATRIX SYMMETRY

DC 42)0 L=NCK19NCKé

NCKS=NCKS+]

NCKz3(¢1]

NCK3ISL¢NUMX

IF (SYM(L92) «NE«SYMINCK291}} GOTU 4150
IF (NCRS«GT<ANCKT)GOTO 4200

IF (SYMUL94)+EQeSYMINCK3®3)) GOTVU 4200

PRINT 17
PRINT 23¢NUMBLKgNCKRSy SYM(NCK241) 9 SYM(L92) 9 SYM(NCK343)4ySYM(Ls4)
CONTINUVE

IF (NCR1EG,ANP])GOTU 4500 |
IF (NCNT<LTAPTS)GOTO 900 g
NCK1=nNP]
NCK4=NNP] ¢NPTS=NCKS=1 |
GCTO 4100

CONTINUE

PRINT 15eNCKS
NCKE=ENPTS= (NUMBLK=1) NN
PRINT 2 sNCKB

LERO AR AND B ARRAYS
DO 4800 J®1yNN2
B(J) =gy

DO 48G0 L=14NN
AR(JsL) =000 . i

BEST AVAILARE (Cpy
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C CalL "QANDED MATRIX SOLVER

C
M= |
IF (HX(1) eNEeQe0) M=2
CALL oANSOL
NTEST=S
PRINT 169NTEST
PRINT 2 sLXoLY

C

C WRITE SOLUTION ONTO TAPE

C
WRITE(1092) NXoNY
WRITE(1004) (HX(J) 9J=1aNX) o (HY (K) yKZ19NY)
WRITE(1094) ((V(IoJ)eIalaNX)eJ=1oNY)
END FILELO

C

c PRINT SOLUT]ION

C

5000 M2=0

M1=Sy

S100 M23M2+5)
IF (M2.LEeNY) GOTO 5200
M]1ENYeSQeM2
M2=ENY

5200 N230

5300 N1=N2el
N2=N2e+14
IF (N2eGTeNX) N2INX
PRINT 8 o (WX (K)9KZN]¢N2)
PRINT 10
D0 S4(p0 J=1,M1
I=MRe =y

9400 PRINT  L1eHY(I)o(V(KoI)oKaNL1IN2)
PRINT 10
PRINT 9 9 (HX(K)9REN]yN2)
IF (NZ2eLTeNx) GOTOU 5300
IF (M2eLTeNY) GOTU S100

STOP
END
SUHROUTINE BANSOL
C
C SOLVES BANQEDy SYMMETRIC MATRIX
C
CCMMON /BANARG/ MMy NUMBLK9BoAgNNINN29 Vo NXgNYoLXyLYyLHBINCKS
DIMENSION 8(200) 2A(2009100)9V(1009200)
NL=NNe+ ]
NH=NN+NN
LX=NX
LYENY=]
REWINyY 3¢
NB=0
GO 10 150
CREPOUINDIRNBRBNBARRDRRDORRB AR R BB RRRBI R BB R RR RN R RPN PRV IDNRBIR BB RN AN R RS
C REDUCE EQUATIONS oY BLOCKS
CHRBR U DU RRBRRR RN BADBRRBR LIRS AR ROR AR RNCO RGN A RPN BGRND NP DI NRERR DN RGN ORORE
(=
C 1e SHLIFI BLOCK OF EVUATIONS

D

¥
)

BEST AVAILAR!:

(0
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et

100 NB=nB+1
DC 123 N=1lynN
NVSNNeN
BN) 35 (NM)
B(NM) =040
DO 129 M=]l4MM
A(NeM)=A(NMgM)
125 A(NMsM)=(0eg

2 READ NEXT BLOCK OF EWQUATIONS INTO CORE

OO0

IF (NUMBLK=AB) 15492009159
150 READ (39) (B(N)o(A(NsM) gM=] gMM) sNSNL oNH)
IF (Ng) 20041009200

3¢ REUUCE 5_OCK OF EQUATIONS

(e NaXe!

200 DO 309 N=1yAN
IF (A(Ns1)) 22593u09225

2¢5 BIN)SH(N)ZA(Nol)

DC 275 L=2svM

IF (A(NsL)) 2302759230
230 C=A(NyL)/ZA(NS1)

IsNeL =}

J=0

DO 25, KsLyvM

NENLD!

250 A(IoJ)3A (]9 )=~CHA(NIK)
B(I)Sg(I)=a(NyL)®*B(N)
A(NoL)=C

275 CCNTINUE

300 CONTINUE

4o WRITE BLQCK OF REOUCED EQUATIUNS ON TAPE 2

[aNeXe]

IF (NUMBLKenB) 37594009375
375 WRITE (33)(B(N) o (A (NIM) sM=29MM) INZ] gNN)
GC T0 140
c.....’i’..‘QQ!IQQ.Q...'.i.0OQ.QQ..lﬂﬁiﬂibbﬁhﬁtﬁﬂbihh.Q..b’lﬁ!.’.".....'
(o BACK=SUBSTITUTION
c............ib.0'....00..’.0.00!l.."ﬂ.OOQOQO..Q.QQQQQQOOQOQOQQ'...QOQ.Q
4u0 DC 45y M=lenN
MNENNS | =M
DO 625 K3a2yvM
L=NeK=]
425 B(N)SH(N)=A(NgK) ®#g (L)
NMSNSNN
B (NM) 3B (N)
IF (NS.EQeNUMBLK oANDoNoGTNCKE) GOTO 450
LXS X=]
IF (LXeGEeLKB) GOTO 445
LY=LY=1
LXmNXe]
465 VILXsLY)s3B(N)
450 CONTINUE
NB=NB=1

BEST AVAILABLE COPY




o

OO0

o0 00

Oo0on

475

500

IF (Ng) 475¢5009475

BACKSPACE 33

READ (33) (B(N)g(A(NgM) gM329MM) 9NZ] ¢NN)
BACKSPACE 33

GC TO 400

CONTINUVE

RE TURN

END
SUBROUTINE HORIZ(LY9J9EPS]sRAYRBIANEPSyAREAILXHR)

CALCULATES DIELECTIRIC-AREA PRODUCT
OF HORIZONTAL FACE OF VOLUME ELEMENT

DIMENSION EPS(199+10)

INTEGER BDK(1999¢10)

COMMON/HORARG/BDRYEPS

IF (BUR(LYoy)=2%LA) 149293

JaJel

EPS1=PS(LY,yJ)

IF (BUR(LYey)=2%LK) 149293

JaJel

EPS23EPS(LYeJ)

ANEPS=QeS#* ((EPS1=EPS2) #R*¥24EPS2*HH#*#2-EPS]1*RA®®2)
EPS]scPS2

RE TURN

ANEPS=EPS]1#aAREA

RE TURN

END

SUBROUTINE VERT(LXQEPSIQZoZPHORoAZEPS|LVoY)

CALCULATES UIELECIRIC=-AREA PRODUCT
QF VERTIEAL FACE OF VCOLUME ELEMENT

DIMENSION EPS(99910)
INTEGER BLZ(39+10)
CCMMON/VERARG/BDZEPS

Ke)

IF (BOZ(LXgKk)=2%LY) 14243
KEKe]

EPS1ZEPS (LXyK)

IF (BOZ(LXyk)=2%LY) 14293
KhaKe]

EPS22EPS (LXyK)

AZEPSzR* (EPS1* (Y=L) *EPS2%* (ZPH=Y))
EPS)=LPS2

RETURN

AZEPSSEPS1#K* (ZPH=Z)

RE TURiN

END

SUBROUTINE SPCOEF (V)

CaLCULATES COEFICIENTS OF CUBIC SPLINE USED IN INTERPOLATION

DIMENSION XN(200) 9FN(200) ¢S(200)9RHO(200) 4 TAV(200)
COMMON/SPARG/XNsFNeS

. BEST AVAILABLE (opy




(s Nale]

NM1aNe]

NM2aN=2

RHO(2)35.0

TAU(2)3Uu,0

DO 1 I=2,AM]

IvMlale]

IP1=1e]

HIMIZXN(I)exN(IM])
HISXN(IP)1)=xN(I)

TEMPE (HIML/RI)* (RHO(I) ¢24) #20
RKO(Ie¢l)m=],/TEMP

DZ66® ((FN(IPY)=FN(I))/HI=(FN(I)=FN(IM]))/KIM]) /KT
TAU(I+1)8(D=HIMI®*TAU(I)/HI)/TEMP
S(l)=sg.

S(Ny=g,

DO 2 Ism1¢NM2

IBaN=]
S(IB)=RHO(IB+1)®S(IB¢1)+TAU(IBe1)
RE TURN

END

FUNCTION SPLINE (NyX)

EVALUATES SPLINE FUNCTION

DIMENSION XN(200) 9FN(200)9S(200)

COMMON/SPARG/XNgFNoS

IF (XeGEeXN(1)) GOTO 1

H1=XN(2)=XN(1)

SPLINESFN(]) ¢ (XaXN(1))®((FN(2)=FN(1))/®l=r1%S(2)/60)

RETURN

IF (XeLEoXN(N)) GOTO 2

NvlaN=1

HAM1I3XN(N) XN (NM])

SPLINE-FN(N)O(X-XN(N))'((FN(N)-FN(NMI))/HAMI‘HNM]'S(NMl)/Q.)

RE TURN

DO 3 [=2N

IF (XeLE«XN(I)) GOTO 4

CCNTINUE

Lelel

LPlsLe]

AsXN(|LPl)=X

BeX=XN(L)

HLEXN(LP1) *XN(L)

SPLINEI"S(L)'(A°'2/HL-HL)/6:08'$(L01)’(B"ZIHL-HL)Iéo
¢ (ARFN(L)«B®*FN(LPL1))/HL

RETURN

END

BEST_AVAILABLE COPY




FVPLOT

C
C CONTOUR LINE PLOTIER
c

DIMENSION V(10090200) oKX (100) 9HY (200) ¢ IBUF (60) 9GX(100) »GY(200) |
/U(1009200) 9 X (150)9LY (150) |
COMMON/DRAWARG/X (600) 9 Y (600) » XMAX 9 YMAX ¢ NQUAD 9F IRSTX9DELTAXFIRSTY |
/DELTAY

FCRMAT (BF1043)

FORMAT (2014)

FORMAT (6164 4FS540)

FORMAT (I149F1040)

FORMAT (SHINX ByJ496X94HNY =914)

FCRMAT (1HpeI139116491249114)

FCRMAT (THoX FROM9F10e394H TO9F10e398X96HY FROM9F10e394H TO»
1F10,3)

~NoOUNEWN-

READ POTENTIAL GRID DATA

OO0

READ & oIvVyyUPOT

READ 3 ’IOQINOJO'JN"\QUAD'KK.SZ

READ 3 NXoNY

READ 1s (HX(I)s I=1gNX)y (HY(J)9 J=1oNY)
READ 1o ((V(Iod)e I=]1eNX)y JS1eNY)
ISCAN=1

IF (IVU«EG.)) GOTO 150

READ FLUX GRID DATA

OO0

READ 3 sMHyNHoKRA
READ kI MX9MY
READ 1y (GX{I)s I=1oMX)e (GY(J)y» JzlaMY) 4
READ ) ) ((U(Isd)e I=1loMX)y ys]leMY) 3

SHIFT DATA FOR REGION TO BE PLOTTED

[eNeXe]

IF (IUeEQel) GOTO 120
DO 160 I=I0,IN
GX(I¢]1=10)=GX(])
DO 100 JslypY
100 U(IelelOsd)=zU(IyJ)
120 MX3INe1=10
IF (JUeEQel) GOTO 150
D0 140 J=JOyJIN
GY(Jo1=J0)=GY (I
DO 149 I=lynX
140 U(I19Je1=00)=2U(IsJ)
150 IF (l10«EQe]l) GOTO 170 1
DO 160 1=104IN v
HX(I+]=10)=HX ()
D0 160 J=1lyNY
160 VI(Ie1=1090)3VI(1ed)
170 NX=INe1=10
IF (JO<EQe1) GOTO 200
D0 18y J=JO4JN
HY (J*1=J0) =RY (J)
DO 18¢ I=1enX
180 V(IeJ*+1=J0)=V(]sJ)

BEST AVAILABLE COPY
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OO0

OO0

cCooO

200

220

240

260

280
290

300

30s

310

NYSJNe1=J0

PRINT S snxsNY

PRINT 6 9I1C9INsJOIUN
PRINT 7 oHX (1) oHX(NX) gHY (1) oHY (NY) 1
XMAXEHX (NX) «aHX (1)
YMAXZRY (NY) =HY (1)
nS=p

NXM1ZENX=]
NYMIENY=1

INITIALIZE PLOT AND DRAW AXES

CALL PLUTS (1190999)

CALL FACTOR(0e25)

CALL PLOT (Qe9=14,9=3)

CALL PLOT(Qq90e50=3)

FIRSTXaHX(])

FIRSTY=HY(])

IF (XMAXoGT,YMAX) GOTO 22¢

IF (NQUAOQEGaZoANU-(Zo'XMAX):GTQYMAX) GOTQ 220
DELTAXSXMAX/10e

DELTAY=SDELTAX

GCTO 2évu

DELTAY=YMAX/10e

DELTAX=DELTAY

IF (NWUAD+EG.2) GuTU 290

IF (NWUADeGTs1) GOUTU 2R0

IF (XMAXoGT,YMAX) GOTC 269

YAX= (YMAX/XMAX)®#] ¢

CALL AaXIS(Qe910eseTnZ=AXIS AXIS OF SYMMETRY#279YAXeQeoFIRSTY,
1DELTAYu)

CALL AXIS(0e910e96HR=AXISy=691009270e9FIRSTX9DELTAX90)
GOTO 290

XAX= (XMAX/YMNAX) ®]ye

CALL AXIS(0e90e927HZ=AX]IS AXIS OF SYMMETRY9427910¢990¢9FIRSTY,
10ELTAY, ()

CALL AXIS().90erbNR=AXISo=69RAX9DesFIRSTX,DELTAXyp)
GCTO 290

DELTAX=2o® L TAX

DELTAYS2,%0c L TAY

IF (IVU«EG.2) GOTO 305

DRAW EQUIPOTENTIAL LINES

00 30u K=]lekK

CZ3K=KS

28C2%S2

CALL DURAW (ZgNXoNYoNXM1oNYMLoHXoHY oV ISCAN)
IF (IVU.EG.3) 3054500

CALCULATE AND PLOT FLUX LINE DISTRIBUTION

MXM]EMX=]
MYM]1EMY=]
I=1
PA=VI(1s1)
Is]e]
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320

330

340
350
360

370

380

390
460

PB=V(1,])

IF (UPOT.GE.PA«ANDUPOT.LE.PB) GOTO 320
PA=PB

GOTO 310

IMa]=]

REHY (IM) ¢ (UPOT=PA)®(HY(I)=HY(IM))/ (PB=PA)
HEHY (NH) =R Y (MH)

I1SCaN=2

C=0.

RASHX (KRA)

KRBEKKA+®)

IF (KkBeGTenvX) GOTO S00

RB=HX (KRB)

EA3(V(KRAINK) =V (KKAIMK) ) /H
EBS(V(KRBINKH) =V (KRBIMK) ) /H

A2=((cB=EA)/ (RB=RA)) /2.

A1SEA-RA#2 ,4A2

CINC=u2% (Rpun2=RA#82) +A]* (RB=RA)

IF (ReLTeRB) CINCSAZ® (RE¥2.RA#®2) +A]#(R=RA)
C=C+CINC

IF (ROLEORd) GOTO 3490

KRAZKKB

RA=RB

GCTO 33y

Z=BU(KHAIMR) ¢ (R=RA) # (U(KRByMH) =U(KRAyMH)) / (RB=RA)
CALL DRAW (ZoNXgNY9sNXM19NYMLI9GXoGYoU9ISCAN)
RX=R

CSUM=G0

A2=((tB=EA)/ (RB=RA)) /2.

AlSEA=RA#2 . #A82

CINC=u2% (Rgan2=RX®#82)+A]1* (RB=RX)

IF (C=CSUM=CINC) 380939049370
CSUM=CSUM+C INC

KRA=KHB

KRB3KKA+]

IF (KRBeGTevX) GOTO 500

RA=RB

RXZRA

REZHX (KRRB)

EAZ(V(KRAyNK) =V (KKAIMK) ) /K

EB=(V (KRByNp) =V (KRBIMK) ) /H

GCTO 360

AQBCSUM=(C+p2#RX#B2+0] #RX)

CALL RSOLV(K9RX9RbeA2sAlsAQ)

GCTO 400

R=RB

IEU(KHAIME) ¢ (R=RA) # (U(KRByMH) =U(KRAyMH) )/ (RB=RA)
CALL URAW (ZoNXgNYINXML9NYMLoGXoGYoUs ISCAN)
IF (ISCANCEG.Q) GUTO 500

IF (ReNEoKg) GOTO 350

KRRAZKHAB

KRE=KKB*+]

IF (KrBeGTeMX) GOTO S04

RB=HX (KRB)

RA=R

GCTO 359

BEST_ AVAILABLE (
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oo

510
520

S30
540

550
560
570
S80
590

600

610
620

630
640

650
660

670

680

DRAW CLECTRCDE AND UIELECTRIC CONFIGURATICN

HEAD 3 oNLINES
DO 70y L=1sNLINES
READ™ 3 WNPTS

READ 2 o (LX(N)sLY(N)yN=14NPTS)

IF (XwAX4GT,YMAX) GOTO 60y

IF (NWUADOEGe2¢AND o (24#XMAX) oGTeYMAX) GOTO 600

DO Séy N=loNPTS
LXNNN=LX(N)+]1=10
LYNNNSLY (N) ¢+1=J0

Y(N)=RY (LYNNN)

GCTO (514953095209520) #NQUAD
X(N)SXMAX=rX (LXNNN)

GCTO 542
Y(N)SYMAX=HY (L YNNN)
X(N)SXMAX®HX (LXNNN)
CONTINUE

X(NPT5¢1)3FRSTX
X(NPT5e2)3DELTAX
Y(NPTS¢1)SF[RSTY
Y(NPTS#Z)3DELTAY

CALL LINE (YoX9NPIiS919090)
GCTO (700958095509550) ¢ NQUAD
DO S6; N=L4\PTS
X(N)S2e®XMAX=X(N)

CALL LINE (YoXoNPTS919099)
DO S7, N=1eNPTS
YIN)Zgoe®YMAX=Y (N)

CALL LINE (Y9XoNPTSel19090)
DC 59 N=14APTS
X(N)Z2e®XMAX=X(N)

CALL LINE (YoXoNPTS914090)
GCTO 700

DO 64, N=14NPTS
LXNNNSLX(N)e]1=]0
LYNNNSLY (N) ¢1=J0

Y(N)SRY (LYNAN)

GCTO (610963096209620) yNQUAD
X(N)SHX (LXNAN)

GCTO &40

Y(N)SYMAX=HY (LYNNN)
X(N)=XMAX+HX (LXNNN)
CONTINVE

X(NPTSe1)sF[RSTX
X(NPT342)2DEL TAX
Y(NPTSel)sF[RSTY
Y(NPTS#2)3DELTAY

CALL LINE (X9YINPTISel9090)
GCTO (T00968006509650) yNQUAD
DO 66y N=]14NPTS
X(N)B2o®XMAX=X (N)

CALL LINE (X9YoNPTS919090)
DO 670 N=19NPTS
Y(N)=2,#YMAK=Y (N)

CALL LINE (x9oY9oNPISe19090)
DC 69y N=lyNPTS

60
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690

700

OoO0O0n

nN

10

X(N)S2e®XMAX=X (N)

CALL LINE (XgYyNPISe14090)
CONTINUE

CALL PLOT(1240900u040)
STOP

END

SUBROUTINE pRAW (LolLoJLoeIleJdJeXVeYVeVyISCAN)

SCANS GRID aND PLUTS LINES OF EQUAL VALUE

DIMENSIUN Xy (100)9YV(200)9Vi1009200)

COMMON/DRAWARG/ZX (60uU) 9Y(690) s XMAX9 YMAX g NQUADoF IRSTX9DELTAXGFIRSTY

/DELTAY

NT=0

Ix=9

T=¢

IAs]IL

DO 3 J=leJJ

JAsY

A=V (IAyJA)

Dav(lasJdarl)

IF (A.EQ,0) GO TO 3

IF (AeLEsCoesOReDeLEsDe) GOTO 3
IF (ALEQ.T) 192

TeA+ (U=A) %] E=6

CALL VA(DIAToXVoYVoXeYoIAgJAYIXINTyJJV)
IF (NTeNEe0) GO TO 30

CONTINUVE

JasJ L

DO 6 I=1,11]

IAz][Le]

B=v(IA+lyua)

Azv(IasJA)

IF (B.EQ.A) GO TO 6

IF (AQLEOOO.ORQBOLEgoo) GOTO 6
IF (EQEQQT) ‘95

TeBe (A=b)®] E=6

CALL AB(A9ByToXVoYVoXsYoIAgJAGIXINToIIyV)
IF (NTeNEep) GO TU 30

CONTINUE

1A=20

DO 16 J=1eJy

JasglL=J

CaV(leJAsl)

B=v(1yJA)

IF (CeEWeB) GO TO 10

IF (Jae«EQel) GOTO 7

IF tC.LEOOOQOROB.LE!o.) GOTO 10
IF (CeLEoQeeOReBelLTe0.) GOTO 10
lF (C.EG.Y) 8!9
T=Ce(g=C)*] E=6

CALL BC(BCyToXVeYVeXeYolayJAgIXeNTyUJdyV)
IF (NTeNEey) GO TO 30

CONTINVE

JA=(

D0 14 I=]1sI1]

IA=]
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11

%3
13

14

15

16
17

i8

19
» 20

22

24

5

26

a7
28

Dav(lasl)
Csv(laslsl)

IF (D.EWLC) GO TO 14

IF (IA‘EQO[QANDthCAN.EQ.Z) QOTQ 11

IF (CelEeleoeOReDeLFEeUs) GOTO 14

IF (C-LE.U..OQ.O-LT:O-) GUTO 14

IF (DeEQeT) 12013

T=De (C=D) ] E=6

CALL CO(CoDgToXVyYVeXyYoeIAgJAGIXyNT,II,V)
IF (NTeNEe0D) GO TU 30

CONTInUE

IF (ISCANeNES1) GUTO 22

DC 21 1=)911]

DC 21 J=1edy

1A=1]

JASJ

C=Vv(lelrJe])

BV (lel9J)

IF (C.EQ.E) GO TO 18

IF (J.EQel) GOTO 15

IF (C'LtoOO.OROBoLFSOQ) GOTO 18

IF (CoLtaOo.ORoB.LT:OQ) GOT0 18

IF (C.EGeT) 16917

T=Ce(d=C)*) E=6

CALL dC(BoCaToXVeYVeXgYoIAgJAGIXINT4JJyV)
IF (NleNEep) GO TO 30

D=V (lyJ*1)

IF (C+.EQeC) GO TO 21

IF (CelEeQeeOReDelLECDS) GOT0 21

IF (CeEQel) 19920

T=Ce (P=C)*] E=6

CALL CO(CODgToXVoYVeXeYoIAgJAgIXoNToIIgV)
IF (NT.NEep) GO TO 30

CCNTInNUE

ISCAN=0

GC TU 69

DC 29 J=19dy

D0 29 I=191]

IA=]

JAsy

C=v(leloy*l)

B=v(lelol)

IF (C.EWU,B) GO TO 25

IF (COLEOO0.0R'BQLEEOC) GOTO 25

IF (CoEQoT) 23924

T=Ce(g=C) %] ,E=6

CALL dC(BeCeToXVaYVeXeYrIAgJApIXsNTyJJsV)
IF (NTeNEeQ@) GO TO 30

Dev(lode+1)

IF (CeEWsD) GO TO 29

IF (1.EQGel) GOTO 26

IF (CoLEcﬂo.ORoDoLE:O.) GOTO 29

IF (CeLEeODesOReDeLTs0e) GOTO 29

IF (COEQOT) 27'28

TsCe(Uu=CI*[,E=6

CALL CD(CoDyToXVoYVeXgYoIAgUAGIXINTyIIyV)
IF (NIeNEeg) GO TO 30
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29 CONTINUVE
ISCAN=D
GC T0 69

30 IST=la
JSTaJa

3 IF (lﬂ-EQOQ.OnoIA.E“OIL-O“QJA-EGOUQOROJA-EQOJL) GO TO S0
NIXs]x
IF (TJEWV(IA9JA)) VI(IAWJA)ZV(IAYJA)#*)40001
IF (TLEU,V([A¢leJAa)) VI(IAeleJA)SV(IACLlyJA)*1,0001
IF (TLEGeV(IA®1l9JA®]l)) V(IA®LlyJA*])aV(][A®]9JA*]1)#*1,0001 ;
IF (TeEWaV(]A9JA®])) V(IAgJA®])3V(IAYJA*]1)*]1,0001
A=v(lasJa)

Bzv(laelyua)

Cav(lAasloyAe])

D=V (laygJAae])

IF (lAeEQe] sANDeISCANLEW@.2) GOTO 32

IF (JAa.EQel) GOTO 33

IF (AQLEQOOQOQOB-LE:OQQORQCQLEQOQoURoD.LE.Og) GOTO 40

232 IF (AeLTe0eeOReBoLEsCosUReCoLEcDeeUReDlLT,0e) GOTO 50
6GOTO 34

33 IF (A.LI.O..ORIBOLTQOQQQROCQLEIO?.OROD.LEQOS, GOT0 So

36 IF (NieEQe]l) GO TO 35

k IF (NT+EQe2) GO TO 36

| IF (NT+EQe3) GO TO 37

' IF (NT+EQes) GO TO 38
GC TO 69

35 CALL UA(DoAyToXVerVeXeYeslagJAgIXoNTyJJeV)

| IF (IXxeGTenIX) GOIO 39

| CALL SC(BICyToXVeYVoXgYoIAgJAGIXINT3JJeV)

f IF (I1XeGTeN[X) GOTO 39
CALL AB(A9HaToXvaYVoXeYolAgJAGIXINT9IIyV)

GC TU 39

36 CALL AB(AsSsToXVeYVeXeYeIAgJAGIXINTyIIyV)
IF (IxeGTen[X) GOIO 39
CALL CD(CoDgToXVoYVoXgYoIAgJAYIXaNTyIIoV)
IF (IxeGTenIX) GOIO 39
CALL SC(RICoToXVeYVoXeYoIAgJAGIXINTyIJoV)
6C TU 39

37 CALL oC(RCyToXVyYVeXyYolAgJAGIXsNTsUJsV)
IF (IAeGTenIX) GOTO 39
CALL UA(DIA,ToXVeYVeXgYoIAgJAgIXINToJJyV)
IF (IXAeGTeN[X) GOTO 39
CALL CO(CoDoToXVeYVoXgYoIAgJAGIXINTyIIyV)
GC 1O 39

38 CALL CD(C'UQTOXVOYV'X.YQIA’JApIXONT'IIQV)
IF (IXxeGTenIX) GUIO 39
CALL AB (A9 9T oXVeYVOXeYsIAoJAGIXINToITI9V)
IF (IAeGTemnIX) GOIO 39
CALL UA(DSIAsToXVeYVoXyYeIAgJAgIXaNT o JJeV)

39 IF (1aeEGeISTeANDsJAEQ.JST) 50931

40 IF (X(IX)eEQeX(IX=1)) GUTO SO
SE(Y([X)=Y([X=1))/(X(IX)=X(IX=]))
SHEY([X)=S®*x(IX)

41 SLE(YV(JA*L)=YV(JA))/Z(XV(IA)=XV(IA®1))
SRE(Yy(JA®]L)=YV(JA))/Z(XV(IA®l)=xV(IA))
ORTHL2ABS(SL*1/5)

ORTHR=ABS (SK*1/S)
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42
43

50

51
52
53
54

S5
56
57
58
59
60
6l

62
63

64
65
66

67
68

69

IF (OXTHReLT.ORTHL) GOTO 42
SRD=YV(JA) =SL®*XV(][A*])
XR3(SsN=S8)/(S=SL)

GOTO 43
SBOsYv({Ja)=SReXv{[A)
XR=(SgD=SB) / (S=SR)
IxX=1Xe)

X(Ix)sxR
Y(IX)=S®X(Ix)+SH

CALL APLOTY (X9YoloIX)

IF (XMAX GT,YMAX) GUTC 60
IF (NGWUADWEGe2+AND (24#XMAX) «GToYMAX) GOTC 69
DO 5S¢ I=19]X

GCTO (51953,52952) oNGUAD
X(I)3XMAX=X(])

GCTO 94

Y(I)=YMAX=Y(])
X(I)saMaxex(I)

CONTINUE

X(IX*1)SFIRSTX
X(IX*2)=DELTAX
Y(IX*))3FIRSTY
Y(IXeZ2)=DELTAY

CALL LINE(YoXoIXole090)
GCTU (69958,55955) 9y NGWUAD
DO s6 I=19lx
X(I)=2e%XMAX=X(])

CALL LINE(Y¢XgIX919090)
DO S7 I=1s1Ix
Y(I)=2.#YMAX=Y(])

CALL LINE(YygXoIXol90090)
0C S9 I=1slx
X(I)=zettXMAX=X(])

CALL LINE(YgXeIX9lo090)
GCTO 69

GOTO (639614961961) 9NQUAD
DO 62 I=191x
X(I)=XMAXeX(])

IF (NGWUADeEGe4) Y(I)S2.%YMAX=Y (]}
X(IX*®]1)=FIRSTX
X(IxXe2)=DELTAX
Y(IX*®1)=FIRSTY
Y({IX+2)=DELTAY

CALL LINE(XgYoIXoloU90)
GCTO (69967964964) yNQUAD
DO 65 I=1s1IX
X(I)Z2e2XMAX=X(])

CALL LINE(XygYoIXoleUs0)
DC 66 I=191Ix
Y(l)=2e®YMAX=Y(])

CALL LINE(XyYsIXploUsD)
DO 68 I=19lx
X(I)Soe®XMAX=X(])

CALL LINE(XgYoIXe19090)
CONTINUE

RETURN

END




SUBROUTINE RSOLV (RsRAWRByAZ2PAL9A(Q)

(eXg]

CALCULATES ROOTS OF WUADRATIC EGUATION

RE(=A] = SQRT(A1%92 = 4,%a2%A0)) /(2,%A2)
pFINT 1 +ReRA9RB9AZCsALlyAYQ
1 FORMAT (4h R z96E16.8)
IF (R.GE.RA.ANDeR.LE.RB) GOTO 2
RE(=A] ¢ SQWKT(AL##2 = 4,%A2%A0)) /(2.%A2)
PRINT 1 4KyRA4RB9A29A14A0
2 CONTINUE
RETURN
END
SUBROUTINE XPLOTY(XeYeZsIX)

oo

PRINTS COCRpINATES OF EQUAL VALUE LINES

OIMENSION X(1)eY(1)

PRINT 3

PRINT 29 IX

PRINT 49 2

PRINT 19 (X(K)y KS1l9IX)
PRINT 3

PRINT 19 (Y(K)s K=19IX)
PRINT 3

FCRMAT(1H +8E1648)
FORMAT(1H 941697H POINTS)
FORMAT (1H )

FORMAT (9H VALUE = 4F843)
RE TURA

END

SUBROUTINE AB(A9BoaToXVeYVeXeYeIAsJAgIXeNT4IIsV)

& W N

ao

SEARCRES HBOTTOM SIDE CF RECTANGLE FOR GIVEN VALUE

DIMENSTON Xy (1)oYV(L1)eX(1)oY(1)oV(1009200)
IF (A.G'.TQAND-BOLT:1QORvoLIoT-AND.BoG'oT) 107
1 P1=XV(IA)
W1=XV(IA+l)
XX=(P1+Q1)/ 2,
T1=4A
T2=8
: IF (IAeEQel) 293
2 R1=XV(IAe¢2)
T3=v([A+29JA)
CALL SO0L33(XXeTePloulsR19T1972,73)
GC TO 6
IF (IAaekQelI) 445
4 PR1sXV(IAel)
T3=v(IA=19Ja)
CALL SOL33(xXeTePLlouwleR19T1912,73)
GC TO 6
S IF (V(IA=1yJA)eLEeGe) GOTO 2
IF (V(IA®29JA) eLEsCe) GOTO 4
K1=XV(lA=])
S1=XV(IA+2)
13=v([A=19Ja)

w

BEST AVAILABLE COPY

65




T4=v([A*24Jp)
CALL S0L&4(XxX9T9PLloWloeR19S19T719729T739T4)
6 NT=)
IXs[Xey
X(Ix)=XX
Y(IX)=YV(JA)
JASJA=]
7 RETURN
END
SUBRUUTINE BC(BeCoToXVeYVeXeYeIlAsJAyIXgNT4JJoV)

(gXal

SEARCHES ReKFe SIDE OF RECTANGLE FOR GIVEN VALUE

DIMENSION Xy (1) 9YVI(L)gX(1),Y(1)eV(100,200)
IF (BeGToToANDeCoLToToOReHeLToTeANDoCoGToT) 197
1 Pl=YV(JA)
Gl=YV(JAe]l)
AX=(P1*3d1)/ 2,
T1=H
T2=C
IF (JasEQel) 293
2 R1=SYV(JA+2)
T3=y(lA+19JA+2)
CALL SOL33(XXeTePloWleR1eT1912973)
GC TO ¢
3 IF (JAJEQedJ) 495
4 R13YV(JA=]1)
T3=v([A*)19Ja=-1)
CALL SOL33(XXysTsP1lsWlsR1sT19T12,T73)
GC 70 6
S IF (V(IA¢l9JyA=1)elLEeDs) GOTO 2
IF (V(IA®leJ A+2) eLE«V.) GOTO 4
RI=YV(JA=])
S13YV (JA+2)
TIsv([A*)9Ja=1)
T4=v([A+)9JAe+2)
CALL SOL&44(XXyToP1l9Q19R19S19T719T29T39T4)
6 NT=2
IX=IXel
X(IX)=XV(IA+l)
Y(IX)=XX
IA=]A+1
: 7 RETURN
END
SUBROUTINE CO(CsDsToXVaYVeXeYgTAsJASIXyNTHIIsV)

SEARCHES TOp SIDE UF RECTANGLE FOR GIVEN VALUE

(s ale)

DIMENSION Xy (1) o¥YV(1)sX(1)yY(1)9V(1009200)

IF (CeGTaTeANDeDeLTeTeOReCoLToTeANDeDeGTaT) 197
1 P1=XV(IA)

QG1=XV(IAel)

XX=(PLeul) /2.

T1=D

Te=C

IF (1asEQe]) 293
2 R1=xV(IAe2)
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T3=v(IA+2vJp*1)
CALL SOL33(XXeToP19Q19sR19T19T12+73)
GC TO 6
3 IF (laekQell) 45
4 R1=XV(IA=])
T3av([A=19Ja+1)
CALL SOL33(XXeTyPloWlyR1aT19T126T3)
GC TO 6
5 IF (V(IA=]lyJA¢l)eLEeD.) GOTO 2
IF (V(IA#294A%]1)eLEs0.) GOTO &
R1=XV(IA=])
S1=XV(1A+2)
T3sv(l1A=1sJa+])
T4=v(1A+29JA1)
caLL SOLQQ(‘K.T’plle,Rl’Sl’!l'T2|T3|‘Q)
6 NT=3
IX=[Xxel
X(IX)=XX
Y(IX)=YVI(JA+1)
JAZJA+]
7 RETURN
END
SUBROUTINE A(DsAsToXVeYVeXeYsIAsJAgIXgNTyJJsV)

SEARCHES Leke SIDE OF RECTANGLE FOR GIVEN VALUE

OO0

DIMENSION Xy (1) oYV (1) eX(1Y,Y(1)9V(1009200)
IF (D'GTDT.AND.A.LT:TQORID.L!.T.ANDIA'G"T) 197
I Pl=yv(JAa)
Q1=YV(JA+L)
XX=(P1+G1) /2.
T1=A
T2=D
IF (JAsEQel) 293
2 R1=YV(JA+Z)
T3aV([AsJA+2)
CALL SOL33(XXsTePloGleR1eT1912+73)
GC TV 6
IF (JAaeEQedy) 495
R1=YV (JA=])
T3sv(]Ay JA=))
CALL SOL33(XX,T4PisWlsR1,T1572,73)
GC TO 6
S 1F (V(IAvJA-l)oLEqO:) 6GO0T0 2
IF (V(IA9JA+2) eLEsOe) GOTO 4
R1SYV (JA=])
S12YV (JA+2)
Tazv(jAsJA=1)
T4e=v([AsJA+2)
CALL SOL&4(XXeTsP1oUWloR19S19119T29T39T4)
€ NT=4
IXz=IXed 1
X(IX)=XV(IA)
Y(IX)=sXA
Ia=]A=]
7 FRETURN
END

&S w
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laNeXel

[ ele!

SUBRUUTINE SOL33(AXeToP19Q]eR19T1sT2+T3)
POLYNUMIAL [NTERPOULATION wlTH 3 NCDES

XXsXAX=P]

X120

X2=Ql=P1

X3=R1=P)

PQ=X2

XX2= K A2

XX33X3#X3

TT1=7=11

T172=2T2=11

T13=T3=-11
DTSXXg@A3=Xx30X2
AA=(T124X3=1T3%%x2) /70T
BB (XX2#TT3-XX3%T12)/0D7
TXseT7

T2=TTc=iT
TYS(AA®XXeER) #XX=TT
TUSTA&TY

IF (Tu) 295,3

xg=xX

T2=T1Y

GC TU &

X1=xX

Tx=7Y

XUsS(X)1+X2) /2,

UsSABS ((AX=XL)/PQ)
XX=XU

IF (UelTee(S) 591
XX=XXep )

HETURN

END

SUBROUTINE SOL44(XX9TsP19Q19R19S1eT19T20T30T4)

PCLYNUMIAL [NTERPULATION WITH 4 NGDES

XXZXX=P] |
X120 ]
X2=Q1=P1
X3=R1=P1 |
X4zS1=p1 -
PG=x2

XX2=X #X2

XX3=2X 3#X3

XXamX4wXg

XXX2=AX2#X2

XXX3=XX3I#X3

XXXgzXN40ky

T1=7=11

T723T2-11

113=13=11

TT4aTae=T1
DT=DTI(AXX2 9 XX2o X o AXXIgXXI9 X9 XXXG9gXXG9XG)
AAZDT3(TT2exX29X29TT39XX39XI9TT49XXb49X4) /DT
BBEOT 3 (XXX2TT29 X9 ARXI 9 TTI90RI9XXX4yTT4oX4) /0T

; BEST AVAILABIF (OPY




CCEDT S UAXR2 ¢ XX2eT120AXX39XX39TTI9XXXG4sXR4sTT4) /DT

Ixz=T1

12=1Tc=11

1 TYS((AA®XX+gB) #XXCC) #XX=TT |
TusTXaTyY |
IF (Tu) 295,3 ]

¢ Xg=XxX 1
T2=7Y |
GC 10 « |

3 X]1=XX |
ITX=71Y |

G XUS(X]1eX2)/;. f
USARBS( (AX=xy) 7PQ)
xXx=xu
IF (UcL!'OUOS) 5’1

S XX=XXeP]

RE TURN

END

FUNCTION CT13(A19B1sCLlsA29B20C29A3+83+C3)

CALCULATES pETERMINANT UF 3 BY 3 MATRIX

a oo

DT33A)#E2#C3+A2#B34C 1 +A30H])#C2-A | #B34Co=A2%8 | #C3=A3#B24C]
KETURN
END




DISTRIBUTION LIST

AFB CESCH, Wright-Patterson; Stinfo Library, Offutt NE

ARMY AMSEL-GG-TD, Fort Monmouth NJ; BMDSC-RE (H. McClellan) Huntsville AL; Tech. Ref. Div., Fort
Huachuca, AZ

ARMY BALLISTIC RSCH LABS AMXBR-XA-LB, Aberdeen Proving Ground MD

ARMY CORPS OF ENGINEERS MRD-Eng. Div., Omaha NE; Seattle Dist. Library, Seattle WA

ARMY ENVIRON. HYGIENE AGCY Water Qual Div (Doner), Aberdeen Prov Ground, MD

ASST SECRETARY OF THE NAVY Spec. Assist Energy (P. Waterman), Washington DC

CINCLANT Civil Engr. Supp. Plans. Ofr Norfolk, VA

CNM NMAT 08T246 (Dieterle) Wash, DC

CNO Code NOP-964, Washington DC

COMOCEANSYSPAC SCE, Pearl Harbor HI

DEFENSE DOCUMENTATION CTR Alexandria, VA

FLTCOMBATTRACENLANT PWO, Virginia Bch VA

HEDSUPPACT PWO, Taipei, Taiwan

NAVFACENGCOM CONTRACT Roicce, Keflavik, Iceland

MARINE CORPS BASE M & R Division, Camp Lejeune NC; PWO, Camp S. D. Butler, Kawasaki Japan

MARINE CORPS HQS Code LFF-2, Washington DC

MCAS Facil. Engr. Div. Cherry Point NC; Code PWE, Kaneohe Bay HI; Code S4, Quantico VA; LTJG J. Taylor,
Iwakuni Japan; PWO Kaneohe Bay Hl

NAF PWO Sigonella Sicily; PWO, Atsugi Japan

NAS CO, Guantanamo Bay Cuba; Code 18700, Brunswick ME; Dir. Util. Div., Bermuda; ENS Buchholz, Pensacola,
FL: PWD (M.B. Trewitt), Dallas TX; PWD Maint. Div., New Orleans, Belle Chasse LA; PWO Belle Chasse, LA;
PWO Chase Field Beeville, TX; PWO Key West FL; PWO, Dallas TX; PWO, Glenview IL; PWO, Miramar, San
Diego CA; PWO,, Moffett Field CA; SCE Lant Fleet Norfolk, VA; SCE Norfolk, VA

NATL RESEARCH COUNCIL Naval Studies Board, Washington DC

NAVACT PWO, London UK

NAVAEROSPREGMEDCEN SCE, Pensacola FL.

NAVAIRPAC CE. NI, San Diego CA

NAVAL FACILITY PWO. Barbados; PWO, Guam

NAVCOASTSYSLAB Library Panama City, FL

NAVCOMMAREAMSTRSTA General Foreman, NAVCAMS, EASTPAC; PWO, Norfolk VA; PWO, Wahiawa HI:
SCE Unit | Naples Italy

NAVCOMMSTA CO. San Miguel, R.P.; Code 401 Nea Makri, Greece; PWO, Adak AK; PWO, Fort Amador Canal
Zone

NAVCOMMUNIT Cutler/E. Machias ME (PW Gen. For.)

NAVCONSTRACEN CO (CDR C.L. Neugent), Port Hueneme, CA

NAVENVIRHLTHCEN CO, Cincinnati, OH

NAVFAC PWO, Lewes DE

NAVFACENGCOM Code 043 Alexandria, VA; Code 044 Alexandria, VA; Code 0451 Alexandria, VA; Code 0454B
Alexandria. Va: Code 04B5 Alexandria, VA; Code 101 Alexandria, VA; Code 10133 (J. Leimanis) Alexandria, VA;
Code 1023 (T. Stevens) Alexandria, VA; Code 104 Alexandria, VA

NAVFACENGCOM - CHES DIV. Code 101 Wash, DC; Code 402 (R. Morony) Wash. DC: Code 405 Wash, DC: Code
FPO-1SP (Dr. Lewis) Wash, DC; Code FPO-IP12 (Mr. Scola), Washington DC

NAVFACENGCOM - LANT DIV. Code 10A, Norfolk VA; RDT&ELO 09P2, Norfolk VA

NAVFACENGCOM - NORTH DIV. Code 1028, RDT&ELO, Philadelphia PA

NAVFACENGCOM - PAC DIV. Code 402, RDT&E, Pearl Harbor HI; Commander, Pearl Harbor, HI

NAVFACENGCOM - SOUTH DIV. Code 90, RDT&ELO, Charleston SC

NAVFACENGCOM - WEST DIV. Code 04B; 99P/20; RDT&ELO Code 2011 San Bruno, CA

NAVFACENGCOM CONTRACT AROICC, Point Mugu CA; Dir, Eng. Div., Exmouth, Australia; Eng Div dir,
Southwest Pac. Manila, PI; OICC, Southwest Pac, Manila, PI; OICC/ROICC, Balboa Canal Zone: ROICC LANT
DIV.. Norfolk VA; ROICC Off Point Mugu, CA

NAVMIRO OIC, Philadelphia PA

NAVOCEANSYSCEN Code 6700, San Diego, CA; Research Lib., San Diego CA; SCE (Code 6600), San Diego CA

NAVPETOFF Code 30, Alexandria VA

NAVPGSCOL Code 1424 Monterey, CA

NAVPHIBASE CO, ACB 2 Norfolk, VA




NAVRADRECFAC PWO, Kami Seya Japan

NAVSEC Code 6034 (Library), Washington DC

NAVSECGRUACT Facil. Off., Galeta Is. Canal Zone; PWO, Edzell Scotland; PWO, Puerto Rico; PWO, Torri Sta,
Okinawa; Security Offr, Winter Harbor ME

NAVSHIPREPFAC Library, Guam

NAVSHIPYD Code 202.4, Long Beach CA; Code 202.5 (Library) Puget Sound, Bremerton WA; Code 404 (LT J.
Riccio), Norfolk, Portsmouth VA; Code 410, Mare Is., Vallejo CA; Code 440 Portsmouth NH; Code 440, Puget
Sound. Bremerton WA ; Code 440.4, Charleston SC; Library, Portsmouth NH; PWD (LT N.B. Hall), Long Beach
CA

NAVSTA CO Naval Station, Mayport FL; CO Roosevelt Roads P.R. Puerto Rico; Maint. Cont. Div., Guantanamo
Bay Cuba; Maint. Div. Dir/Code 531, Rodman Canal Zone; PWO Midway Island; PWO, Keflavik Iceland; PWO,
Mayport FL; PWO, Puerto Rico; SCE, Guam; SCE, Subic Bay, R.P.

NAVSUPPACT LTJG McGarrah, Vallejo CA

NAVSURFWPNCEN PWO, White Qak, Silver Spring, MD

NAVTECHTRACEN SCE, Pensacola FL.

NAVWPNCEN Code 2636 (W. Bonner), China Lake CA; ROICC (Code 702), China Lake CA

NAVWPNEVALFAC Techniczl Library, Albuquerque NM

NAVWPNSTA PW Office (Code 09C1) Yorktown, VA

NAVWPNSUPPCEN Code 09 (Boennighausen) Crane IN

NAVEDTRAPRODEVCEN Tech. Library

NAVFACENGCOM - LANT DIV. Eur. BR Deputy Dir, Naples ltaly

NCBC CEL (CAPT N. W. Petersen), Port Hueneme, CA; CEL AOIC Port Hueneme CA

NCR 20 Code R31

NMCB $, Operations Dept.

NROTCU Univ Colorado (LT D R Burns), Boulder CO

NSD SCE, Subic Bay, R.P.

NTC Commander Orlando, FL ,

NUSC Code 131 New London, CT; Code EA123 (R.S. Munn), New London CT; Code TA131 (G. De la Cruz), New
London CT

OCEANSYSLANT LT A.R. Giancola, Norfolk VA

NORDA Code 440 (Ocean Rsch, off) Bay St. Louis, Ms

ONR BROFF, CO Boston MA; Code 700F Arlington VA

PMTC Code 4253-3, Point Mugu, CA; Pat. Counsel, Point Mugu CA

PWC CO., Great Lakes IL; Code 116 (LTJG. A. Eckhart) Great Lakes, IL; Code 120C (Library) San Diego, CA; Code
128, Guam; Code 200, Oakland CA; Code 220 Oakland, CA; Code 220.1, Norfolk VA; Code 30C (Boettcher) San
Diego, CA; Code 680, San Diego CA; XO Oakland, CA

U.S. MERCHANT MARINE ACADEMY Kings Point, NY (Reprint Custodian)

USCG (G-ECV/61) (Burkhart) Washington, DC; G-EOE-4/61 (T. Dowd), Washington DC

USCG ACADEMY LT N. Stramandi, New London CT

USCG R&D CENTER Tech. Dir. Groton, CT

USNA PWD Engr. Div. (C. Bradford) Annapolis MD

LEHIGH UNIVERSITY Bethlehem PA (Linderman Lib. No.30, Flecksteiner)

LIBRARY OF CONGRESS WASHINGTON, DC (SCIENCES & TECH DIV)

MIT Cambridge MA; Cambridge MA (Rm 10-500, Tech. Reports, Engr. Lib.)

PURDUE UNIVERSITY Lafayette, IN (CE Engr. Lib)

UNIVERSITY OF ILLINOIS URBANA, IL (LIBRARY)

UNIVERSITY OF MASSACHUSETTS (Heronemus), Amherst MA CE Dept

UNIVERSITY OF NEBRASKA-LINCOLN Lincoln, NE (Ross Ice Shelf Proj.)

AEROSPACE CORP. Acquisition Group, Los Angeles CA

BECHTEL CORP. SAN FRANCISCO, CA (PHELPS)

CF BRAUN CO Du Bouchet, Murray Hill, NJ

CONCRETE TECHNOLOGY CORP. TACOMA, WA (ANDERSON)

EVALUATION ASSOC. INC KING OF PRUSSIA, PA (FEDELE)

GLIDDEN CO. STRONGSVILLE, OH (RSCH LIB)

GOULD INC. Shady Side MD (Ches. Inst. Div., W. Paul)

GRUMMAN AEROSPACE CORP. Bethpage NY (Tech. Info. Ctr)

HUGHES AIRCRAFT Culver City CA (Tech. Doc. Ctr)

NEWPORT NEWS SHIPBLDG & DRYDOCK CO. Newport News VA (Tech. Lib.)

OCEAN DATA SYSTEMS, INC. SAN DIEGO, CA (SNODGRASS)

RAND CORP. Santa Monica CA (A. Laupa)
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RAYMOND INTERNATIONAL INC. CHERRY HILL, NJ (SOILTECH DEPT)
SANDIA LABORATORIES Library Div., Livermore CA

SEATECH CORP. MIAMI, FL (PERONI)

TRW SYSTEMS REDONDO BEACH, CA (DAI)

WESTINGHOUSE ELECTRIC CORP. Annapolis MD (Oceanic Div Lib, Bryan)
R.F. BESIER Old Saybrook CT
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