|

r

AD=AO48 053

UNCLASSIFIED

STANFORD UNIV CALIF DIGITAL SYSTEMS LAB
COMPUTING IN STORE. (V)
JUN 77 J K ILIFFE

OSL=TN=117

F/76 9/2
N00014=75-C=0601

{

B o e i i

o SRR

B

*

m m' .\
a

R Wt

ek

[S EE)

(A
n
v :
Qo .i
< ;
< COMPUTING IN STORE N/ -;
=T ‘
|
- wria)

by o J?'

A
John K. Iliffe & 5 &

June 1977

Technical Note No. 117

Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University

Stanford, CA 94305

The work described herein was supported in part by the Joint Services
Electronics Program under Contract No. N0O0Ol4-7

5-0601.
. £

06 FILE coPY

SAARIOW T s

Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, CA 94305

Technical Note No. 117

. Slas ACCESSION for
Ay ; / IS White Section
17 i June“1977 / DDC Buff Section]
; NI WG] UNANNOUNCED o
COMPUTING IN STORE . - }'—m —
. } O
!
’ INSTRIBUTION/AYAILABILITY CODES
Dist._ AVAIL and/or SPECIAL |
by
/ John K/ I11ffe ”
b s : i ."_’”_‘vﬂ : - »
ABSTRACT

i These notes provide an introduction to the class of single-instruction,
‘ multiple-data stream computers with the simplest processing elements. Design

principles are explained in terms of hypothetical Distributed Processor Arrays,
with examples drawn from experimental systems. Emphasis is placed on (a)
minimising the cost differential when the DPA is compared with conventional
main storage, and (b) designing the array control unit to support advanced

a forms of protection and language implementation. The influence of the DPA

7 on general system design is examined briefly.

;
(ﬁ\
i
o~

The work described herein was supported in part by the Jointlscrviccl
Electronics Program under Contract No. N000l4-75-0601.

LS
CONTENTS
1l DISTRIBUTED PROCESSOR ARRAYS page 3
2 ELEMENTARY DPA PROCEDURES 17
3 EXPERIMENTAL ARRAYS 30
4 SYSTEM DESIGN 44
REFERENCES S5
LIST OF FIGURES
‘ 3 1 Storage module layout for DPA4.1 page 6
3 2 Storage module with processing elements DPA4.1 7
l 3 Representing a spherical map 9
4 Processing element schematic for the DPA 11
5 Parailel sorting algorithms 23
6 PE schematic for CLIP-3 34
7 An example of CLIP processing 36
8 Processing element schematic for the DAP 38
: 9 Data routing in the FFT 41
; 10 DAP-FORTRAN subroutine for matrix inversion 43
Fi 11 Two methods of addressing a large program space 50
1 12 An array of DPA6's 54
1 _LIST OF TABLES
1 Theoretical bounds on arithmetic speeds page 20
2 Measured execution times for DAP 40

3 Relative performance measures 44

2

ey BERNEEARES Y AR

1 DISTRIBUTED PROCESSOR ARRAYS

e ———

These lectures are concerned with assemblies of processors, each
having local arithmetic and local storage capability but sharing a common
control unit, so that they execute synchronously a broadcast stream of

o s

instructions. When good (in terms of performance) such arrays can be ex-
pected to be very, very good, but when they are bad they are unproductive
if not exactly horrid. Thus one of the main objects of system design is

to keep the array working on problems at the favourable end of the spectrum |
for a sufficient proportion of time to justify its cost. In the Illiac IV
machine an attempt has been made to achieve that end by covering an exten-
sive user catchment area Ly using a communications network, enabling remote
sites to send problems to the array: there are very few laboratories or
businesses that present a continuous workload with the high degree of
parallelism necessary for efficient working. An alternative approach is

to reduce the cost attributable to the array to the extent that it can
operate economically at a low duty cycle. In principle, one would like

to see a TZ improvement in lystei throughput for an investment of sub-
stantially less than TXZ, but in practice we shall see that the presence of
an array can affect system design in ways which are impossible to quantify.

Readers unacquainted with array processor designs will gain some
insight from early papers on Solomon [1] and Illiac IV [2]. One of the
main performance bottlenecks on conventional systems is the data path from
processor (or processors) to . program storage units: with random access to
words the fastest crossbar or bus systems achieve peak rates of about 10‘
bytes/second. There are two methods of exceeding this limit, both of

which assume non-random access patterns:

(a) Use vector addressing modes, which allow retrieval and storage
of word sequences regularly spaced in store. It is then neces-

sary to transmit only a fraction of the addresses and speed

gains can be achieved by interleaving store cycles. The CDC Star,
TI ASC and Cray-1 machines provide examples of this approach which

leads to maximum data rates in the region of 109 bytes/second.

(b) Use a new pattern of physical interconmnection in which each pro-
cessor has direct access to only a limited region of storage. Thus
Illiac IV with 64 local stores containing 8 byte words and cycling
at 240nsec would achieve a maximum data rate of about 2*109 bytes/
second. It will be seen later that practical data processing

0 bytes/second can be envisaged with currently

rates exceeding 10
available technology, at the expense of severe limitations on

accessibility.

Of course, maximum data rate is not the end of the story, and although

it 1s true that data access patterns are non-random they vary appreciably
from one class of problem to another, allowing various degrading factors

to come into play. We should note in passing that the class of problems

of immediate interest are charcterised by regular data spacing, which is
not well served by slave memory techniques. On the other hand slave stores
deal with the type of non-randomness which appears as repeated reference to
the same locality, so the two mechanisms are not competing for the same
class of problem and we may hope to see them working effectively in com-
bination in some future system.

For practical purposes only linear or rectangular arrays need be
considered. Handling three dimensional arrays is severely limited by the
planar form of hardware, which is unlikely to change until radically new
methods of manufacture are proven. The form of interconmection within a
plane is more open to debate. Many problems are naturally expressed in
polar form, or by using a hexagonal cell pattern rather than square; the
result of mapping them into a rectangular array is to leave some of the
processors and connection paths unused. However, in the light of exper-
ience gained so far the square array with four near-neighbour connections
appears to be most widely applicable.

The main application incentive derives from the numerical solution

of field equations such as those occurring in reactor physics and meteor-

ology, in which method (b) is not unduly restrictive. Moreover, most

1
W
1
SPRIST ST ~.w~»-wfzmﬁw

numerical methods are based on a discrete representation of physical space

and time that can be mapped directly onto the array, the local storage
providing the third and fourth dimensions when necessary. Problems of
this class create a practically unlimited demand for computing power in

PN Ao L e B o Al AR e

the quest for high resolution and there is no doubt that very high absolute
performance and high performance/cost are attainable using array techniques.

wrteiaks

The principles of such applications are outlined below, but the emphasis of

§
¢
£
H
:
g
!

discussion is on non-numerical problems, system and language design. g

The main engineering stimulus comes from the emergence of semi-
conductor stores as main memory components: having the same physical and
electrical properties as logical devices it is far easier to consider
closely-coupled assemblies than in the days of core memory. Possible
. applications of this principle to cache memories have been pointed out
; by Stone [3]. A related factor of extreme importance is that simple and ;
3 highly repetitive circuits are very suitable for LSI manufacture: some |
of the processors to be considered require less than 100 logic gates each
and could eventually represent a negligible cost increase. Simplicity is

AR AP AS AN i)

the consequence of using single-bit wide data paths and providing a primitive
instruction set. The complex functions that are needed for arithmetic and .
data manipulation reside in the form of stored program in the same way as

microcode for a conventional machine. It is possible that reduced hardware

costs will allow us to regard a processor of 1000 gates as 'negligible' at
some future date, at which time éo-itucnt to greater functionality or
wider data paths can be considered as an alternative to closer packing of
single bit processors. The main requirement at present, however, is to
understand the trade-offs well enough to make sensible decisions, and the
study of single-bit processors seems to be the best starting point for that.

The reader may recognise the resemblance to cellular arrays [4],
[5), whose study is prompted by the same technological projections. The
main difference is that the logic and data paths are thought of as fixed
, in the processor array and variable (often on a row or cblm basis) in

many cellular designs. There is no intrinsic reason for maintaining the
distinction. Further research may show effective ways of combining the
two lines of development.

Ao

8 S4h | DPA storage

A store module can be thought of as a rectangular array of
(semiconductor) storage elements whose dimensions are determined as a
multiple of the store data word size and a power of two. For illustra-
tion a 'toy' store of 16-bit words in 16 rows will be used and I shall
denote by 'DPAn' where n is in the range 1 to 9 a square array with sides
of length 2". Thus the toy array is referred to as DPA4. The practically
useful arrays in terms of computing power require n at least 6. Parity
and/or tag bits are assumed to be present above the nominal word size, but
they do not take part in the array processing activities and they will be
omitted from the following description. Figure 1 shows a plan view of the
store module and a '3D' view with the storage bits extended in the vertical
direction to show the layout of words in horizontal sections through each
row of storage elements. Each storage element contains a few thousand
binary digits: I shall refer to an array with m kbit stores as 'DPAn.m’'.
Thus the toy array, which has 1024 bits in each element, is DPA4.1

(0,0) (0,15) (0,0) (0,15)
ojulo o olnj0 0
olajojo ololo g //. 1
ololola) (15,0) (15,15)1 2
o ﬁ'io'r : A -

Jeg uonntlu}: /
gl G e el
olo 1l 1 1023
oja oja . e v ol
(15,0) (15,15) Y
Figure 1: Storage module layout for DPA4.1

The array processor attaches a small computer or processing
elenent(PE) to each storage element. It is in that sense that processing
power is 'distributed’' through the store. The control iogic normally
associated with the store module for handling addresses and data is elabo-
rated to form instructions that are broadcast in synchronism to every PE

R

< e

B DB oA Iy o e

e B e ———— i s = st e——

in the array: each PE must obey the instruction, the only option that can
be exercised locally is whether to store the result. Figure 2 shows a plan
of the PE array and a perspective view with the processors in the 1lid of
the store. In programming terms we shall see that data is processed by
passing it 'vertically' through the 1id of the store 22® pits at a time

from a selected bit plane.

(0,0) = (0,15)
- 3
gaicaich ROW (0,0) (0,15)
= H-\ DATA PEs
aoigal T a '
. v L . 0 BIT
. ; 1 PLANES
o |{mm] Ol 2
(15,0) e e 115,15) :
1023
COLUMN
DATA : l i
ARRAY
CONTROL
UNIT
MAIN STORE DATA AND ADDRESS LINES
Figure 2: Storage module with processing elements DPA4.1

Each PE has single digit data connection to neighbours in four
directions designated N, E, S, and W. Elements at the edges of the array
are always short of one or two neighbours. The imput at these points can
be selected by program to be (a) always zero; (b) taken from the other end
of the same row or column to give cylindrical or toroidal geometry; (c) :
taken from the other end of the next row (or column) to form a linear or
circular array of 21‘ PEs. In each geometry the thickness of the surface
or line is determined by the local store size, eg 1024 bits in the toy
machine.

S

ERELE:

W

|

Example
The choice of PE connections is a compromise between pin limitations

inherent in the form of construction and problem requirements that
have become apparent in application studies. The consequence of
omitting a connection is that data has to be routed 1 or 2" cells

at a time across the array for as many bits as there are in the data.
The result can best be illustrated by considering a problem that is
not square to start with, namely the mapping of a global coordinate
system with fewer grid points at the poles than the equator. Figure
3a shows that direct mapping onto a 24*16 array (Fig.3b) would leave
a substantial number of PEs unused. One possible treatment is to wrap
the map round a cylinder so that the unused PEs near the N pole mesh
with used PEs from the S pole. However, it can be seen that neigh-
bouring points near the poles on the global map would still be some-
what distant in the array, and the situation can be improved if the
N and S hemispheres are first displaced W and E respectively and then
wrapped round the cylinder (Fig.3c). With the DPA4 array the PE
utilisation is nearer 907 and could be increased on a larger grid.

It will be noted, however, that high utilisation has been achieved

by matching the array size to the problem, which is not always
possible. Also note that neighbours on the global map are not

always neighbours in the array, time being lost in routing numerical

values across up to four columns.

We can readily identify three factors which prevent the DPA from
achieving the theoretical data processing rate of 22n bits per instruction:

(a) mapping which prevents a problem from being cast into a form to
use all PEs;

(b) routing which occupies the array in unproductive data movements;

(c) branching which causes only a fraction of the PEs to be active
during a particular phase of calculation, eg in the preceding
example the poles may require special calculations which could
use only i%g of the available PEs.

Experience shows that intuitive judgements based on habits formed in using
conventional machines can be quite far from the truth, particularly in the
area of (a) and (b).

T

(a)

e R L AT

= 58% used

224
387

T B T Y AR [e A

24 = 88% used

2

- po Lo ’ . = et -7
bk 5. = 1
2 .ln!ldﬂ-. = ad W PR W -
..m 4— 4— s 4 -4
Q‘ it ™ T ._
l..Tm o e -l =44
4 il i ™ M - <
MHEETS o .
Wil ysrsses HH1RY 8 .
_. .vvﬁ v - . mh _v e |t =
1 & sgddf N
= .__) EoESBEE
I .] ' - 4
'_ - T ‘ d.: m) 4. 4 44
i ¥ b...__.,.l “ ! J”;.A
. . -.I.rLs ~
=

IS Ners i

(b)

(c)

a Spherical Map

Representin

Figure 3:

T e S P

.2 Array operations

The Array Control Unit

1 PTG 5.8 o

-10-

(Figure 2) is responsible for broadcasting

instructions to the processing elements, providing registers to buffer the

data sent and received on the common row and column lines, and for serving

external requests for access to the memory.

depends on the part played by the

return to in the later lectures.

The type of external request
DPA in the system context, which I shall

In this subsection and the next we consider

the elementary functions of the array and the programs executed by the ACU.

It 1s assumed that a DPAn is controlled by an ACU with internal data width
2“, eg the DPA4 is associated with 16 bit data fields in the ACU, which are

Placed in correspondence with the
description would have to provide

array edges, or conversely.

Let Y be a register in

bit in the (i,j)th PE. Then four

row and colomn data lines: otherwise the

operations to align part-words with the

the ACU with bits Yi’ and let Ai 3 be a

input functions are defined as follows:

(1) Input by row:

Ai,j . for all (i,j)
(2) Input by column:

A = Y for all (i,j)

i,] b
(3) Input by row with column select:
: Ai,J = Yi for all i; Ai,j unchanged if j # J

(4) Input by column with row select:

o 2 M -

for all j; A unchanged if i # I

1,3

Thus in cases (1) and (2) a bit of Y is broadcast to all PEs along a row or

column of the array.

bit A
i,j

| Corresponding to input

-
3 %

functions, with and without selection by row or column.

Case (4) corresponds to store write when the selected

is in the local memory of each PE.

functions there is a set of four output

Here the resultant

bit in the Y register is the logical and of all selected PEs on the data line:

-11-

(OO Output by row:
Yi = 4 Ai,j for all 1
The output operation 'by column with row select' corresponds to normal store

read when the A is in local memory. The method of choosing the A and Y

1,3
words is discussed later.

In its simplest form the PE contains three single-bit registers
with the following uses:

A is the activity register. When zero, writing to local stores

caa be inhibited;

B 15 the arithmetic and logical accumulator:

C is the carry digit.
The other components of the PE are a routing multiplexor, which is used to
select input to local store from the A or B registers, near neighbours (N,
E, S, W), or the common row (R) or column(C) data lines, and the local memory

itself. An inverter (1) allows the polarity of data to be reversed in going

ROW & COLUMN
.
I A ' 0@4—}@ 4:1 Control(function)
Inve ‘ i T AT === o2 e
J I N g ﬁ W R C External data

3]¢l Control(routing)
SEL| Store |

activity
WE RI
e RO 'E_- }4—-——— Address
i LOCAL MEMORY -

Figure 4: Processing element schematic for the DPA

from memory into the A or B registers, and the or gate SEL allows program
control of the use of A to inhibit 'store' operations.

-12-

The PE carries out two types of operation: functions of the
arithmetic registers A,B and C; and routing of data. Each uses the broadcast
local memory address, which is the same for all PEs, so that the operation
is carried out on a 'bit plane' in the DPA. An address is specified by an
ACU register which for security reasons also contains a limit field giving
the maximum modifiable range of that address. To address the DPA4 we
take a 16 bit byte location, a 12 bit limit and a 4 bit tag field. The most
significant 11 bits of the location select a bit plane, the remainder specify
column or row select when necessary (4 bits) and the least significant bit
selects even or odd byte.

4 8 16
ACU address: LTAv| LIMIT | LOCATION

-
-
-~ -

-“" [—
BIT PLANE ROW/COL BYTE

ACU data: TAG VALUE

ACU control: TAG] MODE LOCATION

ACU instruction: or | f rx] N

The ACU data is tagged to distinguish it from addresses, the result of an

array output operation is tagged as 'data', and similarly the operand of
an input operation must be 'data'. An ACU program control pointer has a
similar form to an address, without the LIMIT field but including MODE bits
vhich specify the geometric connections as well as conventional arithmetic

and control modes.

The ACU instruction is uniformly 16 bits in width, giving
a function field f and either two 4~bit register addresses X, Y or a
single register and a literal field N. The instruction set covers the
requirements of sequential operations in the ACU itself and parallel oper-
ations in the DPA of the two types mentioned above.

. 3 S
v IR N
AR .*3“43 3 .‘;‘. N BJ, i 4‘ d

LSS, el S * SUERT - - — T s e

L8

DPA ARITHMETIC
| The X-register address is used to select ::local data value x in

- each PE. The following functions are available:

LPA Load A Sets A = x
LDB,LDC Load B,C Set B=1x, C = x respectively
ADD Add to acc. Forms the sum of B,x and C in B
and forms the carry in C
AND AND to acc. Forms the logical and of B and x in B
OR OR to acc. Forms the logical or of B and x in B
EQU EQU to acc. Forms the logical equivalence of B
| and x in B

In any arithmetic function the datum can optionally be inverted.

DPA ROUTING
The X-register address is used to select a destination plane

: or in some cases the source. The following functions are available:

P iR Input by row Uses Y to provide data input to x :
; 5 according to (1) on page 10 f
§ IC Input by column See (2) on page 10 i
§ IRC Input by row with column select (See (3)) ;
! ICR Input by column with row select (See (4)) é

AOR AND output by row (See (1)') v
AOC AND output by column (2)' f
ORC Output by row with column select (3)'
OCR Output by column with row select (4)'
Note that ICR corresponds to conventional STORE and OCR to LOAD functions. i
MVN Move North The datum plane is moved north one PE
MVS, MVE, MW Similarly for south,east amdcwest.
Note that MVE, MVW correspond to single bit word shifts in the array, the

NI 0y S RTINS 722700 0 e i 0,

'‘most significant' or 'left' end of a word assumed to be on the W edge.
STA Store A Sets x = A
STB Store B Sets x = B
In any routing functicn the store agion is by default conditional on the
value of A = 1 in the destination PE; it is possible to override A in any
instruction by following the function with "/U" as in:
eg STB/U Store B unconditional , ie independent of the value of A

S——

I, 7 o

1.3 The array control unit

The ACU obeys instructions fetched from the DPA. Its operations
include those 1listed in the previous subsection together with conventional
control, arithmetic, logical and addressing functions. The ACU is classed
as a Pointer-Number machine, ie one in which a distinction is drawn between
pointer: (control and data addresses, codewords or capabilities) and
numbars. Functions are provided to create and manipulate various classes
of objects, the instruction set being designed to prevent abuse in the
sease of damaging integrity or gaining access to objects without permission.
However, only one aspect of the overall design need concern us here and
that is the use of addresses to refer to bytes, words or bit planes in the
DPA.

The form of data address is given on p.12. The 12-bit limit
field enables an address to refer to up to 128 consecutive bit planes. The
low order 5 location bits are used in byte and word access, including row
and column selection. To simplify the addressing rules when working with
array data we declare that pfotection of binary segments is only resolved
to the bit plane boundaries.

An ACU program will be written as a sequence of statements with
elementary IF, GOTO, WHILE and DO control clauses. Functions of the ALU

are expressed by the following operators:

ARITHMETIC AND LOGIC

syntax symbol function operand example
types
binary infix + add N, N x+y
binary infix - subtract N, N X=-y
unary prefix - negate N -z
binary infix * integer mpy N, N 4 *p
binary infix & logical and N, N x & #FF
binary infix / logical or N, N x/z
binary infix 4 logical neq N, N azbd
binary infix < left shift N, N P&K3
binary infix » right shift N, N ayb
ADDRESSING

binary infix . j modification A, N a's
binary infix * limitation A, N b4 n
unary postfix v load A X.

e A ¢ o AP NS S 3P i i T 37 e

-15-
ASSIGNMENT
binary infix = register transfer -,- X =y
binary infix =, store A,- X=,y

In each case the operands are ACU registers that will be declared as
required, or literals where numeric arguments are allowed. Expressions
‘are evaluated from left to right, addressing operations taking precedence
over arithmetic and assignment. Where no assignment operator is present
and the first operand is a register the result overwrites the register as
in the statement "x'l", which modifes the register x by 1.

The usual conditions are set by arithmetic and logical operations
and tested in control clauses (NZ, ZE, GT, GE, LT, LE, OV, NV). The
addressing functions produce invalid (null) results in the event of pro-
tection violation and set the condition IR with inverse VR (valid result).
Arithmetic and control functions fail if an operand of the incorrect type
is presented. In most of the examples given below such exceptions are
assumed not to occur. The protection rules simply ensure that a program
does not cause damage outside the protection domain defined by.the ACU

registers when a programming error occurs.

DPA functions will be expressed using as prefix or infix
operators the mnemonics given in the previous subsection. Arithmetic
functions require one argument (an expression giving the address of a bit
plane), which will be preceded by "-" when inverting the input to the PE.
Store functions require one argument giving the address of a bit plane.
Array input requires a destination (bit plane address) and source (data
register). Output requires a destination register and source. Finally,
move operations require a bit plane address and step count (data).

The example on the following page illustrates the conventions
used in writing ACU programs. It is assumed that the ACU supports a
procedure calling mechanism so that the function in the example would be
called as "SUBTRACT(P, Q)", where P and Q specify operands. The program
will abort if Q is longer than P and set OV if overflow occurs anywhere
in the array, the common plane OFLOW indicating which elements overflowed.
The mechanism of procedure call and module interconnection will be examined
in a later lecture because it is affected by the presence of the DPA.

sEmisagy x\.,q_m

SO

RGN —

B

!

LN
LA
L NN

g -16-

/* Example:

The following program segment subtracts two arrays of (P+l)
bit 2's complement integers stored in vertical form. The
result ARGl - ARG2 is stored in RES in all active PEs. The
ACU OV condition is set if any result overflows. The boolean
matrix OFLOW is set = 0 wherever overflow has occurred in an
active PE. The arguments are specified by bit plane addresses
vith least significant digits in the high address plane */

REGISTERS [ARG1 ARG2 RES P OFLOW]

/* Set carry in and initialise overflow plane */

OFLOW IR/U -1 ; LDC OFLOW; P&(5

/* Subtraction loop */

WHILE GE DO (LDB ARG'P; ADD -ARG2'P; STB RES'P; P-32)

/* Set overflow plane to zero wherever overflow has occurred */
LDB ARGl; ADD -ARG2; EQU RES; STB OFLOW;

P AOR OFLOW; IF (P # -1) (SETOV); RETURN

S Sec SN S B T A L e e e ——————— !

By

e e

= e

2 ELEMENTARY DPA PROCEDURES

Having shown in principle how a DPA is controlled we can examine
its application to some frequently occurring tasks. The object is to obtain
theoretical performance limits, taking into account PE utilisation, routing
and branching. Obviously there is no point in pursuing an application un-
leds it offers substantial returns on that basis.

A fourth degrading factor has to be added to those listed on
p.8: the time taken to supply the ACU with instructions and the time taken

, by the ACU in modifying address counters, testing for loop termination, etc,
l % in which potential array functions are 'lost'. There are several ways of
minimising the loss, including instruction buffering and overlap, but I do
not propose to discuss them here and shall assume instead a moderate time
of DPA execution (200nsec) in which allowance has been made for the effect
just mentioned. On that basis the subtraction example given at the end of
the first lecture requires:

3P + 10

DPA cycles, from which it can be seen that if the precision is large (say
greater than 20) the 'end effects' are negligible, but if it is small, as is
frequently the case, we should be looking for better ways »f setting carry
4 and testing overflow. However, let me emphasise the importance of evaluating
I any such improvement in terms of its contribution to overall system through-
put rather than to individual procedures.

The procedures are classified as 'arithmetic and‘logic'. which are mainly
concerned with operations within a PE or row of PEs without regard to

neighbours; 'routing’, which are concerned with preparing arrays for para-
llel arithmetic; and 'matrix', which combine the first two. The objective =
of a more complete study would be to provide a set of arithmetic and data :;

manipulative function that can be used by application programmers and com- V%.
pilers in generating array code and, perhaps more valuable in the long rum, %;

to develop the{ntuitive understanding of the array which is essential to
successful systems analysis.

-18-

2.1 Arithmetic and logical operations

There are two word orientations of importance in DPA operations:

horizontal and vertical. The former corresponds to the conventional store

layout, so that data written as words by the ACU can be processed in situ

by the array. The latter form, which was used in the example of subtraction,
requires the data words to be stored in consecutive bit planes, one word to
each PE. The DPA4 can process 16 words of 16 bits in horizontal form, or
256 words one bit at a time vertically. The distinction is less important
in logical operations, the bit processing rate being the same in either case,
than for arithmetic, in which provision has to be made for carry propagation.
When dealing with large arrays of short words the vertical form is to be
preferred because it allows greater PE utilisation, and in certain special
functions such as the manipulation of Boolean arrays or sign digits it is
about N (-2“, the word length of the array) times faster than horizontal

and Nz times faster than sequential processing in the ACU. (More precisely,
such comparisons should read that in the limit, for large arrays, the ratio
is k*N or k*ﬂz where k is a small constant factor, usually near unity.)

In vertical mode, carry is propagated through the C register in
each PE. In horizontal mode, convention requires carries to propagate to
the west, which would be so time-consuming in the DPA that it would have
little practical use. We shall see later how additional routing and/or
function can be used to achieve competitive speeds in horizontal mode.
When summing a large number of word planes the DPA is placed at less of a
disadvantage by using carry-save techniques. For example, horizontal
multiplication in DPA4 requires the summation in each row of PEs of 16
expressions of the form: 15
Z o]t for § = 0 to 15
i=0

vhere bi is the ith bit of the jth word, which occurs in the ith PE. The
product can be formed by summing vertically to give the non-standard result:

15 1 15 3
P-zciﬁz wlmrce.i-ib1
1=0 1=0

Each N is a four-bit carry which can be propagated by hvw. followed by
summing again vertically. The final addition, which completes the carry
propagation, is probably best done in the ACU. (This is one of the appli-

-19-

cations in which the end-effects on addition become important.)

The low level of coding allows advantage to be taken of special
properties of the data in many instances. Multiplication by a constant, for
example, is faster than array multiplication in all cases because it can
take advantage of strings of zeros or ones in the multiplier. Iterative
calculations such as square root can use a low precision approximation in
the early stages. Note also that in squaring operations the coefficient
bj which is in fact b .bj 1,where the b are the digits of the operand, also

occurs as b; i Therefore ¢, can be conputed as:
= * . .
(i even) N 2*(b 4°bg t By_geby *+ eee b0, b1/2-1)+b1/2 bi/2
= *
(i odd) o 2 (b1 bo + b b1 L e o b(i—l)lz'b(i+1)/2)

which halves the number of partial products.

In general, vertical multiplication of two p-bit numbers requires
p additions to give a 2p bit result, or 3p2 basic cycles. A p-bit result
requires 3p2/2 basic cycles but slightly more organisation. Division, using
a restoring algorithm, produces a p-bit quotient from a 2p-bit dividend and
p-bit divisor in 692 basic cycles.

In floating point addition and subtraction the timetaken to com-
pare and align operands outweighs the arithmetic by a considerable margin.
A scaling operation takes two cycles per bit in vertical mode. Thus, using
radix 16 exponent and 24-bit mantissa three normalising shifts are required
before and after the add/subtract, and the equivalent of 5 moves to and
from workspace, giving 25 basic cycles per bit as opposed to three for fixed
point. There is clearly a great advantage in space and time if fixed point

arrays of low precision can be used.’

The f011o§13‘ table summarises the theoretical limits on vertical
operations. Practical measures will be given in the next lecture.

il

Rles s R

-20~

TABLE 1: THEORETICAL BOUNDS ON ARITHMETIC SPEEDS
All operands in vertical form
FIXED POINT FLOATING POINT
ADD/SUBTRACT 3p 11f + 6e + 4df
MULTIPLY 3p2/2 3£2/2 + 3e + 2f F |
DIVIDE 6p> , |
MOVE pc pc !
SCALE 2p 2p
COUNT 2p

3
Where:

P is the number of bits in the operand
f is the number of bits in the fraction {
| e is the number of bits in the exponent
? d is the number of denormalising shifts
c is the distance moved in rows + columns

T ———— RS

TR R T T
¢

<g 50 a1

-t

2.2 Data routing

The figures of Table 1 indicate that numerical procedures will
be dominated by multiply/divide and floating point add/subtract times: each
such operation requires at least 500 DPA cycles, or IOOPsec on the assump-
tion of a 200nsec effective execution time. The most efficient use of the
array will be achieved in two stages: problem analysis, which seeks to
minimise the arithmetic content and external I-0 (which will be examined
later); and detailed storage mapping aimed at maximum PE utilisation.

Data routing functions are used to move from one store map to
another. Although complex at times the intuitive feeling that routing will
dominate execution time quite often turns out to be incorrect. In weather
forecasting, for example, using spherical mapping of the type described
in the first lecture, the routing overhead is estimated to be about 4% of
the total execution time. When making comparison with sequential machines
it must also be remembered that they too sustain a significant amount of
routing overhead in the shape of register load and store, shift and copy
instructions. It is important to compare MOPS, ie (millions of) useful
arithmetic operations per second, rather than MIPS, ie instructions executed
regardless of whether they do anything useful to the outside observer.

Movement within a bit plane and within local storage use dis-
tinct mechanisms, so they villvbe examined separately. For horizontal data,
remapping involves movement in the north-south direction and relocation in
PE stores, while east-west movement is used for scaling. For vertical data,
scaling is effected by relocation in PE stores and remapping involves both
east-west and north-south shifts. In converting from horizontal to vertical
form (and vice-versa) a rotation procedure is used:

REGS[horiz vert temp]

DO (temp ORC horiz; vert IRC/U temp;vert'N;horiz'l) WHILE VA
wvhich is repeated for each p-bit N-vector. Thus mode conversion takes about
the same time as multiplication.

Data movement requires one DPA operation for each row or column
traversed within the plane. Two extreme examples which are often used as
benchmarks are uniform shift or rotation in the plane and arbitrary permu-

i

RTTRALS

|

—————— T

=225

tation of elements, in each case regarding the DPA as a linear array of N2

cells.

Using cylindrical geometry the average . pnumber of operations for
a uniform shift (assuming all equally likely) ia N/2. In practice, it often
appears that not all shifts are equally likely: near-neighbour connections
in the plane predominate, with power-of-two shifts occurring quite often.
The four near-neighbours are accessed in one cycle, and the eight near-
neighbours in 1.5 cycles on average. It is easy to see that in power-of-two
shifts the average number of operation is N/n, ie N/log2 . In each case
the operationmust be repeated p times for p-bit words. If the data array
is larger than the DPA it is necessary to use plane geometry, making the
edge connections through ACU registers, resulting in three DPA cycles per
row or column traversed per plane and considerably greater overhead in
coantrol. There is no significant advantage from using data arrays that
are smaller than the DPA.

Any permutation of elements can be represented as a sorting
problem by attaching a key to each giving its (unique) destination in the
final listing. At first sight sorting in unattractive for an array pro-
cessor because it implies an irregular routing of elements. In a
sequential machine the number of comparisons B(t) required to sort t items
by binary insertion [6] is t*logzt - t + 1 when t is a power of 2, eg
B(16)=49, B(32)=129. A 'minimum delay' parallel sort is shown in Figure 5
for t = 16, in which each horizontal line represents an item in the 1list
and each vertical line joins two items to be compared, followed by an °
exchange if the lower element (in the diagram) is lower in value. The
resulting list is in ascending order from top to bottom. It can be seen
that in moving from left to right only one or two pairs are being compared
and that if 16 processors were available several successive stages could
be overlapped. In the example, only 10 distinct stages or delays are used.

The DPA does not have direct routing across several PEs as the
minimum delay sort assumes. An alternative is the odd-even exchange, which
requires only neighbours to be compared. In the example, the number of
stages is 16, which generalises to t for sorting t items. In fact t is an

-upper limit because the sort is complete whenever a cqnparilon is-not

followed by an exchange, It is possible that the total number of exchanges

~-23-

MINIMUM DELAY PARALLEL SORT

N =16

Delay= 10

ODD-EVEN EXCHANGE SORT

N =16

Delay = 16

AN DT A RN

Parallel sorting algorithms

Figure 5:

(see [6])

v o W

P ——

=Pl

required in practice could be reduced by occasionally sorting in the ortho-
gonal direction, by analogy with Shell sorting: if the N2 elements are
ordered by linear connection in the east-west direction that would imply
sorting north~south in order to accelerate progress towards the final
positions. I do not know of any practical or theoretical studies of such

techniques.

Applying the above results to the DPA, we see that Nz items of
p bits can be sorted in vertical mode in N2(6pk + 3p) cycles, where Py is
the precision of the key (comparison takes 3 cycles and exchange 3 cycles
per bit). Straightforward insertion, in which a new list is built up in the
required order by adding elements one at a time, requires a comparison and
move at each step, giving Nz(lopk + 2p) cycles, though it requires more space
and does not offer the prospect of early termination. Larger arrays can
be handled by storing adjacent elements in the same local store, but the
exchange then takes 4 cycles and the comparison 2 per bit. Both methods
are signifi-antly better than binary insertion, which is dominated by the
time to move and insert the data items rather than the actual comparisons.
The same techniques apply in horizontal mode, though once again the DPA is

at a disadvantage without fast carry propagation.

An additional wired interconnection pattern known as a 'shuffle'
has been proposed to assist routing operations [6,p237], [7] and [8]. The
shuffle effects a permutation in which the destination of any element is
defined by cyclically shifting its current address one position to the left.
It has been shown that any uniform shift of Nz elements can be realised in
a multiple of 1032N shuffle-exchange steps, and that an arbitrary permutation
can be achieved in time proportional to N. The individual steps are more
complex than those outlined above: for DPA6 the average shift requires 32
moves, ie 32 machine cycles, or 12 shuffle-exchanges, each requiring 4
cycles. The practical benefit in terms of the shifts and permutations most
frequently encountered remains an open question. The relevance to Fast
Fourier Transform is examined in the next lecture in connection with the
DAP.

Evidently there are many applications of DPA to sorting both

large and small data sets and as for sequential machines the eventual

"

e

L .

%7 55

choice of algorithmdepends on the characteristics of the data and the way

it is used. Before leaving this topic it is as well to recall that the

need for sorting must be reviewed at the systems analysis level. It has
been stressed in the past because of the limitations of sequential search
mechods, but given that a DPA can search N2 items in parallel there may be
no point in retaining data sets of less than N2 items in sorted form: they
can be accessed in any desired order The last comment is particularly
relevant where there are multiple keys and the retrieval criterion is a
logical or arithmetic function of the keys. A DPA6 would carry out useful
searching operations at a rate exceeding 1010 bits/second, which is probably

one of its most cost-effective application areas.

23 Matrix operations

Matrices are stored in either horizontal or vertical mode: DPA4
can process a d*16 matrix in horizontal form (or d*32 if the elements are
bytes), the local store providing the second dimension d; it can process a
16*16 matrix in vertical form, of any precision up to 128 bits. Larger
matrices can be handled by partitioning, but as the resulting algorithm is
often expressed in terms of operations on d*16 or 16*16 matrices that is
usually best done by creating structures of three or more dimensions the
local store providing the third and higher dimensions. A DPA4.1 would
contain up to 32 matrices of 16*16 elements in single precision, 32-bit

form.

Although the processing rate in either mode is theoretically
about the same (with suitable arrangements for carry), vertical mode offers
variable precision and indexing flexibility that does not exist for horiz-
ontal. One of the disadvantages of single bit PEs in comparison with
machines such as Illiac IV is that it is uneconomical to provide local
store indexing, but that can be overcome as explained below by using pro-
jection operations. In general, the horizontal form is attractive in DPAn
for 'vectorial' problems of fairly low precision (up to 2™) or where frequent
word access by the ACU is implied.

For the remainder of this subsection we assume that vertical

? _. s . T_m . I

g3 e .
e 4,_1,?.‘;'7:'52? o

S e

-26~

data is used, and unless otherwise specified a matrix is taken to have
indices running from O to N-1 (-2“—1), the coordinate axes being 1 (north-
south) and j (west-east). The precision, or the number of bits in each
element, is given by the limit field of the matrix address, plus 1. If

the limit is zero there is only one bit and the matrix is said to be

'boolean’'.
— J
[i SRR N-1
§
0 '
]
1 L
32 :
: e 2
ST Tt e IM(i’j)} """"
~ '
]
N-1 1
One method of sorting not touched on in the previous sub-
section is by selecting a maximum (or minimum) element, which is

eliminated by masking, then the next largest, and so on. The following
program selects the largest positive element in a fixed point matrix M

masked by a boolean matrix MASK.

REGS [M MASK temp p]
/* Find the precision p from the limit of M and set the
activity bits from the mask, eliminating negative values */
p = LIMIT(M); LDA MASK; LDB MASK; AND M'p; EQU -MASK;

STB MASK; temp AOR -MASK; temp % -1; if ZE return; LDA MASK; p-16

/* Now the A registers contain the reduced mask of elements to

be scanned. In the next loop, the mask is 'anded' with successive

bit planes in M */
WHILE GE DO (LDB M'p; STB MASK; temp AOR -MASK; temp % ~1;
IF NZ LDA MASK;p-16; RETURN

On return, MASK indicates by 1's the position of the maximum elements, if
any. The number of DPA cycles 1s4p +7 for eachselection. Adding the time
taken to digitise elements or extract them, the complete sort takes about

the same time as those mentioned earlier. In many a2pplications, however,

PN AN M0, MRS SH s A

i 0 e A

-27-

only the maximum items are of interest.

Projection operations are used to distribute data along row or
column lines. The source may be a scalar value in the ACU or a vector
selected from store. For example, we can define a procedure ROWP(x,y)
that will project x if it is numeric into every element of the matrix y,
and if x is a matrix it will extract a vector by column selection (the
low order address bits) and project it by row to y. The matrix multi-
plication Z := X*Y takes the form:

REGS [X Y TX TY Z N)
ROWP (0, Z); DO (ROWP(X, TX);COLP(Y, TY);
MULT(TX, TY);ADD(Z,TX); X'l; Y'l; N-1)
WHILE GE;

where COLP is defined similarly to ROWP.

More generally, projection can be based on a vector selected by
boolean matrix which specifies by 1's a single-valued boundary to be
used in defining a vector. The following statement projects a single

bit selected by MASK from the matrix M into TM by row:

REGS [M MASK temp /* a wurkplane */ t TM]
LDB -MASK; OR M; STB/U temp; t AOR temp; TM IR t

There are four versions of the code since the ACU allows selection of the
control vector by row or column and, independently, projection by row or

column.

012 ... N-1

N =~ O
-

! An example of
i | a selection mask.

N-1 \

R

e

-28-

Sets of linear equations of the form: Mx = Y may be solved by
inverting M, for example by the method of Gauss-Jordan elimination given

later (p.43) for the DAP and then premultiplying Y by M-l.

A number of téchniques particularly suited to parallel operation
have been developed for the solution of tridiagonal sets of equations. Here

the matrix M takes the form:

F. i
dl t; . . .
‘2 d2 fz . 3
. e d3 f .
. %% 5
em—l m-1 fm—l
. e d
L s)

with zeros off the diagonals. In DPAn it is possible to store 22“ sets of
coefficients in vertical form, though the method of reduction ideally
requires n-Zzn-l, so that DPA4 would handle 255 equations, represented by
four matrices E, D, F, and Y.

The method of cyclic odd-even reduction eliminates the unknowns
of odd index bylinearly combining equations, yielding a new tridiagonal
system of size (m-1)/2. The process is repeated until a single equation is
found, which is then solved and the remaining unknowns found by back-sub-
stitution.

The numerical algorithm consists of eliminating the coefficient
of X1 in each even numbered equation i by linear combination with equation
i-1. Six multiplications and two additions are required, but because a pair
of PEs is involved only three multiply and one addition times are required.
The coefficient of X441 is then eliminated using equation i+l, which again
requires three multiply and one addition. At each stage the number of
elements is halved, therefore the data routing increases, but it can be
seen that in the elimination process there are two sets of power-of-two
shifts, which are repeated in back-substitution, requiring 4N moves. In

-29-~

back-substitution an equation of the form:
ex; 1 + dx1 + fx1+1 =y
hasto be solved for Xy requiring two multiplications, two additions and

D

one division, which can again be compressed by using adjacent PEs for

multiplication.

To form an idea of the relative magnitudes of arithmetic and
routing, we may take the mean time of arithmetic operations to be 200psec
giving 2.4msec per stage, or for N=16, ie for 255 equations, eight stages
or 20msec. The number of moves is about 100, which requires under lmsec
for 32-bit operands. ie about 5% of the computation time.

The reader will be able to suggest several ways of speeding up
the procedure: in later stages of calculation it is possible to increase
parallelism by spreading the reduction over more PEs; if several sets of

; equations are being solved the reduction of one set may be partly overlapped
b 5 with the back-substitution of the preceding set; and finally the numerical
algorithm may converge before completing the reduction,in the sense that the
off-diagonal terms are all less than a preset value. The solution of tri-
diagonal equations illustrates very clearly the way in which numerical, data
manipulation and programming skills can be combined to make efficient use s
of a DPA.

(GRS I

-

-30-

3 EXPERIMENTAL ARRAYS

We now leave theory to examine three recent examples of arrays
of PEs with single-bit data paths: STARAN, CLIP and DAP. Although they
share the same engineeriig technique the position of the array within the
system and the organisation of software to support parallelism are quite
different in each case. The first two are primarily intended for specific
problem areas, namely aircraft tracking (STARAN) and image processing
(CLIP), but they have many features of general applicability that I shall
use to illustrate alternative design approaches. The reader is referred

to the published papers for further information.

3.1 STARAN [10]

The STARAN associative processor can be viewed as a control
memory shared by three processors: a PDP-11 host, an array control unit,
and an atray I-0 controller. The function of the host is to handle
external communications and to load array programs into the control memory,
part of which is fast (150 nsec), the remainder slow (lpsec).

Instructions taken from the control memory by the ACU are
broadcast toa linear array of some multiple of 256 elements (in the Rome
Air Development Center configuration there are 1024 PEs). Each PE has
three single-bit registers and 256 bits of local store. A feature of
STARAN is the wide variety of connections that can be made between local
stores and PE registers, but first its operation will be described assuming
simple local store addressing as for the DPA.

The PE registers are designated X, Y and M. The input (f) to
the ALU 1is one of X, Y, M, a bit from the local store (m) or a data bit (d)
broadcast from the ACU. In arithmetic instructions a function ¢ is applied

7V

PR ey A YT

B

to either or both of two pairs of arguments (X,f) and (Y,f), where @ is one

of the sixteen boolean functions of two single-bit arguments. The result

of @(Y,f) overwrites Y. The result of ¢(X,f) overwrites X either uncon-

ditionally or conditioned by the original value of Y, ie if Y=1, X is over-

written, else X is unchanged.

The above instructions can be written in the form:
f 0 g h
where g is the store option on X, ie "X" meaning unconditional write or
"X/Y" meaning write conditioned by Y; and h is the store option on Y, ie
"Y". Absence of g or h implies that no store takes place. Other array
functions are provided to load M and to store Y either conditionally or
makkdd by M, ie m becomes (Y.M + m.M). The following exumple of vertical

addition is taken from [10].

The problem is to form the one~bit sum B = A + B.
/* Initially X=0 and Y is set to the carry-in */

1: A XOR X/Y Y
/* Now X=A.CARRY and Y=AXZCARRY */
2: B XOR X/Y Y
/* Now X contains the carry, Y contains the sum */
3: Y XOR X B=Y
4: X XOR X Y

/* Now X and Y are ready to process the next bit */

Thus serial addition takes 4 cycles, or 800nsec per bit, not counting the

ACU overheads.

As already noted, local stores are not directly connected to the
PEs. Starting with an array of 256 stores of 256 bits, the stored pattern
is skewed through 45° as shown in the diagram for a 4 by 4 array. The advan-
tage gained is that both rows and colomns of the original array can be
accessed as words by suitable indexing of each column and some potentially
useful 'hybrid' combinations of rows and colomn can be implemented. In DPA
terms, if we think of the data as stored in horizontal form it can be pro-
cessed serially by bit (256 words at a time), serially by byte (32 bytes at

one time), and so on.

e
B 3 RO g
T RO

R S PR

ik o bl A N

-32-

ORIGINAL SKEWED
00] 01| 02| 03 00| o1| 02| 03
10| 11 | 12| 13 11| 12} 13} 10
201 21 | 22| 23 22| 23| 20| 21
30] 31 | 32| 33 33] 30| 31| 32
v+ ¥ 4
Second column: Y10k 31 21
Third row: 22 23 .20 21
Serial-parallel: 00 01 20 21

It will be seen that the words retrieved generally need permuting
to appear in the sequence of the original array, and that is done in a
separate 'flip' network. The flip network is a permuting device that takes
data words read from the local store array or from the words of 256 X, Y or
M bits in the PEs and carries out a rotation or reversal on each segment of
bits in the input word. A segment is selected by program. It is a power
of two (up to 256 bits) in length. The output provides the input f to each
PE in the array instructions. Thus, in the example given above, to bring
the second column into correspondence with the original form we would take

segments of two bits each and reverse them, (11 01) becoming (01 11) etc.

It is difficult to see application for more than a few of the
permutations permitted by STARAN. The skewed form of store is clearly help-
ful 1in allowing a choice between vertical and horizontdl processing with-
out the need to rotate data in the store which, as we noted for the DPA,
takes about a multiply time. In a machine with very much faster arithmetic,
such as Illiac IV, the ability to skew data assumes greater importance. The
power-of-two shifts applied by the flip network are useful in many applica-
tions, on the other hand they are of less importance than arithmetic, and
it could be argued that faster operation and more local store would be a

better investment for general purpose array work.

An extra facility that is valuable in search procedures is the
detection in any array of 256 PEs of the index of the first non-zero Y bit,
if any. It is in that sense that the array can be labelled 'associative'.
Without the additional hardware, eight mask and compare operations would be
needed to develop the digits of the index.

R Dt s

-33-

3.2 CLIP [11]

The processing of digitised pictures introduces a class of prob-
lems not considered so far. If an image is represented by a grid of black
and white dots then the recognition of the boundary of a two-dimensional
object involves much more subtle neighbour interaction than has so far been
discussed. Picture processing nachines can be thought of as distributed
processor arrays with a well developed means of propagating signals across
the array. For example, to detect a closed boundary marked by 1l's we
could 'flood' the array with 1's input at the edges and allow the signal
to spread until a boundary is reached, then stop. The boundary points can
then be marked by 'anding' the original image with the occupied cells.

The local PE connections assumed are usually 6 or 8 neighbour,
with programmed selection of the rule of signal propagation. In a rect-
angular DPA any interconnection pattern can be programmed with the help of
explicit move instructions, whereas in a picture processor the signal is
allowed to 'ripple' through the PEs (by analogy with carry propagation in
horizontal mode) in a single instruction of variable duration. Each picture
element (pixel) is mapped into the local store of one of the PEs: DPA4
would represent in one bit plane a 16*16 black and white image, or d*256
if the pattern is stored vertically. Larger pictures, grey code or colour
images would naturally require more storage. In addition, working storage
is needed in each PE to contain derived patterns representing boundaries,

internal regions, etc.

In a typical image transformation a single bit in each element
is designated the 'output'. It is formed according to the current state
of the element, ie PE register values, and inputs received from selected
neighbours. For example, the transformation rule written as:

0 s, O s 4 1, s

34~

all others are zero, output 1 and go to state sj'. The transformation is
applied in parallel to all picture elements and repested until there is no
change in the output pattern for the entire image (one way to ensure termi-
nation is to allow only O0-»1l changes in the output). For example, if ai-sJ
the above rule would propagate a diagonal line of 1's from any 1 input on
the north or west edge, until a cell not in state 8.» OF in a 3 by 3 region

containing a 1 apart from the NW corner is encountered.

The CLIP array described in [11] consists of 16*12 PEs special-
ised to the type of transformation just described. Each PE has two single
bit working registers A and B, an output N, and 16 bits of local storage D.

There are three types of array instruction:

LOAD: Initialise A and B, using the local store or zero as input.
The geometric pattern (square or hexagonal)is also specified.

PROCESS: Apply a transformation rule using the inputs N until there is
no change in N throughout the array. Any of the neighbour
connections can be selected and summed, then compared with
a threshold value t. The PE input T is set to 1 if the sum
exceeds the threshold, else zero. The value of N is @(BvT,A)
where @ is one of the 16 boolean functions of two variables.
The PROCESS instruction also selects the edge inputs.

STORE : A boolean function @'(BvT,A) is evaluated and the result
{ written to a local store plane D1 or combined with the current
| value of D, by 'and' or 'or' operation.
FUNCTION CONTROL
! Cy toCy
IMAGE INPUT/ OUTPUT
INTERCONNECTION I
INPUTS N, to Ng A 11
a BOOLEAN D
- G ¥ ke f : PROCESSOR [~
e) P >
- Vs e N
Wil :
[Y INTERCONNECTION
3113 OQUTPUTS '
Gy 10 Gy ot 'D." ! ‘
MEMORIES !
¢ é
IMAGE OUTPUT

Figure 6: PE schematic for CLIP-3

E

E i

S T ————

-35-

In addition to the above instructions the ACU, which is controlled by a
separate 256*24~bit memory, can execute subroutine calls wusing a 16 word
link stack, branch or branch conditional on the AND of N outputs taken

over all 192 picture elements. Provision is also made to display the A and
B planes on a CRT so that the effect of different algorithms can be ob-
served experimentally.

The folowing example is taken from [11]. Given an image con-
teining biological cell patterns, it is required to select the outlines of
all cells containing nuclei. Hexagonal connection is assumed, with all six
inputs active and threshold zero. In the following symbolic program IMAGE,
OUTPUT, etc, refer to bit planes in the local store D1 and the notation is
chosen to give the flavour of the calculation rather than detailed instr-
uction formats. Figure 7 shows the working results obtained after each
STORE instruction.

/* From in OUTPUT the outer edges of objects in IMAGE #*/

1: LOAD A=IMAGE; B=0
2: PROCESS N=(BvT)AA; Edge input = 1
3: STORE OUTPUT=(BwT)AA
/* Form in GROUND the background surrounding IMAGE objects */
4: LOAD A=IMAGE; B=0
5: PROCESS N=(BvI)aA; Edge input = 1
6: STORE GROUND=(BvT)AA

/* Form in NUCLEI the cell nuclei. Propagation starts from the outer
edge in OUTPUT, through l-valued cells in IMAGE %/

7: LOAD A=IMAGE; B=OUTPUT
8: PROCESS N=(BvT)a A
9: STORE NUCLEI=(BVI)AA
/* Form in OUTPUT the masks of cells with a nucleus */
10: LOAD A=GROUND; B=NUCLEI
11: PROCESS N=(BvT)AA
12: STORE OUTPUT=(BvT)AA
/* Form in RESULT the nucleated objects */
13: LOAD A=QUTPUT; B=IMAGE
14: STORE RESULT=(BvT)a A

Input 1
\
i
— L
IMAGE
- » ’ g #
4 f—< ’ 7’ &
e & 7
’, L R e
s ‘-“" - 2
V4 " P4 4’. y
V4 7’ ,I .(.,
7 s
o’ 7 ‘/ ,/ /
N 4 P e i
W g l’_./ /f
> AR SRR SN AR S
6: GROUND
!
i i
|
i o

12: OUTPUT

-36-

\:.l

STV ————

Input 1

O

3: OUTPUT
[
9: NUCLEI
Sk)
14: IMAGE

SE——

ey

e

To replicate the CLIP instructions using the DPA would clearly
be very time-consuming (at a rough estimate 100 DPA cycles would be needed
for each evaluation of N), but in many applications the full generality of
selection and thresholding is not required. In dealing with g-ey scale or
hue the proportion of arithmetic operations will increase, while in many
operations such as thinning, smoothing, edge detection or gap filling there
is very little signal propagation in the sense of the above example. An
analysis of algorithms in terms of the frequency of PROCESS instructions
and the average length of signal path would be helpful in the design of
special purpose versions of the DPA.

Having refined an ilmage and separated the distinct 'objects'

it is required to classify them in some way. In simple problems the

area, centre of gravity or moment of inertia may give enough information
for classification. Other problems will be handled by representing the
image as a graph which can be transformed in the ACU by list processing
techniques. It can be seen that there is no simple analog in the DPA to
addressing through a linked list. On the other hand, analysis of problems
at a 'higher' level frquently uncovers new ways of using parallelism. One
of the advantages of the DPA organisation is that sequential and parallel

operations can be applied without restriction to the same data sets.

3.3 DAP [1%) [13]

The reaéet will recognise the ICL Distributed Array Processor
as the experimental model from which I have extracted the principles of
the DPA. It differs from DPA5.2 in details of PE and ACU design.

In the PE (Figure 8) the four near-neighbour shifts are incor-
porated into the arithmetic functions, so that it is possible to take an
operand from any of five PEs. The destination is local and controlled by
the activity register (A) as for the DPA. The A register can be used in
its own right for general logical operations, in particular for combining
boolean activity matrices. Data movement is carried out between PE
registers rather than stores. Provision is made for ripple carry propaga-

tion in the east-west direction.

The resulting srithmetic speeds are shown in Table 2. with the
contribution of data and instruction accesses (in DAP each instruction
occunies 32 bits). It can be seen that despite usine horizontal carry the
vertical mode remains more effective when the requirzd level of parallelism
can be achieved: that is the consequence of the carry propagation time and
the higher overhead on normalising shifts in horizontal mode. The effect
of using specialised procedures for square and square root is apparent from

the times given.

The relatively low instruction access counts shown in Table 2
are the result of buffering in the ACU, which is explicitly controiled by
program, ie by a 'DO...REPEAT' construction which marks the beginning and
end of each loop. Within the loop, instructions are not only buffered but
provision is made to increment or decrement address fields on each iteration.
The buffering mechanism reduces the instruction fetch overhead to about 10%
on elementary arithmetic and logic and 25% - 40% on multiply/divide and
floating point. Outside the loops, instruction overhead is at least 100%
of data access. Where there is high arithmetic content, most of the com-
putation is within loops, eg taking matrix inversion (29msec) and subracting
the time for finding the pivot, add, multiply and divide leaves only about

R e

Figure 8:

-39

ROW

MULTIPLEXOR

@Inverter

(:ilINSTR

\,

| ARITHMETIC-LOGIC UNIT 4 JINSTR
| A & C
|| S .
: lactivity carry [,
.] ¥ s CARRY
ADDER o
i
: > gl <
! prsinll AEREW, .
, ! MULTIPLEXOR C [INSTR)
e e s e e85 NE I GHBOURS ,
T ¥ MCU
: ¢
| 4096 x 1 BIT < INSTR ADDRESS

BIPOLAR STORE

- o e =

Processing element schematic for DAP

-40-

" TABLE 2: MEASURED EXECUTION TIMES FOR DAP 32%32 PEs
MATRIX VECTOR SCALAR
All times in psecs (1024) (32) (1)
TOTAL INSTR EFF TOTAL INSTR EFF |TOTAL INSTR EFF
32-bit FIXED POINT
R :=P +Q 23 3 .022 4 .125 4 4.
R =P 14 2 .013 1 .031
R := MAX(P,Q) 34 2 .033
32-bit FLOATING POINT
T:=X+Y 148 26 .145 54 22 1.69 | 27 12 27.
T:=X*Y 305 110 .298 50 10 1.56 | 34 14 34.
T:=X/Y 390 120 .381 100 20 3.13
T = X %% 2 155 60 .152 40 10 1.25
T := SQRT(X) 215 70 .210
SCALAR-MATRIX
X = SkY min 40 10 .039 Note: 'EFF' is the effective
max 150 . 50 . 146 time for single oper-
- § := SUM(X) 165 10 .161 ands, ie TOTAL/paralleli
S := MAX(X) 46 2 .045 data streams.
MATRIX OPERATIONS
MULTIPLY(X,Y) lémsec
INVERT(X) 29msec [Al1l 1024 element single precision
FFT(X) l4msec floating point arrays]

100 organisation instructions on each iteration. Instruction fetch overhead
is reduced in larger arrays and could be eliminated by using separate control

storage: the engineering trade-offs are essentially the same as for microcode.

The Fast Fourier Transform algorithm is often used to justify
additional routing capability. In DAP it is applied to an array of 1024
complex values or to a two-dimensional 32*32 array, in each case in vertical
mode. For 22n variables, 2n parallel computing steps are required. The
routing pattern for n=4 is shown in Figure 9. In general, the first step
can be carried out in one cyclic shift, the remainder need two shifts

n-l_a.

bs each. Using orthogonal connections, the number of complex moves is 3%2"42
After completing the transformation a second series of n shifts is required
to return the elements to their original positions. The total number of

moves is again proportional to 2". A paAP program, taking advantage of the

T ——— — TH—————.

=41~

9 10 11 12 13 14 15 A

wmm XMMXM

0 4 12 2 10 6 1 T (B el ¢ et B G 15

Figure 9: Data routing in the FFT for n=2 (22n variables)

simple form of multipiers in the early stages of «calculation, but deriving
successive mutipliers by a recurrence relation, has the following contributing

factors:

Count Time Total
Multiplication (32 bit fl.pt.) 32 305 psec 9.76 msec
Addition (32 bit fl.pt) 38 148 5.62
Assignment 90 15 1.35
Routing 216 7 1.51
Compute multipliers 16 500 8.00
Subtotal 26.24 msec
Reshuffle 286 7 2.18
Total 28.4 msec

(In the first step Al is calculated: A1(0) is the sum of A(0) and the
product of a complex multiplier (in this case 1) with A(8); in the next step
A2(0) is the sum of A1(0) and a multiple of Al(4), and so on. After four
steps the original A(15) has been routed to contribute to A4(0) and A(0) to
A4(15)).

From the above figures it can be seen that routing is not a major
factor for vectors of size 1024. For arrays of 4096 PEs the © routing
overhead doubles whereas the computation increases by two steps, 80 we must
be cautious in drawing general conclusions. The FFT time given in Table 2 is
the result of using coding tricks to reduce the arithmetic content, with the

result that routing occupies the DAP for about 25% of the FFT procedure.

.._4---.,.,,

e R S R e L R ST S PR N R

=42~

The main difference between the DAP and DPA is the role of the
array in system: the ACU-DPA could be regarded as a stand-alone processor-
memory pair or a node in a distributed system, whereas the DAP is seen as
a substitute for a main store module in a conventional centralised system.
The control unit of the DAP is concerned only with issuing array instruc-
tions and serving requests received over the main store data and address
lines (Figure 2, page 7). In DPA terms the 'main store data and address

lines' could be replaced by 'interprocessor bus'.

The DAP is therefore a componenet of a larger system, in which
the host processor takes responsibility for store management and DAP
scheduling and provides all necessary support functions. Tasks are issued
to the DAP in the form of “DAP segments' containing all necessary programs
and data. The DAP operates in parallel with the host, serving external
requests by interrupt processing and able to interrupt the host on task
completion. It is prevented from overwriting store outside the current
segment by setting base and limit registers. Although scalar operations
can be carried out in the DAP (Table 2) the effect of such an organisation
is to concentrate parallel phases of computation into 'DAP subroutines'
and to leave the rest to the host. Because of the overhead in forming a
DAP segment and scheduling its use there is a lower limit of complexity
in what is worth considering as a DAP subroutine, eg we would not use the
DAP for looking up a single word in a dictionary, which would be natural
for the DPA. The difficulty might be overcome by 'batching' requests for
elementary operations, but that tends to complicate software design.

The design of DAP subroutines has followed much the same lines
as Illiac IV, for much the same reasons: a macroassembler for basic software
and a Fortran-based higher level language. Purists may think that a retro-
grade step, but at the present stage of development it is important to
have precise control of store allocation and alignment as well as processor
synchronisation, protection and error management. At some future date, when
bit planes are more plentiful, we can afford to be more adventurous.

Figure 10 is an example of a DAP~Fortran subroutine taken from [13]
with explanation of the conventions used in indexing.

' 01 C

(=}
~
o000

-
[
(oMo}

[
~
e NeNeNel

Figure 10:

b row p:
: col q:
e pivot:

-43-

DECLARATIONS

SUBROUTINE INVP(A)
REAL A(,), B(,)
LOGICAL PROW(,), PCOL(,), PMASK(,), PIVOT(,),MASK(,), PIVOTS(,)
INTEGER RN()
NOTE THAT THE ARRAY DIMENSIONS ARE IMPLICITLY GIVEN BY THE
SIZE OF THE DAP. A AND B ARE REAL SINGLE PRECISION MATRICES
IN VERTICAL FORM, RN IS A VECTOR AND PROW, PCOL ETC ARE
BOOLEAN MATRICES.

INITIALISE MASK TO CONTROL SEARCH FOR PIVOT ELEMENT
AND PIVOTS TO MARK THOSE PIVOTS ALREADY USED

MASK = .TRUE.

PIVOTS = .FALSE.

MAIN ITERATION

FRST, MAXL AND ABS ARE INTRINSIC MATRIX FUNCTIONS

EG MAXL FINDS THE MAXIMUM ELEMENT(S) IN AN ARRAY UNDER A
SPECIFIED MASK

DO 1 K = 1,DAPSIZE

PIVOT = FRST(MAXL(ABS(A), MASK))

S = A(PIVOT)

PIVOTS = PIVOT .OR. PIVOT

PROW = BYROW(ORR(PIVOT))

PCOL = BYCOL(ORC(PIVOT))

PMASK = .NOT.(PROW .OR. PCOL)

BYROW,BYCOL ARE PROJECTION FUNCTIONS

ORR, ORC FORM BOOLEAN VECTORS BY "OR'" OF ROW, COLUMN
A(PIVOT) = 1.0

A = MERGE(A, 0.0, PMASK) - A(,*PCOL)*BYCOL(A(PROW)/S)
PROW = -A

MASK = MASK.AND. PMASK

NOTE THE USE OF MATRIX INDEX IN 29 AND PROJECTIONS IN 30

THE FINAL STATEMENTS RESHUFFLE ROWS AND COLUMNS
RN = ROWN(PIVOTS)

DO 2, K = 1,DAPSIZE

B(K,) = A(RN(K),)

DO 3, K = 1,DAPSIZE

A(’RN(K)) - B()K)

RETURN

END

DAP-FORTRAN subroutine for matrix inversion

In each iteration the largest pivot element A(p,q) is found and used
to compute the new values:

A(1,j) := A(i,J) - A(i,q) * A(Poj) !/ A(p,q)
A(p,J) := Alp,3) / A(p,q)

A(L‘l) = 'A(i.Q) / A(P|Q)

A(p,q) := 1/ A(p,q)

e ; ~44-

4 SYSTEM DESIGN

Table 3 gives some idea of the DAP performance relative to other
'high epeed’' machines. All the times are experimentally measured with the
exception of DAP-FORTRAN, which is estimated by doubling the control over-
head (12msec) of the assembler. The corresponding time for a 64*64 DAP
would be about 30msec. Using double precision floating point we expect
multiplication to increase as the square of the length of fraction, and
addition to be linear, ie from Table 2:

56, 2
Multiply: GO° * 195 + (110/2) = 1117 psec
| 56

Add: 24 * 122 + (26/2) = 298 psec

Hence matrix multiply increases to about 90msec.

; TABLE 3: RELATIVE PERFORMANCE MEASURES

MATRIX MULTIPLY 64*64 arrays All times in msec

: Machine Precision Assembler 'Fortran'

ILLIAC IV 64 bits 38 60

' cDC 7600 60 bits 77 168
IBM 360/195 64 bits 70 110
ICL DAP (32*32 PEs) 32 bits 128 (est)140

Many factors have to be taken into account in estimating relative
performance over complete applications, but although it will be argued that

I have chosen the most favourable possible comparison for array processors

it is certainly not the case that comparisons get progressively worse from
the point of view of the DAP: in many major applications a high degree

of parallelism can be extracted by careful program analysis. The cost of
doing so 1is no more than a sequential machine would require, once conventions

: have been established to facilitate thinking in array terms. However, the
f:;" most vital statistic that might have been added to Table 3 is that the DAP

-45- .

uses less than 100 000 TTL gates for the entire ACU and PE logic, whereas
all the others use upwards of 1 000 000 fast ECL gates.

In the first lecture I said that we were looking for a TZ im-
provement in system throughput' for an investment of substantially less
than TX. Now system throughput is largely determined by the rate at
which tasks are executed and the time remaining after the operating
system has completed its business of compiling, .l.oading, scheduling,
table maintenance, archiving, spooling, etc. In this lecture I shall
examine ways in which the presence of a DPA might affect this negative
contribution to throughput by the operating system. Many applications
such as searching, indexing and encryption come to mind. However, it
might be said that in all but pathological cases the net system over-
head is only a few tens of percent of real time and that imposes a limit
on potential improvements. My belief is that in system design, as in
other application areas, the preferred approach is to start with a restate-
ment of objectives that allows the array to influence subsequent problem
analysis. The subsections that follow illustrate how resource management,
program context, and higher level connectivity are influenced. But let us
first obtain an estimate for the other side of the inequality: the invest-
ment in extra hardware implied by a DPA.

The 32%32 DAP is made from standard TTL dual-in-line integrated
circuits (DILICs) mounted on boards with about 100 package positions. In
the initial design there are 16 PEs to a board, averaging 3.6 DILICS plus
two 1Kbit store DILICs each. Hence, to the extent that hardware cost is
determined by package count the PE logic represents more than half the
board space, compared with purely passive store (the same boards used as
control memory provide 64Kbits of storage).

To improve on that picture we must follow up the original inten-
tion of using custom-built LSI for the PEs. For the purpose of making com- i
parisons an 'exchange rate' has to be fixed between the PE logic and storage
bits, which I shall take to be 128bits(bipolar) = 512bits(MOS) = one PE, based
on approximately 50 gates/PE in the DPA design. We assume that at any point
in time the PE array will be subject to the same level of integration as the
stores.

e ———

46~

The limiting factors are the complexity of circuit and the .umter
of edge connections required. For example, a 4*4 array of PE logic is
equivalent to 2Kbits of bipolar storage so it is well within the range of
current LSI devices. For such a package 16 bidirectional data connections
are needed to give row, column and neighbour I-0 under control of 3 function
bits (data lines are also used for control signals). The addition of parity
(4bits), voltage (2),clock(l) and store write-enables (16) brings the pin
count up to 42. An alternative is to integrate part of the local store with
the PE array: 8Kbits of fast storage in addition to the PEs requires more
advanced technology, but the 16 write-enable outputs are replaced by 9
address bits(512bits/PE), allowing greater freedom in pin allocation, je

using more function inputs and relying less on decoding in the device.

Whether or not the local memory is integrated with the PEs it
is likely that in future designs the DPA will be enlarged by the addition
slow (MOS) stcrage to the array. A possible configuration would be DPA4.1
(with 32Kbytes of fast store) and an additional 16Kbits of slow store for
each PE. The fast memory is now a slave or cache for the 'main store' of
%Hbyte: a bit plane (32 bytes) can be accessed in one memory reference
(say 400nsec), the theoretical transfer rate being about 75 Mbytes/sec. A
number of architectural questions need to be answered before one can pick
the 'best' configuration, but a useful comparison can be made between the
enhanced DPAS.1 and a conventional system with %Mbyte of main mewmory and
32 Kbytes of fast stores of one sort or another: the PE logic is equivalent
to adding another 4_Kbytes of fast store® and it is that figure together
with the LSI development cost, seen as a percentage of the total system,
which determines the T2 investment I assumed initially.

The following subsections continue to use DPA4 as a model for
discussion, but it should be clear where proportionate increases in cost i

or performance can be expected from larger systems.

* in terms of logic or power; it is more (about 16kbytes) in terms of

board space, so the true figure is perhaps in the region of 10kbytes.

Yy 1o

4.1 Index management

This subsection is concerned with the management of 'objects
of computation', in particular with the problem the DPA creates for itself
by having two levels of program storage. The topic is important in the
design of operating systems because the most effective way of keeping
control of complex software structures is to express their procedures in
terms of abstract objects (such as files, processes, stacks) whose integrity
is preserved by protéction mechanisms. In static environments much of the
protection - allocation, type chécking, etc - can be done at compile or
load time, but in-line control is necessary for changing data structures.
Of the two methods of control used in practice, ie capability and access
control list, the former provide the most precise and efficient treatment.
Tagged registers, such as those of the ACU (page 12) are the most flexible
way of handling capabilities.

The general system objective is as follows: given a set [ti] of
object types we need to create instances of objects and to assign attributes
to them; to grant and revoke access on a selective basis; and to remove
objects from the program space when they are no longer required. A capability
identifies an object u of type t and rights r by encoding it as a tagged
element, eg in ACU4:

4 4 8 16
tagl t r l u

where t and r are taken care of by a combination of hard and soft inter-
pretation. Our main concern is with the choice of u, which is either a store
index (ie a location number) or an index in a 'master object table' Mi for
type ti' The difficulty is that the index u cannot be re-used until all
capabilities containing u have been annulled, and in that sense the manage-
ment of abstract objects can be viewed as the management of a small number

of 'index spaces' where the indices are spread over some fraction of the

total program space.

-48-

If we plot the occupancy of a master object table we see that it

increases with time (at an average rate r indices/second) until the table is

full, at which point recovery procedures are invoked to create a new 'free

index 1list'. If R is the number of indices recovered then recovery takes

place after R/r seconds.

o=t gt

OCCUPANCY

» PK/Te R/r ¢

FULL

Residual

The recovery process involves scanning all capability-bearing

regions of store. The criterion for recovering an index may be that the

reference count is zero, or that an explicit 'deletion' operation has

been applied. The normal procedure in either case is to take each capability

of class t1 and compare it with table entry Mi(u), marking the table or the

capability as appropriate. If the total program store is K bytes and the

proportion that has to be scanned is p then the recovery time is linearly
related to pK/T and pKC, where T is the rate of scan and C is the probability

of finding a capability of the given type. The time wasted in index manage-

ment is expressed as a proportion of computing time by the ratio:

(a)
(b)

(c)

(4)

w-l’%!(+¢C)

3|

The normal methods used to reduce W include:

increasing R, eg using virtual indices in the case of store access;
restricting p by limiting the number and size of capability-bearing
segments;

partitioning the program space according to process number, so that
smaller regions are scanned (and the cost can be transferred to the
process) ;

reducing r by requiring logically distinct objects to be mapped into
the same object space (so defeating one of the aims of abstraction).
effect of DPAn is to increase the nominal rate of scan, T, by a factor

T ———————— T ——

-49-

2“. so that the first term of W is correspondingly reduced. It appears that
the individual comparisons with Hi have to be done sequentially, so the
second term is unchanged and the benefit of the DPA will be most marked for
object types of fairly low population. If W is already small this will be
seen not as an increase in throughput but as a change of program style: the

measures that restricted p and r can be relaxed without affecting performance.

Storage is associated with a relatively high value of C (in the
Basic Language Machine about 20% of the elements in the stack are addresses).
Storage also brings the complication of assigning indices in blocks rather
than as single values, giving rise to the management tasks of searching for
a block of the required size and compacting to provide the maximum free
block. In both operations the DPA can be expected to reduce system over-
heads by direct application of parallel search and relocation procedures.
In that sense the presence of a DPA, which we equated earlier with the
addition of a small amount of fast store, may in fact reduce overall store
requirements: store can be allocated in smaller units, the resulting
structures can be managed effectively in less space, and the nced for

remapping from virtual to real indices is practically eliminated.

Modifications to the addressing mechanism to allow access to
slow storage have not been studied in detail. Two possibilities can be
suggested. In ACU4, with 16 bit location fields, there is not range enough
to cover the slow store, therefore a new type of address is introduced,
resolving to the bit plane boundary. The DPA arithmetic functions apply
to 'slow' addresses, but the only routing operations are unselective store
(STA/U and STB/U). The slow store provides a 'segment space' holding the
data and procedures of all programs, which will be mapped into fast store

L ——

under control of low level interpretive code. It follows that the fast
store must be large enough to contain all the 'working segments' of all
active processes. The program store K is less than 32Kbytes in DPA4.1, and
the proportion of address-bearing segments p is not usually more than 10%.
The time of scan is therefore very short in absolute terms. For all other
indices the entire program space of up to %Hbyte is available to K.

An alternative strategy is to use a longer address word, eg a 32
bit location number in ACU6, that can cover the entire slow storage range.

-50-

Suppose we have an extended DPA6 with 16Kbit slow stores and 512bit inte-
grated fast store. The loading rule is to allocate a bit plane to fast
memory only when its address is formed in an ACU register. There is only
one type of address, which contains the location in slow memory, but when
the corresponding plane is paged into fast memory its plane number is
added to the address:

9 14 9
| fest plane] slow plane | byte # |

Consequently, all memory references by the ACU are to the fast store. The
address is not updated until the plane number changes as the result of
modification. A 512 entry associative store is needed to translate from
slow to fast plane numbers: the DPA can perform that function, though in
a high performance system specialised stores are probably justified. One
purging strategy is to write back to slow store all planes that are not
write-protected, and to scan addresses to clear the fast plane numbers and
force reloading. Here K is 8Mbytes, and assuming 102 address-bearing up
to 1600 planes have to be scanned.

Figure 11 illustrates the two methods of addressing. It is
probable that the second is as effective as the first although it uses less ; 1
fast store.

} ACU REGISTERS ACU REGISTERS
YPAST' 1Kbits YEAST' 512 bit fxz:d SLOW
address FAST STORE FAST STORE|. ...l PLANE #
Segment Bit plane
transfers transfers
'SLOW' 'smw'L
sddress | 16Kbits 16Kbits
SLOW SLOW
(a) DPA4.1 with 'slow' address (b) nns.% with paging

11: Two methods of addressing a large program space ta

=Rl

4.2 Program context

The methods just outlined provide a rapid means of adjusting
the content of fast memory to meet program requirements. They use the
high bandwidth between slow and fast stores and the predictive property
of tagged addresses, but not the arithmetic or logical functions of the
PEs. The effect of the DPA in system is thus comparable with other slave
memories, given the page size fixed by the bit plane: advantage is taken
of locality of reference to data, data descriptors and instructions. If
the instruction takes the form of a language-oriented token string there
is no need to rediscover the locality because it is already explicit.
The DPA is well adapted to interpretiveprogramming techniques. In part-
icular, it solves the system problem of providing fast access to (micro)

instructions without having a dedicated control memory.

We now coneider using the associative function of the DPA in
conjunction with program design. The most suitable areas of application
are the interfaces between control modules and between procedures. A
control module is a segment of instructions, data and free variables [Fi]
that is intended for execution in any environment providing suitable
definitions of the [Fil. An environment is a list of identifier-value pairs
[(Gi,vi)], and the execution requirement is solved in principle by looking
up the value of each Fi in the list [Gi] and assigning to Fi the value v
wvhen a match is found. In general, a control module can be in simul-
taneous execution with respect to a number of partly overlapping environ-

i

ments, whose order is unknown when the module is constructed, and it is

that which prevents a simple reference by index value.

A commonly used solution in virtual memory systems is to
identify the free variables with segments and to partition the segment
space into 'system' , 'public' lnd'private'donnin: whose structure is

known by load time. In that case the [Fil can be replaced by segment
1] with
the (cil in each environment of interest and to store the results in

indices. Another approach is to carry out the association of [F

tables that are referenced indirectly via process-dependent addresses.

-52-

The disadvantage to such techniques is that they impose unnecessary struc-

ture on programs.

The DPA allows a return to the direct and elegant solution:
the identifiers F1 are retained in the control module (possibly in coded
form) and associated in parallel with the set [G1]' An additional opera-
tion that is important in some protection regimes is to check the name of
the calling module against an access control list for the callee: that can

also be done in parallel.

At the procedure interface similar options apply, except that
the identifier-value list is formed when executing the calling sequence.
The effect wauld be to allow parameters to be called 'by identifier’.
Although such a facility is attractive in some applications it is unlikely
to replace the conventional method of indexing relative to a parameter

pointer. A more general approach might be to introduce a class of abstract

data types of the form 'identifier-value list', which could be maintained
efficiently by the DPA. :

v v e

— Y
WL 1y

—5aL

4.3 High level connections

The I-0 subsystem is a major part of Illiac IV, STARAN and CLIP,
yet it has not featured in DAP or the general discussion of DPA's. The
primary I-0 channel for the DPA is the main store highway, the maximum
transfer rate via the ACU being 5Mwords/second, the sustained rate naturally
depending on the bus capacity. Assuming 1Mword/sec and using DPA6, a matrix
of 32 bit planes can be input in 2msec or about 10 floating point operation
times. To a first approximation we can derive conditions on any application
for 'balanced' computation and data flow. As the capacity of local storage
devices increases so does the range of problems that can be contained wholly
in the array; for example, the addition of a 64Kbit serial CCD store to
each PE in DPA6 would extend the internal storage to 40Mbyte, which gives
the PEs quite a lot to work on.

Higher I-O rates are required in the context of increasing the
processing power by increasing the 'area' presented to the PEs by each bit
plane. To achieve a theoretical rate of 1000 MOPS we have to progress to
DPA9 or to array of smaller DPA's, say 64 DPA6's. In either case, routing
overheads may be significant unless new data paths are introduced. The
second alternative is attractive because the 64 ACU's can work independently
to achieve a higher effective PE utilisation, and given suitable connection
paths reconfiguration can be used to suit problem geometry or avoid faulty
DPA's. Further research is needed in this area. A connection scheme using
two orthogonal sets of 8 data busses is shown in Figure 12. Being time-
multiplexed, a move takes at least eight times as long as it does inside
the DPA; however, in a single operation there is the choice of 1,65,... or
449 column or row steps. The use of direct memory access to the slow local
stores would allow routing to be overlapped with computation. Within this
general framework any of the DPA's may be replaced by a conventional pro-
cessor, a large capacity store, or an I-0 channel controller.

Sl

COLUMN BUS CONTROLLERS

CBC CBC CBC CBC
ROW #0 # 1 # 2 #7
BUS
CONTROLLERS } 64 Je4 L 64 Les
RBC | 64 §
g0} " oo o
ACU ACU JACU J
0 1 7
RBC LG4 | S—— | PSSR | gl R
BT Rl R
ACU ACU cu J
8 9 15
2 " :
' ‘ { ' :
]] ‘ |' |
] ' & 1
! |
] ' I |
] . ‘ 1
RBC I VW) S s e !
#7 o) }
ACU| ACU ACU
56 57 63
/ 2
SLOW STORES FAST STORES

Figure 12: An array of DPA6's

(Ot W ek

(1]

(2]

(3]
(4]
(5]
(6]
1 (7]

(8]

(9]

[10]

(11]

(12]

(13]

S N AR N I F T A S 1w st grcamisow s oo

-55-

REFERENCES

D.L.Slotnick, W.C.Borck and R.C.McReynolds "The SOLOMON computer"
AFIPS Fall Joint Computer Conference Proceedings Vol.22 pp97-107
(1962)

G.H.Barnes et al "The ILLIAC IV computer"
D.J.Kuck "ILLIAC IV software and application programming'
both in IEEE Trans. on Computers Vol C-17 pp746-770 (August 1968)

H.S.Stone "A logic-in-memory computer" IEEE Trans. on Computers
Vol C-19 pp73~78 (January 1970)

W.H.Kautz, K.N.Levitt and A.Waksman "Cellular interconnection arrays"
IEEE Trans. Electronic Computers Vol EC-17pp443-451 (May 1968)

J.R.Jump and D.R.Fritscb "Microprogrammed arrays" IEEE Trans.Computers
Vol C-21 pp974-984 (September 1972)

D.E.Knuth "Sorting and searching" The Art of Computer Programming
Vol.3 pp228ff (Addison Wesley 1973)

T.Lang and H.S.Stone "A shuffle-exchange network with simplified
control" IEEE Trans.Comp. Vol C-25 pp55-65 (January 1976)

T.Lang "Interconnection between processors and memory modules using
the shuffle-exchange network' TR-76 Digital Systems Laboratory
Stanford University (October 1973)

H.S.Stone "Parallel tridiagonal equation solvers" NASA Technical
Memorandum X-62,370 Ames Research Center (April 1974)

see Sagamore Conference Proceedings 1973 ppl40-159 (Syracuse University)
and Lecture Notes on Computer Science #24: Sagamore Conference
Proceedings 1974 (Springer-Verlag)pp209-271

M.J.B.Duff, D.M.Watson and E.S.Deutsch "Aparallel computer for
array processing" IFIP Conference Proceedings 1974 (North-Holland)
pp 94-97

S.F.Reddaway "DAP - a distributed array processor" lst Annual Sym-
posium on Computer Architecture, Gainesville, Florida 1973, pp61-65

P.M.Flanders, D.J.Hunt, S.F.Reddaway and D.Parkinson "Efficient high
speed computing with the distributed array processor’ Symposium on
high speed computer and algorithm organisation, University of
Illinois (April 1977)

e .~ [as
ISR R———T e

’ @i DRL .-1—/\/-1.1’7!

SECURITY CLASSIFICATION OF THIS PAGE (When Date

READ INSTRUCTIONS
1. REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
F‘iﬁ /" Technical Note No. 117

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Technical Mote -

Cb COMPUTING IN STORE,

7. AUTHOR(s) 8. C RACT OR NUMBER(s)
0 Y John K./111ffe 5 Wﬁlaqs%@dl
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS
v~ Stanford Electronics Laboratories

Stanford University
Stanford, CA 94305

11. CONTROLLING OFFICE NAME AND ADDRESS
Office of Naval Research
Department of the Navy "NUMBER OF PAGES
Washington, DC 22217 55 (/d S '7p

T4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) | 15. SECURITY CLASS. (s sppoct) |

.

Unclassified

18a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Reproduction in whole or in part is permitted for any purpose of the
United States Government

; R
: '45255;;253 for public releate;
g 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, Il different from chon' . on t

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae side Il necessary and identify by block number)

o

4p9 A1

20. AB ACT (Continue on reverse side If y and |d fy by block ber)

These notes provide an introduction to the class of single-instruction,
multiple-data stream computers with the simplest processing elements. Design
: principles are explained in terms of hypothetical Distributed Processor Arrays,
i i with examples drawn from experimental systems. Emphasis is placed on; (a)
minimising the cost differential when the DPA is compared with conventional main
storage, and (b) designing the array control u.it to support advanced forms of
protection and language implementation. The influence of the DPA on general
system design is examined briefly.

DD , o'y 1473 Eoimion oF 1 Nov 68 1s oBsoLEXE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

|
:
:
i
3
.

!
!
i
4
“
i

JSEP REPORTS DISTRIBUTION LIST

Department of Defense

Defense Documentation Center
Attn: DDC-TCA (Mrs. V.Caponio)
Cameron Station

Alexandria, Virginia 22314

Asst. Dir., Electronics

and Computer Sciences

Office of Director of Defense
Research and Engineering

The Pentagon

Washington, D,C. 20315

Office of Director of Defense
Research and Engineering
Information Office Lib, Branch
The Pentagon

Washington, D,C. 20301

ODDR&E Advisory Group on
Electron Devices
201 Varick Street
New York, New York 10014

Chief, R&D Division (340)
Defense Dommunications Agency
Washington, D.C. 20301

Director, Nat. Security Agency
Fort George G. Meade

Maryland 20755

Attn: Dr. T.J.Beahn

Institute for Pefense Analysis
Science and Technology Division
400 Army-Navy Drive

Arlington, Virginia 22202

Dr, Stickley

Defense Advanced Research
Projects Agency

Attn: Technical Library
1400 Wilson Boulevard
Arlington, Virginia 22209

No. of
Cogies

12

Dr. R. Reynolds

Defense Advanced Research
Projects Agency

Attn: Technical Library
1400 Wilson Boulevard
Arlington, Virginia 22209

Department of the Air Force

AF /RDPS
The Pentagon
Washington, D,C. 20330

AFSC (LJ/ Mr, Irving R.
Andrews Air Force Base
Washington, D.C. 20334

Mirman)

Directorate of Electronics
and Weapons

HQ AFSC/DLC

Andrews AFB, Maryland 20334

Directorate of Science
HQ AFSC/DLS

Andrews Air Force Base
Washington, D.C. 20334

LTC J.W, Gregory

AF Member, TAC

Air Force Office of
Scientific Research
Bolling Air Force Base
Washington, D.C. 20332

Mr, Carl Sletten
RADC/ETE
Hanscom AFB, Maryland 01731

Dr. Richard Picard
RADC/ETSL
Hanscom AFB, Maryland 01731

Mr. Robert Barrett

RADC/ETS
Hanscom AFB, Maryland 01731

-1-

JSEP 3/77

No. of

Copies

Sie

- AP €

No. of No, of

P Copies Copies
Dr. John N. Howard 1 Mr. John Mott-Smith 1
AFGL/CA HQ ESD (AFSC)
Hanscom AFB, Maryland 01731 MCIT - Stop 36
Hanscom , MA. 01731
Dr. Richard B. Mack 1 LTC Richard J.Gowen 1
RADC/ETER Professor
Hanscom AFB, Maryland 01731 Dept. of Electrical Engineering
USAF Academy, Colorado 80840
Documents Library (TILD) 1
Rome Air Development Center AUL/LSE-9663 1
Griffiss AFB, New York 13441 Maxwell AFB, Alabama 36112
Mr. H.E.Webb, Jr. (18CP) 1 AFETR Technical Library 1
Rome Air Development center P.0O. Box 4608, MU 5650
Griffiss AFB, New York 13441 Patrick AFB, Florida 32542
Mr. Murray Kesselman (ISCA) 1 ADTC (DLOSL) 1
Rome Air Development Center Eglin AFB, Florida 32542
Griffiss AFB, New York 13441
HQ AMD (RDR/Col. Godden) 1
Mr. W, Edwards 1 Brooks AFB, Texas 78235
AFAL/TE
' Wright-Patterson AFB USAF European Office of 1
Ohio 45433 Aerospace Research
Technical Information Office
Mr, R.D,Larson 1 Box 14, FPO, New York 09510
AFAL/DHR
Wright-Patterson AFB Dr, Carl E, Baum 1
Ohio 45433 AFWL (ES)
Kirtland AFB, New Mexico 87117
Howard H, Steenbergen 1
AFAL/DHE ASAFSAM/RAL 1
Wright-Patterson AFB Brooks AFB, Texas
Ohio 45433
Department of the Army
Chief Scientist 1
AFAL/CA HQDA (DAMAOARZ-A) 1
y , Wright-Patterson AFB Washington, D.C. 20310
I } Ohio 45433
i Commander 1
HQ ESD (DRI/Stop22) 1 U.S. Army Security Agency
' ; Hanscom AFB, Maryland 01731 Attn: IARD-T
i Arlington Hall Stetion
i Professor R.E.Fontana 1 Arlington, Virginia 22212
i Head, Dept. of Electrical Engr.
i AFIT/ENE
$ Wright-Patterson AFB
i Ohio 45433
«ge

JSEP 3/77

No. of No. of ;
Cogies Copies j
Commander U,S. Army Materiel 1 Commamder
Dev. & Readiness Command Harry Diamond Laboratories 1
4 Attn: Tech. Library Rm 7S 35 ATTN: Mr, John E. Rosenberg
: 5001 Eisenhower Ave. 2800 Posder Mill Road
Alexandria, Virginia 22333 Adelphi, Maryland 20783
Commander Research Laboratory 1 Commandant
ATTN. DRXRD-BAD U.S. Army Air Defense School 1
U.8. Army Ballistics Attn: ATSAD-T-CSM
Aberdeen Proving Ground Fort Bliss, Texas 79916
Aberdeen, Maryland 21005
Commandant 1
Commander 1 U.S. Army Command and
Picatinny Arsenal General Staff College
Dover, New Jersey 07081 Attn: Acquisition, Library Div

Fort Leavenworth, Kansas 66027
ATTN: SMUPA-TS-T-S

Dr, Hans K.Ziegler (AMSEL-TL-D) 1

ATTN: Dr. Herman Robl 1 Army Member, TAC/JSEP
U.S. Army Research Office U.S. Army Electronics Command (DRSEL-TL-D)
P.0. Box 12211 Fort Monmouth, New Jersey 07703
: Research Triangle Park
? : North Carolina 27709 Mr. J.E, Teti (AMSEL-TL-DT) 3
Executive Secretary, TAC/JSEP
ATTN: MR, Richard 0. Ulsh 1 U.S. Army Electronics Command (DRSEL-TL-DT)
U.S. Army Research Office Fort Monmouth, New Jersey 07703 }
P.O, Box 12211
Research Triangle Park Director 1 ¢
j North Carolina 27709 Night Vision Laboratory, ECOM g
: ATTN: DRSEL-NV-D {
5 Mr. George C.White, Jr, 1 Fort Belvoir, Virginia 22060 %
; Deputy Director .
; Pitman-Dunn Laboratory Commander/Director 1 i
; Frankford Arsenal Atmospheric Sciences Laboratory (ECOM)
g Phlladelﬁhin. Penna. 19137 Attn: DRSEL-BL/DD
: White Sansa Missile Range
¢ Commander 1 New Mexico 88002
% Attn: Chief, Document Section
? U.S, Army Missile Command Director 1
£ Redstone Arsenal, Alabama 35809 Electronic Warfare Lab., ECOM
% Attn: DRSEL-WL-MY
| & Commander 1 White Sands Missile Range
' U.8. Army Missile Command New Mexico 88002
Attn: DRSMI-RR
Redstone Arsenal, Alabama 35809 Commander 1
US Army Armament Command
Commander Attn: DRSAR-RD o
Chief, Materials Sciences Rock Island, Illinois 61201

Division, Bldg. 292

Arny Materials and Mechanics e
séarch Center 3=

Watertown, Massachusetts 02172 JSEP 3/77

N 0 N

No. of
Copies

Project Manager 1
Ballistic Missile Defense Program
Office

Attn: DACS-BMP (Mr. A. Gold)

1300 Wwilson Blvd.

Washington, D.C. 22209

Director, Division of Neuropsychiatry
Walter Reed Army Institute b §
of Research

Washington, D,C. 20012

Commander, USASATCOM 1
Fort Monmouth, New Jersey 07703

Commander, U.S. Army 1
Communications Command

Attn: Director, Advanced Concepts
Office

Fort Huachuca, Arizona 85613

Project Manager, ARTADS 1
EAI Building
West Long Branch, N.J. 07764

U.S. Army White Sands Missile Range
STEWS-1D-R 1
Attn: Commander

White Sands Missle Range

New Mexico 88002

Mr., William T, Kawai
U.S. Army R&D Group (Far East) 1
APO, San Francisco, Ca. 96343

Director, TRI-TAC 1
Attn: TT-AD (Mrs, Briller)
Fort Monmouth, N.,J, 07703

Commander
U.S. Army Electronics Command

Fort Monmouth, N.J, 07703
Attn: AMSEL~-RD-0 (Dr. W,S, McAfee) 1

CT-L (Dr. G, Buser) 1
NL-O (Dr. H.S. Bennett) 1
NL-T (Mr. R,Kulinyi) 1
TL~B 1
Vi~D 1
WL~D 1

1

TL~MM (Mr. Lipetz)
(cont'd)

e

No. of

Cogies
NL-H Dr, F. Schwering 1
TL~E Dr. S. Kronenberg 1
TL-E Dr. J. Kohn 1
TL-1 Dr. C, Thornton 1
NL-B Dr. S. Amorsos 1

Col. Robt. W, Noce

Senior Standardization Rep. 1
U.S. Army Standardization

Group, Canada

Canadian Force Headquarters
Ottawa, Ontario, Canada KIA OK2

Commander

CCOPS-PD

Fort Huachuca, Arizona 85613
Attn: H.A. Lasitter

Department of the Navy

Dr. Sam Koslov 1
ASN (R&D)

Room 4E741

The Pentagon

Washington, D.C. 20350

Office of Naval Research 1
800 N. Ouincy Street
Arlington, Virginia 22217
Attn: Codes 100

102

201

220

221

401

420

421

427 (A1l Hands)

432

437

Naval Research Laboratory

4535 Overlook Aven, SW

Washington, D.C. 20375

Attn: Codes 4000 - Dr. A Berman
4105 - Dr. S. Teitler
4207 - Dr, J. McCaffrey
5000 - Dr., H. North
5200 - Mr, A. Brodzinsky
5203 Dr. L. Young
5210 ~ Dr. J. Davey

-4-

JSEP 3/77

Naval Research Laboratory 1

4555 Overlook Ave, SW

Washington, D.C. 20375

Attn: Codes 5220 - Mr. H. Lessoff
5230 - Dr. R. Green
5250 - Cf. L. Whicker
5260 - Dr. D. Barbe
5270 - Dr, B. McCombe
5300 - Dr. M. Skolnik
5403 - Dr. J. Shore
5464/5410 - Dr. J. Davis
5500 - Dr. T. Jacobs
5509 - Dr. T. Giallorenzi
5510 - Dr. W, Faust
6400 - Dr., C. Klick
7701 - Mr, J. Brown

Director 1
Office of Naval Research

495 Summer Street

Boston, Mass. 02210

Director 1
Office of Naval Research

New York Area Office

715 Broadway 5th Floor

New York, New York 10003

Director of Naval Research Branch Office
536 South Clark Street
Chicago, Illinois 60605 1

Director of Naval Research Branch Office
1030 East Green Street 1
Pasadena, Calif, 91101

Office of Naval Research 1
San Francisco Area Office

760 Market St. Room 447

San Francisco, Calif, 94102

Harris B, Stone 1
Office of Research, Development, Test &
Evaluation NOP-987

The Pentagon, Boom 5D760

Washington, D.C. 20350

Dr. A.L.Slafkosky 1
Code RD-1

Headquarters Marine Corps
Washington, D.C, 20380

B e e N L

No. of
Copies
R.N. Keeler 1
NAVMAT - Code 03T
CP#5
2211 Jefferson Davis Hwy.
Arlington, Virginia 20360
Mel Nunn 1
NVMAT 0343
CP# 5, Room 1044
2211 Jefferson Davis Hwy.
Arlington, Virginia 20360
Dr, F.I1. Tanczos 1
NAVAIR-03B
JP# 1, Room 412
1411 Jefferson Davis Hwy
Arlington, Virginia 20360
Dr. H.J. Mueller 1
Naval Air Systems Command
Code 310
JP # 1
1411 Jefferson Davis Hwy.
Arlington, Virginia 20360
Mr. N. Butler 1
Naval Electronics Systems Command
Code 304 !
NC # 1
2511 Jefferson Davis Hwy. g
Arlington, Virginia 20360 ;
Mr, L.W. Sumney 1 %
Naval Electronics Systems Command F
NC # 1 :
2511 Jefferson Davis Hwy. :
Arlington, Virginia 20360 i
J.H. Huth 1 }
NAVSEA - Code 03C i
NC # 3, Room 11EO08
2531 Jefferson Davis Hwy.
Arlington, Virginia 20362
Capt. R.B. Meeks 1
Naval Sea Systems Command
NC #3 -

2531 Jefferson Davis Hwy.
Arlington, Virginia 20362

-5-

JSEP 3/77

A T

No. of No. of
Copies Copies
Naval Surface Weapons Center 1 Dr. W. A. VonWinkle 1
White Oak Associate Technical Director for
Silver Spring, Maryland 20910 Technology
Attn: Codes WR - 04 - W, Scanlon Naval Underwater Systems Center
WR - 30 - Dr. J. Dixon New London, Connecticut 06320
WR - 303 - Dr. R. Allgaier
WR - 34 - H.R. Riedl Officer in Charge 1
WR - 43 - P, Wessel Naval Underwater Systems Center
Newport, Rhode Island 02840
Naval Surface Weapons Center 1
Dahlgren, Virginia 22448 Dr. H.L. Blood 1
Attn: Codes DF - J. Mills Technical Director
DF - 14 - K. Ferris Naval Undersea Center
DF - 36 - S, Leong San Diego, Calif., 95152
Naval Air Development Center 1 Dr. "Babart R Possua 1
Johnsville

Dean of Research
Naval Postgraduate School
Monterey, Calif. 93940

Warminister, Penna 18974
Attn: Codes Ol - Dr. R. Lobb
202 - T. Shopple

20212 - S. Campagna Naval Electronics Laboratory Center

2022 - G. Fer 271 Catalina Blvd. 1
San Diego, Calif, 92152
Dr, Gernot M.R. Winkler 1 Attn: Codes 0220 - H.T. Mortimer
Director, Time Service 2000 - P.C. Fletcher
U.S. Naval Observatory 2020 - V.E. Hildebrand
Mass., Ave. at 34th St., N.W. 2100 - C.A. Nelson
washington, D.C. 20390 2200 - J' ﬁitcher ‘
2300 - C. W,
officer in Charge 1 2200 b g & i::i::°“
Carderock Laboratory 2500 - W.E. Richerds
David Taylor Naval Ship Research 3000 S
and Development Center .
Bethesda, Maryland 20034 2;33 4 g.Ecogr::son
4600 - I, d
Officer in Charge 1 5000 - A EL.g::t:I
Annapolis Laboratory 8200 = R.R. Byres
g:v::rShlp Research & Development 5300 - P.H. Johnson
. 5600 - W.J. Dejka

Annapolis, Maryland 21402

Naval Weapons Center 1
China lake, Calif. 93555
Attn: Codes 60 - Royce
601 - F.C.Essig
6013 - V.L. Rehn

M.J. Wynn 1
Code 790 6014 - D.J, white 3

Naval Coastal Systems Laboratory 6018 - J.M Bennett

6019 - N, Bottka 1
Panama City, Florida 32401 (cont 'd) t

Dr. G. Gould, Technical Director 1
NavalCoastal Systems Laboratory
Panama City, Florida 32401

-6-

JSEP 3/77

BN oo i b o SR o v e . .

No of No, of
Cogle! Copies
Naval Weapons Center Robert E. Frischell 1
China Lake, Calif. 93555 Johns Hopkins University
Attn: Codes 605 - W,S, McEwan 1 Applied Physics Laboratory
5515 - M.H. Ritchie Laurel, Maryland 20810
3945 - D.G. McCauley
5525 -~ Webster Mr. G.H. Gleissmer 1
35 - D, J.Russell Code 18
55 - B,W. Hayes David Taylor Naval Ship R&D Center
3544 - H.W, Swinford Bethesda, Maryland 20084
3815 - R.S. Hughes
Cnmmander 1
D.E. Kirk 1 Pacific Missile Test Center
Professor & Chairman, Electronic Code 4253-3
Engineering Point Mugu, Calif. 93042
Sp-304
Naval Postgraduate School Richard Holden 1
Monterey, Calif. 93940 DF - 34
Naval Surface Weapons Center
Professor Sydney P. Parker 1 Dahlgren Laboratory

Electrical Engineering Sp-62 Dahlgren, Virginia 22448

Naval Postgraduate School

Monterey, Calif. 93940 Other Government Agencies
Dr. Roy F. Potter 1 Mr. F.C. Schwonk, RD-T 1
3868 Talbot Street National Aeronautics and
San Diego, Calif. 92106 Space Administration
Washington, D.C. 20546
Mr. J.C., French 1
Electronics Technology Division Los Alamos Scientific Lab 1
National Bureau of Standards Attn: Reports Library
washington, D.C. 20234 P.0O. Box 1663
Los Alamos, New Mexico 87544
John L. Allen 1
Deputy Director (Research & Advanced M. Zane Thornton 1
Technology) Deputy Director,
ODDR&E Institute for Computer
The Pentagon, Room 3E114 Sciences & Technology
Washington, D,C. 20301 National Bureau of Standards
Washington, D.C. 20550
Leonard R. Weisberg 1
Assistant Director (Electronics Director, Office of Postal 1
& Physical Sciences) Technology (R&D)
ODDR&E U.S. Postal Service
The Pentagon 11711 Parklawn Drive
Washington, D,C. 20301 Rockville, Maryland 20852
George Gamota 1 NASA Lewis Research Center 1
Staff Specialist for Research Attn: Library
ODDR&E 21000 Brookpark Road
The Pentagon, Room 3D1079 Cleveland, Ohio 44135
Washington, D.C. 20301 -=

JSEP 3/77

No. of
Cogies
Library - R51 1
Bureau of Standards
Acquisition
Boulder, Colorado 80302
MIT Lincoln Laboratory 1
Attn: Library A-082
P.0. Box 73
Lexington, Mass. 02173
Dr. Jay Harris 1

Program Director, Devices and
Waves Program

National Science Foundation
1800 G. Street

Washington, D.C. 20550

Dr. Howard W. Etzel, Deputy Director
Division of Materials Research 1
National Science Foundation

1800 G. Street

Washington, D.C. 20550

Dr. Dean Mitchell, Program Director
Solid-State Physics 1
Div. of Materials Research

National Science

Non-Government Agencies

Director 1
Research Lab, of Electronics
Massachusetts Inst, of Tech.
Cambridge, Mass. 02139

Director 1
Microwave Research Institute
Polytechnic Inst, of New York

Long Island Graduate Center

Route 110

Farmingdale, New York 11735

Assistant Director
Microwave Research Institute
Polytechnic Inst. of New York
333 Jay Street

Brooklyn, New York 11201

No. of

Copies
Director 1
Columbia Radiation Laboratory
Department of Physics
Columbia University
538 West 120th Street
New York, New York 10027
Director 1

Electronics Research Laboratory
University of California
Berkeley, Calif. 94720

Director 1
Electronics Sciences Laboratory
University of Southern California
Los Angeles, California 90007

Director 1
Electronics Research Center

The University of Texas at Austin
Engineering-Science Bldg. 112
Austin, Texas 87812

Director of Laboratories 1
Division of Engineering and

Applied Physics - Tech. Reports
Collection

Harvard University

Pierce Hall

Cambridge, Massachusetts 02138

