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ABSTRACT

These notes provide an introduction to the class of single—instruction ,

multiple—data stream computers with the simplest processing elements. Design
principles are explained in terms of hypothetical Distributed Processor Array.,
with examples drawn from experimental system.. Emphasis 1. placed on (a)

minimising th. cost differential when the DPA is compared with conventional
main storage, and (b) designing the array control unit to support advanced

forms of protection and language implementation. The influence of the DPA

on general system design is examined briefly.

The work described herein was supported in part by the Joint Service.
Blectronics Propam under Contract No • NOOOl4—7S~~6Ol.
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1 DISTRIBUTED PROCESSOR ARRAY S

These lectures are concerned with assemblies of processors, each
having local arithmetic and local storage capability but sharing a coum*on
control unit , so that they execute synchronously a broadcast stream of
instructions. When good (in terms of performance) such arrays can be ex-
pected to be very , very good , but when they are bad they are unproductive

if not exactly horrid. Thus one of the main objects of system design is

to keep the array working on problem. at the favourable end of the spectrom
for a sufficient proportion of time to justify its cost. In the Illiac IV

machine an attempt has been made to achieve that end by covering an exten-
sive user catchaent area by using a coimnunications network , enabling remote
sites to send problem. to the array : there are very few laboratories or
businesses that present a continuous workload with the high degree of
parallelism necessary for efficient working. An alternative approach is
to reduce the cost attributable to the array to the extent that it can
operate economically at a low duty cycle. In principle , one would like
to see a TX improvement in system throughput for an investment of sub-
stantially less than TX , but in practice we shall see that the presence of
an array can affect system design in ways which are impossible to quantify .

4 Readers unacquainted with array processor designs will gain some
insight from early papers on Solomon [1] and Illiac IV (2J .  One of the
main performance bottlenecks on conventional system. is the data path from
processor (or processors) to: program storage units : with rand om access to
words the fastest crossbar or bus systems achieve peak rates of about 10~
bytes/second. There are two methods of exceeding this limit , both of

which assi~~ non—random access patterns :

(a) Use vector add ressing modes , which allow retrieval and storage
of word sequences regularly spaced in store. It is then neces—
sary to transmit only a fraction of the addrsssss,and speed
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gains can be achieved by interleaving store cycles. The CDC Star,
TI ASC and Cray—i machines provide examples of this approach which

leads to maximum data ra tes in the region of ~~ bytes/second.

(b) Use a new pattern of physical interconnection in which each pro-

cessor has direct access to only a limited region of storage. Thus

Illiac IV with 64 local stores containing 8 byte words and cycling
9at 24Onaec would achieve a maximum data rate of about 2*10 bytes/

second . It will be seen later that practical. data processing
rates exceeding 1010 bytes/second can be envisaged with currently
available technology, at the expense of severe , limitations on
accessibility.

Of course, maximum data rate is not the end of the story, and although
it is true that data access patterns are non—random they vary appreciably
f rom one class of problem to another , allowing various degrading factors
to come into play. We should note in passing that the class of prob lems
of imsediate interest are charcterised by regular data spacing, which is
not veil served by slave memory techniques. On the other hand slave stores
deal with the type of non—randomoess which appears as repeated reference to
the same locality, so the two mechanisms are not competing for the same
class of problem and we may hope to see them working effectively in corn-
bination in some future system.

For practical purposes only linear or rectangular arrays need be
considered . Handling three dimensional arrays is severely limited by the
planar form of hardware , which is unlikely to change until radically new
methods of manufacture are proven. The form of interconnection within a
plan. is more open to debate. Many problem. are naturally expressed in
polar form , or by using a hexagonal cell pattern rather than square ; the
result of mapping them into a rectangular array is to leave some of the
process ors and connection paths unused . However, in the light of exper—
ience gained so far the square array with four near—neighbour connections
app ears to b. most widely applicable.

Th. main application incentive derives from the numerical solution
of field equations such as those occurring in reactor physics and meteor—

- 
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ology , in which method (b) is not unduly restrictive. Moreover, most

numerical methods are based on a discrete representation of physical space
and time that can be mapped directly onto the array , the local storage
providing the third and fourth dimensions when necessary. Problems of
this class create a practically unlimited demand for computing power in
the quest for high resolution and there is no doubt that very high absolute
performance and high performance/cost are attainable using array techniques.
The principles of such applications are outlined below, but the emphasis of

discussion is on non—ni rical problems, system and language design.

The main engineering stimulus comes from the emergence of semi-
conductor stores as main memory components : having the same physical and
electrical properties as logical devices it is far easier to consider
closely—coupled assemblies than in the days of core memory . Possible
applications of this principle to cache memories have been pointed out
by Stone [3). A related factor of extreme importance is that simple and
highly repetitive circuits are very suitable for LSI manufacture: some

of the processors to be considered require less than 100 logic gates each
and could eventually represent a negligible cost increase. Simplicity is
the consequence of using single—bit wide data paths and providing a primitive

instruction set. The complex functions that are needed for arithmetic and
data manip~iation reside in the form of stored program in the same way as

microcode for a conventional machine. It is possible that reduced hardware

costs will allow us to regard a processor of 1000 gates as ‘negligible’ at
same future date , at which time comeitment to greater functionality or
wider data paths can be considered as an alternative to closer packing of

single bit processors. The main requiremsnt at present , however , is to
understan d the trade—o f fs well enough to mak. sensible decisions , and the
study of single-bit processors seem. to be the best starting point for that .

The reader may recognise the resemblance to cellular arrays (4],
[5), whose study is prompted by the same technological projections. The
main difference is that the logic and data paths are thought of as fixed
in the processor array and variable (often on a row or coluen basis) in
many cellular designs. There is no intrinsic reason for maintaining the
distinction . Further research may show effective ways of combining the
two lines of dsvslopmsnt.

- ~— — - -~- -—--~~~~ 
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¶ 1.1 DPA s to rage

9
~A store module can be thought of as a rectangular array of

(semiconductor) storage elements whose dimensions are determined as a
multiple of the store data word size and a power of two. For illustra-

tion a ‘toy ’ store of 16—bit words in 16 rows will be used and I shall
denote by ‘DPAn’ where n is in the range 1 to 9 a square array with sides
of length 2”. Thus the toy array is referred to as DPA4. The practically

useful arrays in terms of computing power require n at least 6. Parity
and/or tag bits are assumed to be present above the nominal word size , but
they do not take part in the array processing activities and they will be
omitted from the following description. Figure 1 shows a plan view of the
store module and a ‘3D’ view with the storage bits extended in the vertical
direction to show the layout of words in horizontal sections through each
row of storage elements. Each storage element contains a few thousand
binary digits: I shall refer to an array with m kbit stores as ‘DPAn.m ’.
Thus the toy array, which has 1024 bits in each element , is DPA4.l

(0 ,0) 
____________________ 

(0 ,15) (0,0) (0 ,15)

~~~~c4Do,z ola #
~~/ 1ooo la 

____  
U (15,0) (15,15) 2

56&F I 
_ _ _ _ _ _

- - - sit... WORD IN

) 

P 
_ _ _ _  //

Li: 

STOREt ..

~~~~~~~~~~~~

(15,0) (15,15) 
__________________ 

/
PLANES

Figure 1; Storage module layout for DPA4.l

The array processor attaches a small computer or processing
elenent(fl) to each storage element. It is in that sense that processing
power is ‘distributed ’ through th. store . Th. control logic normally
associated with the store module for handling addresses and data is elabo—
rated to form instructio ns that are broadcast in synchronism to every PR

I
- L~ ~~~~
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in the array : each PE must obey the instruction, the only option that can
be exercised locally is whether to store the result. Figure 2 shows a plan

of the PR array and a perspective view with the processors in the lid of
the store. In prograusning terms we shall see that data is processed by

passing it ‘vertically’ through the lid of the store 22n bits at a time
from a selected bit plane.

PEa(0,0) ~,..- ~~~~ (0,i5)

c~~ :1~~)
~ Q ~ ~ 1 R~ J (0,0) (0 15)

- DATA ~~~PEs

_ _  

1 
_ _ _ _ _ _  

PLANES

_  
2

(15,0 ~~ ,... ,..._.....,(l5,l5) :
f

COLU?I1 [ 
_____DATA 

-

ARRAY
CONTROL

UNIT

MAIN STORE DATA AND ADDRESS LINES

Figure 2: Storage module with processing elements DPA4.l

Each PR has single digit data connection to neighbours in four
directions designated N , E , 8, and V. Elements at the edges of the array
are always short of one or two neighbours. The input at these points can

be selected by program to be (a) always sero; (b) taken from the other end

of the same row or col~~ to give cylindrical or toroidal geometry ; Cc)
taken from the other end of the nlxt row (or colu.n) to form a linear or
circular array of 22%t PEs . in each geometry the thicknes. of the surface
or line i• determined by the local store size, eg 1024 bits in the toy
machine.

- 
~~~~ ~
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Example

The choice of PE connections is a compromise between pin limitations
inherent in the form of construction and problem requirements that

have become apparent in application studies . The consequence of
omitting a connection is that data has to be routed 1 or 2’~ cells
at a t ime across the array for as many bits as there are in the data.
The result can best be illustrated by considering a problem that is
not square to start with, namely the mapping of a global coordinate

system with fewer grid points at the poles than the equator. Figure

3a shows that direct mapping onto a 24*16 array (Fig.3b) would leave
a substantial number of PEs unused . One possible treatment is to wrap
the map round a cylinder so that the unused PEn near the N pole mesh
with used PEa f rom the S pole. However , it can be seen that neigh—
bouring points near the poles on the global map would still be some-
what distan t in the array , and the situation can be improved if the
N and S hemispheres are first displaced W and E respectively and then

wrapped round the cylinder (Fig.3c) . With the DPA4 array the PE
utilisation is nearer 90% and could be increased on a larger grid.
It will be noted , however , that high utilisation has been achieved
by matching the array size to the problem, which is not always
possible. Also note that neighbours on the global map are not
always neighbours in the array , time being lost in routing numerical
values across up to four columns.

We can readily identify three factors which prevent the DPA from
2nachieving the theoretical data processing rate of 2 bits per instruction:

(a) mapping which prevents a problem from being cast into a form to
use all PEs ;

(b) routing which occupies the array in unproductive data movements;

(c) branching which causes only a fraction of the PEs to be active
during a particular phase of calculation, eg in the preceding
example the poles may require special calculations which could

use on ly -
~~~~~~~ of the available PEa.

Experience shows that intuitive judgements based on habits formed in using
conventional machines can be quite far from the truth , particularly in the
area of (a) and (b).
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. . S 88% used

Figure 3: Representing a Spherical Map
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1.2 Array operations

The Array Control Unit (Figure 2) Is responsible for broadcasting

instructions to the processing elements, providing registers to buffer the

data sent and received on the common row and column lines, and for serving
external requests for access to the memory. The type of external request

depends on the part played by the DPA in the system context, which I shall

return to in the later lectures. In this subsection and the next we consider

the elementary functions of the array and the programs executed by the ACU.
It is assumed that a DPAn is controlled by an ACU with internal data width

eg the DPA4 is associated wIth 16 bit data fields in the ACU , which are

placed in correspondence with the row and colomn data lines: otherwise the

description would have to provide operations to align part—words with the

array edges, or conversely.

Let Y be a register in the ACU with bits Y1, and let A1~~ be a

bit in the (i,j)th PE. Then four input functions are defined as follows:

(1) Input by row:

~~~ Y
~ 

for all ~~,j)
(2) Input by column :

— for all (i,j)
(3) Input by row with column select:

A , 
~ 

— Y~ for all i; A1 ., 
unchanged if j ,~ J

(4) Input by column with row select:

— for all j; A
11 

unchanged if I # I

Thus in cases (1) and (2) a bit of Y is broadcast to all PEs along a row or

column of the array. Case (4) corresponds to store write when the selected

bit A1~~ is in the local memory of each PE.

Corresponding to input functions there is a set of four output

functions, with and without selection by row or column. Here the resultant

bit in the Y register is the logical and of all selected PEe on the data line:

_ _ _ _
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(1)’ Output by row:

Y~ — A1~~ 
for al l l

The output operation ‘by column with row select’ corresponds to normal store

tead when the A1 j is in local memory. The method of choosing the A and Y

words is discussed later.

In its simplest form the FE contains three single—bit registers

with the following uses:

A ii the activity register. When zero, writing to local stores

can be inhibited ;

B is the arithmetIc and 1og~cal accumulator ;

C is the carry digit.
The other components of the FE are a routing multiplexor, which is used to

select Input to local store from the A or B registers, near neighbours (N,

K, S, W) , or the couw~on row (R) or coluinn(C) data lines, and the local memory
itself. An Inverter (I) allows the polarity of data to be reversed in going

ROW & COLWI4

I ~ 14] 4:3 Control(funct ion)

Invi4tth I ~~ I ~i 
- 

~~ 

- - 
External data

j~~~~Contro1(routIng)

~~~~~~~~re4, activity

WE Rh

RO Address

NEIGHBOURS LOCAL MEMORY

Figure 4: Processing elemei.t schematic for the DPA

from memory into the A or B registers , and the or gate SEL allows program
control of the use of A to inhibit ‘store’ operations.
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The PE carries out two types of operation: functions of the

arithmetic registers A,B and C; and routing of data. Each uses the broadcast

local memory address, which is the same for all PEa , so that the operation

is carried out on a ‘bit plane’ in the DPA. An address is specified by an

ACU register which for security reasons also contains a limit field giving

the maximum modifiable range of that address. To address the DPA4 we
take a 16 bit byte location, a 12 bit limit and a 4 bit tag field. The most
significant 11 bits of the location select a bit plane, the remainder specify
column or row select when necessary (4 bits) and the least significant bit
selects even or odd byte.

4 8 16
ACU address: IT~I LIMIT LOCATION

11
— I —BIT PLANE ROW/COL BYTE

ACU data: ETAG I VALUE

ACU control : MODE f LOCATION

ACU instruction: L~ IXEJ 
or 

~ ~I 
X~ N

The ACU data is tagged to distinguish it from addresses, the result of an

array output operation is tagged as ‘data’, and similarly the operand of
an input operation must be ‘data’. An ACU program control pointer has a

similar form to an address, without the LIMIT field but including MODE bits
which specify the geometric connections as well as conventional arithmetic

and control modes.

The ACU instruction is uniformly 16 bits in wid th , giving

a function field f and either two 4—bit register addresses X, Y or a

single register and a literal field N. The instruction set covers the
requirements of sequential operations in the ACU itself and parallel oper-
ations in the DPA of the two types mentioned above .

-I-— . - .



DPA ARITHMET IC
The X—register address is used to select i. local data value x in

each PE. The following functions are available:
IDA Load A SetsA -x

LDB,LDC Load B,C Set B — x, C — x respective ly
ADD Add to acc. Forms the sum of B ,x and C in B

and forms the carry in C

AND AND to ace. Forms the logical and of B and x in B
OR OR to acc. Forms the logical or o f B a n d x in B

EQU EQU to ace. Forms the logical equivalence of B

and x in B

In any arithmetic function the datum can optionally be inverted.

DPA ROUTING
The X—regis tar address is used to select a destination plane

or in some cases the source. The following functions are available:
IR Input by row Uses Y to provide data input to x

according to (1) on page 10

IC Input by column See (2) on page 10
IRC Input by row with column select (See (3))
ICR Input by column with row select (See (4))

AOR AND output by row (See (1)’)

AOC AND output by column (2) ’
ORC Output by row with column select (3) ’
OCR Output by column with row select (4)’

Note that ICR corresponds to conventional STORE and OCR to LOAD functions.
MVN Move North The datum plane is moved north one FE
MVS, MVE, MVW Similarly for south east asdc west .

Note that !WE, MW correspond to single bit word shifts in the array , the

‘most significant ’ or ‘left ’ end of a word assumed to be on the W edge .
STA Store A Set ax A
STB Store B Sets x — B

In any routing function the store a.tion is by default conditional on the
value of A a 1 in the destination PE; it is possible to override A in any
instructi on by following the function with ‘VU” as in:

- 

STE/U Store B uncondit ional , is independent of the value of A
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1.3 The array control unit

The ACU obeys instructions fetched from the DPA. Its operations
include those listed in the previous subsection together with conventional
control , arithmetic , logical and addressing functions. The ACU is classed
as a Pointer—Number machine, is one in which a distinction is drawn between

pointer: (control and data addresses, codewords or capabilities) and
numbars. Functions are provided to create and manipulate various classes
of objects , the instruction set being designed to prevent abuse in the

sse of damaging integrity or gaining access to objects without permiss ion.
However, only one aspect of the overall design need concern us here and
that is the use of addresses to refer to bytes , words or bit planes in the
DPA.

The form of data address is given on p.12. The 12—bit limit
field enables an address to refe r to up to 128 consecutive bit planes . The
low order 5 location bits are used in byte and word access , including row

and column selection . To simplify the addressing rules when working with
array data we declare that protection of binary segments is only resolved
to the bit plane boundaries .

An ACU program will be written as a sequence of statements with
elementary IF, GOTO, WHILE and DO control clauses. Functions of the ALU
are expressed by the following operators :

ARITHMETIC AND LOGIC
syntax symbol function operand example

type s
binary infix + add N , N x + y
binary infix — subtract N , N x — y
unary prefix - negate N —z

binary infix * integer mpy N, N 4 * p
binary inf ix & logical and N , N x & IF?
binary infix / logical or N , N x / z
binary inf ix logical neq N , N a b
binary inf ix CC left shift N , N p~~ 3
binary infix right shift N , N

ADDRESSING

binary infix . modification A, N a ‘ 8
binary infix 1’ limitation A, N b j  it
unary post fix load A x

_ _ _ _ _ _  - 
.:~~~ 
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ASSIGNMENT
binary infix — register transfer — ,— x — y
binary infix — . store A,— x — . y

In each case the operands are ACU registers that will be declared as
required , or literals where numeric arguments are allowed . Expressions
are evaluated from lef t to right, addressing operations taking precedence
over arithmetic and assignment. Where no assignment operator is present
and the first operand is a register the result overwrites the register as
in the statement “x’l”, which modifes the register x by 1.

The usual conditions are set by arithmetic and logical operations
and tested in control clauses (NZ , ZE, CT, GE, LT, LE, OV, NV). The

addressing functions produce invalid (null) results in the event of pro-
tection violation and set the condition lit with inverse VR (valid result) .
Arithmetic and control functions fail if an operand of the incorrect type
is presented . In most of the examples given below such exceptions are
assumed not to occur . The protection rules simply ensure that a program
does not cause damage outside the protection domain defined by the ACU
registers when a prograaming error occurs.

DPA functions will be expressed using as prefix or infix
operators the mnemonics given in the previous subsection . Arithmetic

1. functions require one argument (an expression giving the address of a bit
plane), which will be preceded by “—“ when inverting the input to the PE.
Store functions require one argument giving the address of a bit plane.
Array input requires a destination (bit plane address) and source (data
register). Output requires a destination register and source. Finally,
move operations require a bit plane address and step count (data) .

The example on the following page illustrates the conventions
used in writing LCD programs. It is assumed that the LCD supports a
procedure calling mechanism so that the function in the example would be
called as “SUITRACT(P, Q)” , where P and Q specify operands . The program
will abort if Q is longer than P and set OV if overflow occurs anywhere
in the array , the comeon plane OFLOW indicating which elements overflowed .
The s’echanism of procedure call and module interconnection will be examined :
in a later lecture because it is affected by the presen ce of the DPA.

~ A-

- ~~~~~~~~ 
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1* Example:

The following program segment subtracts two arr~ys of (P+l)
bit 2’. complement integers stored in vertical form . The
result ARG1 — ARG2 is stored in US in all active PEe. The

~~U OV condition is set if any resul t overflows. The boolean
matrix OFL(~J is set a 0 wherever overflow has occur red in an
active PB . The arguments are specified by bit plane addresses
with leas t significant digits in the high address plane */

REGISTERS [ AZC1 ARG2 RES P OFLOW I

/ ~ Set carry in and initialise overflow plane *1
OFL(M Il/U -l ; LDC OFLOW; PCC5
1* Subtraction loop */
WHILE CE DO (IDE ABC’P; ADD —ARG2’P; STE RES’P; P—32)

1* Set overflow plane to zero wherever overflow has occurred *1
LDB MCi; ADD —ARG2; EQU US; STE OPL(M;

P AOl OFLC*I; I? (P ~ —1) (SETOV) ; RETURN

I

. 

~~~~~~~~~~~~~~ 

. ~~
.. 

~~~r. ~~~~~~~~~~~~~~~~~~ -



—17—

2 ELEMENTARY DPA PROCEDURES

Having shown in principle how a DPA is controlled we can examine
it. app lication to some frequently occur ring tasks. The object is to obtain
theoretical performance limits, taking into account PR ut ilisation , routing
and branching. Obviously there is no point in pursuing an application un—
le*s it offers substantial returns on that basis .

A fourth degrading factor has to be added to those listed on
p.8: the t ime taken to supply the ACU with instructions and the time taken
by the ACU in modifying address counters , testing for loop termination, eec ,
in which potential array functions are ‘lost ’. There are several ways of
minimising the loss, including instruction buffering and overlap , but I do
not propose to discuss them here and shall assume instead a moderate time
of DPA execution (200nsec) in which allowance has been made for the effect
just mentioned . On that basis the subtraction example given at the end of
the first lecture requires :

3P+ 1O
DPA cycle., from which it can be seen that if the precision is large (say
greater than 20) the ‘end effects ’ are negligible, but if it is saail, as is
frequently the case, we should be looking for better ways if setting carry
and testing overflow. However , let me eaphasise the importance of evaluating
any such improvement in terms of its contribution to overall system through—
put rather than to individual procedures.

• The procedures are classified as ‘arithmetic and logic ’, which are mainly
concerned with operations within a PB or row of PBs without regard to
neighbours ; ‘routing’, which are concerned with preparing arrays for para—
11.1 arithmetic ; and ‘matrix’, which combine the firs t two. The objective
of a more compu te study would be to provid, a set of arithmetic and data

manipulative function that can be used by application progr ameers and con—
‘1 pilers in generating array code and , perhaps more valuable in the long run •

to develop theintuiti,. understanding of the array which is essen t ial to
successful !~Dt..s analysis .

A 

- - 
±.
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-
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2.]. Arithmetic and logical operations

There are two word orientations of importance in DPA operations:
horizontal and vertical. The former correspond. to the conventional store
layout, so that data written as words by the LCD can be processed in situ
by the array. The latter form, which was used in the r~~ple of subtraction,
requires the data words to be stored in consecutive bit planes, one word to
each PB . The DPA4 can process 16 words of 16 bits in horizontal for ., or
256 words one bit at a time vertically . The distinction is less important
in logical operations , the bit processing rate being the same in either case,

than for arithmetic , in which provision has to be made for carry propagation.
When dealing with large arrays of short words the vertical form is to be
preferred because it allows greater PR utilisation, and in certain special
functions such as the manipulation of Boolean arrays or sign digits it is
about N (_2fl, the word length of the array) times faster than horizontal

and N times faster than sequential pro cessing in the LCD . (More precisely ,
such comparisons should read that in the limit , for large arrays , the ratio
is k*N or k*N2 where k is a small constant factor , usually near unity.)

In vertical mode , carry is propagated through the C register in
each PR. In horizontal mode , convention requires carries to propagate to
the west, which would be so time—consuming in the DPA that it would have
little practical use. We shall see later how additional routing and/or
function can be used to achieve competitive speeds in horizontal mode.
When st~~(’ig a large number of word planes the DPA is placed at less of a
disadvantage by using car ry—save techniques. For example , horizontal
multiplication in DPA4 requires the sumeation in each row of PEs of 16
expressions of the form s

X b~~*2 1 f o r j O t o l5i—o
where b~ is the ith bit of the jth word , which occurs in the ith PB. The
product can be formed by s {ng vertically to give the non—standard result:

uS 15
a X  ~~ *2

1 where c~~~~~~ b~i.0 _1—0

Each c1 is a four—bit carry which can be propagated by MW , followed by
a~~~ing again vertically . The f inal addition , which completes the carry
propagation, i. probably best done in the ACU. (This is one of the appli— 

• 4•~~
T
~~~ r ~~~~~~~~~ —
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cations in which the end—effects on addition become important.)

The low level of coding allows advantage to be taken of special

properties of the data in many instances. Multiplication by a constant, for
example, is faster than array multiplication in all cases because it can

take advantage of strings of zeros or ones in the multiplier. Iterative

calculations such as square root can use a low precision approximation in
the early stages. Note also that in squaring operations the coefficient

which is in fact b .b 
— 

,where the b are the digits of the operand , also

occurs as ~~~~~ Therefore c~ can be computed as:

(i even) c~ — 2*(bi.bo + b~~.1.b1 + ... +
(i odd) c

~ 
— 2*(b~.b0 + bi_1.b1 + ... + b(i_l) ,2 .b (i+l) ,2)

which halves the nusber of partial products.

In general, vertical multiplication of two p—bit numbers requires

p additions to give a 2p bit result , or 3p2 basic cycles. A p—bit result

requires 3p2/2 basic cycles but slightly more organisation . Division, using

a restoring algorithm, produces a p—bit quotient from a 2p—bit dividend and
2p—bit divisor in 6p basic cycles .

In floating point addition and subtraction the timetaken to com-

pare and align operands outweighs the arithmetic by a considerable margin.

A scaling operation takes two cycle, per bit in vertical mode. Thus, using

radix 16 exponent and 24—bit mantissa three normalising shifts are required

before and after the add/subtract, and the equivalent of 5 moves to and

from workspace, giving 23 basic cycles per bit as opposed to three for fixed

point. There is clearly a great advanta ge in space and time if fixed point

arrays of low precision can be used.

The following table st~~ arises the theoretical limits on vertical

operations. Practical measures will be given in the next lecture.

- It....,
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TABLE 1: THEORETICAL BOUNDS CM A*ITHMETIC SPEEDS
All operands in vertical form

hEED POINT FLOATING POINT

ADD/SUBTRACT 3p Uf + 6e + 4df

MULTIPLY 3p2/2 3f2/2 + 3. + 2f
DIVIDE

MOVE PC
SCALE 2p 2p

COUNT

Where :

p i. the number of bits in the operand
f is the n~~~er of bits in the f raction
e is the number of bits in the exponen t

d is the number of damormalising shifts
c is the distance moved in rows + coli is

IJ

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2.2 Data routing

The figures of Table 1 indicate that numerical procedures will

-be dominated by multiply/divide and floating point add/subtract times: each

such operation requires at least 500 DPA cycles , or lOOpsec on the assump-

tion of a 200nsec effective execution time. The most efficient use of the
array will be achieved in two stages: problem analysis , which seeks to
minimise the arithmetic content and external 1—0 (which will be examined
later ) ; and detailed stor age mapping aimed at max imum PB utilisation .

Data routing functions are used to move from one store map to 4

another. Although complex at times the intuitive feeling that routing will
dominate execution time quite often turns out to be incorrect. In weather

forecasting , for example , using spherical mapping of the type described

in the first lecture, the routing overhead is estimated to be about 42 of
the total execution time. When making comparison with sequential machines
it must also be remembered that they too sustain a significant amount of

routing overhead in the shape of register load and store, shift and copy

instructions. It is importan t to compare MOPS, ie (millions of) useful
arithmetic operations per second, rather than MIPS, ie instructions executed
regardless of whether they do anything useful to the outside observer.

Movement within a bit plane and within local storage use die—
tiuct mechanism., so they will be erumined separately . For horizontal data,

remapping involves movement in the north—south direction and relocation in
PB stores, while east—west movement is used for scaling. For vertical data,
scaling is effected by relocation in PB stores and remapping involves both

east—vest and north—south shifts. In converting from horizontal to vertical
for. (and vice—versa) a rotation procedure is used :

UGS( hon e vent tamp)

DO (temp ORG hon e; vert IRC/U temp;vert ’N;horiz ’l) WHILE VA

which is rep eated for each p—bit N—vector. Thus mode conversion takes about
the same time as multiplication.

Data movement requires ons DPA operation for each row or column
traversed within the plane. Two sxtr.me examples which are often used as
benchmarks are unifor. shift or rotation in the plane and arbitrary permu—

p • 

- - 
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tatlon of elements , in each case regarding the DPA as a linear array of N2

cells .

Using cylindrical geometry the average , number of operations for

a uniform shift (assuming all equally likely) is N/2. In practice, it often

appears that not all shifts are equally likely: near—neighbour connections
in the plane predominate, with power—of—two shifts occurring quite often.

The- four near—neighbours are accessed in one cycle , and the eight near—
neighbours in 1.5 cycles on average. It is easy to see that in power—of—two
shifts the average number of operation is N/n , ie N/log2N . In each case
the operationaust be repeated p times for p—bit words. If the data array
is larg er than the DPA it is necessary to use plane geometry, making the
edge connections through ACU registers, resulting in three DPA cycles per
row or column traversed per plane and ConsiderabLy greater overhead in
control. There is no significant advantage from using data arrays that
are smaller than the DPA.

Any permutation of elements can be represented as a sorting

problem by attaching a key to each giving its (unique) destination in the

final listing. At first sight sorting in unattractive for an array pro-

cessor because it implies an irregular routing of elements. In a

sequential machine the number of comparisons 5(t) required to sort t items

by binary insertion [6] is t*log
2
t — t + 1 when t is a power of 2, eg

B(16)—49, B(32)—l29. A ‘minimum delay’ parallel sort is shown in Figure 5
for t — 16, in which each horizontal line represents an item in the list

and each vertical line joins two items to be compared , followed by an -

exchange if the lower element (in the diagram) is lover in value. The

resulting list is in ascending order from top to bottom . It can be seen
that in moving from left to right only one or two pairs are being compared
and that if 16 processors were available several successive stages could

be overlapped . In the example, only 10 distinct stages or delays are used.

The DPA does not have direct routing across several PEs as the
minimum delay sort assumes . Mt alternative is the odd—even exchange, which
requires only neighbour s to be compared. In the example, the number of
stages is 16, which generalises to t for sorting t items. In fact t is an
upper limit because the sort is complete whenever a comparison is-not
followed by an exchange , It is possible that the total number of exchanges

- 

~~~~~~ :•_~~~
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p

MINIMUM DELAY PARALLEL SORT
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Figure 5: Parallel sorting algorithms

(see (61)
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F
required in practice could be reduced by occasionally sorting in the ortho-

gonal direction , by analogy with Shell sorting: if the N
2 elements are

ordered by linear connection in the east—west direction that would imply

sorting north—south in order to accelerate progress towards the final

posi tions . I do not know of any practical or theoretical studies of such
techniques.

Applying the above results to the DPA, we see that N
2 
items of

p bits can be sorted in vertical mode in N2(6p
k 
+ 3p) cycles, where

the precision of the key (comparison takes 3 cycles and exchange 3 cycles

per bit). Straightforward insertion, in which a new list is built up in the

required orde r by adding elements one at a time , requires a comparison and

move at each step, giving N2(4pk + 2p) cycles, 
though it requires more space

and does not offer the prospect of early termination. Larger arrays can

be handled by storing adjacent elements in the same local store, but the

exchange then takes 4 cycles and the comparison 2 per bit. Both methods

are signifi-antly better than binary insertion, which is dominated by the

time to move and insert the data items rather than the actual comparisons.

The same techniques apply in horizontal mode, though once again the DPA is

at a disadvantage without fast carry propagation.

An additional wired interconnection pattern known as a ‘shuffle ’

has been proposed to assist routing operations (6,p237], [7] and [8]. The

shuffle effects a permutation in which the destination of any element is

defined by cyclically shifting its current address one position to the left.

I t  has been shown that any uniform shift of N2 elements can be realised in

a multiple of log2N shuffle—exchange steps, 
and that an arbitrary permutation

can be achieved in time proportional to N. The individual steps are more

complex than those outlined above : for DPA6 the average shift requires 32

moves, ie 32 machine cycles, or 12 shuffle—exchanges, each requiring 4

cycles. The practical benefit in terms of the shifts and permutations most

frequently encountered remains an open question. The relevance to Fast

Foirier Transform is examined in the nCxt lecture in connection with the

DAP .

Evidently there are many applications of DPA to sorting both

large and small data sets and as for sequential machines the eventual

p ~~~~~~~ 
—-
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choice of algorithmdepends on the characteristics of the data and the way

it is used . Be fore leaving this topic it is as well to recall that  the
need for sorting must be reviewed at the systems analysis level. It has

bean stressed in the past because of the limitations of sequential search
methods, but given that a DPA can search N 2 items in parallel there may be
no point in retaining data sets of less than N 2 items in sorted form: they

can be accessed in any desired order The last coimnent is particularly
relevant where there are multiple keys and the retrieval criterion is a

logical or arithmetic function of the keys. A DPA6 would carry out useful

searching operations at a rate exceeding 1010 bits/second, which is probably

one of its most cost—effective application areas.

2.3 Matrix operations

Matrices are stored in either horizontal or vertical mode: DPA4

can process a d*16 matrix in horizontal form (or d*32 if the elements are

bytes), the local store providing the second dimension d; it can process a

16*16 matrix in vertical form , of any precision up to 128 bits .  Larger
matrices can he hand led by part i t ioning , but as the resulting algori thm is
often expressed in terms of operations on d*16 or 16*16 matrices that is

usual ly best done by creating s t ructures  of three or more dimensions the

local store providing the third and higher dimensions. A DPA4.1 would

contain up to 32 matrices cf  16*16 elements in single precision , 32—bit

form.

Although the processing rate in either mode is theoretically

about the same (with suitable arrangements for carry), vertical mode offers

variable precision and indexing flexibility that does not exist for horiz-

ontal. One of the disadvantages of single bit PEs in comparison with

machines such as Illiac IV is that ft  is uneconomical to provide local
store indexing , but that can be overcome as explained below by using pro-

jection operations. In general, the horizontal form is attractive in DPAn
for ‘vectorial ’ problems of fairly low precision (up to 2

fl
) or where frequent

word access by the ACU is implied .

For the remainder of this subsection we assume that vertical

~~~~~~~~~~~~~~~~
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data is used , and unless otherwise specified a matrix is taken to have

indices running from 0 to N—i (.2”~l) ,  the coordinate axes being I (north—

south) and j (west—east). The precision, or the number of bits in each

element , is given by the limit field of the matrix address , plus 1. If
t h e  limit is zero there is only one bi t  and the matrix is said to be
‘boolean ’ .

0 1 2 ... N—i
1

i 
. - . - -.IM(i ,j

~
} - .  -

N-i 
______________________

One method of sorting not touched on in the previous sub-

section is by selecting a maximum (or minimum) element, which is

eliminated by masking, then the next largest, and so on. The following

program selects the largest positive element in a fixed point matrix M

masked by a boolean matrix MASK.

RECS [ M MASK temp p

1* Find the precision p from the limit of M and set the

activity bits from the mask , eliminating negative values *1
p LIMI T (M) ; LDA MASK; LDB MASK ; AND M’p; EQU —MASK ;

STB MASK ; temp AOR —MASK; temp % —1; if ZE return ; LDA MASK ; p—i6

1* Now the A registers contain the reduced mask of elements to
be scanned. In the next loop, the mask is ‘anded ’ with successive

bit planes in M *1
WHILE CE DO (LDB M’ p; STB 1IASK ; temp AOR —MASK; temp 2 —1;

IF NZ LDA MASK;p-16; RETURN

On return , MASK indicates by l’s the position of the maximum elements, if

any . The number of DPA cycles is4Pk+7 for each selection. Adding the time
taken to digitise elements or extract them , the complete sort takes about

th~• ~.ame time as those mentioned earlier. In many applications, however,

-

- 
- - .
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only the maximum items are of interest.

Projection operations are used to distribute data along row or

column lines. The source may be a scalar value in the ACU or a vector

selected from store. For example , we can def ine a procedure ROWP(x y)
that will project x if it is numeric into every element of the matrix y,

and If x is a matrix it will extract a vector by column selection (the

low order address bits) and project it by row to y. The matrix multi-

plication Z :— X*Y takes the form:

REGS [X Y TX TY Z N ]
ROWP (0, Z);  DO (ROWP(X, TX) ;COLP(Y , T~9;

MULT(TX, TY) ;ADD(Z ,TX) ; X’l; Y’l; N—i)
WHILE CE;

where COLP is defined similarly to ROWP.

More generally, projection can be based on a vector selected by

boolean matrix which specifies by l’s a single—valued boundary to be

used in defining a vector. The following statement projects a single

bit selected by MASK from the matrix M into TM by row:

PEGS [M MASK temp 1* a v~rkplane *1 t TN]
LDB —MASK; 0” M; STBIU tamp; t AOR teap ; TM IR t

There are four verbions of the code since the ACU allows selection of the
control vector by row or column and , independently , projection by row or
column.

o 1. 2 ... N—i

0 _ _ _

2 !_  _ _ _ _ _  — An example of
.

~

, a selection mask .
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Sets of linear equations of the form: Mx Y may be solved by

inverting Pt , for example by the method of Gauss—Jordan elimination given

later (p.43) for  the DAP and then premultiplying Y by N ’.

A number of t~ cbniques particularly suited to parallel operatiom

have been developed for the solution of tridiagonal sets of equations. Here

the matrix H takes the form:

d f1
‘2 

d
2 

f
2

e3 d 3 f 3
• . 

~~ 
d~ f 4

e d f
m-1 m-l m-l

e dm m

with zeros off the diagonals . In DPAn it is possible to store 22
~ sets of

coefficients in vertical form, though the method of reduction ideally

requires is—22”—l , so that DPA4 would handle 255 equations, represented by

four matrices E , D , F , and Y.

The method of cyclic odd—even reduction eliminates the unknowns

of odd index by linearly combining equations, yielding a new tridiagonal

system of size (m—l)/2. The process is repeated until a single equation is
found, which is then solved and the remaining unknowns found by back—sub—

st itut ion.

The numerical algorithm consists of eliminating the coefficient

of x~~ 1 in each even numbered equation I by linear combination with equation

i—l .  Six multiplications and two additions are required , but because a pair

of PEs is involved only th ree multiply and one addition t imes are required.
The coefficient of ~~~ is then eliminated using equation 1+1, which again

requires three multiply and one addition . At each stage the number of

elements is halved , therefore the data routing increases , but it can be
seen th~it in the elimination process there are two sets of power—of—two
sh i f t s , which are repeated in back—substitution , requiring 4N moves . In



—29—

back—substitution an equation of the form:

ex1_1 + dx1 + fxj+i - y

hasto be solved for 
~~ 

requiring two multiplications, two additions and

one division, which can again be compressed by using adjacent PEa for

multiplication.

To form an idea of the relative magnitudes of arithmetic and

routing, we may take the mean time of arithmetic operations to be 200psec
giving 2.4msec per stage , or for N—16, ie for 255 equations, eight stages

or 2Omsec . The number of moves is about 100 , which requires under lmsec

for 32—bit operands . Ic about 5% of the computation time.

The reader will be able to suggest several ways of speeding up
the procedure: in later stages of calculation it is possible to increase

parallelism by spreading the reduction over more PEa; if several sets of

equations are being solved the reduction of one set may be partly overlapped

with the back—substitution of the preceding set; and finally the numerical

algorithm may converge before completing the reduction ,in the sense that the
off—diagonal terms are all less than a preset value. The solution of tn—

diagonal equations illustrates very clearly the way in which numerical, data

manipulation and programeing skills can be combined to make efficient use

ofaDPA.
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3 EX PERIMENTAL ARRAY S

We now leave theory to examine three recent examples of arrays
of PEs with single—bit data ‘aths : STARAN , CLIP and DAP . Although they

share the same engineeniig technique the position of the array within the

system and the organisation of software to support parallelism are quite
different in each case. The first two are primarily intended for specific

problem areas , namely aircraf t tracking (STARAN) and image processing
(CLIP) , but they have many features of general applicability that I shall
use to Illustrate alternative design approaches. The reader is referred
to the published papers for further information.

3.1 STARAN [10]

The STAR1~N associative processor can be viewed as a control

memory shared by three processors : a POP—il host, an array control unit,
and an array 1—0 controller. The function of the host is to handle

external comsunicationa and to load array programs into the control memory,

par t of which is fast (150 nsec) ,  the remainder slow (ipec).

Instructions taken from the control memory by the ACU are

broadcast toa linear array of some multiple of 256 elements (in the Rome

Air Development Center configuration there are 1024 PEs). Each PE has

• three single—bit registers and 256 bits of local store. A feature of

STARAN is the wide variety of connections that can be made between local

stores and PE registers, but first its operation will be described assuming

simple local store addressing as for the DPA.

The PE registers are designated X, Y and H. The input (f) to

the AI.U is one of X, Y, M, a bit from the local store (m) or a data bit (d)

broadcast from the ACU . In arithmetic instructions a function 0 is applied

r —
~~~~~~?~~~~~ 

-
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to either or both of two pairs of arguments (X,f) and (Y,f) ,  where 0 is one
of  the sixteen boolean functions of two single—bit arguments. The result

of ø(Y,f) overwrites Y. The result of Ø(X,f) overwrites X either uncon-
ditionally or conditioned by the original value of Y, Ic if Y—l, X is over-

written , else X is unchanged.

The above instructions can be written in the form:

f O g h
where g is the store option on X, ie “X” meaning unconditional write or
“X/Y” meaning write conditioned by Y; and h is the store option on Y, ie
“Y”. Absence of g or h implies that no store takes place. Other array

functions are provided to load H and to store Y either conditionally or

mabkdd by N, ie m becomes (Y.M + m.ib. The following example of vertical

addition is taken from (10].

The problem is to form the one—bit sum B — A + B.

1* Initially X—O and Y is set to the carry—in *1
1: A XOR X/Y Y

1* Now X—A.CAR RY and Y A%CARRY *1
2: B XOR X/Y Y

1* Now X contains the carry, Y contains the sum
3: Y XOR X 8 Y
4: X XOR X Y

/5 Now X and Y are ready to process the next bit ~1

Thua serial addition takes 4 cycles , or 800nsec per bit , not counting the

ACU overheads.

As already noted, local stores are not directly connected to the

PEe. Starting with an array of 256 stores of 256 bits, the stored pattern
is skewed through 45’ as shown in the diagram for a 4 by 4 array . The advan-

tage gained is that both rows and colomns of the original array can be

accessed as words by suitable indexing of each column and some potentially
useful ‘hyb rid ’ combinations of rows and colomn can be implemented. In DPA

terms, if we think of the data as stored in horizontal form it can be pro—

ceased serially by bit (256 words at a time), serially by byte (32 bytes at
one time), and so on.

- I
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F
ORIGINAL SKEWED

00 01 02 03 00 01 02 03

10 11 12 13 11 12 13 10
20 21 22 23 22 23 20 21
30 31 32 33 33 30 31 32

T TT T
Second column: 11 01 31 21

Third row: 22 23 20 21

Serial—parallel: 00 01 20 21

It will be seen that the words retrieved generally need permuting

to appear in the sequence of the original array, and that Is done in a
separate ‘flip ’ network . The flip network is a permuting device that takes

data words read from the local store array or from the words of 256 X, Y or
• N bits in the PEa and carries out a rotation or reversal on each segment of

• bits in the input word. A segment is selected by program. It is a power

of two (up to 256 bits) in length. The output provides the input f to each

PE in the array instructions. Thus , in the example given above, to bring
the second column into correspondence with the original form we would take
segments of two bits each and reverse them, (11 01) becoming (01 11) etc.

It is difficult to see application for more than a few of the

permutations permitted by STAR AN . The skewed form of store is clearly help-
ful in allowing a choice between vertical and horizontkl processing with-

out the need to rotate data in the store which, as we noted for the DPA,
ta kes about a multiply time. In a machine with very much faster arithmetic,
such as Illiac IV , the ability to skew data assumes greater importance. The

power—of—two shifts applied by the flip network are useful in many applica-

t ions, on the other hand they are of less importance than arithmetic , and
it could be argued that faster operation and more local store would be a
better investment for general purpose array work.

An extra facility that is valuable in search procedures is the
detection in any array of 256 PE. of the index of the first non—zero Y bit ,
if any. It is in that sense that the array can be labelled ‘associative’.

Without thq additional hardware , eight mask and compare operations would be
needed to develop the digits of the index.

_ 1  —
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3.2 CLIP [11]

The processing of digitised pictures introduces a class of prob-
lems not considered so far. If an image is represented by a grid of black

and white dots then the recognition of the boundary of a two—dimensional
object involves much more subtle neighbour interaction than has so far been
discussed. Picture processing machines can be thought of as distributed
processor arrays with a well developed means of propagating signals across
the array. For example, to detect a closed boundary marked by l’s we
could ‘flood’ the array with l’s input at the edges and allow the signal

to spread until a boundary is reached, then stop. The boundary points can

then be marked by ‘anding ’ the original image with the occupied cells.

The local PE connections assumed are usually 6 or 8 neighbour ,
with programmed selection of the rule of signal propagation. In a rect-

angular DPA any interconnection pattern can be programmed with the help of

explicit move instructions, whereas in a picture processor the signal is

allowed to ‘ripple’ through the PEs (by analogy with carry propagation in

horizontal mode) in a single instruction of variable duration . Each picture
element (pixel) is mapped into the local store of one of the PEa: DPA4

would represent in one bit plane a 16~l6 black and white image , or d*256
if the pattern is stored vertically. Larger pictures , grey code or colour
images would naturally require more storage. In addition , working storage
is needed in each PE to contain derived patterns representing boundaries,
internal regions, etc.

In a typical image transformation a single bit in each element

is designated the ‘output’. It is formed according to the current stats
of the element, ie PE register values, aid inputs received from selected

neighbours. For example, the transformation rule written as:

1 0 0
0 s

~ 
0 —

~~~~~~~~~~ l~~5j
0 0 0

can be read ‘if in state •~ and the input from the NW neighbour is 1 and

• 
• 

S —— --

_____ S
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all others are zero, output 1 and go to state S
j

’ • The transformation is

applied in parallel to all picture elements and repeated until there is no

change in the output pattern for the entire image (one way to ensure termi-
nation is to allow only 0*1 changes in the output) . For example, if
the above rule would propagate a diagonal line of l’s from any 1 input on
the north or west edge, until a cell not in state s

~
, or in a 3 by 3 region

containing a 1 apart from the NW corner is encountered.

The CLIP array described in (11] consists of l6~l2 PEa special—
iced to the type of transformation j ust described. Each PE has two single
bit working registers A and 3, an output N, and 16 bits of local storage D.
There are three types of array instruction:

LOAD: Initialise A and B, using the local store or zero as input .
The geometric pattern (square or hexagonal)is also specified .

PROCESS : Apply a transformation rule using the inputs N until there is
no change in N throughout the array . Any of the neighbour
connections can be selected and summed , then compared with
a threshold value t. The PE input T is set to 1 if the sum
exceeds the threshold , else zero. The value of N is ø(BVT,A)

where 0 is one of the 16 boolean functions of two variables .

The PROCESS instruction also selects the edge inputs.

• STORE : A boolean f unction O’(BvT,A) is evaluated and the result
written to a local store plane D~ or combined with the current
value of D1 by ‘and ’ or ‘or ’ operation .

FUNCTION CCNTROL
Ci to C•

IMAGE INPUT! OUTPUT

INTERCONNECTiON
LPUIS N, t o N1 A

____I ssli l OUTPUTS
G, toG, t1 to t3 1 o

1M~~~~
IMAGE OUTPUT

Figure 6: PE schematic for CLIP— 3
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In addition to the above instructions the ACU , which is controlled by a
separate 256*24_bit memory, can execute subroutine calls using a 16 word
link stack, branch or branch conditional on the AND of N outputs taken
over all 192 picture elements. Provision is also made to display the A and

I planes on a CRT so that the effect of different algorithms can be ob-
served experimentally.

The folowing example is taken from (11]. Given an image con-
taining biological cell patterns, it is required to select the outlines of
all cells containing nuclei. Hexagonal connection is asst d, with all six
inputs active and threshold zero • In the following symbolic program IMAGE,
OUTPUT, etc refer to bit planes in the local store D~ and the notation is
chosen to give the flavour of the calculation rather than detailed instr-
uction formats. Figure 7 shows the working results obtained after each
STORE instruction.

1* From in OUTPUT the outer edges of objects in IMAGE */
1: LOAD A’IMAGE; 3-0

2: PROCESS N—(3vT)*~~; Edge input 1
3: STORE OUTPUT-(IvT)*A

/~ Form in GROUN D the background surrounding IMAGE objects */
4: LOAD A IMAGE; 3-0

5: PROCESS N— (B i#r)*~ ; Edge input — 1

6: STORE GROUND—(BVT)A A

1* Form in NUCLEI the cell nuclei. Propagat ion starts from the outer
edge in OUTPUT, through 1—valued cells in IMAGE *1

71 LOAD A’ IMAGE; 3-OUTPUT
8: PROCESS N”(BVf)~ A
9: STORE NUCLE I- (i~~)*A

1* Form in OUTPUT the masks of cells with a nucleus */
10: LOAD A”GROUND; 3-NUCLEI

11: PROCESS N (IyT)*~
STORE OUTPUT-(B,T)AA

1* Form in RESULT the nucleated objects */
13: LOAD A—wrru-~; I—IMAGE

14: STORE RISULT—(ByT)*A

~~~ i~~~i • ~
il_ 

~~~~~~~~~~
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Figure 7: An Example of CLIP ~rOCeSsLng 
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To replicate the CLIP instructions using the DPA would clearly

be very time—consuming (at a rough estimate 100 DPA cycles would be needed
for each evaluation of N ) ,  but in many applications the full generality of
selection and thresholding is not required. In dealing with £ey scale or

hue the proportion of arithmetic operations will increase, while in many
operations such as thinning, smoothing, edge detection or gap filling there

is very little signal propagation in the sense of the above example . An
analysis of algorithms in terms of the frequency of PROCESS instructions
and the average length of signal path would be helpful in the design of
special purpose versione of the DPA.

Having refined an Image and separated the distinct ‘objects’
it is required to classify them in some way. In simple problems the

area, centre of gravity or moment of inertia may give enough information
for classification. Other problems will be handled by representing the
image as a graph which can be transformed in the ACU by list processing
techniques. It can be seen that there is no simple analog in the DPA to

addressing through a linked list. On the other hand, analysis of problems
at a ‘higher’ level frquently uncovers new ways of using parallelism. One

of the advantages of the DPA organisation is that sequential and parallel

operations can be applied without restriction to the same data sets.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
•
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3.3 DAP [12] [13]
r

The reader will Lecognise the [CL DistributeJ Array Processor

as the experimental model from which I have extracted the principles of
the DPA. It differs from DPAS.2 in details of PE and ACU design.

In the PE (Figure 8) the four near—neighbour shifts are incor-

porated into the arithmetic functions, so that it is possible to take an

operand from any of five PEs. The destination is local and controlled by

the activity register (A) as for the DPA . The A register can be used in
its own right for general logical operations, in particular for combining

boolean activity matrices . Data movement is carried out between PE
registers rather than stores. Provision is made for ripple carry propaga-

tion in the east—west direction.

The resulting srithmetic speeds are shown in Table 2. with the

contribution of data and instruction accesses (in DAP each instruction

occirnies 32 bits)~ It can he seen that desoite usinn horizontol carry the

vertical mode remains more effective when the requir2d level of parallelism

can be achieved: that is the consequence of the carry propagation time and

the higher overhead on normalising shifts in horizontal mode. The effect

of using specialised procedures for square and square root is apparent from
the t imes given.

The relatively low instruction access Counts shown in Table 2

are the result of buffering in the ACU , which is explicitly controiled by

program , ie by a ‘DO...REPEAT’ construction which marks the beginning and

end of each loop. Within the loop, instructions are not only buffered but

provision is made to increment or decrement address fields on each iteration.

The buf fer ing  mechanism reduces the instruction fetch overhead to about 10%

on elementary arithmetic and logic and 25% — 40% on multiply/divide and
floating point. Outside the loops, instruction overhead is at least 100%

of data access. Where there is high arithmetic content, most of the corn—

putation is within loops, eg taking matrix inversion (29msec) and subracting

the t ime f or finding the pivot, add , multiply and divide leaves only about
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TABLE 2: MEASURED EXECUTION TIMES FOR DAP 32*32 PEs

MATRIX VECTOR SCALAR
All times in psecs (1024) (32) (1)

TOTAL INSTR EFF TOTAL INST R EFF TOTAL INSTR EFF

32—b it FIXED POINT

R : P + Q 23 3 .022 4 .125 4 4.
R : P 14 2 .013 1 .031
R :— !4AX(PIQ) 34 2 .033

32-bit FLOATING POINT

T : X + 7 148 26 .145 54 22 1.69 27 12 27.
T : X * Y 305 110 .298 50 10 1.56 34 14 34.
T :— X / Y 390 120 .381 100 20 3.13
I :— X ** 2 155 60 .152 40 10 1.25
T : SQRT(X) 215 70 .210

SCALAR-MATRIX __________________ __________________

X : S*Y mm 40 10 .039 Note: ‘EFF ’ is the effective
max 150 . 50 .146 time for single oper—

~‘ S : SUM(X) 165 10 .161 ands , le TOTAL/parallel
S : MAX(X) 46 2 .045 data streams.

MATRIX OPERATIONS

MULTIPLY(X,Y) l6msec
INVERT(X) 29msec (All 1024 element single precision
Fyr(X) l4msec floating point arrays]

100 organisation instructions on each iteration. Instruction fetch overhead

is reduced in larger arrays and could be eliminated by using separate control

storage: the engineering trade—offs are essentially the same as for microcode.

The Fast Fourier Transform algorithm is often used to justify

additional routing capability. In DAT it is applied to an array of 1024

complex values or to a two—dimensional 32*32 array, in each case in vertical

mode. For 22n variables , 2n parallel computing steps are required. The

routing pattern for n 4  is shown in Figure 9. In general, the first step

can be carried out in one cyclic shift, the remainder need two shifts

each. Using orthogonal connections, the number of complex moves is 3*?+2
1
~~ _4.

After completing the transformation a second series of n shifts is required

to return the elements to their original positions. The total number of

moves is again proportional to 2w’. A DAT program, taking advantage of the
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Figure 9 : Data routing in the FF1 for n~’2 (2
2n variables)

simple form of multipiers in the early stages of ~atcu1ation, but deriving

successive mutipliers by a recurrence relation, has the following contributing

factors:

Count Time Total

Multiplication (32 bit fl.pt.) 32 305 psec 9.76 msec

Addition (32 bit fl.pt) 38 148 5.62

Assignment 90 15 1.35

Routing 216 7 1.51

Compute multipliers 16 500 8.00

Subtotal 26.24 macc

Reshuffle 286 7 2.18

Total 28.4 macc

(In the first step Al is calculated: A1(0) is the sum of A(0) and the

product of a complex multiplier (in this case 1) with A(8); in the next step

A2(0) is the sum of Al(0) and a multiple of Al(4), and so on. After four

steps the original A(15) has been routed to contribute to A4(O) and A(0) to

M(l5)) .

From the above figures it can be seen that routing is not a major

fac tor for vectors of size 1024. For arrays of 4096 PEe the . routing
overhead doubles whereas the computation increase s by two steps ,, so we must

be cautious in drawing general conclusions . The FF7 time given in Table 2 is

the result of using coding tricks to reduce the arithmetic content, with the

result that routing occupies the DAT for about 252 of the PFT procedure .
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The main difference between the DAT and DPA is the role of the

array in system: the ACU—DPA could be regarded as a stand ..alone proce~.sor-

memory pair or a node in a distributed system, whereas the DAT is seen as
a substitute for a main store module in a conventional centralised system.

The control unit of the DAT is concerned only with issuing array instruc-

tions and serving requests received over the main store data and address

lines (Figure 2 , page 7). In DPA terms the ‘main store data and address

lines ’ could be replaced by ‘interprocessor bus’.

The DAT is therefore a componenet of a larger system, in which

the host processor takes responsibility for store management and DAT

scheduling and provides all nec.~ssary support functions. Tasks are issued

to the DAP in the form of ~DAP segments’ containing all necessary programs

and data. The DAT operates in parallel with the host, serving external

requests by interrupt processing and able to interrupt the host on task

completion. It is prevented from overwriting store outside the current

segment by setting base and limit registers. Although scalar operations

can be carried out in the DAT (Table 2) the effect of such an organisation
is to concentrate parallel phases of computation into ‘DAT subroutines ’
and to leave the rest to the host. Because of the overhead in forming a

DAT segment and scheduling its use there is a lower limit of complexity

in what is worth considering as a DAT subroutine , eg we would not use the
DAT for looking up a single word in a dictionary, which would be natural

for the DPA. The difficulty might be overcome by ‘batching’ requests for
elementary operations, but that tends to complicate software design.

The design of DAT subroutines has followed much the same lines
as Illiac IV , for much the same reasons: a macroassembler for basic software
and a Fortran—based higher level language. Purists may think that a retro—

grade step, but at the present stage of development it is important to

have precise control of store allocation and alignment as well as processor

synchronisation, protection and error management. At some future date, when
bit planes are more plentiful, we can afford to be more adventurous.

,J

~~~~~~~~~~~
__ jith ex anation of the 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ taken from (13]
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01 C DECLARATIONS
02 SUBROUTINE INVP(A)
03 REAL A ( , ) ,  B( ,)
04 LOGICAL PRO W ( ,) ,  PCOL(,) ,  PMASK(,) , PIVOT(,) , MASK (,) ,  PIVOTS( ,)
05 INTEGER RN ()
06 C NOTE THAT THE ARRAY DIMENSION S ARE IMPLICITLY GIVE N BY THE
07 C SIZE OF THE DAT. A AND B ARE REAL SINGLE PRECISION MATRICES
08 C IN VERTIC AL FORM , RN IS A VECTOR AND PROW, PCOL ETC ARE
09 C BOOLEAN MATRICES.
10
11 C INI TIALISE MASK TO CONTROL SEARCH FOR PIVOT ELEMENT
12 C AND PIVOTS TO MARK THOSE PIVOTS ALREADY USED
13 MASK = .TRUE.
14 PIVOTS — .FALSE.
15
16 C MAIN ITERATION
17 C FRST , MAXL AND ABS ARE INTRINSIC MATRIX FUNCTIONS
18 C EG !•IAXL FINDS THE MAXIMUM ELEMENT(S) IN AN ARRAY UNDER A
19 C SPECIFIED MASK
20 DO 1 K = 1,DAPSIZE
21 PIVOT FRST(MAXL(ABS(A) , MASK))
22 S — A(PIVOT)
23 PIVOTS PIVOT .OR. PIVOT
24 PROW BYR0W(ORR(PIV0T))
25 PCOL - BYCOL(ORC(PIVOT) )
26 PMASK = .NOT.(PROW .OR. PCOL)
27 C BYROW,BYCOL ARE PROJECTION FUNCTIONS
28 C ORR , ORC FORM BOOLEAN VECTORS BY “OR” OF ROW , COLUMN
29 A(PIVOT) — 1.0
30 A — ~1ERGE(A, 0.0, PMASK) — A (,*PCOL)*BYCOL(A(PROW)/S)
31. PROW - -A
32 1 MASK NASK.M4D. PMASK
33 C NOTE THE USE OF MATRIX INDEX IN 29 AND PROJECTIONS IN 30
34
35 C THE FINAL STATEMENTS RESHUFFLE ROWS AND COLUMN S
36 RN = ROWN (PIVOTS)
37 DO 2 , K — l,DAPSIZE
38 2 B(K ,) A( RN( K),)
39 DO 3, K 1,DAPSIZE
40 3 A(, RN (K) ) — B(,K)
41 RETURN
42 END
43

Figure 10: DAP—FORTRAN subroutine for matrix inversinn

In each iteration the largest pivot element A(p ,q) is found and used
to compute the new values:

j  A (i,j) :— A(i,j) — A(i ,q) * A(p, j) / A(p,q)
row p: A(p , j )  :— A(p,j) / A(p,q)
col q: A(i ,q) :— —A(i ,q) / A(p ,q)

1 ~ p ivot: A(p,q) : 1 / A(p,q)

-
- 
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4 SYSTE M DESIGN

Table 3 gives some idea of the DAT performance relative to other
‘high speed’ machine.. All the t imes are experimentally measured with the
exception of DAP—FOETRAN, which is estimated by doubling the control over—
head (12 öa~) of th. assembler. The corresponding time for a 64*64 DAT
would be about 30msec. Using double precision floating point we expect
multiplication to increase as the square of the length of fraction , and
addition to be linear , i. from Table 2:

Multiply: (*)
2 

* 195 + (110/2) = 1117 pace

a 122 + (26/2) — 298 pace

Hence matrix multiply increases to about 90mssc.

TABLE 3: RELATIVE PERFORMANCE MNASURES
M&TRIX MULTIPLY 64*64 arrays All times in macc

Machins 
— 

Precision Assembler J ‘Fortran ’
ILLIAC IV 64 bits 38 60
CDC 7600 60 bits 77 168
IBM 360/195 64 bits 70 110
ICL DAP (32*32 PEs) 32 bits 128 (est)140

Many factors have to be taken into account in estimating relative
performance over complete application., but although it will be argued that
I have chosen the most favourable possible c mparison for array processors
it is certainly not the case that comparisons get progressively worse from
the point of view of the DAT : in many major applications a high degree
of parallelism can be extracted by careful program an4ysis. The cost of
doing so is no more than a sequenti al machine would require , once conventions
have been established to facilitate thinki ng in array terms. However, the
most vital statistic that might have been added to Table 3 is that the DAT

- I 
- -
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uses less than 100 000 TTh gates for the entire ACU and PB logic, whereas

all the others use upwards of 1 000 000 fast ECL gates.

In the first lecture I said that we were looking for a TX in—
provea.nt in system throughput’ for an investment of substantially less
than TX. Now system throughput is largely determined by the rate at
which tasks are executed and the time remaining afte r the operating
syst has completed its business of compiling, loading, scheduling,
table maintenance, archiving, spooling , etc. In this lecture I shall
a~r~~Ins ways in which the presence of a DPA might affect this negative
contribution to throughput by the operating system. Many applications
such as searching , indexing and encryption come to mind. However, it
might be said that in all but pathological cases the net system over—
bead is only a f.v tens of percent of real time and that impose, a limit
on potential improvements. My belief is that in system design, as in
other application areas, the preferred approach is to start with a restate-
ment of objective that allows the array to influence subsequent problem
analysis. The subsectio n. that follow illustrate how resource management,
program context , and higher level connectivity are influenced. But let us
first obtain an estimate for the other side of the inequality : the invest-
ment in extra hardware implied by a DPA.

Th. 32*32 flAP ii made from standard TTL dual—in—line integrated
circuits (DILICs) mounted on boards with about 100 package positions. In

the initial design there are 16 PE. to a boar d, averaging 3.6 DILICS pins
two lKbit store DILICs each . Hence, to the extent that hardwa re cost is
determined by package count the PR logic repre sents more than half the
bc~ard &~pac., compared with purely passive store (the same boards used as
control memory provide 64Kbits of storage).

To improve on that picture we must follow up the original inten-
tion of using custom—built LSI for the PEs. For the purpose of making com-
parisons an ‘exchang. rate’ has to be fixed between the PR logic and storage
bits , which I shall tak. to be l28bits(bipolar) — Sl2bits(N08) — one PR , based
on approximately 50 gates/PR in the DPA design . We assume that at any point
in tiSS the Pt array viii b. subject to the same level of integrati on as the
stores

L~~— —- - 
~~~~~~~~~~~~~~~~~
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The limiting factors are the complexity of circuit and the ,‘uni1’er

t of edge connections required. For example, a 4*4 array of PE 1ogic is

equivalent to 2Kbits of bipolar storage so it is well within the range of

current LSI devices. For such a package 16 bidirectional data connections

are needed to give row , column and neighbour 1—0 under control of 3 function
bits (data lines are also used for control signals) . The addition of parity
(4bits), voltage (2) ,clock(1) and store write—enables (16) brings the pin

count up to 42. An alternative is to integrate part of the local store with
the PE array : 8Kbits of fast storage in addition to the PEs requires more
advanced technology, but the 16 write—enable outputs are replaced by 9
address bits(Sl2bits/PE), allowing greater freedom in pin allocation1 ie

using more function inputs and relying less on decoding in the device.

Whether or not the local memory is integrated with the PEs it

is likely that in future designs the DPA will be enlarged by the addition
slow (MOS) stc’-age to the array. A possible configuration would be DPA4.l

(with 32Kbytes of fast store) and an additional l6Kbits of slow store for
each PE. The fast memory is now a slave or cache for the ‘main store’ of

~Mbyte: a bit plane (32 bytes) can be accessed in one memory reference

(say 400nsec) , the theoretical transfer rate being about 75 Mbytes/sec. A
number of architectural questions need to be answered before one can pick
the ‘best ’ configuration, but a usef ul comparison can be made between the
enhanced DPM.I. and a conventional system with ~Mbyte of main memory and
32 Kbytes of fast stores of one sort or another: the PE logic is equivalent
to adding another I& Kbytes of fas t store’~ and it is that figure together
with the LSI development cost , seen as a percentage of the total system ,
which determines the TX investment I assumed initially.

The following subsections continue to use DPA4 as a model for
discussion , but it should be clear where proportionate increases in cost
or performance can be expected from larger systems.

* in terms of logic or power; it is more (about l6kbytes) in terms of
board space , so the true figure is perhaps in the region of l0kbytes.

-
- 4- .~~~~,’~-
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4.1 Index management

This subsection is concerne d with the management of ‘objects
of computation ’, in particular with the problem the DPA creates for itself

‘by having two levels of program storage. The topic is important in the

design of operating systems because the most effective way of keeping

control of complex software structures is to express their procedures in

terms of abstract objects (such as files, processes, stacks) whose integrity
is preserved by prot*ction mechanisms. In static environments much of the

protection — allocation, type checking, etc — can be done at compile or

load time, but in—line control is necessary for changing data structures.

Of the two methods of control used in practice, ie capability and access

control list, the former provide the most precise and efficient treatment.

Tagged registers, such as those of the ACU (page 12) are the most flexible

way of handling capabilities.

The general system objective is as follows: given a set ft1,) of

object types we need to create instances of objects and to assign attributes

to them ; to grant and revoke access on a selective basis; and to remove

objects from the program space when they are no longer required. A capability

identifies an object u of type t and rights r by encoding it as a tagged

element , eg in ACU4 :

~t g ~~ I 
8
r 1  

l6~~~~~

where t and r are taken care of by a combination of hard and soft inter-

pretation . Our main concern is with the choice of u, which is either a store

index (ie a location number) or an index in a ‘master object table ’ M~ for

type t~. The difficulty is that the index u cannot be re—used until all
capabilities containing u have been annulled , and in that sense the manage—

sent of abstract objects can be viewed as the management of a small number

of ‘tndex spaces’ where the indices are spread over some fraction of the

total program apace.

- l-
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If we plot the occupancy of a master object table we see that it
increases with time (at an average rate r indices/second) until the table is

full , at which point recovery procedures are invoked to create a new ‘free
index list’. If R is the number of indices recovered then recovery takes

place after R/r seconds.

,pKfT. R/r

Residual

TIME

The recovery process involves scanning all capability—bearing

regions of store. The criterion for recovering an index may be that the
reference count is zero, or that an explicit ‘deletion ’ operation has
been applied . The normal procedure in either case is to take each capability
of class t~ and compare it with table entry 141(u), marking the table or the
capability as appropriate. If , the total program store is K bytes and the
proportion that has to be scanned is p then the recovery time is linearly
related to pK/T and pKC , where T is the rate of scan and C is the probability
of finding a capability of the given type. The time wasted in index manage-
ment is expressed as a proportion of computing time by the ratio:

w -

The normal methods used to reduce W include :
(a) incr easing R , eg using virtual indices in the case of store access ;
(b) restricting p by limiting the number and size of capability—bearing

segments ;
(c) partitioning the program space according to process number , so that

smeller regions are scanned (and the cost can be transferred to the
process) ;

(4) reducing r by requiring logically distinct objects to be mapped into

the sass object space (so defeating one of the aims of abstraction).

The effec t of DPAn is to increase the nominal rate of scan, T, by a factor
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so that the first term of W is correspondingly reduced . It appears that

the individual comparisons with M~ have to be done sequentially, so the

second term is unchanged and the benefit of the DPA will be most marked fo r

object types of fairly low population. If W is already small this will be

seen not as an increase in throughput but as a change of program style: the

measures that restricted p and r can be relaxed without affecting performance.

Storage is associated with a relatively high value of C (in the

laaic Language Machine about 20% of the elements in the stack are addresses).
Storage also brings the complication of assigning indices in blocks rather

than as single values , giving rise to the management tasks of searching for
a block of the required size and compacting to provide the maximum free
block. In both operations the DPA can be expected to reduce system over-
heads by direct application of parallel search and relocation procedures.

In that sense the presence of a DPA, which we equated earlier with the
addition of a small amount of fast store, may in fact reduce overall store

requirements : store can be allocated in smaller units, the resulting
structures can be managed effectively in less space, and the n~~d for
remapping from virtual to real indices is practically eliminated.

Modifications to the addressing mechanism to allow access to
slow storage have not been studied in detail. Two possibilities can be

suggested. In ACU4 , with 16 bit location fields , there is not range enough
to cover the slow store, therefore a new type of address is introduced,
resolving to the bit plane boundary . The DPA arithmetic functions apply

to ‘slow’ addresses , but the only routing operations are unselective store
(STA/U and STB/U). The slow store provides a ‘segment space’ holding the
data and procedures of all programs, which will be mapped into fast store

under control of low level interpretive code. It follows that the fast

store must be large enough to contain all the ‘working segments’ of all
active processes . The program store K is less than 32Kbytes in DPA4.l , and
the proportion of address—bearing segments p is not usually more than 10%.
The time of scan is therefore very short in absolute terms . For all other
indices the entire program space of up to ~Mbyte is available to K.

An alternative strategy is to use a longer address word, eg a 32
bit location number in ACU6 , that can cover the entire slow storage range.

~
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Suppose we have an extended DPA6 with l6Kbit slow stores and Sl2bit inte-

grated fast store. The loading rule is to allocate a bit plane to fast

memory only when its address is formed in an ACU register. There is only

one type of address , which contains the location in slow memory , but when
the corresponding plane is paged into fast memory its plane number is
added to the address :

9 14 9Ifest planej slow plane 
~ 

by te 1 1
Consequently , all memory references by the ACU are to the fast store. The
address is not updated until the plane number changes as the result of
modification. A 512 entry associative store is needed to translate from
slow to fast plane numbers : the DPA can perform that function, though in
a high performance system specialised stores are probably justified. One
purging strategy is to write back to slow store all planes that are not
write—protected, and to scan addresses to clear the fas t plane numbers and
force reloading. Here K is 8Mbytes , and assuming 10% address—bearing up
to 1600 planes have to be scanned .

Figure 11 illustrates the two methods of addressing. It is

probable that the second is as effective as the first although it uses less

fast store.

ACU REGISTERS ACU REGISTERS

I’ ~~ I u j

~~~

j

~~~~~~~~1 f~”PAST’ 1ui~ t 1~l SLOW

( address .~~
J 

FAST STORE f  ~~~~~~~~~~~~~~~~~ PLANE I

Segment I Bit plane
transfers t ransfers

‘SLOW’ ‘SLOW ‘Iaddress 
l6KbLts l6Kbits

SLOW [_
~_~~:~~

_.__._
(a) DPA4. 1 with ‘slow’ address (b) DPA6.+ with paging

Figure 11: Two methods of addressing a large program space
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4.2 Program context

The methods just outlined provide a rapid means of adjusting

the content of fast memory to meet program requirements. They use the

high bandwidth between slow and fast stores and the predictive property

of tagged addresses , but not the arithmetic or logical functions of the

PEs. The effect of the DPA in system is thus comparable with other slave

memories, given the page sizá fixed by the bit plane: advantage is taken

of locality of reference to data, data descriptors and instructions. If

the instruction takes the form of a language—oriented token string there

is no need to rediscover the locality because it is already explicit.

The DPA is well adapted to interpretiveprogramming techniques . In part-

icular , it solves the system problem of providing fast access to (micro)

instructions without having a dedicated control memory.

We now consider using the associative function of the DPA in

conjunction with program design. The most suitable areas of application

are the interfaces between control modules and between procedures. A

control module is a segment of instructions, data and free variables [F
t]

that is intended for execution in any environment providing suitable

definitions of the (F~J. An environment is a list of identifier—value pairs

[(Gi,vj) ) ,  and the execution requirement is solved in principle by looking
up the value of each F~ in the list LC1] and assigning to F~ the value
when a match is found. In general, a control module can be in simul-
taneous execution with respect to a number of partly overlapping environ-
ments, whose order is unknown when the module is constructed , and it is
that which prevents a simple reference by index value.

A commonly used solution in virtual memory systems is to
identify the free variables with segments and to partition the segment
space into ‘system ’ , ‘public ’ and ’private’domaina whose structure is
known by load time. In that case the [F~ J can be replaced by segment
indices. Ano~her approach is to carry out the association of (Ft

] with

the (G~ J in each environment of interest and to store the results in

tables that are referenced indirectly via process—dependent addresses.
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The disadvantage to such techniques is that they impose unnecessary struc-

ture on programs.

The DPA allows a return to the direct and elegant solution:
the identifiers F~ are retained in the control module (possibly in coded

form) and associated in parallel with the set [G~J. An additional opera-

tion that is important in some protection regimes is to check the name of
the calling module against an access control list for the callee: that can
also be done in parallel .

At the procedure interface similar options apply, except that
the identifier—value list is formed when executing the calling sequence.

The effect would be to allow parameters to be called ‘by identifier’.
Although such a facility is attractive in some applications it is unlikely

to replace the conventional method of indexing relative to a parameter
pointer. A more general approach might be to introduce a class of abstract

data types of the form ‘identifier—value list’,, which could be maintained

efficiently by the DPA.
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4.3 High level connections

The 1—0 subsystem is a major part of Illiac IV , STAR.AN and CLIP ,
yet it has not featured in DAP or the general discussion of DPA ’s. The

primary 1—0 channel for the DPA Is the main store highway, the max imum
transfer rate via the ACU being SMwords/second , the sustained rate naturally
depending on the bus capacity. Assuming lMword/sec and using DPA6, a matrix

of 32 bit planes can be input in 2msec or about 10 floating point operation

times. To a first approximation we can derive conditions on any application

for ‘balanced’ computation and data flow. As the capacity of local storage

devices increa3es so does the range of problems that can be contained wholly

in the array; for example, the addition of a 64Kbit serial CCD store to

each PE in DPA6 would extend the internal storage to 40Mbyte, which gives

the PEa quite a lot to work on.

Higher 1—0 rates are required in the context of increasing the

processing power by increasing the ‘area’ presented to the PEs by each bit

plane. To achieve a theoretical rate of l000.MOPS we have to progress to

DPA9 or to array of smaller DPA’s, say 64 DPA6’s. In either case, routing

overheads may be significant unless new data paths are introduced. The

second alternative is attractive because the 64 ACU’s can work independently

to achieve a higher effective PE utilisation, and given suitable connection
paths reconfiguration can be used to suit prob lem ganmetry or avoid faulty

DPA ’s. Further research is needed in this area. A connection scheme using

two orthogonal sets of 8 data busses is shown in Figure 12. Being time—

multiplexed, a move takes at least eight times as long as it does inside

the DPA; however, in a single operation there is the choice of 1,65,... or

449 column or row steps. The use of direct memory access to the slow local

stores would allow routing to be overlapped with computation. Within this

general framework any of the DPA’s may be replaced by a conventional pro-

cessor , a large capacity store , or an 1—0 channel controller.
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