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1. INTRODUCTION

The main limitations on the greater use of three-dimensional finite element
calculations are excessive CPU time and excessive space requirements to achieve
an acceptable accuracy. If it is possible to obtain more accurate solutions
from coarse grids the benefits for three-dimensional calculations are obvious.
For cert ain problems reduced numerical integrat ion(refs.1,2) produces more
accurate solutions than exact numerical integration. The motivation for the
present work has come, in part, from a desire to explain why reduced integration
often produces more accurate solutions. The novel finite element formulation
presented here has arisen through isolating and generalising the main feature
of reduced integration that is responsible for its success.

2. REDUCED INTEGRATION

With the widespread usage of isoparametric elements, numerical integration,
rather than analytic integration, has become almost mandatory. Gauss quad-
rature formulae have proved to be very efficient for numerical integration over

threctangular elements; an n order Gauss quadrature formula will ensure that
polynomial integrands up to order 2n-1 are integrated exactly. Reducing the
order of integration introduces an error into the evaluation of the integrals
but it often produces a more accurate final solution.

Previous applications of reduced integration have been to plate and shell
problems (refs.l,2) to elasto-static problems(ref.3) , to plastic flow problems
(ref.4), to fracture analysis(ref.5), to convective transport problems (ref.6),
and to incompressible, inviscid flow (ref.7). Reduced integration has been
compared with other methods of directly approximating the strain field in
structural applications of the finite element method by Argyris and William (ref.8).
A description of the general features of reduced integration has been given by
Zienkiewici (ref. 9)

An appreciation of how reduced integration works may be obtained by deriving
the stiffness matrix for a Galerkin finite element formulation in which the
integration is performed numerically. Suppose a solution for q is sought in a
two-dimensional domain. Once an analytic representation, of the form

q(x,y) = N~ (x 1~) * ~~~~
, (1)

is substituted into the governing equation, L(q) = 0, a residual is created,

R(~ .,x ,y) = L(~.,x,y) . (2)

The Galerkin formulation requires that

f fN.(x~~) . R(~ .,x,y) - dx dy = 0, i l,n. (3)
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N. is the shape function corresponding to the 1th node. Clearly repeated
• application of equation (3) with n different weight functions, N~. will produce

enough independent, algebraic equations to solve for the n nodal unknowns,
• If the integration in equation (3) is performed numerically the result is

Wk . N. k”k~ 
R~ 

~~~~~ 
Xk, 

~
‘k~ 

= ~~~ i = 1, n. (4)

k=1

• Wk is a weight, determined by the quadrature formula, attached to the k
th function

evaluation point. Rk is the value of the residual at Xk~ ~k 
and M is the total

number of function evaluation points in the domain. 
—The residual Rk could depend on any of the nodal unknowns , q.. Thus, for

linear problems,

Rk = (xx, 
~
‘k~ 

(5)

• Substitution of equation (5) into equation (4) produces the result •

N1 ~~k~~
’k~ 

R~ ~~~~~~ 

~~ 
. q~ = 0, i = 1, n. (6) H

k=1 j=1

In equations (5) and (6) L represents the total number of nodal parameters, 
~~~

.

whereas n represents the number of nodal parameters 
~~~

. that are unknown.

Equation (5) represents one linear relationship between the n unknowns, q
3
.

Each additional function evaluation point (ZK, ~~ 
introduces another linear

relationship between the q
3
’s. At least n evaluation points will be required

to ensure that enough independent linear relationships are available for solution
for q

~
. Directly setting R.K = 0 for n values of 1

~k’ ~~ 
would produce a

solution by the collocation method, which is a subgroup of the method of weighted
residuals. The Galerkin formulation, equation (6), effectively allows all the
function evaluation points, M, to contribute to the solution. For a solution
to be possible with a Galerkin formulation it is necessary that

M )‘ n. (7)

In practice if the quadrature formula is chosen so that the numerical inte-
gration is carried out exactly M may exceed n by a factor of 2 or 3(ref.7). 

•The excess evaluations of the residual arise from the need for the solution to
be constrained by the local analytic representation given by equation (1).
The use of reduced numerical integration implies a smaller number of evaluations,

~~~~~~ P41 0f 

~
TtT TT. T 5:’TT5T:T:TTTT: on the solution at L.J
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the expense of introducing additional errors by not performing the integration
• exact ly. The empirical evidence (refs.l ,9) clearly indicates that the gains

associated with relaxing the constraints far outweigh the losses associated with
executing the numerical integration less accurately.

It appears from equation (7) that the maximum reduction of the order of the
quadrature scheme will occur when M = n. However the minimum value for M is
more likely to be determined by the requirement of convergence of the formulation.
For an isoparametric formulation, Irons(ref.1O) gives the minimum order of
integration as that which permits exact integration of the element area (in two
dimensions).

If the order of summation in equation (6) is reversed the familiar stiffness
equation is obtained i.e.

K.. * = 0, i = 1,n (8)

where

M
K.

3 
= Wk * N. 

~ k’~
’k~ 

Rk k’~
’k~~

• k= l

3. PRESENT FORMULATION

The Method of Weighted Residuals(ref.l1) has proved to be a useful framework
for relating apparently unconnected methods both inside and outside the finite
element formulation (ref.12). The formulation to be presented here grew out

f of an attempt to relate reduced integration to the framework that supports the H
method of weighted residuals. Just as the method of weighted residuals
includes a broader class of methods than finite element methods so the current
formulation is also applicable outside the finite element area of application.

The method of weighted residuals (MWR) is a suitable technique to use when
a numerical solution is sought for

L(v) = 0, (9)

where L is a differential operator. An approximate solution, u, is sought
within some domain D and subject to boundary conditions on 5, the boundary of D.
For steady problems, MWR requires the introduction of a trial solution of the
form (in two dimensions)

u(x,y) ak . ø~(x~y). (10)
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Substitution of equation (10) into the differential equation, (9), produces
some residual,

R = L(u)

= 

k l  

ak . L(
~k). (11)

If the approximate solution , u, given by equation (10) contains the exact
solution, v, the residual, R, will be zero throughout the domain, D. MWR
approximates this situation by requiring that the integral over the domain of
the weighted residual is zero. Thus

ff W. . R . dx dy = 0. (12)

By repeated evaluation of equation (12), with different weight functions, W .,
enough algebraic relations are established to evaluate the unknown coefficients ,
a.
~
, in equation (10). The present improvement to MWR consists of replacing R

by its least-squares fit over the domain. Thus

ff W .  . R~ . dx dy = 0 (13)

is used instead of equation (12) to obtain the algebraic relations between the
unknown coefficients, a.

~
. R15 is obtained from

ff (R - R15)
2 dx dy = minimum. (14)

In one dimension with 
~k 

as polynomials in x, equation (14) can be differ-

entiated to give

fx
k . R . dx = fx

k 
. R~~ . dx, k = 0 . . . M - 1, (15)

where M is the order (in x), of the residual , R. If the Galerkin method is
chosen as the example of MWR equation (13) has the form

Jx~ . R1 . dx = 0. (16)

~

-

~

•

~

-— 
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Thus by setting equation (15) equal to zero the replacement of the residual by
• its least-squares fit may be interpreted, for this one-dimensional example,

as a generalised Galerkin method (ref .12) in which the normal Galerkin weighting

function, x1 is replaced by x~~
1. This idea will be illustrated by the first

• example.
Since a large number of efficient finite element formulations already exist

some justification for introducing another would appear warranted. At the
present time the justification is entirely pragmatic : for the problems con-
sidered the new formulation has produced more efficient solutions than a conven-
tional Galerkin finite element formulation and has demonstrated a wider range of
applicability than reduced integration.

4. EXAMPLES

The current finite element formulation will be developed by considering a
number of examples of increasing complexity which will illustrate different
aspects of the formulation. To permit an easier examination of how MWR works,
and how it can be improved, the first example will be solved by the traditional
MWR formulation, i.e. the approximating functions will span the whole domain
rather than being restricted to a local region as in the finite element method.

4.1 Classical MWR applied to dy/dx - y 0

A solution is sought, for the equation dy/dx - y = 0 and boundary condition
y = 1 at x = 0, in the domain 0 ~ x< 1. It is of historical interest that
this example was used by Duncan (ref.13) to illustrate the traditional Galerkin
method.

• The following approximate solution is introduced

= 1 + a1 . x + a2 * x
2 
‘ 

(17)

and the coefficients a1 and a2 -are to be determined. It may be noted that
equation (17) satisfies the boundary condition exactly. Substitution of
the approximate solution, equation (17), into the governing equation produces
a residual, R, given by

R = -l + a1 . (1 - x) + a2 . (2x - x2). (18)

Since R is quadratic in x it is impossible for a1 and a2 to be chosen so
that R is identically zero, unless the choice of the approximate solution,
equation (17), happens to contain the exact solution.

In order to determine a1 and a2 -the integral, over the domain , of the
weighted residual is set equal to zero . Thus

p 1

J W .. R . d x = O , i = 1 , 2. (19)
0

If W~ = x3 , i.e. the same as the analytic function in equation (1), the

traditional Galerkin method is obtained. Evaluation of equation (19) leads
to the following algebraic equations for a1 and a2, 

- --• -.~~~~— -~~~----- - -~~
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1 5 1
~- .a1 +~~~~~~~ - . a 2 - =

1 3 1
a1 +

~~~~~~~~. a2 = (20)

From equations (20) , ai = 8/11 and a2 -= 10/11. The solution for is

shown in Table 1 as

TABLE 1. MWR SOLUTIONS FOR dy/dx - y = 0

Approximate solution Exact
x solution

~
‘res. 1.s. >‘class. l.s. y = eX

0 1.0000 1.0000 1.0000 1.0000
0.2 1.1818 1.2057 1.2072 1.2214

0.4 1.4364 1.4800 1.4819 1.4918

0.6 1.7636 1.8288 1.8241 1.8221

0.8 2.1636 2.2343 2.2337 2.2255

1.0 2.6364 2.7143 2.7108 2.7183

R2 dx 0.00826 0.00408 0.00402 0.
—

Substitution of the solutions for a1 and a2 -into equation (18) will
produce a residual that is non-zero. Intuitively the closer R is to zero
the closer should be to the exact solution. The conventional way of

obtaining an improvement in the solution >‘a is to allow more unknown

coefficients a~ in equation (17). In the limit of having an infinite

number of unknown coefficients, a~1 the residual can be made identically

zero and the approximate solution, 
~a’ 

coincides with the exact solution.

Increasing the number of unknown coefficients , a~ 1 is not a very practical

technique because of difficulties in solving the algebraic equations when
the number of unknowns is large(ref.l2).

A technique for reducing the size of R, without increasing the number ••

of unknown coefficients , a~, may be obtained by approximating the residual ,

in some sense , by a lower order analytic function. Thus if equation (18)
is fitted , in the least-squares sense, by a function linear in x, the
result is

R
1 

= -1 + a1 (1 - x) + a2 (x + .) (21)

_
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Now it is possible to ensure that R1 ~ 
is identically zero by setting the

coefficients of x° and x1 equal to zero. This produces the result a1 6/7
and a2 -= 6/7 . The same result for ai and a2 would result from applying any
of the methods of weighted residuals in the form of equation (13).
The corresponding solution for 

~
‘a is plotted in Table 1 as >‘res. 1. ~ 

and

it is apparent that it is considerably closer to the exact solution than
that produced by the conventional Galerkin method.

The success of the least-squares fit of the residual is presumably due to
the fact that R1 5  has the same global character as R but the lower order

of analytic functions present has reduced the constraints on the unknown
coefficients, so that they may be chosen so that R1 5  is identically zero.

The most accurate solution might be expected from the classical least-
squares formulation , ...ince this is obtained by requiring

j R2 -
. dx = m m .  (22)

0

In terms of the method of weighted residuals this is equivalent to setting
W . = aR/as.. For the above problem W~ = (1 - x) and (2x - x2 ). The

so lution for the classical least-squares formulation is also shown in
Table 1 and it is apparent from both individual values and the evaluation

p1
of I R2dx that the solution, after a least-squares fit of the residual ,

• Jo
is very close to that obtained from the classical least-squares formulation.

Equation (21) can be written in the form

R1 = b0 + b1 . x (23)

and the solution is obtained by requiring that b0, bj 0. These conditions
can be substituted into the equations that are used to calculate b0 and b1
i.e.

1
. 1  . f

I .

I 
~~~~ 

x3 . dx =1 R . x3 . dx = 0, j = 0, 1. (24) H
Jo ~~ Jo H

Examination of equation (24) indicates that the procedure of replac~~g the
residual by its least-squares fit is equivalent , for this problem, to
solving the original problem with a modified Galerkin procedure in which

the normal weight function , x3 , is replaced by ~~~~
4.2 Finite element solution of dy/dx - y = 0 with one element

The equation dy/dx - y = 0 will be solved, in the region -1~ x ~ 1
with the boundary condition y = e ’ at x = -1 , using a Galerkin finite

- I ‘ element formulation. The whole domain is spanned by one quadratic element

and a solution in terms of the equally spaced nodal values, ~~~ , ~~~ -and ~~~~~,

• is sought with y~ known.Substituting the quadratic finite element representation for y into the
governing equation produces the residual

R = _½ (x2 _ 3x + 1) . 5I + (xl _ 2 x _ 1 ) . y 2 _ ½ ( x 2 _ x _ 1 ) . Y 3 . (25)

- -_
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Application of a conventional Galerkin finite element formulation i.e.

L1. N. . R . dx = 0, i = 2, 3. (26)

produces the solution ~ = 1.75 ~ and ~ = 5 
~~~~~

. A least-squares fit of
equation (25) produces the result

R1 5  = (~~x4) .~~~~~~~ - (2x +~~.) .~~~~~~~ + (~
- +

~~) . 5 ~ (27)

Requiring that R1 5  is identically zero produces the solution y~ = 2.5 y1

and ~ = 7.y
~. The var ious solutions are compared with the exac t solution

in Table 2.

TABLE 2. SINGLE ELEMENT SOLUTIONS FOR dy/dx - y = 0

Approximate solution Exact
x — solution

y y XGal . res. 1 .s. y = e H
-1 0.3679 0.3679 0.3679

o 0.6438 0.9197 1.0000

— 
1 1.8394 2.5752 2.7183

If the integration in the conventional Galerk in finite element formulation
had been carr ied out numer ically a three point Gauss quadrature formula
would have been required for the integration to be exact. If reduced
integration had been used (i.e. a two point Gauss quadrature formula) the
solution would have been identical w ith that produced by a least-squares
fit of the residual . This is because the app lication of reduced inte-
gration to this problem is equivalent to rep lac ing the res idual by its
least-squares fit and either using the original weight function or its
least-squares fit. Since equation (27) is only linear in x and contains
two unknown coeffi cients, the same solution w ill be obtained whatever
weight function is used.

4.3 Two element solution of dy/dx - y = 0

If the domain is not represented by a single element the solution is a
little more complicated. The equation , dy/dx - y = 0, will be solved in
the region 0 ~ x ~ 1 subject to the boundary condition y = 1 at x = 0.
The region is split into two elements : element A is 0 ~~ x ~ 0.5 and
element B is 0.5 ~ x ~ 1. The solution will be obtained in terms of five ,
equally spaced , nodal values y~ to ys with y~ = 1. The shape functions in
elements A and B are quadratic in x.

Substitution of the finite element representation for y into the governing
equation produces the follow ing express ions for the res idual , R. 

~ - --~~- - 
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In e lement A ,

R = (-8x2 
+ 22x - 7) . y~ + (16x 2 - 40x + 8) . y~ (28a)

+(-8x2 + 18x - 2) . )P3 .

In element B,

R = (-8x2 
+ 30x - 20) . + (16x2 - 56x + 32) . (28b)

+(-8x2 + 26x - 13) .

Appl ication of a conventional Galerkin formulation produces the results
shown in Table 3 under y

ei
To app ly the method developed in this paper it is necessary to fit the

res iduals, in the least-squares sense, separately in each element. This
produ ces the result :

In e lement A ,

R
1 

= (l8x - 6.6667) . y~ + (-32x + 7.3333) • Y~ 
+ (14x - 1.6667) . y~.

• (29a)

In element B,

R1 5  
= (18x - 15.6667) . y~ 

f. (-32x + 23.3333) . y~ +(14x - 8.3333) . ys.

(29b)

By requ iring that R
1 5  in both elements are identically zero it is

possible to obtain four relationships for the four unknowns : Y2, y3, y~and y5. The results are shown in Table 3 under y
15. If a conventional

method of weighted residuals were applied to R , given by equations (29a)
and (29b) , the results for y~ etc. would not dDfer from y1 shown in
Table 3.

To produce the conventional Galerkin finite element solution, shown in
Table 3, by performing the integration numerically, would require a three
point Gauss quadrature formula. If a two point Gauss quadrature formula
(reduced integration) is used to perform the numerical integration the
result is as shown in Table 3 under y .

Examination of Table 3 indicates that the solutions obtained directly
from requiring R

1 ~ 
= 0 and from using reduced integration are identical

and that they are considerably closer to the exact solution than is the
conventional Galerki.n finite element solution .

An indication of the effectiveness of using the_least-squares fit to the
res idual may be obtained by substituting, y~~ and y15 shown in Table 3,
into the expressions for the residuals , equati ons (28) and (29). The

various combinations are shown in Figure 1. f Rej refers to equations (28).
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It is interesting to observe that ReiG~1s
) is generally smaller than Rei G~ej )

and is better distributed. This is also confirmed by the values of

I R2 dx shown in Table 3.
Jo

TABLE 3. TWO ELEMENT SOLUTIONS FOR dy/dx - y - 0

Approximate solution (nodal) , ~ Exact
solution

Exact Element Reduced eX
x numerical least- numerical 

=

integration squares integration
fit of
residual, ~

‘ri

O 1.0000 1.0000 1.0000 1.0000

0 .25 1.2707 1.2838 1.2838 1.2840

0.50 1.6403 1.6486 1.6486 1.6487

0.75 2.0990 2.1165 2.1165 2.1170

1.00 2.6938 2.7180 2.7180 2.7183

/ R2 dx 0.00142 0.00021 0.00021 0.
Jo

j
oo~

m
~ ~~,i

a~~

%

41 
• CI 02 CS 04 00 CI IT OS CI $4

I a

Figure 1. Variation of equation residuals for dy/dx - y — 0

I
-

~~ _ _  _ _  _  
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L 4.4 Steady viscous flow between parallel plates

The application of the present method in two dimensions is not quite so
straightforward. Steady viscous flow between parallel plates has been used
prcviously(ref.12) to illustrate the Galerkin finite element formulation.

• The governing equation for this problem can be reduced to a Poisson equation.
If the boundary conditions are chosen so that the problem has an exact

- 
- solution the following specification can be obtained.

a2u a2u -ir/2 ir2 -

— + — = e . — . cos — .  y (30)
ax2 a)V2 4 2

subject to the boundary conditions

u = O o n y = ± l a n d x = 1

u = (1 - e ) cos ~~
. y on x = 0. (31)

-irx/2 -~r/2 . . . F

The exact solution is u = (e - e ) cos 
~~

- y .  u is a modified

horizontal velocity difference .
A related problem will be considered here because it leads more directly

• to the problem considered in example 5. Equat ion (30) can be replaced
by the two first order equations,

+ = e~~
”2 . . cosj . y (32a)

-

~~~~ and

= 0, (32b)
ay ax

where r = au/ax and s = au/ay. A solution will be sought in the domain
0 ~ x ‘~~ 1 and 0 ~ y < 1 subject to the boundary conditions,

r = 4 .  cos~~- . y o n  x = 0

r = 0 ony = 1 (33)

5 = 0 o n x  = l and y = 0.

One rectangular, quadratic Serendipity element is introduced to cover the
domain, as indicated in Figure 2, and r and s are given a conventional
finite element representation.
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Figure 2. Viscous flow between two parallel plates

This problem has six nodal unknowns and Galerkin equations based on
equations (32) are formed as follows

~~~~~ 
~~~~~~~~

. ~i 
+ 

~~~~~ ~~~~~~~~~. ?~ - e~~
’2 

~~ cos 
~~~~~

. dxdy 0

0 0  j4 j=i

i = 2, 5, 6 (34)

and

fyi {~
, -

~~~~~~~ 

. - 

~~~~
-

~
.jl . dxdy = 0, i = 4, 7, 8. (35)

o o j—1 H

The integrat ions are evaluated numerically; a 3 x 3 Gauss quadrature formula
produces exact integration . In Table 4 are shown results for exact
numerical integrat ion and reduced numerical integration (2 x 2 Gauss quad- I F

rature formula).
The residuals in equations (34) and (35) have been fitted in the least-

squares sense with representations of the form

— ao + a1~ + a3 y- + a3.x.y. (36)

Since each equation is characterised by four parameters which depend on the
six nodal unknowns it is not possible to choose the nodal unknowns in such
a way that are identically zero for both equations throughout the domain.
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Consequently a Galerkin formulation of the form,

• 
N . . R15 . dx dy = 0 (37)

has been applied to each equation. The subsequent solution is shown in
Table 4. It can be seen that the solutions obtained from a least-square s
fit of the residual and from the use of reduced integration are of comparable
accuracy and both are more accurate than the use of exact integration.

TABLE 4. SOLUTION FOR VISCOUS FLOW BETWEEN PARALLEL PLATES

Nodal Approximate solutions Exact
parameter . solutionExact Reduced L.S. fit

numerical numerical of the

____________ 

integration integration residual

0.4103 0.3698 0.3728 0.3265

0.7409 0.6788 0.6800 0.7162

0.2621 0.2172 0.2172 0.2390

1.5068 1.4234 1.4194 1.2443

0.4313 0.4133 0.4114 0.3897

0.8151 0.8100 0.8123 0.8798

The application of the Galerkin method results in algebraic equations of
the form

[KJ [qJ = [B ) , (38)

where (K I is the stiffness matrix and Eq 1 is the vector of nodal unknowns.
The stiffness matrices of the reduced integration formulation and the least-
squares fit of the residual formulation are identical ; however the matrices F

( B I are slightly different. F

A typical term in the stiffness matrix is given by

k1~ 
= f f  N1 . . dx dy . (39)

Both N. and aN ./ax are quadratic in x and y and therefore the product will be
integrated exactly by a 3 x 3 Gauss quadrature formula. If a bilinear least-
squares fit of 8N4/ax is made it will coincide with the values of aN ./ax at

.1
the sampling points of a 2 x 2 Gauss quadrature formula(ref.14) .
The product Ni and (aN ./ax)1 is bicubic for which a 2 x 2 Gauss quadrature

formula produces exact integrat ion. Therefore

_ _ _ _ _ _ _ _  

- L
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j f  
N . .~~~1 . dx dy = 

Lf ~ ~ 
. dx dy . (40)

reduced

A contributing term to [B I is the integration of

f ] N~ 
. cos 

~~~ 
. dx dy . (41)

Clearly a least-squares fit of cos . .y of the form given by equation (36)
will not necessarily coincide with the values of cos ~~

. .y at the sampling

points of a 2 x 2 Gauss quadrature formula. If the right han d side of
the governing equation (32a) were a polynomial of second order or less
then the solutions from the least-squares fit of the residual and from the
use of reduced integration would be identical.

4.5 Incompressible , inviscid flow
The final example to be considered is that of incompress ible , inviscid

flow past a two-dimensional circular cylinder; the flow-field is shown in
Figure 3.

D 
~~~

FREE ST REAM
cONDITIONS

~~ x.u

C

A B

Figure 3. Flow field geometry for two-dimensional inviscid ,
incompressible flow

This example is more complex than those considered previously because the
flow-field is represented by many elements and an isoparametric formulation
is used to fit the curved nature of the body. However this problem , l ike
the previous examples, possesses an exact solution sL that direct comparison
of various formulations is possible. This problem has been used previously
to obtain a systematic comparison of various elements and shape functions
for both exact and reduced integration (refs.9 ,15).

Results will be presented here that compare the least-squares fitting of
the residual with exact and reduced integration for quadratic rectangular
and triangular elements and two alternative Galerkin formulations.

The governing equations, for inviscid incompressible flow In two dimensions,
arc taken to be

~~~~~~~~~~~~~~~~~~~~ = 0 (42)

iL~ _ _ _ _ _ _ _ _
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r and

0. (43)

The Galerkin finite element formulation proceeds by introducing the following
representation for u and v

and 

u = . ~i~J (44a)

v = 

~IN. 
. ~ , (44b)

and requiring that

fi N1 . Rk . dx dy = 0, k = 1, 2 and i = 1, n . (45)

In equations (44) and (45), F

N1 is the shape function at the 1
th 

node,

are the nodal values of the velocity components , u and v,

and n is the total number of active nodes.
The residuals, Rk. are obtained by substituting equations (44) into equations

(42) and (43). the result is

R, . = ~~~~~ • + . (46a)

and R2 - = ~~ . - . . (46b )

j j

Substitution of equations (46) into equations (45) and rearrangement gives

tirn. + sb .. . = 
~~~, 

i = 1, n (47)

and ~~~~~ . u~ - ~~~a1~ . 
= 0, 1 = 1,, n . (48)

A fuller description of the derivation of equations (47) and (48) is given
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The first set of results to be presented have been obtained with quadratic,
Serendipity, rectangular elements. The form of a

u and b
1~ 

in equations (47)

and (48) depend on whether Green’s theorem has been applied. Two cases will
be considered :

Case 1: Green’s theorem applied to the Galerkin equations

a1~ = 

~~ 

. N~ . dx dy - 
f  

N1 . N~ . l~ . ds (49)

and b1~ =11 
—i . N~ . dx dy - 

f  
N. . N~ . 1>, . ds~ (50)

The line integrals can only contribute if the 1th node lies on the boundary
and even then may produce zero contribution due to the boundary conditions F

or the values of the direction cosines , lx and ‘y~ 
For an isoparame tric

formulation used with rectangular elements the integrations in equations (49)
and (50) are carried out in the plane of a regular rectangular element based
on a ~,71 coordinate system. The result is, for the area integrals ,

I ~~~~~~ 
faN , aN aN aN \ 1

a.. = / f  N .’~ 
‘
~ ~~~~ __!~. _ _ _ L . k yk}’ dE . dl? (51)

13  

~ L.~ \ a~ a~ al? a~ /
k=1

f~ IaN. aN aN. a~ \ 1
and b .. = ~ N .~ \~ (

~~~ .~~~~~~~~~~ 
- . _! \ .  X~~~ 4 . dn. (52)

“ 
~.‘ /~ \a~ a~ a~ a~ ) j

k=l

Xk, 
~k are the coordinates of the kth node in the element .

Case 2:  Green ’s theorem not applied to the Galerkin equations

~~I. ~N .
a. . = // N . . ~~~ dx dy (53)

13 jj ~ ax

r r  aN .
b. . = / j  N. . _2 . dx dy . (54)

1) 
~~ 

‘ ay

For an isoparametric formulation with rectangular elements equations (53) and
(54) become

I c ~-~f a N . a~ a~ aN \ 1
a.. 1f N .~ 

‘) ( _ i . __.~~- __i . _!~j  .y k }d E  . d’i (55)
1) Jj ~~(

/ .j \ a~ a~ ai~ a~~/ Jk=l

8 / a N  aN aN a N \  1 F

and b. . - - f f N . \ ( _
~ 

. .._!~. - __.2 . . x 4 . d?i. (56)

~~~ 
\ a~ a,~ a~ a~ j k

j

_ _ _  _ _ _ _  

j
_ _ _ _ _  _______ _ _
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In equations (51), (52), (55) and (56) it is possible to identify those
• parts of the equation that come from the residual and those parts that come

from the weight function in equation (45). Once the element and shape
function are chosen it is possible to deduce the order of the contributions
to the weight function and residual. The results of this are shown in
Table 5 and will be made use of in the discussion of the solutions.

TABLE 5. ORIGIN AND ORDER OF EQUATIONS (51), (52),

(55) , (56) and (60) TO (63)

Green ’s Wei ght function Residual
Element theorem Order Order
type applied Terms from of Terms from of

aN. aN aN. aN . 
bi

Rect- YES ~~~~~~~ - ~~~ 
._k bi- N . quad-

angular a~ a~ a~ a~ 
cubic ratic

quad- — ______ ______________________ _____

ratic bi- aN . aN aN . aN
element NO N. quad- __J . ~~~~~ - ___~~ , 

~~~~~~~~ bi-
i ratic a~ a~ a~ a~ 

cubic

aN. aN aN . aN b’ 1~~
YES t k _ i k ‘ U’-

Rect- ~~~~~~~~

. 

~~ 
‘

~~~~~~~ 

. 

~~ 
quad- N . quad-

angular ratic ratic
quad- .bi- a~ aN a~ a~ 

bi-
ratic k -  k
element NO N. quad- ........J — quad-

ratic 8L1 aL2 aL~ aL~ ratic

The computat ional solutions , considered under Example 5 , have been
obtained within the region ABCD in Figure 3. The nodal points and the
elements have been defined on a polar grid and an isoparainetric formulation
has been used to connect this to a cartesian grid. All results presented
are for the variation, with angular position, of the tangential velocity
component at the body surface.

A root mean square difference , a, between the finite e lement solution
and the exact solution at the body surface is defined as follows

1~~~~ 
1½

= [ L~ ~~ 
- q )2 /NB ,j (57)

il

where q1 is the finite element solution for the tangential velocity compon-

ent, 
~ 

is the exact solution for the tangential velocity component and NB
is the number of nodes between 0 = 0 and 900 (B and C in Figure 3). 0 has
been found useful for comparing results in tabulated form . A stmimarv of
the results , for the various cases considered under Example 5 is given in
Table 6.
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TABLE 6. SUt44ARY OF SOLUTIONS FOR INV ISCID, INCOMPRESSIBLE FLOW
ABOUT A CIRCULAR CYLINDER

Element Green’s Number Number Nodal R.M.S. differences H
type theorem of of Exact Exact Least-

applied elements unknowns numerical numerical squares
integration integration fit of

residual

Quadratic YES 25 149 0.049 0.015 0.040
rectangular
(Serendipity) NO 25 149 0.062 - 0.087

Quadratic YES 50 199 0.126 0.063 0.059

rectangular NO 50 199 0.252 0.481 0.018

The first group of results were obtained with 25 quadratic, Serendipity,
rectangular elements spanning the flow-field. This required 149 nodal
unknowns to be solved for. For case 1, in which Green’s theorem is applied,
the results are shown in Figure 4. Results have been obtained for exact F
numerical integration, reduced numerical integration and for a bilinear
least-squares fit of the residual.

1 J — — -  — - ____________________ ___________

•l I~~ NIAA LIASTSQUA ~~FS

~IT OP THI MISIDUAL • p~
~O 0 £*ACT PIUM(AICA L INTEG

INTIONATIOPI FONMULA
oNIouao NuMIrncA L O PT .~~

“ 0
INTIGNAT ~ON I!OflO. POMMU I.A 8—— IXA CT

,0

/

I-
/

‘C,

~~ oS

0/
OS - OUADNATIC NICTANOU LAN ILIMINTS

/
/ CMI I ONIONS

04

‘P
1

0 7 / ’

/
/

I I I I & C I C
0 I I 70 70 40 II 40 ~0 40 II

ANGULA N POSITION. I 0501111)

Figure 4. Comparison of surface velocities - rectan gular elements -
Green ’s theorem applied
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It is apparent that the results for reduced integration are better than
those produced by a least-squares fit of the residual, and that both are
better than the results using exact numerical integration. In obtaining F

the solution using reduced integration , integrals of the form

~~~~~~~~~~ d~~. c b~ (58)

are evaluated using a 2 x 2 Gauss quadrature formula. A 2 x 2 Gauss quad-
rature formula is capable of integrating a bicubic integrand exactly; the
integrand in exp ression (58)  is biquintic. Referring to Table S it can, be
seen that N., which comes from the residual is biquadratic and the term~ 

~~~

,

which comes from an isoparanetri c transformation of the weight function ,
is bicubic.

Sampling N~ at the second order Gauss points is equivalent to replacing
N. by a bilinear least-squares fit of N.(ref.14). Therefore sampling the

3 3
terii9 in expression (58) at the second-order Gauss points may be inter-

preted as fitting the term with a biquadratic or bilinear function that

matches the original function at the samp ling points.
In Contrast with this the ‘least-squares fit of the residual ’ results

have replaced N~ in expression (58) by a least-squares fit but have left

the term~~ J , that comes from the weight function, in its original form.

This has necessitated the use of a 3 x 3 Gauss quadrature formula. Thus
the differences in the reduced integration solution and the “least-squares
fit of the residual” solution arise from the different treatment of the
weight function. Why the reduced integration treatment of the weight
function should produce superior results is not clear.

For case 2, in which Green’s theorem is not applied to the Galerkin
equations, the results are shown in Figure 5. The use of reduced integration
failed to produce a result and the least-squares fit of the residual has
produced a result that is inferior to that produced by exact numerical inte-
gration.

For this case it is necessary to carry out integrations of the form

I 3N. aN aN . a~ 1
N . . - . . 4 . di? . (59) 

Cl

Reference to Table 5 indicates that the term
[ ] in expression (59) con-

tributes to the residual. This term is bicubic and therefore a least-
squares fit of this term will need to be biquadratic. However this
requires nine unknown coefficients which is as many as is required to define
the overall integration exactly. In terms of the required inequality (7) t4
is not reduced. Thus a biquadratic fit, in this case, violates the original

~~~ requirement of reducing the number of constraints on the residual. The
results in Figure 5 give some idea of the error in replacing the residual
with its least-squares fit when no gain is obtained from a reduction in the
number of constraints.
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Figure 5. Comparison of surface veloci t ies - rectangular elements -

Green’s theorem not applied

An attempt at a reduced integration solution implies an attempt to replace
the bicubic residual term with either a bilinear or biquadratic fit of the
residual term whose values at the 2 x 2 Gauss points match the original
residual term. Clearly neither possibility has the required least-squares
property of minimising the square of the residual.

The second group of results were obtained with 50 quadratic triangular
elements spanning the flow-field. A solution has been sought for 199 nodal
unknowns. Once an isoparametric transformation , in terms of the triangular
coordinates L1 ,- L2 ,- has been applied to equations (49), (50), (53) and (54)
the relevant expressions for 

~~ 
and b1~ are:

Case 1: Green’s theorem applied to the Galerkin equations

a.~. = fj N.{ 
~~~~~~ ~~ -

. ~~k - 
1 

. dL1 . dL~ (60)

k’ 1

= 

~f N4 

~~ 

- ~~~ . 

~
). 

~
} dLt . d~~~. (61)

k=1
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Case 2:  Green ’s theorem not applied to the Galerkin equations

a~ - ft NJ ~~ ~k 
dL1 . d~ (62)

i 1. k.1\~~~i ai4 a i~~ aL1

and

b~ = ..ff N
1{ 

~~ 
(

__2 . .J~ .. ........2 . ~~~ X
k} 

dL 1 . dL2. (63)

k—i

In equations (60) to (63) it is possible to identify which part s of the
equations come from the weight function and which parts come from the
residual in equation (45). This information is given in Table S along with
the order of the various terms in equations (60) to (63).

For case 1 above the results are shown in Figure 6. Results are
presented for exact numerical integration, for reduced numerical integration
and for a least-squares fit of the residual of the following form

R1 = + a1 . L, + a2 . L2. (64)

A seven point formula was used to produce the exact numerical integration
results and a four point formula, due to Cowper(ref.16), was used to produce
the reduced integration results; these quadrature formulae are described
elsewhere (ref. 7 ) .

* SIL INIAR LEAST SQ UARES
PIT OF THE RESIDUAL 7 PT
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,

0
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Figure 6. Comparison of surface velocities - triangular elements -
Green’s theorem applied 
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The “least-squares fit of the residual” results are better than the
reduced integration results and both are better than the exact integration
results (see Table 6 also) . It is interesting that the reduced integration
results have required four evaluations of the residual per element whereas
the “least-squares fit of the residual” results have required only three
parameters per element. Thus, in terms of the inequality (7), the number
of unknowns n is 199 for both cases. The total number of function evalua-
tions , M, for reduced integration is 400 and for the least-squares fit of
the residual is equivalent to 300. Examination of Table 5 indicates that
N~ in equation (60) and (61) is biquadratic so that a least-squares fit that

is linear in L1 and L2 would appear appropriate .
The results for case 2, when Green’s theorem is not applied , are shown

in Figure 7. For this case the results using exact integration are poor
and the results using reduced integration are worse. But the results -

using a least-squares fit of the residual are very good , virtually as good
as the best reduced integration results obtained for this probem (Figure 4).

22
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Figure 7. Comparison of surface velocities - triangular elements -
Green’s theorem not applied

The least-squares fit of the residual was of the form

R 1 = a o + a i . L i + a 2 . k + a 3 . L 1 . L 2 .  (65)

The term in equations (62) and (63) that contributes to the residual is
listed in Table 5 and is quadratic in L1 and k .

The relatively poor showing of reduced integration applied to triangular •

elements may be attributed to the fact that the lower order numerical inte-
gration formula used has no least-squares interpretation as has the corres-
ponding Gaus f~ rm~l~ (re~~~~~~~~~~~~~~~~~~~~~sian quadrature formula(ref.14) used with rectangular elements. 

- -
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5. DISCUSSION

Least-squares fitting has beer, used previously in finite element formulation .
In the area of plate bending, Irons and Tazzaque (ref.17 ,l8) have started with
9 and 12 degree of freedom triangular elements and replaced the second
derivative of the shape function by its least-squares fit. This has allowed
the use of a lower order numerical integration formula and produced superior
results to the elements they started with.

Hinton and Campbell (ref.l9) have used local and global smoothing in order
to improve stresses obtained from numerically integrated , two dimensional ,
isoparametric elements. Hintori and Campbell note that , for rectan gular ,
quadratic elements the evaluation of the stiffness integral

B
1’ 

. D . B . dA (66)

by reduced integration (2 x 2 Gauss quadrature formula) produces the same
result as performing the exact integration of

ff ~~
T

~~~~~~~~~~~ dA (67)

where indicates a local least-squares fit of that term . Since each least-
squares fit is bilinear , the integrand of expression (67) is bicubic and can
be integrated exactly by a 2 x 2 Gauss quadrature formula. The in tegrand is
of the sane orde r as that produced when express ion (58) is rep laced by

I aN. aN a~ . a~ 1
/
‘ f N. ~~ 

—‘i . - ~~~~~~~~~ —~~ 4 . d~~. (68)
JJ ~ls ~

, 
a~ ai~ a~ a~ J

I t i s apparent from prev ious app lications , and from the results presented
in this paper , that reduced integration has produced superior results to the
use of exact integration for rectangular elements but has not been effective
for triangular elements .

• An important step in the formulation , presented here as an alternative
to reduced integration , has been to recogitise that if the residual is
written

R = R~ (x ,y) . (69)

where q
~ 

are the nodal parameters and R~ (x~Y) are made up of shape fun ction
derivatives , etc. determined by the governing equations , then it follows that

2 
= R . (x ,y) . . (70)

j=1
• Equat ion (70) is particularly useful since it is straightforward to form R

Is
on an elemen t ba si s. If the numerical integration s are performed on a dumm
element , once and for all (ref.15), the formation and evaulat ion of R. is

3 1salso economical.

- ~~~- -—~~~~~~~ - .~~~~~~~~~ -- - - •  - ---~~~~~ -—~~~~~~~~~~~~~~~~~ -~~ —-~~~~-~~~~-~~~--



~ —-  — -- - —‘--— ---— • ~~~ ~~~~~~~~~~~~~ ~~
-“—

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ - :
~~~~~~~~~~~

----
~~~~~~~~~

- -

WRE-TM-1827(W) - 24 -

It has been demonstrated that the use of a modified method of weighted
residuals

f • W . . dA 0 (71)

has produced more accurate results than the use of

f W . R . d A  = 0 (72)

in a larger number of situations than has the use of reduced integration
• applied to equation (72). In particular the current formulation has extended

the benefits associated with reduced integration to triangular elements.
It seems likely that , where reduced integration produces very accurate

results, the increased accuracy over the use of equation (71) comes from the
implicit treatment of the weight function, W. This would appear to be a
fruitful area for future research.

6
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