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formulation of a representative flow problem. By sampling the solution at the Gauss
points a significant improvement in accuracy is achieved. The accuracy gain is lost if
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I .  INTRODUCTION

The appl ication of the finite element method to fluid flow problems has been a fairly recent occurrence. Most
applications so far have been aimed at demonstrating the possibility of obtaining solutions to fl uid flow problems by
the finite element method rather than obtaining the most efficient solution. As a consequence a number of the
refinements that have been employed in structural applications of the finite element method to improve efficiency have
yet to be tried on fluid flow applications. Computational efficiency is determined by the execution time required to
achieve a predetermined accuracy.

The purpose of this report is to consider two such refinements, alternative sampling points and reduced integration ,
applied to a representative fluid flow problem. Both these refinements relate to the numerica l integra t ion tha t is
necessary to convert the governing partial differential equations into governing algebraic equations. These concepts
have been explored in such applications as the analysis of plates and shells(ref. 1 and 2), the smoothing of discontinuous
st resse~ ref.3) and the use of “thick shell” programs for solving thin shell problems(ref.4); a significantly improved
efficiency, in the above sense, has been reported in many cases.

The representative fluid flow problem is the flow about a two-dimensional circular cylinder of an incompressible,
inviscid fluid. This problem is chosen because it possesses an exact solution which permits a direct measure of the
accuracy. A Galerkin finite element formulation in primitive variables has been used as this is more representative
of general fluid flow problems than is the use of a variational principle. Previously the same model problem and
formulation have been used to systematically assess the relative merits of various elements and shape functions(ref.5).

The plan of this report is as follows. In Section 2 some background developments of alternative sampling points and
reduced integration are introduced. In Section 3 results for various sampling points with different orders of numerical
integration are presented and compared. Additional results are given in Section 3 which illustrate an increased accuracy
for the same execution time when reduced integration is used instead of full integration. The same elements and shape

• functions that were compared for full integration in reference 5 are compared for reduced integration in Section 3.
This comparison considers both coarse and refined grids. In Section 4 the results of Section 3 are interpreted in the
light of the background material given in Section 2. Section 5 contains an explicit list of the conclusions of this study.

2. BACKGROUND

In this section a little of the background development of alternative sampling points and reduced integration is set down.
Although both concepts have been established qualitatively,published material indicates that very few quantitative
results are applicable to other than specific cases.
2 1 Alterna t ive sampling points

A typical finit e element formulation (e.g. reference 5) converts a problem of continuous variables (e.g. u, v)
governed by partial differential equations into a problem of discrete variables (e.g. nodal values ~ ,~) governed by
algebraic equations. This is done by arbitrarily approximating the continuous variables by low order , piecewise
polynomials in which the nodal values are the unknown coefficients. To for m the algebraic relations typically
a weighted form of the governing equations(ref.6), with the polynomial approximations subst ituted , is integrated
over the whole domain . If the integration is performed analytically the only approximation present is associated
with forcing the solution to behave locally as though it were a low-order polynorni al, assuming an isoparametric
formulation is not used.

If the integration is performed numerically additional errors may be intr oduced. Numerical integration implicit y• fits a low order function , typically a polynomial, to the data and performs the integration analytically. The low
order function fits the data by requiring an exact match at certain predetermined points. The numerical inte-
gration is then a weighted summation of the integrands evaluated at the predetermined points. Normally Gauss

• quadrature is used because with n points it is capable of integrating exactly integrands of polynomial form up to
order 2n - I (ref . 7).

Thus normally the order of the numerica l integration is chosen to be sufficiently high that the integration is
exact for the order of the finite element representation used.

For problems tha t can be solved by formulating a variational principle it has been shown(ref.4) that at the
Gauss points the differential expressions in the integrand are closer to the exact values then elsewhere. For
example , for a cantilever beam subject to a distributed load the stresses are determined very accurately if sampled
at the Gauss points but are very inaccurate and discontinuous if sampled at the nodal points.

In the present problem alternative points within the element are considered to see if consistently better
agreement with the exact solution can be obtained.
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2.2 Reduced integration

Reducing the order of integration below that required to make the integration exact necessarily introduces some
additional error. Cleai-ly if the order is reduced too much convergence may no longer be achieved. The minimum
order of integration for convergence is that which permits exact integration of the element volume (or area in two
dimensions) when an isoparametric formulation is used(ref.8).

The opti mum order of integration depends on the oru~’r of t he finite element representation , p. and the order of
differentiation , d, in the governing equation. For problems of a variational nature such as the plane strain problem
it has been deduced(ref.4) that for p = 1 and d 1, 1 point integration formulae should be optional while for
p = 2 and d = 1, 4 point integration formulae would be require d if an element is considered in isolation.

If the stiff ness matrix is considered as a whole, reduced integration may be viewed from a different perspective.
Since the Galerkin method is an example of the Method of Weighted Residuals it is instructive to derive the
governing algebraic equations from

ff N . . R . d x dy O, (1)

where R is the residual of one of the equations after the analytic representatio n in terms of the nodal unknowns
has been substituted (see reference 6 for more details). N. is the shape function appropriate to the ~th 

~~~~
If the integration in equation (1) is carried out numerically then the result is

M
Wk . N i(x k ,y k) .  R(xk,y k) 0. (2)

W
L 

is the weight attached to the kth fu nction evaluation point. M is the number of function evaluation points,

i.e. the produce of m function evaluation points per element and c contributing elements. Because of the nature
ol N . only t h e  four rectangular elements surrounding the ~th node will contribute to the summation. For example

a

~ 

node I in figure I , only elements w, x, y and z contribute. Thus in any one equation M ~~4 m.
rhe residual R could depend onany of the n nodal unknowns , q1, in the domain. Thus

R (xk, 
~‘k~ 

= 

ar~. 

(xk, ~‘k~ 
(3)

Typically R .(x ~~y~) = .__ ! (x~~y~)
ax

For conveni ence , elements are assumed to be perfectly regular. The symbol n is the product of the number of
nodes n and the number of unknowns per node which in this case is 2. Certain of the q~ will be known and
hence equation (2) with (3) substituted can be written-

Wk - N . (xk ~~~ ~ 
(xk, 

~~ 
= B., (4)

k=l j=l

where B. represents the weighted summation associated with the known q
1
. The problem now has L unknowns

and L equations like (4) must be written down in order to obtai n a unique solution for the q
1
’s. It is also

apparent that for a solution to he possible, the total number of function evaluations M1 must not be less than the
number of unknowns L
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Using exact numerical integration , M1 is much larger than L, using reduced integration MT is much closer to L
although still greater. There is a possibility that if L is too close to MT a subsystem of ~qJ might be complete ly
determined from a few elements; this is clearly a singular situation.

• If the order of summation in equation (4) is reversed the familiar stiffness equation is obtained ,

• 
K...q. = 

~~~
‘ (5)

M j =l

where K.. K.. = Wk . N . (xk, 
~~~ 

R.. (xk, ‘~
) -

Consequently for a solution using reduce d integratio n to lead a non-singular stiffness matrix (K] , it is
necessary that

e.m>L (6)

The use of reduced integration implies a fitting of the integrand with a lower order polynomial than that
implied by the order of the finite element approximation. Hinton and Campbell(ref.3) prove that for two-

• dimensional parabolic isoparametric rectangular elements applied to a typical variational formulation of the
fin ite elemen t method , the use of reduced integration is equivalent to performing the integration exactly
after applying a least squares bilinear fit separately to each term of the integrand.

• Thus since the finite element formulation constrains the solution to locally follow a low-degree polynomial the
use of reduced integration may be though t of as relaxing some of the constra ints on the solution at the expense
of introducing additional errors by not car rying out the integration exactly . The empirical evidence clearly
indicates that the guns associated with relaxing the constraints far outweigh the losses associated with executing
the numerical integration less accurately.

A fulkr discussion of specific applications of reduced integration may be found in reference 4 and a discussion
of reduced integration in a wider context may be found in reference 9.

2.3 A worked exam ple

A simple examp le in one dimension will be considered in order to illustrate how and why reduced integration
works.
The governing equation is

~ y) = •y = 0, (7)

subject to the boundary condition y 1 at x = 0. It is of historical interest tha t this problem was used by
Duncan(ref .lO) to illustrate the classical Galerkin method (see also reference 6). This problem has the exact solution

xy~~~e .
• A solution is sought for 0~~x ~ I and five nodal values ~T, at equal intervals of x , are introduced. The domain

is split into two elements, 0’~~x ~~0.5 and 0.5 ~~x ~ I , and quadratic Lagrange shape functions are used to
determine the local variation of y.

From the bounda ry condition Yi = 1; hence only four independent equations are required to uniquely
determine the unknown ~.‘s. The analyt ic representation of y is given by

5

(8)
j~l

I _ _ _ _ _ _ _ _ _  U
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Substituting this into equation (7) produces a residua l, R(x), given by

R(x) = ~I~,L~
dNi ~N.] 

~~~~

. (9)

Forming the in tegral of the weighted residual over the domain (see reference 6) gives

f W. R(x) dx = 0. (10)

For the Galerkin method W. N . and equation (10) becomes

5 ’

~~‘: N.[~~~.[ • N.] dx.~7. =0 .  (11)

Setting i = 2 to S gives sufficient algebraic equations of the form

a .. .~ . = 0. (12)

to solve for the unknowns : 52.  y a ,y4  and 
~~~~~The coefficient s 

~~ 
are given by

a .. = f  
N
.[~~!J .N.] d x (13)

and are In be evaluated numerically. The integral is evaluated for each element separately. If a three poin t Gauss
quadrature formula is used the integrations are performed exactly and the corresponding solution for the nodal
values 

~~

. arc shown in Table 1. 1~

dyTABLI~ I .  COMPARISO N 01’ SOLUTiONS FOR - y = 0

Approximate solution (nodal), 57
x Exact Reduced Local L.S. Traditional Exact

numerical numerical fit of Galerkin solution
integration integration residual (quartic

________ 

~ei 
9

ri ~ls polynomial) y = cx

0 1.0000 1.0000 1 .0000 1.0000 1.0000
0.25 1.2707 1.2838 1 .2838 1.2840 1.2840
0.50 1.6403 1 .6486 1 .6486 1.6488 1 .6487

0.75 2.0990 2.1 165 2. 1165 2.1 170 2.1170
1.00 2.6938 2.7180 2.7180 2.7182 2.7183

H

~

--

~

- - - ~
___ .~ __ i 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --——~~~——---~~~~- —-—
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If a two point Gauss quadrature (reduced integrat ion) formula is used the integrations are not formed exactly;
the corresponding results for the nodal values are shown in Table I .  It is self-evident that the use of reduced
integration , ra ther than exact integration , has produced a very much more accurate solution. It would be possible
to construct a loca l least-squares fit to the term

dN .

(. d x .1

in equation (13) and carry out the integration exactly. If t his were done the results would be identical to those
shown in Table 1 under reduced integration.

This is because the least-squ’re~. fit of order n - 1 always cuts the original curve of order f la t  the n Gauss points.
Thus the least-squares fit of

dN .
- N.

I~~dx

over each element would be a straight line cutting the original quadratic function at the two Gauss points.
Since the weight function N . is quadratic , the total integration , over each element , of

J o  dx ~

could be car r ied out exactly using a two point Gauss quadrature formula. Thus the sampling values of the integrand
would be exactly the same as for the reduced integration of the original expression in equation (13).

Also shown in Table I are results for a traditional Galerkin formulation(ref .6) in four unknowns. It is generally
found that because the anal yti c representation and the weighting functions are allowed to span the complete domain
superior results are obtained(ref .6) with the traditional Galerki n method than with a fInite element or finite
di fference i iethod with the same number of unknowns. Table 1 indicates that the use of reduced integration has
produced res ults that are almos t as good as using a traditional Galerki n formulation.

The question remains: why does the use of reduced integration give more accurate result s than the use of exact
integration? The answer can be found by pursuin g the equivalence between the use of reduced integration and
‘he least squares fitting of the expression

[
~~Y N .)

in equation (13) and subsequent integration. If equations (13), ( 12), (11) and (10) are considered it is clear tha t
the least-squares fit of the expression

L~~. N ]
over each element is equivalent to a least-squares fit over each element of the residual in equation (10).

The basis for the weighted residua l method(ref.6) is that , since the introduction of an analytic representation
prod uces a non-zero residual equation throughout the domain , a reasonable approximate solution will be obtained
if the residual is made to equal zero in some global sense e.g. equation (10). Ideally the residual should be zero
everywhere. If the weight function is predominantly of one sign the variation of R may be expected to include
some changes of sign if equa tion (10) is to be satisfied. Therefore a low order least-squares fIt of R whose
weighted integra l over the domain is zero is likely to have local magnitudes of 

~~ 
that are less than the local

magn it udes of R, and hence produce a solution closer to the exact .
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This is illustrated in figure 2. From the solution using exact numerical integration the expression

has been plotted. R
~. is the equation residual cor responding to the approximate solution ,[57

e
~ J R

quadratic in x and discontinuous at the element boun dary (x = 0.5). If the expression

dN .

Ld x  ~

in equation (13) is fitted by a linear least-squares curve a pseudo-residual , based on y el 
, can be constr ucted as

~~~(~
ei) = ~~~~ [ d ~~~~N ~~~~ ei

This is also plotted in fi gure 2. It is appar ent tha t the effect of the least-squares fit has not greatly reduced the
si2e of the residual. However the residual (R1 ), based on

[
~~~ i - N ~

]

and the corresponding solution , is much sitia ll er .  is obtained by solving

(a ..)~~. 57 .  = 0, ( 16)

where

(a ..) 1 = f N . [ ~~
j - N . 

~ ls 
dx. (1 7)

R,
~ is given by

= N. 

Is 

(18)

is act ually zero but has been plott ed in figure 2 in order tha t it will show up. Because of the local least quares
fit Rh is a linear funct ion of x , Rb is identica l with the residual obtained from a reduced integration formulation , R ..

_ _

_ 
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The lower the order of the least-squares fit the closer the residuals should be to zero. However as noted
previously the total number of function eva lua t ions in the domain must not be less tha n the number of unknowns.
In the present example the number of unknowns is four, there are two elements, therefore a two point Gauss
quadrature formula is the lowest order possible.

This interpretation of red uced integration clearly points towards the use of a least-squares approximation to the
method of weighted residuals or an MWLSR as a valuable technique in its own right . The “magic” in the use of a
lower order Gauss quadrature formula is that it permits a shortcut to be taken so that the least-squares approxim-
ation to the residual is set up implicitly. Thus the use of Gauss quadra t ure formulae is convenient but not essential
to the success of a solution after approximating the residual in the least-squares sense.

3. RESULTS

The model fluid flow problem considered in t his report is inviscid, incompressible flow about a two-dimensional
circular cylinder; the flow-field is represented schematically in figure 1. The governing equations , for inviscid,
incompressible flow in two dimensions, are taken to be

(19)

and

(20)

After application of a Galerkin finite element formulation the governing partial differential equations can be reduced
to algebraic equations of the form

a .. . i L +  
)

b.. .~~ = 0, j  = l , n (21)

b~~.ii~ ~~~~~~~~ 
= 0, j  = l , n , (22)

where

a.. 

~ff !~J . N . dxdy and 
~~ ff ¶~ j . N . dxdy.

The symbols ü., i represent the noda l values of u and v, n is the total number of nodal unknowns and N. is the shape

• functi on associated with the ~th node. Further details may be found in reference 5.
A computational solution is sought within the region ABCD shown in figure 1. The nodal points and elements are

defined on a polar grid and an isoparametric formulation is used to connect this to a cartesia n grid.
All results presented in this section are for the variation of the tangential velocity component at the body surface with

angular position. As in reference 5 it is felt tha t this represents a stringent test of the computational results.
In order to have a single number represent the accuracy of the computational results, the root mean square difference,

a, between the finit e element solution and the exact solution is defined as follows 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ - - .--~~- 
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° = j  ~~~~ - ~
)2 ] I N J ,  (23)

i~~~1
where q1. is the finit e element solution for the tangential velocity component. The symbol , q is the exact solution

for the tangential velocity component and N is the number of nodes between 0 = 00 and 90° (B and C in figure 1).
The symbol , a may be thought of as the average difference between the computational and exact solutions .
3.1 Alternative sampling points

From Section 2.1 it is to be expected tha t the solution at the Gauss points will be closer to the exa ct solution
calculated at the Gauss points than the nodal solution is to the exact solut ion at the nodes. For practical purposes
the solution at the body surface is of interest. The body surface coincides with the boundary of a number of
adja cent elements. Thus nodal values at the body surface are ava ilable hi the Gauss points do not coincide with
the body surface.

Using the analytic representation implicit in the finite element formulation the solution at the Gauss points can
be obtai ned. Using just the solution at the Gauss points an extrapolation is made onto the body surface as shown
in figure 3. This gives the solution C. The nodal solution B is interpolated along the body surface to give the
solution D which is at the same point as C. This process is repeated for 2 x 2 and 3 x 3 integration formulae.

TABLE 2. R.M.S. ERRORS FOR ALTERNATIV 1~ SAMPUNG POiNTS AND DIFFERENT
NUMERICAL INTEG RATION FORMULAE

Solution A Solution B Solution C Solution D
integration R.M.S. difference R.M.S. diticronce Solution A Solution B
formula at Gauss points at nodal points extrap olated to interpolated t o

the surface same position as
Solution C

4 point 0.085 0.017 0.016 0.015

9 point 0.009 0.062 0.066 0.058

The result s for the r.m.s. differences are shown in Table 2. These results were obtained using second order
rectangula r elements of the Serendipity type with 149 unknowns in the whole flow-field. The actual differences
between the computed and exact solutions are plotted against angular position in figures 4 and S corresponding
to the different integration formulae. On each of figures 4 and 5 the solutions B, C and D (figure 3) are shown .

Examination of Table 2 indicates that the solution at the Gauss points is better for the 3 x 3 integration formulae,
i.e. t he lowest order tha t still performs the numerical integration exactly. This solution , using a 3 x 3 integration
formula is superior to the nodal point solution using reduced integration. Once the Gauss point solution , for the
3 x 3 integration formula , is extrapolated to the surface (Solution C in Table 2) the increased accuracy of the
Gauss point solution is lost. In fact all solutions at the body surface are of comparable accuracy.

The use of a reduced integration formula (2 x 2) produces a relatively inaccurate solution at the Gauss points
(Solutio n A) but a very accurate solution when extrapolated to the body surface (Solution C). The interpolation
of the nodal point solution (Solution D) to the same position as the extrapolated Gauss point solution (Solution C)
has always produced a slightly better solution .

Both integrating formulae (figures 4 and 5) produce solutions which show some disagreement between solutions
C and D at the forward stagnation point but good agreement as the shoulder point (0 900) is approached.

The general conclusion of these results is tha t the use of alternative sampling points (Solutions C and D) produces
only marginal improvement in accuracy when compared with the large improve ment in accura cy at the nodes
associated with the use of reduced integration. Comparable results were obtained when a refined grid was
considered.
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3.2 Reduced integration vs. conventiona l integration

Solutions have been obtained using a second order rectangular element of the Serendipity type with a 2 x 2
integration formula (reduced integration) and a 3 x 3 integration formula (full integration). The results for a
coarse grid (149 nodal unknowns in the flow field) are shown in figure 6. Beca use of the use of a dummy element

• to carry out the numeri cal integration (see reference 5) the use of reduced integration has not produced any
significant improvement in execution time (as suggested in reference 4). Therefore any execution time shown is
nominally the same irrespective of the order of numerical integration.

• The results for the coarse grid indicate that the solution using reduced integration is more than three times as
accurate as the solution using full integration. An examination of figure 6 indicates tha t the full integration
solution always lies below the exact solution whereas the reduced integration solution straddles the exact solution.
Thus an additional advantage of the reduced integration solution , not apparent from the r.m.s. error results , is
the possibility of fitting a low orde r least squares curve through the reduced integration results to obtain even
better agreement with the exact results.

l’he possibility exists that the improvement produced by using reduced integration will lessen as the grid is
refined. Results for a moderately refined grid (299 noda l unknowns in the flow field) are shown in figure 7.
As is apparent the reduced integration solution is still better than three tunes as accurate as the full integration
solution. A further refinement in the grid (with 582 nodal unknowns in the flow field) also produced a reduced
integration solution that was better than three times as accurate as the full integration solution. Because both
solutions are very close to the exact solution this case has not been plotted.

A better appreciation of the improvements associated with the use of reduced integration may be obtained by
considering fIgure 8. The reduced integration results correspond to those plotted in figure 6, the full integration
results have been obtained by refining the grid until a solution of the same total accuracy is produced. It may be
noted that this has required more than ten times the execution time. By plotting the ta ngential velocity
dif ferences against angula r position the tendency for the full integration solution to underestimate the exact
solution and the reduced integration solution to straddle the exact solution is made more obvious.

• 3.3 Reduced integration on a coarse grid
• I n this section various element/sha pe function combinations are compared for solutions on a coarse grid using

red uced integration. The same element/shape function combinations are considered here as were considered for
full integration in reference 5, namely:

( I )  linear sha pe function in triangular isoparametric element
(2) quadratic shape function in triangular isopa ra metric element
(3) linea r shape function in rectangular isoparametric element
(4) quadratic shape function (Lagrange) in rectangular isoparametric element
(5) quadratic sha pe function (Serendi p ity) in rectangular isopa rametric element

All t hese shape functions are described in reference 1 ~~. The various numerical integration formulae used with
various element/sha pe function combinations are described in Appendix 1. However the results presented in
this section cannot be compared with those given in reference 5 since the grid used here is coarser; the grids
considered in reference 5 correspond to the grids used in Section 3.4.

Results for linear and quadratic shape functions , for rectangular elements , are compared in figure 9. The
numerical integrations for the quadratic shape functions have been evaluated with a 4 point formula based on
evaluating the integrands at the Gauss points (see Appendix I) . The numerical integrations for the linear sha pe
functions have been evaluated with a 1 point formula based on evaluating the integrands at the mid point of the
elements (see Appendix I). Although both solutions straddle the exact solution the solutio n using a quadratic
sha pe function is noticeably smoother particularly close to 0 90°. As is apparent from Table 4 the solution ,

• using quadratic shape fun ctions of the Serendipit y type , is approximately twice as accurate as the solution using
linear shape functions. The solution using quadratic shape functions is also more economical , mainly because
it has less nodal unknowns. A comparison of Tables 3 and 4 indicates that the use of reduced integra tion in place
of exact integration (3 x 3 formula) causes a greater improvement in accuracy for quadratic shape functions than
it does for linear shape functions.

Results for linear and quadratic sha pe functions, for t riangular elements , are shown in figure 10. The numerical
integrations for the quadratic sha pe functions have been evaluated using a 4 point formula given by Cowper(ref. l 2).
The numerical integration for the linear shape functions have been evaluated with a I point formula given by
Zienkiewicz(ref.l I). Examination of figure 10 and Table 4 indi cates that the results for linear elements are
closer to the exact solution on average but become rather poor close to 0 = 900. The solution using linear shape
function s is exactly the same whether a I point (Table 4) or 7 point (Table 3) integretion formula is used.

- --- -- - - -
~~~~
- --- —-
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This indicates that use of a 1 point integration formula is exact for linear triangular elements applied to the
present problem. The use of reduced integration for a qua dra t ic triangular element produces some improvement
in accuracy (Tables 3 and 4).

Results for triangula r and rectangular elements , with linear shape functions are shown in figure 11. Since the
results with triangula r elements are exact with the use of a one point integration formula the results generally lie •
beneath the exact result s whereas the results for the use of rectangular elements straddle the exact solution. Both
sets of results have the same number of nodal unknowns and hence approximately the same CPU time but the
solutions using rectangular elements are approximately twice as accurate (see Table 4).

Results for triangular and rectangular elements, with quadratic shape functions are shown in figure 12. The
numerica l integrations for the quadratic shape functions have been evaluated with a 4 point formula (see Appendix I).
The results for the rectangular elements (Lagrange shape function) lie much closer to the exact solution (figure 12)
part icularly close toO = 900. Both solutions required approximately the same CPU time but the results using
rectang ular elements are almost three times as accurate on average. The use of reduced integration for quadratic
rectangular elements of the Lagrange family has produced a two-fold improvement in accuracy compared with
the use of exact integration (Tables 3 and 4).

Qua dratic recta ngular elements of the Lagrange and Serendipity families have been compared and the results
are shown in figure 13. The grids and number of unknowns have been adjusted to give approximately the same
CPU time . As can be seen from figure 13 the results using quadratic shape functions of the Serendipity family
lie substantially closer to the exact solution than the results using a Lagrange shape function. The average
accuracy using Serendipity shape functions is approximately three times greater than the accuracy using L~ range
shape functions for comparable CPU times (Table 4). Both types of shape function , with reduced integration ,
produce results that straddle the exact solution and hence could be made to produce better agreement by a low
order least squares fit.

3.4 Reduced integration on a moderate grid

The same element/shape function combinations, as set out in Section 3.3, are here compared for solutions on
moderate grids using reduced integration. The detailed results are shown in figur es 14 to 18 and the gross
properties of the solutions are listed in Table 6. Comparative result s using exact integration are given in Table 5.
Many of these results have been obtained using the same grids as in reference 5. However the results shown in
Table 5 have required considerably less CPU time than the results presented in reference 5. This improvement in
efficiency is due to system changes to the computer (IBM 370/168) used to obtain the results rather than to
improvements in this program.

Results for linear and quadratic shape functions , for recta ngular elements , are shown in figure 14. The solution
using quadratic shape functions of the Serendipity type is closer to the exact solution particularly close to 0 90°.
However the general character of both solutions is similar to that of the solutions using coarse grids shown in
figure 9. Comparison of Tables 4 and 6 indicates that the solution using quadratic shape functions is approxima-
tely twice as accurate as the corresponding solution on a coarse grid. The result s using linear shape functions are
also more accurate than the corresponding results on a coarse grid. Also both linear and quadratic solutions are
considerably more accurate than corresponding solutions (Table 5) obtained using an exact integration formula
(see Appendix I) on a moderate grid, although the improvement is greater for quadratic shape functions.

Linear and quadratic shape functions used with triangular elements have been compared and the resu lts are
presented in figure 15. The results are of approximately the same accuracy although the solution using quadratic
elements is more accurate close to 0 = 900. Both solutions are considerably more accurate than those obtained
using a coarse grid (figure 10). As with the coarse grid solutions , the results using a linear shape function are
exactl y the same whether a I point or 7 point integration for mula is used. Comparison of Tables S and 6
indi cates that the solution using quadratic shape functions is less accurate with reduced integration than with
exact integration.

The results for triangular and rectangular elements using linear shape functions are shown in fi gure 16 and it is
apparent that the rectangular element solution is considerably more accurate. Since the triangular element
solution is the same whether the integration is exact or reduced and since both elements produce results of equal
average accurac y when the integration is exact , any superiorit y of the rectangular element must be due to the
use of reduced integration.

A comparison of results for the use of triangular and rectangular elements with quadratic shape functions on a
moderate grid indicates (figure 17 and Table 6) tha t the use of rectangular elements of the Lagrange type produces
results tha t are three times as accurate as those using triangula r elements. This improvement in accuracy is of the
seme orde r as was obtained with coarse grids using both exact and reduced integration.

L _ 
_ _ _ _ _ _ _ _ _ _ _ _ _  

______
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Ilowever the use of exact integration on a moderate grid produces more accurate results with a quadratic
tria ngular element than with a quadratic rectangular element of the Lagrange family (Table 5).

Figure 18 shows results of a comparison of quadratic rectangular elements of the Serendipity and Lagrange
families. Both sets of results lie close to the exact solution; an examination of Table 6 indicates that the

• solution using Serendipity elements is more accurate. Both solutions are considerably more accurate than
corresponding solutions using exact integration (Table 5) and more accurate than corresponding solutions
obtained on a coarse gr id (figure 13 and Table 4).

• 3.5 Effect of grid refinement
Solutio ns have been obtained for various meshes using isoparametric rectangular elements with quadratic shape

functions of the Serendipity family and using reduced integration. The results for three representative cases
are shown in figure I 9. The results using a coarse mesh required the solution of 149 nodal unknowns and
required 4.5 s CPU time; the results for a moderate mesh required the solution of 299 noda l unknowns and
required 15 s CPU time and the results for a refine d mesh required the solution of 582 nodal unknowns and
required 69 s CPU time . As is apparent from figure 19 all three solutions straddle the exact solution and so
could be made to agree with the exact solution even better by curve fitting the dat a in the least -squares sense
with a low order function. These results indicate that the accuracy increases with the square root of the CPU
ti me i.e. to double the accuracy requires four times the CPU time. Examination of figure 19 indicates that
the use of the coarsest gri d shown produces average differences tha t are less than 1% of the maximum velocity
whilst use of the most refined grid produces average differences tha t are less than 0.2% of the maximum velocity.

4. DISCUSSION

Since flow problems normally require the solution on the element boundary it appears tha t alternative sampling points
within the element , e.g. the Gauss points, offer no advan tage over the nodal points. As is apparent from Section 3.1,

• if the solution at the Gauss points is extrapolated to the element boundary the accuracy is not significantly better than
obtai ned at the nodes.

This section will be mainly devoted to a consideration of the results of Sections 3.2 to 3.4 in the light of some of the
ideas underl yi ng reduced integr ation.

The worked example considere d in Section 2.3 used a quadratic shape function. The equivalent two.dimensional
shape function would be a quadratic Lagrange sha pe function used in a rectangular element. The use of an isoparametric
formulation and distorted elements probably degrades the accuracy to be expected from a four point Gauss quadrature
formula. However , as is apparent fro m Section 3, the use of reduced integration produces considerable improvement.
Similar re marks apply to the Serendipity quadratic element.

The linear rectangular element also produces more accurate result s when reduced integration (one sampling point
per element) is used. However the improvement over the use of exact integration is not as good as for quadratic rect-
angular elements. This is in spite of the fact that the ratio of function evaluation points per unknown is the same as for
the use of Lagrange quadratic rectangular elements (Tables 7 and 8). Strang and Fix(ref .1 3) indicate tha t the use of one
int egration point with a linea r shape function over a single element leads to an indefinite result , and caution against its
use. Even though typical results with a linear rectangular element and reduced in.tegration produced a smaller r.m.s.
error than the use of exact integration the solution was often physically unsatisfactory (e.g. figure 14).

The use of reduced integration with triangular elements appears from this study to be relatively ineffective. in general
terms, since triangu lar elements do not require as many unknown parameters the y do not admit as many higher order terms
as rectangular elements, and hence are more likely to be integrated with low orde r formulae . This is the case for linear
triangular elements where even one sampling poin t per element is sufficient to produce exact integration. This is
supported by the relatively la rge number of function evaluation points per unknown (see Tables 7 and 8). The case of
quad ratic tr iangular elements is inconclusive. The use of a four point integration formula certainly doesn ’t produce
exact integration. However the interpretation of the sampling points as giving rise to a special fit (e.g. least-squares) of
the residual is lacking for triangular elements. Consequently, perhaps it is not sur prising tha t the use of a four point
integration formula has not produced better results than the use of a seven point formula on average . In some instances
the results were significantly worse. The question as to whether a symmetric four point formula exists that possesses
a comparable interpretation to tha t of a four point Gauss quadrature formula for rectangular elements , deserves further
study .

If the reason for the success of reduced integration is temp orarily disregarded it is apparent tha t the ability of rectangular
ele ments to respond to the use of reduced integration makes them significantly more efficient than triangular elements.
The results of Section 3 indicate that the quadratic Serendipity element is more efficient than the qua dratic Lagrange
ele ment and both are more efficient than the linear element. This order of merit is consistent with the results of
reference 5.
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The present study does not alter the general conclusion of reference 5 that the quadratic triangula r element is more
cfficieni tha n the linear triangula r clement.

5. CONCLUSIONS

From the pr esent study of a Galerki n finite element formulation for a representative example of incompre&sible
inviscid flow, the following conclusions have been drawn :

(a) With exact numerical integration the finite element solution is in much closer agreement with the exact
solution at the Gauss integration points than at the nodal points.

(b) If the solution at the Gauss points is extrapolated to the edge of the element the solution is not significantly
more accurate than the solution at the nodal points.

(c) Results for a one-dimensional problem suggest that the use of reduced integration , i.e. a lower order Gauss
quadrature formula, is equivalent to fitting the equation residual in a least-squares sense over each element.

(d) Reduced integration has produced results tha t are as accurate as those produced by exact integration
requiring ten times the CPU time , when used with quadratic recta ngular elements of the Serendipity type.

(e) When applied to quadratic rectangular elements of the Lagrange type, the use of reduced integration has
produced solutions of sufficient accuracy to requi re from 5 to 10 times as much CPU time, depending on
grid refinement , to produce comparable results when exact integration is used.

(f) The use of a four point integration formula has produced inferior results to the use of a seven point integration
formula when qua dratic triang u lar elements are used on a refined grid. However the converse is true for coarse
grid.

® The use of a one point integration formula with linear rectangular elements has produced superior results to
the use of a four or nine point integration formula with the same elements.

(h) The use of a one point integration formu la with linear triangular elements has produced exactly the same
result as the use of a seven point integration formula with the same elements.

(i) The improvement associated with the use of reduced integration on Serendipity, recta ngular elements has
been found to be independent of grid refinement.

(I) The lack of success of reduce d integration applied to qua dratic triangu lar elements is probably due to the
failure of the integration formula used to approxi mate the residual in the least -squares sense.

(k) The effectiveness of quadratic , rectangu lar , Serendipity elements foi the use of reduced integration is consistent
with comparable results obtained from structural applications of the finite element method.

This study indicates that the combination of reduced integration and quadratic Serendipit y elements will permit
accurate computational results to be obtained for flows about three-dimensional bodies with much coarser grids, and
hence smaller execution times , than would have been possible otherwise. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -
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NOTAT1ON

A area of triangle , Appendix I

[ ‘ B. weighted integral over known q.’s

CPU central processing unit

K.. ter m in the stiffness matrix
Ii

L number of nodal unknowns to be determined

M number of function evaluations per equation

M1 total number of function evaluations in the domain

N shape function , number of points on the body

R residual

W weight function

a .. coefficient in the solution matrix
Ii

b.. coefficient in the governing algebraic equation , Section 3

c number of contribu ting elements

e total number of elements in the domain

m number of function evaluations per element; order of differentiation

n number of points in the integration formula ; number of nodal unknowns

n number of nodesn

p order of finite element representatio n

exact tangential velocity component at the body surface

typical noda l unknown

• ‘ii’ tangential velocity component at the body surface calculated from the finite element solution

Iqi vector of nodal unknowns

u, v velocity components, figure 1

ti, i noda l values of velocity components

weight associated with the function value at the ktl~ point in the numer ical integration formula

1
- 

- -
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x, y cartesian coordinates

a root mean square difference between q1 and

0 angular position around a circular cylinder, measured from the front stagnation point

1 , 
~
- triangular coordinates, Appendix I
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APPENDIX I

NUMERI CAL INTEGRATION FORMULAE FOR VARIOUS SHAPE
FUNCTION/ ELEMENT COMBINATIONS

The numerical integration over a t riangle of area A is obtained from

ff fdA = A ~~~~~~~~~~~ c . ) ,  (1.1)

where ~~~, i~. and are triangular coordinates associated with tiie ith sampling point and w. is the aisociated weight.
The coordinates and weights of the various triangular integration formulae are set our below. The various sampling - -j
points are shown in figure 20

one point , a = ~l/3 , 1/3 , 1/3 
~~
, W 1

four-point , a = ~l/3 , l/3 , l/3 ~
, w -27 /48

b = ~3/5 ,l/5 ,l/5 L wb = 25 / 48

c = ~l/5 ,3/5 , I/ S L W 25 / 48

d = ~l/ 5 , 1/5 , 3/5 ~
, W

d 
= 25 / 48

seven-point, a ~l/3 , 1/3 , 1/3 ~
, W

a 
0.225

b = ~a1 ,$31, j 31 , wb = 0.13239 41528

c = ~~ a1 ,13~ , wc 0.13239 41528

d 131, 131, a1 , wd = 0.13239 41528

e = ~a~,I32 , 3 2  , w
~ 

= 0.12593 91805

= U32 ,a~i, 132 , wf 0.12593 91805

g = U32 , L32 ,a3 wg = 0.12593 91805

where

a1 = 0.05971 58718

= 0.47014 2064 1

a2 = 0.79742 69854

132 = 0.10128 65073

The seven-point formula has been used to produce exact integration for the linear and quadratic triangular isoperametric
elements. The four-poin t formula has been used to carry out reduced integration of quadratic triangular isopsrametric
elements. The one-point formula has been used to carry out reduced integration of linear triangular elements. However
the one-point formula produces exact Integration for this problem.

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _  

_
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Gauss quadrature formulae of the form

f f f ( ~ , 7~) dE . dn =~~~~ ~~~~~~~~~~~~~~~ (1.2)

~ -1 i ’l j=l

have been used to integrate f over rectangular elements. ~ , 77 are the coordinates of the ~, ~
th point and H1 ,

are the corresponding weights. The coordinates and weights for Gauss quadrature formulae up to n = 3 are set out
below. The various sampling points are shown in figure 20.

one-point (n=l) , yj = 0.0 H., H. 2.0

four-point (n=2) 
~
., ‘~ 

= ± I / ~JT H., H. = 1.0

nine-point (n=3) • 7l. = ±~/~j ~/T H., H. = 5/9

= 0.0 = 8/9

The nine-point formula has been used to produce exact integration for quadratic rectangular isoparametric elements
of both the Serendipit y and Lagrange kind. The four-point formula has been used to carry out reduced integration
over quadratic rectangular isoparametric elements and exact integration over linear rectangular elements. The one
point formula has been used to carry out reduced integration over linear rectangular elements.

The definition of the coordinates used in the triangula r and rectangular elements and a fuller description of numerical - 
-

integration mey be found in reference 11.

- - - - - - - - - - -
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TABLE 3. EXACT INT EG RATION FORM U LAE ON COARSE GRIDS

Element Shape Number of CPU Noda l r.m.s. Figure
type function unknowns time (s) difference referen ce

Rectangular Linear 199 5.1 0.043

Rectangula r Quadratic (S) 149 4.5 0.049 6

Tr iangular Linear 279 8.5 0.040

Tria ngular Quadratic 199 7 .1 0.1 20

Triangular Linear 199 5.1 0.061

Rectangular Quadratic (L) 199 7.5 0.047

Rectang ula r Quadratic(L ) 159 5.0 0.071

S = Ser endip ity L = Lagra nge

TABL E 4. REDUCED INTEGRATION FORMULA E ON COARSE GRIDS

Ele ment type Shape Nu mber of CPU Nodal r.m.s. Figure
type fu nction unknowns time (s) difference reference

Rectangular Linear 199 5.3 0.033 9, II

Rectangula r Quadratic (S) 149 4.5 0.015 6,8,9,13 ,19

Triangular Linear 279 8.5 0.040 10

Triangula r Quadratic 199 7.3 0.060 10, 12

Triangula r Linear 199 5.1 0.061 Il

Rectangular Quadratic(L) 199 7.7 0.022 12

Rectangular Quadratic (L) 159 5.1 0.042 13

_ _ _ _  _
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TABLE 5. EXACT INTEGRATION FORM U LAE ON MODERATE GRIDS

Element Shape Number of CPU Nodal r.m.s. Figure
type function unknowns time (s) difference reference

Rectangular Linear 399 18 0.034

Rectangular Quadratic (S) 299 15 0.023 7

Tr iangular linear 599 34 0.024

Triangular Quadratic 399 23 0.018

Tr iangular Linear 399 17 0.034

Rectangular Quadratic (L) 399 25 0.023

Rectangular Quadratic(L) 319 16 0.025

Rectangular Quadratic (S) 582 65 0.013

TABLE 6. REDUCED INTEGRATION FORMULAE ON MODERATE GRIDS

Element Shape Number of CPU Nodal r.m.s. Figure
type function unknowns time (s) difference reference

Rectangular Linear 399 17 0.022 14, 16

Rectangular Quadratic (S) 299 15 0.0071 7,14 ,18 ,19

Triangular Linear 599 33 0.024 15

Triangular Quadratic 399 22 0.026 15 , 17

Triangular Linear 399 16 0.034 16

Rectangular Quadratic (L) 399 25 0.0072 17

Rectangular Quadratic(L) 319 17 0.0080 18

Rectangular Quadratic (S) 582 69 0.0035 19

_ _ _ _ _ _  _ _ _
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TABLE 7. DEGREE OF DEFINITENESS FOR COARSE MESH

Reduced integration Exact integration

Element/ Number of Number of No. of Function Number of Number of No. of Function
shape function unknowns elements function eval. per unknowns elements function eval. per
combination eval. unknown eval. unknown

points points
L e MT M.r/L L e M1

Linear rectang le 199 100 200 1.005 199 100 800 4.020

Quad. rectang le 149 25 200 1.342 149 25 450 3.020
(Serendipity)

Quad. rectangle 199 25 200 1.005 199 25 450 2.261
(Lagrange)

Linear triang le 199 200 400 2.010 199 200 1600 8.040

Quad. triangle 199 50 400 2.010 199 50 700 3.518

TABLE 8. DEGREE OF DEFIN ITENESS FOR MODERATE MESH

__________ 

Reduced_integration Exact integration
Eleme nt ! Number of Number of No. of Function Number of Number of No. of Function
sha pe function unknowns elements function eval. per unknowns elements function eval. per
com bi nation eval. unknown eval. unknown

points points
I e MT MT/L L e MT M..1,/L

Linear recta ngle 399 200 400 1.003 399 200 1600 4.010

Quad. rectangle 299 50 400 1.338 299 50 900 3.010
(Serendipity)

• Quad. rectangle 399 50 400 1.003 399 50 900 2.256
(Lagrange )

Linear triangle 399 400 800 2.005 399 400 3200 8.020

Quad. t riangle 399 100 800 2.005 399 100 1400 3.509 

-~~~ --- -
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Figure 4

Quadratic rectangular ele ment s (Serendipity )

Solution at integ. pts. extrapolated to
body surface (Solution C, Table 2)

0 Nodal pt. solution (Solution B, Table 2)
Nodal pt. solution extrapolated to the same point s as
extrapolated integ . pts. solution (Solution D, Table 2)
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Figur e 4. Variation of tangential velocit y differences with angular position : 4 point integration formula
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Figure 5

Quadratic rectangula r elements (Serendipity)

Solution at integ . pts. extrapo lated to
body surface (Solution C, Table 2)

o Nodal pt. solution (Solution B, Table 2)

Nodal pt. solution extrapolated to the same points as
extrapolated integ. pts. solution (Solution D , Table 2)
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Figure 5. Variation of tangential velocity differences with angular position 9 point integration formula 
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Figure 6. Comparison of accuracy of reduced integr ation and exact integration on a coarse grid
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Figure 7. Compari son of accuracy of reduced integration and exact integration on a moderate grid
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Figure 8

Quadratic rectangular element (Serendipity )

0 4 pt. integ. formula , CPU = 4.5 s, r.m.s. error = 0.015
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Figure 8. Comparison of the use of reduced integr Ation and exact integration with the same accuracy
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Figure 9. Comparison of linear and quadratic shape functions - rectangular elements - coarse grid - reduced integration
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Figure 10. Com parison of linear and quadratic sha pe funct ions - triangular elements - coarse grid- reduced integration
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Figure I 2. Comparison of triangu lar and rectangular elements - quadratic sha pe fu nction - coarse grid - reduced integration
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Figure 13
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Figure 13. Comparison of Lagrange and Serendi pity quadratic elements - coa r se grid . reduced integration
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Figure 14. Comparison of linear and qua dratic sha pe functions - rectangular elements - moderate grid - reduced integration
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Figur e 16. Comparison of triangula r and rectangular elements . linear sha pe function - moderate grid . reduced integration
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