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SUMMARY

—— Two refinements in the application of numerical integration, alternative sampling
points and reduced integration, have been investigated for a Galerkin finite element
formulation of a representative flow problem. By sampling the solution at the Gauss
points a significant improvement in accuracy is achicved. The accuracy gain is lost if

b the solution at the Gauss points is extrapolated to the edge of the element. Consider-

: ation of a onc-dimensional problem suggests that the use of reduced integration is

equivalent to fitting the equation residual in the least-squares sense over each element.

The employment of reduced integration, rather than exact integration, for incompress-

: ible, inviscid flow about a two-dimensional cylinder has produced solutions that are ten

g times more efficient if quadratic rectangular elements, either Setendipity or Lagrange,

- 3 are used. The utilization of linear rectangular elements has caused a smaller improve-

4 ment. The improvements associated with the introduction of reduced integration are

) independent of grid refinement. The use of reduced integration and triangular ele-

ments, with both linear and quadratic shape functions, has produced no significant

improvement. The results herein reinforce the previously published conclusion that
the quadratic, rectangular, Serendipity element is the most efficient element for flow

problems of this type. /I‘
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|. INTRODUCTION

The application of the finite element method to fluid flow problems has been a fairly recent occurrence. Most
applications so far have been aimed at demonstrating the possibility of obtaining solutions to fluid flow problems by
the finite element method rather than obtaining the most efficient solution. Asa consequence a number of the
refinements that have been employed in structural applications of the finite element method to improve efficiency have
yet to be tried on fluid flow applications. Computational efficiency is determined by the execution time required to
achieve a predetermined accuracy.

The purpose of this report is to consider two such refinements, alternative sampling points and reduced integration,
applied to a representative fluid flow problem. Both these refinements relate to the numerical integration that is
necessary to convert the governing partial differential equations into governing algebraic equations. These concepts
have been explored in such applications as the analysis of plates and shells(ref. 1 and 2), the smoothing of discontinuous
stresses(ref.3) and the use of “thick shell” programs for solving thin shell problems(ref.4); a significantly improved
efficiency, in the above sense, has been reported in many cases.

The representative fluid flow problem is the flow about a two-dimensional circular cylinder of an incompressible,
inviscid fluid. This problem is chosen because it possesses an exact solution which permits a direct measure of the
accuracy. A Galerkin finite element formulation in primitive variables has been used as this is more representative
of general fluid flow problems than is the use of a variational principle. Previously the same model problem and
formulation have been used to systematically assess the relative merits of various elements and shape functions(ref.5).

The plan of this report is as follows. In Section Z some background developments of alternative sampling points and
reduced integration are introduced. In Section 3 results for various sampling points with different orders of numerical
integration are presented and compared. Additiona! results are given in Section 3 which illustrate an increased accuracy
for the same execution time when reduced integration is used instead of full integration. The same elements and shape
functions that were compared for full integration in reference S are compared for reduced integration in Section 3.
This comparison considers both coarse and refined grids. In Section 4 the results of Section 3 are interpreted in the
light of the background material given in Section 2. Section S contains an explicit list of the conclusions of this study.

2. BACKGROUND

In this section a little of the background development of alternative sampling points and reduced integration is set down.

Although both concepts have been established qualitatively,published material indicates that very few quantitative
results are applicable to other than specific cases.

2.1 Alternative sampling points

A typical finitc element formulation (e.g. reference S) converts a problem of continuous variables (e.g. u, v)
governed by partial differential equations into a problem of discrete variables (e.g. nodal values u , V) governed by
algebraic equations. This is done by arbitrarily approximating the continuous variables by low order, piecewise
polynomials in which the nodal values are the unknown coefficients. To form the algebraic relations typically
a weighted form of the governing equations(ref.6), with the polynomial approximations substituted, is integrated
over the whole domain. If the integration is performed analytically the only approximation present is associated
with forcing the solution to behave locally as though it were a low-order polynomial, assuming an isoparametric
formulation is not used.

If the integration is performed numerically additional errors may be introduced. Numerical integration implicity
fits a low order function, typically a polynomial, to the data and performs the integration analytically. The low
order function fits the data by requiring an exact match at certain predetermined points. The numerical inte-
gration is then a weighted summation of the integrands evaluated at the predetermined points. Normally Gauss
quadrature is used because with n points it is capable of integrating exactly integrands of polynomial form up to
order 2n - 1(ref.7).

Thus normally the order of the numerical integration is chosen to be sufficiently high that the integration is
exact for the order of the finite element representation used.

For problems that can be solved by formulating a variational principle it has been shown(ref.4) that at the
Gauss points the differential expressions in the integrand are closer to the exact values then elsewhere. For
example, for a cantilever beam subject to a distributed load the stresses are determined very accurately if sampled
at the Gauss points but are very inaccurate and discontinuous if sampled at the nodal points.

In the present problem alternative points within the element are considered to see if consistently better
agreement with the exact solution can be obtained.
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2.2 Reduced integration

Reducing the order of integration below that required to make the integration exact necessarily introduces some
additional error. Clealy if the order is reduced too much convergence may no longer be achieved. The minimum
order of integration for convergence is that which permits exact integration of the element volume (or area in two
dimensions) when an isoparametric formulation is used(ref.8).

The optimum order of integration depends on the order of the finite element representation, p, and the order of
differentiation, d, in the governing equation. For problems of a variational nature such as the plane strain problem i1
it has been deduced(ref.4) that forp = 1andd = 1, 1 point integration formulae should be optional while for ¥ !
p = 2andd = 1, 4 point integration formulae would be required if an element is considered in isolation.

If the stiffness matrix is considered as a whole, reduced integration may be viewed from a different perspective.
Since the Galerkin method is an example of the Method of Weighted Residuals it is instructive to derive the

governing algebraic cquations from
[[ N..R .dxdy = 0, 0)) i

where R is the residual of one of the equations after the analytic representation in terms of the nodal unknowns
has been substituted (see reference 6 for more details). Ni is the shape function appropriate to the ith noac. %
!

If the integration in equation (1) is carried out numerically then the result is

M .
Z W, N (x.y) - R, y,) = 0. ) ;

iy .
Wk is the weight attached to the kth function evaluation point. M is the number of function evaluation points,

i.c. the produce of m function cvaluation points per element and c contributing elements. Because of the nature 13
ol Ni only the four rectangular clements surrounding the it node will contribute to the summation. For example

at node 1 in figure 1, only clements w, x, y and z contribute. Thus in any one cquation M <4 m. !
The residual R could depend onany of the n nodal unknowns, qj, in the domain. Thus

n
R(x, 0 S Rj x Y- q 3)
AR |
il '
aNj 4
,\1
For convenience, elements are assumed to be perfectly regular. The symbol n is the product of the number of .

nodes n and the number of unknowns per node which in this case is 2. Certain of the q] will be known and

PR
P

hence equation (2) with (3) substituted can be written.

M X ;
Z Wk.Ni (xk Y \ Rj ("k' yk)-q]. =B, ) ;
k=1 =1 i

where Bi represents the weighted summation associated with the known q.. The problem now has L unknowns

and L equations like (4) must be written down in order to obtain a unique solution for the qj’s. It is also

apparent that for a solution to be possible, the tatal number of function evaluations MT must not be less than the
number of unknowns L.




23

-3- WRE-TR-1810 (W)

Using exact numerical integration, M., is much larger than L, using reduced integration M. _ is much closer to L

T T
although still greater. There is a possibility that if L is too close to M.r a subsystem of [q] might be completely

B e ‘-—'.—J'. R

determined from a few elements; this is clearly a singular situation.
If the order of summation in equation (4) is reversed the familiar stiffness equation is obtained,

5 |
Z Kij'qj = B, &) i

J=
M
where Kij Kij = Z Wk : Ni (xk, yk) . Rij (xk, yk) .

—

Consequently for a solution using reduced integration to lead a non-singular stiffness matrix [K], it is
necessary that

e.m>L (6)

The use of reduced integration implies a fitting of the integrand with a lower order polynomial than that
implied by the order of the finite element approximation. Hinton and Campbell(ref.3) prove that for two- |
dimensional parabolic isoparametric rectangular elements applied to a typical variational formulation of the
finite element method, the use of reduced integration is equivalent to performing the integration exactly .
after applying a least squares bilinear fit separately to each term of the integrand. ]

Thus since the finite element formulation constrains the solution to locally follow a low-degree polynomial the
use of reduced integration may be thought of as relaxing some of the constraints on the solution at the expense
of introducing additior:al errors by not carrying out the integration exactly. The empirical evidence clearly
indicates that the gains associated with relaxing the constraints far outweigh the losses associated with executing
the numerical integration less accurately.

A fuller discussion of specific applications of reduced integration may be found in reference 4 and a discussion
of reduced integration in a wider context may be found in reference 9.

A worked example

A simple example in one dimension will be considered in order to illustrate how and why reduced integration
works.
The governing equation is

l(y)=:—;'-y=0, @)

subject to the boundary conditiony = 1atx = 0. It is of historical interest that this problem was used by
Duncan(ref.10) to illustrate the classical Galerkin method (see also reference 6). This problem has the exact solution

X
y=e.

A solution is sought for 0Sx &I and five nodal values y, at equal intervals of x, are introduced. The domain 4
is split into two elements, 0<<\x < 0.5 and 0.5 <x <1, and quadratic Lagrange shape functions are used to J

determine the local variation of y.
From the boundary condition §; = 1; hence only four independent equations are required to uniquely
determine the unknown i"j's. The analytic representation of y is given by

y=ZNj.)7j. (8)
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Substituting this into equation (7) produces a residual, R(x), given by

5
“{dN. 5
R(x) = Z{_] -N.} Vo
o 1S 1N

=1

Forming the integral of the weighted residual over the domain (see reference 6) gives

1

/ Wi R(x)dx = 0.

o

For the Galerkin method Wi = Ni and equation (10) becomes

S
dN, =

> [ {8 ) o
X

yi e

=l
t o solve for the unknowns : y,, y3, ¥4 and ys.
The coefficients aij are given by

dN.

’ aij=[ Ni{_a_i-Nj}dx
i o

&)

(10)

an

(12)

(13)

and are to be evaluated numerically. The integral is evaluated for each element separately. If a three point Gauss

quadrature formula is used the integrations are performed exactly and the corresponding solution for the nodal

} values 9] are shown in Table 1.

[ TABLLE |. COMPARISON OF SOLUTIONS FOR Sy . y=0

dx
" Approximate solution (nodal), y
X Exact Reduced Local L.S. Traditional Exact
? numerical numerical fit of Galerkin solution
i integration integration residual (quartic
yei j’ri yls polynomial) y= &
% 0 1.0000 1.0000 1.0000 1.0000 1.0000
i 0.25 1.2707 1.2838 1.2838 1.2840 1.2840
f 0.50 1.6403 1.6486 1.6486 1.6488 1.6487
0.75 2.0990 2.1165 2.1165 2.1170 2.1170
E 1.00 2.6938 2.7180 2.7180 2.7182 2.7183
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If a two point Gauss quadrature (reduced integration) formula is used the integrations are not formed exactly;
the corresponding results for the nodal values are shown in Table 1. It is self-evident that the use of reduced
integration, rather than cxact integration, has produced a very much more accurate solution. It would be possible
to construct a local least-squares fit to the term

de -
&
dx J

in equation (13) and carry out the integration exactly. If this were done the results would be identical to those
shown in Table 1 under reduced integration.

This is because the least-squ-res fit of order n - 1 always cuts the original curve of order n at the n Gauss points.
Thus the least-squares fit of

dN
j - N,
o
dx

over each element would be a straight line cutting the original quadratic function at the two Gauss points.
Since the weight function Ni is quadratic, the total integration, over each element, of

1
dN,
e
o dx i

could be carried out exactly using a two point Gauss quadrature formula. Thus the sampling values of the integrand
would be exactly the same as for the reduced integration of the original expression in equation (13).

Also shown in Table 1 are results for a traditional Galerkin formulation(ref.6) in four unknowns. It is generally
found that because the analytic representation and the weighting functions are allowed to span the complete domain
superior results are obtained(ref.6) with the traditional Galerkin method than with a finite element or finite
difference raethod with the same number of unknowns. Table 1 indicates that the use of reduced integration has
produced results that arc almost as good as using a traditional Galerkin formulation.

The question remains:  why does the use of reduced integration give more accurate results than the use of exact
intcgration? The answer can be found by pursuing the equivalence between the use of reduced integration and

the least squares fitting of the expression
dN
j - N.
dx

in equation (I3) and subsequent integration. If equations (13), (12), (11) and (10) are considered it is clear that
the least-squares fit of the expression
“dN
j - N,
=)

dx

over each element is equivalent to a least-squares fit over each element of the residual in equation (10).

The basis for the weighted residual method(ref.6) is that, since the introduction of an analytic representation
produces a non-zero residual equation throughout the domain, a reasonable ap proximate solution will be obtained
if the residual is made to equal zero in some global sense e.g. equation (10). Ideally the residual should be zero
everywhere. If the weight function is predominantly of one sign the variation of R may be expected to include
some changes of sign if equation (10) is to be satisfied. Therefore a low order least-squares fit of R whose
weighted integral over the domain is zero is likely to have local magnitudes of Rls that are less than the local

magnitudes of R, and hence produce a solution closer to the exact.
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This is illustrated in figure 2. From the solution using exact numerical integration the expression

5
= dN. N el
Rei Z[——J 3 Nj } i - |
dx
Fl g
has been plotted. Rei is the equation residual corresponding to the approximate solution,{yje' j Rei is 2

qQuadratic in x and discontinuous at the element boundary (x = 0.5). If the expression

Ny
dx L

in equation (13) is fitted by a linear least-squares curve a pseudo-residual, based on yje‘ , can be constructed as

N
-ei ~dN ~ei
. )= j - N. Eals
N6 ) [ 2],
=1 Is
This is also plotted in figure 2. It is apparent that the effect of the least-squares fit has not greatly reduced the .

size of the residual. However the residual (Rls)' based on

dN
i - N
e
dx Is

and the corresponding solution ;J.‘s , is much smaller. ;jls is obtained by solving

5
Z Y =0 (16)
il
where
1
(aij)ls --/ Ni{ (T_-! - Nj} dx. (17)
o dx Is . »
Rls is given by
S .
Y dN = Is
= j - N. . ,
Rys Z z,_d—xl j } Y (18)
=1 Is

R's is actually zero but has been plotted in figure 2 in order that it will show up. Because of the local least-squares

fit Rls is a linear function of x, Rls is identical with the residual obtained from a reduced integration formulation, Rri'

¥
5
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The lower the order of the least-squares fit the closer the residuals should be to zero. However as noted
previously the total number of function evaluations in the domain must not be less than the number of unknowns.
In the present example the number of unknowns is four, there are two elements, therefore a two point Gauss
quadrature formula is the lowest order possible.

This interpretation of reduced integration clearly points towards the use of a least-squares approximation to the
method of weighted residuals or an MWLSR as a valuable technique in its own right. The “magic” in the use of a
lower order Gauss quadraturc formula is that it permits a shortcut to be taken so that the least-squares approxim-

ation to the residual is set up implicitly. Thus the use of Gauss quadrature formulae is convenient but not essential

to the success of a solution after approximating the residual in the least-squares sense.

3. RESULTS

The model fluid flow problem considered in this report is inviscid, incompressible flow about a two-dimensional
circular cylinder; the flow-field is represented schematically in figure 1. The governing equations, for inviscid,
incompressible flow in two dimensions, are taken to be

ou ., Ov _

ax oy O i
and

du Ov _

oy a° =

After application of a Galerkin finite element formulation the governing partial differential equations can be reduced
to algebraic equations of the form

n n
u + b v = =
}—J i uj >J i vJ 0,j=1,n 20
I i
n n
b..u a..v.=0,j=1,n, 22
Z ij oy =

where
_ | [ oN. _ [[ oN.
aij —// ax! : Nidxdyandbij -// ay) : Ni dxdy.

The symbols ﬁj, V. represent the nodal values of u and v, n is the total number of nodal unknowns and Ni is the shape

function associated with the it node. Further details may be found in reference S.

A computational solution is sought within the region ABCD shown in figure 1. The nodal points and elements are
defined on a polar grid and an isoparametric formulation is used to connect this to a cartesian grid.

All results presented in this section are for the variation of the tangential velocity component at the body surface with
angular position. As in reference § it is felt that this represents a stringent test of the computational results.

In order to have a single number represent the accuracy of the computational results, the root mean square difference,
0, between the finite element solution and the exact solution is defined as follows
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i=1

where 9r is the finite element solution for the tangential velocity component. The symbol, q, is the exact solution

for the tangential velocity component and N is the number of nodes between 6 = 0° and 90° (B and Cin figure 1).
The symbol, 0 may be thought of as the average difference between the computational and exact solutions.

31

Alternative sampling points

From Section 2.1 it is to be expected that the solution at the Gauss points will be closer to the exact solution
calculated at the Gauss points than the nodal solution is to the exact solution at the nodes. For practical purposes
the solution at the body surface is of interest. The body surface coincides with the boundary of a number of
adjacent elements. Thus nodal values at the body surface are available but the Gauss points do not coincide with
the body surface.

Using the analytic representation implicit in the finite element formulation the solution at the Gauss points can
be obtained. Using just the solution at the Gauss points an extrapolation is made onto the body surface as shown
in figure 3. This gives the solution C. The nodal solution B is interpolated along the body surface to give the
solution D which is at the same point as C. This process is repeated for 2 x 2 and 3 x 3 integration formulae.

TABLE 2. R.M.S. ERRORS FOR ALTERNATIVE SAMPLING POINTS AND DIFFERENT
NUMERICAL INTEGRATION FORMULAE

Solution A Solution B Solution C Solution D
Integration R.MSS. difference R.M.S. difference Solution A Solution B
formula at Gauss points at nodal points extrapolated to interpolated to
the surface same position as
Solution C
4 point 0.085 0.017 0.016 0.015
9 point 0.009 0.062 0.066 0.058

The results for the r.m.s. differences are shown in Table 2. These results were obtained using second order
rectangular elements of the Serendipity type with 149 unknowns in the whole flow-field. The actual differences
between the computed and exact solutions are plotted against angular position in figures 4 and 5 corresponding
to the different integration formulae. On each of figures 4 and 5 the solutions B, C and D (figure 3) are shown.

Examination of Table 2 indicates that the solution at the Gauss points is better for the 3 x 3 integration formulae,
i.e. the lowest order that still performs the numerical integration exactly. This solution, using a 3 x 3 integration
formula is superior to the nodal point solution using reduced integration. Once the Gauss point solution, for the
3 x 3 integration formula, is extrapolated to the surface (Solution C in Table 2) the increased accuracy of the
Gauss point solution is lost. In fact all solutions at the body surface are of comparable accuracy.

The use of a reduced integration formula (2 x 2) produces a relatively inaccurate solution at the Gauss points
(Solution A) but a very accurate solution when extrapolated to the body surface (Solution C). The interpolation
of the nodal point solution (Solution D) to the same position as the extrapolated Gauss point solution (Solution C)
has always produced a slightly better solution.

Both integrating formulae (figures 4 and 5) produce solutions which show some disagreement between solutions
Cand D at the forward stagnation point but good agreement as the shoulder point (8 = 90°) is approached.

The general conclusion of these results is that the use of alternative sampling points (Solutions C and D) produces
only marginal improvement in accuracy when compared with the large improvement in accuracy at the nodes
associated with the use of reduced integration. Comparable results were obtained when a refined grid was
considered.

£
i
i
|

e
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3.2 Reduced integration vs. conventional integration

33

Solutions have been obtained using a second order rectangular element of the Serendipity type witha 2 x 2
integration formula (reduced integration) and a 3 x 3 integration formula (full integration). The results for a
coarse grid (149 nodal unknowns in the flow field) are shown in figure 6. Because of the use of a dummy element
to carry out the numerical integration (see reference 5) the use of reduced integration has not produced any
significant improvement in execution time (as suggested in reference 4). Therefore any execution time shown is
nominally the same irrespective of the order of numerical integration.

The results for the coarse grid indicate that the solution using reduced integration is more than three times as
accurate as the solution using full integration. An examination of figure 6 indicates that the full integration
solution always lies below the exact solution whereas the reduced integration solution straddles the exact solution.
Thus an additional advantage of the reduced integration solution, not apparent from the r.m.s. error results, is
the possibility of fitting a low order least squares curve through the reduced integration results to obtain even
better agreement with the exact results.

The possibility exists that the improvement produced by using reduced integration will lessen as the grid is
refined. Results for a moderately refined grid (299 nodal unknowns in the flow field) are shown in figure 7.

As is apparent the reduced integration solution is still better than three times as accurate as the full integration
solution. A further refinement in the grid (with 582 nodal unknowns in the flow field) also produced a reduced
integration solution that was better than three times as accurate as the full integration solution. Because both
solutions are very close to the exact solution this case has not been plotted.

A better appreciation of the improvements associated with the use of reduced integration may be obtained by
considering figure 8. The reduced integration results correspond to those plotted in figure 6; the full integration
results have been obtained by refining the grid until a solution of the same total accuracy is produced. It may be
noted that this has required more than ten times the execution time. By plotting the tangential velocity
differences against angular position the tendency for the full integration solution to underestimate the exact
solution and the reduced integration solution to straddle the exact solution is made more obvious.

Reduced integration on a coarse grid

In this section various efement/shape function combinations are compared for solutions on a coarse grid using
reduced integration. The same element/shape function combinations are considered here as were considered for
full integration in reference S, namely:

(1) linsar shape function in triangular isoparametric element

(2) quadratic shape function in triangular isoparametric element

(3) linear shape function in rectangular isoparametric element

(4) quadratic shape function (Lagrange) in rectangular isoparametric element
(5) quadratic shape function (Serendipity) in rectangular isoparametric element

All these shape functions are described in reference 11. The various numerical integration formulae used with
various element/shape function combinations are described in Appendix I. However the results presented in
this section cannot be compared with those given in reference 5 since the grid used here is coarser; the grids
considered in reference S correspond to the grids used in Section 3.4.

Results for linear and quadratic shape functions, for rectangular elements, are compared in figure 9. The
numerical integrations for the quadratic shape functions have been evaluated with a 4 point formula based on
evaluating the integrands at the Gauss points (see Appendix I). The numerical integrations for the linear shape
functions have been evaluated with a 1 point formula based on evaluating the integrands at the mid point of the
elements (see Appendix I). Although both solutions straddle the exact solution the solution using a quadratic
shape function is noticeably smoother particularly close to @ = 90°. As is apparent from Table 4 the solution,
using quadratic shape functions of the Serendipity type, is approximately twice as accurate as the solution using
linear shape functions. The solution using quadratic shape functions is also more economical, mainly because
it has less nodal unknowns. A comparison of Tables 3 and 4 indicates that the use of reduced integration in place
of exact integration (3 x 3 formula) causes a greater improvement in accuracy for quadratic shape functions than
it does for linear shape functions.

Results for linear and quadratic shape functions, for triangular elements, are shown in figure 10. The numerical

integrations for the quadratic shape functions have been evaluated using a 4 point formula given by Cowper(ref.12).

The numerical integration for the linear shape functions have been evaluated with a 1 point formula given by
Zienkiewicz(ref.11). Examination of figure 10 and Table 4 indicates that the results for linear elements are
closer to the exact solution on average but become rather poor close to & = 90°. The solution using linear shape
functions is exactly the same whether a | point (Table 4) or 7 point (Table 3) integration formula is used.
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This indicates that use of a 1 point integration formula is exact for linear triangular elements applied to the
present problem. The use of reduced integration for a quadratic triangular element produces some improvement
in accuracy (Tables 3 and 4).

Results for triangular and rectangular elements, with linear shape functions are shown in figure 11. Since the
results with triangular elements are exact with the use of a one point integration formula the results generally lie
beneath the exact results whereas the results for the use of rectangular elements straddle the exact solution. Both
sets of results have the same number of nodal unknowns and hence approximately the same CPU time but the
solutions using rectangular elements are approximately twice as accurate (see Table 4).

Results for triangular and rectangular elements, with quadratic shape functions are shown in figure 12. The

numerical integrations for the quadratic shape functions have been evaluated with a 4 point formula (see Appendix I).

The results for the rectangular elements (Lagrange shape function) lie much closer to the exact solution (figure 12)
particularly close to @ = 90°. Both solutions required approximately the same CPU time but the results using
rectangular elements are almost three times as accurate on average. The use of reduced integration for quadratic
rectangular elements of the Lagrange family has produced a two-fold improvement in accuracy compared with
the use of exact integration (Tables 3 and 4).

Quadratic rectangular elements of the Lagrange and Serendipity families have been compared and the results
are shown in figure 13. The grids and number of unknowns have been adjusted to give approximately the same
CPU time. As can be seen from figure 13 the results using quadratic shape functions of the Serendipity family
lie substantially closer to the exact solution than the results using a Lagrange shape function. The average
accuracy using Serendipity shape functions is approximately three times greater than the accuracy using Lagrange
shape functions for comparable CPU times (Table 4). Both types of shape function, with reduced integration,
produce results that straddle the exact solution and hence could be made to produce better agreement by a low
order least squares fit.

3.4 Reduced integration on a moderate grid

The same element/shape function combinations, as set out in Section 3.3, are here compared for solutions on
moderate grids using reduced integration. The detailed results are shown in figures 14 to 18 and the gross
properties of the solutions are listed in Table 6. Comparative results using exact integration are given in Table 5.
Many of these results have been obtained using the same grids as in reference 5. However the results shown in
Table 5 have required considerably less CPU time than the results presented in reference 5. This improvement in
efficiency is due to system changes to the computer (IBM 370/168) used to obtain the results rather than to
improvements in thic program.

Results for linear and quadratic shape functions, for rectangular elements, are shown in figure 14. The solution
using quadratic shape functions of the Serendipity type is closer to the exact solution particularly close to 8 = 90°.
However the general character of both solutions is similar to that of the solutions using coarse grids shown in
figure 9. Comparison of Tables 4 and 6 indicates that the solution using quadratic shape functions is approxima-
tely twice as accurate as the corresponding solution on a coarse grid. The results using linear shape functions are
also more accurate than the corresponding results on a coarse grid. Also both linear and quadratic solutions are
considerably more accurate than corresponding solutions (Table S) obtained using an exact integration formula
(see Appendix I) on a2 moderate grid, although the improvement is greater for quadratic shape functions.

Linear and quadratic shape functions used with triangular elements have been compared and the results are
presented in figure 15. The results are of approximately the same accuracy although the solution using quadratic
elements is more accurate close to @ = 90°. Both solutions are considerably more accurate than those obtained
using a coarse grid (figure 10). As with the coarse grid solutions, the results using a linear shape function are
exactly the same whether a 1 point or 7 point integration formula is used. Comparison of Tables 5 and 6
indicates that the solution using quadratic shape functions is less accurate with reduced integration than with
exact integration.

The results for triangular and rectangular elements using linear shape functions are shown in figure 16 and it is
apparent that the rectangular element solution is considerably more accurate. Since the triangular element
solution is the same whether the integration is exact or reduced and since both elements produce results of equal
average accuracy when the integration is exact, any superiority of the rectangular element must be due to the
use of reduced integration.

A comparison of results for the use of triangular and rectangular elements with quadratic shape functions on a
moderate grid indicates (figure 17 and Table 6) that the use of rectangular elements of the Lagrange type produces
results that are three times as accurate as those using triangular elements. This improvement in accuracy is of the
same order as was obtained with coarse grids using both exact and reduced integration.




B e L D L O S e
= e s A L SR -

~1- WRE-TR-1810 (W)

However the usc of exact integration on a moderate grid produces more accurate results with a quadratic
triangular element than with a quadratic rectangular element of the Lagrange family (Table 5).
Figure 18 shows results of a comparison of quadratic rectangular elements of the Serendipity and Lagrange
families. Both sets of results lie close to the exact solution; an examination of Table 6 indicates that the .
' solution using Serendipity elements is more accurate. Both solutions are considerably more accurate than
corresponding solutions using exact integration (Table 5) and more accurate than corresponding solutions
obtained on a coarse grid (figure 13 and Table 4).

) 3.5 Effect of grid refinement

Solutions have been obtained for various meshes using isoparametric rectangular elements with quadratic shape :
functions of the Serendipity family and using reduced integration. The results for three representative cases .
are shown in figure 19. The results using a coarse mesh required the solution of 149 nodal unknowns and ‘
required 4.5 s CPU time; the results for a moderate mesh required the solution of 299 nodal unknowns and |
required 15 s CPU time and the results for a refined mesh required the solution of 582 nodal unknowns and 14
required 69 s CPU time. As is apparent from figure 19 all three solutions straddle the exact solution and so 1
could be made to agree with the exact solution even better by curve fitting the data in the least-squares sense
with a low order function. These results indicate that the accuracy increases with the square root of the CPU |
time i.e. to double the accuracy requires four times the CPU time. Examination of figure 19 indicates that |
the use of the coarsest grid shown produces average differences that are less than 1% of the maximum velocity |
whilst use of the most refined grid produces average differences that are less than 0.2% of the maximum velocity. i

J
f

4. DISCUSSION

Since flow problems normally require the solution on the element boundary it appears that alternative sampling points I

within the element, e.g. the Gauss points, offer no advantage over the nodal points. As is apparent from Section 3.1, }

. if the solution at the Gauss points is extrapolated to the element boundary the accuracy is not significantly better than
obtained at the nodes. i

This section will be mainly devoted to a consideration of the results of Sections 3.2 to 3.4 in the light of some of the }
ideas underlying reduced integration. .

The worked example considered in Section 2.3 used a quadratic shape function. The equivalent two-dimensional %
shape function would be a quadratic Lagrange shape function used in a rectangular element. The use of an isoparametric i
formulation and distorted elements probably degrades the accuracy to be expected from a four point Gauss quadrature 1
formula. However, as is apparent from Section 3, the use of reduced integration produces considerable improvement. 7
Similar remarks apply to the Serendipity quadratic element. 1

The linear rectangular element also produces more accurate results when reduced integration (one sampling point }
per element) is used. However the improvement over the use of exact integration is not as good as for quadratic rect- '
angular elements. This is in spite of the fact that the ratio of function evaluation points per unknown is the same as for {‘
the use of Lagrange quadratic rectangular elements (Tables 7 and 8). Strang and Fix(ref.13) indicate that the use of one
integration point with a linear shape function over a single element leads to an indefinite result, and caution against its
use. Even though typical results with a linear rectangular element and reduced integration produced a smaller r.m.s.
error than the use of exact integration the solution was often physically unsatisfactory (e.g. figure 14). l ]

The use of reduced integration with triangular elements appears from this study to be relatively ineffective. In general
terms, since triangular elements do not require as many unknown parameters they do not admit as many higher order terms (
as rectangular elements, and hence are more likely to be integrated with low order formulae. This is the case for linear 1
triangular elements where even one sampling point per element is sufficient to produce exact integration. This is 1
supported by the relatively large number of function evaluation points per unknown (see Tables 7 and 8). The case of \
quadratic triangular elements is inconclusive. The use of a four point integration formula certainly doesn’t produce ;
exact integration. However the interpretation of the sampling points as giving rise to a special fit (e.g. least-squares) of |
the residual is lacking for triangular elements. Consequently, perhaps it is not surprising that the use of a four point |
integration formula has not produced better results than the use of a seven point formula on average. In some instances i
the results were significantly worse. The question as to whether a symmetric four point formula exists that possesses |
a comparable interpretation to that of a four point Gauss quadrature formula for rectangular elements, deserves further
study.

If the reason for the success of reduced integration is temporarily disregarded it is apparent that the ability of rectangular
elements to respond to the use of reduced integration makes them significantly more efficient than triangular elements.
The results of Section 3 indicate that the quadratic Serendipity element is more efficient than the quadratic Lagrange
element and both are more efficient than the linear element. This order of merit is consistent with the results of
reference 5.
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The present study does not alter the general conclusion of reference S that the quadratic triangular element is more
cfficient than the linear triangular clement.

5. CONCLUSIONS

From the present study of a Galerkin finite element formulation for a representative example of incompressible
inviscid flow, the following conclusions have been drawn:

With exact numerical integration the finite element solution is in much closer agreement with the exact
solution at the Gauss integration points than at the nodal points.

If the solution at the Gauss points is extrapolated to the edge of the element the solution is not significantly
more accurate than the solution at the nodal points.

Results for a one-dimensional problem suggest that the use of reduced integration, i.e. a lower order Gauss
quadrature formula, is equivalent to fitting the equation residual in a least-squares sense over each element.

Reduced integration has produced results that are as accurate as those produced by exact integration
requiring ten times the CPU time, when used with quadratic rectangular elements of the Serendipity type.

When applicd to quadratic rectangular elements of the Lagrange type, the use of reduced integration has
produced solutions of sufficient accuracy to require from 5 to 10 times as much CPU time, depending on
grid refinement, to produce comparable results when exact integration is used.

The usc of a four point intcgration formula has produced inferior results to the use of a seven point integration
formula when quadratic triangular elements are used on a refined grid. However the converse is true for coarse

grid.
The use of a one point integration formula with linear rectangular elements has produced superior results to
the use of a four or nine point integration formula with the same elements.

The use of a one point integration formula with linear triangular elements has produced exactly the same
result as the use of a seven point integration formula with the same elements.

The improvement associatcd with the use of reduced integration on Serendipity, rectangular elements has
been found to be independent of grid refinement.

The lack of success of reduced integration applied to quadratic triangular elements is probably due to the
failure of the integration formula used to approximate the residual in the least-squares sense.

The effectiveness of quadratic, rectangular, Serendipity elements for the use of reduced integration is consistent

with comparable results obtained from structural applications of the finite element method.

This study indicates that the combination of reduced integration and quadratic Serendipity elements will permit
accurate computational results to be obtained for flows about three-dimensional bodies with much coarser grids, and
hence smaller execution times, than would have been possible otherwise.
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NOTATION

area of triangle, Appendix |

weighted integral over known qj’s

central processing unit

term in the stiffness matrix

number of nodal unknowns to be determined
number of function evaluations per equation

total number of function evaluations in the domain

shape function, number of points on the body
residual
weight function

coefficient in the solution matrix
coefficient in the governing algebraic equation, Section 3

number of contributing clements

total number of elements in the domain

number of function evaluations per element; order of differentiation
number of points in the integration formula; number of nodal unknowns

number of nodes

order of finite element representation

exact tangential velocity component at the body surface
typical nodal unknown

tangential velocity component at the body surface calculated from the finite element solution

vector of nodal unknowns
velocity components, figure 1
nodal values of velocity components

weight associated with the function value at the xth point in the numerical integration formula
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X,y cartesian coordinates
] root mean square difference between a5 and q,

.
6 anguliar position around a circular cylinder, measured from the front stagnation point

triangular coordinates, Appendix I
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APPENDIX 1

NUMERICAL INTEGRATION FORMULAE FOR VARIOUS SHAPE
FUNCTION/ELEMENT COMBINATIONS

¢ The numerical integration over a triangle of area A is obtained from
n
/[ fdA=AZwi.f(Ei,ni,§i), ((B))
=

where Ei' n and {i are triangular coordinates associated with the ith sampling point and v, is the associated weight.

The coordinates and weights of the various triangular integration formulae are set our below. The various sampling
points are shown in figure 20

one point, a={1/3,1/3,1/3 }, v, =1
four-point, a={1/3,1/3,1/3 }, w, = -27/48
' b ={3/51/51/51, w, = 25/48
c={1/53/51/51, w, = 25/48
; d ={1/5,1/5,3/51, wy = 25/48
seven-point, a={1/3,1/3,1/3}, w, = 0225
b=fa,b,B} wy = 013239 41528
c={Ba.B} , w, = 013239 41528
d =B, B a } w, = 013239 41528
e={a0.8] . w, = 012593 91805
f=ig,a.8] . we = 012593 91805
g§={h.B.ay} . wo = 012593 91805
where
a, = 005971 58718
B, = 047014 20641
a, = 0.79742 69854
B, = 0.10128 65073

The seven-point formula has been used to produce exact integration for the linear and quadratic triangular isoparametric
elements. The four-point formula has been used to carry out reduced integration of quadratic triangular isoparametric
elements. The one-point formula has been used to carry out reduced integration of linear triangular elements. However
the one-point formula produces exact integration for this problem.
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Gauss quadrature formulae of the form

1 1 n n
[ [ £k, n) df. dn = Z ZHi.Hj.f(Ei.nj) 1.2)
L =T

have been used to integrate f over rectangular elements. Ei - nj are the coordinates of the i, jth point and Hi n l-lj

are the corresponding weights. The coordinates and weights for Gauss quadrature formulae up ton = 3 are set out
below. The various sampling points are shown in figure 20.

one-point (n=1 . ,n. = 0.0 H,H =20

e-point (n=1) & m pHy
four-point (n=2) Ei"’,- =11/3 H, Hj =10
nine-point (n=3) Ei’nj = £/315 H, Hj = 5/9
= 00 = 8/9

The nine-point formula has been used to produce exact integration for quadratic rectangular isoparametric elements
of both the Serendipity and Lagrange kind. The four-point formula has been used to carry out reduced integration
over quadratic rectangular isoparametric elements and exact integration over linear rectangular elements. The one
point formula has been used to carry out reduced integration over linear rectangular elements.

The definition of the coordinates used in the triangular and rectangular elements and a fuller description of numerical
integration may be found in reference 11.

I
|
|
E
E
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|
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|
TABLE 3. EXACT INTEGRATION FORMULAE ON COARSE GRIDS ?
1
Element Shape Number of CPU Nodal r.m.s. Figure i
type function unknowns time (s) difference reference ;
Rectangular Linear 199 5.1 0.043 |
Rectangular Quadratic (S) 149 4.5 0.049 6 ’
Triangular Linear 279 8.5 0.040
Triangular Quadratic 199 Tl 0.120
Triangular Linear 199 5.1 0.061
Rectangular Quadratic (L) 199 7.5 0.047 £
Rectanguiar Quadratic (L) 159 5.0 0.071 r ;

TABLL 4. REDUCED INTEGRATION FORMULAE ON COARSE GRIDS

S = Serendipity

L = Lagrange

Element type Shape Number of CPU Nodal r.m.s. Figure
type function unknowns time (s) difference reference
Rectangular Linear 199 5.3 0.033 9,11
Rectangular Quadratic (S) 149 4.5 0.015 6,89,13,19
Triangular Linear 279 8.5 0.040 10
Triangular Quadratic 199 7.3 0.060 10,12
Triangular Linear 199 5.1 0.061 11
Rectangular Quadratic (L) 199 7.7 0.022 12
Rectangular Quadratic (L) 159 5.1 0.042 13

- -
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TABLE 5. EXACT INTEGRATION FORMULAE ON MODERATE GRIDS

Element Shape Number of CPU Nodal r.m.s. Figure
type function unknowns time (s) difference reference
Rectangular Linear 399 18 0.034

Rectangular Quadratic (S) 299 15 0.023 7
Triangular Linear 599 34 0.024

Triangular Quadratic 399 23 0.018

Triangular Linear 399 17 0.034

Rectangular Quadratic (L) 399 25 0.023

Rectangular Quadratic (L) 319 16 0.025

Rectangular Quadratic (S) 582 65 0.013

TABLE 6. REDUCED INTEGRATION FORMULAE ON MODERATE GRIDS

Element Shape Number of CPU Nodal r.m.s. Figure
type function unknowns time (s) difference reference
Rectangular Linear 399 17 0.022 14,16
Rectangular Quadratic (S) 299 15 0.0071 7,14,18,19
Triangular Linear 599 33 0.024 15
Triangular Quadratic 399 22 0.026 15,17
Triangular Linear 399 16 0.034 16
Rectangular Quadratic (L) 399 25 0.0072 17
Rectangular Quadratic (L) 319 17 0.0080 18
Rectangular Quadratic (S) 582 69 0.0035 19
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TABLE 7. DEGREE OF DEFINITENESS FOR COARSE MESH
z
Reduced integration Exact integration
. Element/ Number of | Number of | No. of Function | Number of | Number of | No. of Function |
shape function [unknowns | elements function | eval. per | unknowns | elements function | eval. per s
combination eval. unknown eval.. unknown
. points points
L e MT MT/L L e MT MT/ L i

Linear rectangle 199 100 200 1.005 199 100 800 4.020

3
Quad. rectangle 149 25 200 1.342 149 25 450 3.020 ]
(Serendipity)
Quad. rectangle 199 25 200 1.005 199 25 450 2.261
(Lagrange)
Linear triangle 199 200 400 2010 199 200 1600 8.040
Quad. triangle 199 50 400 2.010 199 50 700 3.518

i

TABLE 8. DEGREE OF DEFINITENESS FOR MODERATE MESH
Reduced integration Exact integration
Element/ Number of | Number of | No. of Function| Number of | Number of | No. of Function
shape function | unknowns | elements function | eval. per | unknowns | clements function | eval. per
combination eval. unknown eval. unknown
points points
L e M, M/L L e My M, /L

Linear rectangle| 399 200 400 1.003 399 200 1600 4.010
Quad. rectangle | 299 50 400 1.338 299 S0 900 3.010 h
(Serendipity) :
Quad. rectangle | 399 50 400 | 1.003 399 50 900 | 2256 E
(Lagrange)
Linear triangle 399 400 800 2.005 399 400 3200 8.020
Quad. triangle 399 100 800 2.005 399 100 1400 3.509
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Figure 4
Quadratic rectangular elements (Serendipity)
Solution at integ. pts. extrapolated to
body surface (Solution C, Table 2)
©  Nodal pt. solution (Solution B, Table 2)
Nodal pt. solution extrapolated to the same points as
extrapolated integ. pts. solution (Solution D, Table 2)
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Figure 4. Variation of tangential velocity differences with angular position : 4 point integration formula
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WRE-TR-1810 (W)
Figure 6
CPU = 455
© 4 pt. integ.formula quadratic rectangular
8 9 pt. integ.formula element (Serendipity) .
i
= == — Exact |
r.m.s. error [4 pti.f.] = 0.015 |
r.m.s. error [9 pti.f.] = 0.049 i
=0 !
2.0 - — !
P I
»8 9 '
7 0
1.8~ Pos
7 Q
/7
N jol
1.6 P
/
/
1.4}~ /g
/ -
/
1.2 /
>~ A : i
= / |1
8
s 1.0 4
= ﬁ/
€
o 0.8
-
/ {
o/
0.6 A |
/ %
/
0.4} /
0.2} / x
/
/
| | q! | | | | 1 E
0 10 20 30 40 50 60 70 80 90 !

Angular position, 0 (degrees) ;

Figure 6. Comparison of accuracy of reduced integration and exact integration on a coarse grid
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Figure 7
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Figure 10
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Tangential velocity difference (q.r - qe)

0.03

0.02

0.01

0.01

-0.02

-0.03

© Coarse grid
B Moderate grid

A Refined grid

WRE-TR-1810 (W)
Figure 19

r.ms. error = 0.0150

r.ms. error = 0.0071

r.m.s. error = 0.0035

Angular position, 0 (degrees)

All solutions obtained with quadratic (Serendipity) rectangular elements
and reduced integration

Figure 19. Effect of grid refinement




; WRE-TR-1810 (W)
Figure 20

One - Point

(a)  Sample points for triangular elements

X

Four - Point

One - Point

(bl  Sample points for rectangular elements

X X
X X
Four - Point

X X

X X

X X
Nine - Point

Figure 20. Sample points for numerical integration formulae




WRE-TR-1810 (W)

DISTRIBUTION
EXTERNAL Copy No.
In United Kingdom
. Defence Scientific and Technical Representative, London 1
Defence Research and Development Representative, London 2 &
' Ministry of Defence, Defence Research Information Centre 3
Royal Aircraft Establishment
Aero Department 4-5 &
Space Department 6 ' ‘
Weapons Department 7-8 i
Bedford 9
Library 10
R.ARD.E. 11
T.T.C.P., UK. National Leader Panel W-2 12 - 15
Aeronautical Research Council 16 - 17
g Aircraft Research Association (Bedford) 18
C.A.A.R.C. Secretary 19
National Lending Library of Science and Technology 20
i Royal Aeronautical Society, Library 21
Cranfield Institute of Technology, Library 22
Imperial College, Department of Aeronautical Engineering Library 23 3'
Quecen Mary College, Department of Aeronautical Engineering 24 t
University of Bristol, Department of Aeronautical Engineering 25
University of Manchester, Department of Mechanics of Fluids 26
University of Southampton, Department of Aeronautics and Astronautics 27

University College of Swansea, Department of Civil Engineering

(Professor O.C. Zienkiewicz) 28
Brunel University, Department of Mathematics
(Professor J.R. Whiteman) 29

In United States

em———

Counsellor, Defence Science, Washington 30 '
' Defence Research and Development Attache, Washington 31

Department of Defense, Defense Documentation Center 32 -43 {

Air Force Armament Testing Laboratory 4 i

Ballistic Research Laboratories 45

Edgewood Arsenal 46 ‘

Eglin Air Force Base 47 i

N.AS.A. 48 - 51

Naval Surface Weapons Center ! ;
Dahigren 52 "

White Oak 53




WRE-TR-1810(W)
Copy No.
Naval Weapons Center 54
Naval Ship Research and Development Center 55
Naval Weapons Laboratory 56
Picatinny Arsenal 57
Redstone Arsenal 58 : :
T.T.C.P. US. National Leader Panel W-2 59 - 62 11
Wright-Patterson Air Force Base, Library 63 f
American Institute of Aeronautics and Astronautics, Library 64
Pacific Technical Information Services, Northrop Institute of Technclogy 65 §
Applied Mechanics Reviews 66
Arnold Engincering Development Center 67 t
A.R.O. Inc. 68 i
The Bocing Company, Library 69 jj
Lockheed Aircraft Corporation, Library 70 ’h
McDonnell-Douglas Corporation, Library 71 ’
Sandia Corporation, Library 72 '
Bell Acrospace Division of Textron ¢ ‘
(Dr. A.J. Baker) 73 |
Douglas Aircraft Company, Library Long Beach 74 :7
University of Washington, Department of Chem. Eng. {
(Professor B.A. Finlayson) 75
University of California, Berkcley, Department of Mech. Eng.
(Professor M. Holt) 76 :
University of California, Berkeley, Department of Mech. Eng., Library 47
Mass. Inst. of Technology, Acronautics Department, Library 78 |
Polytechnic Inst. of Brooklyn, Department of Aero. Eng. ,
(Professor G. Moretti) 79 é’
New York University, Courant Inst. of Math. Sci., Library 80 !?
The University of Texas, Austin 3 ,
(Professor J.T. Oden) 81 1
Princeton University, Department of Aeronautics, Library 82 e ;;
Stanford University, Department of Aeronautics, Library 83
The Aerospace Corp., Fluid Mechanics Department
(Dr. T. Taylor) 84
University of California, Berkeley, Department of Civil Eng.
(Professor R.L. Taylor) 85
T.R.W. Systems, Library 86




WRE-TR-1810 (W)

Copy No.
United Aircraft Research Labs., Library 87
" University of Maryland, Institute of Fluid Dynamics and Applied Math., Library 88
In Canada
) Defence Research Establishment, Valcartier 89 i
Ministry of Defence, Defence Science Information Service 90 ‘
N.AE. Ottawa 91 i
T.T.C.P., Canadian National Leader Panel W-2 92 - 95 !
University of Toronto, Institute of Aerospace Studies : 96
McGill University, Library, Montreal 97
University of Calgary, Department of Mechanical Engineering b
(Professor D.H. Norrie) 98 {
}
In Europe :
A.G.A.RD., Brussels 99 - 104 i
f t University of Paris South, Orsay, Department of Mathematics
3 (Professor R. Temam) 105 !
: s National Aerospace Lab., Holland
(Dr. J. van der Vooren) 106
In India \
Acronautical Development Establishment, Bengalore 107 t
Indian Institute of Science, Bangalore (Department of Aero Engineering) 108 |
Indian Institute of Technology, Madras (Department of Aero Engineering) 109
Hindustan Aeronautics Ltd., Bangalore 110
National Aeronautical Lab., Bangalore 111
Space Science and Technology Centre, Trivandrum 112 ‘
In New Zealand
Ministry of Defence 113 ‘ 4
: In Australia ;‘
Department of Defence, Canberra t
Defence Library, Campbell Park 114
Air Force Scientific Adviser 115-116 f
Army Scientific Adviser 117-118
Navy Scientific Adviser 119-120
Defence Science and Technology
Chief Defence Scientist 121
Executive Controller, Australian Defence Scientific Service 122

Controller, Programme Planning and Policy 123




WRE-TR-1810 (W)

Copy No. ;f
Superintendent, Defence Science Administration 124 :
Superintendent, Central Studies Establishment 125 ; 1
Assistant Secretary, Defence and Information Services (for microfilming) 126 f
B.D.R.S.S., Canberra 127 - 128 i 1
Superintendent, Aeronautical Research Laboratories, Mech. Eng. Division 129 y 1
Director, Joint Intelligence Organisation (DDSTI) 130 | j
Superintendent, Aeronautical Research Laboratories, Aerodynamics Division 131 |
Superintendent, Acronautical Research Laboratories, Mech. Eng. Division 132
Acronautical Rescarch Laboratorics, Library 133
Materials Rescarch Laboratory, Library 134 {
Department of Industry and Commerce, Melbourne f
Government Aircraft Factories 135 E
RA.A.F., Academy, Point Cook 136
;‘ CAC. 137
' Institute of Engineers, Australia 138 4
Australian National University, Library 139 f
Australian National University, Computing Centre 4 i
(Dr. R.S. Anderssen) 140 [
CS.1.R.O., Chief of Division of Mechanical Engineering 141 1
C.S.1.R.O., Chicf of Division of Meteorological Physics 142 : :
Flinders University, Library 143
: Monash University, Library 144
' University of Adelaide, Library 145
University of Adelaide, Department of Applied Mathematics 1‘
(Dr. B.J. Noye) 146 4
University of Adelaide, Department of Civil Eng. ;1
(Professor Y.K. Cheung) 147 1
University of Adelaide, Department of Civil Eng. 1
(Dr. S.G. Hutton) 148 A ’
University of Melbourne, Library 149 i
University of Newcastle, Library 150 ' t
University of New South Wales, Library 151 |
University of New South Wals,Department of Mechanical Engineering
(Professor G. de Vahl Davis) 152
University of New South Wales, Dean of Engineering

(Professor P.T. Fink) 153
University of Queensland, Department of Mechanical Engineering, Library 154




WRE-TR-1810 (W)

Copy No.
University of Sydney, Library 155
° University of Sydney, Department of Aero. Eng.
(Dr. G.P. Steven) 156
University of Sydney, Department of Mechanical Engineering
. (Professor R.I. Tanner) 157
University of Tasmania, Library 158
University of Western Australia, Library 159
Caulficld Institute of Technology, Department of Mathematics
(Dr. A K. Easton) 160
i INTERNAL
'A Director 161
A Chief Superintendent, Weapons Research and Development Wing 162
j Superintendent, Aerospace Division 163
k Head, Balilistics Composite 164
E ; Principal Officer, Dynamics Group 165
i Principal Officer, Aerodynamics Research Group 166
s Principal Officer, Ballistic Studies Group 167
Principal Officer, Field Experiments Group 168
Principal Officer, Flight Rescarch Group 169
Author 170
W.R.E. Library 171 - 172
A.D. Library 173 - 174

Spares 175 - 197




