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SUMMARY

This report presents measurements of the electron density profile made during a
period of intense travelling ionospheric disturbance activity. The electron density
profile was determined using a swept frequency r.f. impedance probe, and compared
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1. INTRODUCTION

The impedance of the ionospheric plasma at radio frequencies varies with frequency in a manner characteristic of the
density of the plasma. Therefore, a measurement of the ionospheric impedance as a function of altitude enables the
clectron density profile to be determined . When the electron collision frequency is much smaller than the gyro-frequency,
then the resonances and nulls associated with the frequency dependence of impedance show up clearly, and the deter-
mination of electron density becomes relatively simple.

lonograms taken during the flight of an ionospheric impedance probe showed intense T.1.D. (travelling ionospheric
disturbance) activity; the impedance probe measured electron density disturbances associated with this activity.

In the next section the principles of operation, and the construction of the impedance probe are discussed. Data
obtained from the probe on Cockatoo 4008, fired at Woomera at 14.01 hours C.S.T., on 18 August, 1975, are presented
in Section 3. In Section 4, the ionograms obtained during the rocket trial are described, with particular attention paid
to the travelling ionospheric disturbances. Finally, the influence of this T.1.D. activity on the observed electron density
profile is discussed.

2. DESIGN OF THE PLASMA RESONANCE PROBE

Use of the radio frequency dependence of plasma impedance as a technique to measure the ionospheric electron
density profile has been made in several ways (sce, for example; references 1, 2and 3). A variety of methods for
doing this have been designed. The most satisfactory appears to be that adopted in reference 4. The payload, an
r.f. transmitter and receiver, has been designed so that the transmitting element lies between the receiver and the rocket
body carth. This cnsures that the detected field lines extend beyond the plasma sheath surrounding the rocket into
the ambient ionosphere. The receiver-detector circuit was designed to be in the form of a balanced bridge, with the
transmitter forming the input to the bridge. By balancing the bridge during assembly of the payload, small departures
from the balanced condition could easily be detected, thereby giving great sensitivity. Furthermore, the configuration
was designed so the elements are squat (i.e. not long narrow cylinders), thereby approximating spheres, for which the
equations describing the impedance are simplest.

In an earlier paper(ref.5), we presented data from an experiment we conducted based on the design concepts of
Melzner and Rabben(ref.4). As explained in our paper, we detected spurious resonances, which we attributed to the
plasma sheath. In order to eliminate these resonances we redesigned the payload so that the whole of the nose cone
constituted the detection clement (receiver), the parallel section was the guard ring (transmitter), and the second stage
of the rocket made the earth. Figure 1 shows the mechanical configuration of the payload. Although the principles
of operation of the plasma probe are as in the previous report, we have reproduced a diagram of it in figure 2 for
convenience.

In addition to these physical changes, we also made modifications to the electronics. The swept frequency generator,
shown in figure 3, was redesigned using the sine wave generator XR 205 in place of beat oscillators. The output voltage
of the frequency generator was reduced to 0.3 V p-p. This was to minimise disturbance to the ambient electron density
by the r.f. field. Also, a phase sensitive detector (P.S.D.) was added so that phase as well as amplitude of the detected
signal was recorded. This made interpretation of the data easier, as the phase goes through zero at the plasma resonance.

The circuit diagram for the P.S.D. is shown in figure 4. The phase sensitive detector compares the phase difference
between the outputs of the receiver and sweep frequency generator. Two F.M. limiting amplifiers X1 and X2 are usec
to limit the inputs to the P.S.D. (X4) to a constant amplitude of 1.5 V for a receiver output voltage range of S0 mV to
3.5V. The output from amplifier X3 is fed directly into the telemetry. A +90° phase difference voltage at TN3 and
TN4 produces an output voltage from X3 of +5 V, falling to +2 V when the input voltages are -90° out of phase.

The circuit diagram of the differential amplifier was unchanged from that shown in reference 5, so it is not shown here.
It detected the voltage difference across the bridge, as shown in figure 2(a).

3. DATA ANALYSIS AND RESULTS

The following data were telemetered to ground:

(1) The high and low gain differential amplifier outputs
(2) The phase sensitive detector output

(3) The sweep frequency voltage mmp

(4) The +0 Vand +5 V references

The data were time multiplexed, modulating an A.M./F.M. 465 MHz telemetry sender with 24 channels. The amplitude
and phase data were cach allocated several channels in order to obtain maximum detail of the resonances, whereas sufficient
information on the voitage ramp and reference voltages was obtained by using only one channel for each.

e ——— A X £ i 7
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Figure S gives portions of the telemetered data, showing the low gain amplificr, phase sensitive detector, voltage ramp,
and reference voltages.

1t is seen that below 100 km there is very little variation in the detector output with frequency. This is because at
these altitudes the electron collision frequency was high, and this damped out response of the plasma to the r.f. signal.
However, above 100 km this effect of the electron collisions decreased rapidly and the r.f. dependence of the plasma
impedance showed up clearly. There is a small systematic difference between multiplex channels on the low gain
amplifier output. This is thought to be due to r.f. interference. Despite considerable care in the design of electronic
packaging to prevent unwanted r.f. pickup, it proved impossible to eliminate it altogether. However, since the difference
in signal between channels remained constant in time, it was possible to correct for it.

In the analysis of the data to obtain the electron density profile, we attempted to fit the observed variation of impe-
dance with frequency to cold plasma theory (which proved to be difficult, as explained below). This method gives
absolute electron density. We also obtained the small scale variation in electron density with altitude by measuring two
limiting parameters in the impedance curves - the high frequency limit to the differential amplifier output, and the
frequency at which the phase indicated by the phase sensitive detector went through zero.

Reference 6 gives a comparison of various theoretical expressions for the r.f. impedance of a plasma and discusses
possible payload configurations. The capacitor consisting of the rocket body and nose cone as plates and ionospheric
plasma as medium (P in figure 2(a)), has an impedance which depends on the physical configuration. However, by
considering the potential distribution around a point charge immersed in an anisotropic plasma, it is shown in reference 7
that the general expression for the frequency dependence of the (complex) capacitance is

C .1 (XY (YUP ﬁ, (X/V) (Y/V)? G )
% 1oy 1 (X/U) - (Y/U?
where Co = capacitance in the absence of ionospheric plasma
, 2
X (/0
Y = (M
U = 1-w2nf
C = capacitance, in the ionosphere, at a frequency f

fyy = ionospheric plasma frequency ( = Ne’/ZI'meo)

f = electron cyclotron frequency (= eB/m)

Z o
"

electron density

v = electron collision frequency,

and the other symbols have their conventional meanings.

G is a parameter, of the order of unity, which depends both on the geometrical configuration, and on the angle between
the axis of the capacitor and the earth’s magnetic field. For example, for an infinite cylinder G = sin?6.

The expression, equation 1, applies to a cold anisotropic plasma. However, as is shown in reference 6, it is also valid
for electron temperatures less than 3000°K, which is applicable to the lower ionosphere. If the second term under the
square root sign is much less than unity, which is is expected in the region near the upper hybrid resonance frequency,
the root may be expanded in a Taylor’s series. Retaining terms to first order of small quantities gives the expression:

C ., XY -(YU)G)

° (- (Y/U?)

(2)

This equation is the one commonly quoted for a parallel plate capacitor(ref.8), and an infinite cylinder(ref.9). It has
the benefit of being easily manipulated to give the unknown quantities in terms of measured variables. However, since
our sweep frequency passes through the upper hybrid resonance, we have used equation 1.
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Using equation 1 for the frequency dependence of the plasma impedance, we have calculated values for the amplitude
and phase of the output voltage across the bridge for different values of clectron density and collision frequency. These
calculations required the values of impedance for the circuit elements, and of the physical capacitance between, for
example, the nose cone and rocket body. In some cases it was difficult to measure impedance with the payload
completely assembled, and it was necessary to estimate a correction to the measured value. Another cause of error
was the parameter G, which was not totally independent of 0. However, it was found that the output curves were
msensitive to variations of circuit impedance and of G, within their expected uncertainties.

When we were curve fitting the data, we found that the required value of electron collision frequency was several
times greater than expected. The has been noted before (see, for example, reference 10), and is due to the varying
clectron density across the plasma sheath surrounding the vehicle. We also found that, to get profiles which agreed
with the data, we had to use a value for the physical capacitance ((‘0) between detector and body, much larger than

the measured value. The reason for this is not clear. Because of the design of the experiment, it is unlikely to be
caused by parallel and shunt capacitative effects of the sheath.

Figure 6 shows an example of calculated values for the output of the plasma probe. Comparing with the data on
figure S shows that only fair agreement was obtained with the observations. The fact that we were unable to find
values for fN and v which gave good agreement between the calculations and observations is likely to stem from the

simplified manner in which we have modelled the circuit elements comprising the bridge. It is unfortunate that such
an approach was not entirely satisfactory, since it would be extremely difficult to estimate parameters in a more detailed
circuit evaluation. However, as mentioned earlier, variations in electron density can be determined by two methods:

(a) The asymptotic value of voltage at high frequencies. For r.f. much greater than the gyro- and plasma
frequencies, the plasma capacitance varies with electron number density as C/Co = 1-X. As seen in figure 7,

which plots this data for the upleg, this method gave good detail on structure.

(b) Zero crossing of phasc.  The frequency at which phase goes through zero, should be an indication of
number density, imdependent of the rocket altitude. Figure 8 plots the upleg data obtained by this method.

The validity of these methods, which have the disadvantage of only giving relative instead of absolute values for
clectron density, was confirmed by running the computer program for several values of plasma frequency. A further
indication that the two methods are measuring the same thing is that the measured profiles are very similar

Figure 9 plots the derived electron density as a function of attitude. The small scale variations in electron density
were obtained as discussed above, and these were added to the gross profile determined from scaling the inograms.

It is seen that the up and downleg profiles are similar in shape, but shifted in altitude.

4. COMPARISON WITH IONOGRAMS

Figure 10 gives tracings from ionograms taken over a period of half an hour either side of the firing. Unfortunately
the ionograms were low in contrast, so they could not be reproduced here. Only the ordinary ray traces have been
shown, to make the figure clearer. For the same reason, alternate ionograms are drawn with a thicker line.

It is seen that, over the period covered by the ionograms, a travelling ionospheric disturbance (T.1.D.) had progressed
down from the middle of the F1 region to the E region. These perturbations in electron density are attributed to
internal gravity waves, which have the property of downward phase progression as they move upward. They are thought
to be mainly produced either by magnetic storm activity, particularly in the auroral regions from where they move
poleward, or by weather systems such as fronts.

The small scale structure of electron density measured by the plasma probe is consistent with the T.L.D. activity shown
on the ionogram. The vertical and horizontal wave number of internal gravity waves (kz, kx) are related to their angular
frequency (w) by the expression(ref.11):

2w Biwlic? .wd (i 2 2 VR
(w LA )w?/C? -w (kx +kz )+wg kx 0 3)
where C is the acoustic velocity, and v and w8 are the acoustic cut-off and Brunt-Vaisala frequencies respectively.

Using values of these three parameters typical of the E region, kz = 4x10"* m™ (from the rocket data) and a period

of one hour (from the T.1.D.’s on the ionograms) gives a horizontal wavelength of 150 km.
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An alternative way to estimate a limit to horizontal wavelength is from the vertical displacement of the profiles on the
up and downlegs. Since the times of the up and downleg parts of the trajectory differ by only about 2 min, which is a
small fraction of the period of the wave, the wave will not have travelled far during this time, and displacement of the up
and downleg profiles is mainly due to change in the horizontal phase. The greatest change will occur when the ground
path of the rocket coincides with the direction of propagation of the wave. This gives an upper limit to the horizontal
wavelength, which we will now calculate. At 120 km altitude the vertical displacement between up and downleg
profiles is about S km, i.e. a third of a wavelength. The horizontal separation of the up and downlegs at this altitude
is 25 km, which gives a horizontal wavelength of 75 km. This is rather less than the other estimate, however a mean
value of 100 km, with a corresponding period of 35 min, still lies within the uncertainty of both methods. Internal
gravity waves with these characteristics are expected at these altitudes as they have long enough vertical wavelength not
to be dissipated, neither are they reflected to ground by the temperature structure at the mesosphere.

The approximate agreement between the horizontal wavelength determined by the two methods, the second of which
gives an upper limit, indicates that the direction of propagation of the wave must lie approximately along the rocket’s
ground trajectory. Since the downleg profile was lower than the upleg, and since the phase of internal gravity waves
descends with upward propagation, this suggests that the wave had come from the South East. As we have an indication
of the direction from which the waves came, and since the T.1.D.’s were so strong, we had hoped to be able to identify
a source of them. However, there had not been any strong magnetic storms for several days prior fo firing, and the
weather patterns showed no strong frontal activity.

5. DISCUSSION

Although the impedance probe functioned satisfactorily, problems were experienced in fitting the observed variation
in detector output with calculations using the theory for a cold anisotropic plasma. The values for effective electron
collision frequency, and detector capacitance, required to give a fit to the data were greater than expected. The former
was attributed to the effect of the plasma sheath surrounding the vehicle; no reason could be given for the latter.

The voltage limit at high frequency, and frequency at which phase went through zero, gave consistent profiles for the
small scale variation of electron density. They gave a vertical wavelength of 15 km. Using the dispersion equation for
interval gravity waves, and a period of 35 min (the period of T.1.D. activity observed on the ionograms) gave a horizontal
wavelength of 100 km. This is compatible with the shift in altitude between the upleg and downleg electron density
profiles.

The deduced scale of the internal gravity waves which produced the T.1.D.’s on the ionograms lies within the expected
range. Unfortunately, there was no strong magnetic storm or weather activity previously which could be ascribed as
their source, which as shown to lie to the South East.
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Figure 1. Cockatoo 3008 payload
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Figure 2(a) & (b)
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(b) Simplified equivalent bridge circuit.
The coaxial cable, C1, is loaded with a variable capacitor adjusted before flight.

Figure 2. Principle of operation of the plasma probe




gl o )
E Y
u -
&
m = 101e33u38 Aouanbayy 1dams ay1 jo weBep unon) ‘¢ amdy
2
E3
< e . 5 = . .
Saﬁ[ T ‘l.n«u ]
2P
ooel Ixee s 01| %16, uoot 93z g » Wi ois ooL| |00t
czulJozul | wntev | ozw 29 e ia Ziy LT sH ew| | 2w
a/0 dwey O :
> ?
_ 6
uzz F s
L Te) ¢
€ l te v ..o:r.._ ze s ]
AO 8 | Ly i
W omey o I uw |
Avava | 8 gstve  |uot . £
AS0| EPIENZ ! |
i St za SO wz |
1S \:J 2
ZAY * @ I
w L S viy - Wi
8y
et 104 ASE
Iy %0z , »
} ~ %01 i ! Ly €2 _ !
N S0Z ¥X F ,
! 4 pha "
ny _ "1 s VOO ates Y0 4] |
{
(%4] _ 61y e un,zr\ ALY
! r4 | _
o1y
_ (102)
91
_ ..oon 10§ Jﬂ voi e YOFE
- Y001 %01 ! y G ¥ i _ ”
%} oLy | €
H L C zisew ané).Nﬁ
ARTL z wouft ¢
- Y
b

"y




1012213p aan1suas aseyd ay) jo wesBerp unon) p amByy

— @
(ovs)
‘1'0'S -8
(i i3
8| ¢ ¢
A
tzwa
zx
ugy
| N
LI
95 | 4 Tt
61y
S 8| oy
.\.W 5 i —
9iu n rooon"
996510
Answee) o) o.hi “hi »y ™ i J0380ueD
puipind £ »x ke s _—
(N1 5 18] ugo1 wouy
Lz W
. ok 1 —O
: gy €N
ay 2 Siy § s ¥ i up_ -
| oL z
ozu s L wgy [ 12t [ xz [ s Jnsi[] m - - e
giu|_just] viy Fezio | JEw | [zid 6u ¢ su| |cw N1
€12 _
i H : ) RORES G s 4 Lr siscwr noes

2 4 A v SPEEE

z

M INL
e

x

5%

% &

3

..



Ll b

BV
Amolltude\ ‘ }
Phase '“:' s i + = 98.4 o
Froquom:y\ - 1 1 1
ullbntion\- i |
0V .
\ ‘l
[ ' 102.4
} . 10565
i | e

T
4 107.6
4 " 110.4
e i
132 |
e L | ,

r Alt. = 116.5km
e A
o el RO |
S
| I
L 1 1 ced
35 25 15 0.6
Frequency MHz

Figure 5. Plasma probe telemetered data

WRE-TR-1 828(W)

Figure S




WRE-TR-1828(W)
Figure 6
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The scales have been reversed to facilitate comparison with figure 5.

Figure 6. Example of theoretically calculated plasma probe output
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Figures 7& 8
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Figure 9
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Figure 9. Upleg and downleg electron density profiles.




Successive ionograms are shifted by 150 km
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Figure 10. Travelling ionospheric disturbance observed on ionograms
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