
i

o
CO

<
o
<3:

Bolt Beranek and Newman Inc.

Report No. 3687

Semantics and Quantification in
Natural Language Question Answering

W. A. Woods

November 1977

^ #■

w*

I
I
I
!

Prepared for:
Advanced Research Projects Agency

Üu
O

Distiilr-'ation UDa^''.::

C3 LO.

era

r
n.

mm

Unclassified
SltCURITY CLA?4tFlC*TION Or THIS P*r,| fSfl.sn l>»(« f"nr«rft()

SEMANTICS ANDtQUANTIFICATION IN
NATURAL LANGUAGE QUESTION ANSWERING.

7. AUTHORfiJ

W. A.^Woods
J

9. PEHFORMINO OHGANIZATION NAME AND ADDHESS

Bolt Beranek and Newman Inc.
50 Moulton St.
Cambridge, MA 02138

II. CONTROLLING OFFICE NAME AND AÜDHCSS

Office of Naval Research
Department of the Navy
Ar1ingt9n. VA ,22217

U. MONITdfcINO AGENCY, DDRtSSfl/ ililtnrmH ttom Ccnltoltlng Olllc»)

REAP IMSTRUCTIONt)
DRFOKK COMPLETING lO'.'M ,

Technical Repöirt^

6, PLHFORMING OHG. REPORT NlPMfii.H
Report No. 3687/
CONTRACT OH CHANT NUMOtR!»)

t. ^014-77-0-^378,

IB. FRUBHAM liLhmillV^tm
AREA A WoriK UNIT NUMHEM&

7030

U. REPpRTBAI*——~
"^OVM*« »77

148
IS. SECURITY CLASS. (r>l l/il. repot!)

Unclassified

IS«. OECLASSIIICATIOM/DOWNGRACIINO
SCHEDULE

I«. DISTRIBUTION Si AT EMENT (oi ihl. Htporl)

Distribution of this document is unlimited. It may be released to
the Clearinghouse, Department of Commerce for sale to the gene^l
public. f-v \^ ^^

17. DISTRIBUTION STATEMENT fof Id« cbilrac! mltrtd In Blac» 20, 1/ dllltttnl Itom h»fan).-\: rVrt

.\\\

18. SUPPLEMENTARY NOTES \^^ u

19. KEY WORDS fConllnu» on rvrero aid« II ntctstitry and lOtnllly by block numbtr)

ATN grammars, data management, LUNAR, meaning representation, natural lang-
uage, natural language understanding, parsing, pragmatic grammars,
procedural semantics, quantification, quantifier scoping, query languages,
question-answering, semantic interpretation, semantic rules, syntax-
semantics interaction.

20. ABSTRACT (Confinua on ravaraa afda II nacaaaary and IdenlHy by block nurr^or.t

P^ This paper is concerned with the semantic interpretation of natural
English sentences by a computerized question-answering system, and specif-
ically with the problems of interpreting and using quantification in such
systems. These issues are presented and discussed from the perspective of
four different natural language understanding systems with which the author
has been involved. The presentation includes the process of semantic
interpretation, the nature and organization of semantic interpretation^

DD FORM
I JAN 71 1473^"tolTION 0f ' NOV 6S IS OBSOLETE Unclassified

cont'd.

SECURITY CLASSIFICATION OF THIS PAGE fWiao Dal« Enlafad;

Unclassified
SCCwtHTVCL ■no* e» TMW M

20. Abstract (cont'd.)

; -rules, a notation for representing semantic Interpretations (the ■Mning
representation language), the semantics of that notation, and the generation
and scoping of quantifiers. Also discussed are a variety of loose ends,
open questions, and directions for future research. Particular attention
is given to the interaction of syntactic, semantic (and pragmatic) informa-
tion.

ACCESSION for

NTIS W: i'e " on g
DOC B.C Ss nn □
UNANNn'iMrn □
lUSTriCAT'1

BY

DISTRIBDIffl/.kWJBnr TES
TH.: Ml

Unclassified

aacwMTv «cMmncAnoH or TM» wmnmm »—

BBN Report No. 3687

SEMANTICS AND QUANTIFICATION IN

NATURAL LANGUAGE QUESTION ANSWERING

W. A. Woods

November 1977

Sponsored by

Advanced Research Projects Agency
ARPA Order No. 3414

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monitored by ONR
under Contract No. N00014-77-C-0378.

The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of the Advanced Research Projects Agency or the U.S. Government.

TABLE OF CONTENTS

1. Introduction 2

2. Historical Context 5
2.1 Airlines Flight Schedules 5
2.2 Answering Questions about ATN Grammars 8
2.3 The LUNAR System 9
2.4 TRIPSYS 12

3. Overview 13
3.1 Structure of the LUNAR System 13
3.2 Semantics in LUNAR 15

4. The Meaning Representation Language 17
4.1 Designators 18
4.2 Propositions 18
4.3 Commands 19
4.4 Quantification 19
4.5 Specification of the MRL Syntax 21
4.6 Procedural/Declarative Duality 23
4.7 Opaque Contexts 25
4.8 Restricted Class Quantification 27
4.9 Non-Standard Quantifiers 28
4.10 Functions and Classes 32
4.11 Unanticipated Requests 33

5. The Semantics of the Notation 34
5.1 Procedural Semantics 34
5.2 Enumeration Functions 35
5.3 Quantified Commands 38

6. Semantic Interpretation 39
6.1 Complications Due to Quantifiers 42
6.2 Problems with an Alternative Approach 43
6.3 The Structure of Semantic Rules 45

6.3.1 Right-hand Sides 47
6.3.2 Right-hand Side Evaluation 48

6.4 Relationship of Rules to Syntax 49
6.5 Organization of the Semantic Interpreter 50

6.5.1 Context-Dependent Interpretation 51
6.5.2 Phased Interpretation 52
6.5.3 Proper Nouns and Mass Terms 55

6.6 Organization of Rules 55
6.6.1 Rule Trees 57
6.6.2 Multiple Matches 58

6.7 The Generation of Quantifiers 59
6.7.1 Steps in Interpretation 60
6.7.2 Quantifier Passing Operators 61

TABLE OF CONTENTS (CONTINUED)

7. Problems of Interpretation 63
7.1 The Order of Quantifier Nesting 63
7.2 Interaction of Negations with Quantifiers ... 64
7.3 Functional Nesting and Quantifier Reversal ... 67
7.4 Relative Clauses 69
7.5 Other Types of Modifiers 71
7.6 Averages and Quantifiers 75
7.7 Short Scope / Broad Scope Distinctions 77
7.8 Wh Questions 80

7.8.1 Interrogative Determiners 81
7.8.2 Interrogative Pronouns 85
7.8.3 Other Kinds of Wh Questions 89

8. Post-Interpretive Processing 90
8.1 Smart Quantifiers 92

8.1.1 Path Enumeration in ATN's 94
8.1.2 Document Retrieval in LUNAR 95

8.2 Printing Quantifier Dependencies 96

9. An Example 98

10. Loose Ends, Problems and Future Directions . . . 106
10.1 Approximate Solutions 107
10.2 Modifier Placement 109

10.2.1 Selective Modifier Placement 110
10.2.2 Using Misplaced Modifiers 112

10.3 Multiple Uses of Constituents 113
10.4 Ellipsis 115
10.5 Plausibility of Alternative Interpretations . 117
10.6 Anaphoric Reference 118
10.7 Ill-formed Input and Partial Interpretation . 119
10.8 Intensional Inference 123

11. Syntactic/Semantic Interactions 126
11.1 The Role of Syntactic Structure 127
11.2 Grammar Induced Phasing of Interpretation . . 129
11.3 Semantic Interpretation while Parsing 132
11.4 Top-Down versus Bottom-Up Interpretation . . 134
11.5 Pragmatic Grammars 135
11.6 Semantic Interpretation in the Grammar . . . 138
11.7 Generating Quantifiers While Parsing 142

\2. Conclusions 143

13. References 146

Semantics and Quantification

in

Natural Language Question Answering

W. A. Woods

Bolt Beranek and Newman Inc.

Cambridge, Massachusetts

Abstract

This paper is concerned with the semantic interpretation of

natural English sentences by a computerized question-answering

system, and specifically with tne problems of interpreting and

using quantification in such systems. Those issues are presented

and discussed from the perspective of four different natural

language understanding systems with which the author has been

involved. The presentation includes the process of semantic

interpretation, the nature and organization of semantic

interpretation rules, a notation for representing semantic

interpretations (the meaning representation language), the

semantics of that notation, and the generation and scoping of

quantifiers. Also discussed are a variety of loose ends, open

questions, and directions for future research. Particular

attention is given to the interaction of syntactic, semantic (and

pragmatic) information.

- 1 -

^^küC:-..:.

1. Introduction

The history of communication between man and machines has

followed a path of increasing provision for the convenience and

ease of communication on the part of the human. From raw binary

and octal numeric machine languages, through various symbolic

assembly, scientific, business and higher-level languages,

programming languages have increasingly adopted notations that

are more natural and meaningful to a human user. The important

characteristic of this trend is the elevation of the level at

which instructions are specified from the low level details of

the machine operations to high level descriptions of the task to

be done, leaving out details that can be filled in by the

computer. The ideal product of such continued evolution would be

a system in which the user specifies what he wants done in a

language that is so natural that negligible mental effort is

required to recast the specification from the form in which he

formulates it to that which the machine requires. The logical

choice for such a language is the person's own natural language

(which in this paper I will assume to be English).

For a naive, inexperienced user, almost every transaction

with current computer systems requires considerable mental effort

deciding how to express the request in the machine'r language.

Moreover, even for tochnical specialists who deal with a computer

constantly, there is a distinction between the things that they

do often and remember well, and many ether things that require

- 2 -

consulting a manual and/or much conscious thought in order to

determine the correct machine "incantation" to achieve the

desired effect. Thus, whether a user is experienced or naive,

and whether he is a frequent or occasional user, there arise

occasions where he knows what he wants the machine to do and can

express it in natural language, but does not know exactly how to

express it to the machine. A facility for machine understanding

of natural language could greatly improve the efficiency of

expression in such situations — both in speed and convenience,

and in decreased likelihood of error.

For a number of years, I have been pursuing a long range

research objective of making such communication possible between

a man and a machine. During this period, my colleagues and I1

have constructed several natural language question-answering

systems and developed a few techniques for solving some of the

problems that arise. In this paper, I will present some of those

techniques, focusing on the problem of handling natural

quantification as it occurs in English. As an organizing

principle, I will present the ideas in a roughly historical

order, with commentary on the factors leading to the selection of

various notations and algorithms, on limitations that have been

discovered as a result of experience, and on directions in which

solutions lie.

Among the systems that I will use for examples are a flight

schedules question-answering system (Woods, 1967 and 1968), a

- 3 -

system to ask questions about an ATN grammar (not previously

published), the LUNAR system, which answers questions about the

chemical analyses of the Apollo 11 moon rocks (Woods et al.,

1972, Woods, 1973b), and a system for natural language trip

planning and budget management (Woods et al., 1976).

Some of the techniques used in these systems, especially the

use of the augmented transition network (ATN) grammar formalism

(Woods, 1969, 1970, 1973a), have become widely known and are now

being used in many different systems and applications. However,

other details, including the method of performing semantic

interpretation, the treatment of quantification and anaphoric

reference, and several other problems, have not been adequately

described in accessible publications.

This paper is intended to be a discussion of a set of

techniques, the problems they solve, and the relative advantages

and disadvantages of several alternative approaches. Because of

the length of the presentation, no attempt has been made to

survey the field or give an exhaustive comparison of these

techniques to those of other researchers. In general, most other

systems are not sufficiently formalized at a conceptual level

that such comparisons can be made on the basis of published

information. In some cases, the mechanisms described here can be

taken as models of what is being done in other systems.

Certainly, the general notion of computing a representation of

the meaning of a phr* ;e from representations of the meanings of

- 4 -

its constituents by means of a rule is sufficiently general to

model virtually any semantic interpretation process. The details

of how most systems handle such problems as the nesting of

multiple quantification, however, are difficult to fathom.

Hopefully the presentation here and the associated discussion

will enable the reader to evaluate for himself, with some degree

of discrimination, the capabilities of other systems.

2. Historical Context

2.1 Airlines Flight Schedules

Airlines flight schedules was the focusing context for a

gedanken system for semantic interpretation that I developed as

my Ph.D. thesis at Harvard University (Woods, 1967). In that

thesis, I was concerned with the problem of "semantic

interpretation" — making the transition from a syntactic

analysis of input questions (such as could be produced by parsing

with a formal grammar of English) to a concrete specification of

what the computer was to do to answer the question. Prior to

that time, this problem had usually been attacked by developing a

set of structural conventions for storing answers in the data

base and transforming the input questions (frequently by ad hoc

procedures) into patterns that could be matched against that data

base. Simmons (1965) presents a survey of the state of the art

of the field at that time.

- 5 -

In many of the approaches existing at that time, the entire

process of semantic interpretation was built on particular

assumptions about the structure of the data base. I was

searching for a method of semantic interpretation that would be

independent of particular assumptions about data base structure

and, in particular, would permit a single language understanding

system to talk to many different data bases and permit the

specification of requests whose answers required the integration

of information from several different data bases. In searching

for such an approach, I looked more to the philosophy of language

and the study of meaning than to data structures and data base

design.

The method I developed was essentially an interpretation of

Carnap's notion of truth conditions (Carnap, 1964a). I chose to

represent those truth conditions by formal procedures that could

be executed by a machine. The representation that I used for

expressing meanings was at once a notational variant of the

standard predicate calculus notation and also a represention of

an executable procedure. The ultimate definition of the meanings

of expressions in this notation were the procedures that they

would execute to determine the truth of propositions, compute

the answers to questions, and carry out commands. This notion,

which I referred to as "procedural semantics," picks up the chain

of semantic specification from the philosophers at the level of

abstract truth conditions, and carries it to a formal

specification of those truth conditions as procedures in a

computer language.
- 6 -

_ _;..,,-:-..--.^-.^,:.:::;-..

The idea of procedural semantics has since had considerable

success as an engineering technique for constructing natural

language understanding systems, and has also developed somewhat

as a theory of meaning. In my paper "Meaning and Machines"

(Woods, 1973c), I discuss some of the more theoretical issues of

the adequacy of procedural semantics as a theory of meaning.

The flight schedules application initially served to focus

the issues on particular meanings of particular sentences. The

application assumed a data base essentially the same as the

information contained in the Official Airline Guide (OAG, 1966)

— that is, a Ixst of flights, their departure and arrival times

from different airports, their flight numbers and airlines,

number of stops, whether they serve meals, etc. Specific

questions were interpreted as requesting operations to be

performed on the tables that make up tnis data base to compute

answers.

The semantic interpretation system presented in my thesis

was subsequently implemented for this application with an ATN

grammar of English to provide syntax trees for interpretation,

but without an actual data base. The system produced formal

semantic interpretations for questions such as:

"What flights go from Boston to Washington?"

"Is there » flight to Washington before 8:00 a.m.?

"Do they s rve lunch on the 11:00 a.m. flight to Toronto?".

- 7 -

2.2 Answering Questions about ATN Grammars

To prove the point that the semantic interpretation system

used in the flight schedules domain was in fact general for

arbitrary data bases and independent of the detailed structure of

the data base, immediately after completing that system, I looked

for another data base to which I coi apply the method. I

wanted a data base that had not been designed to satisfy any

assumptions about the method of question interpretation to be

used. The most convenient such data base that I had at hind was

the data structure for the ATN grammar that was being used by the

system to parse its input sentences. This data base had a

structure that was intended to support the parser, and had not

been designed with any forethought to using it as a data base for

qjeetion answering.

An ATN grammar, viewed as a data base, conceptually consists

of a set of named states with arcs connecting them, corresponding

to transitions that can be made in the course of parsing. Arcs

connecting states are of several kinds depending on what, if

anything, they consume from the input string when they are used

to make a transition. For example, a word arc consumes a single

word from the input, a push arc consumes a constituent phrase of

the type pushed for, and a jump arc consumes no input but merely

makes a state transition. See Woods (1970, 1973a) for a further

discussion of ATN grammars. These states and arcs constitute the

data base entities about which questions may be asked.

- 8 -

-—n i ■ '■- ■■- --" ■-.-■■■ .— «L-La'-n Mtifrr

In addition to the entities that actually exist as data

objects in the internal structure for the grammar, there are some

other important objects that exist conceptually but are not

explicit in the grammar. The most important such entity is a

path. A path is a sequence of arcs that connect to each other in

the order in which they could be taken in the parsing of a

sentence. Although paths are implicit in the grammar, they are

not explicit in the data structure — i.e., there is no internal

data object that can be pointed to in the grammar that

corresponds to a path. Nevertheless, one should be able to talk

about paths and ask questions about them. The techniques I will

describe can handle such entities.

Examples of the kinds of sentences this "grammar information

system" could deal with are:

"Is there a jump arc from state S/ to S/NP?"

"How many arcs leave state NP/?"

"How many non-looping paths connect state S/ with S/POP?"

"Show me all arcs entering state S/VP."

2.3 The LUNAR System

The LUNAR system (Woods et al., 1972; Woods, 1973b) was

originally developed with support from the NASA Manned Spacecraft

Center as a research prototype for a system to enable a lunar

geologist to conveniently access, compare, and evaluate the

chemical analysis data on lunar rock and soil composition that

- 9 -

was accumulating as a result of the Apollo noon missions. The

target of the research was to develop a natural language

understanding facility sufficiently natural and complete that the

task of selecting the wording for a request would require

negligible effort for the geologist user.

The application envisaged was a system that would be

accessible to geologists anywhere in the country by teletype

connections and would enable them to access the NASA data base

without having to learn either the programming language in which

the system was implemented or the formats and conventions of the

data base representations. For example, the geologist should be

able to ask questions such as "What is the average concentration

of aluminum in high-alkali rocks?" without having to know that

aluminum was conventionally represented in the data base as

AL203, that the high-alkali rocks (also known as "volcanics" or

"fine-grained igneous") were conventionally referred to as TYPEAS

in the data base, nor any details such as the name of the file on

which the data was stored, the names of the fields in the data

records, or any of a myriad of other details normally required to

use a data base system.

To a substantial extent, such a capability was developed,

although never fully put to the test of real operational use. In

a demonstration of a preliminary version of the system in 1971

(Woods, 1973b), 78 percent of the questions asked of the system

were understood and answered correctly, and another 12 percent

- 10 -

^^■^^^Trtifiilrii'^

failed due to trivial clerical errors such as dictionary coding

errors in the not fully-debugged system. Only 10 percent of the

questions failed because of significant parsing or semantic

interpretation problems. Although the requests entered into the

system were restricted to questions that were in fact about the

contents of the data base, and comparatives (which were not

handled at that time) were excluded, the requests were otherwise

freely expressed in natural English without any prior

instructions as to phrasing and were typed into the system

exactly as they were asked.

The LUNAR system allowed a user to ask questions, compute

averages and ratios, and make listings of selected subsets of the

data. One could also retrieve references from a keyphrase index

and make changes to the data base. The system permitted the user

to easily compare the measurements of different researchers,

compare the concentrations of elements or isotopes in different

types of samples or in different phases of a sample, compute

averages over various classes of samples, compute ratios of two

constituents of a sample, etc. — all in straightforward natural

English.

Examples of requests understood by the system are:

"Give me all lunar samples with magnetite."

"In which samples has apatite been identified?"

"What is the specific activity of A126 in soil"

- 11 -

"Analyses of strontium in plagioclase."

"What are the plag analyses for breccias?"

"What is the average concentration of olivine in breccias?'

"What is the average age of the basalts?"

"What is the average potassium/rubidium ratio in basalts?"

"In which breccias is the average concentration of

titanium greater than 6 percent?"

2.4 TRIPSYS

TRIPSYS is a system that was developed as the context for a

research project in continuous speech understanding (Woods et

al., 1976). The overall system of which it was a pare was called

HWIM (for "Hear What I Mean"). TRIPSYS understands and answers

questions about planned and taken trips, travel budgets and their

status, costs of various modes of transportation to various

places, per diems in various places, conferences and other events

for which trips might be taken, people in an organization, the

contracts they work on, the travel budgets of those contracts,

and a variety of other information that is useful for planning

trips and managing travel budgets. It is intended to be a

small-scale example of a general management problem. TRIPSYS

also permits some natural language entry of information into the

data base, and knows how to prompt the user for additional

information that was not given voluntarily. Examples of the

kinds of requests that TRIPSYS was designed to handle are:

- 12 -

"Plan a trip for two people to San Diego to attend the ASA

meeting."

"Estimate the cost of that trip."

"Is there any money left in the Speech budget?"

3. Overview

Since the LUNAR system is the most fully developed and most

widely known of the above systems, I will use it as the principal

focus throughout this paper. A brief overview of the LUNAR

system was presented in the 1973 National Computer Conference

(Woods, 1973b), and an extensive technical report documenting the

system was produced (Woods et al., 1972). However, there has

been no generally available document that gives a sufficiently

complete picture of the capabilities of the system and how it

works. Consequently, I will first give a brief introduction to

the structure of the system as a whole, and then proceed to

relatively detailed accounts of some of the interpretation

problems that were solved. Examples from the other three systems

will be used where they are more self-explanatory or more clearly

illustrate a principle. Where the other systems differ in

structure from the LUNAR system, that will be pointed out.

3.1 Structure of the LUNAR System

The LUNAR system consists of three principal components: a

general purpose grammar and parser for a large subset of natural

- 13 -

.,-:.. -;:^:^^S^^...:.:.

English, a rule-driven semantic interpretation component using

pattern -> action rules for transforming a syntactic

representation of an input sentence into a representation of what

it means, and a data base retrieval and inference component that

stores and manipulates the data base and performs computations on

it. The first two components constitute a language understanding

component that transforms an input English sentence into a

disposable program for carrying out its intent (answering a

question or making some change to the data base). The third

component executes such programs against the data base to

determine the answer to queries and to effect changes in the data

base.

The system contains a dictionary of approximately 3500

words, a grammar for a fairly extensive subset of natural

English, and two data bases: a table of chemical analyses with

13,000 entries, and a topic index to documents with approximately

10,000 postings. The system also contains facilities for

morphological analysis of regularly inflected words, for

maintaining a discourse directory of possible antecedents for

pronouns and other anaphoric expressions, and for determining how

much and what information to display in response to a request.

The grammar used by the parsing component of the system is

an augmented transition network (ATN). The ATN grammar model has

been relatively well documented elsewhere (Woods, 1970, 1973a),

so I will not go into detail here describing it, except to point

- 14 -

out that it produces syntactic tree structures comparable to the

"deep structures" assigned by a Chomsky type transformational

grammar, vintage 1965 (Chomsky, 1965). Likewise, I will not go

into much detail describing the inner workings of the data base

inference and retrieval component, except to describe the

semantics of the formal meaning representation language and

discuss some of its advantages. What I will describe here are

the problems of semantic interpretation that were handled by the

system.

All of the systems mentioned in Section 2 share this same

basic structure with the following exceptions:

- The airline flight schedules problem was implemented up

through the parsing and interpretation stage, but was never

coupled to a real data base. This system was implemented

solely to validate the formal semantic interpretation

procedure.

- The TRIPSYS system does not construct a separate syntactic

tree structure to be given to a semantic interpreter, but

rather the ATN grammar builds semantic interpretations

directly as its output representation.

3.2 Semantics in LUNAR

A semantic specification of a natural language consists of

essentially three parts:

- 15 -

a) A meaning representation language (MRL) — a notation for

semantic representation for the meanings of sentences,

b) A specification of the semantics of the MRL notation —

i.e., a specification of what its expressions mean, and

c) A semantic interpretation procedure — i.e., a procedure to

construct the appropriate semantic representations for a

given natural language sentence.

Accordingly, the semantic framework of the LUNAR system

consists of three parts: a semantic notation in which to

represent the meanings of sentences, a specification of the

semantics of this notation (by means of formal procedures), and a

procedure for assigning representations in the notation to input

sentences.

In previous writings on LUNAR, I have referred to the

semantic notation as a query language, but I will refer to it

here, following a currently more popular terminology as a

"meaning representation language" or MRL. To represent

expressions in the MRL, I will use the so-called "Cambridge

Polish" notation in which the application of an operator to its

arguments is represented with the operator preceding its operands

and the entire group surrounded by parentheses. This notation

places the operator in a standard position independent of the

number of arguments it takes and uses the parentheses to indicate

scoping of operators rather than depending on a fixed degree of

the operator as in the "ordinary" Polish prefix notation (thus

- 16 -

facilitating operators that take a variable number of arguments).

Cambridge Polish notation is the notation used for the

S-expcessions of the programming language LISP (Bobrow et al.,

1968), in which LUNAR is implemented.

Occasionally, the notations used for illustration will be

slightly simplified from the form actually used in LUNAR to avoid

confusion. For example, the DATALINE function used in LUNAR

actually takes another argument for a data file that is omitted

here.

4. The Meaning Representation Language

There are a number of requirements for a meaning

representation language, but the most important ones are these:

a) It must be capable of representing precisely, formally, and

unambiguously any interpretation that a human reader can

place on a sentence.

b) It should facilitate an algorithmic translation from English

sentences into their corresponding semantic representations.

c) It should facilitate subsequent intelligent processing of

the resulting interpretation.

The LUNAR MRL consists of an extended notational variant of

the ordinary predicate calculus notation and contains essentially

three kinds of constructions:

- 17 -

designators, which name or denote objects

(or classes of objects) in the data base,

- propositions, which correspond to statements that can be

either true or false in the data base, and

- commands, which initiate and carry out actions.

4.1 Designators

Designators come in two varieties — individual specifiers

and class specifiers. Individual specifiers correspond to proper

nouns and variables. For example, S10046 is a designator for a

particular sample, OLIV is a designator for a certain mineral

(olivine) , and X3 can be a variable denoting any type of object

in the data base. Class specifiers are used to denote classes

of individuals over which quantification can range. They consist

of the name of -n enumeration function for the class plus

possible arguments. For example, (SEQ TYPECS) is a specification

of the class of type C rocks (i.e., breccias) and (DATALINE

S.10046 OVERALL OLIV) is a specification of the set of lines of a

table of chemical analyses corresponding to analyses of sample

S10046 for the overall concentration of olivine.

4.2 Propositions

Elementary propositions in the MRL are formed from

predicates with designators as arguments. Complex propositions

are formed from these by use of the logical connectives AND, OR,

- 18 -

mi ■•lilifli

and NOT and by quantificacion. For example, (CONTAIN S10046

OLIV) is a proposition formed by substituting designators as

arguments to the predicate CONTAIN, and

(AND (CONTAIN X3 OLIV) (NOT (CONTAIN X3 PLAG)))

is a complex proposition corresponding to the assertion that X3

contains olivine but does not contain plagioclase.

4.3 Commands

Elementary commands consist of the name of a command

operator plus arguments. As for propositions, complex commands

can be constructed using logical connectives and quantification.

For example, TEST is a command operator for testing the truth

valuä of a proposition given as its argument. Thus;

(TEST (CONTAIN S10046 OLIV))

will answer yes or no depending on whether sample S10046 contains

olivine. Similarly, PRINTOUT is a command operator which prints

out a representation for a designator given as its argument.

4.4 Quantification

An important aspect of the meaning of English sentences that

must be captured in any MRL is the use of quantifiers such äs

"every" and "some". Quantification in the LUNAR MRL is

represented in an elaborated version of the traditional predicate

calculus notation. An example of an expression in this notation

is:

- 19 -

&^C^1_H&A^E-UEU .

(FOR EVERY XI / (SEQ SAMPLES) :

(CONTAIN XI OVERALL SILICON) ; (PRINTOUT XI)).

This says, "for every object XI in t»*e set of samples such that

XI contains silicon, print out (the name of) XI."

In general, an instance of a quantified expression takes the

form:

(FOR <quant> X / <clas8>> : (p X) ; (q X))

where <quant> is a specific quantifier such as EVERY or SOME, X

is the variable of quantification and occurs open in the

expressions (p X) and (q X), <clas3> is a set over which

quantification is to range, (p X) is a proposition that restricts

the range, and (q X) is the expression being quantified (which

may be either a proposition or a command).

For the sake of simplifying some examples, I will generalize

the format of the quantification operator so that the restriction

operation implied by the ":" can be repeated any number of times

(including zero if there is no further restriction on the range),

giving rise to forms such as:

(FOR <quant> X / <class> ; (q X))

and

(FOR <quant> X / <class> : (p X) : (r X) ; (q X)).

When there is no restriction on the range of quantification, this

can also be indicated by using the universally true proposition

T, as in:

(FOR <quant> X / <class> : T ; (q X)).

- 20 -

TTTTirUlTf

4.5 Specification of the MRL Syntax

A formal BNF specification of the LUNAR MRL is given below:

<expression> = <designator> I <proposition> I <command>

<designator> = <individual constant> I

<variable> I

(<function> <expression>*)

<proposition> = <elementary proposition> I

<quantified proposition>

<elen\entary proposition> = (<propositional operators

<expression>*)

<propositiona± operator> = <predicatev I <logical operator>

<logical operator> = AND I OR I NOT | IF-THEN ...

<quantified proposition> = (FOR <variable> / <class> ;

<proposition>)

<class> = <eleipentary class> I <restticted class>

<elenientary class' = <class name> |

(<class function> <expression>*)

<restricted class> = <class> : <proposition>

<command> = <elementaty command> I <quantified command>

<elementary command> = (<conimand operator> <expression>*)

<quantified command> = (FOR <variable> / <class> ; <command>)

In addition to the above BNF constraints, each general

operator (i.e., function, predicate, logical operator, class

function, or command operator) will have particular restrictions

on the number and kinds of expressions that it can take as

- 21 -

rr:-%iT^ m t . ■■ a* ^^^^

arguments in order to be meaningful. Each operator also

specifies which of its arguments it takes literally as given, and

which it will evaluate to obtain a referent (see discussion of

Opaque Contexts below).

Predicates, functions, class names, class functions, command

operators, and individual constants are all domain-dependent

entities which are to be specified for a particular application

domain and defined in terms of procedures. In LUNAR, they are

defined as LISP subroutines. Individual constants are defined by

procedures for producing a reference pointer to the appropriate

internal object in the computer's model of the world; functions

are defined by procedures for producing a reference pointer to

the appropriate value given the values for the arguments; class

names and class functions are defined by procedures that (given

the appropriate values for arguments) can enumerate the members

of their class one at a time; predicates are defined by

procedures which, given the values of their arguments, determine

a truth value for the corresponding proposition; and command

operators are defined by procedures which, given the values of

their arguments, can carry out the corresponding commands.

I should point out that the definition given here for

classes and commands are not adequate for a general theory of

semantics, but are rather more pragmatic definitions that

facilitate question answering and computer response to commands.

For a general semantic theory, the requirement for semantic

- 22 -

■■--•^—- •■

definition of a class is merely a procedure for recognizing a

member, and the semantic definition for a command is a procedure

for recognizing when it has been carried out. That is, to be

said to know the meaning of a command does not require the

ability to carry it out, and to know the meaning of a noun does

not require an ability to enumerate all members of its extension.

The distinction between knowing how, and just knowing whether,

marks the difference between pragmatic utility and mere semantic

adequacy. The requirements placed on the definitions of the

classes and commands in the LUNAR system are thus more stringent

than those required for semantic definition alone.

4.6 Procedural/Declarative Duality

The meaning representation language used in LUNAR is

intended to serve both as a procedural specification that can be

executed to compute an answer or carry out a command, and as a

"declarative" representation that can be manipulated as a

symbolic object by a theorem prover or other inference system.

By virtue of the definition of primitive functions and predicates

as LISP functions, the language can be viewed simultaneously as a

higher-level programming language and as an extension of the

predicate calculus. This gives rise to two different possible

types of inference for answering questions, corresponding roughly

to Carnap's distinction between intension and extension (Carnap,

1964b). First, because of its definition by means of procedures,

a question such as "Does every sample contain silicon?" can be

- 23 -

!#•
L^4äifcä===k=^_-: ---. ■..:;;.:■-■ ;..^^v-. .,_■■-.■.:>i-.i->:=i.:-^:.

answered extensionally (that is, by appeal to the individuals

denoted by the class name "samples") by enumerating the

individual samples and checking whether sodium has been found in

each one. On the other hand, this same question could have been

answered intensionally (that is, by consideration of its meaning

alone without reference to the individuals denoted) by means of

the application of inference rules to other (intensional) facts

(such as the assertion "Every sample contains some amount of each

element"). Thus the expressions in the meaning representation

language are capable either of direct execution against the data

base (extensional mode) or manipulation by mechanical inference

algorithms (intensional mode).

In the LUNAR system, the principal mode of inference is

extensional — that is, the direct evaluation of the formal MRL

expression as a procedure. However, in certain circumstances,

this expression is also manipulated as a symbolic object. Such

cases include the construction of descriptions f.or discourse

entities to serve as antecedents for anaphoric expressions and

the use of "smart quantifiers" (to be discussed later) for

performing more efficient quantification. Extensional inference

has a variety of limitations (e.g., it is not possible to prove

assertions about infinite sets in extensional mode), but it is a

very efficient method for a variety of question-answering

applications.

- 24 -

4.7 Opaque Contexts

As mentioned above, the general operators in the meaning

representation language are capable of accessing the arguments

they are given either literally or after evaluation. Thus, an

operator such as ABOUT in an expression like:

(ABOUT D70-18] (TRITIUM PRODUCTION))

(meaning "Document D70-181 discusses tritium production") can

indicate as part of its definition that, in determining the truth

of an assertion, the first argument (D70-181 in this case) is to

be evaluated to determine its referent, while the second argument

(TRITIUM PRODUCTION) is to be taken unevaluated as an input to

the procedure (to be used in some special way as an intensional

object — in this case, as a specification of a topic that

D70-181 discusses).

This distinction between two types of argument passing is a

relatively standard one in some programming languages, frequently

referred to as call by value versus call by name. In particular,

in the programming language LISP, there are two types of

functions (referred to as LAMBDA and NLAMBDA functions), the

first of which evaluates all of its arguments and the second of

which passes all of its arguments unevaluated to the function

(which then specifies in its body which arguments are to be

evaluated and what to do with the others).

This ability to pass subordinate expressions literally as

intensional objects (to be manipulated in unspecified ways by the

- 25 -

operator that gets them) avoids several of the antinomies that

have troubled philosophers, such as the non-equivalence of

alternative descriptions of the same object in belief contexts.

Although belief contexts do not occur in LUNAR, similar problems

occur in TRIPSYS, for example, in interpreting the object of the

verb "create", where the argument to the verb is essentially a

description of a desired object, not an object denoted by the

description.

In LUNAR, functions with opaque contexts are also used to

define the basic quantification function FOR as well as general

purpose counting, averaging, and extremal functions: NUMBER,

AVERAGE, MAXIMUM, and MINIMUM. Calls to these functions take the

forms:

(NUMBER X / <class> : (P X))

"The number of X's in <class> for which (P X) is true."

(AVERAGE X / <class> : (P X) ; (F X))

"The average of the values of (F X) over the X's in <class>

for which (P X) is true."

(AVERAGE X / <class> : (P X))

"The average value of X (a number) over the X's in <class>

for which (P X) is true."

(MAXIMUM X / <class> : (P X))

"The maximum value of X in the set of X's in <class> for

which (P X) is true."

(MINIMUM X / <class> : (P X))

- 26 -

.,..,,!:.™:»,U-™M:,™,

"The minimum value of X in the set of X's in <class> for

which (P X) is true."

The proposition (P X) in each of these cases has to be taken as

an intensional entity rather than a referring expression, since

it must be repeatedly evaluated for different values of X.

Opaque context functions are also defined for forming the

intensional descriptions of sets and the intensional union of

intensionally defined sets:

(SETOF X / <class> : (P X))

"The set of X's in <class> for which (P X) is true."

(UNION X / <class> : (P X) ; (<setfn> X))

"The union over the X's in <class> for which (P X) is

true of the sets generated by (<setfn> X)."

4.8 Restricted Class Quantification

One of the major features of the quantifiers in the LUNAR

MRL is the separation of the quantified expression into distinct

structural parts: (1) the the basic class over which

quantification is to range, (2) a set of restrictions on that

class, and (3) the main expression being quantified. There are a

number of advantages of maintaining these distinctions, one of

which is the uniformity of the interpretation procedure over

different kinds of noun phrase determiners that it permits. For

example, the determiners "some" and "every", when translated into

the more customary logical representations, give different main

- 27 -

connectives for the expression being quantified. That is, "every

roan is mortal" becomes (Ax)Man(x)=>Mortal(x) while "some man is

mortal" becomes (Ex)Man(x)SMortal(x). With the LUNAR format, the

choice of determiner affects only the choice of quantifier.

Other advantages to this kind of quantifier are the

facilitation of certain kinds of optimization operations on the

MRL expressions, and the generation of appropriate antecedents

for various anaphoric expressions. Recently, Nash-Webber and

Reiter (1977) have pointed out the necessity of making a

distinction between the quantification class and the predicated

expression if an MRL is to be adequate for handling verb phrase

ellipsis and "one"-anaphora,

4.9 Non-Standard Quantifiers

Another advantage of the restricted class quantifier

notation is the uniform treatment of a variety of non-standard

quantifiers. For example, LUNAR treats the determiner "the" in a

singular i.oun phrase as a quantifier, selecting the unique object

that satisfies its restriction (and complaining it the

presupposition that there is a unique such object is not

satisfied). This differs from the traditional representation of

definite description by means of the iota operator, which

constructs a complex designator for a constituent rather than a

governing quantifier. In the traditional notation, the sentence

"The man I see is mortal," would be represented something like:

- 28 -

^^m^^.- • • ;J„.:,

MORTAL(i(x) : MAN(x) & SEE(I,x)).

In the LUNAR MRL it would be:

(FOR THE X / MAN : (SEE I MAN) ; (MORTAL X)).

Quantifiers such as "many" and "most", whose meaning

requires knowledge of the size of the class over which

quantification ranges (as well as the size of the class for which

the quantified proposition is true) can be adequately handled by

this notation since the range of quantification is specifically

mentioned. These quantifiers were not implemented in LUNAR,

however.

Among the non-standard quantifiers handled by LUNAR are

numerical determiners (both cardinal and ordinal) and comparative

determiners. Ordinal quantifiers ("the third X such that P") are

handled by a special quantifier (ORDINAL n) that can be used in

the <quant> slot of the quantifier form. In general this ordinal

quantifier should take another parameter that names the ordering

function to be used, or at least require a preferred ordering

function to be implied by context. The ordering of the members

of the class used by LUNAR is the order of their enumeration by

the enumeration function that defines the class (see Section 5.2

below).

Numerical quantification and comparative quantification are

handled with a general facility for applying numeric predicates

to a parameter N in the FOR function that counts the number of

successful members of the range of quantification that have been

- 29 -

found. Examples are (GREATER N <number>), (EQUAL N <number>), or

even (PRIME N) (i.e., N is a prime number).

The interpretation of general numeric predicates as

quantifiers is that if any number N satisfying the predicate can

be found such that N members of the restricted class satisfy the

quantified proposition (or successfully complete a quantified

command), then the quantified proposition is true (or a

quantified command is considered completed). In the

implementation, the current value of N is tested as each

successful member of the restricted class is found, until either

the count N satisfies the numeric predicate or there are no more

members in the class.

The numeric predicate quantifier can be used directly to

handle comparative determiners such as "at least" and "more

than", and can be used in a negated quantification to handle "at

most" and "fewer than". The procedure for testing such

quantifiers can return a value as soon as a sufficient number of

the class have been found, without necessarily determining the

exact number of successful members. The numerical determiner

"exactly <n>" is handled in LUNAR by the generalized counting

function NUMBER embedded in an equality statement. (It could

also be handled by a conjunction of "at least" and "not more

than", but that would not execute as efficiently.)

The LUNAR MRL also permits a generic quantifier GEN, which

is assigned to noun phrases with plural inflection and no

- 30 -

ViP liiTiliiiVf

determiner. Such noun phrases sometimes behave like universal

quantification and sometimes like existential quantification. In

LUNAR, unless some higher operator indicates that it should be

interpreted otherwise, a generic quantifier is evaluated exactly

like EVERY.

Examples of types of quantification in LUNAR are:

(FOR EVERY X / CLASS : (P X) ; (Q X))

"Every X in CLASS that satisfies P also satisfies Q."

(FOR SOME X / CLASS : (P X) ; (Q X))

"Some X in CLASS that satisfies P also satisfies Q."

(FOR GEN X / CLASS : (P X) ; (Q X))

"A generic X in CLASS that satisfies P will also satisfy Q."

(FOR THE X / CLASS : (P X) ; (Q X))

"The single x in CLASS that satisfies P also satisfies Q."

(FOR (ORDINAL 3) X / CLASS : (P X) ; (Q X))

"The third X in CLASS that satisfies P also satisfies Q."

(FOR (GREATER N 3) X / CLASS : (P X) ; (Q X))

"More than 3 X's in CLASS that satisfy P also satisfy Q."

(FOR (EQUAL N 3) X / CLASS : (P X) ; (Q X))

"At least 3 X's in CLASS that satisfy P also satisfy Q."

(NOT (FOR (EQUAL N 3) X / CLASS : (P X) ; (Q X)))

"Fewer than 3 X's in CLASS satisfy P and also satisfy Q."

(EQUAL 3 (NUMBER X / CLASS : (P X) : (Q X)))

"Exactly 3 X's in CLASS satisfy P and also satisfy Q."

- 31 -

4.10 Functions and Classes

Another of the attractive features of the LUNAR MRL is the

way that quantification over classes, single and multiple valued

functions, and the attachment of restrictive modifiers are all

handled uniformly, both individually and in combination, by the

quantification operators. Specifically, a noun phrase consisting

of a function applied to arguments is represented in the same way

as a noun phrase whose head is a class over which quantification

is to range. For example "The departure time of flight 557 is

3:00" can be represented as:

(FOR THE X / (DEPARTURE-TIME FLIGHT-557) : T ; (EQUAL X 3:00))

(where T is the universally true proposition, signifying here

that there are no further restrictions on the range of

quantification). This permits exactly the same mechanisms for

handling the various determiners and modifiers to apply to both

functionally determined objects and quantification over classes.

This uniformity of treatment becomes especially significant

when the function is not single valued and when the class of

values is being quantified over or restricted by additional

modifiers as in:

(FOR EVERY X / (DATALINE S10046 OVERALL SI02) : T ; (PRINTOUT X))

and

(FOR THE X / (DATALINE S10046 OVERALL SI02) :

(REF* X D70-181) ; (PRINTOUT X))

- 32 -

"-"""""l hiiMii

where (DATALINE <sample> (phase> <constituent>) is the function

used in LUNAR to enumerate measurements in its chemical analysis

table and (REF* <table entry> <document>) is a relation between a

measurement and the journal article it was reported in.

4.11 Unanticipated Requests

The structure of the meaning representation language, when

coupled with general techniques for semantic interpretation,

enable the user to make very explicit requests with a wide range

of diversity within a natural framework. As a consequence of the

modular composition of MRL expressions, it is possible for the

user to combine the basic predicates and functions of the

retrieval component in ways that were not specifically

anticipated by the system designer. For example, one can make

requests such as "List the minerals", "What are the major

elements?", "How many minerals are there?", etc. Although these

questions might not be sufficiently useful to merit special

effort to handle them, they fall out of the mechanism for

semantic interpretation in a natural way with no additional

effort required. If the system knows how to enumerate the

possible samples for one purpose, it can do so for other purposes

as well. Furthermore, anything that the system can enumerate, it

can count. Thus, the decomposition of the retrieval operations

into basic units of quantifications, predicates, and functions

provides a very flexible and powerful facility for expressing

requests.

- 33 -

5. The Semantics of the Notation

5.1 Procedural Semantics

As mentioned before, the semantic specification of a natural

language requires not only a semantic notation for representing

the meanings of sentences, but also a specification of the

semantics of the notation. As discussed previously, this is done

in LUNAR by relating the notation to procedures that can be

executed. For each of the predicate names that can be used in

specifying semantic representations, LUNAR requires a procedure

or subroutine that will determine the truth of the predicate for

given values of its arguments. Similarly, for each of the

functions that can be used, there must be a procedure that

computes the value of that function for given values of its

arguments. Likewise, each of the class specifiers for the FOR

function requires a subroutine that enumerates the members of the

class.

The FOR function itself is also defined by a subroutine, as

are the logical operators AND, OR and NOT, the general counting

and averaging functions NUMBER and AVERAGE, and the basic command

functions TEST and PRINTOUT. Thu any well-formed expression in

the language is a composition of functions that have procedural

definitions in the retrieval component and are therefore

themselves well-defined procedures capable of execution on the

data base. In the LUNAR system, the definition of all of these

- 34 -

Mi

procedures is done in LISP, and the notation of the meaning

representation language is so chosen that its expressions are

executable LISP programs. These function definitions and the

data base on which they operate constitute the retrieval

component o£ the system.

5.2 Enumeration Functions

One of the engineering features of the LUNAR retrieval

component that makes the quantification operators both efficient

and versatile is the definition of quantification classes by

means of enumeration functions. These are functions that compute

one member of the class at a time and can be called repeatedly to

obtain successive members. Enumeration functions take an

enumeration index argument which is used as a restart pointer to

keep track of the state of the enumeration. Whenever FOR calls

an enumeration function to obtain a member of a class, it gives

it an enumeration index (initially T), and each time the

enumeration function returns a value, it also returns a new value

of the index to be used as a restart pointer to get the next

member. This pointer is frequently an inherent part of the

computation and involves negligible overhead to construct. For

example, in enumerati-g integers, the previous integer suffices,

while in enumerating members of an existing list, the pointer to

the rest of the list already exists.

- 35 -

The enumeration function formulation of the classes used in

quantification frees the FOR function from explicit dependence on

the structure of the data base; the values returned by the

enumeration function may be searched for in tables, computed

dynamically, or merely successively accessed from a precomputed

list. Enumeration functions also enable the quantifiers to

operate on potentially infinite classes and on classes of objects

that don't necessarily exist prior to the decision of the

quantifier to enumerate them. For example, in an expression such

as:

(FOR SOME X / INTEGER : (LESSP X 10) ; (PRIME X))

("some integer less than 10 is a prime"), a general enumeration

procedure for integers can be used to construct successive

integers by addition, without having to assume that all the

integers of interest exist in the computer's memory ahead of

time. Thus, the treatment of this kind of quantification fits

naturally within LUNAR's general quantification mechanism without

having to be treated as a special case.

In the grammar information system application, an

enumeration function for paths computes representations for paths

through the grammar, so that paths can be talked about even

though there are no explicit entities in the internal grammar

representation that correspond to paths. (See the discussion on

"smart" quantifiers below for a further discussion of the

problems of quantifying over such entities.)

- 36 -

An enumeration function can indicate termination of the

class in one of two ways: either by returning NIL, indicating

that there are no more members, or by returning a value with a

NIL restart pointer, indicating that the curcert value is the

last one. This latter can save one extra call to the enumeration

function if the information is available at the time the last

value is returned (e.g., for single valued functions). This

avoids what would otherwise be an inefficiency in treating

multiple- and single-valued functions the same way.

In LUNAR, a general purpose enumeration function SEQ can be

used to enumerate any precomputed list, and a similar function

SEQL can be used to enumerate singletons. For example:

(FOR EVERY XI / (SEQ TYPECS) : T ; (PRINTOUT XI))

is an expression that will printout the sample numbers for all of

the samples that are type C rocks.

Functionally determined objects and classes, as well as

fixed classes, are implemented as enumeration functions, taking

an enumeration index as well as their other arguments and

computing successive members of their class one at a time. In

particular, intensional operators such as AVERAGE, NUMBER, SETOF,

and UNION are defined as enumeration functions and also use

enumeration functions for their class arguments. Thus

quantification over classes, computation of single-valued

functions, and quantification over the values of multiple-valued

functions are all handled uniformly, without special distinctions

having to be made.

- 37 -

^^^^^.ä^

5.3 Quantified Commands

As mentioned earlier, both propositions and commands can be

quantified. Thus one can issue commands such as:

(FOR (EQ N 5) X / SAMPLES : (CONTAIN X SI02) ; (PRINTOUT X))

("Print out five samples that contain silicon."). The basic

commands in such expressions are to be iterated according to the

specifications of the quantifier. However, it is possible for

such commands to fail due to a violation of presuppositions or of

necessary conditions. For example, in the above case, there

might not be as many as five samples that contain silicon. In

order for the system to be aware of such cases, each command in

the system is defined to return a value that is non-null if the

command has been successfully executed and NIL otherwise. Given

this convention, the FOR operator will automatically return T if

such an iterated command has been successfully completed and NIL

otherwise.

There are other variations of this technique that could be

useful but were not implemented in LUNAR, such as returning

comments when a command failed indicating the kind of failure.

In LUNAR, such comments were sometimes printed to the user

directly by the procedure that failed, but the system itself had

no opportunity to "see" those comments and take some action of

its own in response to them (such as trying some other way to

achieve the same end).

- 38 -

..^vWft-^ri

In LUNAR, interpretations of commands are given directly to

the retrieval component for evaluation, although in a more

intelligent system, as in humanr, the decision to carry out a

command once it is understood would not necessarily automatically

follow.

6. Semantic Interpretation

Having now specified the notation in which the meanings of

English sentences are to be represented and specifying the

meanings of expressions in that notation, we are now left with

the specification of the process whereby meanings are assigned to

sentences. This process is referred to as semantic

interpretation, and in LUNAR it is driven by a set of formal

semantic interpretation rules. For example, the interpretation

of the sentence "S10046 contains silicon," to which the parser

would assign the syntactic structure:

S DCL

NP NPR S10046

AUX TNS PRESENT

VP V CONTAIN

NP NPR SILICON

is determined by a rule that applies to a sentence vh . the

subject is a sample, the object is a chemical element, oxide, or

isotope, and the verb is "have" or "contain". This rule

specifies that such a sentence is to be interpreted as an

instance of the schema (CONTAIN x y) where x is to be replaced

- 39 -

by the interpretation of the subject noun phrase of the sentence

and y is to be replaced by the interpretation of the object.

This information about conditions on possible arguments and

substitutions of subordinate interpretations into "slots" in the

schema is represented in LUNAR by means of the pattern -> action

rule:

[S:CONTAIN

(S.NP (MEM 1 SAMPLE))

(S.V (OR (EQU 1 HAVE)

(EQU 1 CONTAIN))

(S.OBJ (MEM 1 (ELEMENT OXIDE ISOTOPE)))

-> (QUOTE (CONTAIN (#11) (#31)))].

The name of the rule is S:CONTAIN. The left-hand side, or

pattern part, of the rule consists of three templates that match

fragments of syntactic structure. The first template requires

^hat the sentence being interpreted have a subject noun phrase

that is a member of the semantic class SAMPLE; the second

requires that the verb be either "have" or "contain"; and the

third requires a direct object that is either a chemical element,

an oxide or an isotope.

The right-hand side, or action part, of the rule follows the

right arrow and specifies that the interpretation of this node is

to be formed by inserting the interpretations of the subject and

object constituents into the schema (CONTAIN (# 1 1)(# 3 1)),

where the expressions (# m n) mark the "slots" in the schema

- 40 -

where subordinate interpretations are to be inserted. The

detailed structure of such rules is described in Section 6.3.

(Note that the predicate CONTAIN is the name of a procedure in

the retrieval component, and it is only by the "accident" of

mnemonic design that its name happens to be the same as the

English word "contain" in the sentence that we have interpreted.)

The process of semantic interpretation can conveniently be

thought of as a process that applies to parse trees produced by a

parser to assign semantic interpretations to nodes in the tree.

In LUNAR and the other systems above, except for TRIPSYS, this is

how the interpretations are produced. (In TRIPSYS, they are

produced directly by the parser without an intermediate syntax

tree representation.) The basic interpretation process is a

recursive procedure that assigns an interpretation to a node of

the tree as a function of its syntactic structure and the

interpretations of its constituents.

The interpretations of complex constituents are thus built

up modularly by a recursive process that determines the

interpretation of a node by inserting the interpretations of

certain constituent nodes into open slots in a schema. The

schema to be used is determined by rules that look at a limited

portion of the tree. At the bottom level of the tree (i.e., the

leaves of the tree), the interpretation schemata are literal

representations without open slots, specifying the appropriate

elementary interpretations of basic atomic constituents (e.g.,

proper names).

- 41 -

In LUNAR, the semantic interpretation procedure is

implemented in such a way that the interpretation of nodes can be

initiated in any order. If the interpretation of a node requires

the interpretation of a constituent that has not yet been

interpreted, then the interpretation of that constituent is

performed before that of the hiqher node is completed. Thus, it

is possible to perform the entire semantic interpretation by

calling for the interpretation ol the top node (the sentence as a

whole). This is the normal mode in which the interpreter is

operated in LUNAR. I will discuss later (Sections 11.3 and 11.4)

some experiments in which this mechanism is used for "bottom-up"

interpretation.

6.1 Complications Due to Quantifiers

In the above example, the interpretation of the sentence is

obtained by inserting the interpretations of the proper noun

phrases "S10046" and "silicon" (in LUNAR these are "S10046" and

"SI02", respectively) into the open slots of the right-hand side

schema to ootain:

(CONTAIN S10046 SI02) .

When faced with the possibility of a quantified noun phrase,

however, the problem becomes somewhat more complex. If the

initial sentence were "Every sample contains silicon," then one

would like to produce the interpretation:

(FOR EVERY X / SAMPLE ; (CONTAIN X SI02)).

- 42 -

ijUMBSm

That is, one would like to create a variable to fill the

"container" slot of the schema for the main verb, and then

generate a quantifier to govern that variable to be attached

above the predicate CONTAIN. As we shall see, the LUNAR semantic

interpretation system specifically provides for the generation

and appropriate attachment of such quantifiers.

6.2 Problems with an Alternative Approach

Because of the complications discussed above, one might ask

whether there is some other way to handle quantification without

generating quantifiers that are extracted from their noun phrase

and attached as dominant operators governing the clause in which

the original noun phrase was embedded. One might, instead,

attempt to interpret the quantified noun phrase as some kind of a

set that the verb of the clause takes as its argument, and

require the definition of the verb to include the iteration of

its basic predicate over the members of the class. For example,

one might want a representation for the above example something

like:

(CONTAIN (SET X / SAMPLE : T) SI02)

with the predicate CONTAIN defined to check whether its first

argument is a set and if so, check each of the members of that

set.

however, if one were to take this approach, some way would

be needed to distinguish giving CONTAIN a set argument over which

- 43 -

it should do universal quantification from one in which it should

do existential quantification. One would similarly have to be

able to give it arguments for the various non-standard

quantifiers discussed above, such as numerical quantifiers and

quantifiers like "most". Moreover, the same thing would have to

be done separately for the second argument to CONTAIN as well as

the first (i.e., the chemical element as well as the sample), and

one would have to make sure that all combinations of quantifiers

in the two argument positions worked correctly. Essentially one

would have to duplicate the entire quantificational mechanism

discussed above as part of the defining procedure for the meaning

of the predicate CONTAIN. Moreover, one would then have to

duplicate this code separately for each other predicate and

command in the system. Even if one managed to share most of the

code by packaging it as subroutines, this is still an inelegant

way of handling the problem.

Even if one went to the trouble just outlined, there are

still logical inadequacies, since there is no way with the

proposed method to specify the differences in meaning that

correspond to the different relative scopes of two quantifiers

(e.g., "Every sample contains some element" vs. "There is some

element that every sample contains"). Likewise, there is no

mechanism to indicate the relative scopes of quantifiers and

sentential operators such as negation ("Not every sample contains

silicon" vs. "Every sample contains no silicon"). It appears,

therefore, that treating quantifiers effectively as higher

operators is essential to correct interpretation in general.
- 44 -

6.3 The Structure of Semantic Rules

As discussed above, in determining the meaning of a

construction, two types of information are used: syntactic

information about sentence construction, and semantic information

about constituents. For example, in interpreting the above

example, it is both the syntactic structure of the sentence

(subject = S10046; verb = "contain"; object = silicon) plus the

semantic facts that S10046 is a sample and silicon is a chemical

element that determine the interpretation. Syntactic information

about a construction is tested by matching tree fragments such as

those indicated below against the mode being interpreted:

S.NP = S NP (1) — (subject of a sentence)

S.V = S VP V (1) — (main verb of a sentence)

S.OBJ = S VP NP (1) — (direct object of a sentence)

S.PP = S VP PP PREP (1) — (preposition and object

NP (2) modifying a verb phrase)

NP.ADJ = NP ADJ (2) — (adjective modifying a noun phrase)

Fragment S.NP matches a sentence if it has a subject and also

associates the number 1 with the subject noun phrase. S.PP

matches a sentence that contains a prepositional phrase modifying

the verb phrase and associates the numbers 1 and 2 with the

preposition and its object, respectively. The numbered nodes can

be referred to in the left-hand sides cf rules for checking

semantic conditions, and they are used in the right-hand sides

- 45 -

for specifying the interpretation of the construction. These

tree structure fragments can be named mnemonically as above for

readability.

The basic element of the left-hand side of a rule is a

template consisting of tree fragments plus additional semantic

conditions on the numbered nodes of the fragment. For example,

the template (S.NP (MEM 1 SAMPLE)) matches a sentence if its

subject is semantically marked as a sample. The pattern part of

a rule consists of a sequence of templates, and the action of the

rule specifies how the interpretation of the sentence is to be

constructed from the interpretations of the nodes that match the

numbered nodes of the templates.

Occasionally, some of the elements that are required to

construct an interpretation may be found in one of several

alternative places in a construction. For example, the

constituent to be measured in an analysis can occur either as a

prenominal adjective ("a silicon analysis") or as a post-nominal

prepositional phrase {"an analysis of silicon"). To handle this

case, basic templates corresponding to the alternative ways the

necessary element can be found can be grouped together with an OR

operator to form a disjunctive template that is satisfied if any

of its disjunct templates are. For example:

(OR (NP.ADJ (MEM 2 ELEMENT))

(NP.PP (AND (EQU 1 OF)

(MEM 2 ELEMENT))).

- 46 -

Also occasionally, two rules will be distinguished by the

fact that one applies when a given constituent is present and the

other will require it to be absent. In order to write the second

rule so that it will not match in circumstances where it is not

intended, a basic template can be embedded in a negation operator

NOT to produce a negated template that is satisfied if its

embedded template fails to match and is not satisfied when its

embedded template succeeds. For example:

(NOT (NP.ADJ (EQU 2 MODAL))).

In general, the left-hand side of a rule consists of a

sequence of templates (basic, disjunctive, or negated).

6.3.1 Right-hand Sides

The right-hand sides (or actions) of semantic rules are

schemata into which the interpretations of embedded constituents

are inserted before the resulting form is evaluated to give a

semantic interpretation. The places, or "slots", in the

right-hand sides where subordinate interpretations are to be

inserted are indicated by expressions calle : REFs, which begin

with the atom # and contain one or two numbers and an optional

"TYPEFLAG." The numbers indicate the node in the tree whose

interpretation is to be inserted by naming first the sequence

number of a template of the rule, and then the number of the

corresponding node in the tree fragment of that template. Thus

the reference (# 2 1) represents the interpretation of the node

- 47 -

.:.,:-;r;^fc-^.--

that matches node 1 of the 2nd template of the rule. In

addition, the single number 0 can also be used to reference the

current node, as in (I 0 TYPEFLAG).

The TYPEFLAG element, if present, indicates how the

subordinate node is to be interpreted. For example, in LUNAR

there is a distinctron between interpreting a node normally and

interpreting it as a topic description. Thus (# 0 TOPIC)

represents the interpretation of the current node as a topic

description, There are a variety of types of interpretation used

for various purposes in the rules of the system. The absence of

a specific TYPEFLAG in a REF indicates that the interpretation is

to be done in the normal mode for the type of node that it

matches.

6.3.2 Right-hand Side Evaluation

In many cases, the semantic interpretation to be attached to

a node can be constructed by merely inserting the appropriate

constituent interpretations into the open slots in a fixed

schema. However, occasionally, more than this is required and

some procedure needs to be executed to modify or transform the

resulting instantiated schema. To provide for this, the semantic

interpreter treats right-hand sides of rules as expressions to be

evaluated to determine the appropriate interpretation. For rules

in which the desired final form can be given literally, the

right-hand side schema is embedded in the operator QUOTE which

- 48 -

simply returns its argument unchanged. This is the case in the

example above. In special cases, right-hand side operators can

do fairly complex things, such as searching a discourse directory

for antecedents for anaphoric expressions and computing

intensional unions of setö. In the usual case, however, the

operator is either QUOTE or one of the two operators PRED and

QUANT that handle quantifier passing (discussed below).

6.4 Relationship of Rules to Syntax

In many programm.ng languages and some attempts to specify

natural language semantics, semantic rules are paired directly

with syntactic phrase structure rules so that a single compact

pairing specifies both the syntactic structure of a constituent

and its interpretation. This type of specification is clean and

straightforward and works well for artificial languages that can

be defined by context-free or almost context-free grammars. For

interpreting natural language sentences, whose structure is less

isomorphic to the kind of logical meaning representation that one

would like to derive, it is less convenient, although not

impossible. Specifically, with the more complex grammars for

natural language — e.g., ATN's and transformational grammars,

the simple notio.: of a syntactic rule with which to pair a

semantic rule becomes less clear. Consequent y, the rules in the

LUNAR system are not paired with the syntactic rules, nor are

they constrained to look only at the immediate constituents of a

phrase. In general they can look arbitrarily far down into the

- 49 -

phrase they are interpreting, picking up interpretations of

subordinate constituents at any level and looking at various

syntactic aspects of the structure they are interpreting, as well

as the semantic interpretations ot couctituents. The rules are

invoked not by virtue of applying a given syntactic rule, but by

means of rule indexing strategies described below.

6.5 Organization of the Semantic Interpreter

The overall operation of the semantic interpreter is as

follows: A top level routine calls the recursive function INTERP

locking at the top level of the farse tree. Thereafter, INTERP

attempts to match semantic rules against the specified node of

the tree, and the right-hand sides of matching rules specify the

interpretation to be given to the node. The possibility of

semantic ambiguity is recognized, and therefore the routine

INTERP produces a list of possible interpretations (usually a

singleton, however). Each interpretation consists of two parts:

a node interpretation (called the SEM of the node), and a

quantifier "collar" (called the QUANT of the node). The QUANT is

a schema for higher operators (such as quantification) that is to

dominate any interpretation in which the SEM is inserted (used

for quantifier passing — see Section 6.7 belc.j. Thus the

result of a call to INTERP for a given node P is a list of

SEM-QUANT pairs, one for each possible interpretation of the

node.

- 50 -

■^^=£1»=^=^ iOm^^ - ■ ^-^ J^^:. -... .--.,:......■- ...■

6,5.1 Context-Dependent Interpretation

The function INTERP takes two arguments — the construction

to be interpreted, and a TYPEFLAG that indicates how to interpret

it. The TYPEFLAG mechanism is intended to allow a constituent to

be interpreted differently depending on the higher-level

structure within which it is embedded. The TYPEFLAG permits a

higher level schema to pass down information to indicate how it

wants a constituent interpreted. For example, some verbs can

specify that they want a noun phrase interpreted as a set rather

than as a quantification over individuals. The TYPEFLAG

mechanism is also used to control the successive phases of

interpretation of noun phrases and clauses (discussed below).

When interpreting a node, INTERP first calls a function HEAD

to determine the head of the construction and then calls a

function RULES to determine the list of semantic rules to be used

(which depends, in general, on the type of node, its head word,

and the value of TYPEFLAG). It then dispatches control to a

routine MATCHER to try to match the rules. If no interpretations

are found, then, depending on the TYPEFLAG and various mode

settings, INTERP either returns a default interpretation T, goes

into a break with a comment that the node is uninterpretable

(perr.iittinq a systems programmer to debug rules) , or returns NIL

indicating that the node has no interpretations for the indicated

TYPEFLAG.

- 51 -

6.5.2 Phased Interpretation

In general, there are two types of constituents in a

sentence that receive interpretations — clauses and noun

phrases. The former receive interpretations that are usually

predications or commands, while the latter are usually

designators. The interpretation of these two different kinds of

phrase are slightly different, but also remarkably similar. In

each case there is a governing "head" word; the verb in the case

of a clause, and the head noun in the case of the noun phrase.

The interpretation of a phrase is principally determined by the

head word (noun or verb) of the construction. However, there are

also other parts of a construction that determine aspects of its

interpretation independent of the head word. These in turn break

down into two further classes: (1) modifying phrases (which

themselves have dominating head words) that augment or alter

meaning of the head, and (2) function words that determine

governing operators of the interpretation that are independent of

the head word and its modifiers. In the case of clauses, these

latter include the interpretation of tense and aspect and various

qualifying operators such as negative particles. In the case of

noun phrases, these include the interpretation of articles and

quantifiers and the inflected case and number of the head noun.

As a consequence of these distinctions, the semantic

interpretation of a construction generally consists of three

kinds of operations: determining any governing operators that are

- 52 -

independent of the head word, determining the basic

interpretation of the head, and interpreting any modifiers that

may be present. In LUNAR, these three kinds of interpretation

are governed by three different classes of rules that operate in

three phases. The phases are controlled by the rules themselves

by using multiple calls to the interpreter with different

TYPEFLAGS.

The above description is not the only way such phasing could

be achieved. For example, it would be possible to gain the same

phasing of interpretation by virtue of the structures assigned to

the input by the parser (see Section 11.2) or by embedding the

phasing in the control structure of the interpreter. In the

original flight schedules and grammar information

implementations, this phasing was embedded in the control

structure of the interpreter. Placing the phasing under the

control of the rules themselves in LUNAR provided more

flexibility. In TRIPSYS, the equivalent of such phasing is

in grated, along with the semantic interpretation, into the

parsing process.

In general, the interpretation of a construction is

initially called for with TYPEFLAG NIL. This first

interpretation may in turn involve successive calls for

interpretation of the same node with other TYPEFLAGs to obtain

subsequent phases of interpretation. For example, clauses are

initially interpreted with TYPEFLAG NIL, and the rules invoked

- 53 -

'"•""^^ffruirniiTmir

are a general set of rules called PRERÜLES that look for negative

particles, tense marking, conjunctions etc. to determine any

governing operators that should surround the interpretation of

the verb. Whichever of these rules matches will then call for

another interpretation of the same construction with an

appropriate TYPEFLAG. The basic interpretation of the verb is

done by a call with TYPEFLAG SRULES, which invokes a set of rules

stored on the property list of the verb (or reachable from the

entry for that verb by chaining up a generalization hierarchy).

For example, in interpreting the sentence "S10046 doesn't contain

silicon", the initial PRERULE PR-NEG matches with a right-hand

side:

(PRED (NOT (I 0 SRULES))).

The SRULE S:CONTAIN discussed above then matches, producing

eventually (CONTAIN S10046 SI02) , which is then embedded in the

PR-NEG schema to produce the final interpretation:

(NOT (CONTAIN S10046 SI02)).

Ordinary noun phrases are usually interpreted by an initial

phase that interprets the determiner and number, a second phase

that interprets the head noun and any arguments that it may take

(i.e., as a function), and a third phase that interprets other

adjectival and prepositional phrase modifiers and relative

clauses.

- 54 -

6.5.3 Proper Nouns and Mass Terms

In addition to the rules discussed above for ordinary noun

phrases, there are two special classes of noun phrase — proper

nouns and mass terms — that have their own rules. Proper nouns

are the direct names of individuals in the data base. Their

identifiers in the data base, which are not necessarily identical

to their normal English orthography, are indicated! in the

dictionary entry for the English form. Mass terms are the names

of substances like silicon and hydrogen. Proper nouns are

represented in the LUNAR syntactic representations as special

oases of noun phrases by a rule equivalent to NP -> NPR, while

mass terms are represented as ordinary noun phrases with

determiner NIL and number SG.

In general, the interpretation of mass terms requires a

special treatment of quantifiers, similar to but different from

the ordinary quantifiers that deal with count nouns (e.g., "some

silicon" means an amount of stuff, while "some sample" means an

individual sample). In the LUNAR system, however, mass terms are

used only in a few specialized senses in which they are almost

equivalent to proper nouns naming a substance.

6.6 Organization of Rules

As mentioned above, the semantic rules for interpreting

sentences are usually governed by the verb of the sentence. That

is, out of the entire set of semantic rules, only a relatively

- 55 -

small number of them can possibly apply to a given sentence

because of the verb mentioned in the rule. Similarly, the rules

that interpret noun phrases are governed by the head noun of the

noun phrase. For this reason, most semantic rules in LUNAR are

indexed according to the heads of the constructions to which they

could apply, and recorded in the dictionary entry for the head

words. Specifically, associated with each verb is a set of

"SRULES" for interpreting that verb in various contexts, and

associated with each noun is a set of "NRULES" for interpreting

various occurrences of that noun. In addition, associated with

each noun are a set of "RRULES" for interpreting various

restrictive modifiers that may be applied to that noun. Each

rule essentially characterizes a syntactic/semantic environment

in which a word can occur, and specifies its interpretation in

that environment. The templates of a rule thus describe the

necessary and sufficient constituents and semantic restrictions

for a word to be meaningful.

In addition to indexing rules directly in the dictionary

entry for a given word, certain rules that apply generally to a

class of words are indexed in an inheritance hierarchy

(frequently called an "is-a" hierarchy in semantic network

notations) so that they can be recorded once at the appropriate

level of generality. Specifically, each word in the dictionary

has a property called MARKERS which contains a list of classes of

which it is a member (or subclass) — i.e., classes with which

this word has an "is-a" relationship. Each of these classes also

- 56 -

_^^^^__

has a dictionary entry that may contain SRULES, NRULES, and

RRULES. The set of rules used by the interpreter for any given

phrase is obtained by scanning up these chains of inheritance and

gathering up the rules that are found. These accesses are quite

shallow in LUNAR, but would be used more heavily in a less

limited topic domain. -c ■

In situations in which the set of rules does not depend on

the head of the construction, the rules to be used are taken from

a global list determined by the value of TYPEFLAG and the type of

the constituent being interpreted. For example, in interpreting

the determiner structure of a noun phrase, a global list of

DRULES is used.

6.6.1 Rule Trees

Whether indexed by the head words of constructions or taken

from global lists, rules to be tried are organized into a tree

structure that can make rule matching conditional on the success

or failure of previous rules. A rule tree specifies the order in

which rules are to be tried and after each rule indicates whether

a different tree of rules is to be tried next, depending on the

success or failure of previous rules. The format for a rule tree

is basically a list of rules (or rule groups — see Multiple

Matches below) in the order they are to be tried. However, after

any given element in this list, a new rule tree can be inserted

to be used if any of the rules preceding it have succeeded. If

- 57 -

no rules preceding it have succeeded, then the inserted tree is

skipped and rules continue to be taken from the rules that follow

it in the list. For example, the tree (Rl R2 {R4 R5) R3 R4 R5)

indicates that Rl and R2 are to be tried in that order and if

either of them succeed, then subsequent rules to be tried are R4

and R5. If neither Rl nor R2 succeed, then the remaining list

R3, R4, R5 is to be tried next. This example illustrates how a

rule tree can be used to skip around rules that are to be omitted

if previous rules have succeeded.

The most usual cases of rule trees in LUNAR are simple lists

(i.e., no branching in the tree), and lists of rules with

inserted empty trees (i.e., the empty list NIL) serving as

"barriers" to stop the attempted matching of rules once a

successful rule has been found.

6.6.2 Multiple Matches

Since the templates of a rule may match a node in several

ways, and since several rules may simultaneously match a single

node, it is necessary to indicate how the interpretation of a

node is to be constructed in such a case. To provide this

information, the lists of rules at each level of a rule tree can

be organized into groups, with each group indicating how (or

whether) simultaneous matches by different rules are to be

combined. The format of a rule group is a list of rules (or

other groups) preceded by an operator specifying the mode for

- 58 -

combining simultaneous matches. Outside the scopes of rule

groups, the mode to be used is specified by a default value

determined by TYPEFLAG and the type of node being interpreted.

Possible modes are AND (which combines multiple matches with an

AND — i.e., treats multiple matches as finding different parts

of a single conjoined meaning), OR (which combines multiple

matches with an OR), SPLIT (which keeps multiple matches separate

as semantic ambiguities), and PAIL (which prohibits multiple

matches — i.e., complains if it finds any).

To illustrate the behavior of rule groups in rule trees, a

rule list of the form (A B NIL C (OR D E)) with default mode AND

indicates that if either of the rules A or B is successful, then

no further matches are tried (NIL is a barrier); otherwise, rules

C, D, and E are tried. If both D and E match, then the results

are OR'ed together, and if C matches together with D or E or

both, it is AND'ed to the results of the OR group.

The modes (AND, OR, SPLIT, and FAIL) also apply to multiple

matches of a single rule. A rule may either specify the mode for

multiple matches as its first element prior to the list of

templates, or else it will be governed by the rule group or

default mode setting at the time it is matched.

6.7 The Generation of Quantifiers

As mentioned above, the LUNAR interpretation system

specifically provides for the generation and appropriate

- 59 -

^-~-;^^. ,:w_^;-,.__,,.....-^i:=T:..^..,

attachment of quantifiers governing the interpretations it

produces. Central to this capability is the division of the

interpretation of a constituent into two parts: a SEM that is to

be inserted into the appropriate slot of the schema for some

higher constituent, and a QUANT that serves as a "collar" of

higher operators that is to be passed up to some higher level of

the tree (around which the collar will be "worn"). A quantifier

to be attached co some higher constituent is represented as a

schema, which itself contains a slot into which the

interpretation of that higher constituent is to be inserted.

This slot (the "hole" in the collar) is indicated by a marker

DLT.

In the unquantified example sentence considered in Section

6.1 above, the SEM of the subject noun phrase is simp]y S10046,

and the QUANT is the "empty" collar DLT. The quantifier schema

in the second example would be represented as:

(FOR EVERY X / SAMPLE : T ; DLT).

6.7.1 Steps in Interpretation

The general procedure for interpreting a construction is:

a) Match an interpretation rule against the construction,

subject to the control of the rule tree.

b) If it matches, then determine from the right-hand side of

the rule the set of constituent nodes that need to be

interpreted.

- 60 -

c) Call for the interpretation of all of the constituents

required, associate their SEMs with the slots in the schema

that they are to fill, and gather up all of the QUANTs that

are generated by those interpretations. Call a function

SORTQUANT to determine the order in which those quantifiers

(if there are several) should be nested.

d) Depending on an operator in the right hand side of rule,

either attach the quantifiers so generated around the

outside of the current schema, or pass them further up the

tree as the QUANT of the resulting interpretation.

e) If multiple matches are to be combined with an AND or OR, it

is their SEMs that are so combined. Their QUANTs are nested

one inside the other to produce the QUANT of the result.

6.7.2 Quantifier Passing Operators

There are three principal operators for use in the

right-hand sides of rules to determine the behavior of quantifier

passing up the tree. These are the operatands PRED, QUOTE, and

QUANT. The first indicates that tne schema it contains is a

predication that will accept quantifiers from below; it causes

any quantifiers that arise from constituent interpretations to be

attached around the current schema to become part of the

resulting 3EM. The QUANT associated with such an interpretation

will be the empty QUANT DLT. The operator QUANT, on the other

hand, indicates that the schema it contains is itself a

quantifier schema, and that the result of its instantiation is to

- 61 -

- - - Hl C

be passed up the tree {together with other quantifiers that may

have resulted from constituent interpretations) as the QUANT of

the interpretation. The SEM associated with such an

interpretation is the variable name that is being governed by the

quantifier. The operator QUOTE is used around a schema that is

transparent to quantifier passing, so that any quantifiers that

accumulate from constituent interpretations are simply aggregated

together and passed on up the tree as the QUANT of the

interpretation. The SEM of such an interpretation is simply the

instantiated schema inside the QUOTE.

In the LUNAR implementation, a function SEMSUB.. which

substitutes the SEMs of lower interpretations into the right-hand

sides of rules, maintains a variable QUANT to accumulate the

nesting of quantifiers returned from the lower interpretations.

Then, after making the substitutions, the right-hand side of the

rule is evaluated to determine the SEM-QUANT pair to be returned.

The result of the evaluation is the desired SEM of the pair, and

the value of QUANT (which may have been changed as a side effect

of the evaluation) is the QUANT of the pair. The operators PRED

and QUANT in the right-hand sides of rules manipulate the

variable QUANT to grab and insert quantifiers.

- 62 -

7. Problems of Interpretation

7.1 The Order of Quantifier Nesting

In the general quantification schema:

(FOR <quant> X / <class> : (p X) ; (q X))

both the expre; iions (p X) and (q X) can themselves be quantified

expressions. Sentences containing several quantified noun

phrases result in expressions with a nesting of quantifiers

dominating the interpretation of the main clause. For example,

the sentence "Every sample contains some element" has a

representation:

(FOR EVTRY X / SAMPLE ;

(FOR SOME Y / ELEMENT ;

(CONTAIN X Y))) .

Alternative interpretations of a sentence cr .responding to

different orderings of the quantifiers correspond to different

relative nestings of the quantifier operö^ions. For example, the

above sentence has an unlikely interpretation in which there is a

particular element that is contained in every sample. The

representation of this interpretation is:

(FOR SOME Y / ELEMENT ;

(FOR EVERY X / SAMPLE ;

(CONTAIN X Y))) .

Thus, in interpreting a sentence, it is necessary to decide the

appropriate order of nesting of quantifier^ to be used. In

general, this orderi is the left-to-right order of occurrence

- 63 -

of the quantifiers in the sentence, but this is not universally

so (for example, when a function is applied to a quantified noun

phrase - see Functional Nesting below). In situations where the

order of quantifiers is not otherwise determined, LUNAR assumes

the left-to-right order of occurrence in the sentence.

7.2 Interaction of Negations with Quantifiers

The construction of an interpretation system that will

handle sentences containing single instances of a quantification

or simple negation without quantification is not difficult. What

is difficult is to make it handle correctly sentences containing

arbitrary combinations of quantifiers and negatives. The

interpretation mechanism of LUNAR hu.idles such constructions

fairly well. Consider the sentence "Every sample does not

contain silicon". This sentence is potentially ambiguous between

two interpretations:

(NOT (FOR EVERY X / SAMPLE ; (CONTAIN X SI02)))

and

(FOR EVERY X / SAMPLE ; (NOT (CONTAIN X SI02))).

The difference lies in the relative scopes of the quantifier and

the negative.

One interpretation of the above sentence is handled in LUNAR

by the interaction of the rules already presented. The

interpretation of the PRERULE PR-NEG, discussed in Section 6.5.2,

has the right-hand side (PRED (NOT (# 0 SRULES))), whose

- 64 -

governing operator indicates that it grabs quantifiers from

below. The interpretation of the noun phrase "every sample"

produces the quantifier "collar":

(FOR EVERY X / SAMPLE : T ; DLT)

which is passed up as the QUANT together with the SEM X. The

right-hand side of S:CONTAIN is embedded in the operator QUOTE,

which is transparent to quantifiers, producing the SEM (CONTAIN X

SI02) and passing on the same QUANT. The top level rule PR-NEG

now executes its instantiated right-hand side:

(FRED (NOT (CONTAIN X SI02)))

which grabs the quantifier to produce the interpretation:

(FOR EVERY X / SAMPLE : T ; (NOT (CONTAIN X SI02))).

The alternative interpretation of the above sentence can be

obtained by an alternative PRERULE for sentential negatives whose

right-hand side is:

(BUILDQ (NOT #) (PRED (# 0 SRULES)))

where BUILDQ is an operator whose first argument is a literal

schema into which it inserts the values of its remaining

arguments. In this case, the PRED expression produces:

(FOR EVERY X / SAMPLE : T ; (CONTAIN X SI02))

and the BUILDQ produces:

(NOT (FOR EVERY X / SAMPLE : T ; (CONTAIN X SI02))).

If these two negative rules both existed in the list

PRERULES, then the LUNAR interpreter when interpreting a negative

sentence would find them both and would produce both

- 65 -

!*?•

interpretations. In the case where no quantifier is returned by

the subordinate SRULES interpretation, then both rules would

produce the same interpretation and the duplicate could be

eliminated. In the case where a quantifier is returned, then the

two interpretations would be different and a genuine ambiguity

would have been found, resulting in a request by the system to

the user to indicate which of the two interpretations he

intended.

However, if one decides to legislate that only one of the

two possible scope choices should be perceived by the system,

then only the corresponding rule for negation should be included

in the PRERULES list. This is the choice that was taken in the

demonstration LUNAR system. Since the interpretation of the

negative operator outside the scope of the quantifier can be

unambiguously expressed using locutions such as "Not every sample

contains silicon", LONAR's rules treat sentential negation as

falling inside any quantifiers (as expressed by the PR-NEG rule

discussed previously). Rules for interpreting determiners such

as "not every" can easily be written to produce quantifier

expressions such as:

(NOT (FOR EVERY X / <class> ; DLT))

to give interpretations in which the negative operator is

outermost.

- 66 -

7.3 Functional Nesting and Quantifier Reversal

As previously mentioned, an interesting example of

quantifier nesting occurs when an argument to a function is

quantified. As an example, consider the flight schedules

request, "List the departure times from Boston of every American

Airlines flight that goes from Boston to Chicago." This sentence

has a bizarre interpretation in which there is one time at which

every American Airlines flight from Boston to Chicago departs.

However, the normal interpretation requires taking the

subordinate quantifier "every flight" and raising it above the

quantifier of the higher noun phrase "the departure time". Such

nesting of quantifiers is required when the range of

quantification of one of them (in this case, the departure times)

contains a variable governed by the other (in this case, the

flights).

In the logical representation of the meaning of such

sentences, the higher quantifier must be the one that governs the

variable on which the other depends. This logical dependency is

exactly the reversal of the "syntactic dependency" in the parse

tree, where the argument to the function is contained within

(i.e., "dependent" on) the phrase the function heads. The LUNAR

system facility for interpreting such constructions automatically

gets the preferred interpretation, since the quantifiers from

subordinate constituents are accumulated and nested before the

quantifier for a given noun phrase is inserted into the

quantifier collar.

- 67 -

To illustrate the process in detail, consider the

interpretation of the above example. In the processing of the

constituents of the noun phrase whose head is "departure time",

the quantifier:

(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ; DLT)

is returned from the interpretation of the "flight" noun phrase

(which gets the SEM X2). The temporary QUANT accumulator in the

function SEMSUB (discussed in Section 6.7), at this point

contains the single "empty" quantifier collar DLT. This is now

modified by substituting the returned quantifier for the DLT,

resulting in the QUANT accumulator now containing the returned

quantifier:

(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ; DLT)

(with its DLT now marking the "hole" in the collar).

When all of the subordinate constituents have been

interpreted, and their SEM's have been inserted into the

right-hand side schema of the d-rule (for the "departure time"

noun phrase), the resulting instantiated schema will be:

(QUANT (FOR THE XI / (DTIME X2 BOSTON) : T ; DLT)).

This is then evaluated, again resulting in the DLT in the

temporary QUANT accumulator being replaced with this new

quantifier (thus inserting the definite quantification THE inside

the scope of the universal quantifier EVERY that is already

there). The result of this interpretation is to return the

SEM-QUANT pair consisting of the SEM XI and the QUANT:

- 68 -

(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ;

(FOR THE XI / (DTIME X2 BOSTON) : T ; DLT)).

The right-hand side for the next higher rule (the one that

interprets the command "list x") contains a PRED operator, so

that when its instantiated schema:

(PRED (PRINTOUT XI))

is executed, it will grab the quantifier collar from below to

produce the interpretation:

(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ;

(FOR THE XI / (DTIME X2 BOSTON) : T ;

(PRINTOUT XI))).

7.4 Relative Clauses

One of the features of the LUNAR system that makes it

relatively powerful in the range of questions it can handle is

its general treatment of relative clause modifiers. This gives

it a natural ability to handle many questions that would be

awkward or impossible to pose to many data management systems.

Relative clauses permit arbitrary predicate restrictions to be

imposed on the range of quantification of some iterative search.

The way in which relative clauses are interpreted is quite simple

within LUNAR's general semantic interpretation framework. It is

done by a general RRULE R:REL, which is implicitly included in

the RRULES for any noun phrase.

- 69 -

The rule R:REL will match a noun phrase if it finds a

relative clause structure modifying the phrase. On each such

relative clause, it will execute a function BELTAG that will find

the node in the relative clause corresponding to the relative

pronoun ("which" or "that"), .nd will mark this found node with

the same variable X that is being used for the noun phrase that

the relative clause modifies. This pronoun will then behave as

if it had already been interpreted and assigned that variable as

its SEM. The semantic interpreter will then be called on the

relative clause node, just like any other sentence being

interpreted, and the result will be a predicate with a free

occurrence of the variable X. This resulting predicate is then

taken, together with any other RRULE predicates obtained from

adjectival and prepositional phrase modifiers, to form the

restriction on the range of quantification of the modified noun

phrase.

One consequence of a relative clause being interpreted as a

subordinate S node (in fact, a consequence of any subordinate S

node interpretation) is that, since the PRERULES used in

interpreting the subordinate S node all have PRED operators in

their right-hand sides, any quantifiers produced by noun phrases

inside the relative clause will be grabbed by the relative clause

itself and not passed up to the main clause. This rules out

interpretations of sentences like "List the samples that contain

every major element" in anomalous ways such as:

- 70 -

(FOR EVERY X / MAJORELT : T ;

(FOR EVERY Y / SAMPLE : (CONTAIN Y X) ;

(PRINTOUT Y)))

(i.e., "For every major element list the samples that contain

it") instead of the correct:

(FOR EVERY Y / SAMPLE :

(FOR EVERY X / MAJORELT : T ; (CONTAIN Y X)) ;

(PRINTOUT Y))

Except in certain opaque context situations, this seems to be the

preferred interpretation. As in other cases, however, although

LUNAR's interpretation system is capable of producing alternative

interpretations for some other criteria to choose between, the

demonstration prototype instead uses rules that determine just

those interpretations that seem to be most likely in its domain.

7.5 Other Types of Modifiers

In addition to relative clauses, there are other kinds of

constructions in English thai: function as predicates to restrict

the range of quantification. These include most adjectives and

prepositional phrases. They are interpreted by RRULES that match

the appropriate structures in a noun phrase and produce a

predicate with free variable X (which will be instantiated with

the variable of quantification for the noun phrase being

interpreted). I will call such modifiers predicators since they

function as predicates to restrict the range of quantification.

Examples of predicators are modifiers like "recent" and "about

- 71 -

^^^-i .:■•-"■;-— - ■

olivine twinning" in phrases like "recent articles about olivine

twinninq". The interpretation of this phrase would produce the

quantifier:

(FOR GEN X / DOCUMENT :

(AND (RECENT X) (ABOUT X (OLIVINE TWINNING))) ; DLT).

Note that not all adjectives and prepositional phrases are

interpreted as just described. Many fill special roles

determined by the head noun, essentially serving as arguments to

a function. For example, in a noun phrase such as "the silicon

concentration in S10046", the adjective "silicon" is specifying

the value of one of the arguments to the function

"concentration", rather than serving as an independent predicate

that the concentration must satisfy. (That is, this phrase is not

equivalent to "the concentration in S10046 which is silicon",

which doesn't make sense). Similarly, the prepositional phrase

"in S10046" is filling the same kind of argument role, and is not

an independent modifier. I will call this class of modifiers

role fillers.

In some cases, there are modifiers that could either be

treated as restricting predicates or as filling argument roles in

a function, depending on the enumeration function that is being

used to represent the meaning of the head noun. For example, a

modifier like "to Chicago" in "flights to Chicago" could either

be interpreted as an independent predicate (ARRIVE X CHICAGO)

modifying the flight, or as an argument to a specialized flight

- 72 -

enumeration function FLIGHT-TO which enumerates flights to a

given destination. In the flight schedules application, the

former interpretation was taken, although later query

optimization rules (see Smart Quantifiers, below) were able to

transform the resulting MRL expression to a form equivalent to

the latter to gain efficiency.

In general English, there are cases in which it seems moot

whether one should treat a given phrase as filling an argument

role or as a restricting predicate. However, there are also

clear cases where the head noun is definitely a function and

cannot stand alone without some argument being either explicitly

present or inferable from context. In these cases such modifiers

are clearly role fillers. On the other hand, the diversity of

possible modifiers makes it unlikely that all adjectives and

prepositional phrases could be interpretable as role fillers in

any general or economical fashion. Thus, the distinction between

predicators and role fillers seems to be necessary.

There is another use of a modifier that neither fills an

argument role nor stands as an independent predicate, but rather

changes the interpretation of the head noun. An example is

"modal" in "modal olivine analyses". This adjective does not

describe a kind of olivine, but rather a kind of analysis that is

different from the normal interpretation one would make of the

head "analysis" by itself. Such modifiers might be called

specializers since they induce a special interpretation on the

- 73 -

head noun. Note that these distinctions in types of modification

refer to the cole a modifier plays in a given construction, not

to anything inherent in the modifier itself.

The sentence "List iirdal olivine analyses for lunar samples

that contain silicon" contains a mixture of the different kinds

of modifiers. The presence of the specializer adjective "modal"

blocks the application of the normal NRULE N:ANALYSIS (it has a

NOT template that checks for it), and it enables a different rule

N:MODAL-ANALYSIS instead. The adjective "olivine" and the

prepositional phrase are both interpreted by REFs in the

right-hand side of this rule to fill argument slots in the

enumeration function DATALINE. There are no predicators

modifying "analyses", but there is a potential predicator "lunar"

modifying "samples" and a restrictive relative clause also

modifying samples. In LUNAR, the apparently restrictive modifier

"lunar" modifying a word like "samples" is instead interpreted as

a specializer that doesn't make a difference, since LUNAR knows

of no other kind of sample. However, this is clearly not a

limitation of the formalism.

The relative clause modifying "samples" is interpreted as

described above to produce the predicate:

(CONTAIN X2 SI02).

The interpretation of the noun phrase "lunar samples that contain

silicon" thus consists of the SEM X2 and ehe QUANT:

(FOR GEN X2 / SAMPLE : (CONTAIN X2 SI02) ; DLT).

- 74 -

This SEM-QUANT pair is returned to the process interpreting the

noun phrase "modal olivine analyses for ... ", which in turn

produces a SEM XI and a QUANT:

(FOR GEN X2 / SAMPLE : (CONTAIN X2 S102) ;

(FOR GEN XI / (DATALINB X2 OVERALL OLIV) : T ;

DLT)).

This is returned to the rule interpreting the main verb "list,"

whose right-hand side produces the SEM (PRINTOUT Xl) with the

same QUANT as above. This process returns to the PRERULE for

positive imperative sentences, where the quantifiers are grabbed

to produce the interpretation:

(FOR GEN X2 / SAMPLE : (CONTAIN X2 SI02) ;

(FOR GEN XI / (DATALINE X2 OVERALL OLIV) : T ;

(PRINTOUT XI))) .

7.6 Averages and Quantifiers

An interesting class of quantifier interaction problems

occurs with certain operators such as "average", "sum", and

"number". In a sentence such as "What is the average silicon

concentration in breccias", it is clear that the generic

"breccias" is not to be interpreted as a universal quantifier

dominating the average computation, but rather the average is to

be performed over the set of breccias. A potential way of

interpreting such phrases would be to treat average as a

specializer adjective which, when applied to a noun like

"concentration", produces a specialized enumeration function that

- 75 -

computes the average. This special interpretation rule, would

then interpret the class being averaged over in a special mode as

a role filler for one of the arguments to the

AVERAGE-CONCENTRATION function. However, this approach would

Jack generality, since it would require a separate interpretation

rule and a separate AVERAGE-X function for every averageable

measurement X. Instead, one would like to tre ^ average as a

general operator that can apply to anything averageable. Doing

this, and making it interact correctly with various quantifiers

is handled in the LUNAR system by a mechanism of some elegance

and generality. I will describe here the interpretation of

averages; the interpretations of sums and other such operators

are similar.

Note that there are two superficial forms in which the

average operator is used: one is as a simple adjective modifying

a noun ("the average concentration..."), and one is as a noun

referring to a function that is explicitly applied to an argument

("the average of concentrations ..."). LUNAR's grammar

standardizes this variation by transforming the first kind of

structure into the second (effectively inserting an "of ... PL"

into the sentence). As a result, average always occ .rs in

syntactic tree structures as the head noun of a noun phrase with

a dependent prepositional phrase whose object has a "NIL ... PL"

determiner structure and represents the set of quantities tc be

averaged.

- 76 -

In interpreting such noun phrases, the NRULE invoked by a

head noun "average" or "mean" calls for the interpretation of the

set being averaged with the special TYPEFLAG SET. This will

result in that node's being interpreted with a special DRULE

D:SETOFf which will construct an intensional set representation

for the set being averaged. The data base function AVERAGE knows

how to use such an intensional set to enumerate members and

compute the average. The NRULE for "average" is:

[N:AVERAGE

(NP.N (MEM 1 (MEAN AVERAGE)))

(NP.PP (MEM 2 (QUANTITY)))

-> (QUOTE (SEQL (AVERAGE X / (# 2 2 SET))))].

7.7 Short Scope / Broad Scope Distinctions

Another interesting aspect of quantifier nesting is a fairly

well-known distinction between so called short-scope and

broad-scope interpretation quantifiers. For example, Boh.iert and

Backer (1967) present an account of the differences between

"every" and "any" and between "some" and "a" in contexts such as

the antecedents of if-then statements by giving "any" and "some"

the broadest possible scope and "every" and "a" the narrowest.

For example, using the LUNAR MRL notation.

If any soldier stays home, there is no war

(FOR EVERY x / soldier ; (IF (home x)

THEN (not war))

- 77 -

If every soldier stays home, there is no war

(IF (FOR EVERY x / soldier ; :home x))

THEN (not war))

If some soldier stays home, there is no war

(FOR SOME x / soldier ; (IF (home x)

THEN (not war)))

If a soldier stays home, there is no war

(IF (FOR SOME x / soldier ; (home x))

THEN (not war))

The scope rules of Bohnert and Backer are enforced rules of

an artificial language that approximates English and are not,

unfortunately, distinctions that are always followed in ordinary

English. In ordinary English, only a few such distinctions are

made consistently, while in other cases the scoping of

quantifiers appears to be determined by which is most plausible

(see discussion of Plausibility Evaluation in Section 10.5).

In LUNAR, a slightly different form of this short/broad

s^ope distinction arose in the interaction of operators like

average with universal quantifiers. For example, the sentence

"List the average concentration of silicon in breccias" clearly

means to average over all breccias, while "List the average

concentration of silicon in each breccia" clearly means to

compute a separate average for each breccia. (In general, there

are multiple measurements to average even for a single sample.)

The sentences "List the average concentration of silicon in every

78 -

breccia," and "List the average concentration of silicon in all

breccias" are less clear, but it seems to me that the average

over all breccias is slightly preferred in these cases. At any

rate, the treatment of quantifiers needs to be able to handle the

fact that there are two possible relative scopings of the average

operator with universal quantifiers, and the fact that the choice

is determined at least for the determiner "each" and for the

"generic" or NIL-PL determiner.

LUNAR handles these scope distinctions ilor the "average"

operator by a general mechanism that applies to any operator that

takes a set as its argument. As discussed above, the right-hand

side of the N:AVßRAGE rule calls for the interpretation of the

node representing the set being averaged over with TYPEFLAG SET.

This causes a DRULE D:SETOF to be used for interpreting that

node. The right-hand side of D:SETOF is:

(SETGEN (SETOF X / (# 0 NRULES) : (# 0 RRULES)))

where SETGEN is a function that grabs certain quantifiers coming

from subordinate interpretations and turns them into UNION

operations instead. The generic quantifier is grabbed by this

function and interpreted as a union. However, the quantifier

EACH is not grabbed by SETGEN but is passed on up as a dominating

quantifier. Thus, the sentence "What is the average

concentration of silicon in breccias" becomes:

79 -

^TiiiirrTmtf?" -" "--

(FOR THE X4 / (SEQL (AVERAGE X5 /

(UNION X7 / (SEQ TYPECS) : T ;

(SETOF X6 / (DATALINE X7 OVERALL SI02) : T)))) : T ;

(PRINTOUT X4))

(i.e., the average is computed over the set formed by the union

over all type C rocks X7 of the sets of measurements of SI02 in

the individual XT's). On the other hand, "What is the average

concentration of silicon in each breccia" becomes:

(FOR EACH XI2 / (SEQ TYPECS) : T ;

(FOR THE X9 / (SEQL (AVERAGE X10 /

(SETOF Xll / (DATALINE X12 OVERALL SI02) : T))) : T ;

(PRINTOUT X9)))

(i.e., a separate average is computed for each type C rock X12).

7.8 Wh Questions

In addition to simple yes/no questions and imperative

commands to print the results of computations, LUNAR handles

several kinds of so-called wh questions. Examples are "what is

the concentration of silicon in S10046", "which samples contain

silicon", and "how many samples are there". These fall into two

classes: those in which an interrogative pronoun stands in the

place of an entire noun phrase, as in the first example, and

those in which an interrogative determiner introduces an

otherwise normal noun phrase. In both cases, the noun phrase

containing the interrogative word is usually brought to the front

of th_ sentence from th" position that it might otherwise occupy

- 80 -

in normal declarative word order, but this is not always the

case.

7.8.1 Interrogative Determiners

The natural representation of the interrogative determiners

would seem to be to treat them just like any other determiner and

represent a sentence such as the second example above as:

S Q

NP DET WHQ

N SAMPLE

NU PL

AUX TNS PRESENT

VP V CONTAIN

NP NPR SILICON

The interpretation procedure we have described seems to work

quite well on this structure using a DRULE that matches the

interrogative noun phrase and generates the quantifier:

(FOR EVERY X / (# 0 NRULES) : (AND (# 0 RRÜLES) DLT) ;

(PRINTOUT X)).

Note that the DLT in the quantifier (where the interpretation of

the main clause is to be inserted) is part of the restriction on

the range, and the quantified operator is a command to print out

the answer. The structure of the quantifier in this case seems

somewhat unusual, but the effect is correct and the operation is

a reasonably natural one given the capabilities of the semantic

interpreter.

- 81 -

However, when we try to apply this kind of analysis to

conjoined sentences, such as "What samples contain silicon and do

not contain sodium," the standard kind of deep structure assigned

by a transformational grammar to conjoined sentences is not

compatible with this interpretation. The usual reversal of the

conjunction reduction transformations in a transformational

grammar would produce a structure something like:

S AND

S Q

NP DET WHQ

N SAMPLE

NU PL

AUX TNS PRESENT

VP V CONTAIN

NP NPR SILICON

S Q

NEC

NP DET WHQ

N SAMPLE

NU PL

AUX TNS PRESENT

NP NPR SODIUM

This structure corresponds to the conjunction of the two

questions "What samples contain silicon" and "What samples do not

contain sodium", which is the interpretation that it would

receive by the LUNAR rules with the above DRULE for

- 82 -

wh-determiners. However, this is not what the original conjoined

question means; the intended question is asking for samples that

simultaneously contain silicon and do not contain sodium.

In order to handle such sentences, it is necessary to

distinguish some constituent that corresponds to the conjunction

of the two predicates "contain silicon" and "not contain sodium",

which is itself a constituent of a higher level "what samples"

operator. To handle such constructions correctly for both

conjoined and non-conjoired constructions, LUNAR's ATN grammar of

English was modified to assign a different structure to

wh-determiner questions than the one that is assigned to other

determiners. These sentences are analyzed as a special type of

sentence, a noun phrase question (NPQ), in which the top level

structure of the syntactic representation is that of a noun

phrase, and the matrix sentence occurs as a special kind of

subsidiary relative clause. For example, the sentence "Which

samples contain silicon" is represented syntactically as:

- 83 -

S NPQ

NP DET WHICHQ

N SAMPLE

NU PL

S QREL

NP DET WHR

N SAMPLE

NU PL

AUX TNS PRESENT

VP V CONTAIN

NP DET NIL

N SILICON

NU SG

This structure provides an embedded S node inside the higher

level question, whose interpretation is a predicate with free

variable bound xi. the question operator above. This embedded S

node can be conjoined freely with other S nodes, while remaining

under the scope of a single question operator. In this case, the

appropriate DRULE (for a wh-determiner in a plural NPQ utterance}

is simply:

[D:WHQ-PL

(NP.DET (AND (MEM 1 WHQ) (EQU 2 PL)))

->

(QUANT(FOR EVERY X / (# 0 NRULES) :

(# 0 RRULES) ; (PRINTOUT X)))].

- 84 -

Since the matrix sentence has been inserted as a relative clause

in the syntactic structure assigned by the grammar, it will be

interpreted by the RRULE R:REL in the subordinate interpretation

(# 0 RRULES). A similar rule for interpreting singular noun

phrases ("which sample contains...") produces a quantifier with

<quant> = THE, instead of EVERY, thus capturing the

presupposition that there should be a single answer.

All of the interrogative determiners, "which", "what", and

"how many" are treated in the above fashion. The right-hand side

of the "how many" rule is:

(FOR THE X / (NUMBER X / (# 0 NRÜLES) : (# 0 RRULES)) ;

(PRINTOUT X))

Here again, the interpretation of the matrix sentence is picked

up in the call (# 0 RRULES). (The use of the same variable name

in two different scopes does not cause any logical problems here,

so no provision was made in LUNAR to create more than one

variable for a given noun phrase.)

7.8.2 Interrogative Pronouns

A general treatment of the interrogative pronouns would

require modifications of the assigned syntactic structures

similar to the ones discussed above for interrogative determiners

in order to handle conjunctions correctly. That is, sentences

such as "what turns generic quantifiers into set unions and

passes 'each' quantifiers through to a higher level," seem to

- 85 -

require an embeded S node to serve as a conjoined proposition

inside a single "what" operator. However, it is far more common

for conjoined questions with interrogative pronouns to be

interpreted as a conjunction of two separate questions. This is

especially true for conjoined "what is ..." questions. For

example, "what is the concentration of silicon in S10046 and the

concentration of rubidium in S10084" is clearly not asking for a

single number that happens to be the value of the concentration

in both cases.

The LUNAR system contains rules for handling interrogative

pronouns only in the special case of "what is..." questions. In

this special case, conjoined questions fall into two classes,

both of which seem to be handled correctly without special

provisions in the grammar. In questions where the questioned

noun phrase contains an explicit relative clause, that clause

will contain an S node where conjunctions can be made and LUNAR's

current techniques will treat this as one question with a

conjoined restriction (e.g., "What is the sample that contains

less than 15 percent silicon and contains more than 5 percent

nickel"). On the other hand, when there is no explicit relative

clause, LUNAR will interpret such questions as a conjunction of

separate questions (e.g., "what is the concentration of silicon

in S10046 and the concentration of rubidium in S10084").

The conventional structure assigned to "what is "

sentences by a transformational grammar represents the surface

- 86 -

object as the deep subject, with a deep verb "be" and predicate

complement corresponding to. the interrogative pronoun "what".

For example, in LUNAR the question "What is the concentration of

silicon in S10046" becomes:

S Q

NP DET THE

N' CONCENTRATION

NU SG

PP PREP OF

NP DET NIL

N SILICON

NU SG

PP PREP IN

NP NPR S10046

AUX TNS PRESENT

VP V BE

NP DET WHQ

N THING

NU SG/PL

A special SRULE for the verb "be" with lomplement "WHQ THING

SG/PL" handles this case with a right-hand side schema:

(QUOTE (PRINTOUT (# 1 1)))

where the REF (#11) refers to the subject noun phrase.

A somewhat more general treatment of the interrogative

pronoun "what" would involve a DRULE whose right-hand side was:

- 87 -

(FOR EVERY X / THING : DLT ; (PRINTOUT X))

Where the interpretation of the matrix sentence is to be inserted

as a restriction, on the range of quantification and the overall

interpretation is a command to print out the values that satisfy

it. (THING in this case is meant to stand for the universal

class). One would not want to apply this rule in general to the

simple "what is ..." questions as above, since it would result

in an interpretation that was less efficient (i.e., would

enumerate all possible things and try to filter out the answer

with an equality predicate). For example, "what is the

concentration of silicon in S10046" would be interpreted:

(FOR THE X / (DATALINE S10046 OVERALL SI02) : T ;

(FOR EVERY Y / THING : (EQUAL X Y) ;

(PRINTOUT Y)))

instead of:

(FOR THE X / (DATALINE S10046 OVERALL SI02) : T ;

(PRINTOUT X)) .

Thus, one would still want to keep the special "what is ..."

rule and LUNAR would only use the general rule in cases where the

"what is ..." rule did not apply. (When the "what is " rule

does apply, it doesn't even call for the interpretation of the

"what" noun phrase that it has matched, so the general rule would

not be invoked.)

Alternatively, one could use the general rule for all cases

and then perform post-interpretive query optimization (see

Section 8 below) to transform instances of filtering with

- 88 -

equality predicates to a more efficient form that eliminates the

unnecessary quantification.

7.8.3 Other Kinds of Wh Questions

^ote that LUNAR interprets "what is ..." questions only as a

request for the value of some function or the result of some

search or computation, and not as requesting a definition or

explanation. For example if LUNAR is asked "what is a sample" it

will respond with an example (e.g., "S10046"), and if it is asked

"what is S10046", it will respond "310046". LUNAR is not aware

of the internal structure of the defining procedures for its

terms, nor does it have any intensional description of what

samples are, so it has no way of answering the first type of

question. There is no difficulty, however, in defining another

rule for "what is ..." to apply to proper nouns and produce an

interpretation with an operator NAME-CLASS (instead of PRINTOUT)

that will print the class of an individual instead of its name.

"What is S10046" would then be interprated as (NAMC-CLASS

S10046), which would answer "a sample".

Getting uUNAR to say something more complete about how

S10046 differs from other samples, such -^s "a sample that

contains a large olivine inclusion", is another matter. Amor

other problems, this would begin to tread into *:he area of

pragmatics, where considerations such as the user's probable

intent in asking the question and appropriateness of response in

- 89 -

a particular context, as well as semantic considerations of

meaning, become an issue (see Section 11.5). All of this is well

beyond the scope of systems like LUNAR. However, decidina what

semantic representation to assign as the intent of .ach a

question is not nearly as difficult as deciding what the defining

procedure for some of the possible intents should be. LUNAR1s

mechanisms are suitable for generating the alternative possible

semantic representations.

8. Post-Interpretive Processing

As mentioned before, the LUNAR meaning representation

language has been designed both as a representation of executable

procedures and as a symbolic structure that can be manipulated as

an intensional object. Although every expression in the LUNAR

MRL has an explicit semantics defined by its straightforward

execution as a procedure, that procedure is frequently not the

best one to execute to answer a question or carry out a command.

For example, in the flight schedules application, the literal

interpretation of the expression:

(FOR EVERY X / FLIGHT : (CONNECT X BOSTON CHICAGO) ;

(PRINTOUT X))

is to enumerate all of the flights known to the system, filtering

out the ones that don't go from Boston to Chicago, and printing

out the rest. However, in a reasonable data base for this

domain, there would be various indexes into the flights, breaking

them down by destination city and city of origin. If such an

- 90 -

index exists, then a specialized enumeration function

FLIGHT-FROM-TO could be defined for using the index to enumerate

only flights from a given city to another. In this case, the

above request could be represented:

(FOR EVERY X / (FLIGHT-FROM-TO BOSTON CHICAGO) : T ;

(PRINTOUT X)),

which would De much more efficient to execute.

Given the possibility of using specialized ^numeration

functions, one can then either write special interpretation rules

to use this more specific enumeration function in the cases where

it is appropriate, or one can perform some intensional

manipulations on the interpretation assigned by the original

rules to transform it into an equivalent expression that is more

efficient to execute. The first approach was used in the

original flight schedules system. An approach similar to the

latter was used in the grammar information system, and to some

extent in LUNAR, by using "smart" quantifiers (see below).

Recently, Reiter (1977) has presented a systematic treatment of a

class of query optimizations in systems like LUNAR that interface

to a relational data base.

Other post-interpretive operations on the MRL expression are

performed in LUNAR to analyze the quantifiers and make entries in

a discourse directory for potential antecedents of anaphoric

expressions. Subsequently, definite descriptions and pronouns

can make reference to this directory to select antecedents. I

- 91 -

IICI11 I

will not go into the treatment of anaphoric expressions in this

paper other than to say that the search for the antecedent is

invoked by an operator ANTEQUANT in the right hand side of the

DRULES that interpret anaphoric noun phrases. In general, this

results in the generation of a quantifier, usually a copy of the

one that was associated with the antecedent. Occasionally, the

antecedent will itself fall in the scope of a higher quantifier

on which it depends, in which case such governing quantifiers

will also be copied and incorporated into the current

interpretation. Some of the characteristics of LUNAR's treatment

of anaphora are covered in Nash-Webber (1976) and Woods et al.

(1972).

8.1 Smart Quantifiers

In the grammar information system, a notion of "smart"

quantifier was introduced, which rather than blindly executing

the quantification procedure obtained from semantic

interpretation, made an effort to determine if there was a more

specific enumeration function that could be used to obtain an

equivalent answer. In general, the restriction on the range of

quantification determines a subclass of the class over which

quantification is ranging. If one can find a specialized

enumeration function that enumerates a subclass of the original

class but is still guaranteed to include any of the members that

would have passed the original restriction, then that subclass

enumeration function can be used in place of the original.

- 92 -

In the grammar information system, tables of specialized

enumeration functions, together with sufficient conditions for

their use, were stored associated with each basic clasii over

which quantification could range. A resolution theorem prover a

la Robinson (1965) was then used to determine whether the

restriction of a given quantification implied one of the

sufficient renditions for a more specialized class enumeration

function. If so, the more specialized function was used. Unlike

most applications of resolution theorem proving, the inferences

required in this case are all very short, and since the purpose

of the inference is to improve tha efficiency of the

quantification, a natural bound can be set on the amount of time

the theorem prover should spend before the attempt should be

given up and the original enumeration function used.

In general, sufficiency conditions for specialized

enumeration functions are parameterized with open variables to be

instantiated during the proof of the sufficiency condition and

then used as parameters for the specialized enumeration function.

The resolution theorem proving strategies have a nice feature of

providing such instantiated parameters as a result of their

proofs; e.g., by using a mechanism such as the "answer"

predicate of Green (1969) .

Smart quantifiers were intended in general to be capable of

other operations, such as estimating the cost of a computation

from the sizes of the classes being quantified over and the depth

- 93 -

of quantifier nesting (and warning the user if the cost might be

xcessive), saving the results of inner loop quantifications

re they could be reused, interchanging the scopes of

quantification to bring things that don't change outside a loop,

etc. The capabilities actually implemented, however, are much

more limited.

e

whe

8.1.1 Path Enumeration in ATN's

Smart quantifiers were essential for efficiency in the

grammar information system's enumeration of paths through its

ATN. The system contained a variety of specialized path

enumeration functions: one for paths between a given pair of

states, one for paths leaving a given state, one for paths

arriving at a given state, one for paths irrespective of end

states, and versions of all of these for looping and non-looping

paths. Each specialized enumeration function was associated with

a parameterized sufficiency condition for its use. For example,

the function for non-looping paths leaving a given state had a

table entry equivalent to:

(PATHSEQ Y T) if (AND (NOLOOP X) (START X Y))

«here X refers to the variable of the class being quantified

over, Y is a parameter to be instantiated, and (PATHSEQ Y T) is

the enumeration function to be used if the sufficiency condition

is satisfied.

- 94 -

:=._. I l li ■mi

Thus, if a quantification over paths had a restriction such

as (AND (CONNECT-PATH X S/ S/VP, (NOLOOP X)) and the theorem

prover had axioms such as (CONNECT-PATH X Y Z) => (START X Y),

then the theorem prover would infer that the sufficiency

condition (AND (NOLOOP X) (START X Y)) is satisfied with Y equal

to S/ and therefore the specialized enumeration function

(PATHSEQ S/ T) can be used.

Notice that the order of conjuncts in the restriction is

irrelevant, and the restriction need only imply the sufficiency

condition not match it exactly. In the above, there are still

conditions in the restriction that will have to be checked as a

filter on the output of the specialized enumeration function to

make sure that the end of the path is at state S/VP. In general,

it would be nice to remove from the restriction that portion that

is already guaranteed to be satisfied by the new enumeration

function, but that is easier said than done. In the grammar

information system the original restriction was kept and used

unchanged.

8.1.2 Document Retrieval in LUNAR

In the LUNAR system, a special case of smart quantifiers,

without a general theorem prover, is used to handle enumeration

of documents about a topic. When the FOR function determines

that the class of objects being enumerated is DOCUMENT, it looks

for a predicate (ABOUT X TOPIC) in the restriction (possibly in

- 95 -

a-4_ , ^-.r^iUmiam.

the scope of a conjunction but not under a negative). It then

uses this topic as a parameter to an inverted file accessing

routine which retrieves documents about a given topic.

8.2 Printing Quantifier Dependencies

The LUNAR MRL permits the natural expression of fairly

complex requests such as "What is the average aluminum

concentration in each of the type c rocks?". The interpretation

of ♦.his request would be:

(FOR EVERY X / (SEQ TYPECS) : T ;

(FOR THE Y / (AVERAGE Z / (DATALINE X OVERALL AL203)) : T ;

(PRINTOUT Y))).

If the PRINTOUT command does nothing more than print out a

representation for the value of its argument, the result of this

command will be nothing more than a list of numbers, with no

indication of which number goes with whicn of the rocks.

Needless to say, this is usually not what the user expected.

For special classes of objects, say concentrations, a

pseudo-solution to this problem would be to adopt a strategy of

always printing out all conceivable dependencies for that object

(e.g., the sample, phase, and element associated with that

concer'-.ration). This would be sufficient to indicate what

dependencies each answer had on values of arguments, but would

take no account of which of those dependencies was currently

varying and which were fixed by the request. Moreover, this

- 96 -

approach would not work in the above case, since the objects

being printed are the results of a general purpose numerical

averaging function, which does not necessarily h^ve any

dependencies., depending on what is being averaged and what

classes are being averaged over.

LUNAR contains a general solution to this quantifier

dependency problem that is achieved by making the PRINTOUT

command an opaque operator that processes its argument in a

semi-intelligent way as an intensional object. PRINTOUT examines

its argument for the occurrence of free variables. If the

argument is itself a variable, it looks up the corresponding

governing quantifier in the discourse directory (the same

directory used for antecedents of anaphoric expressions) and

checks that quantifier for occurrences of free variables. If it

finds free variables in either place, it means that the object it

is about to print has a dependency on those variables. In that

case it prints out the current values of those variables along

with the value that it is about to print out. In the case of the

example above, the variable Y has the corresponding class

(DATALINE X OVERALL SI02) with restriction T, and is thus

dependent on the variable X. X is the variable that is ranging

over the rocks. As a result, the printout from this request

would look like:

- 97 -

u, - ■■- —-

510018 12.48 PCT

510019 12.80 PCT

S10021 12.82 PCT

This mechanism works for arbitrary nesting of any number of

quantifiers.

9. An Example

As an example of the overall operation of the semantic

interpreter to review and illustrate the preceding discussions,

consider the sentence:

"What is the average modal plagioclase concentration

for lunar samples that contain rubidium?"

This sentence has the following syntactic structure assigned to

it by the grammar:

- 98 -

'■ ■UA^

S Q
NP DET THE

N AVERAGE
NU SG
PP PREP OF

NP DET NIL
&DJ MODAL
ADJ N PLAGIOCLÄSE
N CONCENTRATION
NU PL
PP PREP FOR

NP DET NIL
ADJ LUNAR
N SAMPLE
NU PL
S REL

NP DET WHR
N SAMPLE
NU PL

AUX TNS PRESENT
VP V CONTAIN

NP DET NIL
N RUBIDIUM
NU SG

AUX TNS PRESENT
VP V BE
NP DET WHQ

N THING
NU SG/PL

Semantic interpretation begins with a call to INTERP looking

at the topmost S node with TYPEFLAG NIL. The function RULES

looking at an S node with TYPEFLAG NIL returns the global rule

tree PRERULES. These rules look for such things as yes/no

question markers, sentential negations, etc. In this case, a

rule PR6 matches and right-hand side, (PRED (# 0 SRÜLES)),

specifies a call to INTERP for the same node with TYPEFLAG

SRULES.

The function RULES looking at the S node with TYPEFLAG

S. JLES returns a rule tree which it gets from the dictionary

- 99 -

entry for the head of the sentence (the verb BE), and in this

case a rule S:BE-WHAT matches. Its right-hand side is:

(PRED (PRINTOUT (# 1 1)))

specifying a schema into which the interpretation of the subject

noun phrase is to be inserted.

The semantic interpreter now begins to look at the subject

noun phrase with TYPEPLAG Nl'i. In this case, ROLES is smart

enough to check the determiner THE and return the rule tree:

(D:THE-SG2 NIL D:THE-SG NIL D:THE-PL)

of which, the rule D:THE-SG matches successfully. The right-hand

side of this rule is:

(QUANT (FOR THE X / (# 0 NRULES) : (# 0 RRULES) ; DLT))

which specifies that a quantifier is to be constructed by

substituting in the indicated places the interpretations of this

same node with TYPEFLAGs NRULES and RRULES.

The call to interpret the subject noun phrase with TYPEFLAG

NRULES finds a list of NRULES in the dictionary entry for the

word "average", consisting of the single rule N:AVERAGE. This

rule, which we presented previously in Section 7.6, has a

right-hand side:

(QUOTE (SEQL (AVERAGE X / (# 1 1 SET))))

which calls for the interpretation of the "concentration" noun

phrase with TYPEFLAG SET. The call to interpret the "average"

node with TYPEFLAG RRULES, which will be done later, will result

in the empty restriction T.

- 100 -

The call to interpret the "concentration" noun phrase with

TYPEFLAG SET uses a list of rules (DrSETOF NIL D:NOT-SET) where

DtSETOF, which has been discussed previously in Section 7.7,

checks for a determiner and number consistent with a set

interpretation (i.e., determiner THE or NIL and number PL) and

D:NOT-SET will match anything else. In this case, D:SETOF

matches, with right-hand side:

(SETGEN (SETOF X / (# 0 NRULES) : (# 0 RRULES)))

and calls for the interpretation of the same node with TYPEFLAGs

NRULES and RRULES. The call with NRULES finds a matching rule

N:MODAL-CONC after failing to .natch N:CONCENTRATION because of

the presence of the adjective MODAL, which is rejected by a

negated template. N:MODAL-CONC is used to interpret modal

concentrations of minerals in samples as a whole, and has the

form:

[N:MODAL-CONC

(NP.N (MEM 1 (CONCENTRATION)))

(OR (NP.PP (MEM 2 (SAMPLE)))

(NP.PP.PP (MEM 2 (SAMPLE)))

(DEFAULT (2 NP (DET EVERY)

(N SAMPLE)

(NU SG))))

(OR (NP.PP (MEM 2 (PHASE MINERAL ELEMENT OXIDE ISOTOPE)))

(NP.ADJ#2 (MEM 2 (PHASE MINERAL ELEMENT OXIDE ISOTOPE))))

-> (QUOTE (DATALINE (# 2 2) OVERALL (#32)))].

- 101 -

(DEFAULT is a special kind of template that always succeeds and

that makes explicit bindings for use in the right-hand side. —

in the above case, if the "concentration" noun phrase had not

mentioned a sample, then the default "every sampl»." would be

assumed.)

N:MODAL-CONC in turn calls for the interpretations of the

"sample" noun phrase and he constituent "rubidium". In

interpreting the "sample" noun phrase, it again goes through the

initial cycle of DRULES selected by TYPEFLAG NIL looking at a

noun phrase, in this case finding a matching rule DrNIL whose

right-hand side is:

(QUANT (FOR GEN X / (# 0 NRULES) : (# 0 RRÜLES) ; DLT))

This in turn invokes an NRULES interpretation of the same phrase

which uses the rule tree (N:TYPEA N:TYPEB N:TYPEC N:TYPED NIL

N:SAMPLE) that looks first for any of the specific kinds of

samples that might be referred to, and failing any of these,

tries the general rule NtSAMPLE. N:SAMPLE checks for the head

"sanple" with an optional adjective "lunar" or the complete

phrase "lunar material" and has a right-hand side:

(QUOTE (SEQ SAMPLES))

where SEQ is the general enumeration function for known lists,

and SAMPLES is a list of all the samples in the data bar.e.

The RRULES interpretation uses ehe rule tree ((AND

R:SAMPLE-WITH R:SAMPLE-WITH-COMP R:QREL R:REL K:PP R:ADJ)), which

contains a single AND group of rules, all of which are to be

- 102 -

..-^ fi^^&fc~i&=5=S

tried and the results of any successful matches conjoined. The

rule R:REL matches the relative clause, tagging the relative

pronoun with the variable of interpretation X13 and then calling

for the interpretation of the relative clause via the right-hand

side:

(PRED (# 1 1)).

The interpretation of the relative clause, like that of the

main clause begins with a set of PRERULES, of which a rule PR6

matches with right-hand side:

(PRED (# 0 SRULES)).

This again calls for the interpretation of the same node with

TYPEFLAG SRULES. This intr pretation finds the rule S:CONTAIN

(presented earlier in Section 6), whose right-hand side calls for

the interpretation of its subject noun phrase (which it finds

already interpreted with the variable of quantification from

above) and its object noun phrase "rubidium". The latter is

interpreted by a rule D:MASS, whos> right-hand side looks up the

word "rubidium" in the dictionary to get its standard data base

representation RB (from a property name TABFORM) and produces the

interpretation (QUOTE RB). As a SEM-QUANT pair, this is:

((QUOTE RB) DLT).

This interpretation, together with that of the relative

pronoun is returned to the process interpreting the "contain"

clause, where they p-oduce (after substitution and right-hand

side evaluation) the SF -QUANT pair;

- 103 -

;^~-^^^^—^

((CONTAIN X13 (QUOTE RB)) DLT).

This same SfcM-QUANT pair is return unchanged by the R:REL rule

and since that is the only matching RRULE, no conjoining needs to

be done to obtain the result of the RRULSS interpretation of the

"sample" noun phrase. Inserting this and the NRULES

interpretation into the right-hand side of D:NILr and executing,

produces the SEM-QUANT pair:

(X13 (FOR GEN X13 / (SEQ SAMPLES) :

(CONTAIN X13 (QUOTE RB)) ; DLT))

where the right-hand side evaluation of the QUANT operator has

embedded the quantifier in the QUANT accumulator and returned the

SEM XI3.

We now return to the NRULES interpretation of the

"concentration" noun phrase, whose right-hand side called for the

above interpretation and now calls for the interpretation of

"plagioclase". Again, the D:MASS rule applies, looking up the

TABPORM of the wcf in the dictionary and resulting in the

SEM-QUANT pair:

' (QUOT6" fLAG) DLT) .

The substitution of these two into the right-hand side of the

rule N:MODAL-CONC (and evaluating) produces the SEM-QUANT pair:

((DATALINE X13 OVERALL (QUOTE PLAG))

(FOR GEN X13 / (SEQ SAMPLES) :

(CONTAIN X13 (QUOTE RB)) ; DLT))

where the quantifier from below is still being passed up.

- 104 -

The RRÜLES interpretation of the "concentration" noun phrase

produces T, since there are no predicating modifiers, and the

insertion of these two into the right-hand side of the rule

DtSETOF produces:

(SETGEN (SETOF X12 / {DATALINE X13 OVERALL (QUOTE PLAG)) : T))

while the quantifier accumulator QUANT contains the collars

(FOR GEN X13 / (SEQ SAMPLES) : (CONTAIN X13 (QUOTE RB)) ; DLT)

The execution of the function SETGEN grabs the generic quantifier

from the register QUANT, leaving QUANT set to DLT, and produces

the SEM:

(UNION X13 / (SEQ SAMPLES) : (CONTAIN X13 (QUOTE RB)) ;

(SETOF X12 / (DATALINE X13 OVERALL (QUOTE PLAG)) : T)).

The quantification over samples has now been turned into a union

of sets of data lines over a set of samples.

The resulting SEM and QUANT are returned to the process that

is interpreting the "average" phrase, where their insertion into

the right-hand side of the rule N:AVERAGE and subsequent

evaluation yields the SEM-QUANT pair:

((SEQL (AVERAGE Xll / (UNION X13 /

(SEQ SAMPLES) : (CONTAIN X13 (QUOTE RB)) ;

(SETOF X12 / (DATALINE X13 OVERALL (QUOTE PLAG)) : T))))

DLT) .

Interpretation of the "average" phrase with TYPEFLAG RRULES

produces the SEM-QUANT pair (T DLT) , and the insertion of '-.his

and the above into the right-hand side of the DRULE D:THE-SG and

evaluating yields the SEM-QUANT pair:

- 105 -

(Xll (FOR THE Xll / (SEQL (AVERAGE Xll / (UNION X13 /

(SEQ SAMPLES) : (CONTAIN X13 (QUOTE RB)) ;

(SETOF X12 / (DATALINE X13 OVERALL (QUOTE PLAG)) : T))))

: T ; DLT)) .

This is returned to the SRULE S:BE-WHAT where the SEM Xll is

embedded in the right-hand side to produce:

(PRED (PRINTOUT Xll)).

Evaluating this expression grabs the quantifier to produce

the new SEM, which the next higher rule, PR6, passes on unchanged

as the final interpretation:

(FOR THE Xll / (SEQL (AVERAGE Xll / (UNION X13 /

(SEQ SAMPLES) : (CONTAIN X13 (QUOTE RB)) ;

(SETOF S12 / (DATALINE X13 OVERALL (QUOTE PLAG)) : T))))

: T ; (PRINTOUT Xll)).

10. Loose Ends, Problems and Future Directions

The techniques that I have described make a good start in

handling the semantic interpretation of quantification in natural

English — especially in the interaction of quantifiers with each

other, with negatives, and with operators like "average".

However, problems remain. Some reflect LUNAR's status as an

intermediate benchmark in an intended ongoing project. Others

reflect the presence of some difficult problems that LUNAR would

eventually have had to come up against. In the remaining

- 106 -

sections, I will discuss some of the limitations of LUNAR's

techniques, problems left unfaced, and trends and directions for

future work in this area.

10.1 Approximate Solutions

One characteristic of some of the techniques used in LUNAR

and many other systems is that they are only approximate

solutions. A good example of an approximate solution to a

problem is illustrated by LUNAR"s use of the head word of a

constituent as the sole source of features for the testing of

semantic conditions in the left-hand sides of rules. To be

generally adequate, it seems that semantic tests should be

applied to the interpretation of a phrase, not just its syntactic

structure (and especially not just its head). Some of the

problems with the approximate approach became apparent when LUNAR

first began to handle conjoined phrases. Fo;: example, it's

simple semantic tests were no longer adequate when, instead of a

single noun phrase of type X, a conjunction was encountered.

This was due to a prior decision that the hoad of a conjoined

phrase should be the conjunction operator (e.g., AND), since a

constituent should have a unique head and there is no other

unique candidate in a coordinate conjunction. However, since a

conjunction operator would never have the semantic features

expected by a rule, selectional restrictions applied to the head

would not work.

- 107 -

**^. t>—^^ ■^■-.-L...

A possible solution to this problem is to define the

semantic features of a conjoined phrase to be the intersection of

the features of its individual conjuncts. This has the

attractive feature of enforcing some of the well-known

parallelism constraints on conjunctions in English (i.e.,

conjoined constituents should be of like kind or similar in some

respect). However, this solution is again only an approximation

of what is required to fully model parallelism constraints. For

example, it doesn't consider factors of size or complexity of the

conjuncts. Further experience with such a model will almost

certainly uncover still more problems.

Another example where obtaininij the features from the head

alone is inadequate involves noun phrases in which an adjective

modifying the head contributes essential information (e.g.,

obtaining a feature +TOY from the phrase "toy gun"). In general,

semantic selectional restrictions seem to require intensional

models of potential referents rather than just syntactic

structures. (In fact, their applying to such models is really

the only justification for calling such constraints "semantic".)

In my paper "Meaning and Machines" (Woods, 1973c), I discuss more

fully the necessity for invoking models of semantic reference for

correctly dealing with such restrictions.

More seriously, the whole treatment of selectional

restrictions as prerequisites for meaningfulness is not quite

correct, and the details of making selectional restrictions work

108 -

correctly in various contexts such as modal sentences (especially

assertions of impossibility) are far from worked out. For

example, there's nothing wrong with the assertion "Rocks cannot

love people" even if there seems to be something odd about "the

rock loved John." Again, Woods (1973c) discusses such problems

more fully.

10.2 Modifier Placement

Another area in which LUNAR's solution to a problem was less

than general is in the interpretation of modifiers that are

syntactically ambiguous as to what they modify. For example, in

the sentence "Give me the average analysis of breccias for all

major elements," there are at least three syntactic possibilities

for the modifier "for all major elements" (it can modify the

phrases headed by "breccias", "analysis", or "give"). In this

case, our understanding of the semantics of the situation tells

us that it modifies "analysis", since one can analyze a sample

for an element, while "breccias for all major elements" doesn't

make sense. Without a semantic understanding of the situation,

the computer has no criteria to select which of these three cases

to use.

One of the roles that one might like the syntactic component

to play in a language understanding system would be to make the

appropriate grouping of a movable modifier with the phrase it

modifies, so that the subsequent semantic interpretation rules

109 -

will find the constituent where they would like it to be.

However, since there is not always enough information available

to the parser to make this decision on the basis of syntactic

information alone, this would mean requiring the parser to

generate all of the alternatives, from which the semantic

interpreter would then make the choice. This in turn would mean

that the interpreter would have to spend effort trying to

interpret a wrong parsing, only to have to throw it away and

start over again on a new one. It would be better for the parser

to call upon semantic knowledge earlier in the process, while it

is still trying to enumerate the alternative possible locations

for the movable modifier. The question it would ask at this

point would simply be whether a given phrase can take the kind of

modifier in question, rather than a complete attempt to interpret

each possibility.

10.2.1 Selective Modifier Placement

In general, the ATN grammars used in LUNAR tend to minimize

the amount of unnecessary case analysis of alternative possible

parsings by keeping common parts of different alternatives merged

until the point in the sentence is reached where they make

different predictions. At such a point, the choice between

alternatives is frequently determined by having only one of their

predictions satisfied. However, one place where this kind of

factoring does not significantly constrain the branching of

possibilities is at the end of a constituent where the grammar

- 110 -

permits optional additional modifiers (e.g., prepositional phrase

modifiers at the end of a noun phrase, as in the above example).

Here, the alternatives of continuing to pick up modifiers at the

same level and popping to a higher level have to be considered

separately. If when the alternative of popping a constituent is

chosen and the construction at the higher level can also take the

same kind of modifier as the lower constituent, then a real

ambiguity will result unless some restriction makes the modifier

compatible with only one of the alternatives.

The LUNAR parser contains a facility called "selective

modifier placement" for dealing with such "movable modifiers."

When this facility is enabled, each time a movable modifier is

constructed, the parser returns to the level that pushed for it

to see if the configuration that caused the push could also have

popped to a higher level and, if so, whether that higher level

could also have pushed for the same thing. It repeats this

process until it has gathered up all of the levels that could

possibly (syntactically) use the modifier. It then asks semantic

questions to rank order the possibilities, choosing the most

likely one, and generating alternatives for the others. In a

classic example, "I saw the man in the park with a telescope",

the phrase "in the park" could modify either "man" or "see", and

"with a telescope" could modify either "park", "man", or "see"

(with the possible exception, depending on your dialect, of

forbidding "with a telescope" from modifying "man" if "in the

park" is interpreted as modifying "see"). The selective modifier

- Ill -

placement facility chooses the interpretation "see with a

telescope" and "man in the park" when given information that one

can see with an optical instrument. Woods {1973a) describes

this facility for selective modifier placement more fully.

10.2.2 Using Misplaced Modifiers

Although the selective modifier placement facility in

LUNAR's parser is probably very close to the right solution to

this problem of movable modifiers, the mechanism as implemented

requires the semantic information that it uses to be organized in

a slightly different form from that used in the semantic

interpretation rules. Rather than duplicate the information,

LUNAR's demonstration prototype used a different approach. In

this system, the grammar determined an initial placement of such

modifiers based solely on what prepositions a given head noun

could take as modifiers. Subject to this constraint, the movable

modifier was parsed as modifying the nearest preceding

constituent (i.e., as deep in the parse tree as preraitted by the

constraint). Subsequently during interpretation, if the semantic

interpreter failed to find a needed constituent at the level it

wanted it, it would look for it attached to more deeply embedded

levels in the tree.

If this procedure for looking for misplaced modifiers had

been handled by a general mechanism for looking for misplaced

constituents subject to appropriate syntactic and semantic

- 112 -

-

guidance, it would provide an alternative approach of comparable

generality to selective modifier placement, raising an

interesting set of questions as to the relative advantages of the

two approaches. In the demonstration prototype, however, it was

handled by the simple expedient of using disjunctive templates in

the rules to look for a constituent in each of the places where

it might occur. Each rule thus had to be individually tailored

to look for its needed constituents wherever they might occur.

Problems were also present in maxing sure that all modifiers were

used by some rule and avoiding duplicate use of the same modifier

more than once.

A number of such decisions were made in LUNAR for the

expedient of getting it working, and are not necessarily of

theoretical interest. This particular one is mentioned here

because of its suggestion of a possible way to handle a problem,

and also to illustrate the difference between solving a problem

in general and patching a system up to handle a few cases.

10.3 Multiple Uses of Constituents

Alluded to above in the discussion of LUNAR's method of

looking for misplaced modifiers was the potential for several

different rules to use the same constituent for different

purposes. In general, one expects a given modifier to have only

one function in a sentence. However, this is not always the

case. For example, an interesting characteristic of the

- 113 -

"average" operator is the special use of a prepositional phrase

with the preposition "over", which usurps one of the arguments of

the function being averaged. Specifically, in "the average

concentration of silicon over the breccias", the prepositional

phrase "over the breccias" is clearly an argument to the average

function, specifying the class of objects over which the average

is to be computed. However, it is also redundantly specifying

the variable that will fill the constituent slot of the

concentration schema, even though it does not have any of the

prepositions that would normally specify this slot. The semantic

interpretation framework that the LUNAR system embodies does not

anticipate the simultaneous use of a constituent as a part of two

different operators in this fashion (although the implemented

mechanism does not forbid it).

The rules in the implemented LUNAR system deal with this

problem (as opposed to solving it) by permitting the

prepositional phrase with "over" to modify concentration rather

than average. This choice was made because the average operator

is interpretable without a specific "over" modifier, whereas the

concentration is not interpretable without a constituent whose

concentration is being measured. However, this "solution" leaves

us without any constraint that "ever" can only occur with

averages. Consequently, phrases such as "the concentration of

silicon over S10046" would be acceptable. Such lack of

constraint is generally not a serious problem in very restricted

topic domains and with relatively simple sentences, because users

- 114 -

are unlikely to use one of the unacceptable constructions.

However, as the complexity of the language increases, especially

with the introduction of constructions such as reduced relative

claus.J and conjunction reduction, the possibility increases that

some of these unacceptable sequences may be posed as partial

parsings of an otherwise acceptable sentence, and can either

result in unintended parsings or long excursions into spurious

garden path interpretations.

This kind of ad hoc "solution" to the "average...over..."

problem is typical of the compromises made in many natural

language svstems, and is brought up here to illustrate the wrong

way to attack a problem. It contrasts strongly with the kinds of

general techniques that typify LUNAR's solutions to other

problems.

10.4 Ellipsis

Possibly the correct solution to the problem of "average

over..." is one that handles a general class of ellipsis — those

cases where an argument is omitted because it can be inferred

from information available elsewhere in a sentence. In this

account, the "over" phrase would be an argument to "average" and

the subordinate "concentration" phrase would have an ellipsed

specification of the constituent being measured.

A similar problem with ellipsis occurs in the flight

schedules context, where sentences such as:

- 115 -

üüif^TüfTffli^iln^^^^^^^6

List the departure time from Boston of every TWA

flight to Chicago.

would be interpreted literally as asking for the Boston departure

times of all TWA flights that go to Chicago, regardless of

whether they even go through Boston. To express the intended

request without ellipsis, the user would have to say:

List the departure time from Boston of every TWA flight

from Boston to Chicago.

As I pointed out in my thesis (Woods, 1967), the information

in the semantic rules provides the necessary information for the

first step in treating such ellipsis — the recognition that

something is missing. Capitalizing on this, however, requires a

rule-matching component that is able to find and remember the

closest matching rule when no rule matches fully, and to provide

specifications of the missing pieces to be used by some search

routine that tries to recover the ellipsis. This latter routine

would have to examine the rest of the structure of the sentence,

and perhaps some of the discourse history, to determine if there

are appropriate contextually-specified fillers to use. Research

problems associated with such ellipsis have to do with the

resolution of alternative possible fillers that meet the

description, finding potential fillers that are not explicitly

mentioned elsewhere but must be inferred, and characterizing the

regions of the surrounding context that can legitimately provide

antecedents for ellipsis (e.g., can they be extracted out of

- 116 -

subordinate relative clauses that do not dominate the occurrence

of the ellipsis?).

10.5 Plausibility of Alternative Interpretations

In general, the correct way to handle many of the potential

anbiguities that arise in English seems to be to construct

representations of alternative interpretations, or alternative

parts of interpretations, and evaluate the alternatives for their

relative plausibility. LUNAR does not contain such a facility.

Instead, it makes the best effort it can tc resolve ambiguities,

given what it knows abcut general rules for preferred parsings,

criteria for preferred interpretations, and specific semantic

selectional restrictions for nouns and verbs. LUNAR does quite

well within these constraints in handling a wide variety of

constructions. This is successful largely because of the limited

nature of the subject matter and consequent implicit constraints

on the kinds of questions and statements that are sensible.

However, a vari3ty of phenomena seem to require a more general

plausibility evaluator to choose between alternatives. If one

had such an evaluator of relative plausibility, the mechanisms

used in LUNAR would be adequate to generate the necessary

alternatives.

- 117 -

""•"^^^tl- -r--—■ ■ - -"— ii ii -

10.6 Anaphoric Reference

Anaphoric reference is another problem area in which LUNAR"s

treatment doep not embody a sufficiently general solution. Every

time an interpretation is constructed, LUNAR makes entries in a

discourse directory for each constituent that may be subsequently

referred to anaphorically. Each entry consists of the original

syntactic structure of a phrase, plus a slightly modified form of

its semantic interpretation. In response to an anaphoric

expression such as "it" and "that sample", LUNAR searches this

directory for the most recent possible antecedent and reuses its

previous interpretation.

LUNAR's anaphoric refeconce facility is fairly

sophisticated, including the possibility to refer to an object

that is dependent on another quantified object, in which case it

will bring forward both quantifiers into the interpretation of

the new sentence (e.g., "What is the silicon content of each

volcanic sample?" "What is its magnesium concentration?"). It

also handles certain cases of anaphora where only part of the

intensional description of a previous phrase is reused (e.g.,

"What is the concentration of Silicon in breccias?" "What is it

in volcanics?"). However, this facility contains a number of

loose ends. One of the most serious is that only the phrases

typed in by the user are available for anaphoric reference, while

the potential antecedents implied by the responses of the system

are not (responses were usually not expressed in English, and in

- 118 -

any case were not entered into the discourse directory).

Anaphoric reference in general contains some very deep problems,

some of which are revealed in LUNAR. Nash-Webber (1976, 1977,

and 1978) and Nash-Webber and Reiter (1977) discuss these

problems in considerable detail.

10.7 Ill-formed Input and Partial Interpretation

One of the problems that face a real user of a natural

language understanding system is that not everything that he

tries to say to the system is understandable to it. LUNAR tried

to cope with this problem by having a grammar sufficiently

comprehensive that it would understand everything a lunar

geologist might ask about its data base. The system actually

came fairly close to doing that. In other systems, such as the

SOPHIE system of Brown and Burton (1975), this has been achieved

even more completely. In a limited topic domain, this can be

done by systematically extending the range of the system's

understanding every time a sentence is encountered that isn't

understood, until eventually a virtual closure is obtained.

Unfortunately, in less topic-specific systems, it is more

difficult to reach this kind of closure, and in such cases it

would be desirable for the system to provide a user with some

partial analysis of his request to at least help him develop a

model of what the machine does and does not understand.

- 119 -

-.-

LUNAR contains no facility for such partial understanding,

although it does have a rudimentary facility to comment about

modifiers that it doesn't understand in an otherwise

understandable sentence and to notify the user of a phrase that

it doesn't understand in a sentence that it has managed to parse

but cannot interpret. Given the size of its vocabulary and the

extensiveness of its grammar, there are large classes of

sentences that LUNAR can parse but not understand. For these,

LUNAR will at least inform the user of the first phrase that it

encounters that it cannot understand. However, it cannot respond

to questions about its range of understanding or be of much help

to the user in finding out whether (and, if so, how) one can

rephrase a request to make it understandable. More seriously, if

a sentence fails to parse (a less common occurrence, but not

unusual) , LUNAR provides only the cryptic information that it

could not parse the input. The reason for this is as follows:

If the user has used words that are not in its dictionary,

LUNAR of course informs him of this fact and the problem is

clear. If, however, the user has used known words in a way that

doesn't parse, all LUNAR knows is that it has tried all of its

possicle ways to parse the input and none of them succeeded. In

general, the parser has followed a large number of alternative

parsing paths, each of which has gotten some distance through the

input sentence before reaching an inconsistency. LUNAR in fact

keeps track of each blocked path, and even knows which one of

them has gotten the farthest through the sentence. However,

- 120 -

experience has shown that there is no reason to expect this

longest partial parse path to be correct. In general, the

mistake has occurred at some earlier point, after whicn the

grammar has continued to fit words into its false hypothesis for

some unknown distance before an inconsistency arises. Beyond

simply printing out the words used in this longest path (letting

the user guess what grammatical characteristic of his sentence

was unknown to the computer) there is no obvious solution to this

problem. In this respect, a language with a deterministic

grammar has an advantage over natural English, since there will

only be one such parse path. In that case, when the parser

blocks, there is no question about which path was best.

Note that there is no problem here in handling any

particular case or anticipated situation. Arbitrary classes of

grammatical violations can be anticipated and entered into the

grammar (usually with an associated penalty to keep them from

interfering with competely grammatical interpretations). Such

sentences will no longer bp a problem. What we are concerned

with here requires a system with an understanding of its own

understanding, and an ability to converse with a user about the

meaning and use of words end constructions. Such a system would

be highly desirable, but IF far from realization at present. The

grammar information system discussed above, which knows about its

own gramma: and can talk about states and transitions in the

grammar, is a long way from being able to help a user in this

situation.

121 -

One technique from the HWIM speech understanding system

(Woods et al., 1976) that could help in such a situation is to

find maximally consistent islands in the word string using a

bi-directional ATN parser that can parse any fragment of a

correct sentence from the middle out. One could then search in

the regions where such islands abut or overlap for possible

transitions that could connect the two.

A special case of the ungrammatical sentence problem is the

case of a mistyped word. If the misspelling results in an

unknown word, then the problem is simple; when LUNAR informs the

user of an unknown word, it also gives him the opportunity to

change it and continue. However, if the misspelling results in

another legal word, then the system is likely to go into the

state discussed above, where all parsing paths fail and there is

little the system can say about what went wrong. In this case,

the user can probably find his mistake by checking the sentence

he has typed, but sometimes a mistake will be subtle and

overlooked. Again, some of the techniques from the HWIM system

could be used here. Specifically, HWIM's dictionary look-up is

such that it finds all words that are sufficiently similar to the

input acoustics and provides multiple alternatives with differing

scores, depending on how well they agree with the input. An

identical technique can enumerate possible known words that could

have misspellings corresponding to the typed input, with scores

depending on the likelihoods of those misspellings. These

alternatives would then sit on a shelf to be .ried if no parsing

using the words as typed were found.
- 122 -

£^Eäi^;iip?^s^^^---'--TjiiTrtnl

10.8 Intensional Inference

As discussed previously, the LUNAR prototype deals only with

extensional inferences, answering questions with quantifiers by

explicitly enumerating the members of the range and testing

propositions for individual members. LUNAR contains a good set

of techniques for such inference, such as the use of general

enumeration functions and smart quantifiers. However, although

this is a very efficient mode of inference, it is not appropriate

for many types of questions. The ability to deal with more

complex types of data entities, even such specialized things as

descriptions of shape and textural features of the lunar samples,

will require the use of intensional inference procedures. For

this reason, LUNAR's MRL was designed to be compatible with both

intensional and extensional inference. Intensional inference is

necessary for any type of question whose answer requires

inference from general facts, rather than mere retrieval or

aggregation of low-level observations. In particular, it is

necessary in any system that is to accept input of new

information in anything other than a rigid stylized format.

Although LUNAR contained some rudimentary facilities for

adding new lines to its chemical analysis d.ata base and for

editing such entries, it contained no facility for understanding,

storing, or subsequently using general facts and information.

For example, a sentence such as "All samples contain silicon" is

interpreted by LUNAR as an assertion to be tested and either

- 123 -

affirmed or denied. It is not stored as a fact to be used

subsequently. However, there is nothing in LUNAR's design that

prohibits such storage of facts. In particular, a simple PRERULE

for declarative sentences with a right-hand side (PRED (STORE (#

0 SRULES))) could generate interpretations that would store facts

in an intensional data base (where STORE is assumed to be a

function that stores facts in an intensional data base).

The function STORE could interface to any mechanical

inference system to store its argument as an axiom or rule. For

example, with a resolution theorem proving system such as Green's

QA3 (Green, 1969), STORE could transform its argument from its

given (extended) predicate calculus form into clause form and

enter the resulting clauses into an indexed data base of axioms.

TEST could then be extended to try inferring the truth of its

argument proposition from such axioms either prior to, or after,

attempting to answer the question extensionally. TEST could in

fact be made smart enough to decide which mode of inference to

try first on the basis of characteristics of the proposition

being tested. Moreover, procedures defining individual

predicates and functions could also call the inference component

directly. For example, the predicate ABOUT that relates

documents to topics could call the inference facility to

determine whether a document is about a given topic due to one of

its stored topics subsuming or being subsumed by the one in

question.

- 124 -

^«^.„s^i^-^- ;-,.-..... . -L:

The incorporation of intensional inference into the LUNAR

framework is thus a simple matter of writing a few interfacing

functions to add axioms to, and call for inferences from, some

mechanical inference facility (assuming one has the necessary

inference system). The problems of constructing such an

inference facility to efficiently handle the kinds of inferences

that would generally be required is not trivial, but that is

another problem beyond the scope of this paper. A number of

other natural language systems have capabilities for natural

language input of facts (e.g., Winograd, 1972), but few have very

powerful inference facilities for their subsequent use.

Among the shifts in emphasis that would probably be made in

a semantic interpretation system to permit extensive intensional

inference would be increasing attention to the notational

structure of intensional entities to make them more amenable to

inspection by various computer programs (as opposed to being

perspicuous to a human). The effectiveness of the MRL used in

LUNAR derives from its overall way of decomposing meanings into

constituent parts, but is not particularly sensitive to

notational variations that preserve this decomposition. When

such MRL expressions are used as data objects by intensional

processors, internal notational changes may be desired to

facilitate such things as indexing facts and rules, relating more

general facts to more specific ones, and making the inspection of

MRL expressions as data objects more efficient for the processes

that operate on them. In particular, one might want to represent

- 125 -

the NRL expressions in some network form such as that described

in Woods (1975b) to make them accessible by associative

retrieval.

However, whatever notational variations one might want to

adopt for increasing the efficiency of intensional processing, it

should not be necesrary, and is certainly not desirable, to

sacrifice the fundamental understanding of the semantics of the

notation and the kinds of structural decompositions of meanings

that have been evolved in LUNAR and her sister systems.

11. Syntactic/Semantic Interactions

A very important question, for which LUNAR's techniques are

clearly not the general answer, has to do with the relative roles

of syntactic and semantic information in sentence undeLstanding.

Since this is an issue of considerable complexity and confusion,

I will devote the remainder of this paper to discussing the

issues as I currently understand them.

The question of how syntax and semantics should interact is

one that has been approached in a variety of ways. Even the

systems discussed above contain representatives of two extreme

approaches. LUNAR exemplifies one extreme: it produces a

complete syntactic representation which is only then given to a

semantic interpretation component for interpretation. TRIPSYS,

on the other hand, combines the entire process of parsing and

semantic interpretation in a grammar that produces semantic

- 126 -

interpretations directly without any intermediate semantic

representation.

Before proceeding further in this discussion, let me first

review the role of syntactic information in the process of

interpretation.

11.1 The Role of Syntactic Structure

The role of a syntactic parsing in the overall process of

interpreting the meaning of sentences includes answering such

questions as "what is the subject noun phrase", "what is the main

verb of the clause", "what determiner is used in this noun

phrase", etc. — all of this is necessary input information for

the semantic interpretation decisions. Parsing is necessary to

answer these questions because, in general, the answers cannot be

determined by mere local tests in the input string (such as

looking at the following or preceding word). Instead, such

answers must be tentatively hypothesized and then checked out by

discovering whether the given hypothesis is consistent with some

complete analysis of the sentence. (The existence of "garden

path" sentences whose initial portion temporarily misleads a

reader into a false expectation about the meaning are convincing

evidence that such decisions cannot be made locally.)

Occasionally, the interpretation of a sentence depends on

which of several alternative possible parsings of the sentence

the user intends (i.e., the sentence is ambiguous). In this case

- 127 -

.-_-.. ..- ^^^^--^i-..:

the parser must perform the case analysis required to separate

the alternative possibilities so they can be considered

individually. A syntactic parse tree, as used in LUNAR and

similar systems, represents a concise total description that

answers all questions about the grouping and interrelationships

among words for a particular hypothesized parsing of a sentence.

As such, it represents an example of what R. Bobrow (Bobrow and

Brown, 1975) calls a "contingent knowledge structure", an

intermediate knowledge structure that is synthesized from an

input to summarize fundamental information from which a large

class of related questions can then be efficiently inferred. In

general, there is an advantage to using a separate parsing phase

to discover and concisely represent these syntactic

relationships, since many different semantic rules may ask

essentially the same questions. One would not want to duplicate

the processing necessary to answer them repeatedly from scratch.

In addition to providing a concise description of the

interrelationships among words, the parse trees can serve an

additional role by providing levels of grouping that will control

the semantic interpretation process, assigning nodes to each of

the phrases that behave as modular constituents of the overall

semantic interpretation. The semantic interpreter then walks

this tree structure, assigning interpretations to the nodes

corresponding to phrases that the parser has grouped together.

The syntax trees assigned by the grammar thus serve as a control

structure for the semantic interpretation.

- 128 -

For historical reasons, LUNAR* >> grammar constructed

syntactic representations as close as possible to those that were

advocated at the time by transformational linguists as deep

structures for English sentences (Stockwell, Schacter, and

Partee, 1968). The complex patterns of semantic rules in LUNAR

and the multiple-phase interpretation are partly mechanisms that

were designed to provide additional control information that was

not present in those tree structures. An alternative approach

could have been to modify the syntactic structures to gain the

same effect (see oelow). The approach that was taken provides

maximum flexibility for applying a set of semantic interpretation

rules to an existing grammar. It also provides a good

pedagogical device for describing interpretation rules and

strategies, independent of the various syntactic details that

stand between the actual surface word strings and the parse

structures assigned by the grammar. However, the use of such

powerful rules introduces a cost in execution time that would not

be required by a system that adapted the grammar more to the

requirements of semantic interpretation.

11.2 Grammar Induced Phasing of Interpretation

As mentioned above, most of the control of multiple phase

interpretation that is done in LUNAR by means of successive calls

to the interpreter with different TYPEFLAGS could be handled by

having the parser assign a separate node for each of the phases

of interpretation. If this were done, the phasing of

- 129 -

interpretation would be governed entirely by the structure of the

tree. For example, one could have designed a grammar to assign a

structure to negated sentences that looks something like:

S DCL

NEG

S NP NPR S10046

VP V CONTAIN

NP DET NIL

N SILICON

NU SG

instead of:

S DCL

NEG

NP NPR S10046

VP V CONTAIN

NP DET NIL

N SILICON

NU SG

In such a structure, there is a node in the tree structure .o

receive the interpretation of the constituent unnegated sentence,

and thus the separate phasing of the PRERULES and the SRULES used

in LUNAR would be determined by the structure of tiie tree.

Similarly, noun phrases could be structured something like:

- 130 -

NP DET THE

NU SG

NOM NOM ADJ N SILICON

NOM N CONCENTRATION

PP PRÜP IN

NP > JR S1I3046

instead of the structure:

NP DET THE

ADJ N SILICON

N CONCENTRATION

NU SG

PP PREP IN

NP NPR S10046

which is used in the LUNAR grammar. In such a structure, the

nested NOM phrases would receive the interpretation of the head

noun plus modifiers by picking up modifiers one at a time.

It is not immediately obvious, given LUNAR's separation of

syntactic and semantic operations, which of the two ways of

introducing the phasing is most efficient. Introducing phasing

via syntax requires it to be done without the benefit of some of

the information that is available at interpretation time, so that

there is the potential of having to generate alternative

syntactic representations for the in .^rpreter to later choose

between. On the other hand, doing it with the semantic

interpretation rules requires extra machinery in the interpreter

- 131 -

(but does not seem to introduce much extra run-time computation).

One luight argue for the first kind of structure in the above

examples on syntactic grounds alone. If this is done, then the

efficiency issue just discussed is simply one more argument. If

it turns out that the preferred structure for linguistic reasons

is also the most efficient for interpretation, that would be a

nice result. Whether this is true or not, however, is not clear

to me at present.

11.3 Semantic Interpretation while Parsing

The previous discussion illustrates some of the

disadvantages of the separation of parsing and semantic

interpretation phases in the LUNAR system. The discussion of

placement of movable modifiers illustrates another. In general,

there are a variety of places during parsing where the use of

semantic information can provide guidance that is otherwise not

available, thus limiting the number of alternative hypothetical

parse paths considered by the parser. It. has frequently been

argued that performing semantic interpretation during parsing is

more efficient than performing it later by virtue of this pruning

of parse paths. However, the issue is not quite as simple as

this argument makes it appear. Against this savings, one must

weigh the cost of doing semantic interpretation on partial parse

paths that will eventually fail for syntactic reasons. Which of

the two approaches is superior in this respect depends on (1) the

- 132 -

relative costs of doing semantic versus syntactic tests and (2)

which of these two sources of knowledge provides the most

constraint. Both of these factors will vary from one system to

another, depending on the fluency of their grammars and tin scope

of their semantics.

At one point, a switch was inserted in the LUNAR grammar

that would call for the immediate interpretation of any newly

formed constituent rather than wait for a complete parse tree to

be formed. This turned out not to have an efficiency advantage.

In fact, sentences took longer to process (i.e., parse and

interpret). This was due in part to the fact that LUNAR*s

grammar did a good job of selecting the right parse without

semantic guidance. In such circumstances, semantic

interpretations do not help to reject incorrect paths. Instead,

they merely introduce an extra cost due to interpretations

performed on partial parse paths that later fail. Moreover,

given LUNAR's rules, there are constituents for which special

interpretations are required by higher constructions (e.g., with

TYPEFLAG SET or TOPIC). Since bottom-up interpretation may not

know how a higher construction will want to interpret a given

constituent, it must either make an assumption (which may usually

be right, but occasionally will have to be changed), or else make

all possible interpretations. Either case will require more

interpretation than waiting for a complete tree to be formed and

then doing only the interpretation required. All of these

considerations make semantic interpretation during parsing less

- 133 -

desirable unless some positive benefit of earlj semantic guidance

outweighs these costs.

11.4 Top-Down versus Bottom-Up Interpretation

In the experiment described above, in which LUNAR was

modified to perform bottom-up interpretation during parsing, the

dilemma of handling context-dependent interpretations was raised.

In those experiments, the default assumption was made to

interpret every noun phrase with TYPEFLAG NIL during the

bottom-up phase. In cases where a higher construction required

some other interpretation, reinterpretation was called for at

that point in the usual top-down mode. Since LUNAR maintains a

record of previous interpretations that have been done on a node

to avoid repeating an interpretation, it was possible to

efficiently use interpretations that were made bottom-up when

they happened to be the kind required, while performing new ones

if needed.

An alternative approach to this problem of bottom-up

interpretation in context is to make a default interpretation

that preserves enough information so that it can be modified to

fit unexpected contexts without actually having to redo the

interpretation. This would be similar to the kind of thing that

SETGEN (in the right-hand side of the D:SET rule) does to the

quantifiers it picks up to turn them into UNIONS. In the HERMES

grammar (Ash et al., 1977), R. Bobrow uses this approach, which

- 134 -

iMHi^B

he calls "coercion" (intuitively, forcing the interpretation of a

constituent to be the kind that is expected). In this case, when

the higher construction wants the interpretation of a constituent

in some mode other than the one that has been already done, it

asks whether the existing one can be coerced into the kind that

it wants rather than trying to reinterpret the original phrase.

Many of these questions of top-down versus bottom-up

interpretation, syntax-only parsing before semantic

interpretation or vice versa (or both together), do not have

clear cut answers. In general, there is a tension between doing

work on a given portion of a sentence in a way that is context

free (so that the work can be shared by different alternative

hypotheses at a higher level) and doing it in the context of a

specific hypothesis (so that the most leverage can be gained from

that hypothesis to ptune the alternatives at the lower level).

It is not yet clear whether one of the extremes or some

intermediate position is optimal.

11.5 Pragmatic Grammars

One thing that should be borne in mind when discussing the

role of grammars is that it is not necessary that the grammar

characterize exactly those sentences that a grammarian would

consider correct. The formal grammar used by a system can

characterize sentences as the user would be likely to say them,

including sentences that a grammarian might call ungrammatical.

- 135 -

For example, LUNAR accepts isolated noun phrases as acceptable

utterances, implicitly governed by an operator "give me".

In the classical division of problems of meaning into the

areas of syntax, semantics, and pragmatics, the latter term is

used to denote those aspects of meaning determined not by general

semantic rules, but by aspects of the current situation, one's

knowledge of the speaker, etc. For example, in situations of

irony, a speaker says exactly the opposite of what he means.

Likewise, certain apparent questions should in fact be

interpreted as commands or as other requests (e.g., "Do you have

the time?" is usually a "polite" way of asking "What time is

it?"). Moreover, certain ungrammatical utterances nevertheless

have a meaning that can be inferred from context. In general,

the ultimate product of language understanding is the pragmatic

interpretation of the utterance in context. This interpretation,

while not necessarily requiring a syntactically and semantically

correct input sentence, nevertheless depends on an understanding

of normal syntax and semantics.

In LUNAR, there is no systematic treatment of pragmatic

issues, although in some cases, pragmatic considerations as well

as semantic ones were used in formulating its interpretation

rules. For example, the rule that interprets the head

"analysis", when it finds no specification of the elements to be

measured, makes a default assumption that the major elements are

intended. This is due to the pragmatic fact that (according to

- 136 -

our geologist informant) this is what a geologist would want to

see if he made such a request, not because that is what the

request actually means. In this way, LUNAR can handle a small

number of anticipated pragmatic situations directly in its rules.

In TRIPSYS, a small step toward including pragmatics in the

grammar was taken. The TRIPSYS grammar takes into account not

only semantic information such as class membership and

selectional restrictions of words, but also pragmatic

information. This includes factual world knowledge such as what

cities are in which states, actual first and last names of

people, and discourse history information, such as whether

appropriate referents exist for anaphoric expressions. The

TRIPSYS system is only beginning to explore these issues, and

hasn't begun to develop a general system for pragmatic

interpretation. Much more work remains to be done in this area,

and interest in it seems to be building as our mastery of the

more basic syntactic and semantic issues matures.

The "pragmatic" grammar of TRIPSYS is only one exploration

of a philosophy of combined syntactic and semantic grammars that

has arisen independently in several places. Other similar uses

of ATN or ATN-like grammars combining syntactic and semantic (and

possibly pragmatic) information are the "Semantic Grammars" of

Burton (1976), the "Performance Grammars" of Robinson (1975), the

SHRDLÜ system of Winograd (1972) and the HERMES grammar of R.

Bobrow (Ash et al., 1977).

- 137 -

11.6 Semantic Interpretation in the Grammar

In separating parsing and semantic interpretation into two

separate processes (whether performed concurrently or in separate

phases), LUNAR gains several advantages and also several

disadvantages. On the positive side, one obtains a syntactic

characterization of a sizable subset of English that is

independent of a specific topic domain and hence transferable to

other applications. All of the domain-specific information is

contained in the dictionaries and the semantic interpretation

rules. On the other hand, there is a conceptual expense in

determining what syntactic structure to use for many of the less

standard constructions. One would like such structures to be

somehow motivated by linguistic principles and yet, at the same

time, have them facilitate subsequent interpretation. In many

cases, the desired interpretation is more clear to the grammar

designer than is a suitable syntactic representation. In a

number of situations, such as those discussed previously for

handling wh-questions with conjunction reduction and for handling

averages, I have found it desirable to change what had initially

seemed 3 suitable syntactic representation in order to facilitate

subsequent semantic interpretation. If semantic interpretations

were to be produced directly by thi grammar instead of using an

intermediate syntactic representation, then such problems would

be avoided.

138 -

The integration of semantic interpretation rules into the

grammar could be done in a number of ways, one of which would be

to develop a rule compiler that would use the templates of rules

such as LUNAR1s to determine where in the grammar to insert the

rule. Another would be to write the interpretation rules into

the grammar in the- first place. This latter is the approach that

is taken in the TRIPSYS system. It seems clearly an appropriate

thing to do for such rules as the PRERULES for sentences and the

DRULES for noun phrases, where the principal information used is

largely syntactic. For the equivalent of SRULES, NRULES, and

RRULES, writing specific rules into the grammar would make the

grammar itself more topic-specific than one might like. However,

writing generalized rules that apply to large classes of words,

using information from their dictionary entries for word-specific

information such as case frames, selectional restrictions,

permitted prepositions, and corresponding MRL translations,

should produce a grammar that is relatively topic-independent.

This is the approach taken by Robinson (1975) and by R. Bobrow

(Ash et al., 1977).

Integrating semantic interpretation with a grammar is not an

obvious overall improvement, since by doing so one gives up

features as well as gaining them. For example, as discussed

earlier the "advantage" of using semantic interpretation to prune

parse paths is not alwayr realized. However, there are some

other efficiencies of the combined syntactic/semantic grammars

that have nothing to do with pruning. One of these is the

avoidance of pattern-matching.
- 139 -

One of the costs of the separate semantic interpretation

phase used in LUNAR is the cost of pattern-matching the rules.

Much of this effort is redundant since the various pieces of

information that are accessed by the rules were mostly available

in registers during the parsing process. From here they were

packaged up by actions in the grammar into the parse tree

structures that are passed on to the interpreter. The

pattern-matching in the interpreter recovers these bindings so

that the right-hand side of the rule can use them. If the

right-hand side schema of the rule could be executed while these

bindings were still available during the parsing process,

considerable computation could be avoided. Moreover, much of the

syntactic information that is checked in the rules is implicitly

available in the states of the grammar by virtue of the fact that

the parser has reached that state (and more of that information

could be put into the states if desired). Thus, in many cases,

much of the testing that goes on in the pattern-matching of rules

would be avoided if the right-hand side of the rule, paired with

whatever semantic tests are required, were inserted as an action

at the appropriate points in the grammar.

For example, at certain points in the parsing, the grammar

would know that it had enough information to construct the basic

quantifier implied by the determiner and numbe" of a noun phrase.

At a later point, it would know all of the various modifiers that

are being applied to the head noun. As the necessary pieces

arrive, the interpretation can be constructed incrementally.

- 140 -

■JA-^/U^-:;.^-.^--

The effectiveness of this kind of combined

parser/interpreter depends partly on the discovery that the kinds

of associations of REFs to constituent nodes that are made by

LUNAR's rules are usually references to direct constituents of

the node being interpreted. Thus, they correspond closely to the

constituents that are being held in the registers by the ATN

grammar during its parsing. The original semantic rule format

was designed to compensate for rather large potential mismatches

between the structure that a grammar assigns and the structure

that the interpreter would like to have (since it was intended to

be a general facility applicable to any reasonable grammar).

When a grammar is specifically designed to support the kinds of

structures required by the interpreter, this very general

"impedance matching" capability of the rules is not required.

Thus, when fully integrated with the parsing process in an

ATN grammar, the process of semantic interpretation requires

fewer computation steps than when it is done later in a separate

phase. This clearly has a bearing on the previous discussion of

the relative costs of syntactic and semantic processing. Other

advantages of t-his kind of integrated parsing and interpretation

process is that the single nondeterminism mechanism already

present in the parser can be used to handle alternative

interpretations of a given syntactic structure, without requiring

a separate facility for finding and handling multiple rule

matches. This not only eliminates extra machinery from the

system, but appears to be more efficient. It also permits a more

- 141 -

flexible interaction between the ranking of alternative syntactic

choices and the ranking of alternative choices in semantic

interpretation.

A disadvantage of this integrated approach is that the

combined syntactic/semantic grammar is much more domain-specific

and less transportable unless clear principles for separating

domain-specific from general knowledge are followed. Moreover,

the fact that a given semantic constituent can be found in

different places by different arcs in the grammar seems to

require separate consideration of the same semantic operations it

different places in the grammar,

11.7 Generating Quantifiers While Parsing

The generation of separate SEM's and QUANT's when performing

interpretation while parsing appears to complicate the

integration of the semantic interpretation into the grammar, but

in fact is not difficult. One can stipulate that any constituent

parsed will return a structure that contains both a SEM and a

QUANT as currently assigned by the INTERP function in LUNAR. The

parsing at the next higher level in the grammar will then

accumulate the separate QUANTs from each of the constituents that

it consumes, give them to a SORTQUANT function to determined the

order of nesting, and construct the interpretation of the phrase

being parsed out of the SEM's of the constituent phrases. All of

the quantifier passing operations described previously can be

carried out during the parsing with little difficulty.

- 142 -

One advantage of this procedure is that the job of SORTQIJANT

is simplified by the fact that the quantifiers will be given to

it in surface structure order rather than in some order

determined by ehe deep structure assigned by the grammar.

LUNAR's SORTQÜANT function has to essentially reconstruct surface

word order.

12. Conclusions

The LUNAR prototype marks a significant step in the

direction of fluent natural language understanding. Within the

range of its data base, the system permits a scientist to ask

questions and request computations in his own natural English in

much the same form as they arise to him (or at least in much the

same form that he would use to communicate them to another human

being). However, although the LUNAR prototype exhibits many

desired qualities, it is still far from fully achieving Its goal.

The knowledge that the current system contains about the use of

English and the corresponding meanings of words and phrases is

very limited outside the range of those English constructions

that pertain to the system's data base of chemical analysis data.

This data base has a very simple structure; indeed it was chosen

as an initial data base because its structure was simple and

straightforward. For less restricted applications, such systems

will require much greater sophistication in both the linguistic

processing and the underlying semantic representations and

inference mechanisms.

- 143 -

In this paper, I have presented some of the solutions that

were developed in LUNAR (and several related systems) for

handling a variety of problems in semantic interpretation,

especially in the interpretation of quantifiers. These include a

meaning representation language (MRL) that facilitates the

uniform interpretation of a wide variety of linguistic

constructions, the forma.1 ization of meanings in terms of

procedures that define truth conditions and carry out actions,

efficient techniques for performing extensional inference,

techniques for organizing and applying semantic rules to

construct meaning representations, and techniques for generating

higher quantifiers during interpretation. These Litter include

methods for determining the appropriate relative scopes of

quantifiers and their interactions with negation, and for

handling their interactions with operators such as "average".

Othei techniques are described for post-interpretive query

optimization and for displaying quantifier dependencies in

output.

I have also discussed a number of future directions for

research in natural language understanding, including some

questions of the proper relationship between syntax and

semantics, the partial understanding of "ungrammatical"

sentences, and the role of pragmatics. In the first area

especially, I have discussed a number of advantages and

disadvantages of performing semantic interpretation during the

parsing process, and some aspects of the problem of separating

domain specific from general knowledge.
- 144 -

As discussed in several places in the paper, there are a

variety of loose ends and open problems still to be solved in the

areas of parsing and somantic interpretation. However, even in

the four systems discussed here, it. is apparent that as the

system becomes more ambitious and extensive in its scope of

knowledge, the ed for pragmatic considerations in selecting

interpretations becomes increasingly important. I believe that,

as . result of increasing understanding of the syntactic and

semantic issues derived from explorations such as the LUNAR

system, the field of computational linguistics is now reaching a

sufficient degree of sophist cation to make progress in a more

general treatment of pragmatic issues. In doing so, it will

become much more concerned with general issues of plausible

inference and natural deduction, moving the field of language

understanding in the direction of some of the other traditional

areas of artificial intelligence research, such as mechanical

inference and pioblem solving.

Footnote

1. Principal contributors to one or more of the systems

described here include: Madeleine Bates, Bertram Bruce, Ronald

Kaplan, and Bonnie Nash-Webber.

- 145 -

13. References

Ash, W., Bobrow, R., Grignetti, M., Hartley, A. (1977).
Intelligent On-Line Assistant and Tutor System. Final
Technical Report. Report No. 3607, Bolt Beranek and Newman
Inc., Cambridge, MA.

Bobrow, D.G., Murphy, D.P., and Teitelman, W. (1968). The
BBN-LISP System, BBN Report 1677, Bolt Beranek and Newman
Inc., Cambridge, MA, April.

Bobrow, R.J. and Brown, J.S. (1975). Systematic Understanding:
Synthesis, Analysis, and Contingent Knowledge in Specialized
Understanding Systems. In Representation and Understanding;
Studies in Cognitive Science (D. Bobrow and A. Collins,
eds.), pp. 103-129, Academic Press, New York.

Bohnert, H.G. and Backer, P.O. (1967). Automatic
English-to-Logic Translation in a Simplified Model. A Study
in the Logic of Grammar. IBM Research Paper RC-1744,
January.

Brown, J.S. and Burton, R.R. (1975). Multiple Representations of
Knowledge for Tutorial Reasoning. In Representation and
Understanding; Studies in Cognitive Science (D. Bobrow and
A. Collins, eds.), pp. 311-349. Academic Press; New York.

Burton, R. (1976). Semantic Grammar: An Engineering Technique
for Constructing Natural Language Understanding Systems. In
Report No. 3453, Bolt Beranek and Newman Inc., Cambridge,
MA, December.

Carnap, R. (1964a). Foundations of Logic and Mathematics. In
The Structure of Language; Readings in the Philosophy of
Language (J. Katz and J. Fodor, eds.), Prentice-Hall,
Englewood Cliffs, N.J.

Carnap, R. (1964b). Meaning and Necessity. University of
Chicago Press, Chicago.

Chomsky, N. (1965). Aspects of the Theory of Syntax. M.I.T.
Press, Cambridge.

Green, S. (1969). The Application of Theorem Proving to
Question-Answering Systems. Stanford University Artificial
Intelligence Project, Technical Report No. CS 138, June.

Nash-Webber, B.L. (1976). Semantic Interpretation Revisited.
The 1976 International Conference on Computational
Linguistics (COLING-76), Ottawa Canada. (Also, BBN Report
No. 3335).

- 146 -

Nash-Webber, B.L. (1977). Inference in an Approach to Discourse
Anaphora. NELS-8 (Ken Ross, ed.), U. Mass., Amherst. (Also
Technical Report No. 77, Center for the Study of Reading,
University of Illinois).

Nash-Webber, B.L.
Anaphora,
forthcoming.

(1978) . A Formal Approach to Discourse
Doctoral dissertation. Harvard Unv"«»rsity,

Nash-Webber, B.L. and Reiter, R. (1977). Anaphora and Logical
Form: On Formal Meaning Representations for English. In
Proceedings of the Fifth International Joint Conference on
Artificial Intelligence, MIT, Cambridge, MA, August 22-25,
pp. 121-131. (Also Technical Report No. 36, Center for the
Study of Reading, University of Illinois, and Bolt Beranek
and Newman Inc., Cambridge, MA.)

OAG. (1966). Official Airline Guide. Quick Reference North
American Edition, Standard reference of the Air Traffic
Conference of America.

Reiter, R. (1977). An Approach to Deductive Question-Answering.
Report No. 3649, Bolt Beranek and Newman Inc., Cambridge,
MA., October.

Robinson, J.A. (1965). A Machine-oriented Logic Based on the
Resolution Principle. Journal of the ACM 12, pp. 23-41.

Robinson, J.J. (1975). Performance Grammars. In Speech
Recognition; Invited Papers at the IEEE Symposium,
pp. 401-427. Academic Press, New York.

Simmons, R.F. (1965). Answering English Questions ny Computer:
A Survey, Communications of the ACM, Vol. 8, No. 1, pp.
53-70, January.

Stockwell, R.P., Schacter, P. and Partee, B.H. (1968).
Integration of Transformational Theories on English Syntax.
In Report ESD-TR-68-419, Electronic Systems Division, L.G.
Hanscom Field, Bedford, MA.

Winograd, T. (1972). Understanding Natural Language.
Press, New York.

Academic

Woods, W.A. (1967/. Semantics for a Question-Answering System,
Report NSF-19, Harvard University Computation Laboratory.
(Available from NTIS as PB-176-540.)

Woods, W.A. (1968). Procedural Semantics for a
Question-Answering Machine. AFIPS Conference Proceedings,
Vol. 33.

- 147 -

Woods, W.A. (1969). Augmented Transition Networks for Natural
Language Analysis, Harvard Computation Laboratory Report No.
CS-1, Harvard University, Cambridge, HA, December (available
from NTIS as Microfiche PB-203-527).

Woods W.A. (1970). Transition Network Grammars for Natural
Language Analysis, Communications of the ACM, Vol. 13, pp.
591-602, October.

Woods, W.A. (1973a) . An Experimental Parsing System for
Transition Network Grammars. In Natural Language Processing
(R. Rustin, ed.). Algorithmics Press, New York.

Woods, W.A. (1973b). Progress in Natural Language Understanding:
An Application to LUNAR Geology, AFIPS Conference
Proceedings, Vol. 42, 1973 National Computer Conference and
Exposition.

Woods, W.A. U973c). Meaning and Machines. In Computational and
Mathematical Linguistics (A. Zampolli, ed.). Proc. of the
International Conference on Computational Linguistics, Pisa,
Italy, August. Leo S. Olschki, Florence, Italy.

Woods, W.A. (1975a). Syntax, Semantics, and Speech. In Speech
Recognition; Invited Papers at the IEEE Symposium
(D.R. Reddy, ed.). Academic Press, New York.

Woods, W.A. (1975b). What's in a Link: Foundations for Semantic
Networks. In Representation and Understanding; Studie^ in
Cognitive Science (D. Bobrow and A. Collins, eds.).
Academic Press, New York.

Woods, W.A., Kaplan, R.M. and Nash-Webber, B, (3972). The Lunar
Sciences Natural Language Information System: Final Report,

lek and Newman Inc.. Cambridge,

Brown, G., Bruce, B., Cook, C,
J., Nash-Webber, B., Schwartz, R.,

Speech Understanding Systems
1974 to 29 October 1976, BBN Report
Bolt Beranek and Newman Inc.,

BBN Report 237 8, Bolt Be
MA, June.

Wood 5 f rl m Pi m f Bate s, M.,
Klovstad, J., Makhoui,
Wolf, J., Zue, V (1976)
Final Report, 30 October
No. 3438, Vc Is I-V,
Cambridge , MA.

- 148 -

BBN Report No. 3687 Bolt Beranek and Newman Inc,

Official Distribution List
Contract N00014-77-C-0378

DODAAD
Code Copies

Defense Documentation Center S47031 12
Cameron Station
Alexandria, VA 22314

Scientific Officer N00014
Program Director, Information Systems
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Attn: Mr. Gordon D. Goldstein
Code 437

Office of Naval Research N00014
Department of the Navy
Code 1021P
Arlington, VA 22217

Office of Naval Research N62879
Branch Office, Boston
495 Summer Street
Boston, MA 02210

Naval Resea i. .i Laboratory N00173
Technical Injformation Division
Code 2627
Washington, D.C. 20375

Director HX1241
Advanced Research Projects Agency
Information Processing Techniques
1400 Wilson Boulevard
Arlington, VA 22209

Administration Contracting Officer S2206A
Defense Contracting Administration Services
666 Summer Street
Boston, MA 02210

Attn: Mr. Anthony Lopez, ACO

