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Semantics and Quantification 

in 

Natural Language Question Answering 

W. A. Woods 

Bolt Beranek and Newman Inc. 

Cambridge, Massachusetts 

Abstract 

This paper is concerned with the semantic interpretation of 

natural English sentences by a computerized question-answering 

system, and specifically with tne problems of interpreting and 

using quantification in such systems. Those issues are presented 

and discussed from the perspective of four different natural 

language understanding systems with which the author has been 

involved. The presentation includes the process of semantic 

interpretation, the nature and organization of semantic 

interpretation rules, a notation for representing semantic 

interpretations (the meaning representation language), the 

semantics of that notation, and the generation and scoping of 

quantifiers. Also discussed are a variety of loose ends, open 

questions, and directions for future research. Particular 

attention is given to the interaction of syntactic, semantic (and 

pragmatic) information. 
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1. Introduction 

The history of communication between man and machines has 

followed a path of increasing provision for the convenience and 

ease of communication on the part of the human. From raw binary 

and octal numeric machine languages, through various symbolic 

assembly, scientific, business and higher-level languages, 

programming languages have increasingly adopted notations that 

are more natural and meaningful to a human user. The important 

characteristic of this trend is the elevation of the level at 

which instructions are specified from the low level details of 

the machine operations to high level descriptions of the task to 

be done, leaving out details that can be filled in by the 

computer. The ideal product of such continued evolution would be 

a system in which the user specifies what he wants done in a 

language that is so natural that negligible mental effort is 

required to recast the specification from the form in which he 

formulates it to that which the machine requires. The logical 

choice for such a language is the person's own natural language 

(which in this paper I will assume to be English). 

For a naive, inexperienced user, almost every transaction 

with current computer systems requires considerable mental effort 

deciding how to express the request in the machine'r language. 

Moreover, even for tochnical specialists who deal with a computer 

constantly, there is a distinction between the things that they 

do often and remember well, and many ether things that require 
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consulting a manual and/or much conscious thought in order to 

determine the correct machine "incantation" to achieve the 

desired effect. Thus, whether a user is experienced or naive, 

and whether he is a frequent or occasional user, there arise 

occasions where he knows what he wants the machine to do and can 

express it in natural language, but does not know exactly how to 

express it to the machine. A facility for machine understanding 

of natural language could greatly improve the efficiency of 

expression in such situations — both in speed and convenience, 

and in decreased likelihood of error. 

For a number of years, I have been pursuing a long range 

research objective of making such communication possible between 

a man and a machine. During this period, my colleagues and I1 

have constructed several natural language question-answering 

systems and developed a few techniques for solving some of the 

problems that arise. In this paper, I will present some of those 

techniques, focusing on the problem of handling natural 

quantification as it occurs in English. As an organizing 

principle, I will present the ideas in a roughly historical 

order, with commentary on the factors leading to the selection of 

various notations and algorithms, on limitations that have been 

discovered as a result of experience, and on directions in which 

solutions lie. 

Among the systems that I will use for examples are a flight 

schedules question-answering system  (Woods,  1967 and 1968), a 
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system to ask questions about an ATN grammar (not previously 

published), the LUNAR system, which answers questions about the 

chemical analyses of the Apollo 11 moon rocks (Woods et al., 

1972, Woods, 1973b), and a system for natural language trip 

planning and budget management (Woods et al., 1976). 

Some of the techniques used in these systems, especially the 

use of the augmented transition network (ATN) grammar formalism 

(Woods, 1969, 1970, 1973a), have become widely known and are now 

being used in many different systems and applications. However, 

other details, including the method of performing semantic 

interpretation, the treatment of quantification and anaphoric 

reference, and several other problems, have not been adequately 

described in accessible publications. 

This paper is intended to be a discussion of a set of 

techniques, the problems they solve, and the relative advantages 

and disadvantages of several alternative approaches. Because of 

the length of the presentation, no attempt has been made to 

survey the field or give an exhaustive comparison of these 

techniques to those of other researchers. In general, most other 

systems are not sufficiently formalized at a conceptual level 

that such comparisons can be made on the basis of published 

information. In some cases, the mechanisms described here can be 

taken as models of what is being done in other systems. 

Certainly, the general notion of computing a representation of 

the meaning of a phr* ;e from representations of the meanings of 
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its constituents by means of a rule is sufficiently general to 

model virtually any semantic interpretation process. The details 

of how most systems handle such problems as the nesting of 

multiple quantification, however, are difficult to fathom. 

Hopefully the presentation here and the associated discussion 

will enable the reader to evaluate for himself, with some degree 

of discrimination, the capabilities of other systems. 

2. Historical Context 

2.1 Airlines Flight Schedules 

Airlines flight schedules was the focusing context for a 

gedanken system for semantic interpretation that I developed as 

my Ph.D. thesis at Harvard University (Woods, 1967). In that 

thesis, I was concerned with the problem of "semantic 

interpretation" — making the transition from a syntactic 

analysis of input questions (such as could be produced by parsing 

with a formal grammar of English) to a concrete specification of 

what the computer was to do to answer the question. Prior to 

that time, this problem had usually been attacked by developing a 

set of structural conventions for storing answers in the data 

base and transforming the input questions (frequently by ad hoc 

procedures) into patterns that could be matched against that data 

base. Simmons (1965) presents a survey of the state of the art 

of the field at that time. 
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In many of the approaches existing at that time, the entire 

process of semantic interpretation was built on particular 

assumptions about the structure of the data base. I was 

searching for a method of semantic interpretation that would be 

independent of particular assumptions about data base structure 

and, in particular, would permit a single language understanding 

system to talk to many different data bases and permit the 

specification of requests whose answers required the integration 

of information from several different data bases. In searching 

for such an approach, I looked more to the philosophy of language 

and the study of meaning than to data structures and data base 

design. 

The method I developed was essentially an interpretation of 

Carnap's notion of truth conditions (Carnap, 1964a).  I chose to 

represent those truth conditions by formal procedures that could 

be executed by a machine.  The representation that I used for 

expressing meanings was at once a notational variant of the 

standard predicate calculus notation and also a represention of 

an executable procedure.  The ultimate definition of the meanings 

of expressions  in this notation were the procedures that they 

would execute to determine the truth of propositions,  compute 

the answers to questions, and carry out commands.  This notion, 

which I referred to as "procedural semantics," picks up the chain 

of semantic specification from the philosophers at the level of 

abstract  truth  conditions,  and  carries  it to a formal 

specification of those truth conditions as procedures  in a 

computer language. 
- 6 - 
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The idea of procedural semantics has since had considerable 

success as an engineering technique for constructing natural 

language understanding systems, and has also developed somewhat 

as a theory of meaning. In my paper "Meaning and Machines" 

(Woods, 1973c), I discuss some of the more theoretical issues of 

the  adequacy of procedural semantics as a theory of meaning. 

The flight schedules application initially served to focus 

the issues on particular meanings of particular sentences. The 

application assumed a data base essentially the same as the 

information contained in the Official Airline Guide (OAG, 1966) 

— that is, a Ixst of flights, their departure and arrival times 

from different airports, their flight numbers and airlines, 

number of stops, whether they serve meals, etc. Specific 

questions were interpreted as requesting operations to be 

performed on the tables that make up tnis data base to compute 

answers. 

The semantic interpretation system presented in my thesis 

was subsequently implemented for this application with an ATN 

grammar of English to provide syntax trees for interpretation, 

but without an actual data base. The system produced formal 

semantic interpretations for questions such as: 

"What flights go from Boston to Washington?" 

"Is there » flight to Washington before 8:00 a.m.? 

"Do they s rve lunch on the 11:00 a.m. flight to Toronto?". 
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2.2 Answering Questions about ATN Grammars 

To prove the point that the semantic interpretation system 

used in the flight schedules domain was in fact general for 

arbitrary data bases and independent of the detailed structure of 

the data base, immediately after completing that system, I looked 

for another data base to which I coi apply the method. I 

wanted a data base that had not been designed to satisfy any 

assumptions about the method of question interpretation to be 

used. The most convenient such data base that I had at hind was 

the data structure for the ATN grammar that was being used by the 

system to parse its input sentences. This data base had a 

structure that was intended to support the parser, and had not 

been designed with any forethought to using it as a data base for 

qjeetion answering. 

An ATN grammar, viewed as a data base, conceptually consists 

of a set of named states with arcs connecting them, corresponding 

to transitions that can be made in the course of parsing. Arcs 

connecting states are of several kinds depending on what, if 

anything, they consume from the input string when they are used 

to make a transition. For example, a word arc consumes a single 

word from the input, a push arc consumes a constituent phrase of 

the type pushed for, and a jump arc consumes no input but merely 

makes a state transition. See Woods (1970, 1973a) for a further 

discussion of ATN grammars. These states and arcs constitute the 

data base entities about which questions may be asked. 
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In addition to the entities that actually exist as data 

objects in the internal structure for the grammar, there are some 

other important objects that exist conceptually but are not 

explicit in the grammar. The most important such entity is a 

path. A path is a sequence of arcs that connect to each other in 

the order in which they could be taken in the parsing of a 

sentence. Although paths are implicit in the grammar, they are 

not explicit in the data structure — i.e., there is no internal 

data object that can be pointed to in the grammar that 

corresponds to a path. Nevertheless, one should be able to talk 

about paths and ask questions about them. The techniques I will 

describe can handle such entities. 

Examples of the kinds of sentences this "grammar information 

system" could deal with are: 

"Is there a jump arc from state S/ to S/NP?" 

"How many arcs leave state NP/?" 

"How many non-looping paths connect state S/ with S/POP?" 

"Show me all arcs entering state S/VP." 

2.3 The LUNAR System 

The LUNAR system (Woods et al., 1972; Woods, 1973b) was 

originally developed with support from the NASA Manned Spacecraft 

Center as a research prototype for a system to enable a lunar 

geologist to conveniently access, compare, and evaluate the 

chemical analysis data on lunar rock and soil composition that 
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was accumulating as a result of the Apollo noon missions. The 

target of the research was to develop a natural language 

understanding facility sufficiently natural and complete that the 

task of selecting the wording for a request would require 

negligible effort for the geologist user. 

The application envisaged was a system that would be 

accessible to geologists anywhere in the country by teletype 

connections and would enable them to access the NASA data base 

without having to learn either the programming language in which 

the system was implemented or the formats and conventions of the 

data base representations. For example, the geologist should be 

able to ask questions such as "What is the average concentration 

of aluminum in high-alkali rocks?" without having to know that 

aluminum was conventionally represented in the data base as 

AL203, that the high-alkali rocks (also known as "volcanics" or 

"fine-grained igneous") were conventionally referred to as TYPEAS 

in the data base, nor any details such as the name of the file on 

which the data was stored, the names of the fields in the data 

records, or any of a myriad of other details normally required to 

use a data base system. 

To a substantial extent, such a capability was developed, 

although never fully put to the test of real operational use. In 

a demonstration of a preliminary version of the system in 1971 

(Woods, 1973b), 78 percent of the questions asked of the system 

were understood and answered correctly, and another 12 percent 
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failed due to trivial clerical errors such as dictionary coding 

errors in the not fully-debugged system. Only 10 percent of the 

questions failed because of significant parsing or semantic 

interpretation problems. Although the requests entered into the 

system were restricted to questions that were in fact about the 

contents of the data base, and comparatives (which were not 

handled at that time) were excluded, the requests were otherwise 

freely expressed in natural English without any prior 

instructions as to phrasing and were typed into the system 

exactly as they were asked. 

The LUNAR system allowed a user to ask questions, compute 

averages and ratios, and make listings of selected subsets of the 

data. One could also retrieve references from a keyphrase index 

and make changes to the data base. The system permitted the user 

to easily compare the measurements of different researchers, 

compare the concentrations of elements or isotopes in different 

types of samples or in different phases of a sample, compute 

averages over various classes of samples, compute ratios of two 

constituents of a sample, etc. — all in straightforward natural 

English. 

Examples of requests understood by the system are: 

"Give me all lunar samples with magnetite." 

"In which samples has apatite been identified?" 

"What is the specific activity of A126 in soil" 
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"Analyses of strontium in plagioclase." 

"What are the plag analyses for breccias?" 

"What is the average concentration of olivine in breccias?' 

"What is the average age of the basalts?" 

"What is the average potassium/rubidium ratio in basalts?" 

"In which breccias is the average concentration of 

titanium greater than 6 percent?" 

2.4  TRIPSYS 

TRIPSYS is a system that was developed as the context for a 

research project in continuous speech understanding (Woods et 

al., 1976). The overall system of which it was a pare was called 

HWIM (for "Hear What I Mean"). TRIPSYS understands and answers 

questions about planned and taken trips, travel budgets and their 

status, costs of various modes of transportation to various 

places, per diems in various places, conferences and other events 

for which trips might be taken, people in an organization, the 

contracts they work on, the travel budgets of those contracts, 

and a variety of other information that is useful for planning 

trips and managing travel budgets. It is intended to be a 

small-scale example of a general management problem. TRIPSYS 

also permits some natural language entry of information into the 

data base, and knows how to prompt the user for additional 

information that was not given voluntarily. Examples of the 

kinds of requests that TRIPSYS was designed to handle are: 
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"Plan a trip for two people to San Diego to attend the ASA 

meeting." 

"Estimate the cost of that trip." 

"Is there any money left in the Speech budget?" 

3. Overview 

Since the LUNAR system is the most fully developed and most 

widely known of the above systems, I will use it as the principal 

focus throughout this paper. A brief overview of the LUNAR 

system was presented in the 1973 National Computer Conference 

(Woods, 1973b), and an extensive technical report documenting the 

system was produced (Woods et al., 1972). However, there has 

been no generally available document that gives a sufficiently 

complete picture of the capabilities of the system and how it 

works. Consequently, I will first give a brief introduction to 

the structure of the system as a whole, and then proceed to 

relatively detailed accounts of some of the interpretation 

problems that were solved. Examples from the other three systems 

will be used where they are more self-explanatory or more clearly 

illustrate a principle. Where the other systems differ in 

structure from the LUNAR system, that will be pointed out. 

3.1 Structure of the LUNAR System 

The LUNAR system consists of three principal components: a 

general purpose grammar and parser for a large subset of natural 
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English, a rule-driven semantic interpretation component using 

pattern -> action rules for transforming a syntactic 

representation of an input sentence into a representation of what 

it means, and a data base retrieval and inference component that 

stores and manipulates the data base and performs computations on 

it. The first two components constitute a language understanding 

component that transforms an input English sentence into a 

disposable program for carrying out its intent (answering a 

question or making some change to the data base). The third 

component executes such programs against the data base to 

determine the answer to queries and to effect changes in the data 

base. 

The system contains a dictionary of approximately 3500 

words, a grammar for a fairly extensive subset of natural 

English, and two data bases: a table of chemical analyses with 

13,000 entries, and a topic index to documents with approximately 

10,000 postings. The system also contains facilities for 

morphological analysis of regularly inflected words, for 

maintaining a discourse directory of possible antecedents for 

pronouns and other anaphoric expressions, and for determining how 

much and what information to display in response to a request. 

The grammar used by the parsing component of the system is 

an augmented transition network (ATN). The ATN grammar model has 

been relatively well documented elsewhere (Woods, 1970, 1973a), 

so I will not go into detail here describing it, except to point 
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out that it produces syntactic tree structures comparable to the 

"deep structures" assigned by a Chomsky type transformational 

grammar, vintage 1965 (Chomsky, 1965). Likewise, I will not go 

into much detail describing the inner workings of the data base 

inference and retrieval component, except to describe the 

semantics of the formal meaning representation language and 

discuss some of its advantages. What I will describe here are 

the problems of semantic interpretation that were handled by the 

system. 

All of  the  systems mentioned in Section 2 share this same 

basic structure with the following exceptions: 

- The airline flight schedules problem was implemented up 

through the parsing and interpretation stage, but was never 

coupled to a real data base. This system was implemented 

solely to validate the formal semantic interpretation 

procedure. 

- The TRIPSYS system does not construct a separate syntactic 

tree structure to be given to a semantic interpreter, but 

rather the ATN grammar builds semantic interpretations 

directly as its output representation. 

3.2 Semantics in LUNAR 

A semantic specification of a natural language consists of 

essentially three parts: 
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a) A meaning representation language (MRL) — a notation for 

semantic representation for the meanings of sentences, 

b) A specification of the semantics of the MRL notation — 

i.e., a specification of what its expressions mean, and 

c) A semantic interpretation procedure — i.e., a procedure to 

construct the appropriate semantic representations for a 

given natural language sentence. 

Accordingly, the semantic framework of the LUNAR system 

consists of three parts: a semantic notation in which to 

represent the meanings of sentences, a specification of the 

semantics of this notation (by means of formal procedures), and a 

procedure for assigning representations in the notation to input 

sentences. 

In previous writings on LUNAR, I have referred to the 

semantic notation as a query language, but I will refer to it 

here, following a currently more popular terminology as a 

"meaning representation language" or MRL. To represent 

expressions in the MRL, I will use the so-called "Cambridge 

Polish" notation in which the application of an operator to its 

arguments is represented with the operator preceding its operands 

and the entire group surrounded by parentheses. This notation 

places the operator in a standard position independent of the 

number of arguments it takes and uses the parentheses to indicate 

scoping of operators rather than depending on a fixed degree of 

the operator as in the "ordinary" Polish prefix notation (thus 
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facilitating operators that take a variable number of arguments). 

Cambridge Polish notation is the notation used for the 

S-expcessions of the programming language LISP (Bobrow et al., 

1968), in which LUNAR is implemented. 

Occasionally, the notations used for illustration will be 

slightly simplified from the form actually used in LUNAR to avoid 

confusion. For example, the DATALINE function used in LUNAR 

actually takes another argument for a data file that is omitted 

here. 

4. The Meaning Representation Language 

There are a number of requirements for a meaning 

representation language, but the most important ones are these: 

a) It must be capable of representing precisely, formally, and 

unambiguously any interpretation that a human reader can 

place on a sentence. 

b) It should facilitate an algorithmic translation from English 

sentences into their corresponding semantic representations. 

c) It should facilitate subsequent intelligent processing of 

the resulting interpretation. 

The LUNAR MRL consists of an extended notational variant of 

the ordinary predicate calculus notation and contains essentially 

three kinds of constructions: 
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designators, which name or denote objects 

(or classes of objects) in the data base, 

- propositions, which correspond to statements that can be 

either true or false in the data base, and 

- commands, which initiate and carry out actions. 

4.1 Designators 

Designators come in two varieties — individual specifiers 

and class specifiers. Individual specifiers correspond to proper 

nouns and variables. For example, S10046 is a designator for a 

particular sample, OLIV is a designator for a certain mineral 

(olivine) , and X3 can be a variable denoting any type of object 

in the data base. Class specifiers are used to denote classes 

of individuals over which quantification can range. They consist 

of the name of -n enumeration function for the class plus 

possible arguments. For example, (SEQ TYPECS) is a specification 

of the class of type C rocks (i.e., breccias) and (DATALINE 

S.10046 OVERALL OLIV) is a specification of the set of lines of a 

table of chemical analyses corresponding to analyses of sample 

S10046 for the overall concentration of olivine. 

4.2 Propositions 

Elementary propositions in the MRL are formed from 

predicates with designators as arguments. Complex propositions 

are formed from these by use of the logical connectives AND, OR, 
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and NOT and by quantificacion. For example, (CONTAIN S10046 

OLIV) is a proposition formed by substituting designators as 

arguments to the predicate CONTAIN, and 

(AND (CONTAIN X3 OLIV) (NOT (CONTAIN X3 PLAG))) 

is a complex proposition corresponding to the assertion that X3 

contains olivine but does not contain plagioclase. 

4.3 Commands 

Elementary commands consist of the name of a command 

operator plus arguments. As for propositions, complex commands 

can be constructed using logical connectives and quantification. 

For example, TEST is a command operator for testing the truth 

valuä of a proposition given as its argument. Thus; 

(TEST (CONTAIN S10046 OLIV)) 

will answer yes or no depending on whether sample S10046 contains 

olivine.  Similarly, PRINTOUT is a command operator which prints 

out a representation for a designator given as its argument. 

4.4 Quantification 

An important aspect of the meaning of English sentences that 

must be captured in any MRL is the use of quantifiers such äs 

"every" and "some". Quantification in the LUNAR MRL is 

represented in an elaborated version of the traditional predicate 

calculus notation. An example of an expression in this notation 

is: 
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(FOR EVERY XI / (SEQ SAMPLES) : 

(CONTAIN XI OVERALL SILICON) ; (PRINTOUT XI)). 

This says,  "for every object XI in t»*e set of samples such that 

XI contains silicon, print out (the name of) XI." 

In general, an instance of a quantified expression takes the 

form: 

(FOR <quant> X / <clas8>> : (p X) ; (q X)) 

where <quant> is a specific quantifier such as EVERY or SOME, X 

is the variable of quantification and occurs open in the 

expressions (p X) and (q X), <clas3> is a set over which 

quantification is to range, (p X) is a proposition that restricts 

the range, and (q X) is the expression being quantified (which 

may be either a proposition or a command). 

For the sake of simplifying some examples, I will generalize 

the format of the quantification operator so that the restriction 

operation implied by the ":" can be repeated any number of times 

(including zero if there is no further restriction on the range), 

giving rise to forms such as: 

(FOR <quant> X / <class> ; (q X) ) 

and 

(FOR <quant> X / <class> : (p X) : (r X) ; (q X) ). 

When there is no restriction on the range of quantification, this 

can also be indicated by using the universally true proposition 

T, as in: 

(FOR <quant> X / <class> : T ; (q X) ). 
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4.5 Specification of the MRL Syntax 

A formal BNF specification of the LUNAR MRL is given below: 

<expression> = <designator> I <proposition> I <command> 

<designator> = <individual constant> I 

<variable> I 

(<function> <expression>* ) 

<proposition> = <elementary proposition> I 

<quantified proposition> 

<elen\entary proposition> = (<propositional operators 

<expression>* ) 

<propositiona± operator> = <predicatev I <logical operator> 

<logical operator> = AND I OR I NOT | IF-THEN ... 

<quantified proposition> = (FOR <variable> / <class> ; 

<proposition>) 

<class> = <eleipentary class> I <restticted class> 

<elenientary class' = <class name> | 

(<class function> <expression>* ) 

<restricted class> = <class> : <proposition> 

<command> = <elementaty command> I <quantified command> 

<elementary command> = (<conimand operator> <expression>* ) 

<quantified command> = (FOR <variable> / <class> ; <command>) 

In addition to the above BNF constraints, each general 

operator (i.e., function, predicate, logical operator, class 

function, or command operator) will have particular restrictions 

on the number and kinds of expressions that  it can take as 
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arguments in order to be meaningful. Each operator also 

specifies which of its arguments it takes literally as given, and 

which it will evaluate to obtain a referent (see discussion of 

Opaque Contexts below). 

Predicates, functions, class names, class functions, command 

operators, and individual constants are all domain-dependent 

entities which are to be specified for a particular application 

domain and defined in terms of procedures. In LUNAR, they are 

defined as LISP subroutines. Individual constants are defined by 

procedures for producing a reference pointer to the appropriate 

internal object in the computer's model of the world; functions 

are defined by procedures for producing a reference pointer to 

the appropriate value given the values for the arguments; class 

names and class functions are defined by procedures that (given 

the appropriate values for arguments) can enumerate the members 

of their class one at a time; predicates are defined by 

procedures which, given the values of their arguments, determine 

a truth value for the corresponding proposition; and command 

operators are defined by procedures which, given the values of 

their arguments, can carry out the corresponding commands. 

I should point out that the definition given here for 

classes and commands are not adequate for a general theory of 

semantics, but are rather more pragmatic definitions that 

facilitate question answering and computer response to commands. 

For a general  semantic  theory,  the  requirement  for  semantic 
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definition of a class is merely a procedure for recognizing a 

member, and the semantic definition for a command is a procedure 

for recognizing when it has been carried out. That is, to be 

said to know the meaning of a command does not require the 

ability to carry it out, and to know the meaning of a noun does 

not require an ability to enumerate all members of its extension. 

The distinction between knowing how, and just knowing whether, 

marks the difference between pragmatic utility and mere semantic 

adequacy. The requirements placed on the definitions of the 

classes and commands in the LUNAR system are thus more stringent 

than those required for semantic definition alone. 

4.6 Procedural/Declarative Duality 

The meaning representation language used in LUNAR is 

intended to serve both as a procedural specification that can be 

executed to compute an answer or carry out a command, and as a 

"declarative" representation that can be manipulated as a 

symbolic object by a theorem prover or other inference system. 

By virtue of the definition of primitive functions and predicates 

as LISP functions, the language can be viewed simultaneously as a 

higher-level programming language and as an extension of the 

predicate calculus. This gives rise to two different possible 

types of inference for answering questions, corresponding roughly 

to Carnap's distinction between intension and extension (Carnap, 

1964b). First, because of its definition by means of procedures, 

a question such as "Does every sample contain silicon?"  can be 
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answered extensionally (that is, by appeal to the individuals 

denoted by the class name "samples") by enumerating the 

individual samples and checking whether sodium has been found in 

each one. On the other hand, this same question could have been 

answered intensionally (that is, by consideration of its meaning 

alone without reference to the individuals denoted) by means of 

the application of inference rules to other (intensional) facts 

(such as the assertion "Every sample contains some amount of each 

element"). Thus the expressions in the meaning representation 

language are capable either of direct execution against the data 

base (extensional mode) or manipulation by mechanical inference 

algorithms (intensional mode). 

In the LUNAR system, the principal mode of inference is 

extensional — that is, the direct evaluation of the formal MRL 

expression as a procedure. However, in certain circumstances, 

this expression is also manipulated as a symbolic object. Such 

cases include the construction of descriptions f.or discourse 

entities to serve as antecedents for anaphoric expressions and 

the use of "smart quantifiers" (to be discussed later) for 

performing more efficient quantification. Extensional inference 

has a variety of limitations (e.g., it is not possible to prove 

assertions about infinite sets in extensional mode), but it is a 

very efficient method for a variety of question-answering 

applications. 
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4.7 Opaque Contexts 

As mentioned above, the general operators in the meaning 

representation language are capable of accessing the arguments 

they are given either literally or after evaluation. Thus, an 

operator such as ABOUT in an expression like: 

(ABOUT D70-18] (TRITIUM PRODUCTION) ) 

(meaning "Document D70-181 discusses tritium production") can 

indicate as part of its definition that, in determining the truth 

of an assertion, the first argument (D70-181 in this case) is to 

be evaluated to determine its referent, while the second argument 

(TRITIUM PRODUCTION) is to be taken unevaluated as an input to 

the procedure (to be used in some special way as an intensional 

object — in this case, as a specification of a topic that 

D70-181 discusses). 

This distinction between two types of argument passing is a 

relatively standard one in some programming languages, frequently 

referred to as call by value versus call by name. In particular, 

in the programming language LISP, there are two types of 

functions (referred to as LAMBDA and NLAMBDA functions), the 

first of which evaluates all of its arguments and the second of 

which passes all of its arguments unevaluated to the function 

(which then specifies in its body which arguments are to be 

evaluated and what to do with the others). 

This ability to pass subordinate expressions literally as 

intensional objects (to be manipulated in unspecified ways by the 
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operator that gets them) avoids several of the antinomies that 

have troubled philosophers, such as the non-equivalence of 

alternative descriptions of the same object in belief contexts. 

Although belief contexts do not occur in LUNAR, similar problems 

occur in TRIPSYS, for example, in interpreting the object of the 

verb "create", where the argument to the verb is essentially a 

description of a desired object, not an object denoted by the 

description. 

In LUNAR, functions with opaque contexts are also used to 

define the basic quantification function FOR as well as general 

purpose counting, averaging, and extremal functions: NUMBER, 

AVERAGE, MAXIMUM, and MINIMUM. Calls to these functions take the 

forms: 

(NUMBER X / <class> : (P X) ) 

"The number of X's in <class> for which (P X) is true." 

(AVERAGE X / <class> : (P X) ; (F X) ) 

"The average of the values of (F X) over the X's in <class> 

for which (P X) is true." 

(AVERAGE X / <class> : (P X) ) 

"The average value of X (a number) over the X's in <class> 

for which (P X) is true." 

(MAXIMUM X / <class> : (P X) ) 

"The maximum value of X in the set of X's in <class> for 

which (P X) is true." 

(MINIMUM X / <class> : (P X) ) 
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"The minimum value of X in the set of X's in <class> for 

which (P X) is true." 

The proposition (P X) in each of these cases has to be taken as 

an intensional entity rather than a referring expression, since 

it must be repeatedly evaluated for different values of X. 

Opaque context functions are also defined for forming the 

intensional descriptions of sets and the intensional union of 

intensionally defined sets: 

(SETOF X / <class> : (P X) ) 

"The set of X's in <class> for which (P X) is true." 

(UNION X / <class> : (P X) ; (<setfn> X) ) 

"The union over the X's in <class> for which (P X) is 

true of the sets generated by (<setfn> X)." 

4.8 Restricted Class Quantification 

One of the major features of the quantifiers in the LUNAR 

MRL is the separation of the quantified expression into distinct 

structural parts: (1) the the basic class over which 

quantification is to range, (2) a set of restrictions on that 

class, and (3) the main expression being quantified. There are a 

number of advantages of maintaining these distinctions, one of 

which is the uniformity of the interpretation procedure over 

different kinds of noun phrase determiners that it permits. For 

example, the determiners "some" and "every", when translated into 

the more customary logical representations, give different main 
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connectives for the expression being quantified. That is, "every 

roan is mortal" becomes (Ax)Man(x)=>Mortal(x) while "some man is 

mortal" becomes (Ex)Man(x)SMortal(x). With the LUNAR format, the 

choice of determiner affects only the choice of quantifier. 

Other advantages to this kind of quantifier are the 

facilitation of certain kinds of optimization operations on the 

MRL expressions, and the generation of appropriate antecedents 

for various anaphoric expressions. Recently, Nash-Webber and 

Reiter (1977) have pointed out the necessity of making a 

distinction between the quantification class and the predicated 

expression if an MRL is to be adequate for handling verb phrase 

ellipsis and "one"-anaphora, 

4.9 Non-Standard Quantifiers 

Another advantage of the restricted class quantifier 

notation is the uniform treatment of a variety of non-standard 

quantifiers. For example, LUNAR treats the determiner "the" in a 

singular i.oun phrase as a quantifier, selecting the unique object 

that satisfies its restriction (and complaining it the 

presupposition that there is a unique such object is not 

satisfied). This differs from the traditional representation of 

definite description by means of the iota operator, which 

constructs a complex designator for a constituent rather than a 

governing quantifier. In the traditional notation, the sentence 

"The man I see is mortal," would be represented something like: 
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MORTAL( i(x) : MAN(x) & SEE(I,x)). 

In the LUNAR MRL it would be: 

(FOR THE X / MAN : (SEE I MAN) ; (MORTAL X)). 

Quantifiers such as "many" and "most", whose meaning 

requires knowledge of the size of the class over which 

quantification ranges (as well as the size of the class for which 

the quantified proposition is true) can be adequately handled by 

this notation since the range of quantification is specifically 

mentioned. These quantifiers were not implemented in LUNAR, 

however. 

Among the non-standard quantifiers handled by LUNAR are 

numerical determiners (both cardinal and ordinal) and comparative 

determiners. Ordinal quantifiers ("the third X such that P") are 

handled by a special quantifier (ORDINAL n) that can be used in 

the <quant> slot of the quantifier form. In general this ordinal 

quantifier should take another parameter that names the ordering 

function to be used, or at least require a preferred ordering 

function to be implied by context. The ordering of the members 

of the class used by LUNAR is the order of their enumeration by 

the enumeration function that defines the class (see Section 5.2 

below). 

Numerical quantification and comparative quantification are 

handled with a general facility for applying numeric predicates 

to a parameter N in the FOR function that counts the number of 

successful members of the range of quantification that have been 
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found.  Examples are (GREATER N <number>), (EQUAL N <number>), or 

even (PRIME N) (i.e., N is a prime number). 

The interpretation of general numeric predicates as 

quantifiers is that if any number N satisfying the predicate can 

be found such that N members of the restricted class satisfy the 

quantified proposition (or successfully complete a quantified 

command), then the quantified proposition is true (or a 

quantified command is considered completed). In the 

implementation, the current value of N is tested as each 

successful member of the restricted class is found, until either 

the count N satisfies the numeric predicate or there are no more 

members in the class. 

The numeric predicate quantifier can be used directly to 

handle comparative determiners such as "at least" and "more 

than", and can be used in a negated quantification to handle "at 

most" and "fewer than". The procedure for testing such 

quantifiers can return a value as soon as a sufficient number of 

the class have been found, without necessarily determining the 

exact number of successful members. The numerical determiner 

"exactly <n>" is handled in LUNAR by the generalized counting 

function NUMBER embedded in an equality statement. (It could 

also be handled by a conjunction of "at least" and "not more 

than", but that would not execute as efficiently.) 

The LUNAR MRL also permits a generic quantifier GEN, which 

is assigned to noun phrases with plural  inflection and no 
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determiner. Such noun phrases sometimes behave like universal 

quantification and sometimes like existential quantification. In 

LUNAR, unless some higher operator indicates that it should be 

interpreted otherwise, a generic quantifier is evaluated exactly 

like EVERY. 

Examples of types of quantification in LUNAR are: 

(FOR EVERY X / CLASS : (P X) ; (Q X)) 

"Every X in CLASS that satisfies P also satisfies Q." 

(FOR SOME X / CLASS : (P X) ; (Q X)) 

"Some X in CLASS that satisfies P also satisfies Q." 

(FOR GEN X / CLASS : (P X) ; (Q X)) 

"A generic X in CLASS that satisfies P will also satisfy Q." 

(FOR THE X / CLASS : (P X) ; (Q X)) 

"The single x in CLASS that satisfies P also satisfies Q." 

(FOR (ORDINAL 3) X / CLASS : (P X) ; (Q X)) 

"The third X in CLASS that satisfies P also satisfies Q." 

(FOR (GREATER N 3) X / CLASS : (P X) ; (Q X)) 

"More than 3 X's in CLASS that satisfy P also satisfy Q." 

(FOR (EQUAL N 3) X / CLASS : (P X) ; (Q X)) 

"At least 3 X's in CLASS that satisfy P also satisfy Q." 

(NOT (FOR (EQUAL N 3) X / CLASS : (P X) ; (Q X))) 

"Fewer than 3 X's in CLASS satisfy P and also satisfy Q." 

(EQUAL 3 (NUMBER X / CLASS : (P X) : (Q X) )) 

"Exactly 3 X's in CLASS satisfy P and also satisfy Q." 
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4.10  Functions and Classes 

Another of the attractive features of the LUNAR MRL is the 

way that quantification over classes, single and multiple valued 

functions, and the attachment of restrictive modifiers are all 

handled uniformly, both individually and in combination, by the 

quantification operators. Specifically, a noun phrase consisting 

of a function applied to arguments is represented in the same way 

as a noun phrase whose head is a class over which quantification 

is to range. For example "The departure time of flight 557 is 

3:00" can be represented as: 

(FOR THE X / (DEPARTURE-TIME FLIGHT-557) : T ; (EQUAL X 3:00)) 

(where T is the universally true proposition, signifying here 

that there are no further restrictions on the range of 

quantification). This permits exactly the same mechanisms for 

handling the various determiners and modifiers to apply to both 

functionally determined objects and quantification over classes. 

This uniformity of treatment becomes especially significant 

when the function is not single valued and when the class of 

values is being quantified over or restricted by additional 

modifiers as in: 

(FOR EVERY X / (DATALINE S10046 OVERALL SI02) : T ; (PRINTOUT X)) 

and 

(FOR THE X / (DATALINE S10046 OVERALL SI02) : 

(REF* X D70-181) ; (PRINTOUT X)) 
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where (DATALINE <sample> (phase> <constituent>) is the function 

used in LUNAR to enumerate measurements in its chemical analysis 

table and (REF* <table entry> <document>) is a relation between a 

measurement and the journal article it was reported in. 

4.11 Unanticipated Requests 

The structure of the meaning representation language, when 

coupled with general techniques for semantic interpretation, 

enable the user to make very explicit requests with a wide range 

of diversity within a natural framework. As a consequence of the 

modular composition of MRL expressions, it is possible for the 

user to combine the basic predicates and functions of the 

retrieval component in ways that were not specifically 

anticipated by the system designer. For example, one can make 

requests such as "List the minerals", "What are the major 

elements?", "How many minerals are there?", etc. Although these 

questions might not be sufficiently useful to merit special 

effort to handle them, they fall out of the mechanism for 

semantic interpretation in a natural way with no additional 

effort required. If the system knows how to enumerate the 

possible samples for one purpose, it can do so for other purposes 

as well. Furthermore, anything that the system can enumerate, it 

can count. Thus, the decomposition of the retrieval operations 

into basic units of quantifications, predicates, and functions 

provides a very flexible and powerful facility for expressing 

requests. 
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5. The Semantics of the Notation 

5.1  Procedural Semantics 

As mentioned before, the semantic specification of a natural 

language requires not only a semantic notation for representing 

the meanings of sentences, but also a specification of the 

semantics of the notation. As discussed previously, this is done 

in LUNAR by relating the notation to procedures that can be 

executed. For each of the predicate names that can be used in 

specifying semantic representations, LUNAR requires a procedure 

or subroutine that will determine the truth of the predicate for 

given values of its arguments. Similarly, for each of the 

functions that can be used, there must be a procedure that 

computes the value of that function for given values of its 

arguments. Likewise, each of the class specifiers for the FOR 

function requires a subroutine that enumerates the members of the 

class. 

The FOR function itself is also defined by a subroutine, as 

are the logical operators AND, OR and NOT, the general counting 

and averaging functions NUMBER and AVERAGE, and the basic command 

functions TEST and PRINTOUT. Thu any well-formed expression in 

the language is a composition of functions that have procedural 

definitions in the retrieval component and are therefore 

themselves well-defined procedures capable of execution on the 

data base.  In the LUNAR system, the definition of all of these 
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procedures is done in LISP, and the notation of the meaning 

representation language is so chosen that its expressions are 

executable LISP programs. These function definitions and the 

data base on which they operate constitute the retrieval 

component o£ the system. 

5.2 Enumeration Functions 

One of the engineering features of the LUNAR retrieval 

component that makes the quantification operators both efficient 

and versatile is the definition of quantification classes by 

means of enumeration functions. These are functions that compute 

one member of the class at a time and can be called repeatedly to 

obtain successive members. Enumeration functions take an 

enumeration index argument which is used as a restart pointer to 

keep track of the state of the enumeration. Whenever FOR calls 

an enumeration function to obtain a member of a class, it gives 

it an enumeration index (initially T), and each time the 

enumeration function returns a value, it also returns a new value 

of the index to be used as a restart pointer to get the next 

member. This pointer is frequently an inherent part of the 

computation and involves negligible overhead to construct. For 

example, in enumerati-g integers, the previous integer suffices, 

while in enumerating members of an existing list, the pointer to 

the rest of the list already exists. 
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The enumeration function formulation of the classes used in 

quantification frees the FOR function from explicit dependence on 

the structure of the data base; the values returned by the 

enumeration function may be searched for in tables, computed 

dynamically, or merely successively accessed from a precomputed 

list. Enumeration functions also enable the quantifiers to 

operate on potentially infinite classes and on classes of objects 

that don't necessarily exist prior to the decision of the 

quantifier to enumerate them. For example, in an expression such 

as: 

(FOR SOME X / INTEGER : (LESSP X 10) ; (PRIME X) ) 

("some integer less than 10 is a prime"), a general enumeration 

procedure for integers can be used to construct successive 

integers by addition, without having to assume that all the 

integers of interest exist in the computer's memory ahead of 

time. Thus, the treatment of this kind of quantification fits 

naturally within LUNAR's general quantification mechanism without 

having to be treated as a special case. 

In the grammar information system application, an 

enumeration function for paths computes representations for paths 

through the grammar, so that paths can be talked about even 

though there are no explicit entities in the internal grammar 

representation that correspond to paths. (See the discussion on 

"smart" quantifiers below for a further discussion of the 

problems of quantifying over such entities.) 
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An enumeration function can indicate termination of the 

class in one of two ways: either by returning NIL, indicating 

that there are no more members, or by returning a value with a 

NIL restart pointer, indicating that the curcert value is the 

last one. This latter can save one extra call to the enumeration 

function if the information is available at the time the last 

value is returned (e.g., for single valued functions). This 

avoids what would otherwise be an inefficiency in treating 

multiple- and single-valued functions the same way. 

In LUNAR, a general purpose enumeration function SEQ can be 

used to enumerate any precomputed list, and a similar function 

SEQL can be used to enumerate singletons.  For example: 

(FOR EVERY XI / (SEQ TYPECS) : T ; (PRINTOUT XI)) 

is an expression that will printout the sample numbers for all of 

the samples that are type C rocks. 

Functionally determined objects and classes, as well as 

fixed classes, are implemented as enumeration functions, taking 

an enumeration index as well as their other arguments and 

computing successive members of their class one at a time. In 

particular, intensional operators such as AVERAGE, NUMBER, SETOF, 

and UNION are defined as enumeration functions and also use 

enumeration functions for their class arguments. Thus 

quantification over classes, computation of single-valued 

functions, and quantification over the values of multiple-valued 

functions are all handled uniformly, without special distinctions 

having to be made. 
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5.3 Quantified Commands 

As mentioned earlier, both propositions and commands can be 

quantified.  Thus one can issue commands such as: 

(FOR (EQ N 5) X / SAMPLES : (CONTAIN X SI02) ; (PRINTOUT X)) 

("Print out five samples that contain silicon."). The basic 

commands in such expressions are to be iterated according to the 

specifications of the quantifier. However, it is possible for 

such commands to fail due to a violation of presuppositions or of 

necessary conditions. For example, in the above case, there 

might not be as many as five samples that contain silicon. In 

order for the system to be aware of such cases, each command in 

the system is defined to return a value that is non-null if the 

command has been successfully executed and NIL otherwise. Given 

this convention, the FOR operator will automatically return T if 

such an iterated command has been successfully completed and NIL 

otherwise. 

There are other variations of this technique that could be 

useful but were not implemented in LUNAR, such as returning 

comments when a command failed indicating the kind of failure. 

In LUNAR, such comments were sometimes printed to the user 

directly by the procedure that failed, but the system itself had 

no opportunity to "see" those comments and take some action of 

its own in response to them (such as trying some other way to 

achieve the same end). 
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In LUNAR, interpretations of commands are given directly to 

the retrieval component for evaluation, although in a more 

intelligent system, as in humanr, the decision to carry out a 

command once it is understood would not necessarily automatically 

follow. 

6. Semantic Interpretation 

Having now specified the notation in which the meanings of 

English sentences are to be represented and specifying the 

meanings of expressions in that notation, we are now left with 

the specification of the process whereby meanings are assigned to 

sentences. This process is referred to as semantic 

interpretation, and in LUNAR it is driven by a set of formal 

semantic interpretation rules. For example, the interpretation 

of the sentence "S10046 contains silicon," to which the parser 

would assign the syntactic structure: 

S DCL 

NP  NPR S10046 

AUX TNS PRESENT 

VP  V  CONTAIN 

NP NPR SILICON 

is determined by a rule that applies to a sentence vh . the 

subject is a sample, the object is a chemical element, oxide, or 

isotope, and the verb is "have" or "contain". This rule 

specifies that such a sentence is to be interpreted as an 

instance of the schema  (CONTAIN x y) where x is to be  replaced 
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by the interpretation of the subject noun phrase of the sentence 

and y is to be replaced by the interpretation of the object. 

This information about conditions on possible arguments and 

substitutions of subordinate interpretations into "slots" in the 

schema is represented in LUNAR by means of the pattern -> action 

rule: 

[S:CONTAIN 

(S.NP (MEM 1 SAMPLE)) 

(S.V (OR (EQU 1 HAVE) 

(EQU 1 CONTAIN)) 

(S.OBJ (MEM 1 (ELEMENT OXIDE ISOTOPE))) 

->   (QUOTE (CONTAIN (#11) (#31))) ]. 

The name of the rule is S:CONTAIN. The left-hand side, or 

pattern part, of the rule consists of three templates that match 

fragments of syntactic structure. The first template requires 

^hat the sentence being interpreted have a subject noun phrase 

that is a member of the semantic class SAMPLE; the second 

requires that the verb be either "have" or "contain"; and the 

third requires a direct object that is either a chemical element, 

an oxide or an isotope. 

The right-hand side, or action part, of the rule follows the 

right arrow and specifies that the interpretation of this node is 

to be formed by inserting the interpretations of the subject and 

object constituents into the schema (CONTAIN (# 1 1)(# 3 1)), 

where the expressions  (# m n) mark the "slots" in the schema 
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where subordinate interpretations are to be inserted. The 

detailed structure of such rules is described in Section 6.3. 

(Note that the predicate CONTAIN is the name of a procedure in 

the retrieval component, and it is only by the "accident" of 

mnemonic design that its name happens to be the same as the 

English word "contain" in the sentence that we have interpreted.) 

The process of semantic interpretation can conveniently be 

thought of as a process that applies to parse trees produced by a 

parser to assign semantic interpretations to nodes in the tree. 

In LUNAR and the other systems above, except for TRIPSYS, this is 

how the interpretations are produced. (In TRIPSYS, they are 

produced directly by the parser without an intermediate syntax 

tree representation.) The basic interpretation process is a 

recursive procedure that assigns an interpretation to a node of 

the tree as a function of its syntactic structure and the 

interpretations of its constituents. 

The interpretations of complex constituents are thus built 

up modularly by a recursive process that determines the 

interpretation of a node by inserting the interpretations of 

certain constituent nodes into open slots in a schema. The 

schema to be used is determined by rules that look at a limited 

portion of the tree. At the bottom level of the tree (i.e., the 

leaves of the tree), the interpretation schemata are literal 

representations without open slots, specifying the appropriate 

elementary interpretations of basic atomic constituents (e.g., 

proper names). 
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In LUNAR, the semantic interpretation procedure is 

implemented in such a way that the interpretation of nodes can be 

initiated in any order. If the interpretation of a node requires 

the interpretation of a constituent that has not yet been 

interpreted, then the interpretation of that constituent is 

performed before that of the hiqher node is completed. Thus, it 

is possible to perform the entire semantic interpretation by 

calling for the interpretation ol the top node (the sentence as a 

whole). This is the normal mode in which the interpreter is 

operated in LUNAR. I will discuss later (Sections 11.3 and 11.4) 

some experiments in which this mechanism is used for "bottom-up" 

interpretation. 

6.1 Complications Due to Quantifiers 

In the above example, the interpretation of the sentence is 

obtained by inserting the interpretations of the proper noun 

phrases "S10046" and "silicon" (in LUNAR these are "S10046" and 

"SI02", respectively) into the open slots of the right-hand side 

schema to ootain: 

(CONTAIN S10046 SI02) . 

When faced with the possibility of a quantified noun phrase, 

however, the problem becomes somewhat more complex.   If the 

initial  sentence were "Every sample contains silicon," then one 

would like to produce the interpretation: 

(FOR EVERY X / SAMPLE ; (CONTAIN X SI02)). 
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That is, one would like to create a variable to fill the 

"container" slot of the schema for the main verb, and then 

generate a quantifier to govern that variable to be attached 

above the predicate CONTAIN. As we shall see, the LUNAR semantic 

interpretation system specifically provides for the generation 

and appropriate attachment of such quantifiers. 

6.2 Problems with an Alternative Approach 

Because of the complications discussed above, one might ask 

whether there is some other way to handle quantification without 

generating quantifiers that are extracted from their noun phrase 

and attached as dominant operators governing the clause in which 

the original noun phrase was embedded. One might, instead, 

attempt to interpret the quantified noun phrase as some kind of a 

set that the verb of the clause takes as its argument, and 

require the definition of the verb to include the iteration of 

its basic predicate over the members of the class. For example, 

one might want a representation for the above example something 

like: 

(CONTAIN (SET X / SAMPLE : T) SI02) 

with the predicate CONTAIN defined to check whether its first 

argument is a set and if so, check each of the members of  that 

set. 

however, if one were to take this approach, some way would 

be needed to distinguish giving CONTAIN a set argument over which 
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it should do universal quantification from one in which it should 

do existential quantification. One would similarly have to be 

able to give it arguments for the various non-standard 

quantifiers discussed above, such as numerical quantifiers and 

quantifiers like "most". Moreover, the same thing would have to 

be done separately for the second argument to CONTAIN as well as 

the first (i.e., the chemical element as well as the sample), and 

one would have to make sure that all combinations of quantifiers 

in the two argument positions worked correctly. Essentially one 

would have to duplicate the entire quantificational mechanism 

discussed above as part of the defining procedure for the meaning 

of the predicate CONTAIN. Moreover, one would then have to 

duplicate this code separately for each other predicate and 

command in the system. Even if one managed to share most of the 

code by packaging it as subroutines, this is still an inelegant 

way of handling the problem. 

Even if one went to the trouble  just outlined,  there are 

still  logical  inadequacies,  since there  is no way with the 

proposed method  to specify the differences  in meaning  that 

correspond to the different relative scopes of two quantifiers 

(e.g., "Every sample contains some element" vs.     "There  is  some 

element that every sample contains").  Likewise, there is no 

mechanism to indicate the  relative scopes of quantifiers and 

sentential operators such as negation ("Not every sample contains 

silicon"  vs.  "Every sample contains no silicon").  It appears, 

therefore,  that treating quantifiers effectively as  higher 

operators is essential to correct interpretation in general. 
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6.3 The Structure of Semantic Rules 

As discussed above, in determining the meaning of a 

construction, two types of information are used: syntactic 

information about sentence construction, and semantic information 

about constituents. For example, in interpreting the above 

example, it is both the syntactic structure of the sentence 

(subject = S10046; verb = "contain"; object = silicon) plus the 

semantic facts that S10046 is a sample and silicon is a chemical 

element that determine the interpretation. Syntactic information 

about a construction is tested by matching tree fragments such as 

those indicated below against the mode being interpreted: 

S.NP = S NP  (1)   —  (subject of a sentence) 

S.V  = S VP V  (1)  —  (main verb of a sentence) 

S.OBJ = S VP NP  (1)  —  (direct object of a sentence) 

S.PP = S VP PP PREP  (1)  —  (preposition and object 

NP   (2)      modifying a verb phrase) 

NP.ADJ = NP ADJ  (2)   —  (adjective modifying a noun phrase) 

Fragment S.NP matches a sentence if it has a subject and also 

associates the number 1 with the subject noun phrase. S.PP 

matches a sentence that contains a prepositional phrase modifying 

the verb phrase and associates the numbers 1 and 2 with the 

preposition and its object, respectively. The numbered nodes can 

be referred to in the left-hand sides cf rules for checking 

semantic conditions,  and  they are used in the right-hand sides 
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for specifying the interpretation of the construction. These 

tree structure fragments can be named mnemonically as above for 

readability. 

The basic element of the left-hand side of a rule is a 

template consisting of tree fragments plus additional semantic 

conditions on the numbered nodes of the fragment. For example, 

the template (S.NP (MEM 1 SAMPLE)) matches a sentence if its 

subject is semantically marked as a sample. The pattern part of 

a rule consists of a sequence of templates, and the action of the 

rule specifies how the interpretation of the sentence is to be 

constructed from the interpretations of the nodes that match the 

numbered nodes of the templates. 

Occasionally, some of the elements that are required to 

construct an interpretation may be found in one of several 

alternative places in a construction. For example, the 

constituent to be measured in an analysis can occur either as a 

prenominal adjective ("a silicon analysis") or as a post-nominal 

prepositional phrase {"an analysis of silicon"). To handle this 

case, basic templates corresponding to the alternative ways the 

necessary element can be found can be grouped together with an OR 

operator to form a disjunctive template that is satisfied if any 

of its disjunct templates are. For example: 

(OR (NP.ADJ (MEM 2 ELEMENT)) 

(NP.PP (AND (EQU 1 OF) 

(MEM 2 ELEMENT))). 
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Also occasionally, two rules will be distinguished by the 

fact that one applies when a given constituent is present and the 

other will require it to be absent. In order to write the second 

rule so that it will not match in circumstances where it is not 

intended, a basic template can be embedded in a negation operator 

NOT to produce a negated template that is satisfied if its 

embedded template fails to match and is not satisfied when its 

embedded template succeeds. For example: 

(NOT (NP.ADJ (EQU 2 MODAL))). 

In general, the left-hand side of a rule consists of a 

sequence of templates (basic, disjunctive, or negated). 

6.3.1 Right-hand Sides 

The right-hand sides (or actions) of semantic rules are 

schemata into which the interpretations of embedded constituents 

are inserted before the resulting form is evaluated to give a 

semantic interpretation. The places, or "slots", in the 

right-hand sides where subordinate interpretations are to be 

inserted are indicated by expressions calle : REFs, which begin 

with the atom # and contain one or two numbers and an optional 

"TYPEFLAG." The numbers indicate the node in the tree whose 

interpretation is to be inserted by naming first the sequence 

number of a template of the rule, and then the number of the 

corresponding node in the tree fragment of that template. Thus 

the  reference  (# 2 1) represents the interpretation of the node 
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that matches node 1 of the 2nd template of the rule. In 

addition, the single number 0 can also be used to reference the 

current node, as in (I 0 TYPEFLAG). 

The TYPEFLAG element, if present, indicates how the 

subordinate node is to be interpreted. For example, in LUNAR 

there is a distinctron between interpreting a node normally and 

interpreting it as a topic description. Thus (# 0 TOPIC) 

represents the interpretation of the current node as a topic 

description, There are a variety of types of interpretation used 

for various purposes in the rules of the system. The absence of 

a specific TYPEFLAG in a REF indicates that the interpretation is 

to be done in the normal mode for the type of node that it 

matches. 

6.3.2 Right-hand Side Evaluation 

In many cases, the semantic interpretation to be attached to 

a node can be constructed by merely inserting the appropriate 

constituent interpretations into the open slots in a fixed 

schema. However, occasionally, more than this is required and 

some procedure needs to be executed to modify or transform the 

resulting instantiated schema. To provide for this, the semantic 

interpreter treats right-hand sides of rules as expressions to be 

evaluated to determine the appropriate interpretation. For rules 

in which the desired final form can be given literally, the 

right-hand side schema is embedded in the operator QUOTE which 
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simply returns its argument unchanged. This is the case in the 

example above. In special cases, right-hand side operators can 

do fairly complex things, such as searching a discourse directory 

for antecedents for anaphoric expressions and computing 

intensional unions of setö. In the usual case, however, the 

operator is either QUOTE or one of the two operators PRED and 

QUANT that handle quantifier passing (discussed below). 

6.4 Relationship of Rules to Syntax 

In many programm.ng languages and some attempts to specify 

natural language semantics, semantic rules are paired directly 

with syntactic phrase structure rules so that a single compact 

pairing specifies both the syntactic structure of a constituent 

and its interpretation. This type of specification is clean and 

straightforward and works well for artificial languages that can 

be defined by context-free or almost context-free grammars. For 

interpreting natural language sentences, whose structure is less 

isomorphic to the kind of logical meaning representation that one 

would like to derive, it is less convenient, although not 

impossible. Specifically, with the more complex grammars for 

natural language — e.g., ATN's and transformational grammars, 

the simple notio.: of a syntactic rule with which to pair a 

semantic rule becomes less clear. Consequent y, the rules in the 

LUNAR system are not paired with the syntactic rules, nor are 

they constrained to look only at the immediate constituents of a 

phrase.  In general they can look arbitrarily far down  into the 
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phrase they are interpreting, picking up interpretations of 

subordinate constituents at any level and looking at various 

syntactic aspects of the structure they are interpreting, as well 

as the semantic interpretations ot couctituents. The rules are 

invoked not by virtue of applying a given syntactic rule, but by 

means of rule indexing strategies described below. 

6.5 Organization of the Semantic Interpreter 

The overall operation of the semantic interpreter is as 

follows: A top level routine calls the recursive function INTERP 

locking at the top level of the farse tree. Thereafter, INTERP 

attempts to match semantic rules against the specified node of 

the tree, and the right-hand sides of matching rules specify the 

interpretation to be given to the node. The possibility of 

semantic ambiguity is recognized, and therefore the routine 

INTERP produces a list of possible interpretations (usually a 

singleton, however). Each interpretation consists of two parts: 

a node interpretation (called the SEM of the node), and a 

quantifier "collar" (called the QUANT of the node). The QUANT is 

a schema for higher operators (such as quantification) that is to 

dominate any interpretation in which the SEM is inserted (used 

for quantifier passing — see Section 6.7 belc.j. Thus the 

result of a call to INTERP for a given node P is a list of 

SEM-QUANT pairs, one for each possible interpretation of the 

node. 
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6,5.1 Context-Dependent Interpretation 

The function INTERP takes two arguments — the construction 

to be interpreted, and a TYPEFLAG that indicates how to interpret 

it. The TYPEFLAG mechanism is intended to allow a constituent to 

be interpreted differently depending on the higher-level 

structure within which it is embedded. The TYPEFLAG permits a 

higher level schema to pass down information to indicate how it 

wants a constituent interpreted. For example, some verbs can 

specify that they want a noun phrase interpreted as a set rather 

than as a quantification over individuals. The TYPEFLAG 

mechanism is also used to control the successive phases of 

interpretation of noun phrases and clauses (discussed below). 

When interpreting a node, INTERP first calls a function HEAD 

to determine the head of the construction and then calls a 

function RULES to determine the list of semantic rules to be used 

(which depends, in general, on the type of node, its head word, 

and the value of TYPEFLAG). It then dispatches control to a 

routine MATCHER to try to match the rules. If no interpretations 

are found, then, depending on the TYPEFLAG and various mode 

settings, INTERP either returns a default interpretation T, goes 

into a break with a comment that the node is uninterpretable 

(perr.iittinq a systems programmer to debug rules) , or returns NIL 

indicating that the node has no interpretations for the indicated 

TYPEFLAG. 
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6.5.2 Phased Interpretation 

In general, there are two types of constituents in a 

sentence that receive interpretations — clauses and noun 

phrases. The former receive interpretations that are usually 

predications or commands, while the latter are usually 

designators. The interpretation of these two different kinds of 

phrase are slightly different, but also remarkably similar. In 

each case there is a governing "head" word; the verb in the case 

of a clause, and the head noun in the case of the noun phrase. 

The interpretation of a phrase is principally determined by the 

head word (noun or verb) of the construction. However, there are 

also other parts of a construction that determine aspects of its 

interpretation independent of the head word. These in turn break 

down into two further classes: (1) modifying phrases (which 

themselves have dominating head words) that augment or alter 

meaning of the head, and (2) function words that determine 

governing operators of the interpretation that are independent of 

the head word and its modifiers. In the case of clauses, these 

latter include the interpretation of tense and aspect and various 

qualifying operators such as negative particles. In the case of 

noun phrases, these include the interpretation of articles and 

quantifiers and the inflected case and number of the head noun. 

As a consequence of these distinctions, the semantic 

interpretation of a construction generally consists of three 

kinds of operations: determining any governing operators that are 
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independent of the head word, determining the basic 

interpretation of the head, and interpreting any modifiers that 

may be present. In LUNAR, these three kinds of interpretation 

are governed by three different classes of rules that operate in 

three phases. The phases are controlled by the rules themselves 

by using multiple calls to the interpreter with different 

TYPEFLAGS. 

The above description is not the only way such phasing could 

be achieved. For example, it would be possible to gain the same 

phasing of interpretation by virtue of the structures assigned to 

the input by the parser (see Section 11.2) or by embedding the 

phasing in the control structure of the interpreter. In the 

original flight schedules and grammar information 

implementations, this phasing was embedded in the control 

structure of the interpreter. Placing the phasing under the 

control of the rules themselves in LUNAR provided more 

flexibility. In TRIPSYS, the equivalent of such phasing is 

in grated, along with the semantic interpretation, into the 

parsing process. 

In general, the interpretation of a construction is 

initially called for with TYPEFLAG NIL. This first 

interpretation may in turn involve successive calls for 

interpretation of the same node with other TYPEFLAGs to obtain 

subsequent phases of interpretation. For example, clauses are 

initially interpreted with TYPEFLAG NIL, and the rules  invoked 
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are a general set of rules called PRERÜLES that look for negative 

particles, tense marking, conjunctions etc. to determine any 

governing operators that should surround the interpretation of 

the verb. Whichever of these rules matches will then call for 

another interpretation of the same construction with an 

appropriate TYPEFLAG. The basic interpretation of the verb is 

done by a call with TYPEFLAG SRULES, which invokes a set of rules 

stored on the property list of the verb (or reachable from the 

entry for that verb by chaining up a generalization hierarchy). 

For example, in interpreting the sentence "S10046 doesn't contain 

silicon", the initial PRERULE PR-NEG matches with a right-hand 

side: 

(PRED (NOT (I 0 SRULES))). 

The SRULE S:CONTAIN discussed above  then matches, producing 

eventually (CONTAIN S10046 SI02) , which is then embedded  in the 

PR-NEG schema to produce the final interpretation: 

(NOT (CONTAIN S10046 SI02)). 

Ordinary noun phrases are usually interpreted by an initial 

phase that interprets the determiner and number, a second phase 

that interprets the head noun and any arguments that it may take 

(i.e., as a function), and a third phase that interprets other 

adjectival and prepositional phrase modifiers and relative 

clauses. 
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6.5.3 Proper Nouns and Mass Terms 

In addition to the rules discussed above for ordinary noun 

phrases, there are two special classes of noun phrase — proper 

nouns and mass terms — that have their own rules. Proper nouns 

are the direct names of individuals in the data base. Their 

identifiers in the data base, which are not necessarily identical 

to their normal English orthography, are indicated! in the 

dictionary entry for the English form. Mass terms are the names 

of substances like silicon and hydrogen. Proper nouns are 

represented in the LUNAR syntactic representations as special 

oases of noun phrases by a rule equivalent to NP -> NPR, while 

mass terms are represented as ordinary noun phrases with 

determiner NIL and number SG. 

In general, the interpretation of mass terms requires a 

special treatment of quantifiers, similar to but different from 

the ordinary quantifiers that deal with count nouns (e.g., "some 

silicon" means an amount of stuff, while "some sample" means an 

individual sample). In the LUNAR system, however, mass terms are 

used only in a few specialized senses in which they are almost 

equivalent to proper nouns naming a substance. 

6.6 Organization of Rules 

As mentioned above, the semantic rules for interpreting 

sentences are usually governed by the verb of the sentence. That 

is, out of the entire set of semantic rules,  only a  relatively 
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small number of them can possibly apply to a given sentence 

because of the verb mentioned in the rule. Similarly, the rules 

that interpret noun phrases are governed by the head noun of the 

noun phrase. For this reason, most semantic rules in LUNAR are 

indexed according to the heads of the constructions to which they 

could apply, and recorded in the dictionary entry for the head 

words. Specifically, associated with each verb is a set of 

"SRULES" for interpreting that verb in various contexts, and 

associated with each noun is a set of "NRULES" for interpreting 

various occurrences of that noun. In addition, associated with 

each noun are a set of "RRULES" for interpreting various 

restrictive modifiers that may be applied to that noun. Each 

rule essentially characterizes a syntactic/semantic environment 

in which a word can occur, and specifies its interpretation in 

that environment. The templates of a rule thus describe the 

necessary and sufficient constituents and semantic restrictions 

for a word to be meaningful. 

In addition to indexing rules directly in the dictionary 

entry for a given word, certain rules that apply generally to a 

class of words are indexed in an inheritance hierarchy 

(frequently called an "is-a" hierarchy in semantic network 

notations) so that they can be recorded once at the appropriate 

level of generality. Specifically, each word in the dictionary 

has a property called MARKERS which contains a list of classes of 

which it is a member (or subclass) — i.e., classes with which 

this word has an "is-a" relationship.  Each of these classes also 
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has a dictionary entry that may contain SRULES, NRULES, and 

RRULES. The set of rules used by the interpreter for any given 

phrase is obtained by scanning up these chains of inheritance and 

gathering up the rules that are found. These accesses are quite 

shallow in LUNAR, but would be used more heavily in a less 

limited topic domain. -c ■ 

In situations in which the set of rules does not depend on 

the head of the construction, the rules to be used are taken from 

a global list determined by the value of TYPEFLAG and the type of 

the constituent being interpreted. For example, in interpreting 

the determiner structure of a noun phrase, a global list of 

DRULES is used. 

6.6.1 Rule Trees 

Whether indexed by the head words of constructions or taken 

from global lists, rules to be tried are organized into a tree 

structure that can make rule matching conditional on the success 

or failure of previous rules. A rule tree specifies the order in 

which rules are to be tried and after each rule indicates whether 

a different tree of rules is to be tried next, depending on the 

success or failure of previous rules. The format for a rule tree 

is basically a list of rules (or rule groups — see Multiple 

Matches below) in the order they are to be tried. However, after 

any given element in this list, a new rule tree can be inserted 

to be used if any of the rules preceding it have  succeeded.   If 

- 57 - 



no rules preceding it have succeeded, then the inserted tree is 

skipped and rules continue to be taken from the rules that follow 

it in the list. For example, the tree (Rl R2 {R4 R5) R3 R4 R5) 

indicates that Rl and R2 are to be tried in that order and if 

either of them succeed, then subsequent rules to be tried are R4 

and R5. If neither Rl nor R2 succeed, then the remaining list 

R3, R4, R5 is to be tried next. This example illustrates how a 

rule tree can be used to skip around rules that are to be omitted 

if previous rules have succeeded. 

The most usual cases of rule trees in LUNAR are simple lists 

(i.e., no branching in the tree), and lists of rules with 

inserted empty trees (i.e., the empty list NIL) serving as 

"barriers" to stop the attempted matching of rules once a 

successful rule has been found. 

6.6.2 Multiple Matches 

Since the templates of a rule may match a node in several 

ways, and since several rules may simultaneously match a single 

node, it is necessary to indicate how the interpretation of a 

node is to be constructed in such a case. To provide this 

information, the lists of rules at each level of a rule tree can 

be organized into groups, with each group indicating how (or 

whether) simultaneous matches by different rules are to be 

combined. The format of a rule group is a list of rules (or 

other groups) preceded by an operator  specifying the mode  for 
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combining simultaneous matches. Outside the scopes of rule 

groups, the mode to be used is specified by a default value 

determined by TYPEFLAG and the type of node being interpreted. 

Possible modes are AND (which combines multiple matches with an 

AND — i.e., treats multiple matches as finding different parts 

of a single conjoined meaning), OR (which combines multiple 

matches with an OR), SPLIT (which keeps multiple matches separate 

as semantic ambiguities), and PAIL (which prohibits multiple 

matches — i.e., complains if it finds any). 

To illustrate the behavior of rule groups in rule trees, a 

rule list of the form (A B NIL C (OR D E)) with default mode AND 

indicates that if either of the rules A or B is successful, then 

no further matches are tried (NIL is a barrier); otherwise, rules 

C, D, and E are tried. If both D and E match, then the results 

are OR'ed together, and if C matches together with D or E or 

both, it is AND'ed to the results of the OR group. 

The modes (AND, OR, SPLIT, and FAIL) also apply to multiple 

matches of a single rule. A rule may either specify the mode for 

multiple matches as its first element prior to the list of 

templates, or else it will be governed by the rule group or 

default mode setting at the time it is matched. 

6.7 The Generation of Quantifiers 

As mentioned above, the LUNAR interpretation system 

specifically  provides  for  the generation and appropriate 
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attachment of quantifiers governing the interpretations it 

produces. Central to this capability is the division of the 

interpretation of a constituent into two parts: a SEM that is to 

be inserted into the appropriate slot of the schema for some 

higher constituent, and a QUANT that serves as a "collar" of 

higher operators that is to be passed up to some higher level of 

the tree (around which the collar will be "worn"). A quantifier 

to be attached co some higher constituent is represented as a 

schema, which itself contains a slot into which the 

interpretation of that higher constituent is to be inserted. 

This slot (the "hole" in the collar) is indicated by a marker 

DLT. 

In the unquantified example sentence considered in Section 

6.1 above, the SEM of the subject noun phrase is simp]y S10046, 

and the QUANT is the "empty" collar DLT.  The quantifier schema 

in the second example would be represented as: 

(FOR EVERY X / SAMPLE : T ; DLT). 

6.7.1 Steps in Interpretation 

The general procedure for interpreting a construction is: 

a) Match an interpretation rule against the construction, 

subject to the control of the rule tree. 

b) If it matches, then determine from the right-hand side of 

the rule the set of constituent nodes that need to be 

interpreted. 
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c) Call for the interpretation of all of the constituents 

required, associate their SEMs with the slots in the schema 

that they are to fill, and gather up all of the QUANTs that 

are generated by those interpretations. Call a function 

SORTQUANT to determine the order in which those quantifiers 

(if there are several) should be nested. 

d) Depending on an operator in the right hand side of rule, 

either attach the quantifiers so generated around the 

outside of the current schema, or pass them further up the 

tree as the QUANT of the resulting interpretation. 

e) If multiple matches are to be combined with an AND or OR, it 

is their SEMs that are so combined. Their QUANTs are nested 

one inside the other to produce the QUANT of the result. 

6.7.2 Quantifier Passing Operators 

There are three principal operators for use in the 

right-hand sides of rules to determine the behavior of quantifier 

passing up the tree. These are the operatands PRED, QUOTE, and 

QUANT. The first indicates that tne schema it contains is a 

predication that will accept quantifiers from below; it causes 

any quantifiers that arise from constituent interpretations to be 

attached around the current schema to become part of the 

resulting 3EM. The QUANT associated with such an interpretation 

will be the empty QUANT DLT. The operator QUANT, on the other 

hand, indicates that the schema it contains is itself a 

quantifier schema, and that the result of its instantiation is to 
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be passed up the tree {together with other quantifiers that may 

have resulted from constituent interpretations) as the QUANT of 

the interpretation. The SEM associated with such an 

interpretation is the variable name that is being governed by the 

quantifier. The operator QUOTE is used around a schema that is 

transparent to quantifier passing, so that any quantifiers that 

accumulate from constituent interpretations are simply aggregated 

together and passed on up the tree as the QUANT of the 

interpretation. The SEM of such an interpretation is simply the 

instantiated schema inside the QUOTE. 

In the LUNAR implementation, a function SEMSUB.. which 

substitutes the SEMs of lower interpretations into the right-hand 

sides of rules, maintains a variable QUANT to accumulate the 

nesting of quantifiers returned from the lower interpretations. 

Then, after making the substitutions, the right-hand side of the 

rule is evaluated to determine the SEM-QUANT pair to be returned. 

The result of the evaluation is the desired SEM of the pair, and 

the value of QUANT (which may have been changed as a side effect 

of the evaluation) is the QUANT of the pair. The operators PRED 

and QUANT in the right-hand sides of rules manipulate the 

variable QUANT to grab and insert quantifiers. 

- 62 - 



7. Problems of Interpretation 

7.1 The Order of Quantifier Nesting 

In the general quantification schema: 

(FOR <quant> X / <class> : (p X) ; (q X)) 

both the expre; iions (p X) and (q X) can themselves be quantified 

expressions. Sentences containing several quantified noun 

phrases result in expressions with a nesting of quantifiers 

dominating the interpretation of the main clause. For example, 

the sentence "Every sample contains some element" has a 

representation: 

(FOR EVTRY X / SAMPLE  ; 

(FOR SOME Y / ELEMENT  ; 

(CONTAIN X Y) ) ) . 

Alternative interpretations of a sentence cr .responding to 

different orderings of the quantifiers correspond to different 

relative nestings of the quantifier operö^ions. For example, the 

above sentence has an unlikely interpretation in which there is a 

particular element that is contained in every sample. The 

representation of this interpretation is: 

(FOR SOME Y / ELEMENT  ; 

(FOR EVERY X / SAMPLE  ; 

(CONTAIN X Y) ) ) . 

Thus,  in  interpreting a sentence, it is necessary to decide the 

appropriate order of nesting of quantifier^ to be used.   In 

general,  this orderi  is the left-to-right order of occurrence 
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of the quantifiers in the sentence, but this is not universally 

so (for example, when a function is applied to a quantified noun 

phrase - see Functional Nesting below). In situations where the 

order of quantifiers is not otherwise determined, LUNAR assumes 

the left-to-right order of occurrence in the sentence. 

7.2  Interaction of Negations with Quantifiers 

The construction of an interpretation system that will 

handle sentences containing single instances of a quantification 

or simple negation without quantification is not difficult. What 

is difficult is to make it handle correctly sentences containing 

arbitrary combinations of quantifiers and negatives. The 

interpretation mechanism of LUNAR hu.idles such constructions 

fairly well. Consider the sentence "Every sample does not 

contain silicon". This sentence is potentially ambiguous between 

two interpretations: 

(NOT (FOR EVERY X / SAMPLE ; (CONTAIN X SI02))) 

and 

(FOR EVERY X / SAMPLE ; (NOT (CONTAIN X SI02))). 

The difference lies in the relative scopes of the quantifier  and 

the negative. 

One interpretation of the above sentence is handled in LUNAR 

by the interaction of the rules already presented. The 

interpretation of the PRERULE PR-NEG, discussed in Section 6.5.2, 

has  the  right-hand  side  (PRED  (NOT  (#  0  SRULES))),  whose 
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governing operator indicates that it grabs quantifiers from 

below. The interpretation of the noun phrase "every sample" 

produces the quantifier "collar": 

(FOR EVERY X / SAMPLE : T ; DLT) 

which is passed up as the QUANT together with the SEM X. The 

right-hand side of S:CONTAIN is embedded in the operator QUOTE, 

which is transparent to quantifiers, producing the SEM (CONTAIN X 

SI02) and passing on the same QUANT. The top level rule PR-NEG 

now executes its instantiated right-hand side: 

(FRED (NOT (CONTAIN X SI02))) 

which grabs the quantifier to produce the interpretation: 

(FOR EVERY X / SAMPLE : T ; (NOT (CONTAIN X SI02))). 

The alternative interpretation of the above sentence can be 

obtained by an alternative PRERULE for sentential negatives whose 

right-hand side is: 

(BUILDQ  (NOT #) (PRED (#  0  SRULES))) 

where BUILDQ is an operator whose first argument is a literal 

schema into which  it  inserts  the values of  its  remaining 

arguments.  In this case, the PRED expression produces: 

(FOR EVERY X / SAMPLE : T ; (CONTAIN X SI02)) 

and the BUILDQ produces: 

(NOT (FOR EVERY X / SAMPLE : T ; (CONTAIN X SI02))). 

If these two negative rules both existed in the list 

PRERULES, then the LUNAR interpreter when interpreting a negative 

sentence would  find them  both  and  would  produce  both 
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interpretations. In the case where no quantifier is returned by 

the subordinate SRULES interpretation, then both rules would 

produce the same interpretation and the duplicate could be 

eliminated. In the case where a quantifier is returned, then the 

two interpretations would be different and a genuine ambiguity 

would have been found, resulting in a request by the system to 

the user to indicate which of the two interpretations he 

intended. 

However, if one decides to legislate that only one of the 

two possible scope choices should be perceived by the system, 

then only the corresponding rule for negation should be included 

in the PRERULES list. This is the choice that was taken in the 

demonstration LUNAR system. Since the interpretation of the 

negative operator outside the scope of the quantifier can be 

unambiguously expressed using locutions such as "Not every sample 

contains silicon", LONAR's rules treat sentential negation as 

falling inside any quantifiers (as expressed by the PR-NEG rule 

discussed previously). Rules for interpreting determiners such 

as "not every" can easily be written to produce quantifier 

expressions such as: 

(NOT (FOR EVERY X / <class> ; DLT)) 

to give  interpretations  in which the negative operator  is 

outermost. 
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7.3 Functional Nesting and Quantifier Reversal 

As previously mentioned, an interesting example of 

quantifier nesting occurs when an argument to a function is 

quantified. As an example, consider the flight schedules 

request, "List the departure times from Boston of every American 

Airlines flight that goes from Boston to Chicago." This sentence 

has a bizarre interpretation in which there is one time at which 

every American Airlines flight from Boston to Chicago departs. 

However, the normal interpretation requires taking the 

subordinate quantifier "every flight" and raising it above the 

quantifier of the higher noun phrase "the departure time". Such 

nesting of quantifiers is required when the range of 

quantification of one of them (in this case, the departure times) 

contains a variable governed by the other (in this case, the 

flights). 

In the logical representation of the meaning of such 

sentences, the higher quantifier must be the one that governs the 

variable on which the other depends. This logical dependency is 

exactly the reversal of the "syntactic dependency" in the parse 

tree, where the argument to the function is contained within 

(i.e., "dependent" on) the phrase the function heads. The LUNAR 

system facility for interpreting such constructions automatically 

gets the preferred interpretation, since the quantifiers from 

subordinate constituents are accumulated and nested before the 

quantifier for a given noun phrase is inserted into the 

quantifier collar. 
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To illustrate the process in detail, consider the 

interpretation of the above example. In the processing of the 

constituents of the noun phrase whose head is "departure time", 

the quantifier: 

(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ; DLT) 

is returned from the interpretation of the "flight" noun phrase 

(which gets the SEM X2). The temporary QUANT accumulator in the 

function SEMSUB (discussed in Section 6.7), at this point 

contains the single "empty" quantifier collar DLT. This is now 

modified by substituting the returned quantifier for the DLT, 

resulting in the QUANT accumulator now containing the returned 

quantifier: 

(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ; DLT) 

(with its DLT now marking the "hole" in the collar). 

When all of the subordinate constituents have been 

interpreted, and their SEM's have been inserted into the 

right-hand side schema of the d-rule (for the "departure time" 

noun phrase), the resulting instantiated schema will be: 

(QUANT (FOR THE XI / (DTIME X2 BOSTON) : T ; DLT) ). 

This is then evaluated, again resulting in the DLT in the 

temporary QUANT accumulator being replaced with this new 

quantifier (thus inserting the definite quantification THE inside 

the scope of the universal quantifier EVERY that is already 

there). The result of this interpretation is to return the 

SEM-QUANT pair consisting of the SEM XI and the QUANT: 
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(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ; 

(FOR THE XI / (DTIME X2 BOSTON) : T ;  DLT )). 

The right-hand side for the next higher rule (the one that 

interprets the command "list x") contains a PRED operator, so 

that when its instantiated schema: 

(PRED (PRINTOUT XI)) 

is executed,  it will grab the quantifier collar from below to 

produce the interpretation: 

(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ; 

(FOR THE XI / (DTIME X2 BOSTON) : T ; 

(PRINTOUT XI) )). 

7.4 Relative Clauses 

One of the features of the LUNAR system that makes it 

relatively powerful in the range of questions it can handle is 

its general treatment of relative clause modifiers. This gives 

it a natural ability to handle many questions that would be 

awkward or impossible to pose to many data management systems. 

Relative clauses permit arbitrary predicate restrictions to be 

imposed on the range of quantification of some iterative search. 

The way in which relative clauses are interpreted is quite simple 

within LUNAR's general semantic interpretation framework. It is 

done by a general RRULE R:REL, which is implicitly included in 

the RRULES for any noun phrase. 
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The rule R:REL will match a noun phrase if it finds a 

relative clause structure modifying the phrase. On each such 

relative clause, it will execute a function BELTAG that will find 

the node in the relative clause corresponding to the relative 

pronoun ("which" or "that"), .nd will mark this found node with 

the same variable X that is being used for the noun phrase that 

the relative clause modifies. This pronoun will then behave as 

if it had already been interpreted and assigned that variable as 

its SEM. The semantic interpreter will then be called on the 

relative clause node, just like any other sentence being 

interpreted, and the result will be a predicate with a free 

occurrence of the variable X. This resulting predicate is then 

taken, together with any other RRULE predicates obtained from 

adjectival and prepositional phrase modifiers, to form the 

restriction on the range of quantification of the modified noun 

phrase. 

One consequence of a relative clause being interpreted as a 

subordinate S node (in fact, a consequence of any subordinate S 

node interpretation) is that, since the PRERULES used in 

interpreting the subordinate S node all have PRED operators in 

their right-hand sides, any quantifiers produced by noun phrases 

inside the relative clause will be grabbed by the relative clause 

itself and not passed up to the main clause. This rules out 

interpretations of sentences like "List the samples that contain 

every major element" in anomalous ways such as: 
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(FOR EVERY X / MAJORELT : T ; 

(FOR EVERY Y / SAMPLE : (CONTAIN Y X) ; 

(PRINTOUT Y) )) 

(i.e., "For every major element list the samples that contain 

it") instead of the correct: 

(FOR EVERY Y / SAMPLE : 

(FOR EVERY X / MAJORELT : T ; (CONTAIN Y X)) ; 

(PRINTOUT Y) ) 

Except in certain opaque context situations, this seems to be the 

preferred interpretation. As in other cases, however, although 

LUNAR's interpretation system is capable of producing alternative 

interpretations for some other criteria to choose between, the 

demonstration prototype instead uses rules that determine just 

those interpretations that seem to be most likely in its domain. 

7.5 Other Types of Modifiers 

In addition to relative clauses, there are other kinds of 

constructions in English thai: function as predicates to restrict 

the range of quantification. These include most adjectives and 

prepositional phrases. They are interpreted by RRULES that match 

the appropriate structures in a noun phrase and produce a 

predicate with free variable X (which will be instantiated with 

the variable of quantification for the noun phrase being 

interpreted). I will call such modifiers predicators since they 

function as predicates to restrict the range of quantification. 

Examples of predicators are modifiers like "recent" and "about 
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olivine twinning" in phrases like "recent articles about olivine 

twinninq". The interpretation of this phrase would produce the 

quantifier: 

(FOR GEN X / DOCUMENT : 

(AND (RECENT X) (ABOUT X (OLIVINE TWINNING))) ; DLT ). 

Note that not all adjectives and prepositional phrases are 

interpreted as just described. Many fill special roles 

determined by the head noun, essentially serving as arguments to 

a function. For example, in a noun phrase such as "the silicon 

concentration in S10046", the adjective "silicon" is specifying 

the value of one of the arguments to the function 

"concentration", rather than serving as an independent predicate 

that the concentration must satisfy. (That is, this phrase is not 

equivalent to "the concentration in S10046 which is silicon", 

which doesn't make sense). Similarly, the prepositional phrase 

"in S10046" is filling the same kind of argument role, and is not 

an independent modifier. I will call this class of modifiers 

role fillers. 

In some cases, there are modifiers that could either be 

treated as restricting predicates or as filling argument roles in 

a function, depending on the enumeration function that is being 

used to represent the meaning of the head noun. For example, a 

modifier like "to Chicago" in "flights to Chicago" could either 

be interpreted as an independent predicate (ARRIVE X CHICAGO) 

modifying the  flight, or as an argument to a specialized flight 
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enumeration function FLIGHT-TO which enumerates flights to a 

given destination. In the flight schedules application, the 

former interpretation was taken, although later query 

optimization rules (see Smart Quantifiers, below) were able to 

transform the resulting MRL expression to a form equivalent to 

the latter to gain efficiency. 

In general English, there are cases in which it seems moot 

whether one should treat a given phrase as filling an argument 

role or as a restricting predicate. However, there are also 

clear cases where the head noun is definitely a function and 

cannot stand alone without some argument being either explicitly 

present or inferable from context. In these cases such modifiers 

are clearly role fillers. On the other hand, the diversity of 

possible modifiers makes it unlikely that all adjectives and 

prepositional phrases could be interpretable as role fillers in 

any general or economical fashion. Thus, the distinction between 

predicators and role fillers seems to be necessary. 

There is another use of a modifier that neither fills an 

argument role nor stands as an independent predicate, but rather 

changes the interpretation of the head noun. An example is 

"modal" in "modal olivine analyses". This adjective does not 

describe a kind of olivine, but rather a kind of analysis that is 

different from the normal interpretation one would make of the 

head "analysis" by itself. Such modifiers might be called 

specializers since they  induce a special interpretation on the 
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head noun. Note that these distinctions in types of modification 

refer to the cole a modifier plays in a given construction, not 

to anything inherent in the modifier itself. 

The sentence "List iirdal olivine analyses for lunar samples 

that contain silicon" contains a mixture of the different kinds 

of modifiers. The presence of the specializer adjective "modal" 

blocks the application of the normal NRULE N:ANALYSIS (it has a 

NOT template that checks for it), and it enables a different rule 

N:MODAL-ANALYSIS instead. The adjective "olivine" and the 

prepositional phrase are both interpreted by REFs in the 

right-hand side of this rule to fill argument slots in the 

enumeration function DATALINE. There are no predicators 

modifying "analyses", but there is a potential predicator "lunar" 

modifying "samples" and a restrictive relative clause also 

modifying samples. In LUNAR, the apparently restrictive modifier 

"lunar" modifying a word like "samples" is instead interpreted as 

a specializer that doesn't make a difference, since LUNAR knows 

of no other kind of sample. However, this is clearly not a 

limitation of the formalism. 

The relative clause modifying "samples" is interpreted as 

described above to produce the predicate: 

(CONTAIN X2 SI02). 

The interpretation of the noun phrase "lunar samples that contain 

silicon" thus consists of the SEM X2 and ehe QUANT: 

(FOR GEN X2 / SAMPLE :  (CONTAIN X2 SI02) ; DLT ). 
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This SEM-QUANT pair is returned to the process interpreting the 

noun phrase "modal olivine analyses for ... ", which in turn 

produces a SEM XI and a QUANT: 

(FOR GEN X2 / SAMPLE : (CONTAIN X2 S102) ; 

(FOR GEN XI / (DATALINB X2 OVERALL OLIV) : T ; 

DLT )). 

This is returned to the rule interpreting the main verb "list," 

whose right-hand side produces the SEM (PRINTOUT Xl) with the 

same QUANT as above. This process returns to the PRERULE for 

positive imperative sentences, where the quantifiers are grabbed 

to produce the interpretation: 

(FOR GEN X2 / SAMPLE : (CONTAIN X2 SI02) ; 

(FOR GEN XI / (DATALINE X2 OVERALL OLIV) : T ; 

(PRINTOUT XI) )) . 

7.6 Averages and Quantifiers 

An interesting class of quantifier interaction problems 

occurs with certain operators such as "average", "sum", and 

"number". In a sentence such as "What is the average silicon 

concentration in breccias", it is clear that the generic 

"breccias" is not to be interpreted as a universal quantifier 

dominating the average computation, but rather the average is to 

be performed over the set of breccias. A potential way of 

interpreting such phrases would be to treat average as a 

specializer adjective which, when applied to a noun like 

"concentration", produces a specialized enumeration function that 
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computes the average. This special interpretation rule, would 

then interpret the class being averaged over in a special mode as 

a role filler for one of the arguments to the 

AVERAGE-CONCENTRATION function. However, this approach would 

Jack generality, since it would require a separate interpretation 

rule and a separate AVERAGE-X function for every averageable 

measurement X. Instead, one would like to tre ^ average as a 

general operator that can apply to anything averageable. Doing 

this, and making it interact correctly with various quantifiers 

is handled in the LUNAR system by a mechanism of some elegance 

and generality. I will describe here the interpretation of 

averages; the interpretations of sums and other such operators 

are similar. 

Note that there are two superficial forms in which the 

average operator is used: one is as a simple adjective modifying 

a noun ("the average concentration..."), and one is as a noun 

referring to a function that is explicitly applied to an argument 

("the average of concentrations ..."). LUNAR's grammar 

standardizes this variation by transforming the first kind of 

structure into the second (effectively inserting an "of ... PL" 

into the sentence). As a result, average always occ .rs in 

syntactic tree structures as the head noun of a noun phrase with 

a dependent prepositional phrase whose object has a "NIL ... PL" 

determiner structure and represents the set of quantities tc be 

averaged. 
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In interpreting such noun phrases, the NRULE invoked by a 

head noun "average" or "mean" calls for the interpretation of the 

set being averaged with the special TYPEFLAG SET. This will 

result in that node's being interpreted with a special DRULE 

D:SETOFf which will construct an intensional set representation 

for the set being averaged. The data base function AVERAGE knows 

how to use such an intensional set to enumerate members and 

compute the average. The NRULE for "average" is: 

[N:AVERAGE 

(NP.N (MEM 1 (MEAN AVERAGE))) 

(NP.PP (MEM 2 (QUANTITY))) 

-> (QUOTE (SEQL (AVERAGE X / (# 2 2 SET) ))) ]. 

7.7 Short Scope / Broad Scope Distinctions 

Another interesting aspect of quantifier nesting is a fairly 

well-known distinction between so called short-scope and 

broad-scope interpretation quantifiers. For example, Boh.iert and 

Backer (1967) present an account of the differences between 

"every" and "any" and between "some" and "a" in contexts such as 

the antecedents of if-then statements by giving "any" and "some" 

the broadest possible scope and "every" and "a" the narrowest. 

For example, using the LUNAR MRL notation. 

If any soldier stays home, there is no war 

(FOR EVERY x / soldier ; (IF (home x) 

THEN (not war)) 
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If every soldier stays home, there is no war 

(IF (FOR EVERY x / soldier ; :home x)) 

THEN (not war)) 

If some soldier stays home, there is no war 

(FOR SOME x / soldier ; (IF (home x) 

THEN (not war))) 

If a soldier stays home, there is no war 

(IF (FOR SOME x / soldier ; (home x)) 

THEN (not war)) 

The scope rules of Bohnert and Backer are enforced rules of 

an artificial language that approximates English and are not, 

unfortunately, distinctions that are always followed in ordinary 

English. In ordinary English, only a few such distinctions are 

made consistently, while in other cases the scoping of 

quantifiers appears to be determined by which is most plausible 

(see discussion of Plausibility Evaluation in Section 10.5 ). 

In LUNAR, a slightly different form of this short/broad 

s^ope distinction arose in the interaction of operators like 

average with universal quantifiers. For example, the sentence 

"List the average concentration of silicon in breccias" clearly 

means to average over all breccias, while "List the average 

concentration of silicon in each breccia" clearly means to 

compute a separate average for each breccia. (In general, there 

are multiple measurements to average even for a single sample.) 

The sentences "List the average concentration of silicon in every 
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breccia," and "List the average concentration of silicon in all 

breccias" are less clear, but it seems to me that the average 

over all breccias is slightly preferred in these cases. At any 

rate, the treatment of quantifiers needs to be able to handle the 

fact that there are two possible relative scopings of the average 

operator with universal quantifiers, and the fact that the choice 

is determined at least for the determiner "each" and for the 

"generic" or NIL-PL determiner. 

LUNAR handles these scope distinctions ilor the "average" 

operator by a general mechanism that applies to any operator that 

takes a set as its argument. As discussed above, the right-hand 

side of the N:AVßRAGE rule calls for the interpretation of the 

node representing the set being averaged over with TYPEFLAG SET. 

This causes a DRULE D:SETOF to be used for interpreting that 

node.  The right-hand side of D:SETOF is: 

(SETGEN (SETOF X / (# 0 NRULES) : (# 0 RRULES) )) 

where SETGEN is a function that grabs certain quantifiers coming 

from subordinate interpretations and turns them into UNION 

operations instead. The generic quantifier is grabbed by this 

function and interpreted as a union. However, the quantifier 

EACH is not grabbed by SETGEN but is passed on up as a dominating 

quantifier. Thus, the sentence "What is the average 

concentration of silicon in breccias" becomes: 
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(FOR THE X4 / (SEQL (AVERAGE X5 / 

(UNION X7 / (SEQ TYPECS) : T ; 

(SETOF X6 / (DATALINE X7 OVERALL SI02) : T)))) : T ; 

(PRINTOUT X4) ) 

(i.e.,  the average is computed over the set formed by the union 

over all type C rocks X7 of the sets of measurements of SI02  in 

the  individual XT's).  On the other hand, "What is the average 

concentration of silicon in each breccia" becomes: 

(FOR EACH XI2 / (SEQ TYPECS) : T ; 

(FOR THE X9 / (SEQL (AVERAGE X10 / 

(SETOF Xll / (DATALINE X12 OVERALL SI02) : T ))) : T ; 

(PRINTOUT X9) )) 

(i.e., a separate average is computed for each type C rock X12). 

7.8 Wh Questions 

In addition to simple yes/no questions and imperative 

commands to print the results of computations, LUNAR handles 

several kinds of so-called wh questions. Examples are "what is 

the concentration of silicon in S10046", "which samples contain 

silicon", and "how many samples are there". These fall into two 

classes: those in which an interrogative pronoun stands in the 

place of an entire noun phrase, as in the first example, and 

those in which an interrogative determiner introduces an 

otherwise normal noun phrase. In both cases, the noun phrase 

containing the interrogative word is usually brought to the front 

of th_ sentence from th" position that it might otherwise occupy 
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in normal declarative word order, but this is not always the 

case. 

7.8.1 Interrogative Determiners 

The natural representation of the interrogative determiners 

would seem to be to treat them just like any other determiner and 

represent a sentence such as the second example above as: 

S Q 

NP  DET WHQ 

N  SAMPLE 

NU PL 

AUX TNS PRESENT 

VP  V  CONTAIN 

NP  NPR  SILICON 

The interpretation procedure we have described seems to work 

quite well on this structure using a DRULE that matches the 

interrogative noun phrase and generates the quantifier: 

(FOR EVERY X / (# 0 NRULES) : (AND (# 0 RRÜLES) DLT) ; 

(PRINTOUT X)). 

Note that the DLT in the quantifier (where the interpretation of 

the main clause is to be inserted) is part of the restriction on 

the range, and the quantified operator is a command to print out 

the answer. The structure of the quantifier in this case seems 

somewhat unusual, but the effect is correct and the operation is 

a reasonably natural one given the capabilities of the semantic 

interpreter. 
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However, when we try to apply this kind of analysis to 

conjoined sentences, such as "What samples contain silicon and do 

not contain sodium," the standard kind of deep structure assigned 

by a transformational grammar to conjoined sentences is not 

compatible with this interpretation. The usual reversal of the 

conjunction reduction transformations in a transformational 

grammar would produce a structure something like: 

S AND 

S Q 

NP  DET WHQ 

N  SAMPLE 

NU  PL 

AUX TNS PRESENT 

VP  V  CONTAIN 

NP NPR SILICON 

S  Q 

NEC 

NP  DET  WHQ 

N  SAMPLE 

NU  PL 

AUX TNS PRESENT 

NP NPR SODIUM 

This structure corresponds to the conjunction of the two 

questions "What samples contain silicon" and "What samples do not 

contain sodium", which is the interpretation that it would 

receive  by  the  LUNAR  rules  with  the  above DRULE  for 
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wh-determiners. However, this is not what the original conjoined 

question means; the intended question is asking for samples that 

simultaneously contain silicon and do not contain sodium. 

In order to handle such sentences, it is necessary to 

distinguish some constituent that corresponds to the conjunction 

of the two predicates "contain silicon" and "not contain sodium", 

which is itself a constituent of a higher level "what samples" 

operator. To handle such constructions correctly for both 

conjoined and non-conjoired constructions, LUNAR's ATN grammar of 

English was modified to assign a different structure to 

wh-determiner questions than the one that is assigned to other 

determiners. These sentences are analyzed as a special type of 

sentence, a noun phrase question (NPQ), in which the top level 

structure of the syntactic representation is that of a noun 

phrase, and the matrix sentence occurs as a special kind of 

subsidiary relative clause. For example, the sentence "Which 

samples contain silicon" is represented syntactically as: 
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S  NPQ 

NP  DET  WHICHQ 

N  SAMPLE 

NU  PL 

S  QREL 

NP  DET  WHR 

N  SAMPLE 

NU  PL 

AUX TNS PRESENT 

VP  V  CONTAIN 

NP  DET  NIL 

N  SILICON 

NU  SG 

This structure provides an embedded S node  inside the higher 

level question,  whose  interpretation is a predicate with free 

variable bound xi. the question operator above.  This embedded S 

node can be conjoined freely with other S nodes, while remaining 

under the scope of a single question operator.  In this case, the 

appropriate DRULE (for a wh-determiner in a plural NPQ utterance} 

is simply: 

[D:WHQ-PL 

(NP.DET (AND (MEM  1  WHQ) (EQU  2  PL))) 

-> 

(QUANT(FOR EVERY X / (# 0 NRULES) : 

(# 0 RRULES) ; (PRINTOUT X))) ]. 
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Since the matrix sentence has been inserted as a relative clause 

in the syntactic structure assigned by the grammar, it will be 

interpreted by the RRULE R:REL in the subordinate interpretation 

(# 0 RRULES). A similar rule for interpreting singular noun 

phrases ("which sample contains...") produces a quantifier with 

<quant> = THE, instead of EVERY, thus capturing the 

presupposition that there should be a single answer. 

All of the interrogative determiners, "which", "what", and 

"how many" are treated in the above fashion. The right-hand side 

of the "how many" rule is: 

(FOR THE X / (NUMBER X / (# 0 NRÜLES) : (# 0 RRULES)) ; 

(PRINTOUT X)) 

Here again, the interpretation of the matrix sentence is picked 

up in the call (# 0 RRULES). (The use of the same variable name 

in two different scopes does not cause any logical problems here, 

so no provision was made in LUNAR to create more than one 

variable for a given noun phrase.) 

7.8.2  Interrogative Pronouns 

A general treatment of the interrogative pronouns would 

require modifications of the assigned syntactic structures 

similar to the ones discussed above for interrogative determiners 

in order to handle conjunctions correctly. That is, sentences 

such as "what turns generic quantifiers into set unions and 

passes 'each' quantifiers through to a higher  level,"  seem to 
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require an embeded S node to serve as a conjoined proposition 

inside a single "what" operator. However, it is far more common 

for conjoined questions with interrogative pronouns to be 

interpreted as a conjunction of two separate questions. This is 

especially true for conjoined "what is ..." questions. For 

example, "what is the concentration of silicon in S10046 and the 

concentration of rubidium in S10084" is clearly not asking for a 

single number that happens to be the value of the concentration 

in both cases. 

The LUNAR system contains rules for handling interrogative 

pronouns only in the special case of "what is..." questions. In 

this special case, conjoined questions fall into two classes, 

both of which seem to be handled correctly without special 

provisions in the grammar. In questions where the questioned 

noun phrase contains an explicit relative clause, that clause 

will contain an S node where conjunctions can be made and LUNAR's 

current techniques will treat this as one question with a 

conjoined restriction (e.g., "What is the sample that contains 

less than 15 percent silicon and contains more than 5 percent 

nickel"). On the other hand, when there is no explicit relative 

clause, LUNAR will interpret such questions as a conjunction of 

separate questions (e.g., "what is the concentration of silicon 

in S10046 and the concentration of rubidium in S10084"). 

The  conventional  structure  assigned to  "what  is " 

sentences by a transformational grammar  represents the  surface 
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object as the deep subject, with a deep verb "be" and predicate 

complement corresponding to. the interrogative pronoun "what". 

For example, in LUNAR the question "What is the concentration of 

silicon in S10046" becomes: 

S Q 

NP  DET  THE 

N' CONCENTRATION 

NU  SG 

PP  PREP  OF 

NP  DET  NIL 

N  SILICON 

NU  SG 

PP  PREP  IN 

NP  NPR  S10046 

AUX TNS PRESENT 

VP  V  BE 

NP DET WHQ 

N THING 

NU  SG/PL 

A special SRULE for the verb "be" with  lomplement  "WHQ THING 

SG/PL" handles this case with a right-hand side schema: 

(QUOTE (PRINTOUT (# 1 1))) 

where the REF (#11) refers to the subject noun phrase. 

A somewhat more general treatment of the interrogative 

pronoun "what" would involve a DRULE whose right-hand side was: 
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(FOR EVERY X / THING : DLT ; (PRINTOUT X) ) 

Where the interpretation of the matrix sentence is to be inserted 

as a restriction, on the range of quantification and the overall 

interpretation is a command to print out the values that satisfy 

it. (THING in this case is meant to stand for the universal 

class). One would not want to apply this rule in general to the 

simple "what is ..." questions as above, since it would result 

in an interpretation that was less efficient (i.e., would 

enumerate all possible things and try to filter out the answer 

with an equality predicate). For example, "what is the 

concentration of silicon in S10046" would be interpreted: 

(FOR THE X / (DATALINE S10046 OVERALL SI02) : T ; 

(FOR EVERY Y / THING : (EQUAL X Y) ; 

(PRINTOUT Y) )) 

instead of: 

(FOR THE X / (DATALINE S10046 OVERALL SI02) : T ; 

(PRINTOUT X)) . 

Thus,  one would  still want  to keep the special "what is ..." 

rule and LUNAR would only use the general rule in cases where the 

"what is ..." rule did not apply.  (When the "what is  "  rule 

does apply, it doesn't even call for the interpretation of the 

"what" noun phrase that it has matched, so the general rule would 

not be invoked.) 

Alternatively, one could use the general rule for all cases 

and then perform post-interpretive query optimization (see 

Section 8 below)  to transform instances of  filtering with 
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equality predicates to a more efficient form that eliminates the 

unnecessary quantification. 

7.8.3 Other Kinds of Wh Questions 

^ote that LUNAR interprets "what is ..." questions only as a 

request for the value of some function or the result of some 

search or computation, and not as requesting a definition or 

explanation. For example if LUNAR is asked "what is a sample" it 

will respond with an example (e.g., "S10046"), and if it is asked 

"what is S10046", it will respond "310046". LUNAR is not aware 

of the internal structure of the defining procedures for its 

terms, nor does it have any intensional description of what 

samples are, so it has no way of answering the first type of 

question. There is no difficulty, however, in defining another 

rule for "what is ..." to apply to proper nouns and produce an 

interpretation with an operator NAME-CLASS (instead of PRINTOUT) 

that will print the class of an individual instead of its name. 

"What is S10046" would then be interprated as (NAMC-CLASS 

S10046), which would answer "a sample". 

Getting uUNAR to say something more complete about how 

S10046 differs from other samples, such -^s "a sample that 

contains a large olivine inclusion", is another matter. Amor 

other problems, this would begin to tread into *:he area of 

pragmatics, where considerations such as the user's probable 

intent in asking the question and appropriateness of response  in 
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a particular context, as well as semantic considerations of 

meaning, become an issue (see Section 11.5). All of this is well 

beyond the scope of systems like LUNAR. However, decidina what 

semantic representation to assign as the intent of .ach a 

question is not nearly as difficult as deciding what the defining 

procedure for some of the possible intents should be. LUNAR1s 

mechanisms are suitable for generating the alternative possible 

semantic representations. 

8. Post-Interpretive Processing 

As mentioned before, the LUNAR meaning representation 

language has been designed both as a representation of executable 

procedures and as a symbolic structure that can be manipulated as 

an intensional object. Although every expression in the LUNAR 

MRL has an explicit semantics defined by its straightforward 

execution as a procedure, that procedure is frequently not the 

best one to execute to answer a question or carry out a command. 

For example, in the flight schedules application, the literal 

interpretation of the expression: 

(FOR EVERY X / FLIGHT : (CONNECT X BOSTON CHICAGO) ; 

(PRINTOUT X)) 

is to enumerate all of the flights known to the system, filtering 

out the ones that don't go from Boston to Chicago, and printing 

out the rest. However, in a reasonable data base for this 

domain, there would be various indexes into the flights, breaking 

them down by destination city and city of origin.   If  such  an 
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index exists, then a specialized enumeration function 

FLIGHT-FROM-TO could be defined for using the index to enumerate 

only flights from a given city to another. In this case, the 

above request could be represented: 

(FOR EVERY X / (FLIGHT-FROM-TO BOSTON CHICAGO) : T ; 

(PRINTOUT X)), 

which would De much more efficient to execute. 

Given the possibility of using specialized ^numeration 

functions, one can then either write special interpretation rules 

to use this more specific enumeration function in the cases where 

it is appropriate, or one can perform some intensional 

manipulations on the interpretation assigned by the original 

rules to transform it into an equivalent expression that is more 

efficient to execute. The first approach was used in the 

original flight schedules system. An approach similar to the 

latter was used in the grammar information system, and to some 

extent in LUNAR, by using "smart" quantifiers (see below). 

Recently, Reiter (1977) has presented a systematic treatment of a 

class of query optimizations in systems like LUNAR that interface 

to a relational data base. 

Other post-interpretive operations on the MRL expression are 

performed in LUNAR to analyze the quantifiers and make entries in 

a discourse directory for potential antecedents of anaphoric 

expressions. Subsequently, definite descriptions and pronouns 

can make reference to this directory to select antecedents.  I 
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will not go into the treatment of anaphoric expressions in this 

paper other than to say that the search for the antecedent is 

invoked by an operator ANTEQUANT in the right hand side of the 

DRULES that interpret anaphoric noun phrases. In general, this 

results in the generation of a quantifier, usually a copy of the 

one that was associated with the antecedent. Occasionally, the 

antecedent will itself fall in the scope of a higher quantifier 

on which it depends, in which case such governing quantifiers 

will also be copied and incorporated into the current 

interpretation. Some of the characteristics of LUNAR's treatment 

of anaphora are covered in Nash-Webber (1976) and Woods et al. 

(1972). 

8.1 Smart Quantifiers 

In the grammar information system, a notion of "smart" 

quantifier was introduced, which rather than blindly executing 

the quantification procedure obtained from semantic 

interpretation, made an effort to determine if there was a more 

specific enumeration function that could be used to obtain an 

equivalent answer. In general, the restriction on the range of 

quantification determines a subclass of the class over which 

quantification is ranging. If one can find a specialized 

enumeration function that enumerates a subclass of the original 

class but is still guaranteed to include any of the members that 

would have passed the original restriction, then that subclass 

enumeration function can be used in place of the original. 
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In the grammar information system, tables of specialized 

enumeration functions, together with sufficient conditions for 

their use, were stored associated with each basic clasii over 

which quantification could range. A resolution theorem prover a 

la Robinson (1965) was then used to determine whether the 

restriction of a given quantification implied one of the 

sufficient renditions for a more specialized class enumeration 

function. If so, the more specialized function was used. Unlike 

most applications of resolution theorem proving, the inferences 

required in this case are all very short, and since the purpose 

of the inference is to improve tha efficiency of the 

quantification, a natural bound can be set on the amount of time 

the theorem prover should spend before the attempt should be 

given up and the original enumeration function used. 

In general, sufficiency conditions for specialized 

enumeration functions are parameterized with open variables to be 

instantiated during the proof of the sufficiency condition and 

then used as parameters for the specialized enumeration function. 

The resolution theorem proving strategies have a nice feature of 

providing such instantiated parameters as a result of their 

proofs; e.g., by using a mechanism such as the "answer" 

predicate of Green (1969) . 

Smart quantifiers were intended in general to be capable of 

other operations, such as estimating the cost of a computation 

from the sizes of the classes being quantified over and the depth 
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of quantifier nesting (and warning the user if the cost might be 

xcessive), saving the results of inner loop quantifications 

re they could be reused, interchanging the scopes of 

quantification to bring things that don't change outside a loop, 

etc. The capabilities actually implemented, however, are much 

more limited. 

e 

whe 

8.1.1 Path Enumeration in ATN's 

Smart quantifiers were essential for efficiency in the 

grammar information system's enumeration of paths through its 

ATN. The system contained a variety of specialized path 

enumeration functions: one for paths between a given pair of 

states, one for paths leaving a given state, one for paths 

arriving at a given state, one for paths irrespective of end 

states, and versions of all of these for looping and non-looping 

paths. Each specialized enumeration function was associated with 

a parameterized sufficiency condition for its use. For example, 

the function for non-looping paths leaving a given state had a 

table entry equivalent to: 

(PATHSEQ Y T)  if (AND (NOLOOP X) (START X Y)) 

«here X refers to the variable of the class being quantified 

over, Y is a parameter to be instantiated, and (PATHSEQ Y T)  is 

the enumeration function to be used if the sufficiency condition 

is satisfied. 
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Thus, if a quantification over paths had a restriction such 

as (AND (CONNECT-PATH X S/ S/VP, (NOLOOP X)) and the theorem 

prover had axioms such as (CONNECT-PATH X Y Z) => (START X Y), 

then the theorem prover would infer that the sufficiency 

condition (AND (NOLOOP X) (START X Y)) is satisfied with Y equal 

to S/ and therefore the specialized enumeration function 

(PATHSEQ S/ T)  can be used. 

Notice that the order of conjuncts in the restriction is 

irrelevant, and the restriction need only imply the sufficiency 

condition not match it exactly. In the above, there are still 

conditions in the restriction that will have to be checked as a 

filter on the output of the specialized enumeration function to 

make sure that the end of the path is at state S/VP. In general, 

it would be nice to remove from the restriction that portion that 

is already guaranteed to be satisfied by the new enumeration 

function, but that is easier said than done. In the grammar 

information system the original restriction was kept and used 

unchanged. 

8.1.2 Document Retrieval in LUNAR 

In the LUNAR system, a special case of smart quantifiers, 

without a general theorem prover, is used to handle enumeration 

of documents about a topic. When the FOR function determines 

that the class of objects being enumerated is DOCUMENT, it looks 

for a predicate (ABOUT X TOPIC) in the restriction  (possibly  in 
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the scope of a conjunction but not under a negative). It then 

uses this topic as a parameter to an inverted file accessing 

routine which retrieves documents about a given topic. 

8.2 Printing Quantifier Dependencies 

The LUNAR MRL permits the natural expression of fairly 

complex requests such as "What is the average aluminum 

concentration in each of the type c rocks?". The interpretation 

of ♦.his request would be: 

(FOR EVERY X / (SEQ TYPECS) : T ; 

(FOR THE Y / (AVERAGE Z / (DATALINE X OVERALL AL203)) : T ; 

(PRINTOUT Y) )). 

If the PRINTOUT command does nothing more than print out a 

representation for the value of its argument, the result of this 

command will be nothing more than a list of numbers, with no 

indication of which number goes with whicn of the rocks. 

Needless to say, this is usually not what the user expected. 

For special classes of objects, say concentrations, a 

pseudo-solution to this problem would be to adopt a strategy of 

always printing out all conceivable dependencies for that object 

(e.g., the sample, phase, and element associated with that 

concer'-.ration). This would be sufficient to indicate what 

dependencies each answer had on values of arguments, but would 

take no account of which of those dependencies was currently 

varying and which were fixed by the request.  Moreover, this 
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approach would not work in the above case, since the objects 

being printed are the results of a general purpose numerical 

averaging function, which does not necessarily h^ve any 

dependencies., depending on what is being averaged and what 

classes are being averaged over. 

LUNAR contains a general solution to this quantifier 

dependency problem that is achieved by making the PRINTOUT 

command an opaque operator that processes its argument in a 

semi-intelligent way as an intensional object. PRINTOUT examines 

its argument for the occurrence of free variables. If the 

argument is itself a variable, it looks up the corresponding 

governing quantifier in the discourse directory (the same 

directory used for antecedents of anaphoric expressions) and 

checks that quantifier for occurrences of free variables. If it 

finds free variables in either place, it means that the object it 

is about to print has a dependency on those variables. In that 

case it prints out the current values of those variables along 

with the value that it is about to print out. In the case of the 

example above, the variable Y has the corresponding class 

(DATALINE X OVERALL SI02) with restriction T, and is thus 

dependent on the variable X. X is the variable that is ranging 

over the rocks. As a result, the printout from this request 

would look like: 

- 97 - 

u,     - ■■- —- 



510018 12.48 PCT 

510019 12.80 PCT 

S10021  12.82 PCT 

This mechanism works for arbitrary nesting of any number of 

quantifiers. 

9. An Example 

As an example of the overall operation of the semantic 

interpreter to review and illustrate the preceding discussions, 

consider the sentence: 

"What is the average modal plagioclase concentration 

for lunar samples that contain rubidium?" 

This sentence has the following syntactic structure assigned  to 

it by the grammar: 
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S Q 
NP  DET  THE 

N  AVERAGE 
NU  SG 
PP  PREP  OF 

NP  DET  NIL 
&DJ  MODAL 
ADJ  N  PLAGIOCLÄSE 
N  CONCENTRATION 
NU  PL 
PP  PREP  FOR 

NP  DET  NIL 
ADJ  LUNAR 
N  SAMPLE 
NU  PL 
S  REL 

NP  DET  WHR 
N  SAMPLE 
NU  PL 

AUX  TNS  PRESENT 
VP  V  CONTAIN 

NP  DET  NIL 
N  RUBIDIUM 
NU  SG 

AUX  TNS  PRESENT 
VP  V  BE 
NP DET WHQ 

N THING 
NU  SG/PL 

Semantic interpretation begins with a call to INTERP looking 

at the topmost S node with TYPEFLAG NIL. The function RULES 

looking at an S node with TYPEFLAG NIL returns the global rule 

tree PRERULES. These rules look for such things as yes/no 

question markers, sentential negations, etc. In this case, a 

rule PR6 matches and right-hand side, (PRED (# 0 SRÜLES)), 

specifies a call to INTERP for the same node with TYPEFLAG 

SRULES. 

The function RULES looking at the S node with TYPEFLAG 

S. JLES returns a rule tree which  it gets from the dictionary 
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entry for  the head of the sentence (the verb BE), and in this 

case a rule S:BE-WHAT matches.  Its right-hand side is: 

(PRED (PRINTOUT (# 1 1))) 

specifying a schema into which the interpretation of the subject 

noun phrase is to be inserted. 

The semantic interpreter now begins to look at the subject 

noun phrase with TYPEPLAG Nl'i. In this case, ROLES is smart 

enough to check the determiner THE and return the rule tree: 

(D:THE-SG2 NIL D:THE-SG NIL D:THE-PL) 

of which, the rule D:THE-SG matches successfully.  The right-hand 

side of this rule is: 

(QUANT (FOR THE X / (# 0 NRULES) : (# 0 RRULES) ; DLT)) 

which specifies that a quantifier  is to be constructed by 

substituting in the indicated places the interpretations of  this 

same node with TYPEFLAGs NRULES and RRULES. 

The call to interpret the subject noun phrase with TYPEFLAG 

NRULES finds a list of NRULES in the dictionary entry for the 

word "average", consisting of the single rule N:AVERAGE. This 

rule, which we presented previously in Section 7.6, has a 

right-hand side: 

(QUOTE (SEQL (AVERAGE X / (# 1 1 SET) ))) 

which calls  for  the interpretation of the "concentration" noun 

phrase with TYPEFLAG SET.  The call to  interpret  the  "average" 

node with TYPEFLAG RRULES, which will be done later, will result 

in the empty restriction T. 
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The call to interpret the "concentration" noun phrase with 

TYPEFLAG SET uses a list of rules (DrSETOF NIL D:NOT-SET) where 

DtSETOF, which has been discussed previously in Section 7.7, 

checks for a determiner and number consistent with a set 

interpretation (i.e., determiner THE or NIL and number PL) and 

D:NOT-SET will match anything else. In this case, D:SETOF 

matches, with right-hand side: 

(SETGEN (SETOF X / (# 0 NRULES) : (# 0 RRULES) )) 

and calls for the interpretation of the same node with TYPEFLAGs 

NRULES and RRULES. The call with NRULES finds a matching rule 

N:MODAL-CONC after failing to .natch N:CONCENTRATION because of 

the presence of the adjective MODAL, which is rejected by a 

negated template. N:MODAL-CONC is used to interpret modal 

concentrations of minerals in samples as a whole, and has the 

form: 

[N:MODAL-CONC 

(NP.N (MEM 1 (CONCENTRATION))) 

(OR (NP.PP (MEM 2 (SAMPLE))) 

(NP.PP.PP (MEM 2 (SAMPLE))) 

(DEFAULT (2 NP (DET EVERY) 

(N SAMPLE) 

(NU SG)))) 

(OR (NP.PP (MEM 2 (PHASE MINERAL ELEMENT OXIDE ISOTOPE))) 

(NP.ADJ#2 (MEM 2 (PHASE MINERAL ELEMENT OXIDE ISOTOPE)))) 

->  (QUOTE (DATALINE (# 2 2) OVERALL (#32)))  ]. 
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(DEFAULT is a special kind of template that always succeeds and 

that makes explicit bindings for use in the right-hand side. — 

in the above case, if the "concentration"  noun phrase had not 

mentioned a sample, then the default "every sampl»." would be 

assumed.) 

N:MODAL-CONC in turn calls for the interpretations of the 

"sample" noun phrase and he constituent "rubidium". In 

interpreting the "sample" noun phrase, it again goes through the 

initial cycle of DRULES selected by TYPEFLAG NIL looking at a 

noun phrase, in this case finding a matching rule DrNIL whose 

right-hand side is: 

(QUANT (FOR GEN X / (# 0 NRULES) : (# 0 RRÜLES) ; DLT )) 

This in turn invokes an NRULES interpretation of the same phrase 

which uses the rule tree (N:TYPEA N:TYPEB N:TYPEC N:TYPED NIL 

N:SAMPLE) that looks first for any of the specific kinds of 

samples that might be referred to, and failing any of these, 

tries the general rule NtSAMPLE. N:SAMPLE checks for the head 

"sanple" with an optional adjective "lunar" or the complete 

phrase "lunar material" and has a right-hand side: 

(QUOTE (SEQ SAMPLES)) 

where SEQ  is  the general enumeration function for known lists, 

and SAMPLES is a list of all the samples in the data bar.e. 

The RRULES interpretation uses ehe rule tree ((AND 

R:SAMPLE-WITH R:SAMPLE-WITH-COMP R:QREL R:REL K:PP R:ADJ)), which 

contains  a single  AND group of rules, all of which are to be 
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tried and the results of any successful matches conjoined. The 

rule R:REL matches the relative clause, tagging the relative 

pronoun with the variable of interpretation X13 and then calling 

for the interpretation of the relative clause via the right-hand 

side: 

(PRED (# 1 1)). 

The interpretation of the relative clause, like that of the 

main clause begins with a set of PRERULES, of which a rule PR6 

matches with right-hand side: 

(PRED (# 0 SRULES)). 

This again calls for the interpretation of the same node with 

TYPEFLAG SRULES. This intr pretation finds the rule S:CONTAIN 

(presented earlier in Section 6), whose right-hand side calls for 

the interpretation of its subject noun phrase (which it finds 

already interpreted with the variable of quantification from 

above) and its object noun phrase "rubidium". The latter is 

interpreted by a rule D:MASS, whos> right-hand side looks up the 

word "rubidium" in the dictionary to get its standard data base 

representation RB (from a property name TABFORM) and produces the 

interpretation (QUOTE RB). As a SEM-QUANT pair, this is: 

((QUOTE RB) DLT). 

This interpretation, together with that of the relative 

pronoun is returned to the process interpreting the "contain" 

clause, where they p-oduce (after substitution and right-hand 

side evaluation) the SF -QUANT pair; 
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((CONTAIN X13 (QUOTE RB)) DLT). 

This same SfcM-QUANT pair is return unchanged by the R:REL rule 

and since that is the only matching RRULE, no conjoining needs to 

be done to obtain the result of the RRULSS interpretation of the 

"sample" noun phrase. Inserting this and the NRULES 

interpretation into the right-hand side of D:NILr and executing, 

produces the SEM-QUANT pair: 

(X13 (FOR GEN X13 / (SEQ SAMPLES) : 

(CONTAIN X13 (QUOTE RB)) ; DLT )) 

where the right-hand side evaluation of the QUANT operator has 

embedded the quantifier in the QUANT accumulator and returned the 

SEM XI3. 

We now return to the NRULES interpretation of the 

"concentration" noun phrase, whose right-hand side called for the 

above interpretation and now calls for the interpretation of 

"plagioclase". Again, the D:MASS rule applies, looking up the 

TABPORM of the wcf in the dictionary and resulting in the 

SEM-QUANT pair: 

' (QUOT6" fLAG) DLT) . 

The substitution of these  two into the right-hand side of the 

rule N:MODAL-CONC (and evaluating) produces the SEM-QUANT pair: 

((DATALINE X13 OVERALL (QUOTE PLAG)) 

(FOR GEN X13 / (SEQ SAMPLES) : 

(CONTAIN X13 (QUOTE RB)) ; DLT )) 

where the quantifier from below is still being passed up. 
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The RRÜLES interpretation of the "concentration" noun phrase 

produces T, since there are no predicating modifiers, and the 

insertion of these two into the right-hand side of the rule 

DtSETOF produces: 

(SETGEN (SETOF X12 / {DATALINE X13 OVERALL (QUOTE PLAG)) : T )) 

while the quantifier accumulator QUANT contains the collars 

(FOR GEN X13 / (SEQ SAMPLES) : (CONTAIN X13 (QUOTE RB)) ; DLT ) 

The execution of the function SETGEN grabs the generic quantifier 

from the register QUANT, leaving QUANT set to DLT, and produces 

the SEM: 

(UNION X13 / (SEQ SAMPLES) : (CONTAIN X13 (QUOTE RB)) ; 

(SETOF X12 / (DATALINE X13 OVERALL (QUOTE PLAG)) : T )). 

The quantification over samples has now been turned into a union 

of sets of data lines over a set of samples. 

The resulting SEM and QUANT are returned to the process that 

is interpreting the "average" phrase, where their insertion into 

the  right-hand side of  the  rule N:AVERAGE and  subsequent 

evaluation yields the SEM-QUANT pair: 

((SEQL (AVERAGE Xll / (UNION X13 / 

(SEQ SAMPLES) : (CONTAIN X13 (QUOTE RB)) ; 

(SETOF X12 / (DATALINE X13 OVERALL (QUOTE PLAG)) : T )))) 

DLT) . 

Interpretation of the "average" phrase with TYPEFLAG RRULES 

produces the SEM-QUANT pair (T DLT) , and the insertion of '-.his 

and the above into the right-hand side of the DRULE D:THE-SG and 

evaluating yields the SEM-QUANT pair: 

- 105 - 



(Xll (FOR THE Xll / (SEQL (AVERAGE Xll / (UNION X13 / 

(SEQ SAMPLES) : (CONTAIN X13 (QUOTE RB)) ; 

(SETOF X12 / (DATALINE X13 OVERALL (QUOTE PLAG)) : T)))) 

: T ; DLT)) . 

This is returned to the SRULE S:BE-WHAT where the SEM Xll is 

embedded in the right-hand side to produce: 

(PRED (PRINTOUT Xll)). 

Evaluating this expression grabs the quantifier to produce 

the new SEM, which the next higher rule, PR6, passes on unchanged 

as the final interpretation: 

(FOR THE Xll / (SEQL (AVERAGE Xll / (UNION X13 / 

(SEQ SAMPLES) : (CONTAIN X13 (QUOTE RB)) ; 

(SETOF S12 / (DATALINE X13 OVERALL (QUOTE PLAG)) : T)))) 

: T ; (PRINTOUT Xll)). 

10. Loose Ends, Problems and Future Directions 

The techniques that I have described make a good start in 

handling the semantic interpretation of quantification in natural 

English — especially in the interaction of quantifiers with each 

other, with negatives, and with operators like "average". 

However, problems remain. Some reflect LUNAR's status as an 

intermediate benchmark in an intended ongoing project. Others 

reflect the presence of some difficult problems that LUNAR would 

eventually have had to come up against.  In the remaining 
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sections, I will discuss some of the limitations of LUNAR's 

techniques, problems left unfaced, and trends and directions for 

future work in this area. 

10.1 Approximate Solutions 

One characteristic of some of the techniques used in LUNAR 

and many other systems is that they are only approximate 

solutions. A good example of an approximate solution to a 

problem is illustrated by LUNAR"s use of the head word of a 

constituent as the sole source of features for the testing of 

semantic conditions in the left-hand sides of rules. To be 

generally adequate, it seems that semantic tests should be 

applied to the interpretation of a phrase, not just its syntactic 

structure (and especially not just its head). Some of the 

problems with the approximate approach became apparent when LUNAR 

first began to handle conjoined phrases. Fo;: example, it's 

simple semantic tests were no longer adequate when, instead of a 

single noun phrase of type X, a conjunction was encountered. 

This was due to a prior decision that the hoad of a conjoined 

phrase should be the conjunction operator (e.g., AND), since a 

constituent should have a unique head and there is no other 

unique candidate in a coordinate conjunction. However, since a 

conjunction operator would never have the semantic features 

expected by a rule, selectional restrictions applied to the head 

would not work. 
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A possible solution to this problem is to define the 

semantic features of a conjoined phrase to be the intersection of 

the features of its individual conjuncts. This has the 

attractive feature of enforcing some of the well-known 

parallelism constraints on conjunctions in English (i.e., 

conjoined constituents should be of like kind or similar in some 

respect). However, this solution is again only an approximation 

of what is required to fully model parallelism constraints. For 

example, it doesn't consider factors of size or complexity of the 

conjuncts. Further experience with such a model will almost 

certainly uncover still more problems. 

Another example where obtaininij the features from the head 

alone is inadequate involves noun phrases in which an adjective 

modifying the head contributes essential information (e.g., 

obtaining a feature +TOY from the phrase "toy gun"). In general, 

semantic selectional restrictions seem to require intensional 

models of potential referents rather than just syntactic 

structures. (In fact, their applying to such models is really 

the only justification for calling such constraints "semantic".) 

In my paper "Meaning and Machines" (Woods, 1973c), I discuss more 

fully the necessity for invoking models of semantic reference for 

correctly dealing with such restrictions. 

More seriously, the whole treatment of selectional 

restrictions as prerequisites for meaningfulness is not quite 

correct, and the details of making selectional restrictions work 
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correctly in various contexts such as modal sentences (especially 

assertions of impossibility) are far from worked out. For 

example, there's nothing wrong with the assertion "Rocks cannot 

love people" even if there seems to be something odd about "the 

rock loved John." Again, Woods (1973c) discusses such problems 

more fully. 

10.2 Modifier Placement 

Another area in which LUNAR's solution to a problem was less 

than general is in the interpretation of modifiers that are 

syntactically ambiguous as to what they modify. For example, in 

the sentence "Give me the average analysis of breccias for all 

major elements," there are at least three syntactic possibilities 

for the modifier "for all major elements" (it can modify the 

phrases headed by "breccias", "analysis", or "give"). In this 

case, our understanding of the semantics of the situation tells 

us that it modifies "analysis", since one can analyze a sample 

for an element, while "breccias for all major elements" doesn't 

make sense. Without a semantic understanding of the situation, 

the computer has no criteria to select which of these three cases 

to use. 

One of the roles that one might like the syntactic component 

to play in a language understanding system would be to make the 

appropriate grouping of a movable modifier with the phrase it 

modifies, so that the subsequent semantic  interpretation rules 
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will find the constituent where they would like it to be. 

However, since there is not always enough information available 

to the parser to make this decision on the basis of syntactic 

information alone, this would mean requiring the parser to 

generate all of the alternatives, from which the semantic 

interpreter would then make the choice. This in turn would mean 

that the interpreter would have to spend effort trying to 

interpret a wrong parsing, only to have to throw it away and 

start over again on a new one. It would be better for the parser 

to call upon semantic knowledge earlier in the process, while it 

is still trying to enumerate the alternative possible locations 

for the movable modifier. The question it would ask at this 

point would simply be whether a given phrase can take the kind of 

modifier in question, rather than a complete attempt to interpret 

each possibility. 

10.2.1 Selective Modifier Placement 

In general, the ATN grammars used in LUNAR tend to minimize 

the amount of unnecessary case analysis of alternative possible 

parsings by keeping common parts of different alternatives merged 

until the point in the sentence is reached where they make 

different predictions. At such a point, the choice between 

alternatives is frequently determined by having only one of their 

predictions satisfied. However, one place where this kind of 

factoring does not significantly constrain the branching of 

possibilities is at the end of a constituent where the grammar 
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permits optional additional modifiers (e.g., prepositional phrase 

modifiers at the end of a noun phrase, as in the above example). 

Here, the alternatives of continuing to pick up modifiers at the 

same level and popping to a higher level have to be considered 

separately. If when the alternative of popping a constituent is 

chosen and the construction at the higher level can also take the 

same kind of modifier as the lower constituent, then a real 

ambiguity will result unless some restriction makes the modifier 

compatible with only one of the alternatives. 

The LUNAR parser contains a facility called "selective 

modifier placement" for dealing with such "movable modifiers." 

When this facility is enabled, each time a movable modifier is 

constructed, the parser returns to the level that pushed for it 

to see if the configuration that caused the push could also have 

popped to a higher level and, if so, whether that higher level 

could also have pushed for the same thing. It repeats this 

process until it has gathered up all of the levels that could 

possibly (syntactically) use the modifier. It then asks semantic 

questions to rank order the possibilities, choosing the most 

likely one, and generating alternatives for the others. In a 

classic example, "I saw the man in the park with a telescope", 

the phrase "in the park" could modify either "man" or "see", and 

"with a telescope" could modify either "park", "man", or "see" 

(with the possible exception, depending on your dialect, of 

forbidding "with a telescope" from modifying "man" if "in the 

park" is interpreted as modifying "see").  The selective modifier 
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placement facility chooses the interpretation "see with a 

telescope" and "man in the park" when given information that one 

can see with an optical instrument. Woods {1973a) describes 

this facility for selective modifier placement more fully. 

10.2.2 Using Misplaced Modifiers 

Although the selective modifier placement facility in 

LUNAR's parser is probably very close to the right solution to 

this problem of movable modifiers, the mechanism as implemented 

requires the semantic information that it uses to be organized in 

a slightly different form from that used in the semantic 

interpretation rules. Rather than duplicate the information, 

LUNAR's demonstration prototype used a different approach. In 

this system, the grammar determined an initial placement of such 

modifiers based solely on what prepositions a given head noun 

could take as modifiers. Subject to this constraint, the movable 

modifier was parsed as modifying the nearest preceding 

constituent (i.e., as deep in the parse tree as preraitted by the 

constraint). Subsequently during interpretation, if the semantic 

interpreter failed to find a needed constituent at the level it 

wanted it, it would look for it attached to more deeply embedded 

levels in the tree. 

If this procedure for looking for misplaced modifiers had 

been handled by a general mechanism for looking for misplaced 

constituents  subject  to appropriate syntactic and  semantic 
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guidance, it would provide an alternative approach of comparable 

generality to selective modifier placement, raising an 

interesting set of questions as to the relative advantages of the 

two approaches. In the demonstration prototype, however, it was 

handled by the simple expedient of using disjunctive templates in 

the rules to look for a constituent in each of the places where 

it might occur. Each rule thus had to be individually tailored 

to look for its needed constituents wherever they might occur. 

Problems were also present in maxing sure that all modifiers were 

used by some rule and avoiding duplicate use of the same modifier 

more than once. 

A number of such decisions were made in LUNAR for the 

expedient of getting it working, and are not necessarily of 

theoretical interest. This particular one is mentioned here 

because of its suggestion of a possible way to handle a problem, 

and also to illustrate the difference between solving a problem 

in general and patching a system up to handle a few cases. 

10.3 Multiple Uses of Constituents 

Alluded to above in the discussion of LUNAR's method of 

looking for misplaced modifiers was the potential for several 

different rules to use the same constituent for different 

purposes. In general, one expects a given modifier to have only 

one function in a sentence. However, this is not always the 

case.  For example,  an  interesting characteristic  of  the 
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"average" operator is the special use of a prepositional phrase 

with the preposition "over", which usurps one of the arguments of 

the function being averaged. Specifically, in "the average 

concentration of silicon over the breccias", the prepositional 

phrase "over the breccias" is clearly an argument to the average 

function, specifying the class of objects over which the average 

is to be computed. However, it is also redundantly specifying 

the variable that will fill the constituent slot of the 

concentration schema, even though it does not have any of the 

prepositions that would normally specify this slot. The semantic 

interpretation framework that the LUNAR system embodies does not 

anticipate the simultaneous use of a constituent as a part of two 

different operators in this fashion (although the implemented 

mechanism does not forbid it). 

The rules in the implemented LUNAR system deal with this 

problem (as opposed to solving it) by permitting the 

prepositional phrase with "over" to modify concentration rather 

than average. This choice was made because the average operator 

is interpretable without a specific "over" modifier, whereas the 

concentration is not interpretable without a constituent whose 

concentration is being measured. However, this "solution" leaves 

us without any constraint that "ever" can only occur with 

averages. Consequently, phrases such as "the concentration of 

silicon over S10046" would be acceptable. Such lack of 

constraint is generally not a serious problem in very restricted 

topic domains and with relatively simple sentences, because users 
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are unlikely to use one of the unacceptable constructions. 

However, as the complexity of the language increases, especially 

with the introduction of constructions such as reduced relative 

claus.J and conjunction reduction, the possibility increases that 

some of these unacceptable sequences may be posed as partial 

parsings of an otherwise acceptable sentence, and can either 

result in unintended parsings or long excursions into spurious 

garden path interpretations. 

This kind of ad hoc "solution" to the "average...over..." 

problem is typical of the compromises made in many natural 

language svstems, and is brought up here to illustrate the wrong 

way to attack a problem. It contrasts strongly with the kinds of 

general techniques that typify LUNAR's solutions to other 

problems. 

10.4 Ellipsis 

Possibly the correct solution to the problem of "average  

over..." is one that handles a general class of ellipsis — those 

cases where an argument is omitted because it can be inferred 

from information available elsewhere in a sentence. In this 

account, the "over" phrase would be an argument to "average" and 

the subordinate "concentration" phrase would have an ellipsed 

specification of the constituent being measured. 

A similar problem with ellipsis occurs in the flight 

schedules context, where sentences such as: 
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List the departure time from Boston of every TWA 

flight to Chicago. 

would be interpreted literally as asking for the Boston departure 

times of all TWA flights that go to Chicago, regardless of 

whether they even go through Boston. To express the intended 

request without ellipsis, the user would have to say: 

List the departure time from Boston of every TWA flight 

from Boston to Chicago. 

As I pointed out in my thesis (Woods, 1967), the information 

in the semantic rules provides the necessary information for the 

first step in treating such ellipsis — the recognition that 

something is missing. Capitalizing on this, however, requires a 

rule-matching component that is able to find and remember the 

closest matching rule when no rule matches fully, and to provide 

specifications of the missing pieces to be used by some search 

routine that tries to recover the ellipsis. This latter routine 

would have to examine the rest of the structure of the sentence, 

and perhaps some of the discourse history, to determine if there 

are appropriate contextually-specified fillers to use. Research 

problems associated with such ellipsis have to do with the 

resolution of alternative possible fillers that meet the 

description, finding potential fillers that are not explicitly 

mentioned elsewhere but must be inferred, and characterizing the 

regions of the surrounding context that can legitimately provide 

antecedents for ellipsis (e.g., can they be extracted out of 
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subordinate relative clauses that do not dominate the occurrence 

of the ellipsis?). 

10.5 Plausibility of Alternative Interpretations 

In general, the correct way to handle many of the potential 

anbiguities that arise in English seems to be to construct 

representations of alternative interpretations, or alternative 

parts of interpretations, and evaluate the alternatives for their 

relative plausibility. LUNAR does not contain such a facility. 

Instead, it makes the best effort it can tc resolve ambiguities, 

given what it knows abcut general rules for preferred parsings, 

criteria for preferred interpretations, and specific semantic 

selectional restrictions for nouns and verbs. LUNAR does quite 

well within these constraints in handling a wide variety of 

constructions. This is successful largely because of the limited 

nature of the subject matter and consequent implicit constraints 

on the kinds of questions and statements that are sensible. 

However, a vari3ty of phenomena seem to require a more general 

plausibility evaluator to choose between alternatives. If one 

had such an evaluator of relative plausibility, the mechanisms 

used in LUNAR would be adequate to generate the necessary 

alternatives. 
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10.6 Anaphoric Reference 

Anaphoric reference is another problem area in which LUNAR"s 

treatment doep not embody a sufficiently general solution. Every 

time an interpretation is constructed, LUNAR makes entries in a 

discourse directory for each constituent that may be subsequently 

referred to anaphorically. Each entry consists of the original 

syntactic structure of a phrase, plus a slightly modified form of 

its semantic interpretation. In response to an anaphoric 

expression such as "it" and "that sample", LUNAR searches this 

directory for the most recent possible antecedent and reuses its 

previous interpretation. 

LUNAR's anaphoric refeconce facility is fairly 

sophisticated, including the possibility to refer to an object 

that is dependent on another quantified object, in which case it 

will bring forward both quantifiers into the interpretation of 

the new sentence (e.g., "What is the silicon content of each 

volcanic sample?" "What is its magnesium concentration?"). It 

also handles certain cases of anaphora where only part of the 

intensional description of a previous phrase is reused (e.g., 

"What is the concentration of Silicon in breccias?" "What is it 

in volcanics?"). However, this facility contains a number of 

loose ends. One of the most serious is that only the phrases 

typed in by the user are available for anaphoric reference, while 

the potential antecedents implied by the responses of the system 

are not (responses were usually not expressed in English, and in 
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any case were not entered into the discourse directory). 

Anaphoric reference in general contains some very deep problems, 

some of which are revealed in LUNAR. Nash-Webber (1976, 1977, 

and 1978) and Nash-Webber and Reiter (1977) discuss these 

problems in considerable detail. 

10.7 Ill-formed Input and Partial Interpretation 

One of the problems that face a real user of a natural 

language understanding system is that not everything that he 

tries to say to the system is understandable to it. LUNAR tried 

to cope with this problem by having a grammar sufficiently 

comprehensive that it would understand everything a lunar 

geologist might ask about its data base. The system actually 

came fairly close to doing that. In other systems, such as the 

SOPHIE system of Brown and Burton (1975), this has been achieved 

even more completely. In a limited topic domain, this can be 

done by systematically extending the range of the system's 

understanding every time a sentence is encountered that isn't 

understood, until eventually a virtual closure is obtained. 

Unfortunately, in less topic-specific systems, it is more 

difficult to reach this kind of closure, and in such cases it 

would be desirable for the system to provide a user with some 

partial analysis of his request to at least help him develop a 

model of what the machine does and does not understand. 
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LUNAR contains no facility for such partial understanding, 

although it does have a rudimentary facility to comment about 

modifiers that it doesn't understand in an otherwise 

understandable sentence and to notify the user of a phrase that 

it doesn't understand in a sentence that it has managed to parse 

but cannot interpret. Given the size of its vocabulary and the 

extensiveness of its grammar, there are large classes of 

sentences that LUNAR can parse but not understand. For these, 

LUNAR will at least inform the user of the first phrase that it 

encounters that it cannot understand. However, it cannot respond 

to questions about its range of understanding or be of much help 

to the user in finding out whether (and, if so, how) one can 

rephrase a request to make it understandable. More seriously, if 

a sentence fails to parse (a less common occurrence, but not 

unusual) , LUNAR provides only the cryptic information that it 

could not parse the input.  The reason for this is as follows: 

If the user has used words that are not in its dictionary, 

LUNAR of course informs him of this fact and the problem is 

clear. If, however, the user has used known words in a way that 

doesn't parse, all LUNAR knows is that it has tried all of its 

possicle ways to parse the input and none of them succeeded. In 

general, the parser has followed a large number of alternative 

parsing paths, each of which has gotten some distance through the 

input sentence before reaching an inconsistency. LUNAR in fact 

keeps track of each blocked path, and even knows which one of 

them has gotten the  farthest through the sentence.   However, 

- 120 - 



experience has shown that there is no reason to expect this 

longest partial parse path to be correct. In general, the 

mistake has occurred at some earlier point, after whicn the 

grammar has continued to fit words into its false hypothesis for 

some unknown distance before an inconsistency arises. Beyond 

simply printing out the words used in this longest path (letting 

the user guess what grammatical characteristic of his sentence 

was unknown to the computer) there is no obvious solution to this 

problem. In this respect, a language with a deterministic 

grammar has an advantage over natural English, since there will 

only be one such parse path. In that case, when the parser 

blocks, there is no question about which path was best. 

Note that there is no problem here in handling any 

particular case or anticipated situation. Arbitrary classes of 

grammatical violations can be anticipated and entered into the 

grammar (usually with an associated penalty to keep them from 

interfering with competely grammatical interpretations). Such 

sentences will no longer bp a problem. What we are concerned 

with here requires a system with an understanding of its own 

understanding, and an ability to converse with a user about the 

meaning and use of words end constructions. Such a system would 

be highly desirable, but IF far from realization at present. The 

grammar information system discussed above, which knows about its 

own gramma: and can talk about states and transitions in the 

grammar, is a long way from being able to help a user in this 

situation. 
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One technique from the HWIM speech understanding system 

(Woods et al., 1976) that could help in such a situation is to 

find maximally consistent islands in the word string using a 

bi-directional ATN parser that can parse any fragment of a 

correct sentence from the middle out. One could then search in 

the regions where such islands abut or overlap for possible 

transitions that could connect the two. 

A special case of the ungrammatical sentence problem is the 

case of a mistyped word.   If the misspelling results in an 

unknown word, then the problem is simple; when LUNAR informs  the 

user  of an unknown word, it also gives him the opportunity to 

change it and continue.  However, if the misspelling  results  in 

another  legal word,  then the  system is likely to go into the 

state discussed above, where all parsing paths fail and there  is 

little  the system can say about what went wrong.  In this case, 

the user can probably find his mistake by checking  the sentence 

he has  typed,  but sometimes a mistake will  be  subtle and 

overlooked.  Again, some of the techniques from the HWIM system 

could be used here.  Specifically, HWIM's dictionary look-up is 

such that it finds all words that are sufficiently similar to the 

input acoustics and provides multiple alternatives with differing 

scores, depending on how well they agree with the  input.  An 

identical technique can enumerate possible known words that could 

have misspellings corresponding to the typed input, with scores 

depending on the  likelihoods of  those misspellings.  These 

alternatives would then sit on a shelf to be .ried if no parsing 

using the words as typed were found. 
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10.8  Intensional Inference 

As discussed previously, the LUNAR prototype deals only with 

extensional inferences, answering questions with quantifiers by 

explicitly enumerating the members of the range and testing 

propositions for individual members. LUNAR contains a good set 

of techniques for such inference, such as the use of general 

enumeration functions and smart quantifiers. However, although 

this is a very efficient mode of inference, it is not appropriate 

for many types of questions. The ability to deal with more 

complex types of data entities, even such specialized things as 

descriptions of shape and textural features of the lunar samples, 

will require the use of intensional inference procedures. For 

this reason, LUNAR's MRL was designed to be compatible with both 

intensional and extensional inference. Intensional inference is 

necessary for any type of question whose answer requires 

inference from general facts, rather than mere retrieval or 

aggregation of low-level observations. In particular, it is 

necessary in any system that is to accept input of new 

information in anything other than a rigid stylized format. 

Although LUNAR contained some rudimentary facilities for 

adding new lines to its chemical analysis d.ata base and for 

editing such entries, it contained no facility for understanding, 

storing, or subsequently using general facts and information. 

For example, a sentence such as "All samples contain silicon" is 

interpreted by LUNAR as an assertion to be tested and either 
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affirmed or denied. It is not stored as a fact to be used 

subsequently. However, there is nothing in LUNAR's design that 

prohibits such storage of facts. In particular, a simple PRERULE 

for declarative sentences with a right-hand side (PRED (STORE (# 

0 SRULES))) could generate interpretations that would store facts 

in an intensional data base (where STORE is assumed to be a 

function that stores facts in an intensional data base). 

The function STORE could interface to any mechanical 

inference system to store its argument as an axiom or rule. For 

example, with a resolution theorem proving system such as Green's 

QA3 (Green, 1969), STORE could transform its argument from its 

given (extended) predicate calculus form into clause form and 

enter the resulting clauses into an indexed data base of axioms. 

TEST could then be extended to try inferring the truth of its 

argument proposition from such axioms either prior to, or after, 

attempting to answer the question extensionally. TEST could in 

fact be made smart enough to decide which mode of inference to 

try first on the basis of characteristics of the proposition 

being tested. Moreover, procedures defining individual 

predicates and functions could also call the inference component 

directly. For example, the predicate ABOUT that relates 

documents to topics could call the inference facility to 

determine whether a document is about a given topic due to one of 

its stored topics subsuming or being subsumed by the one in 

question. 
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The incorporation of intensional inference into the LUNAR 

framework is thus a simple matter of writing a few interfacing 

functions to add axioms to, and call for inferences from, some 

mechanical inference facility (assuming one has the necessary 

inference system). The problems of constructing such an 

inference facility to efficiently handle the kinds of inferences 

that would generally be required is not trivial, but that is 

another problem beyond the scope of this paper. A number of 

other natural language systems have capabilities for natural 

language input of facts (e.g., Winograd, 1972), but few have very 

powerful inference facilities for their subsequent use. 

Among the shifts in emphasis that would probably be made in 

a semantic interpretation system to permit extensive intensional 

inference would be increasing attention to the notational 

structure of intensional entities to make them more amenable to 

inspection by various computer programs (as opposed to being 

perspicuous to a human). The effectiveness of the MRL used in 

LUNAR derives from its overall way of decomposing meanings into 

constituent parts, but is not particularly sensitive to 

notational variations that preserve this decomposition. When 

such MRL expressions are used as data objects by intensional 

processors, internal notational changes may be desired to 

facilitate such things as indexing facts and rules, relating more 

general facts to more specific ones, and making the inspection of 

MRL expressions as data objects more efficient for the processes 

that operate on them.  In particular, one might want to represent 
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the NRL expressions in some network form such as that described 

in Woods (1975b) to make them accessible by associative 

retrieval. 

However, whatever notational variations one might want to 

adopt for increasing the efficiency of intensional processing, it 

should not be necesrary, and is certainly not desirable, to 

sacrifice the fundamental understanding of the semantics of the 

notation and the kinds of structural decompositions of meanings 

that have been evolved in LUNAR and her sister systems. 

11. Syntactic/Semantic Interactions 

A very important question, for which LUNAR's techniques are 

clearly not the general answer, has to do with the relative roles 

of syntactic and semantic information in sentence undeLstanding. 

Since this is an issue of considerable complexity and confusion, 

I will devote the remainder of this paper to discussing the 

issues as I currently understand them. 

The question of how syntax and semantics should interact is 

one that has been approached in a variety of ways. Even the 

systems discussed above contain representatives of two extreme 

approaches. LUNAR exemplifies one extreme: it produces a 

complete syntactic representation which is only then given to a 

semantic interpretation component for interpretation. TRIPSYS, 

on the other hand, combines the entire process of parsing and 

semantic interpretation in a grammar that produces semantic 
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interpretations  directly  without any intermediate  semantic 

representation. 

Before proceeding further in this discussion, let me first 

review the role of syntactic information in the process of 

interpretation. 

11.1 The Role of Syntactic Structure 

The role of a syntactic parsing in the overall process of 

interpreting the meaning of sentences includes answering such 

questions as "what is the subject noun phrase", "what is the main 

verb of the clause", "what determiner is used in this noun 

phrase", etc. — all of this is necessary input information for 

the semantic interpretation decisions. Parsing is necessary to 

answer these questions because, in general, the answers cannot be 

determined by mere local tests in the input string (such as 

looking at the following or preceding word). Instead, such 

answers must be tentatively hypothesized and then checked out by 

discovering whether the given hypothesis is consistent with some 

complete analysis of the sentence. (The existence of "garden 

path" sentences whose initial portion temporarily misleads a 

reader into a false expectation about the meaning are convincing 

evidence that such decisions cannot be made locally.) 

Occasionally, the interpretation of a sentence depends on 

which of several alternative possible parsings of the sentence 

the user intends (i.e., the sentence is ambiguous).  In this case 

- 127 - 

.-_-..   ..-   ^^^^--^i-..: 



the parser must perform the case analysis required to separate 

the alternative possibilities so they can be considered 

individually. A syntactic parse tree, as used in LUNAR and 

similar systems, represents a concise total description that 

answers all questions about the grouping and interrelationships 

among words for a particular hypothesized parsing of a sentence. 

As such, it represents an example of what R. Bobrow (Bobrow and 

Brown, 1975) calls a "contingent knowledge structure", an 

intermediate knowledge structure that is synthesized from an 

input to summarize fundamental information from which a large 

class of related questions can then be efficiently inferred. In 

general, there is an advantage to using a separate parsing phase 

to discover and concisely represent these syntactic 

relationships, since many different semantic rules may ask 

essentially the same questions. One would not want to duplicate 

the processing necessary to answer them repeatedly from scratch. 

In addition to providing a concise description of the 

interrelationships among words, the parse trees can serve an 

additional role by providing levels of grouping that will control 

the semantic interpretation process, assigning nodes to each of 

the phrases that behave as modular constituents of the overall 

semantic interpretation. The semantic interpreter then walks 

this tree structure, assigning interpretations to the nodes 

corresponding to phrases that the parser has grouped together. 

The syntax trees assigned by the grammar thus serve as a control 

structure for the semantic interpretation. 
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For historical reasons, LUNAR* >> grammar constructed 

syntactic representations as close as possible to those that were 

advocated at the time by transformational linguists as deep 

structures for English sentences (Stockwell, Schacter, and 

Partee, 1968). The complex patterns of semantic rules in LUNAR 

and the multiple-phase interpretation are partly mechanisms that 

were designed to provide additional control information that was 

not present in those tree structures. An alternative approach 

could have been to modify the syntactic structures to gain the 

same effect (see oelow). The approach that was taken provides 

maximum flexibility for applying a set of semantic interpretation 

rules to an existing grammar. It also provides a good 

pedagogical device for describing interpretation rules and 

strategies, independent of the various syntactic details that 

stand between the actual surface word strings and the parse 

structures assigned by the grammar. However, the use of such 

powerful rules introduces a cost in execution time that would not 

be required by a system that adapted the grammar more to the 

requirements of semantic interpretation. 

11.2 Grammar Induced Phasing of Interpretation 

As mentioned above, most of the control of multiple phase 

interpretation that is done in LUNAR by means of successive calls 

to the interpreter with different TYPEFLAGS could be handled by 

having the parser assign a separate node for each of the phases 

of  interpretation.  If this were  done,  the  phasing  of 
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interpretation would be governed entirely by the structure of the 

tree.  For example, one could have designed a grammar to assign a 

structure to negated sentences that looks something like: 

S DCL 

NEG 

S  NP  NPR  S10046 

VP  V CONTAIN 

NP  DET  NIL 

N  SILICON 

NU  SG 

instead of: 

S  DCL 

NEG 

NP  NPR  S10046 

VP  V  CONTAIN 

NP  DET  NIL 

N   SILICON 

NU  SG 

In such a structure, there is a node in the tree structure .o 

receive the interpretation of the constituent unnegated sentence, 

and thus the separate phasing of the PRERULES and the SRULES used 

in LUNAR would be determined by the structure of tiie tree. 

Similarly, noun phrases could be structured something like: 
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NP  DET  THE 

NU   SG 

NOM  NOM  ADJ  N  SILICON 

NOM  N  CONCENTRATION 

PP  PRÜP  IN 

NP  > JR     S1I3046 

instead of the structure: 

NP  DET  THE 

ADJ  N  SILICON 

N    CONCENTRATION 

NU   SG 

PP  PREP  IN 

NP  NPR  S10046 

which is used in the LUNAR grammar. In such a structure, the 

nested NOM phrases would receive the interpretation of the head 

noun plus modifiers by picking up modifiers one at a time. 

It is not immediately obvious, given LUNAR's separation of 

syntactic and semantic operations, which of the two ways of 

introducing the phasing is most efficient. Introducing phasing 

via syntax requires it to be done without the benefit of some of 

the information that is available at interpretation time, so that 

there is the potential of having to generate alternative 

syntactic representations for the in .^rpreter to later choose 

between. On the other hand, doing it with the semantic 

interpretation rules requires extra machinery in the interpreter 
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(but does not seem to introduce much extra run-time computation). 

One luight argue for the first kind of structure in the above 

examples on syntactic grounds alone. If this is done, then the 

efficiency issue just discussed is simply one more argument. If 

it turns out that the preferred structure for linguistic reasons 

is also the most efficient for interpretation, that would be a 

nice result. Whether this is true or not, however, is not clear 

to me at present. 

11.3 Semantic Interpretation while Parsing 

The previous discussion illustrates some of the 

disadvantages of the separation of parsing and semantic 

interpretation phases in the LUNAR system. The discussion of 

placement of movable modifiers illustrates another. In general, 

there are a variety of places during parsing where the use of 

semantic information can provide guidance that is otherwise not 

available, thus limiting the number of alternative hypothetical 

parse paths considered by the parser. It. has frequently been 

argued that performing semantic interpretation during parsing is 

more efficient than performing it later by virtue of this pruning 

of parse paths. However, the issue is not quite as simple as 

this argument makes it appear. Against this savings, one must 

weigh the cost of doing semantic interpretation on partial parse 

paths that will eventually fail for syntactic reasons. Which of 

the two approaches is superior in this respect depends on (1) the 
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relative costs of doing semantic versus syntactic tests and (2) 

which of these two sources of knowledge provides the most 

constraint. Both of these factors will vary from one system to 

another, depending on the fluency of their grammars and tin scope 

of their semantics. 

At one point, a switch was inserted in the LUNAR grammar 

that would call for the immediate interpretation of any newly 

formed constituent rather than wait for a complete parse tree to 

be formed. This turned out not to have an efficiency advantage. 

In fact, sentences took longer to process (i.e., parse and 

interpret). This was due in part to the fact that LUNAR*s 

grammar did a good job of selecting the right parse without 

semantic guidance. In such circumstances, semantic 

interpretations do not help to reject incorrect paths. Instead, 

they merely introduce an extra cost due to interpretations 

performed on partial parse paths that later fail. Moreover, 

given LUNAR's rules, there are constituents for which special 

interpretations are required by higher constructions (e.g., with 

TYPEFLAG SET or TOPIC). Since bottom-up interpretation may not 

know how a higher construction will want to interpret a given 

constituent, it must either make an assumption (which may usually 

be right, but occasionally will have to be changed), or else make 

all possible interpretations. Either case will require more 

interpretation than waiting for a complete tree to be formed and 

then doing only the interpretation required. All of these 

considerations make semantic interpretation during parsing less 
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desirable unless some positive benefit of earlj semantic guidance 

outweighs these costs. 

11.4 Top-Down versus Bottom-Up Interpretation 

In the experiment described above, in which LUNAR was 

modified to perform bottom-up interpretation during parsing, the 

dilemma of handling context-dependent interpretations was raised. 

In those experiments, the default assumption was made to 

interpret every noun phrase with TYPEFLAG NIL during the 

bottom-up phase. In cases where a higher construction required 

some other interpretation, reinterpretation was called for at 

that point in the usual top-down mode. Since LUNAR maintains a 

record of previous interpretations that have been done on a node 

to avoid repeating an interpretation, it was possible to 

efficiently use interpretations that were made bottom-up when 

they happened to be the kind required, while performing new ones 

if needed. 

An alternative approach to this problem of bottom-up 

interpretation in context is to make a default interpretation 

that preserves enough information so that it can be modified to 

fit unexpected contexts without actually having to redo the 

interpretation. This would be similar to the kind of thing that 

SETGEN (in the right-hand side of the D:SET rule) does to the 

quantifiers it picks up to turn them into UNIONS. In the HERMES 

grammar (Ash et al., 1977), R. Bobrow uses this approach,  which 
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he calls "coercion" (intuitively, forcing the interpretation of a 

constituent to be the kind that is expected). In this case, when 

the higher construction wants the interpretation of a constituent 

in some mode other than the one that has been already done, it 

asks whether the existing one can be coerced into the kind that 

it wants rather than trying to reinterpret the original phrase. 

Many of these questions of top-down versus bottom-up 

interpretation, syntax-only parsing before semantic 

interpretation or vice versa (or both together), do not have 

clear cut answers. In general, there is a tension between doing 

work on a given portion of a sentence in a way that is context 

free (so that the work can be shared by different alternative 

hypotheses at a higher level) and doing it in the context of a 

specific hypothesis (so that the most leverage can be gained from 

that hypothesis to ptune the alternatives at the lower level). 

It is not yet clear whether one of the extremes or some 

intermediate position is optimal. 

11.5 Pragmatic Grammars 

One thing that should be borne in mind when discussing the 

role of grammars is that it is not necessary that the grammar 

characterize exactly those sentences that a grammarian would 

consider correct. The formal grammar used by a system can 

characterize sentences as the user would be likely to say them, 

including sentences that a grammarian might call ungrammatical. 
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For  example,  LUNAR accepts isolated noun phrases as acceptable 

utterances, implicitly governed by an operator "give me". 

In the classical division of problems of meaning into the 

areas of syntax, semantics, and pragmatics, the latter term is 

used to denote those aspects of meaning determined not by general 

semantic rules, but by aspects of the current situation, one's 

knowledge of the speaker, etc. For example, in situations of 

irony, a speaker says exactly the opposite of what he means. 

Likewise, certain apparent questions should in fact be 

interpreted as commands or as other requests (e.g., "Do you have 

the time?" is usually a "polite" way of asking "What time is 

it?"). Moreover, certain ungrammatical utterances nevertheless 

have a meaning that can be inferred from context. In general, 

the ultimate product of language understanding is the pragmatic 

interpretation of the utterance in context. This interpretation, 

while not necessarily requiring a syntactically and semantically 

correct input sentence, nevertheless depends on an understanding 

of normal syntax and semantics. 

In LUNAR, there is no systematic treatment of pragmatic 

issues, although in some cases, pragmatic considerations as well 

as semantic ones were used in formulating its interpretation 

rules. For example, the rule that interprets the head 

"analysis", when it finds no specification of the elements to be 

measured, makes a default assumption that the major elements are 

intended.  This  is due to the pragmatic fact that (according to 
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our geologist informant) this is what a geologist would want to 

see if he made such a request, not because that is what the 

request actually means. In this way, LUNAR can handle a small 

number of anticipated pragmatic situations directly in its rules. 

In TRIPSYS, a small step toward including pragmatics in the 

grammar was taken. The TRIPSYS grammar takes into account not 

only semantic information such as class membership and 

selectional restrictions of words, but also pragmatic 

information. This includes factual world knowledge such as what 

cities are in which states, actual first and last names of 

people, and discourse history information, such as whether 

appropriate referents exist for anaphoric expressions. The 

TRIPSYS system is only beginning to explore these issues, and 

hasn't begun to develop a general system for pragmatic 

interpretation. Much more work remains to be done in this area, 

and interest in it seems to be building as our mastery of the 

more basic syntactic and semantic issues matures. 

The "pragmatic" grammar of TRIPSYS is only one exploration 

of a philosophy of combined syntactic and semantic grammars that 

has arisen independently in several places. Other similar uses 

of ATN or ATN-like grammars combining syntactic and semantic (and 

possibly pragmatic) information are the "Semantic Grammars" of 

Burton (1976), the "Performance Grammars" of Robinson (1975), the 

SHRDLÜ system of Winograd (1972) and the HERMES grammar of R. 

Bobrow (Ash et al., 1977). 
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11.6 Semantic Interpretation in the Grammar 

In separating parsing and semantic interpretation into two 

separate processes (whether performed concurrently or in separate 

phases), LUNAR gains several advantages and also several 

disadvantages. On the positive side, one obtains a syntactic 

characterization of a sizable subset of English that is 

independent of a specific topic domain and hence transferable to 

other applications. All of the domain-specific information is 

contained in the dictionaries and the semantic interpretation 

rules. On the other hand, there is a conceptual expense in 

determining what syntactic structure to use for many of the less 

standard constructions. One would like such structures to be 

somehow motivated by linguistic principles and yet, at the same 

time, have them facilitate subsequent interpretation. In many 

cases, the desired interpretation is more clear to the grammar 

designer than is a suitable syntactic representation. In a 

number of situations, such as those discussed previously for 

handling wh-questions with conjunction reduction and for handling 

averages, I have found it desirable to change what had initially 

seemed 3 suitable syntactic representation in order to facilitate 

subsequent semantic interpretation. If semantic interpretations 

were to be produced directly by thi grammar instead of using an 

intermediate syntactic representation, then such problems would 

be avoided. 
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The integration of semantic interpretation rules into the 

grammar could be done in a number of ways, one of which would be 

to develop a rule compiler that would use the templates of rules 

such as LUNAR1s to determine where in the grammar to insert the 

rule. Another would be to write the interpretation rules into 

the grammar in the- first place. This latter is the approach that 

is taken in the TRIPSYS system. It seems clearly an appropriate 

thing to do for such rules as the PRERULES for sentences and the 

DRULES for noun phrases, where the principal information used is 

largely syntactic. For the equivalent of SRULES, NRULES, and 

RRULES, writing specific rules into the grammar would make the 

grammar itself more topic-specific than one might like. However, 

writing generalized rules that apply to large classes of words, 

using information from their dictionary entries for word-specific 

information such as case frames, selectional restrictions, 

permitted prepositions, and corresponding MRL translations, 

should produce a grammar that is relatively topic-independent. 

This is the approach taken by Robinson (1975) and by R. Bobrow 

(Ash et al., 1977). 

Integrating semantic interpretation with a grammar is not an 

obvious overall improvement, since by doing so one gives  up 

features  as well  as  gaining them.  For example, as discussed 

earlier the "advantage" of using semantic interpretation to prune 

parse paths is not alwayr  realized.  However,  there are some 

other efficiencies of the combined syntactic/semantic grammars 

that have nothing to do with pruning.  One of  these  is  the 

avoidance of pattern-matching. 
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One of the costs of the separate semantic interpretation 

phase used in LUNAR is the cost of pattern-matching the rules. 

Much of this effort is redundant since the various pieces of 

information that are accessed by the rules were mostly available 

in registers during the parsing process. From here they were 

packaged up by actions in the grammar into the parse tree 

structures that are passed on to the interpreter. The 

pattern-matching in the interpreter recovers these bindings so 

that the right-hand side of the rule can use them. If the 

right-hand side schema of the rule could be executed while these 

bindings were still available during the parsing process, 

considerable computation could be avoided. Moreover, much of the 

syntactic information that is checked in the rules is implicitly 

available in the states of the grammar by virtue of the fact that 

the parser has reached that state (and more of that information 

could be put into the states if desired). Thus, in many cases, 

much of the testing that goes on in the pattern-matching of rules 

would be avoided if the right-hand side of the rule, paired with 

whatever semantic tests are required, were inserted as an action 

at the appropriate points in the grammar. 

For example, at certain points in the parsing, the grammar 

would know that it had enough information to construct the basic 

quantifier implied by the determiner and numbe" of a noun phrase. 

At a later point, it would know all of the various modifiers that 

are being applied to the head noun. As the necessary pieces 

arrive, the interpretation can be constructed incrementally. 
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The effectiveness of this kind of combined 

parser/interpreter depends partly on the discovery that the kinds 

of associations of REFs to constituent nodes that are made by 

LUNAR's rules are usually references to direct constituents of 

the node being interpreted. Thus, they correspond closely to the 

constituents that are being held in the registers by the ATN 

grammar during its parsing. The original semantic rule format 

was designed to compensate for rather large potential mismatches 

between the structure that a grammar assigns and the structure 

that the interpreter would like to have (since it was intended to 

be a general facility applicable to any reasonable grammar). 

When a grammar is specifically designed to support the kinds of 

structures required by the interpreter, this very general 

"impedance matching" capability of the rules is not required. 

Thus, when fully integrated with the parsing process in an 

ATN grammar, the process of semantic interpretation requires 

fewer computation steps than when it is done later in a separate 

phase. This clearly has a bearing on the previous discussion of 

the relative costs of syntactic and semantic processing. Other 

advantages of t-his kind of integrated parsing and interpretation 

process is that the single nondeterminism mechanism already 

present in the parser can be used to handle alternative 

interpretations of a given syntactic structure, without requiring 

a separate facility for finding and handling multiple rule 

matches. This not only eliminates extra machinery from the 

system, but appears to be more efficient.  It also permits a more 
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flexible interaction between the ranking of alternative syntactic 

choices and the ranking of alternative choices in semantic 

interpretation. 

A disadvantage of this integrated approach is that the 

combined syntactic/semantic grammar is much more domain-specific 

and less transportable unless clear principles for separating 

domain-specific from general knowledge are followed. Moreover, 

the fact that a given semantic constituent can be found in 

different places by different arcs in the grammar seems to 

require separate consideration of the same semantic operations it 

different places in the grammar, 

11.7 Generating Quantifiers While Parsing 

The generation of separate SEM's and QUANT's when performing 

interpretation while parsing appears to complicate the 

integration of the semantic interpretation into the grammar, but 

in fact is not difficult. One can stipulate that any constituent 

parsed will return a structure that contains both a SEM and a 

QUANT as currently assigned by the INTERP function in LUNAR. The 

parsing at the next higher level in the grammar will then 

accumulate the separate QUANTs from each of the constituents that 

it consumes, give them to a SORTQUANT function to determined the 

order of nesting, and construct the interpretation of the phrase 

being parsed out of the SEM's of the constituent phrases. All of 

the quantifier passing operations described previously can be 

carried out during the parsing with little difficulty. 
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One advantage of this procedure is that the job of SORTQIJANT 

is simplified by the fact that the quantifiers will be given to 

it in surface structure order rather than in some order 

determined by ehe deep structure assigned by the grammar. 

LUNAR's SORTQÜANT function has to essentially reconstruct surface 

word order. 

12. Conclusions 

The LUNAR prototype marks a significant step in the 

direction of fluent natural language understanding. Within the 

range of its data base, the system permits a scientist to ask 

questions and request computations in his own natural English in 

much the same form as they arise to him (or at least in much the 

same form that he would use to communicate them to another human 

being). However, although the LUNAR prototype exhibits many 

desired qualities, it is still far from fully achieving Its goal. 

The knowledge that the current system contains about the use of 

English and the corresponding meanings of words and phrases is 

very limited outside the range of those English constructions 

that pertain to the system's data base of chemical analysis data. 

This data base has a very simple structure; indeed it was chosen 

as an initial data base because its structure was simple and 

straightforward. For less restricted applications, such systems 

will require much greater sophistication in both the linguistic 

processing and the underlying semantic representations and 

inference mechanisms. 
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In this paper, I have presented some of the solutions that 

were developed in LUNAR (and several related systems) for 

handling a variety of problems in semantic interpretation, 

especially in the interpretation of quantifiers. These include a 

meaning representation language (MRL) that facilitates the 

uniform interpretation of a wide variety of linguistic 

constructions, the forma.1 ization of meanings in terms of 

procedures that define truth conditions and carry out actions, 

efficient techniques for performing extensional inference, 

techniques for organizing and applying semantic rules to 

construct meaning representations, and techniques for generating 

higher quantifiers during interpretation. These Litter include 

methods for determining the appropriate relative scopes of 

quantifiers and their interactions with negation, and for 

handling their interactions with operators such as "average". 

Othei techniques are described for post-interpretive query 

optimization and for displaying quantifier dependencies in 

output. 

I have also discussed a number  of  future directions  for 

research   in natural  language  understanding,  including  some 

questions of  the proper  relationship  between  syntax  and 

semantics,   the  partial  understanding  of  "ungrammatical" 

sentences, and  the  role of pragmatics.   In the  first area 

especially,   I  have discussed a number  of advantages  and 

disadvantages of performing semantic  interpretation during  the 

parsing process,  and some aspects of the problem of separating 

domain specific from general knowledge. 
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As discussed in several places in the paper, there are a 

variety of loose ends and open problems still to be solved in the 

areas of parsing and somantic interpretation. However, even in 

the four systems discussed here, it. is apparent that as the 

system becomes more ambitious and extensive in its scope of 

knowledge, the ed for pragmatic considerations in selecting 

interpretations becomes increasingly important. I believe that, 

as . result of increasing understanding of the syntactic and 

semantic issues derived from explorations such as the LUNAR 

system, the field of computational linguistics is now reaching a 

sufficient degree of sophist cation to make progress in a more 

general treatment of pragmatic issues. In doing so, it will 

become much more concerned with general issues of plausible 

inference and natural deduction, moving the field of language 

understanding in the direction of some of the other traditional 

areas of artificial intelligence research, such as mechanical 

inference and pioblem solving. 

Footnote 

1. Principal contributors to one or more of the systems 

described here include: Madeleine Bates, Bertram Bruce, Ronald 

Kaplan, and Bonnie Nash-Webber. 
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