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ABSTRACT
\\g

Solutions are derived for the potential distributions
over one-layer and two-layer random conductivity earth models
for the direct current resistivity method. The random
potential due to a stationary Gaussian random coanductivity
function is non~Gaussian and non-stationary. The ensemble
and sample statistics ¢of the random potential fields are
examined.

The potential field due to dipole excitation is more
sensitive to variations in c¢onductivity in the subsurface
than that due to monopole excitation. Random variations in

conductivity at depth are difficult to detect.

Representative curves of the apparent resistivity and
kernel functions are presentzad to show the effects of a

random conductivity profile on them. These effects are

appreciable and result in significant errors in the inter- 4
pretaticon of resistivity data. However, noise of this kind

is difficult to distinguish from the signal itself, especially

in the presence of measurement noise. Nevertheless, variations

in the conductivity profile should be recognized as an

acdditional source of error in the interpretation of resistivity

data.
\ .
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INTRODUCTION

One of the principal objectives of electrical methods éi
in geophysical prospecting is the study and interpretation é%

of resistivity distributions in the earth. To facilitate

the interpretation of data simple earth models are assumed.

=
-
1
i

P

The measured potential field is compared to the theoretical %f

field computed for the models. Interpretation of subsurface 5

electrical structure is based on the model which provides the

best fit. In order to reduce the problem to manageable pro-

[P

portions, it has been standard practice to consider only ;
discrete (or deterministic) model parameters. Such assumptions
have generally been adequate for data interpretation. However, f
it is useful and instructive to utilize models which take
into consideration the inherent variability of the earth's ?
physical properties.

As a step in this direction, this study is directed at
the problem of determining the potential distribution which
arises from direct current flow in a medium in which the con~
ductivity varies randomly with depth. The noise which is
consaquently introduced into the system is best handled
statistically.

An earth model with a random conductivity profile has
been previously considered in only one paper (Naidu, 19790)
in the readily available geophysical literature. In this

paper only the one-layer iscotropic case was treated in any
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detail. This study extends the scope of the original paper
by examining in considerable depth various acpects of the
statistical properties of random earth potentials. An
analytic solution to the more useful and practical two-layer
case is also presented. The effect of anisotropy on the
random conductivity model is examined. The implications of
the random distribution for resistivity inversion are also
considered.

The primary purpose of this dissertaticn is to study in
some detail the direct (or forward) problem without an under-
standing of which all the information contained in field data
cannot be effectively utilized. It is of considerable
practical importance to be able to judge'quantitatively the
effects of the random properties of the conductivity distri-

bution in the earth on the direct curreut resistivity method.

210t
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THE RANDOM CONDUCTIVITY PROBLEM

Direct current resistivity methous used in geophysical
exploration consist essentially of the measurement and inter-
pretation of electric potentials on the surface of the earth.
These potentials result from the introduction of an electric
current into the ground through various electrode arrays.

The observed potential field is a function of the resistivity

il 1=l

distribution in the subsurface. The interpretation of the
acquired data in terms of subsurface electrical structure is
an inverse (or inversion) problem. For this inversion tc be
possible, the solution to the direct (or forward) problem is
required, that is, given a model of the earth, one needs to

compute the corresponding potential distribution on the surface.

Statement of the Problem

The simplest and most widely used model assumes a half-
space composed of discrete horizontal layers with sharp
discontinuities in the electrical properties of the medium
at the layer boundaries. Each layer is homogeneous and
assumed to be either isotropic or anisotropic. Isotropy is x|
the more common assumption however. The solution to this
basic resistivity problem is well documented in the literature,
for example Grant and West (1965), Keller and Frischknecht
(1966), Van Nostrand and Cook (1966) and Bhattacharya and

Patra (1968). Solutions have also been published for models §-

in which the conductivity, instead of being constant over 13
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discrete vertical intervals, is a continuous function of depth

(Slichter, 1933, Langer, 1933, Meinardus, 1967 among others).
In this study the problem is generalized by assuming

that the conductivity is not a deterministic function of

depth z but is instead, a random function of z which is,

nevertheless. closely clustered around its deterministic value.

It was noted by Keller (1968) that resistivity probability
density curves usually represent multimodal log-normal dis-
tributions; this is due to the presence of several lithologic
types. Tc make the problem tractable mathematically, only
unimodal normal distributions of conductivities are considered
here.

Consider a model (Figure 1) in which the first layer (the
overburden) of thickness h has a random conductivity profile

given by o
o;(z) = o0 (1 + en(2) ) (2- 1)

where oi, a constant, i1s the deterministic (in this case, the
mean) conductivity, € is a small parameter (& << 1) and n(z)
is a zero-mean Gaussian random function with a prescribed co-
variance function C. Thus,

<n(z) > = 0 (2- 2)
and < n(zy) n(zy) > = C(Izl - 22|) (2- 3)
where < . > denotes ensemble average or expected value.

The second layer (the basement) is assumed to have a
o}

constant conductivity Ig- Both layers are assumed to be

isotropic. The first layer is isotropic only on the micro-
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basement ——0g,(2) = 03 (constant)

Figure 1. The two-layer random conductivity model.
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scopic scale; macro-anisotropy is implicit in a random con-
] ductivity profile.

The problem is to determine the potential distribution
which would result from the introduction of a direct current
of strength I into the medium described above through an
electrode located on the surface. The solution is derived

. by solving the applicable differential equation with the

appropriate boundary conditions.

Boundary Conditions

Laplace's equation, in cylindrical coordinates, for

inhomogeneous isotropic media is

2

2
3 Vv 1l 3V do(z) a3V 3 v
O(Z);;T + T 37 + az -~ 3z + O(Z);? o . (2- 4)

This equation applies to both layers and V is the electric
potential in each. Let Va(r,z) and Vb(r,z) be the potentials
in the first and second layers respectively.

The boundary conditions to be satisfied can be summarized

as follows:

(a) Vi (r,z2) - 0 as r+» 6 1= a,b (2- 5)
(b) Va 1 as r+0 at z =0 (2- 8)
2nc](o)r
(¢) Vb + 0 as 2 + (2« 7)
ava 0 , r¢0
(d) 3z 230 - , r =0 (2~ 8)

(e) Va = Vb at z = h (2- 9)

O ¥ SRS
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3z Z = h . (2-10)

Properties of the Random Function

Before proceeding with the solution, it is pertinent to

review the properties of the stationary Gaussian random

s 5 et ki 3

function n(z) which will be useful in formulating the solution

to the boundary value problem.

The integral canonical representation (Pugachev, 1965,

p. 309) of n(2) is
(--}

n(z) = [ Nwe'? 4o (2-11)

-0

where N(w) 1s white noise of the transform variable w, the
intensity of which is equal t0o the spectral density S(w) of
the random function n(z). In other words, the random process

N(w) 1s zero-mean and uncorrelated (see ‘also Koopmans, 1974),

that is,

< N(w) > = 0
and
< N(wl)N(wz) > = S(wl) G(w1 - wz) (2-12)

where § is the Dirac function.

It is further noted that

e -]

Nw) = = 7 n(z)e"t¥%2 4z . (2-13)

2T ex
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i - If (zl-zz) is denoted by x , it can be shown (Pugachev, 1965)
: ' that
4 ! C(x) = 5 S(w)el™  du (2-14)
g and
L -
o Stwy = = 7 cx)e X ax (2-15)
; 1 -
) - where C(x) is the covariance of n(z). Thus C(x) and S(w)
5
E 1 form a Fourier transform pair.
: Boundary condition (2-8) requires that n be an even
f function of z. This, in turn, implies that N(w) is an even

] function of w. These symmetry relations will simplify con-

' siderably the equations above so that only real terms remain

as the imaginary ones drop out.
Assume a covariance function of the form
i - 2 2 2
4 C(X) = q a(p("x /(4(1 ) ) (2-16)
where q2 is the variance of n(z) and

o 1s an arhitrary constant which determines the degree of
correlation. The exponential term in equation (2-16) is the
correlation function of n(z). Figure 2 shows the function
C(x) for various values of the parameter «.

Since the covariance function C of a real stationary
random function is an even function of x, its spectral density
S is also an even function. Corresponding to C(Xx) as given

above we have the spectral density function

2 2
2 =-a”w
S(w) = 2 g% (2-17)
w F ’
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General Solution

To solve the two-layer stochastic problem, as with the

deterministic, the variables are first separated:

Vir, z2) = R(r)P(z)

Equation (2-4) then becomes

R'"(r) + %R'(r) + A%R(r) 0 (2-18)

and
(o(z) P'(2) )' - r%0(z) P(z) =0 (2-19)
where A is the separation constant and primes denote differen-
tiatice with respect to the parameters.
The equation in r is Bessel's equation and its solution
is JO(Xr) for both layers. The solution to equation (2-19)

Az. For the stochastic first layer,

for the second layer is e~
however, the solution to (2-19) is more mathematically involved
and the reader is referred to Appendix A for the complcte
development of the solution. Only the final expressions will
be presented here.

The potential on the surface, to a first-order approximation,
can be expressed as
V(r, o) = V_(r, o) + eV (r, o) + O(e?)  (2-20)
where r is the distance of the point of measurement from the
current source. The first term VO is rerognized as the potential
due to a ''deterministic" two-layer case in which both layers

nave constant conductivities. Thus
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o0

V(r, o) =& 1 K_(0)J (hr)d)

o
9y 0
I
where A 8 57
and
K () l_I_EE:EiE
o 1 - ke-ZAh
The reflection coefficient k is defined as
o o}
a %1 - %
k 8 —m—————
.0 c.°
1+t T2

For conveniernce, the function KO will be referred to as the
deterministic kernel (corresponding to the so-called Slichter

kernel in deterministic models) and Vowill be called the

deterministic potential.

The term Vl can be viewed as a first-order perturbation
of V0 due to the fact that the conductivity of the first layer
is not a constant, but is a random function of depth.

In Appendix A, the following solution is derived:

53

é

i

3

4

(2-21) %
g

£

3

i

;}

Y

(2=-22) 3
1

F

3

i

E

PSRRI

Vl(r, o) = —ég / Kl(X) JO(Ar)dx (2-23) ;
01 [o} ‘
2 o
where K (A) = - A" v , N 4,
¢ o u
. 8220-x%e” P 7 N cos wh
2 o "
0+kBe™ 2 N w sin wn g
’ (2-24)
2 0 i :
0 ;




b ]f-l-!)lﬂ*'#j'

)

i weend weeed e GG D HEE &8

T-1950 12

For brevity 1in notation the following symbols bave been

used: 3
¢ = 1 - }z:e'”‘h :
v = 1 + ke"2?Bb
2 2

H = w® + 4
It is convenient to refer to V1 and Kl as the stochastic
(or random) potential and the stochastic (or random)
kernel respectively.
Equations (2-21) through (2-24) together represent the

general solution to the two-layer stochastic boundary value

problem. f

Reduction to the One-Laver Case

Let the stochastic first layer extend to infinity in
the 2z direction. The model then becomes a half-space whose
conductivity varies randomly about its mean (or equivalently,
a randomly layered semi-infinite medium).

The solution to this boundary value problem 1s readily
obtained from the general solution above by letting the over-

burden thickness h tend to infinity. Thus

K, (1) = 1 (2-25)
A

V (r, o) =

o o0 (2-26)
1
o > X

K (1) a -82\° /U du . (2-27)

[o]
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In this special case KO and V0 are, respectively, the kernel
and potential functions of a homogeneous isotropic half-space.
V1 is the perturbation potential which arises from the random
nature of the conductivity profile.

The equations above are in agreement with those derived
by Naidu (1970) for the one-layer case. The anisotropic one-
layer stochastic problem is solved directly in Appendix B
using a procedure different from Naidu's. 1In addition, the

concept of anisotropy is carried further here than in the

original paper.
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THE ONE-LAYER CASE

PN v bony lagvy

Considerable insight into the random conductivity

problem may be gained by examining first the statistical

properties of the single layer cas2. To simplify the dis-

cussion, it will be confined mainly to the isotropic case.

AR ik ki

o bt PR B!

Anisotropy is dealt with separately at the end of the chapter.

Monopole and Dipole Potentials

All the expressions for the potentials which were pre-

sented in the previous chapter apply to a monopole source.

If, instead, the source is a dipole (Figure 3), it can be

shown that we merely have to replace A by B and Jo(kr) by

ROV T [PV PN QWP T RTE

AJl(Ar) in all previous equations. The kernel functions, being
independent of electrode counfigurations, remain unchanged.

Thus, denoting dipole potentials by U, to distinguish them

e e e e el i it | St B o e

PYREL T RIPTRS XV RGO PR PP )

rom monopole potentials V, we have

B

i
U (r, o) = (3- 1) ]
o r2 0C1> 'i
D
U, (r, = =7 -
1(r o) 0? g xl(x) AJl(xr) dA (3- 2)

where Kl is given in equation (2-27) and

JURPRPLY: V17 VPR

B i\ I cos 8 :
m

2 = half-length of dipole source

€ = azir . of the point of measurement from the

dipole .

4 . .
kl‘-. T LR TR A RTINS L) WY O SVNPRI NCVRPT T S TN

. - T -
PRI S SO R VI A Ry Y TR ST X T So1- T TSI DL Ny N . . -
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3
3
3
3
3
E
i
current I voltage V j
io—--‘-u--. r--------‘-i ‘i
source point of measurement %
random e 3
1
conductivity 3
function %
3
27 (mean) :
(a) Monopole source (cross-sectional view) ?
1
_--" point of y
+I - i
- measurement ;
® _x” :
n“ !
A .- .
R'--
source [ '
2

(b) Dipole source (plan view)

Figure 3.
layer random conductivity model.

SRR SRS

Monopole and dipole source arrays over one-
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For the sake of brevity in notation all explicit
references to the parameters of the potentials will be ;;
suppressed; unless otherwise stated, they are understood
to be (r, o).
After normalizing the stochastic potentials by their
respective deterministic potentials, reversing the order of

integration and integrating once we obtain
~ Vv ®

1 _ I wr wr -
Vl = ;— = 2 g { 3 5 QO(TT) 1 } N(w) duw
o
= 2/ g (wr) N(w) du (3- 3) 3
) -
and
~ U
1l _ r_ wr .2 ™ wY 7
U = == = 27/ (=) {1 -=%Q,(z) 1 ~11Nuw) dw
1 UO 01_2_ 212 _J
= 27 go(wr) N(w) du (3- 4)
A Q
where Qi(X) = Ii(x) - Li(x)

[}

Ii(x) modified Bessel function of order 1i.

Li(x)

modified Struve function of order 1i.

For details of the derivation of the equations above

the reader is referred to Appendix B.

Ensemble Statistics

-~

Evidently the normalized random potentials V, and U

are non-Gaussian random functions. It is instructive to

examine their ensemble statistics.
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Their means are obviously zero becsuse the random function

-~

N(w) is zero-mean. The covariance of V1 is
0 o
<V1(r1)Vl(r3)> a 4£ g gl(wlrl)gl(wzrz) <N(w1)N(w2)> dwldwz

= 4 7 i S d
g gl(wrl) gl(wrz) (w) dw
= 3293 J gylury) g, (ur,)e”
/T A 1 1 1 2

Qzu.)z

dw . (3- 5)
It is to be noted that equations (2-12) and (2-17) have been
used in the aerivation above.
The normalized covariance is defined as
< Vi(ry) Vi(ry) >
(<V (1)) Vi(ry)> <V (ry) Vi(ry)> 12
For dipole excitation the corresponding expressions

Rl(rl’ r2) = (3- 6)

are  ~ ~ 2 » 42, 2
- 3ag -3 w
<U1(rl)U1(r2)> = g gz(wrl)gz(wrz)e dw
(3-7)
and

< ﬁl(rl) Uy(ry) >

RZ(rl’ rz) = = = - = 3 ¢
LUy (ry) Upry)> <Up(ry) Uy(ry)>d® (5 g

The Q1 functions were evaluated by means of polynomial
approximations and power series expansions (Abramowitz and
Stegun, 1965, p. 378 and p. 488). As the argument increases {
from zero QO decreases monotonically from 1.0 to zero while y
Q1 increases monotonically from zero to its asymptotic value of
2/m. The exponential term in equations (3-5) and (3-7)
ensure rapld convergence of the integrals. Using numerical

integration techniques the normalized covariance functions R

1
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e

and R, were computed for five representative values of a and

2
for various distances r from the source. 4
Some typical results are shown in Figures 4 through 7. {

From equation (2-16) and Figure 2, it 1is obvious that a

i abeleerad

smaller value of the parameter « implies that the random

s gl

function n(z) is less correlated and vice versa. Figures 4

and S5 show that as a decreases the covariance curves become
narrower, that is, the normalized random potentials become
less correlated. Hence, it can be concluded that as the
correlation of the random conductivity function decreases, the
correlation of the nmormalized random monopole potential decreases
too.

Similar conclusions can be drawn for the normalized
random potentials which result from dipole excitation

(Figures 6 and 7).

Sample Statistics

The study of the sample statistics of the random
potentials requires the generation of a large number of sample

realizations of the random potentials for both the monopole

and dipole cases. (A sample realization is an observation on

a random process.) In order to do this the random potentials

have to be expressed in terms of the function n(2z) explicitly.
For the monopole case, it 1is recalled from equations

(2-23) and (2-27) that

«©

v, = A 1 - BAZJO(Ar) s M}l dw d (3- 9)
[e] (o]

e T R T e Y T T T T T T S R T T TR S R R S S S R R ST A TR
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x
where A = A/cl°

2

and u = w? + 422

Substituting for N(w) with equation (2-13) and changing the

order of integration we have

®x oo

v, = - & A2J (Ar) 7 n(z) J S88.9Z 4.dzdx .  (3-10)
b1t 0 (o] 0 [o} U
Evaluating the third integral analytically (Dwight, 1961)
we obtain
x % = -2\2
Vl = ~20 [ n(z) [ le Jo(kr) dr dz . (3-11)

0 (¢}

Differentiating the Lipschitz integral (Watson, 1966)

2 '&

o
; e~z + 422)
(o]

Jo(kr) d» = (r

with respect to z the second integral in equation (3-11)
can also be evaluated analytically. Thus,
- -
* n(z) z dz
V, = =4A [ 3/2
= -4a” M(r)

When the dipole case is similarly handled we have

= -]
U. = -123* r / D&%l_E;Q% /
o (r® + 4z“)8/2
= 128" D(r) (3-13)

where

*® = o
B B/o1
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The stationary Gaussian random function n(z) was
generated by standard procedures (see, for example, Newman
and Odell, 1971 and Hemmerle, 1967). Essentially, Gaussian
weights were applied to unit normal random variables obtained
via central limit convergence from uniform random variatles.
The latter were supplied by a random number generator. The
subroutine for generating n(z) was modified from a version
prepared by Barakat (personal communication, 1976).

It is evident that the denominators im the integrals
M(r) and D(r) will ensure rapid convergence. Two hundred
sample realizations for each of several selected values oi r
and g were computed for both functions M(r) and D(r). The
results were tabulated in the form of histograms, examples
of which are presented in Figures 8 and 9 for the mcnopole
and dipole cases respectively.

The computed means are generally less than 0.01. These
are close enough to the theoretical value of zero within the
limits of sampling error. The standard deviations are of the
order of 0.1 and the coefficients of skewness (normalized
third product moments) are not greater than about 0.1 in
magnitude.

All distributions of the random monopole and dipole d
potentials generated for various values of r and a were sub-
jected 1o the chi-square goodness of fit test (Walpole and

Meyers, 1972, for example). It was found that at the 5%

level of significance the Gaussian distribution provides a
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good fit for all the distributions of random potentials that
were generated. The sample statistics therefore indicate
that the normalized random potentials 61 and 61 are normally
distributed, at the 5% level of significance, about their

mean (deterministic) values.

Samplie Realizations

I: is informative to see how the random function n(z)
affects the measured voltage, the kernel function and the
apparent resistivity. Some examples are shown here.

As noted earlier, the total potential for monopole

excitation, to a first-order approximation, is

V(r)

Vo(r) + € Vl(r)
- :
% - ¢ aa" M(r) ) -

Normalizing by A* the expression above becomes

vi(r) = % - deM(r) . (3-14)

Similarly, for the dipole case, after normalizing by B*
the equation is

vtr) = L - 12eD(r) (3-15)
r
Four representative sample realizations of the total
potential measured over a random medium for both source arrays
are shown in Figures 10, 12, 14 and 16. In the figures, the
solid lines represent the '"'mormal' potential measured over a

homogeneous half-space. The curves with circles superimposed

show what the measured voltages will be if the random con-
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ductivity functions are as shown at the top o0f the figures.
The parameter a is arbitrarily set at 0.15 (corresponding
to a weakly correlated n(z) ). To make the variations in the
random voltage large enough to be discerned on the graphs, the
parameter € has been set at a relatively large value of 0.1.
It is apparent that in the transformation from a random con-
ductivity distribution to the measured potential, high frequency
information has been lost. The random potentials corresponding
to each conductivity distribution are smooth functions of r .
Herein lies the difficulty of distinguishing noise in the
system from the signal itself.

It is more useful to examine the kernel and apparent
resistivity functions. The stochastic kernel given in
equation (2-27) can be expressed in terms of n(z) explicitly
as

Ky (A) = - ZAzn(z)e'ZAz dz . (3-16)

The ''total'' kernel is
K(\) = KO(A) + cKl(A)

= 1 - Zexzn(z)e‘ZAZ dz . (3-17)

Let us examine the asymptotes of the kernel function. Clearly,

Kl(o) = 0
It is less obvious, but nevertheless readily proved, that

Kl(}‘) + =n(o) as A+ @
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It should be noted that in computing Kl(k; by numerical
integration, we need a mesh size Az that becomes progressively
smaller as )\ gets correspondingly larger. This is necessary
for a reliable approximation to the value of the integral.

The total kernel functions K(A) for the same four sample
realizations that were used in the previous figures are shown
in Figures 11, 13, 15 and 17. The deviations from the normal
kernel, KO(A) = 1, depend on the nature of the random con-
ductivity function. However, the most important factor is
its value at the surface n(o). For all practical purposes this
asymptote is reached for X values of about 100.

The normalized apparent resistivity measured with a

pole=pole (or single pole) array may be expressed as
Pa(rT)

o)
P

where pa(r) is the apparent resistivity

p*(r) =

= 1 - 4erM(rT) (3-18)

and 0° is the reciprocal of o.°

The corresponding expression for the pcle-dipole array is

P (r)

of(r) = = 1 - 12er?D(r) . (3-19)

p"

These normalized apparent resistivities are shown in
Figures 11, 13, 15 and 17 in which they are referred to as
"monopole' and "dipole'" apparent resistivity curves. For a
homogeneous half-space these normalized apparent resistivities ﬁ

have constant values of one. The deviations from this mean

value reflect the random nature of the conductivity profile.
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Clearly, these deviations approach zero as distance r from
the source increases.

The corresponding Wenner and Schlumberger apparent
resistivities will now be briefly examined. The normalized

Wenner apparent resistivity is

P (a) ®
o(a) = —fiiﬁ}—- = 28 S KO [F,08)-55(20)] )
= 1 - 8ca (M(a) - M(21)) (3-20)

where a is the electrode spacing (Figure 18). It can be

shown that

o) * . 1 - en(0) as a - 0

w

and

The normalized Schlumberger apparent resistivity is

p (a) o
ps* (a) = 225 . a2 s K(A)AJ (Aa) da
[o] o]
= 1 - 12¢a2D(a) (3-21)

where the electrode spacing a is as shown in Figure 18. It
is obvious that

*

s ~ 1 - en(0) as a-+0

P

and
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Figure 18. Wenner and Schlumberger electrode arrays.
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Thus, for small electrode spacings the resistivity
measured with either array will be equal to the resistivity
of the near-surface zone and for large electrode spacings
the effect of the random profile will be negligible since all
the variations tend to be averaged out when a greater depth
of the section is probed. These apparent resistivity curves
would be similar in shape to the kernel curves shown if the
independent variable on the latter is regarded as 1/a instead
of X . These resistivity curves resemble the standard two-
or three-layer curves for deterministic models. Althoughrthe
deviations from the corresponding curves for a homogeneous
earth are relatively small, these shifts in the curves for
small values of a are significant enougi to affect the
accuracy of data interpretation. It is more convenient to
examine this in the next chapter when the two-layer model is

considered.

Sensitivity to Resistivity Variations

An indication of the relative sensitivity of direct current

methods to variations 1a the conductivity profile may be
obtained by studying the variance of the random potentials.
For monopole excitation the variance is

~ = 40 2 = 2 -azwz g
Vi (r) Vy(r)> = 229 s (g (wr)} e dw . (3-22)
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For dipole excitation, we have

N o 4ag® © 2_-a2u?
<U,(r) Uy(r)> = 7_3- I {gy(ur)}e duw (3-23)
T Q

The variance at r=0 for both source configurations is equal
to 2 q2 as can be readily verified. Hence, the variance of
the normalized random potential for both cases is twice the
variance of the random conductivity function n. This is also
the maximum value of the variance.

The variances of the monopole and dipole random potentials,
after normalizing by 2q2, are shown in Figures 19 and 20
for a= 0.15 and 2= 1.5 respectively. It is apparent that
the variances of the random potentials decrease as measure-
ments are taken farther from the source. This indicates, not
unexpectedly, that the sensitivity of the measurements to
variations in the conductivity profile decreases markedly with
distance from the source. The variance is larger for a more
correlated random conductivity function (that is, when o is
large). For a completely uncorrelated function n(z) the
variance 1s zero except in the vicinity of the source. In
such a case, the conductivity variations cannot, theoretically,
be detected.

It is interesting to note that the variance of the normal-
ized random dipole potential is always greater than tnat due
to a monopole. This leads to the conclusion that measurements
made with a dipole source are more sensitive to conductivity

variations in the subsurface than those made with a monopole
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source. Consequently, the signal to noise ratio for dipole '5
excitation decreases more rapidly with distance from the i?

source than that for monopole excitation.

Anisotropy
The resistivity of a rock may depend on the direction
in which a current flows through it. One cause of this is

the microscopic structure of the rock; the alignment of

- ows ey wm N WD =

mineral grains may permit current to flow more readily along
] the direction of the bedding plane or schistosity than perpen-
dicular to it. This is referred to as micro-anisotropy.
A sequence of parallel layvers each with its own thickness and
resistivity will also give rise to a preferred direction of x
current flow. In this case, we refer to structural anisotropy
or macro-anisotropy. For excellent discussions on the nature
and effects of anisotropy the reader is referred to Schlumberger
et al., 1934, Kunetz, 1966 and Keller, 1968.

Let us first examine the effects of micro-anisotropy.
Consider a one-layer medium in which the radial and vertical

conductivity functions are given by

o]

0.(z2) = o, (1 + en(2)) (3-24)

0

oz(z) = 0o, (1 + enz(z)) (3-25)

, ) o} 0 .
in which the constants Or and SZ are the mean conductivities

in the r and z directions respectively and n. and n, are

zero-mean stationary Gaussian random functions of z with pre-

scribed covariance functions.
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The coefficient ¢f anisotropy 8 is defined as
/3 ©
g = = . (3-26)

/g ©
z
Case I: If it is assumed that or(z)/cz(z) is constant
for all 2z, then
n.(2) = n,(z)
In the interest of brevity in notation the subscripts (which

are now superfluous) for the function n and its transform N

will be dropped. As shown in Appendix B, t ie normalized randomm

potentials for monopole and dipole sources are

% (r, o) 2 7 (225 (25) - 1} N(w) dw
1 o 2 28 (o] 28 (3-27)

{Il(r, o) = 2 Z [(-;—g)z {1 - -121 Ql(g—g)} - ]:]N(w) dw . (3-28)

These equations differ from (3-3) and (3-4) for the isctropic
case only in the fact that there is now an additional factor
8.

The normalized covariances for various B and ry values

are shown in Figures 21 through 23. Inspection of these curves

leads to the following conclusion. The larger the coefficient

of anisotropy the more correlated is the random potential.

It can also be shown that the variances of the random potentials

for 2 fixed distance r increases with B8.

It is apparent that the term 8 in the equations above

are, essentially, no more than a scaling factor on the distance

». Hence. not much additional informatior 1is gained by con-
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sidering anisotropy separately, as 1s well known.

Case II: Instead of letting 9. be random, let us

assume it is constant,

This implies nr(z) = 0. The monopole and dipole potentials,
as gshown in Appendix B, are half the corresponding values
for Case I. It is therefore unnecessary to pursue this

case any further.

Macro~anisotropy: Before leaving the subject of

anisotropy, it is pertinent to note that evemn in the so-
called'”isotropic" case, macro-anisotropy is implicitly
present vhen a random conductivity profile is assumed.
This is illustrated in the following manner. The average
transverse resistivity of a successzion of beds, in the

limit, as bed thicknesses tend to zero, can be expressed

in the form

J z)dz

Pt

where p(z) is the resistivity as a function of depth and

H is the total thickness of the sequence.

On the other hand, the average longitudinal conductivity

of the sequence 1is given by

E
e
:
L
:
]
3
4
3
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where c(z) is the conductivity as a function of depth.

The coefficient of macro-anisotropy is

s B e v iy e B ree 3 T et A R Tt R e T 1 SNSRI AR s r e T e

‘3
E
ﬁ
8 = /5,
:
} This value is extremely close to 1.0 for the conductivity g
3 distributions that have been used here. Even for the é
1
relatively large value of 0.1 for the parameter ¢ , this %
coefficient of anisotropy is only about 1.005 on the average. %
é
i
i
SRS BT TR B |
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THE TWO-LAYER CASE

The randomly conductive overburden problem proposed in
this study arises in nature when a sedimentary basin is under-

lain by a basement. One can conceive of a sequence of thinly

A gne
4

layered sediments with slightly different electrical character-
istics for each layer. The conductivities, however, deviate
only marginally from the mean of the sedimentary section as

a whole. Frequently the 'electrical'" basement will have a

much higher resistivity than the overburden (that is, the
reflection coefficient k is positive). For all practical
purposes the basement resistivity is constant relative to the
variability in the more conductive overburden. However, one
can conceivably have a situation in the field in which the
basement is more conductive. The gquestion then naturally

arises as to whether the model, as it is assumed, is applicable.
It would seem to be more appropriate in this case to have the
variability in the more conductive basement. It should be
pointed out, however, that shallower layers have a greater effect
on the surface measurements than deeper layers.

In any case, the statistical properties of the random
overburden model for both positive and negative reflectiocn co-
efficients will be examined, bearing in mind that the case of
a more resistive basement is generally of greater interest

from a practical viewpoint. It is appropriate to stress here

that although this is referred to as a '"two-layer' model, one
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is in fact dealing with infinitely many layers in the over-
burden. Equivalently, one may refer to this as a randomly

layered model.

Sample Realizations

It is of considerable interest to the interpreter of
field data to know the extent to which the variability in the
conductivity profile affects the apparent resistivity and
kernel function curves. With this in mind, some representative
sample realizations of the random conductivity function and
the corresponding kernel and apparent resistivity curves will
be examined.

Kernel function: The equation for the stochastic kernel

in equation (2-24) can be rewritten explicitly in terms of

z as follows:

h -
K (M) = - 2 Fz)em?rz g,
® 0
2, -4\h n
- 25—325——- S n(z) cosh 2 z dz . (4- 1)

$ o}

It is recalled from equation (2-22) that the deterministic

two-layer kernel is

v
KO(A) =3

The total kernel is

K(x) = KO(A) + EKl(A)

£t e i s ek G D e sttt i Rt e AN 2.
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The asymptotes of the kernel functions are worthexamining.

1+k
AS)\*O,KO"'I—_-E
and
aS)\*w,Ko*l

Obviously, K, + 0 as A + O except when the basement is
infinitely resistive (k = 1) in which case the expression
increases without 1limit and the solution is not applicable.
To derive the other asymptote the equation for Kl needs to be

rewritten as

-2)\h h
+ A -
(N = - 2 (1 ke-th) P onizye=2rz g,
(1-ke Y o
- _____2kz A b _2x(2h-2) +
(l-ke'th)z I {e + e‘2k(2h 2)} n(z) dz
0

(4- 2)

For large X (> 5) the second integral is negligible compared
to the first. (For X = 4 the first integral is 3 orders of
magnitude larger than the second; for X = 5 it is 4 orders
of magnitude larger. The ratio of the first to the second is

2 for large X .) In addition, for large A ,

approximately e
the first term in equation (4-2) approaches -n(0). Hence,
KM » 2K ash - 0 and K(O) » 1 -en(0) as A+ =
The second asymptote is independent of k.

Some examples of the sample realizations of the kernel
function K(X) for k = £ 0.8 and & = 0.05 are presented in

Figures 24 through 27. Superimposed on these are the deter-
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ministic kernel functions KO(A) plotted as solid lines in
the figures. The random conductivity functions n(2) are
shown in the upper right-hand corners of the graphs. The
parameter ¢ has been set at the relatively large value of
0.1 to accentuate the deviations from the mean. The abscissa
in each graph is in dimensionless units of Ah

These representative curves show the range and nature of
deviations from the mean. The most important factor evidently
is the value n(0). Depending on the actual nature of n(z)
the kernel functions may look like those of a deterministic
two~layer case (with appropriate shifts in the axes) or, in
extreme cases, for example in Figure 24, they may resemble those
of three-layer models.

The deviations in the kernel function are more clearly
illustrated if graphs of the changes relative to the cor-
responding deterministic values are plotted. The relative
change is defined as

eKl(A)

K, (A)

x 100%

Curves showing these relative deviations comprise the upper
halves of Figures 28 to 34, the first four of which correspond
to the same four random functions used in Figures 24 to 27. The
asymptotic values are zero (as A + 0) and -en(0) x 100% (as

A approaches infinity). These deviations are either positive

or negative depending on the actual form of the random function

and on the particular » values.
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Figure 28. Sample reaiization No. 1 of percent deviation in
Kernel and apparent resistivity functions for
X =% 0.8.
P i _ . |




. k-
%f T I T-1950 60 E
!‘ H = OVERBURDEN THICKNESS I
: - ~ A = ELECTRODE SPACING 3
/\_/\ K = REFLECTION COEFF.
: ™~ - . - ' L = LAMBOR
- “2[o a.5 N~—1.0
b [S
;. Z
f e
!: u "
b =z REae e ss e e o )
% 18¢ 18°
o
N
= KERNEL
K=-8.8
(W
)
z mg v I 11‘
% 18°¢ 18°
)
NS
&1 APP.RESIST.
K =8.8
L
S
%sl ”i'gt N T ‘l‘l.ﬁli_]g;
()
N
0-'-‘-4
s APP.RESIST.
K= -8.8

7 CHANGE
%

-18

Figure 29. Sample realization No. 2 of percent deviation in

kernel and apparent resistivity functions for
k=1t 0.8.
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Figure 31. Sample realization No. 4 of percent deviation in

kernel and apparent resistivity functions for
k = + 0.8.
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Figure 32. Sample realization No. 5 of percent deviation in

kernel and apparent resistivity functions for
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Figure 34. Sample realization No. 7 of percent deviation in

kernel and apparent resistivity functions for
k =+ 0.8,
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It is interesting to note that the curves for k = + 0.8
and K = - 0.8 are identical. To see the theoretical basis

for this let us write

Ky (V] B -2)z k) h
= 2)x [ n(z2)e dz + - / ~4)h
K (M) 0 (1-k2e~3By o n(2)e cosh 2z dz.

(4~ 3)
Evidently, this ratio is independent of the sign of k. The

magnitude of Kk, however, does affect the ratio. Inasmuch as
the ratio, for large A , depends only on the first term in

the equation above, it is independent of the magnitude of k.

For small A values however, the second term becomes significant;
its value increases as |k| increases. In any case, this ratio
tends to zero as ) approaches zero. This discussion is
supported by Figures 35 and 36 for k = 0.5 and k = Z0.99
respectively. They are to be compared to Figure 28 which uses

the same realization of the random function.

Apparent resistivity: As noted previously, the normalized

apparent resistivities for the Wenner and Schlumberger arrays

are, respectively,

- <]
P (a) = 2a gx(x) {JO(Aa) - JO(ZAa)} dx (4~ 4)
and
* 9 %
pg (2) = 2 I K(A) A Jy(ha) dr . (4~ 5)

(o]
Only the Wenner array will be used for the follcwing discussion.
Since X(A) = KO(A) + sKI(A) equation (4-4) can be de-

composed into deterministic and stochastic parts:
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Figure 35. Sample realization No. 1 of percent deviation in
kernel and apparent resistivity functions for
k=1+0.5.
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Pw.o = 2a g KO(A) {Jo(Aa) - Jo(2Aa)} dA (4~ 6)

x

h
P .1 = -4a g n(z) g fl {Jo(ka) - J°(2Aa)} d)\ dz

h ®

-8ak® / n(2) / £, {(J_(Aa) - J_(21a)} dA dz (- .,
0 o °
' -2)\h, _-2)z
where f;(1, z) = A{dke 2Ah)e 4- 8)
(l-ke~ ) (4-
-4)\h
A
fz(X, z) = € cfgﬁhzgz (4- 9)
(1-ke~2*h)

A rapid and reasonably accurate procedure for evaluating

Hankel transform integrals is the use of digital linear filters.

This method is already well established (for example Ghosh,
1971 and Anderson, 1975). In general, this approach is about
five times faster than numerical integration by GaussZian
quadrature and provides acceptable accuracy of about four
significant figures (Anderson, 1974).

In order for this method to be applicable however, the
functions to be transformed (f, and f. in this case) must
be monotonic decreasing as A + =, Inspection of equation (4-8)
reveals that f, satisfies this requirement except when z = 0,
In this special case one can expand f; as an infinite series,
find the Hankel transform analytically term by term (Erdelyi,

1954) and finally obtain a power series expression as follows:
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x n
[ £.(\, 0)J_(Ar) = 4h T nk VR -
o 1 ° a=1 ((2nn)% + r2} 7 (4-10)

It is interesting to note that even when z = 0 the digital

filter approach yields results of acceptable accuracy when

compared with the exact value as given in eguation (4-10).
Similarly, it can be shown that f: approaches zero as

A + = for all values of z. Hence, we can apply Hankel trans-

form filters for the evaluation of part of equation (4-7).
Equation (4-6) for the deterministic term can also be

evaluated by the digital filter approach if it is rewritten

in the form

® -2\h
* ke
om0 = L an f B (5 Oa) - (20a)) ar . (41

Seven representative sample realizations of normalized
Wenner apparent resistivity curves for o = 0.05, € = 0.1 and
k = 2 0.8 are shown in Figures 37 through 43. The abscissae
are in dimensionless units of a/h. These curves are similar
to those for the kernel functions (if the abscissae are re-
versed) except for the well known fact that apparent resistivity
curves are not symmetrical about the line o; = ] for positive
and negative values of k; the kernel function, on the other
hand, is symmetrical about the line K(A) = 1 for positive
and negative values of k.

It is intuitively obvious that as the electrode spacing
a approaches zero, the normalized apparent resistivity

*
approaches 1 - en(0). As the spacing a becomes large Cw
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approaches the deterministic value of (1 + k)/(1 - k) as
the effect of the random nature of the overburden becomes
negligible. Most of the information in this part of the
sounding curve is returned from the basement.

The relative deviations from the mean apparent resistivity
curves are shown in the lower halves of Figures 28 to 36. The
asymmetric nature of the apparent resistivity curves with
respect to the sign of k is quite apparent. It is interesting
to note that the curves for positive Kk are remarkably similar
to those for the kernel function.

As in the case of the kernel function an increase in
the magnitude of k increases the relative change in the
apparent resistivity curves for large electrode spacings,
but has no effect for small spacings. The difference between
the curves for positive and negative values of k is accentuated

if k has a greater magnitude.

Ensemble Statistics

It has been well established in the literature that the
kernel function embodies all the information about layer para-
meters which are contained in the apparert resistivity curve
itself. 1In the interest of economy in computation time the
study of ensemble statistics is confined to the kernel function
instead of the apparent resistivity function to which it is
related via a Hankel transformation.

Equation (2-24) rewritten in a more convenient form

becomes
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where

i
|
T ]- KA =W Z (a) + ay * a3) N(w) duw (4-12)
]
WAy = - 42
l ¢

f q (u, 2) = 2
- 2
.‘ Qo(w, A\) = = 2xe~2 B (1-x%)cos wh
: $ M
Qa(w, A) = e-ZXh(1+k2) w sin wh
3 )

$ u

The mean <K,;(A)> is obviously zero since <N(w)> is zero. The

covariance is

- 2 2
<Ky (DK (A5)> = WO IWO) éT(w,Al)T(m,lz)e_Q Y

(4-13)

2

where T = q1 + Q2 + Q3

Convergence of the integral 1is assured by the presence of the
exponential term. The covariance, normalized by the standard

deviations, is

<K, (A;)K (A ,)>
) = 1171781 0 o (4-14)
(<K (K (A)> <K (A)K; (A5)>)

R(A

Ays A

The normalized covariance, computed for representative
values of A and a are shown in Figures 44 and 45. It is clear
that as o increases the stochastic kernel function becomes

more correlated. In addition, the larger the * value the

more correlated is the random kernel. Thus, a more correlated
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random function n(z) will be reflected in a more correlated

random kernel function.

Sample Statistics

Two kundred sample realizations of the random kernel as
given in equation (4-1) were computed and the distributioans
tabulated in the form of histograms. Some of these are shown
in Figures 46 and 47. Using the chi-square goodness of fit
test all the distributions generated for various a and A
values were found to be Gaussian at the 5% level of significance.

The computed means are generally much less than 0.05
while the standard deviations are approximately in the range
0.5 to 1.0. The coefficients of skewness are in general less
than 0.2 in magnitude, being about evenly distributed between
positive and negative values.

It is known that a Gaussian process preserves its Gaussian
form after a linear transformation (Freeman, 1958). Inasmuch
as the Hankel transformation of the kernel function to the
apparent resistivity function is a linear process (Ghosh, 1971)
one may conclude that the random apparent resistivities are,
at the 5% level of significance, normally distributed about

their mean values.

Effect on Interpretation of Data

It is appropriate at this point to pose the following
questions. What effect does a random distribution of earth

conductivities have on resistivity sounding curves? To what

TR .
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extent is the interpretation of resistivity data affected?
How can these effects be taken into consideration during
data interpretation? These and related questions will be
discussed in the following paragraphs.

The effect of the random nature of the distribution of
conductivities on an apparent resistivity sounding curve is
greates. for small electrode spacings. With small spacings
we are, effectively, probing only the shallower regions of the
earth. It is evident from the results presented previously
that as the electrocde spacing a decreases the apparent
resistivity approaches the resistivity of the near-surface

zone, that is,

o(o) = p°(1 - en(o))

As the spacing a increases more and more information is
returned from the deeper regions of the earth and the apparent
resistivity approaches the resistivity p; of the lower layer -
(basement). In this case, the random conductivity profile

in the overburden has a negligible effect. Thus, the net effect

of the random conductivity distribution in the overburden is

to shift the part ¢f the sounding curve for small a up or

down (in the sense of the vertical apparent resistivity axis

of the curve) relative to the part of the curve for large a

according as p(c) is greater or less than the mean overburden
resistivity oo. This relative shift can be considerable

. 0
depending directly on how much o(c) deviates from ¢ . A3
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a practical example, the near-surface zone of a sedimentary
section is probably drier than the lower zones. This results
in an increase in its resistivity relative to the rest of the
section.

The variability in the resistivity profile tends to be
smoothed out in the sounding curve. Consequently, the earth
may be viewed as a high frequency filter for the noise in
the system. The shape of the resulting sounding curve depends
to a large extent on the functiou n(z). However, the value
n(o) has a disproportionate effect on this. The apparent
resistivity curve may resemble a two-layer curve, as is usually
the case (for example Figures 39 and 40) or there may be
distinct indications of an '"intermediate layer' as in Figure

37. Such deviartions are usually small and are difficult to

detect. In additior, measuremen” noise (which includes
instrument noise, human eorror and lateral inhomogeneities)
tends to mask these small deviations. 1In practice these
curves would tend to be considered as two-~layer curves with
slightly different parameters.

For a semi-quantitative estimate of the magnitude and
type of errors introduced in the interpretation of such
curves we will resort to standard curve-matching techniques.
Several two-layer apparent resistivity curves were traced
from the standard curves of Orellana and Mooney (1966).
Deviations of 110% and I20% were then introduced into the

parts of the curves which correspond to small electrode




