
I PHYSICS CSM DEPARTMENT OF GEOPHYSICS CSM DEPARTMENT OF GEOPHYSICS CSM DEPARTMENT OF GEOPI

t5NT OF GEOPHYSICS CSM DEPARTMENT OF GEOPHYSICS CSM DEPARTMENT OF GEOPHYSICS CSM DEPARTMVENT

1[CS CSM DEPARTMENT OF GEOPHYSICS CSMV DEPARTMENT OF GEOPHYSICS CSM DEPARTMENT OF GEOPHYSIC:

-'HYSICS CSM DEPARTMENT OF GEOPHYSICS CSM DEPARTMENT OF GEOPHYSICS CSM DEPARTMENT OF GEOPHYS

IGEOPHYSICS CSM DEPARTMENT OF GEOPHYSICS CSM DEPARTMENT OF GEOPHYSICS CSM DEPARTMENT OF GE

DNHIITM UTOF H STATEMET AX

Apprmed fmr public releamq
Distribution Unlmited

C= NOV, 1 1977

C..=



I 5 T -19 5J'

I

BEHAVIOR OF ELECTRIC POTENTIAL FIELDS

OVER RANDOMLY LAYERED EARTH MODELS,

~r• '..... /~ W7-;;;; : .. •7

K~' - L ii.L~L

DISTRM TIO ATEME WT A

By

Chong Yan) -,•.

/7. A V . '

--'" ..... ..... D D C

Cý7 NOV 18 19"77 II
v !!!½.



T-1950

A Thesis submitted to the Faculty and the Board of

Trustees of the Colorado School of Mines in partial ful-

fillment of the requirements for the degree of Doctor of

Philosophy in Geophysics.

Chong Ya'n Lee

Golden, Colorado

Date: , 4 '-' ./ , 1977

Approved:___s
George V. Keller
Thesis Advisor and
Head of Department

Golden, Colorado -

Date: _h'n (e 1 1977 0

' " ' ' -'• :•' = " " • - ' •" - '-' " "; "•"- ,, - -'I 'T -- - - "• • -- "•3 • • ..- -..",." •-......... .... .- .,-

' ITy COES



T- 1950|

i
ABSTRACT

Solutions are derived for the potential distributions

over one-layer and two-layer random conductivity earth models

I for the direct current resistivity method. The random

potential due to a stationary Gaussian random conductivity

function is non-Gaussian and non-stationary. The ensemble

and sample statistics of the random potential fields are

examined.
The potential field due to dipole excitation is more

sensitive to variations in conductivity in the subsurface

than that due to monopole excitation. Random variations in

conductivity at depth are difficult to detect.

Representative curves of the apparent resistivity and

kernel functions are presented to show the effects of a

random conductivity profile on them. These effects are

appreciable and result in significant errors in the inter-

pretation of resistivity data. However, noise of this kind

is difficult to distinguish from the signal itself, especially

in the presence of measurement noise. Nevertheless, variations

in the conductivity profile should be recognized as an

additional source of error in the ;.nterpretation of resistivity

data.
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INTRODUCTION

One of the principal objectives of electrical methods

in geophysical prospecting is the study and interpretation

of resistivity distributions in the earth. To facilitate

the interpretation of data simple earth models are assumed.

The measured potential field is compared to the theoretical

field computed for the models. Interpretation of subsurface

electrical structure is based on the model which provides the

best fit. In order to reduce the problem to manageable pro-

portions, it has been standard practice to consider only

discrete (or deterministic) model parameters. Such assumptions

have generally been adequate for data interpretation. However,

it is useful and instructive to utilize models which take

into consideration the inherent variability of the earth's

physical properties.

As a step in this direction, this study is directed at

the problem of determining the potential distribution which

arises from direct current flow in a medium in which the con-

ductivity varies randomly with depth. The noise which is

consequently introduced into the system is best handled

statistically.

An earth model with a random conductivity profile has

been previously considered in only one paper (Naidu, 1970)

in the readily available geophysical literature. In this

paper only the one-layer isotropic case was treated in any
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detail. This study extends the scope of the original paper

by examining in considerable depth various aspects of the

statistical properties of random earth potentials. An

analytic solution to the more useful and practical two-layer

case is also presented. The effect of anisotropy on the

random conductivity model is examined. The implications of

the random distribution for resistivity inversion are also

considered.

The primary purpose of this dissertation is to study in

some detail the direct (or forward) problem without an under-

standing of which all the information contained in field data

cannot be effectively utilized. It is of considerable

practical importance to be able to judge quantitatively the

effects of the random properties of the conductivity distri-

bution in the earth on the direct current resistivity method.

II
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'I
THE RANDOM CONDUCTIVITY PROBLEM

j Direct current resistivity methods used in geophysical

exploration consist essentially of the measurement and inter-

} pretation of electric potentials on the surface of the earth.

These potentials result from the introduction of an electric

current into the ground through various electrode arrays.

The observed potential field is a function of the resistivity

distribution in the subsurface. The interpretation of the

acquired data in terms of subsurface electrical structure is

an inverse (or inversion) problem. For this inversion to be

possible, the solution to the direct (or forward) problem is

required, that is, given a model of the earth, one needs to

compute the corresponding potential distribution on the surface.

Statement of the Problem

The simplest and most widely used model assumes a half-

space composed of discrete horizontal layers with sharp

discontinuities in the electrical properties of the medium

at the layer boundaries. Each layer is homogeneous and

assumed to be either isotropic or anisotropic. Isotropy is

the more common assumption however. The solution to this

basic resistivity problem is well documented in the literature,

for example Grant and West (1965), Keller and Frischknecht

(1966), Van Nostrand and Cook (1966) and Bhattacharya and

Patra (1968). Solutions have also been published for models

in which the conductivity, instead of being constant over

• '" • '" • " I II H
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discrete vertical intervals, is a continuous function of depth

(Slichter, 1933, Langer, 1933, Meinardus, 1967 among others).

In this study the problem is generalized by assuming

that the conductivity is not a deterministic function of

depth z but is instead, a random function of z which is,

nevertheless, closely clustered around its deterministic value.

It was noted by Keller (1968) that resistivity probability

density curves usually represent multimodal log-normal dis-

tributions; this is due to the presence of several lithologic

types. Tc make the problem tractable mathematically, only

unimodal normal distributions of conductivities are considered

here.

Consider a model (Figure 1) in which the first layer (the

overburden) of thickness h has a random conductivity profile

given by 0(1 + en(z) (2- 1)o z)= 1i( 0z))(-i

0

where Ii, a constant, is the deterministic (in this case, the

mean) conductivity, e is a small parameter (e << 1) and n(z)

is a zero-mean Gaussian random function with a prescribed co-

variance function C. Thus,

< n(z) > 0 (2- 2)

and < n(z 1 ) n(z 2 ) > = C(1z1 - z 2 1) (2- 3)

where < .> denotes ensemble average or expected value.

The second layer (the basement) is assumed to have a
0

constant conductivity a2" Both layers are assumed to be

isotropic. The first layer is isotropic only on the micro-
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"current I

sa surface (z=O)

1overburden h

basement "-- 2 (z) = a* (constant)

figure 1. The two-layer random conductivity model.

__________
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1
scopic scale; macro-anisotropy is implicit in a random con-

ductivity profile.

The problem is to determine the potential distribution

which would result from the introduction of a direct current

of strength I into the medium described above through an

electrode located on the surface. The solution is derived

by solving the applicable differential equation with the

appropriate boundary conditions.

Boundary Conditions

Laplace's equation, in cylindrical coordinates, for

inhomogeneous isotropic media is

2 2
CZa V + 1 a d(z) 3V V

Y+ dz _ + a(z)- 0 (2-4)3r 3z,

This equation applies to both layers and V is the electric

potential in each. Let Va (r,z) and Vb(r,z) be the potentials

in the first and second layers respectively.

The boundary conditions to be satisfied can be summarized

as follows:

(a) Vi (r,z) - 0 as r - , i - a,b (2- 5)

(b) Va - as r - 0 at z - 0 (2- 6)
21Ta1 (o)r

(c) Vb * 0 as Z 0 0 (2- 7)

3Va 0 r 0

(d) -a• z - 0 - CO r 0 (2- 8)

(e) Va - Vb at z - h (2- 9)
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II

(f) 1 (h) W z = h a 2 (h) 3-z z = h (2-10)

II

properties of the Random Function

Before proceeding with the solution, it is pertinent to

review the properties of the stationary Gaussian random

function n(z) which will be useful in formulating the solution

to the boundary value problem.

The integral canonical representation (Pugachev, 1965,

p. 309) of n(z) is

n1(z) = ! N(w)e dw (2-11)

where N(w) is white noise of the transform variable w, the

intensity of which is equal to the spectral density S(w) of

the random function n(z). In other words, the random process

N(w) is zero-mean and uncorrelated (see-also Koopmans, 1974),

that is,

< N(w) > 0

and

< N(w 1 )N(w 2 ) > S(Wl) 1 (wI - W2 ) (2-12)

where 6 is the Dirac function.

It is further noted that

N(w) - n(z)e-iwz dz (2-13)
2r -r
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If (zl-z 2 ) is denoted by x , it can be shown (Pugachev, 1965)

that

iWx
C(x) f f S(w)e dw (2-14)

and

S(") 1-ix
27r _ C(x)e dx (2-15)

where C(x) is the covariance of n(z). Thus C(x) and S(w)

form a Fourier transform pair.1
Boundary condition (2-8) requires that n be an even

function of z. This, in turn, implies that N(w) is an even

function of w. These symmetry relations will simplify con-

siderably the equations above so that only real terms remain

as the imaginary ones drop out.

Assume a covariance function of the form

C(x) q 2exp(-x 2/(4a2 ) (2-16)

2216
where q2 is the variance of n(z) and

a is an arbitrary constant which determines the degree of

correlation. The exponential term in equation (2-16) is the

correlation function of n(z). Figure 2 shows the function

C(x) for various values of the parameter a.

Since the covariance function C of a real stationary

random function is an even function of x, its spectral density

S is also an even function. Corresponding to C(x) as given

above we have the spectral density function

S(w) a - q2 e-a2 W2  (2-17)

- " - I i a , ... . .. , ...
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General Solution

To solve the two-layer stochastic problem, as with the

deterministic, the variables are first separated:

F V(r, z) = R(r)P(z)

Equation (2-4) then becomes

R"(r) + -R'(r) + 2 R(r) 0 (2-18)r

and

(C(z) P'(z) ), - x2 a(z) P(z) 0 (2-19)

where X is the separation constant and primes denote differen-

tiaticn with respect to the parameters.

The equation in r is Bessel's equation and its solution

is Jo(Xr) for both layers. The solution to equation (2-19)

for the second layer is e-. For the stochastic first layer,

however, the solution to (2-19) is more mathematically involved

and the reader is referred to Appendix A for the complcte

development of the solution. Only the final expressions will

be presented here.

The potential on the surface, to a first-order approximation,

can be expressed as

V(r, o) = Vo(r, o) + 0V1 (r, o) + 0(s2) (2-20)

where r is the distance of the point of measurement from the

current source. The first term Vo is recognized as the potential

due to a "deterministic" two-layer case in which both layers

have constant conductivities. Thus
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Vo(r, o) =A-0 K (A)Jo (r)d?\ (2-21)
a 0

where A 4 I__

and
1 + ke- 2Xh

K°(X) = (2-22)0 1 k( -22)

The reflection Qoefficient k is defined as
0 0

k 0 020CI + •2

For convenience, the function K will be referred to as theI0

deterministic kernel (corresponding to the so-called Slichter

kernel in deterministic models) and Vowill be called the

deterministic potential.

The term V1 can be viewed as a first-order perturbation

of V due to the fact that the conductivity of the first layer0

is not a constant, but is a random function of depth.

In Appendix A, the following solution is derived:

Vl(r, o) I A KI(X) Jo(Xr)dX (2-23)
01 o

8X2

where KI(0) ffi 8X N dw
0 J

2 2 -)2Xh
(1-k )e N cos whdw

0

2 -2-h
24A(l+k )e N w sin wh (2-24)

2
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For brevity in notation the following symbols bave been

used:

= - ke-2Xh

v = 1 + ke-2'h

2 22

It is convenient to refer to V1 and K1 as the stochastic

(or random) potential and the stochastic (or random)

kernel respectively.

Equations (2-21) through (2-24) together represent the

general solution to the two-layer stochastic boundary value

problem.

Reduction to the One-Layer Case

Let the stochastic first layer extend to infinity in

the z direction. The model then becomes a half-space whose

conductivity varies randomly about its mean (or equivalently,

a randomly layered semi-infinite medium).

The solution to this boundary value problem is readily

obtained from the general solution above by letting the over-

burden thickness h tend to infinity. Thus

Ko (X) = 1 (2-25)

V0 (r, o) = ro (2-26)
r1

2 MN

K = -8X 2 ! w dw (2-27)
0
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I)
In this special case K and V are, respectively, the kernel

and potential functions of a homogeneous isotropic half-space.

J V1 is the perturbation potential which arises from the random

nature of the conductivity profile.

The equations above are in agreement with those derived

by Naidu (1970) for the one-layer case. The anisotropic one-

layer stochastic problem is solved directly in Appendix B

I using a procedure different from Naidu's. In addition, the

concept of anisotropy is carried further here than in the

original paper.



5 T-1950 14

-I
THE ONE-LAYER CASE

Considerable insight into the random conductivity

problem may be gained by examining first the statistical

properties of the single layer casa. To simplify the dis-

cussion, it will be confined mainly to the isotropic case.

Anisotropy is dealt with separately at the end of the chapter.

Monopole and Dipole Potentials

All the expressions for the potentials which were pre-

sented in the previous chapter apply to a monopole source.

If, instead, the source is a dipole (Figure 3), it can be

shown that we merely have to replace A by B and J0 (r) by

XJ (Xr) in all previous equations. The kernel functions, being

independent of electrode configurations, remain unchanged.

Thus, denoting dipole potentials by U, to distinguish them

from monopole potentials V, we have

U0(r, o) = B (3- 1)
cr21

B o
U (r, o) K() AJ (Xr) dX (3- 2)

071  0

where K is given in equation (2-27) and

B I t cos 8

half-length of dipole source

e = azir of the point of measurement from the

dipole.

I
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I current I voltage V

source point of measurement

I random

conductivity

function II>
fI

I :• (mean)

!
(a) Monopole source (cross-sectional view)I

+ point of
+I r - - measurement

SO~r~e
source

-I

(b) Dipole source (plan view)

Figure 3. Monopole and dipole source arrays over one-
layer random conductivity model.
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I

For the sake of brevity in notation all explicit

references to the parameters of the potentials will be

suppressed; unless otherwise stated, they are understood

to be (r, o).

After normalizing the stochastic potentials by their

respective deterministic potentials, reversing the order of

integration and integrating once we obtain

V1  = 2 1 1 Q N(w) dw

= 2 f gl(wr) N(w) dw (3- 3)
0

and

tJ1  wr2 Q r
=1= 2 f [-( )2 { 1 - IQ(-) I - 1 N(w) dw1I Uo o L _ 1 -2

of 92(! N(w) dw (3- 4)

where Qi(x) I I.(x) - Li(x)

Ii(x) = modified Bessel function of order i.

Li(x) = modified Struve function of order i.

For details of the derivation of the equations above

the reader is referred to Appendix B.

Ensemble Statistics

Evidently the normalized random potentials V1 and UI

are non-Gaussian random functions. It is instructive to

examine their ensemble statistics.
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Their means are obviously zero because the random function

N(w) is zero-mean. The covariance of V is

<Vl(rl)V (r,)> -4f f gl(wirl g~ w r2 <Nd)Nw) d wi•
1 4f g1 wr)g1(w2r2) <N;(w,)N(w 2 )> d 1dw2

= 4 f gl(wrl) gl(wr 2 ) S(M) dw
0

f f gl(wrl) gl(wr 2 )e dw (3- 5)

It is to be noted that equations (2-12) and (2-17) have been

used in the aerivation above.

The normalized covariance is defined as

< Vl(rl) Vl(r 2 ) >

R< l(rl) Vl(rl)> <V1 (r 2 ) V1 (r 2 )> (3- 6)

For dipole excitation the corresponding expressions

are 42 CO 2 2
<U1(r 1 )Ul(r 2 )> - f g 2 ( wrl)g 2 (wr 2 )e-a dw

VT o (3- 7)

and U 1 (r 1 ) U1 (r 2 ) >

R 2 (r1, r 2 ) = -. . - -

{<U 1 (r 1 ) U1 (r 1 )> <Ul(r 2 ) Ul(r 2 )>} (3- 8)

The Q functions were evaluated by means of polynomial

approximations and power series expansions (Abramowitz and

Stegun, 1965, p. 378 and p. 498). As the argument increases

from zero Q decreases monotonically from 1.0 to zero while

Q1 increases monotonically from zero to its asymptotic value of

2/n. The exponential term in equations (3-5) and (3-7)

ensure rapid convergence of the integrals. Using numerical

integration techniques the normalized covariance functions R1
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and R2 were computed for five representative values of . and

for various distances r from the source.

Some typical results are shown in Figures 4 through 7.

From equation (2-16) and Figure 2, it is obvious that a

smaller value of the parameter a implies that the random

function n(z) is less correlated and vice versa. Figures 4

and 5 show that as a decreases the covariance curves become

narrower, that is, the normalized random potentials become

less correlated. Hence, it can be concluded that as the

correlation of the random conductivity function decreases, the

correlation of the normalized random monopole potential decreases

too.

Similar conclusions can be drawn for the normalized

random potentials which result from dipole excitation

(Figures 6 and 7).

Sample Statistics

The study of the sample statistics of the random

potentials requires the generation of a large number of sample

realizations of the random potentials for both the monopole

and dipole cases. (A sample realization is an observation on

a random process.) In order to do this the random potentials

have to be exDressed in terms of the function n(z) explicitly.

For the monopole case, it is recalled from equations

(2-23) and (2-27) that

V1 = A I - 8A 2J(Xr) /N(I ) dw dA (3- 9)
0 0
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where A* A/cli 0

and w - w 2 + 4X2

Substituting for N(w) with equation (2-13) and changing the

order of integration we have

-~-8A" * 12°
V1  - 8- f -2 0 (Xr) I n(z) fCos z dwdzdX (3-10)

Evaluating the third integral analytically (Dwight, 1961)

we obtain
CO0

V1 = -2A I n(z) I Xe 2Xz J0 (Xr) dX dz (3-11)
0 0

Differentiating the Lipschitz integral (Watson, 1966)

Se'z Jo(Or) dX = (r + 4z 2 )
00

with respect to z the second integral in equation (3-11)

can also be evaluated analytically. Thus,

* -O n(z) z dz4M M(r)(r + 4z 2 3/2 (3-12)

= -4A M(r)

When the dipole case is similarly handled we have

U1 = -12B r 7 n(z) z dz
0 (r 2 + 4z2 )5/2

= -12B* D(r) (3-13)

where

B 0B = B/a1
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The stationary Gaussian random function n(z) was

generated by standard procedures (see, for example, Newman

and Odell, 1971 and Hemmerle, 1967). Essentially, Gaussian

weights were applied to unit normal random variables obtained

via central limit convergence from uniform random variables.

The latter were supplied by a random number generator. The

subroutine for generating n(z) was modified from a version

prepared by Barakat (personal communication, 1976).

It is evident that the denominators in the integrals

M(r) and D(r) will ensure rapid convergence. Two hundred

sample realizations for each of several selected values of r

and a were computed for both functions M(r) and D(r). The

results were tabulated in the form of histograms, examples

of which are presented in Figures 8 and 9 for the monopole

and dipole cases respectively.

The computed means are generally less than 0.01. These

are close enough to the theoretical value of zero within the

limits of sampling error. The standard deviations are of the

order of 0.1 and the coefficients of skewness (normalized

third product moments) are not greater than about 0.1 in

magnitude.

All distributions of the random monopole and dipole

potentials generated for various values of r and a were sub-

jected to the chi-square goodness of fit test (Walpole and

Meyers, 1972, for example). It was found that at the 5%

level of significance the Gaussian distribution provides a
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I

good fit for all the distributions of random potentials that

were generated. The sample statistics therefore indicate

I that the normalized random potentials V1 and U1 are normally

distributed, at the 5% level of significance, about their

I mean (deterministic) values.

Sampie Realizations

I, is informative to see how the random function n(z)

I affects the measured voltage, the kernel function and the

apparent resistivity. Some examples are shown here.

As noted earlier, the total potential for monopole

3 excitation, to a first-order approximation, is

V(r) = V0 (r) + E Vl(r)

= A 4A* M(r)r

Normalizing by A* the expression above becomes

*(r) 4EM(r) (3-14)

j Similarly, for the dipole case, after normalizing by B*

the equation is

I U (r) 1 - l2cD(r) (3-15)
r 2

f Four representative sample realizations of the total

potential measured over a random medium for both source arrays

Sare shown in Figures 10, 12, 14 and 16. In the figures, the

solid lines represent the "normal" potential measured over a

homogeneous half-space. The curves with circles superimposed

I show what the measured voltages will be if the random con-

I
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ductivity functions are as shown at the top of the figures.

The parameter a is arbitrarily set at 0.15 (corresponding

to a weakly correlated n(z) ). To make the variations in the

random voltage large enough to be discerned on the graphs, the

parameter c has been set at a relatively large value of 0.1.

It is apparent that in the transformation from a random con-

ductivity distribution to the measured potential, high frequency

information has been lost. The random potentials corresponding

to each conductivity distribution are smooth functions of r .

Herein lies the difficulty of distinguishing noise in the

system from the signal itself.

It is more useful to examine the kernel and apparent

resistivity functions. The stochastic kernel given in

equation (2-27) can be expressed in terms of n(z) explicitly

as

K1(X) = - 2X~r(z)e 2 Az dz (3-16)

The "total" kernel is

K(M) = K (M) + CKl(X)

= 1 - 2eAjn(z)e-2Az dz (3-17)

Let us examine the asymptotes of the kernel function. Clearly,

Kl(o) = 0

It is less obvious, but nevertheless readily proved, that

KI(X) -- n(o) as X 0

1I
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It should be noted that in computing KI()X by numerical

integration, we need a mesh size Az that becomes progressively

J smaller as X gets correspondingly larger. This is necessary

for a reliable approximation to the value of the integral.

The total kernel functions K(X) for the same four sample

realizations that were used in the previous figures are shown

in Figures 11, 13, 15 and 17. The deviations from the normal

kernel, KOM = 1, depend on the nature of the random con-

ductivity function. However, the most important factor is

its value at the surface n(o). For all practical purposes this

asymptote is reached for X values of about 100.

The normalized apparent resistivity measured with a

pole-pole (or single pole) array may be expressed as
*( - a(r)-
p (r) = 0 = 1 - 4ErM(r) (3-18)

0°
where o a r) is the apparent resistivity

and po is the reciprocal of ao

The corresponding expression for the pole-dipole array is

*(Pa(r)2
C r) = - = 1 - 12er 2D(r) (3-19)

These normalized apparent resistivities are shown in

Figures 11, 13, 15 and 17 in which they are referred to as

"monopole" and "dipole" apparent resistivity curves. For a

homogeneous half-space these normalized apparent resistivities

have constant values of one. The deviations from this mean

value reflect the random nature of the conductivity profile.
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Clearly, these deviations approach zero as distance r from

the source increases.

The corresponding Wenner and Schlumberger apparent

resistivities will now be briefly examined. The normalized

Wenner apparent resistivity is• a , w(a)

Pw(a) - 0 = 2a 7 K(X)[Jo(Xa)-Jo(2Xa)] dX
P0 •

- 1 8ea (M(a) - M(2a) ) (3-20)

where a is the electrode spacing (Figure 18). It can be

shown that

Pw 1- en(0) as a - 0

and
• - 1 as a -

P
w

The normalized Schlumberger apparent resistivity is

* (a) as(a) 2
(a,____ a ! I(X)XJ Oa) dX

S 0

= 1 - l2ea 2 D(a) (3-21)

where the electrode spacing a is as shown in Figure 18. It

is obvious that

Ps i- - n(O) as a 0

and

P5 *1 as a-
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a a a

Wenner Array

-b -

Schiumberger Array

Figure 18. Wenner and Schiumberger electrode arrays.
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!I

Thus, for small electrode spacings the resistivity

measured with either array will be equal to the resistivity

j of the near-surface zone and for large electrode spacings

the effect of the random profile will be negligible since all

J Ithe variations tend to be averaged out when a greater depth

of the section is probed. These apparent resistivity curves

would be similar in shape to the kernel curves shown if the

independent variable on the latter is regarded as 1/a instead

of X . These resistivity curves resemble the standard two-

or three-layer curves for deterministic models. Although the

deviations from the corresponding curves for a homogeneous

earth are relatively small, these shifts in the curves for

small values of a are significant enough to affect the

accuracy of data interpretation. It is more convenient to

examine this in the next chapter when the two-layer model is

considered.

Sensitivity to Resistivity Variations

An indication of the relative sensitivity of direct current

methods to variations in the conductivity profile may be

obtained by studying the variance of the random potentials.

For monopole excitation the variance is

<Vl(r) Vl(r)> =4q f {gl(r) 2ea dw (3-22)
.. 0
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!
For dipole excitation, we have

4a 2 ~ 2 W2
<U1 (r) U1 (r)> I (g 2 ( r)} 2e- dw (3-23)

The variance at r-0 for both source configurations is equal

to 2 q2 as can be readily verified. Hence, the variance of

the normalized random potential for both cases is twice the

variance of the random conductivity function n. This is also

the maximum value of the variance.

The variances of the monopole and dipole random potentials,

2
after normalizing by 2q , are shown in Figures 19 and 20

for c = 0.15 and o = 1.5 respectively. It is apparent that

the variances of the random potentials decrease as measure-

ments are taken farther from the source. This indicates, not

unexpectedly, that the sensitivity of the measurements to

variations in the conductivity profile decreases markedly with

distance from the source. The variance is larger for a more

correlated random conductivity function (that is, when a is

large). For a completely uncorrelated function n(z) the

variance is zero except in the vicinity of the source. In

such a case, the conductivity variations cannot, theoretically,

be detected.

It is interesting to note that the variance of the normal-

ized random dipole potential is always greater than that due

to a monopole. This leads to the conclusion that measurements

made with a dipole source are more sensitive to conductivity

variations in the subsurface than those made with a monopole
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source. Consequently, the signal to noise ratio for dipole

excitation decreases more rapidly with distance from the

I source than that for monopole excitation.

Anisotropy

I The resistivity of a rock may depend on the direction

I in which a current flows through it. One cause of this is

the microscopic structure of the rock; the alignment of

f mineral grains may permit current to flow more readily along

the direction of the bedding plane or schistosity than perpen-

11 dicular to it. This is referred to as micro-anisotropy.

A sequence of parallel layers each with its own thickness and

resistivity will also give rise to a preferred direction of

current flow. In this case, we refer to structural anisotropy

or macro-anisotropy. For excellent discussions on the nature

and effects of anisotropy the reader is referred to Schlumberger

et al., 1934, Kunetz, 1966 and Keller, 1968.

Let us first examine the effects of micro-anisotropy.

Consider a one-layer medium in which the radial and vertical

conductivity functions are given by

Z = ay (1 + enr(z) ) (3-24)

'J (z) = a 0 (1 + enz(z) ) (3-25)•z(Zz

o o

in which the constants ar and rz are the mean conductivities

in the r and z directions respectively and nr and nz are

zero-mean stationary Gaussian random functions of z with pre-

scribed covariance functions.
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I
The coefficient of anisotropy B is defined as|0

(3-26)
0
z

Case I: If it is assumed that a (Z)/a (z) is constantrI

for all z , then

r r(z) - nz(Z)

In the interest of brevity in notation the subscripts (which

are now superfluous) for the function n and its transform N

will be dropped. As shown in Appendix B, tie normalized random

potentials for monopole and dipole sources are

Vl(r, o) = 2 f f2 !-- Qo() - } N() dw (3-27)
o 2 28 2$

Ul(r, o) = 2 ) (1 - j QI(•)} - l]N(w) dw .(3-28)

These equations differ from (3-3) and (3-4) for the isotropic

case only in the fact that there is now an additional factor

B.

The normalized covariances for various 8 and rI values

are shown in Figures 21 through 23. Inspection of these curves

leads to the following conclusion. The larger the coefficient

,f anisotropy the more correlated is the random potential.

It can also be shown that the variances of the random potentials

for a fixed distance r increases with a.

It is apparent that the term a in the equations above

are, essentially, no more than a scaling factor on the distance

r. Hence. not much additional informatiou is gained by con-

1. ,-aIMF-: EE
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sidering anisotropy separately, as is well known.

Case II: Instead of letting ar be random, let us

assume it is constant,

I ~0°r "r°

This implies nr (z) = 0. The monopole and dipole potentials,

as shown in Appendix B, are half the corresponding values

for Case I. It is therefore unnecessary to pursue this

case any further.

Macro-anisotropy: Before leaving the subject of

anisotropy, it is pertinent to note that even in the so-

called "isotropic" case, macro-anisotropy is implicitly

present when a random conductivity profile is assumed.

This is illustrated in the following manner. The average

transverse resistivity of a succession of beds, in the

limit, as bed thicknesses tend to zero, can be expressed

in the form

ot =f p(z)dz

where P(z) is the resistivity as a function of depth and

H is the total thickness of the sequence.

On the other hand, the average longitudinal conductivity

of the sequence is given by

S a(z)dz
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A

where a(z) is the conductivity as a function of depth.

The coefficient of macro-anisotropy is

- I

This value is extremely close to 1.0 for the conductivity j
distributions that have been used here. Even for the -4

relatively large value of 0.1 for the parameter e , this

coefficient of anisotropy is only about 1.005 on the average.

| • ~m• • • • • - " • ••'• " • • • • m•"•' •'•r •
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THE TWO-LAYER CASE

j! The randomly conductive overburden problem proposed in

this study arises in nature when a sedimentary basin is under-

S!lain by a basement. One can conceive of a sequence of thinly

layered sediments with slightly different electrical character-

istics for each layer. The conductivities, however, deviate

only marginally from the mean of the sedimentary section as

a whole. Frequently the "electrical" basement will have a

j much higher resistivity than the overburden (that is, the

reflection coefficient k is positive). For all practical

purposes the basement resistivity is constant relative to the

variability in the more conductive overburden. However, one

can conceivably have a situation in the field in which the

basement is more conductive. The question then naturally

arises as to whether the model, as it is assumed, is applicable.

It would seem to be more appropriate in this case to have the

variability in the more conductive basement. It should be

pointed out, however, that shallower layers have a greater effect

on the surface measurements than deeper layers.

In any case, -the statistical properties of the random

overburden model for both positive and negative reflection co-

efficients will be examined, bearing in mind that the case of

a more resistive basement is generally of greater interest

from a practical viewpoint. It is appropriate to stress here

that although this is referred to as a "two-layer" model, one
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is in fact dealing with infinitely many layers in the over-

burden. Equivalently, one may refer to this as a randomly

layered model.

Sample Realizations

It is of considerable interest to the interpreter of

field data to know the extent to which the variability in the

conductivity profile affects the apparent resistivity and

kernel function curves. With this in mind, some representative

sample realizations of the random conductivity function and

the corresponding kernel and apparent resistivity curves will

be examined.
Kernel function: The equation for the stochastic kernel

in equation (2-24) can be rewritten explicitly in terms of

z as follows:

2X h z 2Az
K-- / n(z)e dz

0

4k 2 Xe-4Xh h
2 f n(z) cosh 2Xz dz (4- 1)

0

It is recalled from equation (2-22) that the deterministic

two-layer kernel is

K M VKo (A) -

The total kernel is

K(A) = 0 (X) + EKI(A)

I
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The asymptotes of the kernel functions are worth examining.

AsX 0 K 1+k
0 01-k

and

as X Ko l

Obviously, K1 . 0 as X - 0 except when the basement is

infinitely resistive (k = 1) in which case the expression

increases without limit and the solution is not applicable.

To derive the other asymptote the equation for K1 needs to be

rewritten as

K2 (l+ke-2Xh)X h 2XzKI(X) e 2 h I n(z)e dz(1-ke-2h 0

2ke2 h e 2X( 2 h-z) e 2A( 2 h+z)} n(z) dz(ke2Xh)2 f (e- + e-

(4- 2)

For large X (> 5) the second integral is negligible compared

to the first. (For ), = 4 the first integral is 3 orders of

magnitude larger than the second; for X = 5 it is 4 orders

of magnitude larger. The ratio of the first to the second is

approximately e2X for large X .) In addition, for large X

the first term in equation (4-2) approaches -r(O). Hence,
1l+k

K(X) 1-k as X - 0 and K(X) ÷ 1 -cn(0) as X co

The second asymptote is independent of k.

Some examples of the sample realizations of the kernel

function K(M) for k = ± 0.8 and a = 0.05 are presented in

Figures 24 through 27. Superimposed on these are the deter-
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I
ministic kernel functions Ko(X) plotted as solid lines in

the figures. The random conductivity functions n(z) are

shown in the upper right-hand corners of the graphs. The

parameter c has been set at the relatively large value of

0.1 to accentuate the deviations from the mean. The abscissa

in each graph is in dimensionless units of Xlh

These representative curves show the range and nature of

deviations from the mean. The most important factor evidently

is the value n(O). Depending on the actual nature of n(z)

the kernel functions may look like those of a deterministic

two-layer case (with appropriate shifts in the axes) or, in

extreme cases, for example in Figure 24, they may resemble those

of three-layer models.

The deviations in the kernel function are more clearly

illustrated if graphs of the changes relative to the cor-

responding deterministic values are plotted. The relative

change is defined as

EKl(M
x 100%

K M()
0

Curves showing these relative deviations comprise the upper

halves of Figures 28 to 34, the first four of which correspond

to the same four random functions used in Figures 24 to 27. The

asymptotic values are zero (as X - 0) and -En(O) x 100% (as

X approaches infinity). These deviations are either positive

or negative depending on the actual form of the random function

and on the particular • values.
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Figure 30. Sample realization No. 3 of percent deviation in
kernel and apparent resistivity functions for
k = t 0.8.
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Figure 31. Sample realization No. 4 of percent deviation in
kernel and apparent resistivity functions for
k ±_0.8.
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Figure 32. Sample realization No. 5 of percent deviation inI kernel and apparent resistivity functions for
k =±0.8.
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It is interesting to note that the curves for k - + 0.8

and k = - 0.8 are identical. To see the theoretical basis

for this let us write

1h rh(z)e dz (-4k 2e x
K(X) - 2X I z + 2e_4Xh f n(z)e- 4Xhcosh 2Xz dz.

(4- 
3)

Evidently, this ratio is independent of the sign of k. The

magnitude of k, however, does affect the ratio. Inasmuch as

the ratio, for large X , depends only on the first term in

the equation above, it is independent of the magnitude of k.

For small X values however, the second term becomes significant;

its value increases as Ikl increases. In any case, this ratio

tends to zero as X approaches zero. This discussion is

supported by Figures 35 and 36 for k = 0.5 and k + 0.99

respectively. They are to be compared to Figure 28 which uses

the same realization of the random function.

Apparent resistivity: As noted previously, the normalized

apparent resistivities for the Wenner and Schlumberger arrays

are, respectively,

w (a) = 2a AKM) {Jo(0a) - Jo(2Xa)} dX (4- 4)

andI* a
Ps (a) a f K(X) X J1(pa) dA (4- 5)

0

Only thp Wennp- qray will be used for the following discussion.

Since K(X) = K ( ) + EK 1() equation (4-4) can be de-

composed into deterministic and stochastic parts:
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Figure 35. Sample realization No. 1 of percent deviation in
kernel and apparent resistivity functions for
k =±0.5.
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-0 2a K oM) {Jo(Aa) - Jo(2Xa)} dX (4- 6)0

1 -4a f n(z) f f {Jo(Xa) - J (2Xa)} dX dz
0 0

h OD

12-8ak 2 f n(z) I f 2 {Jo(Xa) - J (2Xa)} dX dz (....
0 0 0 0

-2Xh -V~z
where fl(X, z) = A(l+ke- )e-(-8(lke- 2 Xh) (4- 8)

f(, z) - Xe-4 hcosh 2Xz(lke 2 h)2 (4- 9)

A rapid and reasonably accurate procedure for evaluating

Hankel transform integrals is the use of digital linear filters.

This method is already well established (for example Ghosh,

1971 and Anderson, 1975). In general, this approach is about

five times faster than numerical integration by Gaussi.an

quadrature and provides accepzable accuracy of about four

significant figures (Anderson, 1974).

In order for this method to be applicable however, the

functions to be transformed (f, and f2 in this case) must

be monotonic decreasing as X * =. Inspection of equation (4-8)

reveals that f, satisfies this requirement except when z = 0.

In this special case one can expand fi as an infinite series,

find the Hankel transform analytically term by term (Erdelyi,

1954) and finally obtain a power series expression as follows:
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0 l(X O)Jo(Xr) 4h nk 2 (4-10)

S0 ' n-1 t(2nh)2 + r (

It is interesting to note that even when z - 0 the digital

filter approach yields results of acceptable accuracy when

compared with the exact value as given in equation (4-10).

Similarly, it can be shown that f 2 approaches zero as

X ÷ for all values of z. Hence, we can apply Hankel trans-

form filters for the evaluation of part of equation (4-7).

Equation (4-6) for the deterministic term can also be

evaluated by the digital filter approach if it is rewritten

in the form

I + ke-2Xh
Pw 0 +4a f k h (Jo(Na) - Jo(2Xa)} dX (4-11)ol1-ke-2

Seven representative sample realizations of normalized

Wenner apparent resistivity curves for a = 0.05, c = 0.1 and

k = 1 0.8 are shown in Figures 37 through 43. The abscissae

are in dimensionless units of a/h. These curves are similar

to those for the kernel functions (if the abscissae are re-

versed) except for the well known fact that apparent resistivity

curves are not symmetrical about the line Pw = 1 for positive

and negative values of k; the kernel function, on the other

hand, is symmetrical about the line K(X) = 1 for positive

and negative values of k.

It is intuitively obvious that as the electrode spacing

a approaches zero, the normalized apparent resistivity
,approaches 1 - •n(O). As the spacing a becomes large o.
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approaches the deterministic value of (1 + k)/(l - k) as

the effect of the random nature of the overburden becomes

negligible. Most of the information in this part of the

sounding curve is returned from the basement.

The relative deviations from the mean apparent resistivity

curves are shown in the lower halves of Figures 28 to 36. The

asymmetric nature of the apparent resistivity curves with

respect to the sign of k is quite apparent. It is interesting

to note that the curves for positive k are remarkably similar

to those for the kernel function.

As in the case of the kernel function an increase in

the magnitude of k increases the relative change in the

apparent resistivity curves for large electrode spacings,

out has no effect for small spacings. The difference between

the curves for positive and negative values of k is accentuated

if k has a greater magnitude.

Ensemble Statistics

It has been well established in the literature that the

kernel function embodies all the information about layer para-

meters which are contained in the apparent resistivity curve

itself. In the interest of economy in computation time the

study of ensemble statistics is confined to the kernel function

instead of the apparent resistivity function to which it is

related via a Hankel transformation.

Equation (2-24) rewritten in a more convenient fnrm

becomes
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II
?I •

K(X) = W f (ql + q 2 + q 3 N() d (4-12)
C 0

where
W 4N

Wql(X) )

'_q(• •) = 2Xe 2 Xh(l-k 2 )cos wh

q3 (W, X) ) w sin wh

The mean <K,(X)> is obviously zero since <N(w)> is zero. The

covariance is
2 Go 2 2

<KI(Xl)Kl(x 2)> ... W(X1 )W(X 2 ) !T(w,Xl)T(w,X 2 )e- dw1W 2
V 72 0 d

(4-13)

where T = q, + q2 + q3

Convergence of the integral is assured by the presence of the

exponential term. The covariance, normalized by the standard

deviations, is

R(Al' X2) 1 1) 2  (4-14)

{<K 1 (X1 )KI(X 1 )> <K1(X2)KI(N2)>}'

The normalized covariance, computed for representative

values of X Pnd a are shown in Figures 44 and 45. It is clear

that as a increases the stochastic kernel function becomes

more correlated. In addition, the larger the X value the

more correlated is the random kernel. Thus, a more correlated
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random function n(z) will be reflected in a more correlated

random kernel function.

Sample Statistics

Two hundred sample realizations of the random kernel as

given in equation (4-1) were computed and the distributions

tabulated in the form of histograms. Some of these are shown

in Figures 46 and 47. Using the chi-square goodness of fit

test all the distributions generated for various a and X

values were found to be Gaussian at the 5% level of significance.

The computed means are generally much less than 0.05

while the standard deviations are approximately in the range

0.5 to 1.0. The coefficients of skewness are in general less

than 0.2 in magnitude, being about evenly distributed between

positive and negative values.

It is known that a Gaussian process preserves its Gaussian

form after a linear transformation (Freeman, 1958). Inasmuch

as the Hankel transformation of the kernel function to the

apparent resistivity function is a linear process (Ghosh, 1971)

one may conclude that the random apparent resistivities are,

at the 5% level of significance, normally distributed about

their mean values.

Effect on Interpretation of Data

It is appropriate at this point to pose the following

questions. What effect does a random distribution of earth

conductivities have on resistivity sounding curves? To what
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extent is the interpretation of resistivity data affected?

How can these effects be taken into consideration during

data interpretation? These and related questions will be

discussed in the following paragraphs.

The effect of the random nature of the distribution of

conductivities on an apparent resistivity sounding curve is

greates. for small electrode spacings. With small spacings

we are, effectively, probing only the shallower regions of the

earth. It is evident from the results presented previously

that as the electrode spacing a decreases the apparent

resistivity approaches the resistivity of the near-surface

zone, that is,

p(o) = p0 (1 - En(o) )

As the spacing a increases more and more information is

returned from the deeper regions of the earth and the apparent

resistivity approaches the resistivity P2 of the lower layer

(basement). In this case, the random conductivity profile

in the overburden has a negligible effect. Thus, the net effect

of the random conductivity distribution in the overburden is

to shift the part of the sounding curve for small a up or

down (in the sense of the vertical apparent resistivity axis

of the curve) relative to the part of the curve for large a

according as P(o) is greater or less than the mean overburden

resistivity Ps This relative shift can be considerable

derpndin• directly cn how much ý(c) deviates from po. As
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a practical example, the near-surface zone of a sedimentary

section is probably drier than the lower zones. This results

in an increase in its resistivity relative to the rest of the

section.

The variability in the resistivity profile tends to be

smoothed out in the sounding curve. Consequently, the earth

may be viewed as a high frequency filter for the noise in

the system. The shape of the resulting sounding curve depends

to a large extent on the functiou n(z). However, the value

n(o) has a disproportionate effect on this. The apparent

resistivity curve may resemble a two-layer curve, as is usually

the case (for example Figures 39 and 40) or there may be

distinct indications of an "intermediate layer" as in Figure

37. Such deviations are usually small and are difficult to

detect. In additior, measuremen't noise (which includes

instrument noise, human error and lateral inhomogeneities)

tends to mask these small deviations. In practice these

curves would tend to be considered as two-layer curves with

slightly different parameters.

For a semi-quantitative estimate of the magnitude and

type of errors introduced in the interpretation of such

curves we will resort to standard curve-matching techniques.

Several two-layer apparent resistivity curves were traced

from the standard curves of Orellana and Mooney (1966).

Deviations of 110% and 1207o were then introduced into the

parts of the curves which correspond to small electrode

I


