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PREFACE

The study reported here was undertaken to develope an understanding of the failure
of some pressure stabilized beams and arches which were fabricated under contract using
a three-dimensional weaving technique. The tubes failed at pressures well below the design
pressure and it was speculated that the cause of these failures might be unequal length
fill yarns caused by poor control of the fill yarn tension during weaving. These beams
and arches were fabricated for use in 16 x 16 ft prototype tents as a part of our program
to develope the pressurized rib concept for Army tentage.
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EFFECT OF NONUNIFORM YARN LENGTHS ON THE
STRENGTH OF PRESSURIZED FABRIC TUBES

INTRODUCTION

The use of woven fabric tubes as pressure vessels requires the ability to design such
tubes to resist the stress imposed by the pressure. For many geometries, the cylinder,
sphere, and torus for example, the stresses resulting from internal pressurization are easily
calculated. If the breaking strength of the fabric is known, then the design problem
is quite simple. However, frequently only the breaking strenght of the yarn used to weave
the fabric is known, and the design problem is then more complex because of reduction
in strength due to weaving and the biaxial state of stress. One cause of these reductions
in strength is in the inaccuracies of the weaving process which are typified by the woven
cylinder in which the warp yarns run parallel to the axis and the fill yarns form the
circumference of the cylinder. For the cylinder the design stress is the circumferential
stress resisted by the fill yarns, and if the weaving process produces a cylinder in which
the fill yarns are of differing lengths they do not all support the load equally and strength
is reduced. The effect of this length variation on the strength of the fabric is the subject
of this report.







ANALYSIS

The load-deformation behavior and the failure of woven cylinders subject to internal
pressure will be analyzed. This analysis will include the effect of variations in the lengths
of the fill yarns forming the circumference of the cylinder. In the pressurized cylinder
the circumferential stress, Ng. is the largest and is uniform throughout the cylinder. Ny
is given in-terms of the pressure, P, and the radius, vy, as

Ng = Py (1)

For the purposes of analysis we can model the situation for varying length yarns as
illustrated in figure 1. We consider a unit length along the axis consisting of J fill yarns
of differing lengths and subject to a total force F. Since we are dealing with a unit
length the magnitude of F is equal to Py. The yarns are in tension, and because of
the difference in length all do not support the load. This is modeled by a series of
J axial members of varying lengths with the total load applied through a yoke which
applies load only to shortest member at first, but as the deformation continues due to
increased pressure, the longer yarns are contacted and begin to support the load. We
take as a measure of the deformation the movement of the yoke, x. The lengths of
the yarns are denoted by Ij and each yarn is assumed to obey the following linear
deformation law

fj = KUj i=123.4 (2)

where f: and U; are respectively the force in the yarn and the elongation of the yarn.
Assuming that the numbers |; are arranged in ascending order, the load-deformation
behavior can be described as follows: When the load is first applied the shortest yarn
supports all the load and continues to do so as the load increases until x = U, = I — ly.

Thus for

OSX<“2 —ll)

F=f|
f, =Kx
x = F/K
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As the deformation x becomes larger than {l, — |} the second yarn becomes stressed
and supports part of the load, so for

(= 1) <x < ly = 1)
F=f +f

f; = Kx

= Kix =, —11}]

x = F2K +1/2 (I, — 1))

When the deformation becomes greater than (I; — |,;) the third yarn becomes stressed
and it too supports part of the load, so for

(|3—|1)§X<“4"'1)
F=1 +f +1
f1=KX

K Ix = l; — 11

—+
[ ]
]

K Ix = (s = 1;}]

—n
w
]

x = F/3K +1/3 (, — L) + 1/3 (I; —I,)

Continuation of this analysis leads to the following general relations when L yarns are
effective in supporting load:

(g =1 < x <l 4 —h)

L
F= 3 f | (3a)
j=1
fj = K [x — (Ij -}l {(3b)
1 L
x = FILK +— Y (I = 1) (3c)
L




This process is then continued until L = J. Equations {3} appear deceivingly simple in
that it seems that if the total force F is specified then x and the f; are computable.
This however is not the case because the limit on the summation, L, in equation (3c)
is not known and is in fact deperident on'x, the total deformation, which in turn is
dependent on F; thus equation (3¢) in nonlinear. An example of the load-deformation
curve associated with equations (3) is shown graphically in figure 2 for the case of J = 7.
On the deformation axis the value at which each of the yarns begins to support load,
refered to hereafter as yarn take-up points, are noted since these are known if the lengths
are known. On the force axis the values corresponding to the yarn take-up points are
shown. These forces can be computed from equation (3c} since the magnitude of x is
known at the take-up points, Also shown on the figure are the load-deformation curves
for each of the yarns.

These all have the same slope but differ in the magnitude of x for which they begin
to support load. For any value of x the magnitude of the force F can be found by
summing the yarn forces for the value of x. This then gives a complete description of
the load-deformation behavior of a fabric cylinder under pressure with circumferential
varns of unequal length.

We now address the question of using this analysis of the load-deformation behavior
to estimate the breaking strength so that its reduction due to variations in length of fill
yarns in the fabric can be determined. To do this it is necessary to adopt a failure
criteria, and we chose the initiation of failure, that is, the breaking of the most highly
loaded yarn which is the shortest yarn, the one with length 1,. Using this failure criteria,
the failure load F can be found by computing the magnitude of x for which f, = fy,
the breaking load of the yarn. This computation is accomplished using equation (3b)
with j = 1 and f; = f,. Given this magnitude of deformation for breakage of the first
yarn, Xy, it is possible to determine the number of yarns supporting the load by comparison
of xy, with the yarn take-up values (l; — I;). The number of yarns supporting load is
set equal to L and the force causing breakage l_is given by

i=1
which is obtained from equation (3c).

In order to provide some basis for comparison, the strength of the ideal fabric is
assumed to be the product of the yarn breaking strength and the number of yarns per
unit of width.

~n

F = (5)
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A measure of the reduction in strength caused by the unequal length yarns will then
be taken as the ratio of this ideal fabric strength and the strength given by equation
(4).

As can be seen, this analysis requires some knowledge of the fill yarn lengths. This
information is not generally known in advance or even after the fact in any exact sense,
so the lengths are here taken as some nominal length plus a random variation about this
nominal length. This random variation is assumed to be normally distributed. Instead
of attempting to carmry out a formal analysis of the strength reduction using this model
of the length variation, a computer simulation will be used. In this simulation the statistics
of the length variation, the mean and standard deviation, will be specified, and statistic
of the strength will be computed.

For carrying out such a simulation is is convenient to write equations (3) in
nondimensional form. Adopting the yarn breaking load, fp. @nd the nominal or average
fill yarn length, |, as the characteristic force and length parameters the equations become

L
F= 3 ﬁ (6a)
j=1
?J- =K [~ (¢f — )] {6b)
L
£ = F/LK + % .21 (ej — e;) (6c)
where
?-j = fj/fb
£ = x/l
F = F/fy (7)
ej = Ijll
K = KL/fb
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Examination of these nondimensional equations and parameter definitions reveals that
breakage of the shortest yarn occurs when ¥, = 1 and that the strength of the ideal
fabric, see equation (5), has a magnitude equal to the number of yarns per unit length, J.
In addition, if the distribution of random lengths is to be centered about the nominal
length, then the nondimensional lengths, e;, will have a unit mean.

A copy of the Fortran program used to carry out this simulation is presented in
the Appendix. The program has liberal use of comments defining all the parameters.
. The subroutines used to generate the normally distributed lengths and to compute the
mean and standard deviation of the failure load are Univac 1108 Math-Pac subroutines.

The simulation is carried out in the following fashion. A seguence of IS sets of
random numbers are computed, each of the sets contains J elements and represent the
randomly distributed yarn lengths the mean and standard deviation of which are read
as input. For each set of yarn lengths the load-deformation curve is computed as is
the breaking strength of the fabric. Once these calculations have been carried out for
all of the sets of yamn lengths we have a sequence of fabric breaking strengths which
are used to compute the average and standard deviation of the fabric breaking strength.
This average breaking strength is then taken as the measure of the reduction in strength
resulting from the variation in yarn length.

15







DISCUSSION

In this section we examine the results of this simulation beginning with the
convergence of the process. In Table 1 the behavior of the average and standard deviation
of the failure load with the number of sequences of yarn lengths used in the simulation
is shown. The process appears to converge quite rapidly as the number of sequences
is increased. With eight and greater sequences the average breaking strength changes very
little in comparison with the standard deviation of the breaking strength which remains
fairly constant over this range of number of sequences. There is no uniform trend in
the average breaking strength so it is difficult to say the result has converged or is converging
in any classical sense, but it is believed that the data in Table 1 shows that the simulation
process is stable and that useful results can be obtained. The remainder of results presented
were computed using 10 sequences of lengths.

An additional check on the behavior of the process is provided by examining the
behavior of the average breaking strength as the standard deviation of the yarn lengths
becomes small as shown in Table 2. As the standard deviation becomes very small the
fabric approaches perfection, and it is expected that the breaking strength will approach
that of the ideal fabric which in nondimensional form is equal to the number of yarns
per unit length. Examination of the data in Table 2 reveals that the process is well
behaved with respect to decreasing yarn length standard deviation. In addition to the
average breaking strength approaching the ideal fabric strength, the standard deviation of
the breaking strength becomes very small. These results are exhibited for both values
of stiffness and yarn densities shown. All resultsin Table 2 are for average nondimensional
varn lengths of unity.

The effect of variation in yarn length within a fabric on the breaking strength of
the fabric is shown graphically in figure 3. Results are shown for fabrics with yarn densities
of 10, 16, and 18 vyarns per unit width all having nondimensional yarn stiffness of 22.0
and with a yarn density of 16 yarns per unit width having a stiffness of 11.0. As the
independent variable which is the standard deviation of the yarn length approaches zero
the fabric approaches perfection, and it can be seen that the breaking strengths approach
that of a perfect fabric which in nondimensional form has the value of the yarn density.
The other limiting case is for large values of the independent variable, and examination
of the results in figure 3 reveals that the breaking strengths of all fabrics approach a
common value. To understand this result it must be realized that as the standard deviation
becomes large it is possible for the most highly stressed yarn to reach its breaking strength,
which is here defined as fabric failure, before sufficient deformation has taken place so
that all yarns are supporting load. Thus, what is seen in figure 3 for large values of
the standard deviation is that all the fabrics have nearly the same number of yarns
supporting load, thus they are nearly identical fabrics with respect to their ability to support
load. The average number of yarns supporting load at failure are shown in Tabie 3 for
each of the fabrics considered in figure 3. The independent variable in this table is again

17




TABLE 1

Behavior of Simulation Process
with Number of Yarn Length Sequences

Fabric Breaking Strength

No. of Nondimensional
Yarn Length Standard
Sequences Average Deviation
1 13.54
2 13.54 0.00
5 12.70 1.28
8 12.74 1.11
10 12.92 1.05
15 12.86 1.09
20 12.80 0.99
25 12.76 0.94
30 12.74 0.94

Number of Yarns/unit width = 16
Yarn lengths (nondimensional}
Average=1.0
Standard Deviation = 0.005
Nondimensional Yarn stiffness = 22.0

18
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Yarn
Length
Standard
Deviation

0.001
0.0025
0.005
0.0075
0.01
0.0125
0.015
0.0175
0.02
0.025
0.03
0.04
0.05

Average Number of Yarns

TABLE 3

Supporting Load at Failure

N=18
K=220

Yarns Supporting Load

K=220

16
16
16
16
15
14
13
12
11

H N

20

N=16

K=11.0

16
16
16
16
16
16
16
16
15
14
13
11

9




NONDIMENSIONAL FABRIC BREAKING STRENGTH
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the standard deviation of the yarn length and for large values of this parameter it is seen
that the number of yarns supporting load at failure approaches a common value. This
reasoning leads to the conclusion that the limiting value of the breaking strength for large
standard deviation is unity, meaning that only one yarn is supporting load at failure. This
limit is in all likelihood way beyond the situations which arise in actual fabrics.

The data presented in figure 3 also reveals that the reduction in breaking strength
is much less severe for the fabric woven with yarns having lower stiffness. This result
is not unexpected because the lower stiffness provides for more deformation and thus
a more uniform distribution of the load among the yarns.

In addition to the fabric strength.the analysis carried out also gives the load-deflection
behavior of the fabric, a typical example of which is given in figure 4. Although it is
difficult to discern from the figure, this curve is piecewise linear. The general character
which can be described as stiffening with increasing deformation is typical of stress-strain
behavior obtained for most fabrics. This stiffening effect in fabric is usually attributed
to crimp interchange or to a transfer from the relatively low stiffness bending mode of
deformation to the high stiffness axial mode of deformation of the yarns in the fabric.
While this crimp interchange or take-up is a likely mechanism, the results presented here
suggest another possible mechanism based on unevenness of the load distribution among
the yarns. Experimentally observed behavior may be a combination of these mechanisms.

This analysis was prompted by our experience with some woven Kevlar tubes which
failed at a pressure far below their design pressure and nonuniformity of the length of
the circumferential yarns was suggested as a possible cause of the premature failure. The
tubes woven with 44 tex Kevlar 29 yarn and a circumferential yarn count of 18 vyarns
per cm were 0.163 m in diameter. This yarn material has a breaking strength of
1.94 N/tex and a modulus of 42 N/tex. Based on these numbers, the breaking pressure
should have been 1861 KPa, but in tests one tube failed at 310 KPa and another at
330 KPa. Thus, a strength reduction on the order of 1/6 was observed. The
nondimensional yarn stiffness for the yarns used is 22, and since the yarn count is 18,
we can use the result on figure 3 to determine the likelihood of nonuniformity of yarn
lengths in causing the premature failure. The failures occured at 1/6 of that of the ideal
or perfect fabric. The nondimensional breaking strength for the pefect fabric is 18 so
failure occured at 3 and data given in figure 3 indicates that a yamn length standard
deviation of about.0.025 is required to cause that reduction in breaking strength.

In using this nondimensional result to interpret the physical behavior we first examine
the complete tube assuming that the variability is distributed throughout the tube
circumference. Recalling that the tube diameter was 0.163 m, we have a nominal yarn
length, |, of 0.561 m, the tube circumference. Thus the yarn length standard deviation
required to cause the observed strength reduction is 0.013 m, or 2.5% of the nominal
or average length. A visual examination was made of yarns taken from the woven tube
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and no variations in length approaching this magnitude were found. So it was concluded
that this mechanism based on involvement of the full length of the circumferential yarn
does not explain the observed premature failures. This analysis can also be used to examine
the local behavior around the crease or fold: line that results from weaving the tubes.
The tubes are woven in a flat configuration as shown in figure 5a. A complete
circumferential yarn requires two passes of the shuttle and a fold line or crease is generated
where the yarn changes direction. It is speculated that, because of the difficulties in
keeping yarn tension constant as the shuttle changes direction, the variations in yarn length
may be concentrated in the fold region. [f this is the case we can model the behavior
as shown in figure Bb by treating a segment of fabric of width | centered about the
crease line. Within this segment yarns have variable lengths because of the unequal amounts
of slack in the yarns. Because of the slack and the resulting variable lengths, the stress
in the fabric is not uniform. It is assumed, however, that this nonuniformity diffuses,
and that at some distance from the crease line the stress becomes uniform. We take
| to be twice that distance. The model shown in figure 5b then has a series of yarns
having unequal lengths and loaded by a uniform load. In this model the number of
yarns supporting the load depends on the magnitude of the load and is thus identical
analytically with the model developed previously in this report. |n examining the physical
case with this model, even less is known since the average length | is not known. That
is, the distance required for redistribution of the stress is not known. The best that
can be done is to examine the behavior as a function of | and see if the results seem
feasible. Using the nondimensional result above we find that the yarn length standard
deviation must be 0.025 | for the observed strength reduction. Thus, if | is 10 cm,
the stress redistribution would occur within 5 ¢cm from the crease line, and the standard
deviation in length would be 0.25 cm. Similarly for | = 5 c¢m the standard deviation
would be 0.125 cm. Variations in length of this magnitude probably would not have
been noticed in the visual examination of the yarns and, with a thread count of
18 yarns per cm, redistribution of the stress in distance of 5 to 10 cm seems possible.
In addition, the premature failures occurred most frequently in tubes that had been coated
with a latex material which would accelerate the redistribution of stress by increasing
shear stiffness. These facts suggest that this local yarn length variation is responsible for the
premature failure of these woven tubes.
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CONCLUDING REMARKS

An analysis of the load-deformation behavior and the failure of woven fabric tubes
having circumferential yarns of unequal lengths has been presented. The results of the
analysis shows that significant strength reductions can be caused by this phenomenon and
that it may also be a mechanism in the deformation of fabrics which contributes to the
stiffening of the stress-strain curve of fabrics as the deformation or elongation increases.

The results of the analysis were used to examine possible causes of failure of woven
Kevlar tubes at pressure levels of 1/6 the design level. [t was concluded that the presence
of variable length yarns could not explain this premature failure if the variability was
distributed throughout the circumference of the tubes. If, however, the variability is
concentrated in the region of the crease line developed during weaving, then the results
suggest that yarn length variation contributed to the premature failures.
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APPENDIX
Fortran program for computer

simulation of fabric strength
reduction
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60 c MaX. YARN FORCESFTes AT YARN TAKE UPS
61 DO 1C2 JT=3sNP
62 DRL(JTIZGL(JT-1)-QL (1)
63 JAz=JT-2
64 TF=0.0
65 DO 1803 K=1¢J0
66 TFSS(QL{JQ¢1)-QL (K) ) «SKA
67 103 TF=TF4+TFS :
68 CFT(JT¥= TF
69 1003 fFORMAT(4Xs*FORCESIN YARNS AT BREAK*/9+(1Xs6E16.8))
70 1007 FORMAT (1Xe*TAKE UP POINT NO.'rIY)
71 100C FORMAT(1Xe*DEFORMATIO TO TAKE Up poINT=*+£16.8/
72 o 1Xe*TOTAL FORCE AT TAKE UP POINT='¢E16.8/
73 , « IX9*FORCE IN SHORTEST YARN AT TAKE UP=*sF16.8/7)
14 SFT(JTI=SKA=(GLCUT-13-QL (1))
15 IF(NPR NE.D)GO TO 106
16 HRITE(E+1007) 40
77 C PRINT FORCE-DEFOR,. AT YARN TAKE-UPS
78 WRITE(G6+¢1000Y DALC(JTY s CFTI{UTIoSFT (JT)
79 106 CONTINUE
80 C MONITOR MaX, YARN FORCE FOR BREAK
81 IF(ISFT(JT) o GEal1a0) «ANDL(LCKLEQ.D)) GO TO 108
82 G0 TO 102
83 104 JMAX=JT
8y LCK=1
85 102 CONTINUE
86 TFIJMAX EQ,O)JMAXCN+2
87 JM2ZZJMAX-2
88 1001 FORMAT(1Xs°*NUMBER OF YARNS SUPPORTING LOAD=*rI4/)
89 JUZSZJUMZ2S+JM2
90 C COMPUTE FAILURE LOAD AND DEFORMATION
g1 D1=1.0-SFT(JMAX-1)
92 D2=DAL(JMAXY-DAL (JMAX-1)
S3 D3I=SFT(JMAX)-SFTIUMAX-1)
94 XF(JSI=DGRL (UMAX~-1) +D1+D2/D3
95 TSL=0.0C
96 DO 105 NSz=1s9M2
97 TFS=SKA#(XF (JS)-(QL{NS)-QGp (1) 1})
9g FS(NS)I=TFS
99 105 TSL=TSL+TFS
100 FL (JS)=TSL
101 JM2AzJM2S /IS
102 IFI(NPR.EG.2) GO TO 100
103 IFINPR LT 2) 60 TO 107
104 c PRINT YARN FORCES AT FAILURE
105 HRITE(E+1003) (FSC(IP)s»IP=1¢ JM2)
106 C PRINT DEF. &8TYOTAL FORCE AT FAILURE FOR CURRENT SEQUENCE
107 107 WRITE(G»10C2IXF(JSTeFL (4S)
108 c PRINYT N0« OF YARNS CARRYING LOAD AT FAILURE
109 KRITEl6r¢1C01) JM2
110 100 CONTINVUE
112 arl=-1_0
112 c COMPUTE AND PRINT STATICS ofF FAILURE LOAD
112 call STDEV(FLsISsAFL ¢SDF)
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11%
115
ile
117
11is
119
120
121
122
123
123
125
126
127
128
129
130
131
132
133
13%
135
136
137
138
139
1isC
141
182
143
144
185
186
187
148

aPRTeS

YRITE{(GI00MAFL o SDFL
1002 FORMATy 71iXe?DEFORMATION QT_FQILURE' sE16.80/
o IXevFa7LURE LOAD=®9E16,8) ‘
1008 FORMATiIIZXs'FQILURE LOAD ST&TISTICS'/
o IX e v AVERAGE="+E16,89/
«1X s *STANDARD DEUIATIDN:“»Elsssl

¢ PRINT AVFRAGE NO, OF YaARNS SUPppRTING LOAD AT FAILURE

WRITEL 6210053 JM24

1005 FORMATL/1Xev aVERAGE NUMBER OF YARNS SUPPORTING LOAD="eT16G/)

IF{NPLL.EQ,DIG0 TO 110
PLOT LOAD-DEFORMATION BEHAVIQR
COMMENT MEXT 18 STATEMENTS TO REMOVE PLOTTING
CALL TINITT(30)
CALL BINITT .
CALL CHECK (DAL oCFT)
CALL DSPLAV{DQL#»CFT}
CALL MOVABS(025.400)
CALL VLABEL{4eVL)
caLl NOT&IE;HUU:BZS:lleL}
CALL LINE{72)
CALL CPLOT(DOLsSFT}
CALL VCURSR{IAeXIsYI}
CALL MOVEAGXI+YI)
CALL SCURSR{IA+IXeIV)
CALL MOVABS (IXeIY}
WRITE{6¢1010) QLMeQLSDsSKAeN
CALL ANMODE _
1010 FORMAT(24X+*YARN LENGTH®/

o0

o

o 24Xp® AVERAGE="sF16.8/
. 2UXg® STANDARD DEVIATION:=?sF16.8/
o 20X *YARN STIFFNESS='»sE16.8/
« 28Ne *NO. OF YARNS="»I4%)
CaLL FINITT(Qs7C0} , , -

110 SToOP ‘

END

ECSsJUNK .DESORD
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ECS*«JUNK(1).DESORD

100

fuy
OWwo~NOOUNsEWNE

11 ict
12
13

1y
15 102

16
17

aFIN

SUBROUTINE DESORD(&sN)
DIMENSION a(N)
LIM=N-1

INT=1

DO 1C1 I=1:LIM
IFLA({I+1).6E.4{Y)) GO To 101
TEMP=8({I+1) ‘
ACI+1Y¥=A(I)

ST I=TEMP

INT=T )

CONTINUE ‘ :
IF(INT,E£Q,1) GO TC 102
LIMZINT-1

60 TO 100

CONTINUE

RETURN

END
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LIS

LIST OF SYMBOLS
Nondimensional yarn lengths
Yarn forces
Nondimensional yarn forces
Yarn breaking strength
Total force acting on the fabric
Total force on fabric at failure
Nondimensional form of F
Breaking strength of ideal fabric
Subscript designating yarns
Number of yarns per unit width of fabric
Yarn stiffness
Yarn lengths
Average or mean vyarn length
Number of yarns supporting load
Circumferential stress resultant
Pressure
Tube radius
Yam deformation
Fabric deformation
Fabric deformation at failure
Nondimensional fabric deformation

Nondimensional yarn stiffness
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