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PREFACE 

The study reported here was undertaken to develope an understanding of the failure 
of some pressure stabilized beams and arches which were fabricated under contract using 
a three-dimensional weaving technique. The tubes failed at pressures well below the design 
pressure and it was speculated that the cause of these failures might be unequal length 
fill yarns caused by poor control of the fill yarn tension during weaving. These beams 
and arches were fabricated for use in 16 x 16 ft prototype tents as a part of our program 
to develope the pressurized rib concept for Army tentage. 
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EFFECT OF NONUNIFORM YARN  LENGTHS ON THE 
STRENGTH OF PRESSURIZED  FABRIC TUBES 

INTRODUCTION 

The use of woven fabric tubes as pressure vessels requires the ability to design such 
tubes to resist the stress imposed by the pressure. For many geometries, the cylinder, 
sphere, and torus for example, the stresses resulting from internal pressurization are easily 
calculated. If the breaking strength of the fabric is known, then the design problem 
is quite simple. However, frequently only the breaking strenght of the yarn used to weave 
the fabric is known, and the design problem is then more complex because of reduction 
in strength due to weaving and the biaxial state of stress. One cause of these reductions 
in strength is in the inaccuracies of the weaving process which are typified by the woven 
cylinder in which the warp yarns run parallel to the axis and the fill yarns form the 
circumference of the cylinder. For the cylinder the design stress is the circumferential 
stress resisted by the fill yarns, and if the weaving process produces a cylinder in which 
the fill yarns are of differing lengths they do not all support the load equally and strength 
is reduced. The effect of this length variation on the strength of the fabric is the subject 
of this report. 





ANALYSIS 

The load-deformation behavior and the failure of woven cylinders subject to internal 
pressure will be analyzed. This analysis will include the effect of variations in the lengths 
of the fill yarns forming the circumference of the cylinder. In the pressurized cylinder 
the circumferential stress, Ng, is the largest and is uniform throughout the cylinder. Hß 
is given in terms of the pressure, P, and the radius, 7, as 

Ne = P7 (1) 

For the purposes of analysis we can model the situation for varying length yarns as 
illustrated in figure 1. We consider a unit length along the axis consisting of J fill yarns 
of differing lengths and subject to a total force F. Since we are dealing with a unit 
length the magnitude of F is equal to P7. The yarns are in tension, and because of 
the difference in length all do not support the load. This is modeled by a series of 
J axial members of varying lengths with the total load applied through a yoke which 
applies load only to shortest member at first, but as the deformation continues due to 
increased pressure, the longer yarns are contacted and begin to support the load. We 
take as a measure of the deformation the movement of the yoke, x. The lengths of 
the yarns are denoted by I: and each yarn is assumed to obey the following linear 
deformation  law 

fj = KUj        j = 1,2,3...J (2) 

where f: and U: are respectively the force in the yarn and the elongation of the yarn. 
Assuming that the numbers I: are arranged in ascending order, the load-deformation 
behavior can be described as follows: When the load is first applied the shortest yarn 
supports all the load and continues to do so as the load increases until x - Ut   = I2  ~ 'i 

Thus for 

0 < x < (l2  - I,) 

F = f, 

f, = Kx 

x - F/K 

9 



CIRCUMFERENTIAL OR 
FILL YARNS 

AXIAL FORCE ELEMENTS 
OF UNEQUAL LENGTH 
J IN NUMBER 

CYLINDER OF RADIUS r 
UNDER PRESSURE P 

T 

F=Pr 

FIGURE 1.   REPRESENTATION OF THE LOAD DEFORMATION BEHAVIOR 

OF A PRESSURIZED WOVEN CYLINDER HAVING 

CIRCUMFERENTIAL YARNS OF UNEQUAL LENGTH 

10 



As the deformation x becomes larger than {l2  — lt) the second yarn becomes stressed 
and supports part of the load, so for 

(l2  - I,) < x < (l3  - li) 

F = f,  + fa 

f,   = Kx 

fa-   K  [x - (l2  - I,)] 

x = F/2K +1/2 (la   - I,) 

When the deformation becomes greater than  (l3 — Ij) the third yarn becomes stressed 
and it too supports part of the load, so for 

(I,  - I,) < x < (U  - I,) 

F  - f,   + f2   + f3 

f,   = Kx 

fa  - K [x - (l2  - It )] 

f,  = K  [x - (l3  - I,)] 

x = F/3K + 1/3    (l2  - I,) +  1/3 (l3  -I,) 

Continuation of this analysis leads to the following general relations when L yarns are 
effective in supporting load: 

lL - li) < x< (IL+1  - I,) 

L 

F =     L      f j <3a) 
J-1 

fj = K   [x - (lj - I,)] (3b) 

1       L 

x =  F/LK +_.     Y.       (li - li) (3c) 
L    J-1 

11 



This process is then continued until L = J. Equations (3) appear deceivingly simple in 
that it seems that if the total force F is specified then x and the f: are computable. 
This however is not the case because the limit on the summation, L, in equation (3c) 
is not known and is in fact dependent on x, the total deformation, which in turn is 
dependent on F; thus equation (3c) in nonlinear. An example of the load-deformation 
curve associated with equations (3) is shown graphically in figure 2 for the case of J = 7. 
On the deformation axis the value at which each of the yarns begins to support load, 
refered to hereafter as yarn take-up points, are noted since these are known if the lengths 
are known. On the force axis the values corresponding to the yarn take-up points are 
shown. These forces can be computed from equation (3c) since the magnitude of x is 
known at the take-up points. Also shown on the figure are the load-deformation curves 
for each of the yarns. 

These all have the same slope but differ in the magnitude of x for which they begin 
to support load. For any value of x the magnitude of the force F can be found by 
summing the yarn forces for the value of x. This then gives a complete description of 
the load-deformation behavior of a fabric cylinder under pressure with circumferential 
yarns of unequal length. 

We now address the question of using this analysis of the load-deformation behavior 
to estimate the breaking strength so that its reduction due to variations in length of fill 
yarns in the fabric can be determined. To do this it is necessary to adopt a failure 
criteria, and we chose the initiation of failure, that is, the breaking of the most highly 
loaded yarn which is the shortest yarn, the one with length lj. Using this failure criteria, 
the failure load F can be found by computing the magnitude of x for which fx = fb, 
the breaking load of the yarn. This computation is accomplished using equation (3b) 
with j = 1 and f] = fb. Given this magnitude of deformation for breakage of the first 
yarn, xb, it is possible to determine the number of yarns supporting the load by comparison 
of xb with the yarn take-up values (I.- — IJ. The number of yarns supporting load is 
set equal to L and the force causing breakage is given by 

Fb = LKxb - K    £       (I, - I,) (4) 

j=1 
J 

which is obtained from equation (3c). 

In order to provide some basis for comparison, the strength of the ideal fabric is 
assumed to be the product of the yarn breaking strength and the number of yarns per 
unit of width. 

F = fbJ (5) 

12 
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A measure of the reduction in strength caused by the unequal length yarns will then 
be taken as the ratio of this ideal fabric strength and the strength given by equation 
(4). 

As can be seen, this analysis requires some knowledge of the fill yarn lengths. This 
information is not generally known in advance or even after the fact in any exact sense, 
so the lengths are here taken as some nominal length plus a random variation about this 
nominal length. This random variation is assumed to be normally distributed. Instead 
of attempting to carry out a formal analysis of the strength reduction using this model 
of the length variation, a computer simulation will be used. In this simulation the statistics 
of the length variation, the mean and standard deviation, will be specified, and statistic 
of the strength will be computed. 

For carrying out such a simulation is is convenient to write equations (3) in 
nondimensional form. Adopting the yarn breaking load, fb, and the nominal or average 
fill yarn length, I, as the characteristic force and length parameters the equations become 

L 

j=1 

fj = K  [$ - (ej - ei)] (6b) 

L 

S = F7I_K+1      £     (ej-ej (6c) 

i = 1 

where 

fj = Vfb 

I - x/l 

F = F/fb (7) 

K = KL/fb 

14 



Examination of these nondimensional equations and parameter definitions reveals that 
breakage of the shortest yarn occurs when fi = 1 and that the strength of the ideal 
fabric, see equation (5), has a magnitude equal to the number of yarns per unit length, J. 
In addition, if the distribution of random lengths is to be centered about the nominal 
length, then the nondimensional  lengths, e:, will have a unit mean. 

A copy of the Fortran program used to carry out this simulation is presented in 
the Appendix. The program has liberal use of comments defining ail the parameters. 
The subroutines used to generate the normally distributed lengths and to compute the 
mean and standard deviation of the failure load are Univac 1108 Math-Pac subroutines. 

The simulation is carried out in the following fashion. A sequence of IS sets of 
random numbers are computed, each of the sets contains J elements and represent the 
randomly distributed yarn lengths the mean and standard deviation of which are read 
as input. For each set of yarn lengths the load-deformation curve is computed as is 
the breaking strength of the fabric. Once these calculations have been carried out for 
all of the sets of yarn lengths we have a sequence of fabric breaking strengths which 
are used to compute the average and standard deviation of the fabric breaking strength. 
This average breaking strength is then taken as the measure of the reduction in strength 
resulting from the variation in yarn length. 

15 





DISCUSSION 

In this section we examine the results of this simulation beginning with the 
convergence of the process. In Table 1 the behavior of the average and standard deviation 
of the failure load with the number of sequences of yarn lengths used in the simulation 
is shown. The process appears to converge quite rapidly as the number of sequences 
is increased. With eight and greater sequences the average breaking strength changes very 
little in comparison with the standard deviation of the breaking strength which remains 
fairly constant over this range of number of sequences. There is no uniform trend in 
the average breaking strength so it is difficult to say the result has converged or is converging 
in any classical sense, but it is believed that the data in Table 1 shows that the simulation 
process is stable and that useful results can be obtained. The remainder of results presented 
were computed using 10 sequences of lengths. 

An additional check on the behavior of the process is provided by examining the 
behavior of the average breaking strength as the standard deviation of the yarn lengths 
becomes small as shown in Table 2. As the standard deviation becomes very small the 
fabric approaches perfection, and it is expected that the breaking strength will approach 
that of the ideal fabric which in nondimensional form is equal to the number of yarns 
per unit length. Examination of the data in Table 2 reveals that the process is well 
behaved with respect to decreasing yarn length standard deviation. In addition to the 
average breaking strength approaching the ideal fabric strength, the standard deviation of 
the breaking strength becomes very small. These results are exhibited for both values 
of stiffness and yarn densities shown. All results in Table 2 are for average nondimensional 
yarn lengths of unity. 

The effect of variation in yarn length within a fabric on the breaking strength of 
the fabric is shown graphically in figure 3. Results are shown for fabrics with yarn densities 
of 10, 16, and 18 yarns per unit width all having nondimensional yarn stiffness of 22.0 
and with a yarn density of 16 yarns per unit width having a stiffness of 11.0. As the 
independent variable which is the standard deviation of the yarn length approaches zero 
the fabric approaches perfection, and it can be seen that the breaking strengths approach 
that of a perfect fabric which in nondimensional form has the value of the yarn density. 
The other limiting case is for large values of the independent variable, and examination 
of the results in figure 3 reveals that the breaking strengths of ail fabrics approach a 
common value. To understand this result it must be realized that as the standard deviation 
becomes large it is possible for the most highly stressed yarn to reach its breaking strength, 
which is here defined as fabric failure, before sufficient deformation has taken place so 
that all yarns are supporting load. Thus, what is seen in figure 3 for large values of 
the standard deviation is that all the fabrics have nearly the same number of yarns 
supporting load, thus they are nearly identical fabrics with respect to their ability to support 
load. The average number of yarns supporting load at failure are shown in Table 3 for 
each of the fabrics considered in figure 3.   The independent variable in this table is again 

17 



TABLE 1 

Behavior of Simulation Process 
with Number of Yarn Length Sequences 

Fabric Breaking Strength 
No. of Nondimensionaf 
Yarn Length Standard 
Sequences Average Deviation 

1 13.54 
2 13.54 0.00 
5 12.70 1.28 
8 12.74 1.11 
10 12.92 1.05 
15 12.86 1.09 
20 12.80 0.99 
25 12.76 0.94 
30 12.74 0.94 

Number of Yarns/unit width ■ 16 
Yarn lengths (nondimensional) 

Average = 1.0 
Standard Deviation = 0.005 

Nondimensional Yarn stiffness = 22.0 

18 
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TABLE 3 

Average Number of Yarns 
Supporting Load at Failure 

Yarn Yarns Supporting Load 
Length 
Standard N = 18 N = 16 N = 10 
Deviation K = 22.0 K = 22.0             K = 11.0 K = 22.0 

0.001 18 16 16 10 
0.0025 18 16 16 10 
0.005 18 16 16 10 
0.0075 18 16 16 10 
0.01 18 15 16 10 
0.0125 16 14 16 9 
0.015 16 13 16 8 
0.0175 14 12 16 8 
0.02 12 11 15 7 
0.025 10 9 14 6 
0.03 8 7 13 5 
0.04 6 5 11 5 
0.05 5 4 9 3 

20 
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the standard deviation of the yam length and for large values of this parameter it is seen 
that the number of yarns supporting load at failure approaches a common value. This 
reasoning leads to the conclusion that the limiting value of the breaking strength for large 
standard deviation is unity, meaning that only one yarn is supporting load at failure. This 
limit is in ail  likelihood way beyond the situations which arise in actual fabrics. 

The data presented in figure 3 also reveals that the reduction in breaking strength 
is much less severe for the fabric woven with yarns having lower stiffness. This result 
is not unexpected because the lower stiffness provides for more deformation and thus 
a more uniform distribution of the load among the yarns. 

In addition to the fabric strength the analysis carried out also gives the load-deflection 
behavior of the fabric, a typical example of which is given in figure 4. Although it is 
difficult to discern from the figure, this curve is piecewise linear. The general character 
which can be described as stiffening with increasing deformation is typical of stress-strain 
behavior obtained for most fabrics. This stiffening effect in fabric is usually attributed 
to crimp interchange or to a transfer from the relatively low stiffness bending mode of 
deformation to the high stiffness axial mode of deformation of the yarns in the fabric. 
While this crimp interchange or take-up is a likely mechanism, the results presented here 
suggest another possible mechanism based on unevenness of the load distribution among 
the yarns.   Experimentally observed behavior may be a combination of these mechanisms. 

This analysis was prompted by our experience with some woven Kevlar tubes which 
failed at a pressure far below their design pressure and nonuniformity of the length of 
the circumferential yarns was suggested as a possible cause of the premature failure. The 
tubes woven with 44 tex Kevlar 29 yam and a circumferential yarn count of 18 yarns 
per cm were 0.163 m in diameter. This yarn material has a breaking strength of 
1.94 IM/tex and a modulus of 42 N/tex. Based on these numbers, the breaking pressure 
should have been 1861 KPa, but in tests one tube failed at 310 KPa and another at 
330 KPa. Thus, a strength reduction on the order of 1/6 was observed. The 
nondimensional yarn stiffness for the yarns used is 22, and since the yarn count is 18, 
we can use the result on figure 3 to determine the likelihood of nonuniformity of yarn 
lengths in causing the premature failure. The failures occured at 1/6 of that of the ideal 
or perfect fabric. The nondimensional breaking strength for the pefect fabric is 18 so 
failure occured at 3 and data given in figure 3 indicates that a yarn length standard 
deviation of about 0.025 is required to cause that reduction in breaking strength. 

In using this nondimensional result to interpret the physical behavior we first examine 
the complete tube assuming that the variability is distributed throughout the tube 
circumference. Recalling that the tube diameter was 0.163 m, we have a nominal yarn 
length, I, of 0.51 m, the tube circumference. Thus the yarn length standard deviation 
required to cause the observed strength reduction is 0.013 m, or 2.5% of the nominal 
or average length.   A visual examination was made of yarns taken from the woven tube 

22 
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and no variations in length approaching this magnitude were found. So it was concluded 
that this mechanism based on involvement of the full length of the circumferential yarn 
does not explain the observed premature failures. This analysis can also be used to examine 
the local behavior around the crease or fold line that results from weaving the tubes. 
The tubes are woven in a flat configuration as shown in figure 5a. A complete 
circumferential yarn requires two passes of the shuttle and a fold line or crease is generated 
where the yarn changes direction. It is speculated that, because of the difficulties in 
keeping yarn tension constant as the shuttle changes direction, the variations in yarn length 
may be concentrated in the fold region. If this is the case we can model the behavior 
as shown in figure 5b by treating a segment of fabric of width | centered about the 
crease line. Within this segment yarns have variable lengths because of the unequal amounts 
of slack in the yarns. Because of the slack and the resulting variable lengths, the stress 
in the fabric is not uniform. It is assumed, however, that this nonuniformity diffuses, 
and that at some distance from the crease line the stress becomes uniform. We take 
I to be twice that distance. The model shown in figure 5b then has a series of yarns 
having unequal lengths and loaded by a uniform load. In this model the number of 
yarns supporting the load depends on the magnitude of the load and is thus identical 
analytically with the model developed previously in this report. In examining the physical 
case with this model, even less is known since the average length | is not known. That 
is, the distance required for redistribution of the stress is not known. The best that 
can be done is to examine the behavior as a function of | and see if the results seem 
feasible. Using the nondimensional result above we find that the yarn length standard 
deviation must be 0.025 | for the observed strength reduction. Thus, if I is 10 cm, 
the stress redistribution would occur within 5 cm from the crease line, and the standard 
deviation in length would be 0.25 cm. Similarly for I =5 cm the standard deviation 
would be 0.125 cm. Variations in length of this magnitude probably would not have 
been noticed in the visual examination of the yarns and, with a thread count of 
18 yarns per cm, redistribution of the stress in distance of 5 to 10 cm seems possible. 
In addition, the premature failures occurred most frequently in tubes that had been coated 
with a latex material which would accelerate the redistribution of stress by increasing 
shear stiffness. These facts suggest that this local yarn length variation is responsible for the 
premature failure of these woven tubes. 

24 
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CONCLUDING REMARKS 

An analysis of the load-deformation behavior and the failure of woven fabric tubes 
having circumferential yarns of unequal lengths has been presented. The results of the 
analysis shows that significant strength reductions can be caused by this phenomenon and 
that it may also be a mechanism in the deformation of fabrics which contributes to the 
stiffening of the stress-strain curve of fabrics as the deformation or elongation increases. 

The results of the analysis were used to examine possible causes of failure of woven 
Kevlar tubes at pressure levels of 1/6 the design level. It was concluded that the presence 
of variable length yarns could not explain this premature failure if the variability was 
distributed throughout the circumference of the tubes. If, however, the variability is 
concentrated in the region of the crease line developed during weaving, then the results 
suggest that yarn length variation contributed to the premature failures. 

27 





APPENDIX 

Fortran program for computer 
Simulation of fabric strength 

reduction 
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13 C QLrYARN   LENGTHS 
1«» C SKA=N0NDIN.   STIFFNESS 
15 C DOLz  LENGTH   DIFFERENCESoDEFORMATION   AT   YARN  TAKE   UPS 
16 C CFT=TOTAL   FORCE   AT   YARN   TAKE   UPS 
17 C SFTrMAX»   YARN   FORCE   AT   TAKE   UPS 
18 C XFrOEFORMATION   AT   FAILURE 
19 C FLrFAlLURE  LOAD 
20 C AFL=AVERAGE   FAILURE   LOAD 
21 C SOFLrFAlLURE  LOAD   STD.   DEV„ 
22 READ(5»101   GLM.QLSDBSKA 

23 READt5»10)N»IS 
24 READ(5»10)NPR»NPL 
2 5 10 FORMATO 
26 RLtl)r347.0 
2 7 IN'=IS*N 
28 C GENERATE  NORMALLY   DISTRIBUTED   LENGTHS 
29 CALL   RANDN<RL»IN»GLM»QLSD) 
30 JM2S=0 
31 C PRINT   INPUT   DATA 
32 WRITE<6»10081   QLM*QLSD»SKA»N«IS 
33 1008      FORMAT!IHlttXe «FABRIC   STRENGTH   DUE  TO  YARN   LENGTH  VARIATION»»// 
3*» e   IX» »MEAN   LENGTH  OF   YARNS=»E16 .8 •/ 
35 .    IX.'STD.DEV.OF   YARN   LENGTHr • »E16. 8«/ 
36 .   IX»'YARN   STIFFNESS   PARAHETER=«»E16.8»/ 
37 •    1X»*NUMBER   OF   YARNS/UNIT   WIDTHS »14/ 
38 .   IX»'NO.   OF   RUNS   IN   SlMUL ATI0N=* iH »/1 
39 C LOOP   ON   THE   SIMULATION    SEQUENCES 
«JO DO   100  JS=1»IS 
41 C LOOP   TO   PICK   UP   THE  NEXT   SEQUENCE   OF   LENGTHS 
42 DO   101   Jrl*N 
43 lBr|jS-l)*N 
44 101        QL(J)rRL(iB+J) 
45 C ORDER  LENGTHS   IN   ASCENDING   ORDER 

16 CALL   CES0RD(QL»N1 
47 C INITIATION   OF  /ARRAYS   FOR   PLQTTING 

48 DÖLClJrN 
49 DQLC21=0«>0 
50 CFTClJrN 
51 CFTf2jrO»0 
52 SFTdlrN 
53 SFTf2>=0.0 
54 JMAXrD 
5 5 / NP=N4;1 
56 LCK?iB 
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57 C 
58 c 
59 c 
60 c 
61 
62 
63 
64 
65 
66 
67 103 
68 
69 1D03 
70 1007 
71 100C 
72 
73 
74 
75 
76 
77 c 
78 
79 106 
80 c 
81 
82 
83 10 4 
84 
85 10 2 
86 
87 
88 1001 
89 
90 c 
91 
92 
93 
94 
95 
96 
97 
98 
99 105 

100 
101 
10 2 
103 
10 4 C 
105 
10 6 C 
107 107 
10 3 C 
109 
110 100 
111 
112 c 
113 

LOOP   ON   YARN   LENGTHS 
COMPUTE   DEFORMATIONeDQL 

T0T4L   FORCE»CFT 
MAX«   YSRN   FORCEeSFT«      AT   YARN   TAKE   UPS 

DO   102  JT=3»NP 
DQLCJT)=QL(JT-11-QLC1) 
JQ=JT-2 
TFzO.O 
DO   103  K=1»JQ 
TFSz(QL(JQ+lJ-QL(K))*SK4 
TF=TF+TFS 
CFT(JTJ-   TF 
FORM ATUX.'FORCESJN   YARNS   AT   BREAK»/ « C 1X.6E16 »8 ) ) 
FORMAT   (1X»«TAKE   UP   POINT   N0«'»I«O 
FORM ATtlX»»DEFORHATj.O   TO   TAKE   Up   poJ-NT = ? »E16.8/ 

.    1X»*T0TAL   FORCE   AT   TAKE   UP   pOINT= » »E16. 8/ 
«   IX,»FORCE   IN   SHORTEST   YARN   AT   TAKE   UPr•»E16.8/J 
SFTIJT)=SKA*(QL<JT~1)-QL«1H 
IF(NPR„NE.01GO   TO   106 
WRITE(6.1007)JQ 

PRINT   FORCE-DEFOR.   HT   YARN   TAKE-UpS 
WRITE<6.1000!    DQL( JT» »CFT(JT) .SFTCJT) 
CONTINUE 

MONITOR   MAX.   YARN   FORCE   FOR   BREAK 
IF{ (SFT(JTJ»6E.1.0J „AND.ILCK.EQ.OM   60   TO   104 
GO   TO   102 
JMAXrJT 
LCKrl 
CONTINUE 
IFUMAX.EQ.0)JMAX=N4-2 
JM2=JMAX-2 
FORMAT« IX» »NUMBER   OF   YARNS   SUPPORTING   L0AD=»»I4/J 
JM2S=JMZS+JM2 

COMPUTE   FAILURE  LOAD   AND   DEFORMATION 
Dlzl.O-SFTtJMAX-1) 
D2=DGL( JMAXJ-DQL f JMAX-D 
D3=SFT(JMAXJ-SFT(JMAX-1J 
XFIJS)3DQL{JMAX-1)+01*D2/D3 
TSL=O.C 
DO   105   NS=1»JH2 
TFS-SKA«CXF(JS»-(QL|NS»~QL(in) 
FS(NS)=TpS 
TSL-TSL + TFS 
FL(JS)=TSL 
JM2A=JM2S/IS 
IFCNPR.EQ.2)   GO   TO   100 
IFINPR.LT^I    GO   TO   107 

PRINT   YARN   FORCES   AT   FAILURE 
WRjjEl6*1003)    (FSCIP) »IP = 1» JM21 

PRINT   DEFB   «TOTAL   FORCE   AT   FAILURE   FOR   CURRENT   SEQUENCE 
WRITE(6*10C2)XFCJSJ.FLIJSJ 

PRINT  NO.   OF   YARNS   CARRYING   LOAD   AT   FAILURE 
HRlTEl6»lC01)   JM2 
CONTINUE 
AFLr-3.0 
COMPUTE   AND  PRINT   STATICS   OF   FAILURE   LOAD 
CALL   STDEV(FL»IS»AFL»SDFL» 
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------ ------ ------------------------------, 

114 WRIT£16o1004!4FltSOFL 
115 1002 FORM.Tc /1Xo•OEFORM~TION ~t F~ILURE=••E16.8o/ 
116 • 1X••r~ILURE.L0AD='•E16.81 
117 1004 FORMAH//2Xo•FULURE LOIIO STIHISTICS•/ 
118 • 1Xo•IIVERJ.GE='•El6.8o/ 
119 .1X ,·•STII.NO~RO OEVIIITION='•El6.81 
120 C PRINT IIVER4GE NO. OF Yt~RNS SUPpoRTING LOIID liT FIIItURE 
121 WRITE!6o1005! JM2~ 
122 1005 F0RMI\TC/1Xo•4VER4GE NUMBER OF YIIRNS SUPPORTING L040:~ei4/I 
123 IFlNPL.EG.OlGO TO 110 
124 C PLOT LO~O-OEFORHHION BEHIIVIoR 
125 C COMMENT NEXT 18 STHEMENTS TO REMOVE PLOTTING 
126 C"-.L INITT!301 
127 C'Ll BINITT 
128 CIILL CHECK cDGloCFTl 
129 Cllll OSPLIIYIDGLoCFTI 
130 CIILL MOV II.BS (025 oi!OO I 
131 CIILL VLIIBELI4rYLI 
132 C'LL NOTII.TEc'IOQo025o11tXLI 
133 C4LL LINEi72l 
134 C"-.l CPLOTrDGloSFH 
135 CIILL VCURSRIIIIoXIoYII 
136 C"-.L MOVEIIcXIoYIJ 
137 C CIILL SCURSRIIIIoiXoiYl 
138 C CIILL MOVIIBS !IX•IYJ 
139 WRITE( 6•10101 GLMoGLSOoSK4•N 
lifO C4LL II.NMODE 
llfl 1010 FORrHT!21fX••URN LENGTH•/ 
142 • 24Xo • 4VERil.GE:• oE16.8/ 
14 3 • 2 IIX • • ST ANDIIR 0 OEV IHIO N:: • • E16o 8/ 
1 'Ill • 24 X • • Y IIRN STIFFNESS: • oE16. 81 
145 • 21!Xo •NO. OF YIIRNS:•,IIfl 
1116 Cllll FINITT !Oo700J 
1117 110 STOP 
11!8 END 

iPRToS E-CS•JUNK .OESORD 
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ECS*JUNKti)sD£SORD 
1 SUBROUTINE   DESORDf^eNS 
2 DIMENSION   MNi 
3 LIH=N-1 
H 1GQ        iNTrl 
5 DO   1C1   I=:1BLIM 

G IFU! I*lJBGE«<Um   GO   TO   101 
7 TEMP-<UI*1! 
8 MI*1) = MD 
9 Ml)-TEMP 

10 INT=I 
11 1D1        CONTINUE 
12 IFflNT„EQelJ   GO   TO   10 2 
13 LIH=INT»1 
1«» GO   TO   100 
15 102        CONTINUE 
16 RETURN 
17 END 

3FIN 
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LIST OF SYMBOLS 

e: Nondimertsional yarn lengths 

f: Yarn forces 

f: Nondimensional yarn forces 

f[j Yarn breaking strength 

F Total force acting on the fabric 

Fjj Total force on fabric at failure 

F Nondimensional form of F 

F Breaking strength of ideal fabric 

j Subscript designating yarns 

J Number of yarns per unit width of fabric 

K Yarn stiffness 

I: Yarn lengths 

I Average or mean yarn length 

L Number of yarns supporting load 

N0 Circumferential stress resultant 

P Pressure 

7 Tube radius 

UJ Yarn deformation 

X Fabric deformation 

*b Fabric deformation at failure 

£ Nondimensional fabric deformation 

K Nondimensional yarn stiffness 
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