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The~dLssertat Lon treats the dynamics of a decision maker ’s value of
Lnformat ion ,, There are two main part s , a section on the depr eci*tion
(peri shing) of infor mation and a section on the app reciation (replenish-

t~~ mont) of information .

~~~ A notion, widely held by decision ana lysts but tenuously defined , is
that the value of any specific information diminishes over t ime. This
concept , termed information perishin g, is rigorously defined and illustra-
ted by the use of a )ta rkov mbde,~Jn the first section of the study .

t ~ The main assertions of th~~i~~t ion are :
(l~ Inform ation perish ing is inevitable (not only for the Markov

model of informa t ion but for any sta te of information described
by a probability distribu tion) .

( 2~) For the Markov model the absolute value of the largest trans ient
.igenvalue is an upper bound for the rate of information perish-
ing~~~~~~

(3) The rate of perishing is a decreasing function of time~~,

~~~~~ 

A short transition section alters the basic decision model to allow

A an piemont of uncertainty for the exact timing of the decision . Basically
the model of the decision process recognises that many decisions in
real life are ~trLggsr.d~ by events which may be described by some sto-
chastic process. Without this uncertainty the decision maker could simp ly
discount the value of informati on because of perishing and would reduce
his problem to a static case; .1~,wsver , the uncertainty in timing forces
consideration of optimal policies of information replenishment , the second
math area of the thesis.

I The major results pf this section are:
1. ~lulss of optimolity are developed for singly and multipl. occur-

ring decisions. .
~~

—-

2. The cptimality of periodic rep1enis~~~nt (under certain limiting
conditions) , is establtsbSd.

3. The suggestion that e~~ of the research results of reliability
and .sLntainabLlity theory y be appl ied to information replen-
is~~~nt strategy.

The thesis. oloes. with the customary delineation of area s of further
epplicatiom end reseat~cb.

ii
.



C0UTENrS

Page

SU)*tA.RY . . .  .   .  .  .  . . . . . . ii

FIGURES . . .   . .  .  . . . . .  .   .  . . v

‘TABLES . . . . . . . . . . . . . . . . . . . . . . . . . vii

A~~~OIJLEDG)~ NTS . . . . . . . . . . . . . . . . . . . viii

~~AP~~~
1 ~~TRODUCTLCW . . . . . . . . . . . . .
2 I1~F’O~ (ATICN DYNAMICS 5

2.1 Purpose 5
2.2 Introduction 5
2.3 Example 1, A Two-State Markovian Case 5
2.4 The Optimal Decis ion with Only Prior Knowledge 6
2 .5 Optimal Strategy with Perfect Info rm ation  11
2.6 Basic Definitions 14
2.7 Generalizations 17
2.8 8~~~ary 33

3 T1~~DECISIC~~MODEL . . . .  . . . . . . . .  35
3.1 Purpose 35
3.2 A Historica l Example 35
3.3 Comparison wi th the Extan t Decision Model ---- 35
3.4 The Contingency Decision Model 38
3.5 Othe r Examples 41
3.6 $u ary 41

4 TUE COPTIUGEICT EICUI~~ MTE L All) I~~OUIA~ICN DYNAMICS 43
4.1 Purpose 43
4.2 Introduction 43
4.3 Example Two 43
4.4 The “Detcone” Sivitch • 45
4.5 Cc.p.rattvs lasults from Contingency Decision

• • 31
4.6 two Peripheral Ie i*s — ——  —_ 52
4.7 $s~~~ry ~~e ~~~~~ e. e e 54

Lit

— ~~~~~~ — __________ —



CHAPTER pag~
5 UIFOHMATION REPLENISHMENT . . . . . 56

5.1 Introduction - 56

5.2 Two R~amp les 56
5.3 Rules of Optimality 67

5 4  Othe r Markovian Distributions 70
5.5 Repetitive Decision Situations 77
5.6 Th. Case for Periodic Replenis hment 86
5.7 Si~~ ary 91

6 RELIABILITY AND MA INTA INABILITY THEORY . . . . . . . . 92
6.1 Introduction 92

6.2 Definitions 92

6.3 Results 93

6.4 S~~~ary 96

7 CCtICLUSI0NS AND~~~IENSIONS . . .. . . .  97

APPEzU~UA .  Proof of Theorems 2.3 and 2.4 . . . . . . . . . . . 99
REPEUE$CZS . . . . . .—. . . . . . . . . . . . . . * 107

DISTRIBUT ION LIST . . . . . . . . . . . . . . . . . . . . . . . . 109

DD 1473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

•

LV

— 
.

— 
- - 

~~~~~ 
- - — .  —



r 

FIGURES

Figure page

2-1 Narkovis u information model  7
2-2 Indexing schematic 10
2-3 Rewards for Example 1 13

2-4 v*(n) v*(n) , and £(n) as a function of ii 15

2-5 p(n) as a function of n 16

2-6 Reward structures 19

2-7 General reward structure 22

• 2-8 Comparison of £(n) and Th(n) 27

2-9 Comparison of p(n) and “p (n) 28
2-10 A trans ient state example 32
2-Il ~(n) and p(n) for the trans ient state example 34
3-1 A decision-making model 36
3-2 U.S. strategy in Europe 37
3-3 Two decision-making models 39
3-4 Altered decision model 40
3-5 Cont ingency decision-making model 42
4-1 Mode l of production runs 44
4-2 Exan ple2var iab les 46
4-3 Example 2 with costs 47
4-4 Probability mass function for X(n) 49

4-5 Represen tative probability mass functions , Example 2 50
4-6 Information acqu isition 53
4-7 Discounted example 55

¶ 5-1 Decision/informa tion acqu isition model 57
3-2 Preferred alternatives for Example 4 59
5e~ Quality of information for two periodic acqu isitions 61
5-4 Dominant alternatives , periodic acquisition , Example 4  62
5—5 Decision occurrence model ---- a 64

5-6 let expected reward as a function of cost 66
5—7 A dominant policy 69
5-8 Increasing and decreasing occurrence rat es 71
5-9 Rewards as a function of cost for increasing, constan t , and

decreasing occurr ence rate . 73

V

• - ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 
- - 

- -~ 

—-



______ 

page

5-10 s — 1 and s 2 regions , constant and increasing
occurrence cases 75

5-11 The repetitive decision model 78

5-12 Equivalent informati on value model 79
5-13 The collapsed model 81
5-14 Net expected rewards 82
5-15 . Relationshi p of 

~ ~~~~ 
, and (Zk ) 87

6-1 Optimal region for x* 95

Vt.

• — — — -  -•-- —..v -• •.•-_—- - •- -.• —• --• —•- - - •- - —• - •  —-—•—--- - --- •-- .- - --•-



TABLES

TABLE page

2-1 Decision-Outcome Results , Example 1  6

2-2 Rewards and Probabilities, Examp le 1 12

4-1 Reward Structure , Example 2 45
5-1 St~~ ary of Expected Rewards 58
5-2 Periodic Replenisbments , Example 4 60

5-3 Expected Rewards , Geometric Distribution 65
5-4 Optimal Policy for the Example Problem 68

Vii

I.

_ _ _ _ _ _ _ _ _ _  _~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~ • • • •.____ ~~~• • _ _ _  • _ _ _ _  • ••



ACKNOWLEDGMENTS

The author ittended Stanford University under a program fully

funded by the United States Army . I express my appreciation to the
University and the Army (in particular , Colonel C. H. Schilling,
Bead of the Department of Engineering, U.S . Military Academy, and
Professor William K. Linvill , Chairman of the Engineering—Economic
Systems Departmen t , Stanford University) for making possible one of
life’s noble experiences .

I was particularl y fortunate , while at Stanford , to be associated
with the Decision Analysis Group of the Stanford Research Institute
(SRI). Special tribute is due Dr. James E. Matheson for a peculiar
courage in accepting a true “green horn ” to be part of his professional
and accomplished group . Working with Dr. D. Warner North , Dr. Allen C.
Miller , and Dr . Bruce R. Judd of SRI was particularly satisfying and
motivating.

Finally, I must single out two people whose forebea rance and
support have been central to my life in the last three years. My wife
baa been a pillar of strength and encouragement during many hectic months

of thesis preparation . She is the epitome of Eur ipides ’ thought that
“man ’s best possession is a sympathetic wife” . My advisor, Professor
Ronald A. Howard , deserves and receives the customary credit for
interest ing me in decision analysis , stimula t ing my curiosity, and
encouraging my acad emic endeavors. However, far beyond these advisor
accolades , I thank him for being a friend when a friend was badly
needed.

In addition , the Department of Defense Advanced Resea r ch Projects
Agency (ARPA) and the National Science Foundation provided f inancial
support for the supervision and publication of this york.

viii

•
_ _ _ _ _- -  ~~~~ -~~~~~ - - — — .-- —

~~~~
- 

I



j 
CHA?TER 1
INTRODUCTION

Man has a propensity to acquire and store items he will need to
satis fy future needs . History depicts prehistoric man care fully col-
lecting and boardin g food , stone tools , and animal skins to carry him
through an arduous winter. Mode rn man has perpetuated this characteris-
tic. However, in an age when physical wants are more easily satisfied
the emphasis has shifted from the acquisition of material objects . In-

stead , on an increas ing scale , people , organizations and nation s are col-
lecting information as a hedge against tomorrow’s demands. As Shubik

*[21] notes

There is an old saying in bridge that a peek is worth
two finesses. In many instances the major weapon of
competition may be special knowledge or information.

McDonough [3] highlights the trend by reporting that over 147. of the

total U.S. Labor force is engaged in clerical activities ; over

10,000,000 people are directly concerned with the producti on and pro-
cessing of information ; and at least 507. of the cost of running the

~~~ economy is information costs .

The very emphasis on information has led to inevitable problems
• -- “... in every .. sphere of modern life, the chronic condition is a sur-

feLt of information, useless, poorly integrated , or lost somewhere in
the system” [7]. Wilensky continues with a desiderata for information:

clear , timely, reliable , valid , adequate , and wide-ranging--the obvious
connotation that these are more noticeable by their absence than by their

• presence.
These prob lems arise in part because organi zations have not adopte d

means to rationalise the information process. Decision ana lysis , among

the many quantitative models of decision making , most explicitly treats
the value of information and provides a consistent basis for conside ration

*IIuuIbers in square brackets refer to the Bibliography found in rea r of
the thesis .

1
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of the acquisition and use of information. Expository works by Howard
[14,15], North (18], and Raiffa (4], as well as a recent dissertation by
Miller ( l7],are significant buttresses for a methodology of information
resource allocation .

However , even these valuable contributions are silent on the dyna-
mics of information . Implicit in many of the qualitative analysis of
information acquisition (Wohlste t ter (8], Wiiensky [7]) and explicit in
criticism of national intelligence activities (e.g., post hoc analysis
of the Berlin Wall , Tet , and the Ycin Kippur war) is a recognition of an
information value-time relationship. However , most quantitative analy-
sis of information treats the value of information as static, invariant
over t ime .* This dissertation, building on the seminal foundation of
the previous cited works, analyzes the dynamics of information .

Chapter 2 is the framework for the entire thesis. We perhaps all

share an intuitive feeling that the value of information decreases with

the passing of time. However, exactly what do we mean by information

“perishing”? Is this an inevitable phenomenon? How do we measure the
rate at which perishing occurs? Is the rate invariant? What is the

— effect ,, if any , of risk aversion on this “perishing”?
Chapter 2 treats the depreciation of the value of information over

t ime . The phenomenon is indeed inevitable, and for states of informa-
tion that can be modeled by a Markov process we have a handy benchmark
for the rate of perishing. This yardstick, for the two-state case, is

related to the “shrinkage” as defined by Howard [2]. An important re-

sult is that the value of information “perishes” at a rate equal to or
less than the absolute value of the largest “ trans ient” eigenvalue of
the underlying Markov process.

The results of Chapter 2 have merit in their own right. However,
an astute analyst , if he knew , for example , the exact timing of a deci-
sion could allow the necessary time for information collection , calcu-
late the depreciation of the value , and reduce the problem to essentially
a static situation . This , of course , ass mas he knows the exact timing

*Rans om (5] reports that stra tegic intelligence in wart ime depre ciates
at the rate of 107. per month . This is , at best , an empirical observa-
tion which lacks a rigorous definition and quantification of value. 2
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of the implementation of the decision . As illustrated in Chap te r 3 many
decisions of importance and interest are implemented at an uncertain

I time in the future . We slightly alter Howard ’s decision model (15) to
introduce an element of uncertainty in the time of occurrence of the

decision. incorporation of this probability into the basic decision

model leads to fruitful study.

P In particular , Chapter 4 reconsiders the rate of information perish-
ing in light of this uncertainty. We also treat inter med iate infor mation
acquisition and discounting of rewards as extensions of the basic results
of Chapter 2.

P In a sense Chapters 3 and 4 serve as a transition from Chapter 2 to
Chapter 5, a consideration of the appreciation or replenish ment of infor-
mation . We illustrate the meaning of an optima l policy of information
acquisition and determine rules of optimality for single and multiple oc-

- P curring decisions . In particular a decision occurrence described by a
geometric probability distribution serves as a metric for other distribu-

tions.

Chapter 6 builds on the results of Chapter 5 and extends the tech-
p niques of information appreciation by utilizing results from the estab-

lished theory of maintainability and reliability. Several of these well-

established results lead to extensions of the original conclusions of
Chapter 5.

P The final chapte r s*~~~ari zes the study and suggests areas for
further development and research.

As noted previously this thesis fill a niche in a growing body of
work on information value theory . The intelligence agencies of this

* country as well as analysts of many buaLness firms are faced with a
formidable resource allocatidn problem. There usually exists a multiple
array of collection devices, each with its own probabi lity of acquiring
variou s pieces of da ta . These da ta in turn result in different updates

P of prior information that influence one or more of a compend i~m~ of deci-
sions . These decisions , likewise , have different associated costs and
benefits as well as probabilities of occurrence .

• One would be both naive and foolhardy to claim at this stage of
• development a complete theory of information resource allocation that

• i• • •  —~~~~~~~~~~~~~~~~~~~r
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‘ 
would aid these decision makers. However, the results of this thesis are
a solid groundwo rk for the much neede d follow-on research. The defini-

p tion and concept of information perishin g and the revision of the deci-
sion model lead to results that were previously tenuously share d and

• accepte d by many decision analysts but never precisely defined . The
theory of appreciation and the optimal policies of information acquisi-

p tion are new to information value theory and presa ge even fuller exploi-
tation of reliability theory. While much of the reliability work has to
do with statistical inference and parameter estimation the re is also a
large body of conclusions concerning maintainability and optimal replace-

p ment policies. These results have yet to be fully mined for their appli-

cation to information perishing and replenishment.
The ultima te goal , of course , is a set of allocation rules for the

intelligence or information decision maker. This thesis forms a secure

p stepping stone for reachin g that goal.

p

p

p
.
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CHAPTER 2

P 1N701*1AT ION DYNAMICS

2.1 Pur pose
This chapte r examines the time variation of the value of information .

In particular , we define two key concepts , information perishing and the
rate of information perishing. We then proceed to develop severa l proper-
ties of these two essential parameters.

2.2 Introduction

Most of the expository discussions of decision analysis treat the
value of information as a static quantity (14 15,19]. Howard ’s well-
known bid problem (14], as an example, computes the expected increased

• profit to the bidder, given clairvoy nce or perfect information ibout
his own cost, to be 1/96 units . However, one may consider two extremes .
If the clairvoyant delivers the perfect information too late for the
bidder to incorporate the data into his bid , then the expected increase
in profit is surely not 1/96. Conversely, one may also argue that if the
bidder receives the information much earlier than the date of the bid ,
he may feel that changing environmental factors would affect the validity
of the Information. Therefore, the expected increased profit of 1/96 is
in a sense a conditional value- -a value that is correct if the inform .-p
tion is “ti ly” and “fresh. ”

We may illustra te the dynamics of the value of the state of informa-
tion with an .~.p le.

$ 2.3 ‘~s~~le 1: £ Two-State Markovian Case
We choose the simplest of examples where the decision maker can

choose either state “1” or state “2. ” When the true state of nature is
subsequently revea led , be receives a greater reward if be has correctly

* chosen the state and a lesser reward (perhaps a cost) for an incorrect
choice . His state of information ii described by a Markov process.

£lthough not critical to the discussion we could suggest that the
situa tion represents such real-life decisions as stockage of its. 1 or

• it.. 2 where financial or storage constra ints limit the seller ’s choice

S

p

— -- - - - — - - - • _ _ _ _-_ 
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to one or the other item; de fense of Are a 1 or Area 2 against repetitive
enemy attacks where the small size of the de fending force or a lack of
transportation precludes de fense of both areas ; or even the “pea in a
shell” game at the local carnival.

We precisely def ine the situation as:
1. The decision maker can choose state 1 or state 2 but not both.
2. A Markovian model , Pig. 2-1, represents the model of his inform.-

tion on sta te occupancy.
3. The decision maker can change his decision prior to each tran-

sition . However , he does not observe the process at any time.
In Other words, he makes a series of decision s , e .g . ,  1, 1, 2 ,
1, . .. ,  2, etc., and at the end of the game is given some re-

ward contingent on the number of correct decisions.

4. The decision-outcome matrix is shown in Table 2-1.

TABLE 2-1
Decision-Outcome Results , Examp le 1

Decision Choose State 1 Choose State 2

~° State 1 +100 -100

State 2 -100 +100

2.4 The Ontimal Decision with Only Prior Knowledge
Let

5(a) — ~(1)

.
~~~~ be the decision to choose state 1 at transition a , and

6(a) — 6(2)

be the decision to choose state 2 at transition a • Assume the g or
decision process lasts for N transitions • The decision asker most
a Driori make a series of K decisions (6(m)~ S (6(O) ,6(l),...,600 )
such as

• (6(0) — 6~~’~,6(1) — 6(2) ,...,600

6

fP~
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0.8

~~~~~~~~~~~

9 1

9( state 1 at n state 1 at n-i , E )

Q( sta.te2atnl statelatn-1,c )— O .9

9( state 2 at n state 2 at n-i, d 0.2

9[ state 1~~t n j s t a t e 2 a tn-1, t ) ’. O .B

Pigure 2-1 Narkovian information model

0

L
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His prior knowledge is contained solely in the Markov model of Fig. 2-1.
Therefore, he would rationally calcu late

Pr (s(O)”lIs) — 8/17

and

— 9/17

I
From Table 2-1 we may calculate the expected reward at transition a — 0 ,

conditioned on the choice of , as an example, as

r.1001
p <v(O) ~ (~~) 1115

(1) 
1> — T~1(0) Tt~(O) I I

IL - lOOJ

• — - 5 . 8 8

In genera l, the expected reward at any t ransition is

a)j5 (m)”6~~~,e, ” ~~ 
rti(m) r~~~ , k —  1,2 (2.1)

i
However , in the eva—plc , with only prior know ledge

p
ThL(m) • ir~( )  — (2.2)

and

<v(a))6(a) — 5(~~,>  — ~~~ ii ~r~
1
~ , k — 1,2 (2.3)

I i
The optimal decision is defined by

5*(.) - ~~~-l cv(a) 

~~~~~~~~~~ 6

‘
~ 

n, 1 1. k — l ,2 (2.4)
k I L - lOO + lO0J

p
or

• 6(2) 
, •s  0,l,2,...,K

The optimal decision, in effect , is no more than the optimal choice
of a co1~~~ from the reward matrix of Table 2-1. Corresponding to this

S

p
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t

optimal decision is a reward

<v(m) I 6*(m) ,s> — cv (m) I 6(m) ”t 6(2) 
,~~> — 5.88

Some compactness in notation is achieved by defining

— v(a) I 5(m)—6~~~ ,e> (2.5)
and

v*(a) — <v(m)~~,(a)•6* ,s> (2.6)

The decision maker’s expected fu ture reward is also of interest.
We will use “n” to index periods remaining and define the expected fu-
ture rewards with n time periods remaining as

5*(n) , (2.7)

where 5*(n) imp lies

t 6*(n) — 6*,6*(n_l) — 6*,...,5*(l) — 6*) (2.8)

In the example the optimal decision, as noted, is ~(2) for

every transition . Therefore , the expected future reward has a particu-

larly simple form

— v(n)I&k(n)_o(2)
,s> — n(5.88)

n • M,M-1,M-2 ,...,2 ,l,0 (2.9)

This “r~~~” is plotted in Fig. 2-3a for N — 10

Again compactness is realized by defining

• v*(n) — <~r(n)I5*(n),s, (2.10)

for the expected future reward conditioned on the decision asker elect-
ing the optla&l decision at each transitio n.

(The indice s “n” for periods to go and “a” for periods past imply
that n4w—M for a process vitb horizon K .  S.e Pig. 2-2.)

We may s~~~~rise the —~.T1e. Eased on a prio r state of knowledge
conta ined in the Markov model of Pig. 2-1 the decision asker should
choose state 2 for the entire sequence. His expscted reward per transi-

tion is +3.88.

hI 9

n

- - ~~~~~~~~ — -
~~~~

V
~~ ~~~~~~~ 

- -  ——--~~~~~--
- -—-
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Figure 2-2 Indexing schematic
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I, 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _.I t 2.5 Optimal Strate gy with Perfect Information

What changes would the decis ion maker effect if he were to receive
perfect inform ation on the initia l state (all othe r assumptions of the
example remaining the same) ?

We may define the expected reward at transition a given the
starting state i as

V
i — 1,2 (2.11)

or compactly as

p 
vt(O)(m) — <v (a)I~(m)_6*,s(O)

_i,e> (2.12)

The equiva lent relationshi ps for expected future rewards are

<u(n) j 1 6(n ~5*,s(O).ii , e> , i — 12  (2.13)

and

vt(O)
(n) — ~~~~~ 5*,~ (O) i,j

~> (2.14)

Fina lly , for perfect information at time a — 0,(PI(O) ] , the expected
reward at any transition is

- 

. — i~1<v(a)~ 5(a).5*,s(O)~l,s,~4. n2 cv O n)I 6(m)_ 6*,s(0) _2 , c> (2.15)

We economize further on notation by writing

— 
1I(O)

(a) — 
~~ r~v~~~~(a) , i — 1 2  (2.16)

t
Analogously we have for expected future rewards

~~
(n) — 

~~, TT~.vt(O) (n) (2.17)
F,. i

We may use these results and the usual Markow trix mechanics
(Howard (2]) to calculate the value of perfect information as shown in
Table 2-2. The values in~co1~~ is (5) and (9) are plotted as Pig. 2-3b.
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I

Figure 2-4a shows the expected future reward conditione d on receipt
of perfect information at a — 0 and the expecte d future rewards condi-
tioned on only the prior state of knowledge . Figure 2- 4b indicates the
difference between these two quantities

~(n) — v*(n) - v*(n) (2.18)

Examination of Fig. 2- ’4b reveals that although the perfect information
acquired at a — 0 initially places the decision maker in a re lative ly
favorable position this advantage diminishes over time and by the eighth
transition the advantage has disappea red . This decrement , which we shall
shortly define as information perishing , has a natural interpretation in
terms of response time. If the decision maker requires one period to
adjust his strate gy to the receipt of perfect information at transition
zero, the value of this clairvoyance is 171.98; if he requires over eight
periods to react, then the information has no value .

The rate of decline of this re lative advantag e is also of inter-
est. We define

p(n) — ~~
;
~~~) for ~(n) # o

(2.19)
— 0  for ~(n) O

This quantity is plotted in Fig. 2-5.

2.6 Basic Definitions
The phenomenon of the degrad ation of the value of information over

tiam , while apparently a characteristic of many real -life decision prob-
lems , is not extensively treated in the literature . North [18],
Smallwood (22], and Howard (133 discuss aspects of inference in a dynamic
situation while Rob inson (20 ] reports on the practical difficultie s of
estimating time vary ing probabilities . However , these articles are
limited to proble ms of inference without consideration of the value of
the information. The concept of informa t ion “perish ing” appears more
general and powerful than implied by this litera ture .

We as a first step ast agree on a definition of information
“perishing.” Information may, of course , evolve over time without

14

f) 

~~~~~~~~~~~~ 

-
— —



I

300 \\
\

225 .

N
- .

V 
~~~~~~~~~~~~~~

____________________________________ j. I ‘ ~~~~~~~~
10 9 8 7 6 5 3 2

(a) v*(n) and v*(n) as a functLon~~~ n

300

150 .

_ _ _ _ _ _ _

(b) aCm) as a function of n

ligur e 2-4 j *(n) , v*(n) , and a(n) as a function of n

15

___________— —~~-—--- - V 
- ------- ,— . - —-— -~ — --- - --- -- - . V ----



I

~ L V ______ 0.7 
_ _ _ _  • • V V

Figure 2-5 p(n) is a function of ii

16

F,,

~ 

..— - -—- -~~~~~~~~- — - - — -—-- • VV ~~_~~ 
—



affecting the choice of decisions . As an example, suppose there exists

some vector value d state of in formation s which is a function of t ime.

Let s(t) represent this functional dependence and ass~~e that

e(t) c $ , a set of possible states of information . Then if 6* — 6(0)

for all s(t) c S , that is , the optimal decision is the same for all

states of information, would one characterize information acquired at

a — 0 as perishing? or is this instant perishability?

As a second example we cons ider the case where the decision maker

receives clairvoyance at m — 0 and also at m — a1 , a1 > ~ . Although

we shall analyze this situation in sc~~ detail in Chapter 4 it is perhap s

intuitively obvious that the second acquisition of clairvoyance “wipes

out” the value of the first disclosure of perfect information . Is this

information perishing?

We precisely define infor mation perishing . Let ~*(n) be the cx-

pected fu ture rewards with n periods to go conditioned on acquisition

of information (perfect or imper fect) at a — 0 . Let v*(n) represent

the expected future reward based solely on prio r knowledge at a — 0

Let 8(n) — v*(n) - v*(n) . If Mn) is a non- increasing function of

it without benefit of test, observation, experiment, or other information

acquisition , then the information acquired at a — 0 ~~~2~~j1hin .

If ~(n) — 0 , the information has perishe d. The ra te of perishing ,

p(n) , is defined by (2.19), i.e.,

&n-l)
p(n) — Mn)

2.7 Generali zations
We now rigorously prove several prope rties of information perishing

and the rate of perishing.
2.7.1 The Reward Structure

J We have previously defined the expected reward at any transition m

as
<~~(a)I 6(m)m6~~~~~~~

, e .  ~~ it~(a) ~~~~ (2.20)

There are two other forms of this expression that will be useful.

• The first is

17
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m)t6(m)~s6~~~,e>- ~ti(0~ [~ ]rn (2.21)

The second results from the expansion of (~ ]m into a series of N dif-

fe rentia l matrices as

(P] tm 
— (% ] + ~~[Q1] + ) [ Q 2 ] + ... + 

~~~~~~~~~ 
(2.22)

Substituting (2.22) into (2.21) yields

cv(m) 5(m) 1 5 (k) 
, > — c~

10 + c~~ x~ + ... + c~
1
~ ~~ 1 (2.23)

Figure 2-6a plots the reward structure of the two-state ~~ample we have
been considering, while Fig. 2-6b represents a genera l two-state Il deci-
sion model. The extension to N state is obvious but not represen table .

2.7.2 The Inevitability of Info rm ation Perishin g
We have seen in the simple example that information perishes . How-

ever , we can establish this result for a far more general case .
Theorem 2. 1

For any N-sta te ?fa rkov decision process where the decision maker
P may choose both the transition matrix [p”) ] — [pjj )(l) and

the reward from s~~~ constant reward matrix [R] — {r~3~~~ (k and

1 contained in index sets , K and L of decisions and transition
matricea , respectively) , ~(n) is a non- increasing func tion of it

P Proof

Let 6(1.,1
~ , as an example , represent the decision to choose the

first transition matrix and the fir st co1ts~n of the reward matrix.
There are three cases to be considered:

P Case 1. We may cons ider first the triv ial case of s~~~ decision ,
say 6(0,0) , beingS completely dominant , i.e., both v*(a) and
v*(m) imply 6*. 6(0,0) for all . Therefore , 6(n)
- v*(n) — 0 , and a(n) is obviously non- increas ing.

• S~~!Li~ 
Partial dominance may exist in the sense that v*(a) and

v*(a) both imply 6* — ~10 ,0) for some • � . If this be
true, and if n ~~M - , then 8(n) — 0 aga in , and the theorem

• is true.
• 2aiLl The interesting case is the case of no dominance . We pro-

ceed by induction. With one time period remaining, to show that

16
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6(n) is a non- increasing function of it is equivalent to showing

6(1) - 8(0) � 0 (2.24)

However,

6(1) - 6(0) — (v*(l) - v*(’) ] - (v*(O) - v*((fl ]

I 
- 

— (v*(1) - v*(0) ] - (v*(l) - v*(0) ]

Counting forward we may write (see Pig. 2-2)

v*(1) — v*(M_ 1) + v*(M) (2.25)

and

v*(0) — v*(M) • (2.26 )

p Similarly we may express the othe r two terms as

v*(l) — v*(M_ l) + v*(M) (2.27)
and

v*(O) — v*(M) (2.28)

Performing the obvious subtraction we can express (2.24) as

8(1) - 8(0) — v*(M_ l) - v*Q4_ l) (2.29)
p

which is obvious ly greater or equal to zero , Asetme the induction

hypothesis held. for ,m_
V
1 time periods . It remains to show that

the theorem holds for it time periods to go, or that -

I 6 ( n) - A ( n - 1) V~~~0 .

8(n) — [v*(n.l) + v*(1~)] - [v*(n~l) + v*(,1)) (2.30)

where “r(’ , counting forward, is the transition at which there are
I n transitions 

~~~~~ 
Therefore,

8(n) - Mn-l) + v*(v~ -

or

~ : • Mn) - 6(m-I) ~~~~~ ~ ,*(v~) ~~0
which completes the proof.

- — 
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‘ P

r We may extend these results by consideration of a continuous time
process . We shall use “f” to indicate time starting from time “zero ”
and “ t” to indicate time to go. We shall asstm~e a cons tant but com-
pletely general generation of rewards as shown in Fig . 2-7.

To parallel (2.18) vs define

8(t) — ~S
T 
v*(i) di - J v*( r) di (2.31)

— (v*(.r ) - v*(i) ] di
ti,

To show that the information is perishing we show ~8(t) /~(t) � 0 , or

bMt) 
—

~~~~ t
f( V*(1) - v*( r) ] di ~ 0 (2.32)

— - (v*(t) - v*(t) ] � 0 for all t ~~T

Thus , we se. that In a decision process that continues over some
period of time that any informa tion is perishing. We emphasize this
result by stating Theorem 2.2.
Theorem 2.2

All information is perishing (assueing the reward structure is
constant over time) .

2.7.3 Tb. Rate of Information Perishing

a. Introduction. We have noted in Fig . 2-5 that th. rate of in-
formation perishing as defined by (2.19) was always less than 0.7 , the
absolute valu, of the translsnt* eigsnvalue. Is this result always
true?

b. Initial Resuli. We may show that this result holds not only
in the .~..p1e but in a far more general case.

• The case we shall consider is this:
(I.) I-stats process
(2) k decisions possible with reward matrix

• *Tr ie. connotes stgenvaluss not equal to one.
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Figure 2-7 General reward structure

p.

,-

• 
~

-
~ : -~~~

-

22

p.



P

p_s (0) (1) (k l)
.... .

(0) (1) (k- I)
r2 r2 .... . •

(R] — (2.33)

( (k- l)

Let {r t)~~~ 
be a general element of [R)

V (3) The transition matrix (F] is not part of the decision . In
other word s, (P] is invariant.

(4) The decision maker receives perfect information at transition
zero , but there is no observation or information after this .

F (5) The decision make r has no risk aversion.
(6) A decision is possible at each t ransition .
We shall prove that p(n) � where is the max im~m* in ab-

solute value of t rans ient aigenvalues associated with the transition ma-
tr ix (P] .
Theorem 2.3

For the n-state NarL ~ov process with k reward decisions and an
invariant transition matrix p(n) � , the absolute value of

r the largest trans ient eigenvalue .

The proo f of this theorem is of such length that it is reserved to
Appendix A.

C. An Ixtension. We had limited the previous proof to decision
situations where the decision was limited to a choice of stat., and the

transition matrix was invariant. However , we may also extend the result
to the situation where the decision maker may elect not only the reward
structure but also the transition matr ix.
Theorem 2.4

For a n-stats Werkov process let k C £ represent an index set of
reward decisions and 1 CL represent an index set of transition

• 
trix decisions. Then

23
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‘p

.4 p (n)  l>’lt
where 

~~~ 
— max (X ~~~~ 

(2) , ~~~~ being the

greatest absolute value of the transient eigenvalues of (p0~j

The proof of this theorem will also be found in Appendix A.

d. The Acceleration of Information Peri shing. Figu re 2-5 shows
that p(n) is a decreasing function of n or tha t information perishes
more rapidly with the passage of time. We may show tha t this is a gene-
ral result for those decision situation s where the transition matrix is
invariant. We first need to prove a lemea concern ing the reward struc-

P ture.

t L.’~~ 2.1
For a N-state Markov process where the decision maker ’s alternatives
are limited to choice of columns from the reward matrix there exists
for some startin g state, say s(0) — i , at most three optimal poli-

cies. Furthe r , if all the eigenvalues are positive , there exists
at most two optimal policies.

Proof
We use (2.22) to wr ite

~~ q /k) (2.34)

where ).~— l .  Let M-.~~ so that )~~-‘0 , ~~# 0 .  Obviously ,

<00 ls(0)” i> -‘max 

~ 
0q~j~~~ (2.35)

the “stationary4’ policy noted in Howard (2]. This is the first of
the tvo or three policies. Iow asstma ~ > 0 , all J .  We

• represent the scaler product of (2.33) by so that
1-1

mix )1 C(k) (2.36)
k 

~~~~~

Asst that k - I  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ X + ~~
transition, ~~~~~~~~~~ k 2 .  Por th e b~o decisions west

= ~~~~~~~~~~~~ 

2* 

-



P

• diffe r in at least one term . We will let j I be that term. By

the ass~~~d optimality
N-i N-i

+ ~ X~
t
~ ~C

W � X~~~ 1C~
2
~ + ~ )~ ~~~~ (2.37)

j—0 .1—0
.1#l •j#I

N-I

~ ~~~~ + ~ x~ ~~~ (2.38)

.1#l

or

x~~ ~~~ (2.39)

and

� 1C~~ (2.40)

However, if 1c~2~ � , then decision 1 would be improved by

switching to decision 2 as all the other C’ s are the same , and

all the eigenvalues are positive . Therefore, there cannot be two

decisions that are optimal for the different transitions. Similar

reasoning prevails if � 0 for some .1 except now the optimal

decisions may switch from odd to even transitions.

This complete s the proof of the leimna and allows us to state the

following corollary .
Corollary 2.1

For the N-state Markov process with an invaria nt t ran sition matrix

~~~ ~~~~ • n � 2 (2.41)

Proof
The corollary requires that

b2(n-l) ~ b(n) b(n-2) 
(2.42)

The proo f follows by induction on n using the expressions for

p. 6(n) , 6(n-1) • and a(n-2) developed in (6.6) , (6.7) , and (6.26). -:
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Then ~~~~~ 2.1 makes possible term by term compar isons . The details are
an exercise in tedium rather than enlighteent and are omitted.

2.7.5 The Effect of Risk Aversion

a. Definitions. To this point we have tacitly assumed that the
decision maker based his decision on expected values. A logical next

step is consideration of the effects of risk aversion. We shall limit
the discussion to exponential utility functions.

A natural extension of the defining equation for ~(n) [(2.18)3 is

— ~v*(n) - ~j*(n) (2.43)

where ~~j k (n)  represents the certain equivalent with n 
- periods to

go conditioned on receipt of perfect information at in — 0 , and
~v*(n) represents the certain equivalent with n periods to go based
solely on prior information . Howard and Matheson (16] have shown that
the “delta property” of the exponential utility function allows stu~ a-

tion of the certain equivalents .
Analogous to Eq. (2.19) is

•
~~p(n) — 

Mn-i) Th(n) # 0
Th(n) 

(2.44)

0 ,

P b. 
~~~~~~~ 

Aasima that the decision maker in the basic ex-
ample has a risk avers ion coefficient , y — 0.001 . We may calculate

~hLn) and 
‘
~
‘p(n) which are plotted in Figs. 2-8 and 2-9 (along with

the comparable values of 6(n) and p(n) ).
c. Gene ralizatio ns. C~~~arisons of ~à(n) and Ma) and ~p(n)

and p(n) for the geniral Markov case are made possible by use of the
approximation

(2.45)

where v(m) , v(a) • and (m) represent the certain equivalent,
mean, and vari ance, respectively, of the profit lotte ry on the 1~th tran-
litton . (The approximation results in an error of less than O.2~ in the

26

— 5 —  .—. - —  -5 -— — —- — - - - — ---——— - — - —-5 --



P

I
I

300

p

225 - \\
\\

\\

\‘p c

• 

150 -

p 

75 .

0
10 9 8 7 5 4 3 2 1 0

Figure 2-8 C~~~arison of 6(n) and ‘
~8(n)

P

27

0

5- -  -~~~~ -5—-- ~~~ ----5 - S -~~~ — -_ _ _  _ _- _ _  _ _ _ _



p 
0.75

1AJ.~~ Q!J .— --~~~~~~~~~~ —~~--- ----_ _ _ _ _

—— S

1 0 9  0

Figure 2-9 C~~~artson of p(n) and p(n)

F

0-5

28

S

-5 - - - -5- --- - -- _-5-~~~~~~~~~ - - -~~~--- -- 
_
~~ --5- --_ --



Approximation (2.45) allows (2.43) to be rewritten as

- 

~~~~ 

{~v*(~~ - ~ ~~~ v*(~~]~ v*(~~ +~~ y [~*(a) ]} (2.1.6)

- 

~~~ n 
{‘~ *~~ - V*(~~~ +~~~~ 

[
~~*(~~~ - ~*(j ~}  (2 47)

- ~(n) + 
~~~~~~ 

- ~*(i~] (2.48)

For a “sysinetric” reward matrix of the form

+r -r -r
-r +r -r

[R] — (2.49)

-r -r +r

• the variance with information is less than the variance without informa-
tion and we conclude the following theorem.
Theorem 2.5

For a sy~ netric reward matrix A(n) � ~(n) . (For a genera l re-
p ward matrix one may construct counter-e~amp1es to Theorem 2.5.)

We may also show
Theorem 2.6

For the symeetric reward matrix ~p(n) � p(n) . By the use of
P (2.48) we may write

6(n- 1) + ~y [~.( ~ - ~i*(
-

~ - 
fr1-(n-l) Mn-I)

• 
p(n) x ~~~6(n)

~ ~~~~~~~~~ 
..-~*(~J

á41 n

We y simplify this ezprsssion considerably by lettin g
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,

~*(j ~ — S (as the varian t without information
is a cons tant)

- S(.Q , and -

(2.51)
L — transition with n to go , and

V(L) _
~~*( L ) _ v *

Substituting these into (2.50), cross-multip lying, transposing and

simplifying yields

8(n) [S-S(~~ ] � 8(n- 1) [S-S(O] (2.52)
j .M-(n- l) 1.14-n

fV(L) + 8(n- l) ] (S-S(.ffl
£~M- (n- I)

~ 4(n_ i){S_S(L) + [s-s(O)} (2.53)
14t- (n- 1)

or

V(L) (n- l)S + 6(n-l)S(L) � 6(n-l)S + V(L) S(O (2.54)

• £‘41-(n- I)

Dividing by V(L) 8(L) results in

(n- l)S 8(n- l) 8(n- I)S ~ “M- (n- l)
8(L) • V(L) V~L)S(L) ‘ 8(L)

or 
- 

s(~~J _ ( ~~1)S
• A(n- 1)r 1 S ~ (n- I) 5v(L) L  S(L)J ’ 8(L)

As 
-•

P _____  _ _ _ _ _ _ _ _  - u-i (2.57)
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i i
we may prove the inequality by proving

r ~ 1
~ b 

I 

~ S ( Q j _  (n-l)S

• (n_ l)Ll - � ‘
~
“

~~~~
‘
~S(L) (2.58)

p or

__ IS b’M-(n-l) 591 — 8(L) 8(L) (2. )

8(L) - S ~ ~ ~~4]- S (2.60)
fr’M- (n- l)

and
14

8(L) � ~
-
~j  (2.61)

t44—(n-l)

But S(L) is the minimum variance so that

8(L) S(L) � S L  (2.62)
- b’44- (n- 1)

This completes the proof.

2.7.6 Transien t Processes
The previous examples involved only )1arkov chains with recurrent

- 
. -~~ states. We briefly digress to consider the transient chain shown in

Fig . 2-10 . We shall aisume a reward matrix

1+100 -100 -1001

(~~~] — -100 +100 -100
• 

L~b00 -100 +100]

If the process had rim for s~~ length of time, then

F~~~~
i~~• o , ~~~~~~~ *ud i~~~~ 1.0
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I

In this case 6*(m) — , and v*(m) — 0(-100) + 0(-lOO) + 1(100)
— 100 . 8(n) and p(n) are both trivially equal to sero.

We may create a more interesting example by assuming that the
process has jus t begun and that same outside probability mechanism such
as the flip of a fair coin de termines if state 1 or state 2 is the ini-
tial state. In other words, as shown in Fig. 2-10,

I
P (s(0)u” lI e) — PCs(0) ’2~ e3 — 0.5

8(n) and p (n) are plotted in Fig . 2-11. The figure confirms that
8(n) is a decreasing function of n and p(n) ~ — +0.7

2.8 Sumnary
This chapter has developed the fundamantal concepts and results

necessary for an understanding of the dynamics of the value of informa-
r

tion. The most importan t result was the inevitability of information
perishing. Equally significant is the result that the value of in forma-
tion for a Markow process perishes at a rate that exceeds the shrinkage
of the underlying process. The chapter also considered the effect ofp
risk aversion where the utility function can be modeled by an exponen-
tia l expression . The following chapter extends these results by a slight
alte ration of the basic decision model.
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P4 CHAPTER 3
THE DECISION MODEL

I
L

3.1 Pur pose
This chapter describe s the decision model that will be used through-

out the remainder of the thesis.

3.2 An Historical R’~wnp1e
During the l960s the United States , as a portion of its NATO stra t-

egy , pre-stocked the equipment for several U.S. Army divisions in Western
Europe . This equipment was matche d to designa ted units based with in the
United Sta tes . The anticipated mode of employment was an airlift of per-
sonne l to Western Europe, “marrying up” with the equip ment , and subsequent
deployment in defense of NATO allies . The motivation for this plan was
to cut the reaction time in counte ring any Russian agress4ton . The concept
was tested during the l960s in a serie s of exercises dubbed “Reforger.”

3.3 Comparison with the Extant Decision Model
A comparison of this strate gy with the “usual” decision model re-

veals some subtle differences .
The existing mode l (15 ,19], depicte d in Fig. 3-1, implicitly recog-

nises a random event, “A decision is needed .” The entire analysis and
interest then follows this random event. There is no subsequen t uncer-
taint y concerning the occurrence of the decis ion.

In the cited historical example there is s~~~ probability that the
Russians will never attack Weste rn Europe and that a decision, in the
sense of tactica l deployments, viii never be made. The U.S. strategy in
Europe is assuredly a cçmplex set of supporting decisions . However , the
essence of the approach ii shown in Pig. 3-2. Th. stinificant diffe rence
is the recognition of uncertainty in the occurrence of the ultima t. deci-
sion (the method of de fend ing Zuro~e).

This leads to these mataphores:
1. Reaction decision ~~~~~ The decision maker sets his decision

vector after the need for a dacision is recognized as a car-
ta inty or near-certainty.

33

S

-—



LJ~~~~~~~~~~~~~~~~~

1

~~~~~~~~~~~~~II
Decision needed? Decisions Outcomes

Figure 3-1 A decision-making model

¼

.1 

J 

~1

‘P 

~~~ --- ‘ -5.- — 
- 

- - ~~~~~



I
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2. Contin gency decision making. The decision maker partia lly
or completely sets his decision vector before the need for a
decision is certain.

Figures 3- 3a and 3- 3b illustr ate the two concepts and suggest a
fundamenta l hypothesis : The set of alte rnativ es availab le to the cont in-
gency decision maker is at least as great if not greater than the set
available to the reaction decision maket .

3.4 The Contingency Decision Model

Figure 3-2 does not comple tely tell the story of the European pre-
stock strategy. As we noted in describing the example the Unite d States
periodically tested the plan , incurring some costs . In addition , the
type and amount of pre-stock ed supplie s might vary depend ing on the U.S.
state of information, and the final decision is obviously a function of
this initia l decision . These nuances are depicted in Fig. 3-4.

We viii find it helpful in our subsequent analys is to charac terize
the event “Russian Attack” as a binary “outcome switch. ” In the “on”
position the decision maker completes his decision, if necessary , and re-
ceives the reward from his lottery . In the “off” position the decision - 

-

maker does not receive the outcome of his lotte ry but recycles to recon-
sider his pre-set decision.

The setting of the outcome switch may be affected by:

• 1. Competitive or Gaming Factors .
Example: The deployment of U.S. troops is contingent on the

exact timing of the Russian at tack.
2. Enviroimantal Factors .

Example: The decision maker will buy a new car when his present
one requires a new motor .

3. Factors within the Control of the Decision Maker.
Example: The decision maker will buy a new car in 1976.

4. A Combineition of Previous Factors .
Ex~~~1e: Th. decision maker viii buy a new car in 1976 unless

his present one requires a new motor prior to that
date.

• There are also situations where the decision may be repetitive, and

31

—--- --5-- - --‘ --- - - -— —- -- - -- — - - -~- — -- . ‘ .-—--- •‘- -—‘ -— —5.-



l b
I,

II \fl?<
, lb

~~~uI~~~~ 

Ia 
1

0

\ /
ii

5 39



Russians Pie-stock Russi an Tactica3
Hostile ? Decisions Attack? Decisions

6 . f ( t )  d~~~f(6 )

Figure 3-4 Altered decision model

S

S -

U

40



I

the decision maker would recycle to reconsider his decision after receiv-
ing the results of an outcome lottery .

I Figure 3-5 reflects these concepts and is the decision model that
will be used throughou t the rema inder of this study.

3.5 Othe r Examples

- 
p We have concentrated generally on one decision, the U.S. pre-stock

of military equipment in Europe . However , other examp les of contingency
decision making abound. These would include:

1. Military and industrial “intelligence” collection decisions.

- 1 2. Put and call market operations.

3. Many R&D decisions.
While any broad generalization is dangerous a comeon thread is a desire
to cut reaction time when a decision is needed. As a consequence, some

r initial preparation is accomplished before the f inal decision is taken
as a certainty.

3.6 Submary

- This chapter has describe d the decision model that will be used for
subsequent analysis.
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p
CHAPTER 4

THE CONTINGENCY DECISION MODEL AND INPORMA TION DYNAMICS

4.1 Purpose
This chapter extends the results of Chapter 2 by a fuller examina-

tion of the contingency decision model.

4.2 Introduction
The basic ~~amp1e in Chapter 2 served the purpose of a suitable

framework for the development of the basic concepts of information dyna-
mica . However , the scenar io--a serie s of M a priori decisions with no

• opportunity to benefit from the information gained from the intervening
outcomes--may be considered a somewhat forced and contrived example of
contingency decision making. A second example , more natural than the
first , serves to amplify the previous discussions.

4.3 Example Two.

The decision maker is the owner of a model “A” automobile . His
mechanic has recently told him that the re is a 0.5 probability the car
will fail two years hence and have to be replaced. However , if the
car does not fail in the second year , then ther e is a 0.5 probability
that it will fail in the fifth year. Peculiar to the model “A” is the

- fact that if it does not fail by the fifth year it will last forever.
Peculiar to the decision maker is his unconcern for events beyond the
tenth year.

The decision maker is an advocate of the -model “A”. Recently he has
received the disquieting news that the c~~~any has in the past few years
developed a pattern of produc tion run s that results in one year ’s car be-
ing a “peach,” but in many cases the following year ’s model is a “lemon.”
Tb. company engineers feel the Markov mode l of Pig . 4-1 captures this

- pattern.

Tb, decision maker also has the option of buying a model “B”, a more
reliab le but more expensive car . After s~~~ consideration he has devel-
oped a reward structure as shown in Table 4-1.
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TABLE 4-1
Reward Structure, Example 2

Buy Mode l “A” Buy Mode l “B”

Model “A” a peach +100 -100

Model “A” a lemon -100 +100

What now is the value of information concerning the quality of this
year ’s production of Model “A’ s?” We can recalculate v*(n) and v*(n)
keeping in mind that

P(outcome switch “on” at m’.2~ €) — 0.5

P[outcome switch “on” at m1’~51switcb “off” at m ’2 , e~ — 0.5

(3{outcome switch “on” at m’.51€) — (0.5)(0.5) • 0.25

The values of v*(n) , v*(u) , A(n) , and p(n) are plotted in Pig. 4-2.
Figure 3-4 suggests an extension to this example. Assume s~~ cost,

say 5 units, is incurred each transition if the re is no receipt of the
profit lottery. The cost , for instance, might be maintenance and opera-
tion of the Model “A” . The values of v*(n) , v*(n) , ~(n) , and p(n)
are plotted in Fig . 4-3. Comparison of the last two figures shows that
the alteration of the example changes ~*(n) and v*(n) but not L~(n)
and p(n) . We also note in both figures that ~(n) is non- increasing
over the horizon of interest, but p(n) behaves inconsistently with our
previous results . What changes are needed to rationa lize this behavior?

4.4 The “Ou tcome Switch ”
We first must forma lize the probabilistic nature of the occurrence

of the decision .
Let

rCa) • Y be the event that the “outcome switch” is “on” at tran-
sition a , i.e., the decision maker receives the reward
from his profit lottery at transition a , and

• B be th. complementary event that the “outcome switch” is
“off” at transition a , i.e., the decision maker does
not receive his reward .
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Let

g(m) — Ptr(m)—Ylsl (4.1)

1 - g(m) • PCr(m)—NIc) (4.2)

We have discussed in Chapter 3 (see pages 40-41) that the occurrence
of the decision may be highly dependent on any number of previous events .
Designate such events as E(l) , E( 2) , E(3) , ..., E(m- 2), E (m- 1) , E (m)
Then

g(m) P(r(m)Y1c) — P(E(m)11E(m— 1),...,E(l) ,c) P(E(m— l) IE(m— 2),...,

E(l),e} PCE(m—2)IE(m—3),...,E(l) ,e3 ... P(E(l)~~~ (4.3)

We shall assume tha t the marginal probability , g(m) , is always

available , either by direct assessment, modelling, computation or by some
combination of these techniques .

We can associate a rand om vaI~idb1e , 1(m) , with the process such

that

I (m) l if r ( m ) — Y
(4.4)

1(u&)•0 if 1 ( m ) — N

At any transition a the probability mass function for 1(m) is
described by Fig. 4-4. In particular, for the example we have just de-

scribed, the mass functions for 1(m) are shown in Fig. 4-5.
We discern that rece ipt or non- rece ipt of the profit lotte ry in no

way affects a priori cerebral consideration of the optimal strategy .
Th refore , we redefine (2.5) as

-

~~~~ ch,0
~~(m) — <w(m)l6(a)6~~~,r(a)”Y,s> (4.5)

where the subscript “c” emphasizes the contingency decision making. Then
the obvious relationships exist

• vOt)(a) g(a) (4.6)

• v*(a) g(a) (4.7)c

• 0~’(a) g(a) (4.S)
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0

-, 
- 

49

_ _  _ _ _ _ _  _ _  

_ 
_ _ _  _ _

F
H~. 

-



1

CI

p

0
i~~g(5)r0.75

i—g(2).0.5 g(2)”0.5 I

_______________  __L___________ —.‘_____________

0 1 0 1 0
1(2) 1(5) X(T~), ~~~~~ 5

o Figure 4-3 Representative probability mass functions Examp le 2

0

fl

50

a



- r

4.5 Comparative Results from Contingency Decision Making

4.3.1 The Effect on Mn)
The last results of Section 4.4 lead inmediately to

Theorem 4.1

~~~~ 
� A(n)

Proof

~(n) - - (4.9)

and

- ~~~ [v*( A) g( L )  - v*(L) 8(L) ] (4.10)

Thus,

g(~~(v*(L) v*(~)] ~~ (n)

o 4.5.2 The Effect on o(n)

The effect of contingency decision making on p(n) is not as ob-

vious as the effect on 6(n) . In the example ,

p(n) is ~~~ less than 1x 11 ,

and

p(n) is ~~~ greater than p(n- 1) for all n ,

both in contradiction to previou s results .
0 In lzample l , g(a ) .1.0 , O~~~a~~~l0 , and g ( a ) — O , a > 10 .

Moreovsr, for a~~ 6 ,  v*( a )_ v * ( a ) . 0 .  In lxample 2 , g(a) 0.5
for . — 2  ; g(a) .0.23 , a — S  ; and g(a) — 0 , othe rwise . ~~~~ -

viously g(a) is constant in Zx~~~ie 1 (at least for the transitions
o that cause a contribution to 6(u)). In Example 2, g(.) is both in-

creasing and decreasing. Consideration of these results leads to a re-
stat~~~nt of Theorem 3 3 , as

~~~o~~~ 4.2
I if g(a) ts noa tncrsa sing tn a .
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Proof
There exists two constants ~ and ~ (I �~~~~~, B � 0  ,

such that c,in � g(m) for all in , and ~‘~~~ g(m) for all i n .

Then one may show that 8(n ,a) � 8(n ,$) ~ 8(n) . Similar to the

proof of Theorem 2.3 we may show that

A(n- l)~~~p(n o~) • 8(n ,o~) ~ i X 1i (4.11)

and

p (n .e) — 
8(~~1

;~
) 

lx ii (4.12)

8(n) and 8(n- l) are continuous in g(m) . Thus, it fo llows that

p(n) is also continuous in g(m) . From (4.11) and (4.12) we con-

clude that the theorem holds .

The converse of this statement does not hold in general as can be
seen by alteration of Example 1. Suppose g(O) — 0.5 , g(l) 1.0 , and

g(m) — 0 , m # 0,1. . Then 8(10) — 106.35 , and 8(9) — 59.29 , or

p(lO) — 0.56 ~ L0.7 1 . This is true in spite of g(0) � g(l) � g(2)

4.6 Two Peri pheral Issue s

4.6.1 Intermsdi~ry Infor mation Acquisition
Suppose for Example 3 we alter Example 2 as follows: The decision

maker, following any year he purchases an “A” mode l car , has the proba-
bilitie s 0.5 and 0.25 of a required successive purchase in the succeeding
two and five years . To be specific--if the decision make r buys an “A”
model in year 2 then he has a 0.5 chance of requiring a successive pur-

o chase in year 4 and a 0.25 chance in year 7. We also assi he receive s
perfect information if the purchases the car. In other words , he ~~ows
at (or t diatsiy after) the t ime of purchase if the current year ’s model

is a “peach” or a “lemon.” Re can, of course , use this data Lu succeeding
years. What now is the value of information acquired at a — 0 , and how

do 6(n) and p(n) chang e?
Figure 46 depicts this behavior. Tb. important cons ideration is

the fact that receipt of a second inpu t of per fect informa t ion destroys

~~~~~~
. • any residual incrmeental value from the firs t acquisition . This will be

_ _  :_
~~~~~~~~~~~~~~~ 

_  
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of key concern in the optimal strategy of information acquisition in the

following chapter.

ii 4.6.2 Discounted Rewards
Wha t is the effect of discounting on 8(n) and p(n) 9 Usume in

Example 2 that the stre am of rewards is discounted by some factor B . In

othe r words , the present value of the expected reward at the ~th transi-

tion is
— 

B
v (m) — ~~v*(m) , ~ � l.0 (4.13)

If , in particular , we assume that for Example 2 B • 0.9 , then the ap-

o propriate values for and are plotted in Figs. 4-la and

4-lb.

Examination of Pig. 4-la reveals that 8(n) is increasing in viola-
tion of Theorem 2.2. However , this illusory appreciation of information

LI is a violation , not of the theorem , but of the assumptions of the theorem.

The development in Cha pter 2 was premised on a constant reward structure .
Once discounting is introduced there is no longer a constant reward over

time. Therefore , there is no guaran tee that the results of Chapter 2
o would remain valid.

4.7 Suamary
This chapter has developed the foundation.s for the contingency dcci-

sion model and the effects that contingency decision making has on the
basic results of Chapter 2. The important result that information perishes

within the context of the decision mode l leads logically to the next chap-
ter, a considerati on of the strategy of informat ion replenisheent.

- o
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CHAPTER 5
IFO~1ATICI~ REPLENIS}*~ENT

5.1 Introduction

This chapter , in a sense , begins the obverse of the previous results.
Information perishes over time. What strategy of information replenish-
ment reverses this perishing?

In the static case the question of information rep lenisimient is
straightforward . If the expected value of information is greater than
the cost of gaining the information , then the prudent strategy is to
acquire the information . However , the issue is far more complex in the
contingenc y decision model. The decision make r faces this pa radox . If
he acquires information at in — 0 , the information may have perished by
the time the decision actually occurs . Conversely , he may delay his in-
formation gathering and be caught short , having to make his decision on a
less than comp lete state of information . We may call this process
speculative information acquisition as it has many of the characteristics
that fu tures speculation has in any coemodity market.

5.2 Two I~a~pies

5.2. 1 A Simple Case--Ex amp le 4
We illustrate with a trivial but useful example . Let the state of

information be charac terized by the two-state Markov model that we have
previous ly used (see Fig. 2-i , page 7).

The alternatives and reward matrix are those used in Example 1 (see
pages 5-6). We further asstme that the decision occurs with probabi lity
1.0 at a — 5 and a • 8 and with probabil ity 0 otherwise. Utilizing

th. notation of Chap te r 4 we have

g(5) — g(8) — 1.0
() (5.1)

g(a) — 0.0 , a # 5 ,8

The decision maker has a planning horizon of eight transitions .
Tb. decision/informa tton acquisition model 1.5 shown in Fig. S-I.

o We should particularly note fro. the modal that information acquired at
the .th transition is not available for a decision at the atl

~ t ransition
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but is available , at the earliest , at the aP l transition . At this
time it has perished for one unit of time.

~ 
, To return to the example we may establish a base case tha t would

consist of an expected reward of +5.88 at a — 5 (based on prior in-
formation only) and an expected reward of 33.83 at a . 8 (based on
acquisition of perfect information as a result of observing the outcome

of the decision at a — 5). (These expected rewards were established
— in Chap te r 2.)

It is transparently clear that although the combination and permuta-

tions of schemes of data acquisition are almost unlimited that (assuming
o the cost of information gathering is constant over tiam) only four merit

consideration:

6~
0
~--No acquisition;

6~~~--Lcquire perfect information at in — 4 only;

-Acquire perfect informa t ion at a — 7 only;

6~
3
~--Acquire perfect information at a — 4 and in 7

Table 5-1 s~~~arizes the results for each alterna tive.
0

TABLE 5-1

Si~~ ary of Expected Rewards

• Alterna t ive Expected Reward Total Expected Incrementa l Value*
at Revard a t  at

m 5  m’8 m O  m’.O
(1) (2) (3) (4) (5)

6(0) 5.88 33.84 39.72 Not Appi.

~~~ 69.41 33.84 103.25 63.53-C

6(2) 5.88 69.41 73 .29 35.51-C

~~~ 69.41 69.41 138.82 99.l- 2C

*C is the cost of one data acquisition.

Figure 5-2 is a plot of Coluen (5) of Table 5-1.
La L. obvious from the figure, oC2) ii dominated at all costs , C

Howsvsr, the choice among th. other alternatives ii a function of the
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cost of the information gathering program. At low costs the extens ive
program is pre ferred , at intermed iate costs the restricted program is
dominant , while for costs over 63.53 the best strategy is to forego in-
formation acquisition.

In some situations control and planning of such an aperiodic acquisi-

tion program would be difficult. A periodic gathering of information,
— 

0 while perhap s less optima l from a strict economic viewpoint , might be far
easier to monitor and implement. We shall designa te the spacing of the
periodic replenishment by the parameter “s” . As an example , s — 8 signi-
fies acquisition of perfect information at transitions 0, 8, 16, 24,

We would particularly note that ir~ Example 4 acquisition of perfect in-
formation at a — 5 and a 8 is redundant and , hence , worthless , as
the decision maker will receive perfect information as a result of observ-
ing the outcome of his decision at these transitions . Figure 5-3 depicts

o in a qualitative sense the process of periodic information replenishment.
Table 5-2 s~~~arize s the resu lts of periodic programs applied to

Pvoinple 4.

TABLE 5-2
Periodic Rep lenishments, Example 4

S Total Expected Number of No tes
Reward (net) Acquisitions

(1) (2) (3) (4)

8 0.00 0 Equivalent to Base Case
7 35.57 1
6 15.34 1
5 0.00 1 No value for information at 5
4 63.33 1 No acquisition at 8
3 58.64 2
2 78.87 3 No acquisition at 8

(I 1 99 . 10 7

Figure 3-4, th. paralle l to Pig. 3-2, assists in visualizing the
dominan t alterna t ives. Examination of the figure reveals a pattern similar

- 0 to that of th. previous ~~a~~le.
We now turn to a bit more subtle “ ile .
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V
5.2.2 Geometrically Distributed Decision Occurrences

We alte r the scenario as follows: Assume the information model, the

alternatives, and the rewards remain unchanged. However , g(a) is now a
geometric distribution . (The decision maker might elect this model for
the decision occurrence because of a feeling that it adequately represents

his state of information. In addition, the distribution has some “bench-

markt’ properties which will be useful in the further development.)

In particular , let

g(m) — (O.2)(0.8)~~
1 

, I �m � 20
(5.2)

(3 — 0 , otherwise

The distribution is represented by Fig. 5-5 , and we note that the
decision occurs but once .

We limit the replenishment to periodic acquisitions and further
0 assume that the horizon is an integer multiple of the replenishment period.

In other words, for the example we are developing acquisition can occur

only at periods of 1, 2 , 4, 5 , and 10 transitions. One can gather infor-
mation fruitfully only through the nineteenth transition as no decision

0 will occur after in — 20
The situation unfolds as follows: The decision maker may elect some

period of information acquisition , say every Lth transition. lie pays a
cost C to acquire info rmation prior to the first transition which en-
ables him to set his decision vector for transitions 1, 2, ..., 1 . He

can calculate the expected value of this information. At transition 1.
he again acquires information if the decision has not occurred prior to
L. For the geometric distrthution in the example the probability is

£
- 

- I - (0.8) that the- second acquisition will occur . If the decision

asker acquires information the second time, he uses this update to set

his decision vector for transitions *11, 112 , . . . ,  U . The process is
repeated through the horizon , N

We illustrate the ni~~ rLcal approach by creation of Table 5-3.
ColtRn (5) of the tab le is the total expected profit from the informat ion
acquired . The net profit , that is the total less the expected cost , we

- 
- designate by VT(n .sa&) where n is the transitions to $0, and 5 - £
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TABLE 5-3

Expected Rswards , Geometric Distribution

If Decision The Reward Probability Expected Cumulative
Occurs at ii Decision Occurs Reward Reward
a - v*(a) g(m) 0v*(m)

(1) (2) (3) (4) (5)

1 69.41 0.200 13.88 13.88
2 49.18 0.160 7.87 21.75
3 33.84 0.128 4.33 26.08

4 24. 16 0.102 2.46 28.54
5 16.29 0.082 1.33 29.87
6 12.07 0.066 0.79 30.66
7 7.86 0.052 0.41 31.07
8 5.99 0.042 0.25 31.32
9 5.88 0.033 0.20 31.52

10 5.88 0.027 0.16 31.68

implies acquisition of information each £tb transition. We may express
, as an example , as

VT (2O ,s~lO) — -C + E(v*(j) - v*(j) J Pr( decision occurs at j~ c)

-(1 - 0.81°)C + E(v*(j) - v*(j) 3 Pr (decision occurs

at j+ l0Ie)
10

— -C + ~~~
, 

(v*(j) - v*(j)]g(j)

j —l
10

4G(lO) {_C + (v*(j) - v*(j) ls(i) ) (5 .3)
i—i

() We may develop similar expressions for s — 1, 2 , 4, and 5 • These
are p-lotted in Fig. 5-6.

(j
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5 3  Rules of Optimality

• We shall now deve lop some rules of optimality with proof of each.
The following statement of the problem applies to all rules. The horizon

c- is K transitions . The periodic acquisition of information occurs at
intervals k , £ , etc., such that Kk Lt — K • The cost of one acqui-
sition is C , and the cost is linear , i.e., two acquisitions imply 2C

The decision occurs but once and is governed by

~0
g (m) — ?(1-f) , 1 ~~a ~~M (5.4)

Rule l

VT(M,s
~L) 

— 
1 - fMf0(1) - Cl (5 .5)

where
£

aCt) — ~~~
, 

(v*(J) - v*(fl] g(j) (5.6)

o j — l
Proof

The expression follows from recognition of three results . The
firs t is that

1 + ft + f 2L + ~~~~~ + f (L- l)L 
— 

I -

1 - f t
The second iimnediately follows as LA — K by assumption . The third

result comes from the “memorytess” prop erty of the geometric distribu-

O 
tion . Assume , for example , the period of acquisition is £ , and we

thare intereste d in the k acquisition . The expected value is then

—~(kL)C +~~ [v(j) - v( j) ] g(kL+j) (5.7)
j

However, we may also write (5 .7) as

-G(kA)C + 
~
(kt){1 (v*(j) - v*(j)J g(j) } (5.8)

.1
This expression holds for k 0, 1, 2 ,

Rule 2 
-

Let VT(K ,s_g*) represent the optimal acquisition policy for s~~~
value of C • The graph (i.e Pig. 5-6) is piecewise linear in C

~~~~- • ~~~~~ : I diats. 
-
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Rule 3
No acquisition policy is dominant for all values of C

Proof

For dominance some policy, say acquisition at each Ath transition,

must yield a va lue of 
~T that inte rsects the axis at a value

greate r than any othe r policy, i.e . ,  if C — 0

VT(K ,s~~Q � V~ (M~5~k) , k # A

Also the policy must intersect the C axis at a value greater than
any othe r policy (see Fig. 5-7). For C — 0 $ VT is obviously max-
imized for A — 1 and decreases in L . On the cost axis the inter-
section occurs at or(O - C — 0 . By the definition of cv( t) , (5.6) ,
we know that a~(~) is an increasing function of £ . Therefore , no

policy is dominant.
Rule 4

H Assume a(~~~- C 0 �O  for some A .  Then the optlmal policy is
determined by

o(Z*)..C a(j~~- C

£ ‘ £~~ f* (5.9)
() I f ~ 1 - f

If a(O - C0 ~ 0 for all A • then f* — ~ (no acquisition) .
Proof

This follows directly from Rule 1.
U

Ru le 4 furnishes a fairly tractable determination of the optimal
policy for some particular C0 . For ins tance in the example we might
let C0 — 10 . Then we could construct Tab le 5-4 , confirming what was
graphically depicted in Pig . 5-6.

TABLE 5-4
Opt imal Policy for the Example Problem (f — 0.8)

cy(~~~- C5 _ I  a (O °

o I - f

1 12.70 13.50
2 19.63 26.75 Optimal

o 4 23.09 25 .56
5 25.93 23.72

10 26.47 18.45

- 
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__________
Rule Sp. thAssume the valu e of the information perishes by the a transition

counting forward; i.e., v*(j) - v*(j) — 0 , j �m  . Then £*~~m

for all C0
Proof

Rule 4 requires

o(P)-C y (m )-C
0

, ~~~~~~~~~ (5 .10)
1 - f ~~

Assume m a in contradiction to Rule 5. By the statement of the
problem a(ø’) — cy(m) . Therefore , inequality 5.10 reduces to

1 1 (5 .11)1 _ f m 1 _ f m

or
0

� (5 .12)

which is false for , � m . Therefore , fk must be less than a ,

which completes the proof.
r

These rules will be usefu l in analyz ing other distributions .

5.4 Other Markovian Distributions

5.4.1 Increasin g (Decreas ing) Decision Occurrence Ra tes
We adapt a concept from Wagner [23] to define an increasing (decreas-

ing) decision occurrence rate . We shall use a special breed of Markov
chain whsre one state which we shall designate j * is the state , “Deci-
sion occurs ,” and the other sta tes , i — 0,1,... , are directl y associa ted
with transition , that have no decision occurrence . We let

— (5.13)

a end define an increasing (decreasing) occurrence rate if r(i) is in-
creasing (decreasing) in i . Roughly this trans lates as the decision
asker feels that as U.e passes and given that th. decision has not oc-
curred the probability of the decision occurring increases (decreases) .

o The distributions of Figs. 5-8a and 5-8b depict increas ing and decreas ing

_ _ _ _ _ _ _ _ _ _ _ _ _ _  — - - —-- -- —-- ---.~~~~~~~~~ ~~~~— -  

~~~ 1_ — ‘
~~~~~~

“ 

~~~~~~~~



1~

V

O

(a) Increasing occurrence rate

(b) Decreasing occurrence rate

- 
I Pogure 5-8 Increasing and decreas ing occurrence rates
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occurrence rates , respectively. Figure 5-9 is a graph of VT for the

three cases: increasing, constant, and decreasing occurrence rates.

5.4.2 Optimal Acquisition Policies

We note in Fig. 5-9 that for the increasing (decreasing) occurrence

rate the optimal acquisition period for a given C0 is less than or

equal (greater than or equal) the period for the “constant” occurrence

rate . We now show this is a general result.
Theorem 5.1

Let t~~~~~~i, ) 
define a Markov chain as defined in the previous para-

graph. If “i. * 
is increasing (decreasing) in i , then for a

I ~ particular cost of information acquisition C0 $ the optimal periodic
— acquisition occurs at a period s where s is less than or equal

(greater than or equal) that s de termined by Rule 4.
Proof

The proof proceeds by induction on s , the acquisition period.

The proof will be for the increasing case as the decreasing case is

then obvious. The proof is based on determining the values of C0
for which the decision maker is indifferent between acquisition at
each transition and at every second transition. We then show for

the increasing case that this C0 is larger than that for the

cons tant occurrence case . This implies that the optimal acquisi-
tion period is less. The intersection for the “constant” case is
de termine d from

VT(M,s~1) — VT(M,s
~
2) (5.14)

Using (5.3) we express the equality as

—C0(G(O)+G(1)+.. .G(M- 1)] + (g(l)+g(2)+. . .+g(M) ] (v*(l)-v*(1) ]

.i~ (K-2) ] + (g(1)+g(3)+. . .+g(M- l) ] [v*(l)_ v*(l) ]

+ [g(2)+g(4)+. ..+g (M) ] (v*(2)_v*(2) ] (5 .15)

Let the equating value of C0 in (5.15) be C0(l) and solving for

this quantity yields - -
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~ 
1 
a(2) + g(4) + ... + a()O ( *(I) - v*(2)] (5.16)
G(l) + G(3) + ... + G(M- l)

The numerator of (5.16) is equivalently expressed as

~
(1)P 1,~~ ~~~~~~~~~~ 

+ ... + G(M-l)P~..1,~* 
(5.17)

a Thus, for (5.16) we may write

* 
+ ~(3) p3 * 

+ ... + ~(M- ~~~ 1 *C (I) — 
— 

•1 
— 

— 
‘~~ [v*(l)_v*(2)]

° G(l) + 0(3) + ... + G(M-l)
(5.18)

Let C:(l) represent the equating value for a Markov chain with an

increasing decision occurrence rate. Then

+ ~(1)~p~ *
#~~(3)*p~ *

+ .~.. .s.~~(M- l)
+p~ 1 *C (l) — + — — + 

- III

G(l) + G(3) + ... + G(M—l)
(5.19)

One may then compare the right-hand sides of (5.18) and (3.19).
Since P~j* 1 for all values of i � M ~ the conclusion is

C (1) � C0(l) (5 .20)

This situation is depicted in Fig. 5-10. The implication is that the

decision asker would adhere to a “5 — I” policy at a greater cost for
the increasing occurrence rate situation . Thus , the optimal acquisi-
tion policy for the incrsasing occurrence rate is s 1 while the

f optimal policy for the constan t ra te is s — 1 or s — 2 (or per-

hap. even higher). Therefore, we have proven the assertion for
s — l .

Assi.as the results hold for $ — It • We shall, now prove the theorem
f or  s — It - 1 , the intersection of the It - I and It policies.

We can express VTOf,
aIPk) a.

k-l It k-l

• 
VT(M ,s k )  — ~~~ g(ik+A)(v*(L) - v*(L)] - ~ ~ ( ik)C~, (5.21)

i 0
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Similarly, we wr ite

- I VT
(M,s

~
k_ l)

~ 

k~~ 

~~~~~~~~~~~~~~~~~~~~~~~ 0(i(k-1)]C0 (5.22)

i—O L—l i—O

At the intersection the two expressions are equal or

k-I It k-i

~ g(ik+L)(v*(L)_v*(L)]_~~ ~ (ik)C0
I i O L 1  i—O

~ k~l 
g(i(k_ l)+L](v*(L)_v*(L)]_~~ 

‘
~(i(k-l)]C0 (5.23)

i—O £—1 i—O

The assertion of the theor~me is that C (k-i) as determined by the
solution of (5.5) is less than C (k- L) as determine d by (5.23) .
If this is true, then one may substitute C0(k- l) into (5.23) , and
an equality would no longer exist. Instead the left- hand side would
be less than the right-hand side. We may show that

C (k-l) — a(k- l) - (1,.~fk~l) [v*(k) - v*(k)] (5.24)

p where ~(It- 1) was defined by (3.6). We also recognize that

k-i

~(k- I) — (1-f) f~~
1 (v*(j) — v*(j)3 (5.25)

.1—1
0 

Thu., C0(k-l) is a function of It terms involving v*(j) and

• j  — l,2,...,k-l . We can represent this as

C (k—I) — E~~~ j) (y*(j) - v*(j)] — I:~v ’(j) (5.26)0

Substitution of the expression for C0(It- 1) into (5.23) yields

u~ •
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k-l k

~~~ 

g(ik+L)(v*(t) - v*(t) - v ’(L) )

L I  
i — 0 L 1

It k-i

~ g[i(k. 1)+L] (v*(L) - v*(L) - v ’(L) ] (5 .27)
i—O .t—l

- 
1 This completes the proof of the theorem for the increasing rate case.

The opposite conclusions hold for the decreasing rate case .
We have seen in this section the utility of the geometric distribu-

tion as a bencheark for any singly occurring decision . The next section

extends this property to multiple occurring decisions.

5.5 Repetitive Decision Situations

5.5.1 The Model
To this point we have examined decisions tha t occur but once . How-

ever the process may be repetitive. The decision occurrence is described

by a probability mechanism. The true state of nature is revealed to the
decision maker after each occurrence, and the process continues to the
horizon. We could model the process as shown in Fig . 5-11

We may also develop an equivalent Information Value Mode l as shown
in Fig. 3-12. 

-

States 1 through 9 of Pig . 5- 12 represent the values of perfect in-
formation after one through nine transitions. These values , as initially
presented in Tab le 2-2 are 69.41 , 49.17 and so on down to 5.88 at state 9.
We also note that state 1 may be entered only through information acquisi-
tion. Without the deliberate acqui sition the value of information
perishes through a ainie~~ of two transitions between decision occur-
rences .

We offer some rationale for the model. For the deliberate acquis i-
tion situation we hypothesize that the decision asker anticipates re-
ceipt of the information , and he has his resources mobilized to act on
the information after a delay of one period . However , information gained
as a result of observing the true stats of nature after a decision oc-
currence has an element of surprise • and two periods are required for - -4~~o reaction.
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1.
The sequence of the action is also pertinent. The decision maker

first elects to acquire or not to acquire information. Following this he
finds out if the decision occurs or not on that particular t ransition .

5 .5 .2  The Value of Information for a Seecific Ex sle

Let f — 0.3 and the hori zon P1 — 20 in the model of Fig . 5-11.
We may determine the expected value of a no- information base case . The
analysis proceeds by either tagging “special” transitions (see Howerd
(2)) or by expected state occupancies. Th. calculation of the occupan-
cies of state 2 , as an ~~t çIe , is simplified by collaps ing the remaining
states as shown in Pig. 5-13.

Let i~~,2
(R) be the expected occupanc ies of stat. 2 conditioned on

starting in state 9 and a transitions having occurred. Then

~~~3( ) — H C.) - fi [l( ;0a
2)m

] a a i (5.2$)

Prom the moda l as realise that only 0.2 of the occupancies of sta te
2 rssult in decision occurreaces end the accruing of the 49.1? rswerd .
Also if the horison is ~ , only the occupanc ies Lu N.1 tramsittose

~re of interes t an one transition is required to go fr om the informat ion
stats to the decision occurrence sta te • We Consider states three thrsv#
nine La a similar ~~er and arri ve at a base case valu e of 73.22 . sub-
stascial ly greater than the ba~~ f 3.31 for the singly occurring decision
case.

The process of information ~ -~ -~.sitLos is equivalent to starting
t h e nedsl tn state l. Por —ple , if s s l , theu the expect.d velus
is (20 occupanc ies of state l) (0.2) (6~ .41) • 277.64 . The. , using the
notation of Section 3.2 as have

VT(20.5.I) • (20) (0.2)(69.41) - 73.22 - 20C

• 
— 204.41 - 20C (5.29)

We develop similar expressions for s • 5, 4, and 2 . The graphs
of each are plotted in Fig. 5-14 along with comparable graphs from the
singly occurring case . - 

-
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5.5.3 General Rules of Optimality

We shall now develop ru les of optimality to parallel those presented
in Section 5.3 for the singly occurring decision . The following state-
ment of the problem app lies: The horizon is M transitions . The

periodic acquisition of information occurs at intervals k , 1, , etc.,
such that Kk — Li — H . The cost of one acquisition is C , and the
cost is linear as previously defined. The probability of the decision
occurring, based on the model of Fig. 5-11, is

g(m) —~~: ~~~~
- :

~~~~ ~(f- ~)
in 

, m � 0  (5.30)

Rule l
The expected state occupancy of state j in a transitions condi-

tioned on starting in state 0 , the no information state , is given
by 

- ~~~[m - (i- 2)
J 

f~~
2 

- 
l~f[l~(f~i) i~ 2)] 

f 1
~

2 (5.31)

Proof

— The proof follows from Markov state occupancy mechanics .

~ zle 2
The expected state occupancy of state j  in ii transitions condi-
tioned on starting in state 1 as shown in Fig. 5- 13 is

j — l ,

— f 1~ + .~~.—~[m 
- (i_ 2)] 1

j -2 .~~~[l_ (f_ ~) (i 2)
] f

i 2 , j~1l

(5 .32)
Proof

The proo f again follows from Msrkov mechanics .

The net expected reward conditioned on acquiring information at
thevery .t transition is

VT(M,s L )  • ~~

J
— {~~~.~ ,, cs_ l~~l_fn v* in} (5.33)

j
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p

Proof

The result is derive d f rom Rules 1 and 2 and the definitions of
the states used in the model.

Rule 4
Let VT(M,s~ La) represent the optimal acquisition policy for some
value of C . The graph (see Fig. 5-14) is piecewise linear in C

Proof

Inmiediate.

There appears to be no readily tractable method for determining the
value of L* , the optimal acquisition period, for some particular value
of C . However , we may show that it is less than some value a where
a is the tr ansition , counting forward , whe re the information has perished.
Ru le 5

Assume the va lue of information perishes by the ~th transition count-
U ting forward; i .e.,  v*(j) - v(j) — 0 , 3 � a • Then L* � a for

all C

Proof

Assume the existence of two optimal policies k~ and La such that
vT

(M,s k*) � V~(M,s—j) for all 3 � a , and VT(M,s L*) � v~(M,sj)
for all 3 � a . In particular, by assumption, VT

(M ,5ak*) �

VT
(M,s.m) . This implies that

a

~~ 
(v*(j) - v*(j )]}~~~!{~~ (v*(j) - v*(j)J} (5.34)

3-0 3-0

However, by the concept of information perishing the bracketed sum-
mations are equal which implies

(5.35)

which is false for k* � m . There fore, La which is less than or
equa l to m must be the optimal policy.

RuI.e 6

No acqu~sition policy La dominan t for all values of C
Proo f

Refer to Pig. 3-14. The intercept on the reward axis obviously

84
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decreases with increasing £ . However , the intercept on the cost
axis increases with increasing L . Thus , no policy dominates.

Rule 7
Let C(l) be the cost for which the decision maker is indifferent
between s — 1 and s — 2 . Then

C(1) — (l~f)v*(1) - f(l_ f)v*(2) (5.36)

Proof
Let B — expected reward for the no information case. We can write

the equating value for the s — 1 and the s — 2 case using (5.33)

M ((1-f) v*(l) - C(1)] - B .~~((l_ f)v*(l) + f(1_ f)v*(2) - C) - B

(5.37)
The results follow from solution of (5.37) . This value will be
useful in comparison with the singly occurring case.

We had earlier noted the use of the tt constant~ occurrence case to
establish a bound on the optimal acquisition period. This case also
serves as a benchmark for the multiple occurring decision although the

results are surprisingly different.
Theorem 5.2

Let C0(k) be the cost of information acquisition for the constant

rate , singly occurring decision case for which the decision make r
is indifferent between s • k and s — k + 1 . Let C(k) be simi-

larly defined for the multiple occurring case. Then C(l) � C0(l)
but C(k) �C(k) , k > l

Proof
By Rule l

C(l) — (l— f)v*(l) — f(1—f)~s*(2) (5.38)
I

From (5.5) one may show that

C0(l) — (l- f) (~*(1) - v*(2) ] (3.39)

• Comparison of (5 .38) and (5.39) proves the aa sertion regarding C(1)
and C0(l) . The romainder of the proo f parallels the proof of
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Theorem 5.1. For the multiple occurring case we de termine C(k)
by setting

vT (MIP 5 k )  — V
T

(M,sak+l) (5.40)

Then (5.32) may be used to evaluate VT
(M,sk) and VT(M

~
s=k+l)

to yield

~ [ - ~)~~~i + ~~w13
(k-1) (1~f)v*(J) - C(k)] -

3—2

k+1

~~j[(1_ f)v* 1) + ~ w13
(k) (l_ f)v*(i) - C(k)] (5.41)

3—2

We determine C0(k) by use of (5.24). The theorem requires that

the substitution of (5.24) into (5.41) destroys the equai.ity and re-

sults in an inequality with the left-hand side , that is the side
with the greatest number of acquisitions, being the lesser side.

Substitution of (5.24) into (5.41) confirms this result and proves
the theorem.

These results are obviously not as “clean” as those of the singly oc-

curring decision as there is some uncertainty where the cross-over in the

bound occurs. However, the ease of determining the values for the con-

stant occurrence, singly occurring case recommends its use for these

rough estimates.

5.6 The Case for Periodic Replenishment

We have suggested that the opt imal policy in some instances is
strictly periodic acquisition of information. An approach , following a
development of Barl ow and Proschan (9] rigo rously supports this conten-
tion (under certain limiting conditions) .

Suppose that the time between deliberate information acquisitions
is described by s~~~ distribution function F(X) (and density function

f(X)). This generates a series of information acquisitions ; the time
between each acquisition is a random variable , I (see Fig . 5- l5a) . The
l’s are identically and independently distributed random variables which
vs shall designate (Xk )~ ,1
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Similarly let the t ime be tween dec ision occurrences , Y , be gene-
rated by G(y) . The set of Y e , designated by (Yk) .1 , are also
identically and independently distributed (Pig . 5.15a).

Further, define a third set of random variables ,

— min(X.a,Yk)

(see Pig . 5- lSb) . The Z’s delineate a series of information replenish-
ments , s~~~ of which are by design and some of which occur “free ” in tha t
they result from observation of the outcome of a decision.

Let

N1(m) — number of acquisitions by design by transition m (5.42)

12
(m) — number of acquisitions by decision occurrence

by transition m (5.43)

N(m) — N1(m) + N2(m) • total acquisitions by transition m (5.44)

Prom the definition of Z the

Pr(Z 4L) • I - ~(k)i(k) (5.45)

and one may show that

4ls>~~~~~~
(k)

~(k) 
(5.46)

Therefore,
_ _ _ _ _ _  

1 (5 47)

0

Two indicator random variab les will be usefu l in the development.
Let

‘3
1 if — Z~ (r.plsntshesnt by design)

(5.48)

0 otherwise

U and

U

— - — -—
~~~~~~~~~~~~~~~~~~



1 if I — Y (reple nishment by decisionr - Wk — 
k k outcome observation) (3 49)

0 otherwise

Reflection shows tha t

~v I.>
. pr(x~~) - 

m .~ 

F(m)g(m) (5.50)

and

-~ 
di l L> — Pr fY~~} — G(m)f(in) (5.51)

These indicator random variables “identify” the method of information
replenishment.

I We can describe the average reward per transition for an infinite
horison process by two terms: the firs t is the reward accruing to the
decision maker if the decision occurs , and the second is the cost of
delibera te inform ation rep lenishment.

The cost is a cons tan t which we shall labe l C 1 . We recollect tha t
we receive perfect information from both the de liberate acquis ition and
from observing the system as the decision occurs . Let the value of this
perfect information be C* and the reward at k transitions later be
C’(k) . Let

C2(k) — C’(k) - C* (5.52)

so that C
2

(k) represents a “cost” of not having perfect information.

• The average cost per transition is

— 
C
l~~1

(m)Io 4
~2

(m)N
2(m)lI>

•
C1 ~~ 7(m)g(m) ~~ C2(a)0(m)f(m)

_ .i’O 
~~~~~~~ (5 J4)

• ~ !(a)5(ii) ~
a.’O

U

a
_ _ _ _ _ _ _ _ _ _ _ _ _ _— ---—~~~~~. - - — ~ - .  — -- . - -



J
We may rewrite the n~~~rator of the first term as

C1 ~~, 
P (m)g(m) — C1 ~ ~(in)f(m) (5.55)

m 0

The denominator of both terms is <‘Z~ L> . Prom basic considerations
L

<zi e> — 
~ 

yg(y) + x ~ g(y) ] f(x) (5.56)
x 0  y 0  y x

This enable s one to rewrite (5.54) as
(~1

~ (C 1~(x) + C2(x)G(x) J f(x)

AC (P(x) ] — X 0  
• (5.5~~o 

~ 
yg(y) + x ~ g(y)

J 1(x)
x-0 y—0 y—x

~ (R(x) ] f(x)

— 
x O  

(5.58)

(S(x) J 1(x)

Since x varies from 0 to • , and usuming neither C1 nor
C2(z) is infinite , there is some x0 , perhaps infinite (implying no re-
plenisiment by design) , that minimizes the bracket ed quotient of (5.58) ,
i.e.,

I-i

(R(x )] (R(x) ]
[S(x0J J ~ [8(x) ) , 0 �x ~~~. (5.59)

1 ~~ vs that
o S S

~~
, 

&(z~) 1(x~) ~~ *(z) 1(z)

(5.60)

4 •:_, 0 ~ $(z~) f(x~) ~ 8(x) f(*)
11-0 x.0
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b

or

Ac[ P(x0) J  � AC [P(x) ] (5.61)
I

In s~~~~ry:
Theorem 5.3

For the infinite horizon, multi-decision case where the objective

function is minimization of the average cost per transition, the
optimal policy is strictly periodic replenishment of information.

This , of course , is not an unexpected result for an infinite horizon
case . However , vs have previously shown in Example 4 tha t an aperiodic
policy may be optimal for a finite horizon case .

5.7 S~~~ary
This chapter has illustrated the concept of information replenish-

aent and optima l policies of repl enishment both for the singly occurring
decision and multip le decisions . The use of the geometric distribution
as a benchmark was discussed , and the final theorem rigorously demon-
strated that a periodic acquisition policy was optimal under certain

Q limiting conditions.

p
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CHAPTER 6
RELIABILITY AND MA INTAINABILITY THEORY

6.1 Introduction

In Chapter 5 we were able to capitalize on extant reliability theory

(1 for proof of Theorem 5.3. Reliability theory treats the failure of a
piece of equipment , i.e., its deterioration from a superior to an infe-
rior state , and the maintainability of equipment, i.e., optima l stra te-
gies to restore the equipment to a superior state . This study has

c trea ted the de terioration and restoration of information. There is an
easy analogy that is readily apparent and that lends support to the
greater utilization of the well-established reliability theory. This
chapter investigates several possibilities.

0
6.2 Definitions

Several definitions from the theory will be useful.

1. Reliability. The classical definition is the probability
of a device performing its purpose adequately for the period
of time intended under the operating conditions encountered ( lj .

2. Failure. The complement of reliability.
3. Failure distribution , (F(t ) ] . The distribution function

o that describes the failure of an item of interest , i.e . ,

1(t) — Pr (it.a has failed or is in a failed state at
tine t I e)

4. Failure rate function , r(t) — f(t) /~i(t) . (This is a widely
used concept and is also known as the force of mortality , the
Mills ratio , the ine.usiey function , and the hazard rat ..)

5. Increasing failure rate (UP) .
(a) A continuous faitun distribution is h R  if

.
~~~~ [r(t)] a 0

(b) Ill )Iarkov chains. Vs have previously used in Section 5.4

~~~~~~

. • a definition of an Ill )~ rkov chain that ii due to Wagn er (23].
-
~~~~~ £asi s a chain with stat s 0, 1, 2, ..., I such that the
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I
I

greater value of the state the greater the de terioration of
the item. Then the chain is IPR if

I
Pr [s(n+l) C

is non-decreasing in i for all sets B of the form

B — (k,k+l,k+2,...,N)

for any k — 0, 1, 2, ..., N . Equivalently, the chain is

hR if
N

rk(i) —

j—k
is non-decreas ing in i for all k , Ii — 0, 1, 2 , ..., N

* 
These equivalent definitions connote the greater the value of
the state the greater the probability of further deterioration.

6.3 Results

$ 6.3.1 Control Limit Rules

Theorem 6.1
Let states [0,1,2 , . . . ,N) be states of a Markov chain where the
higher numbered states represent progressively greater deterioration
of an item. Let C represen t the cost if the item is replaced be-
fore it becomes inope rative and C + A , A ~ 0 , the cost for re-
placement after the item becomes inoperative. Then the optimal
policy i.e to replace the item if and only if the item is in sta te

• 1 • 1+1, 1+2, ..., N for acme I . (This is a control limit rule

where state i represents the control limit.)
Proof

Dsr.an (10].

• The calculation of i is not a trivial procedure . Ross (6] pre-
sents a linear pro gr in$ algorithm to determine I • The thrust of the
theorem is sufficiently analogous to the concepts of this thesis to merit
investigation of the possibility of using a control limit ru le to deter-

• nine optimal policies for information replenist nt.
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6.3.2 Bounds on the Optima l Replacement Period
A discussion by Barl ow and Proschan (9] suggests a method of bound-

ing the optimal replacement period for the infinite horizon case.

We let

L(x) “i~~) (6 .1)

where R(x) and S(x) are defined by (5.58).

For some x , say x* , to be optimal is equivalent to

L(x1) � L(x*) � L(x2) , x1 �x* �112 (6.2)

From the basic definition the left-hand inequality is equivalent to

C1 ~
(x 1) + C2(x 1) G(x 1) C1 ~(x*) + C (x*) G(x*)

_ _ _ _ _ _ _ _ _ _ _ _ _ _  
2 (6.3)xl

k-0 k-C

This inequality reduces to

g(x*) G(x1)(C (x*) - C2(x 1
)]., C

~ G(k) j + 
—
‘ 2 J_ G(x i)� c C ’

k 0  G(x*) G(x*flC1 - C2(x*)] -

(6.4)

or
Cl

8(x1) �,. .~ (6.5)
1. -

The right-hand inequality in (6 .2) reduces to
C

H(z2) 
~~~ - ,. (6.6)

1 2~x2)

We are considering only discre te values of x • However, the con-

• tinuous version of the right-hand side of (6.6) is shown in Fig . 6-1. In
addition , if the distribution 0(x) is hi as previously defined, then
0(z) is Increasing in z . This limits the optimal region to x* ~ z~
where C1 - C 2(z~) . O .  This .stablishes sn upper bound for 11* .

p
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C1-C2(x) ~~~~~~~~~~~~~~

:

4) Figure 6-1 Opt imal region for z*

0
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From (6 .1) and (5.58) we may establish that
I

L(O) —

r and

L(x) C24I.

as x - ~~~ , where C2 
is defined as

C2 max (C’(k) - c*)
k

from (5.52), and

o
— 

k—O

We rewrite L(x) as

C1 + (C~ - C2(x)J G(x) C1L(x) — r (6.7)

Ij k 0
There is no assurance that L(x) ever crosses the line L(x) —

C2/~ , but if it does, it crosses to the right of the intersection of
that line and C1/x . This intersection is at the point where x —
(C1/C2)1j, . Therefore , this is the lower bound for x*

6.4 S~~~ary
This chapter has been intentionally brief. The purpose has been

to simply suggest the possibilities of utilizing the existing definitions
0 and results of reliability theo ry to develop analogous results for perish-

ing information . Th. theory allowed the establishm ent of bounds on the
optimal acquisition period and appeared to hold some pro mise for estab-
liahing a control limit rule . The theory of reliability is extens ive ,
and the results here are only a fairly cursory survey of possibly applic-
able approaches .
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CHAPTE R 7
CONCLUS IONS AND EXTENSIONS

This is the point for reflection and projection . Where are we now ,
and where do we have to go?

The goals of the first half of the study were straightforwarth
1. To describe the phenomena of information perishing.
2. To develop operational definitions.
3. To prove the inevitability .,± information perishing.
4
~ 

To determine several parameters to describe the process .
5. To consider ancillary areas such as the effect of risk

aversion, discounting of rewards and contingency decision
making.

These goals have been met.
The goals of the second half of the thesis were:
1. To describe information replenishment.
2. To develop opt imal acquisition policies for singly occurring

decisions .
3. To develop optimal acquisition policies for multiple occurring

decision .
4. To suggest parallels from reliability theory.

These goals have also been met with the reservation that bounds were
established for the optimal acquisition policies rather than precise de-
termination of the period between replenishments .

The accomplishment of these goals contribute to the rationalization
$ of the information process . However , the study suggests several needed

extensions . These can be grouped into two main divisions: theoretical
and applied.

The theoretical extensions are:
1. The dsvelop nt , in the main, centered on Markovian informa-

tion models . A few results hold for any probability distribu-
tion . The generality of many results is limited by the Narkov
aast~~~t ion . Consideration of other dynam ic probability mode ls

- - 
5 would be worthwhile.
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2. The bounds on the optima l period be tween information acquisi-
F tions are useful. However , an algorithm to de termine an exact

value of the opt ima l period would enhance these results .
3. The foray into the thicke t of reliability theory was limited.

Much of the theory, as previously noted , concerns parame ter

estimation and is of little apparent use. However, the results

concerning inspection and equipment replacement may have signif-
icant application to information economics . This is perhaps the
extension of most i~~~diate potential .

The applicatory extensions fall into two sub-groups:
1. Descriptive

Severa l questions would merit study at the personal and
organization level. Do people and organizations recognize
the phenomena of information perishing? If so, how do they
cope with this deterioration? Is there a rationale for

allocation of resources for information acquisition? Is it

related to information perishing?

2. Normative .

o A body of theory should lead to a set of optimal policies to
gu de individual and organizational decision makers in the
allocation of resources for information collection , analysis ,
and use . This thesis , along with the other Decision Analysis
research efforts cited in Chapter 2, form a basis for develop-.
ment of such a normative theory .

The enormity and complexity of completing such a theory is apparent.
However, the national. intelligence budget today is in the billions, and

- - ~
) further billions are spent in information acquisition at corporate and

individual levels. The saving of even a small percentage of this huge
si~ would merit a major and dedicated research effort .

I

. 5
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APPENDIX A
- PROOF OF THEOR~ 1S 2.3 and 2.4

A .l Purpose
The purpose of this appendix is to prove Theorems 2.3 and 2.4, in-

• porta nt proofs but of such length tha t the reader is distrac ted from the
logic of Chapter 2.

A.2 Proof of Theorem 2.3
Theorem 2.3 consists of showing that p(n) � 1X 3 1 for the constant

I rewar d, invariant transition matrix case.
Proof

The proof is by induction on n -

• 
______ for A(n) # 0

p(n)  — (A .l)

0 for ~(n) O

C where

A(n) — v*(n) - v*(n) (A .2)

If p(n) — 0 , i.e., Mn-I) or ~(n) 0 , then p(n) � is

f l true trivially. Therefore, we shall assume this is not true . For
the first step of the induction we prove p(l) � . By defini-
tion

p(l) (A .3)

~1 o A ( )

Let K- 1 be the transition (counting forward) with 1 to go and M

be the transition with 0 to go. From (2.22) we may deduce that the
expected reward at transitio n K conditione d on some starting state ,

1) say state 1, is

0q12 ...
• 

.
~~~ 

+ ~~ 1q11 1q12 •• 1q~~ ... +

+ 
~~~~ ~~~q11 0_~~ 12 • 0_ 1q101 } (R ] (A.4) 

- 

—

-

o
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‘ U

where 0q11 , 0
q12 , ••~~~ ~~~ are elements of (Q0] and

o (R] — (r 1~~~ , k — 1, 2, . . .,  k—I (A.5)

Therefore , for MO) we write

MO) — ~ %~ {m~x ~~ X’~ ~~~ ~~~ 
r7~} 

- ~ TTj(~~rj~
0
~ (A.6)

i—i j .O ~ l i—I

Similarly,

0 MI) — ~ ii~~m x  r~~~~} -

i—i 3—0 8.1 i—l
(A.7)

+ ~ ir1{max ~~ L j~~j~~ r L }  - ~~. ~i
(
~
)ni~
°
~

i—I 3—0 b’l i—I

From (A.l) , (A.3) , (A.6) , and (A.?) we see that

O(O) + ø,~i(O)

where ~ � 1 by Theorem 2.2. Therefore,

1 1 (A.9)

So if ~ 1/2 the theorem holds.

Ass~ass now that 0 
~ I~ l~ 

� 1/2 . Then one mast show tha t

PCI) —
1J

~~, J
qj~4k) j  -

3 1

~~~~~~~~ 
~~~~~~ ~~~~~~~~ ~~~~~~~~ ~,itj {max 

~~ ~~ ~~
r
~~~}- ~ ii1rr

i 3 1 i 1 3 £  i

• I)IIJ (A. lO)

Vs y prove inequality (A.l0) is valid by the tbod of contradic-

~ 0 tion. Ass (A.10) is false and that pCi) ~ • This implies



~jTi [max ~x~’ ~~~~ 

jqj~r~~)] 
- ir~

0)

- t~1 ~7 l~ 3~~1r~~ + max ~ q r (k)]

- 2 jr~0)} � 0 (A.l1)

:d 

k ~~ ~ 3
q~1r1~~~ - (A.12)

~~~~~~~~~~~~~~~~~ ~,X~~~~~3
q~1

r
1 

(A.13)

3 1 £

The two “constant” terms in (A.ll) are negative , i.e. ,

- iri’°’ + 2 1)ij  ri~
°

~ � 0 (1.14)
i i

as � 1/2 by asrnssption . Therefore, for (A.lO) to be positive,
as assumed ,

~~ 
3
q~1r~~~ - 

~x1l[ ~ XM l
~ 3

q~
1r~* + ~ 3q~1r1~~] }

i 3 1  3 1 3 1
(A. 15)

must be greater than zero. Let expression (A.l5) — r , and by as-
s~~ptton r �o .  a.

~~M- l~ 
J
qj 1r

~~~ 
~~~1TL ~~~~ ~~ jqilrk

* (1.16)

o by the optimality of the decisions, then

or 

0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (A 17)
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0 � r ~ (x3 - - ,
~ 

x~] ,~~ l } ~ jqj 1r~*~j A. 18

I 
i 3 1

and

o r ~~~~~~~ - P.1l.l)~1l~3] 44~~
jqj 1r

~*} (A.l9)

i .1 £

If the bracketed expression containing the “ 1X11” terms in (A.l9) ~
positive , the right side of the inequality is positive ; conversely,
if this term is negative , the right side is negative . If X

3 
� 0 ,

!‘~ 
then

[x i 
- I xii - I ~‘i x3 1 0 , as I 

~‘l 
X3 

, (A. 20)

Therefore , for ). � 0 , the assumption tha t r � 0 is false.

Similarly , if ~ 0 , then

+ 1X 1i 1X 3 1 - 1X 11 � 0 , as 1x3 1 � ~X1] �~~~~ (1.21)

by assumption . So once again the assumption tha t r is positive is
false . Therefore , we conclude

r � o  (A.22)

(1 which is contrary to inequality (A.17) . It follows that the assump-
tion that pCI) ~ lxi) is false , and

pCi) ~ I~j  
(1.23)

0 We continue the induction by assuming

(A .24)

o and prove

• ~~~~~ ‘lxi) (A.~~)

We let the i_ 
-
~~

102

_______  _______• — .- - • -—______________-



n transition to go ~ L - 1 transition counting forward

n-i transition to go -.L transition counting forward

n-2 transition to go ~ L + 1 transition counting forward

Let r * and r
1~~ 

denote optimal decisions at L - 1 and L ,

respectively. Then we must show tha t

~ ~~ ~ jqj 1r1
** 

- 

~yj
ri~
°
~
+ ~(n- 2)

~~
i ~~~ j qj 1r1

* - ~ njri~
0)
+ An-l) ~ lxii (A ’ 26)

Assume the contrary of the proof, or that

o â(n) � 1 X1

Therefore , cross-multiply ing and transposing in (1.26) yields

‘

~~TT
j [ ~~~~ 3

q~1r ,~~- i ½ i~Lx’;
• ~ jqj1r 1*]+ [_ ~,r~jr~°)+l ~ i~~~r~0)] (A .27a)

o i 3 1  3 £ j

+ a(n-2) - 1x11 O(n- 1) � 0 (A.27b)

-Now either (A.27a) or (A 27b) or both must be positive to satisfy the
inequality. as I) .I i ~ I , the second bracketed expression of (A.27a)
is lass than zero. Therefore, for (A.27a) to be gre ate r than zero ,
th. first brack eted term must be positive. However , by reasoning
similar to that used in the proof of (1.16) through (A. 19) and noting
the optimality of the decisions we see that

~~~~ ~~ ~~~~ I x~ 1~x~ 
~~~~ 

3q~1r~] �~~
i
~~[ ~~ 3q~1r~~.. x1 i~.1~L jqj1r1~

i 3 1  3 £ i 3 1  3 1

(1.28)

Af ter rewriting the left side of (1.28) one may show

:~~~~ • 0 ~ • 1½1] ~~
jq~

1r
~~P} (A.2~)

i 3 £
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I ~

• asr (x - lxi)] ‘0 (A.30)
0

for all X
3 

. Thus (A.27a) is negative and (A.27b) must be positive

for our assimaption to hold. For

a(n- 2) — ~(n— l) ~ 0 (1.31)

then

Mn-2) A 32
~(n— l) ~

which violates the induction hypothesis. We have now shown that
both (A.27a) and (A.27b) are negative , contra ry to our assumptions .

We are in a position to state an important result.

o Theorem 2.3
For the n-state Markov process with k reward decisions and an in-
variant transition matrix p(n) � f xi) , the absolute value of the
largest transient sigenvalue.

0
A.2 Proof of Theorem 2.4

We had limited the previous proof to decision situations where the
decis ion was limited to a choice of stat e , and the transition matrix was
invariant. However , we may also extend the result to the situation
where the decision maker may elect not only the reward structure but
also the transition atrix . The notation is the s as for the previous
theorem. Our method of proof is to develop an expression that is equiva-

o lent to (1.4). From this it follows that the remaining proof ii identical .

4 The theorem is
Theorem 2.4

For a n-stat. I(arkov process let k C~~ represent an index set of

o reward decisions and 1 c L represent an index set of transition
trlx decisions. Then

p(n) 
~ lxii’

~bere lxii’ — ,~~14
1)

,4
2) ,1,,,4L) ) , being the greatest

absolute value of the tramsient sigenvelues of ~~(1)~
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Proof

We asstme the existence of some stationary optimal policy based on
the no- information case with an associated and reward r~°) ]
We also assimm in the proof of

— < lxi)’ (A.33)

tha t vs may determine , based on an optimal policy from m - 0 to
— 14-2 , the value of n~OI- 2)1 , where - i reflects the initial

starting state . We further asrn.ue the decision maker elects matrix
() (p’J at t ransition M-2 and (P” ] at transition 14-1 so that

i ~~~~~ ~~~~~~~~ 
[F ’] (A.34)

and
— ,r~(l4— l) [P” ] (1.35)

‘~~ m~(K- 2)1 
(F’] (F” ] (A.36)

where (P ’] and (F” ] may or may not be the same transition ma-
trices . We furthe r ass~~ (F’] has the largest (in absolute value)
•igsnvalue .
We now use 14 differential matrices to express P’ so that (1.36)

() becomes

— n~(K- 2) 1{(Q0)(r ’] + X0(Q 1] (F ” ] +...  +

(1.37)
1) or

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (1.38)

impression (1.38) allows us to write the expected reward at tra nsi-
() tion K cooditionsd on s(0 ). i  as

cw lso.i ,oo —~~.e> — max ~~OQ (1.39)
U

where (RJ .(r~~~) , or fimal1y
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<v(1OIs(0)~ i,6OO 6*,e> — mx { 0ca 11 0mi2 ~~~OWiNI

I 
+ A11 I~il l~ i2

+ + 
~N-ll N l Wil N-lWi2 

... N-lwiN I} (RI
I

N-I N (1.40)

— max ~~ 3
w~1

r~~~ (1.41)
3—0 ~~l

However , with the exception of the power of , (1.41) is exactly
the same form as (1.4) , the initial step in proving Theorem 2.3.
Therefore, we infer the remainder of the proof follows and that
Theorem 2.4 is valid.

This completes the proof of both theorems.

I

O

I

~i .
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A qptton, widely held by decision analysts but tenuously defined , is that
the value of any specific information diminishes over time. This concept,
termed information perishing, is rigorously defined and illustra ted by
the use of a Markov modei in the first section of the study.

The main assertions of the section are:

1. Information perishing is inevitable (not only for the
Markov model of information but for any state of
information described by a probability distribution).

2. For the Markov model , the absolute value of the largest
transient eigenvalue Is an upper bound for the rate of
information perishing .

3. The rate of perishing is a decreasing function of time.

A short transition section alters the basic decision model to allow an
element of uncertainty for the exact timing of the decision . Basically,
the new model of the decision process recognizes that many decisions in
real life are “triggered” by events which may be described by some
stochastic process. Without this uncertainty, the decision—maker could
simply discount the value of information because of perishing and would
reduce his problem to a static case. However, the uncertainty In timing
forces consideration of optimal policies of information replenishment,
the second main area of the thesis.

The major results of this section are:

‘I. Rules of optimality are developed for singly and multiple
• occurring decisions.

2. The optimality of periodic replenishment (under certain
limiting conditions) Is established.

3. The suggestion that some of the research results of
reliability and maintainability theory may be applied
to information replenishment strategy.

The thesis closes with the customary delineation of areas of further
appl ication and research.
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