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' Y i SUMMARY

, The "dissertation treats the dynamics of a decision maker's value of
infomti.on:) There are two main parts, a section on the depreciation
(perishing) of information and a section on the appreciation (replenish-
ment) of information.

P A notion, widely held by decision analysts but tenuously defined, is
that the value of any specific information diminishes over time. This
concept, termed information perishing, is rigorously defined and illustra-
ted by the use of a Markov mB3del,in the first section of the study.

The main assertions of théa'i;étion are:

(12 Information perishing is inevitable (not only for the Markov
‘model of information but for any state of information described
by a probability distribution).

( 2) For the Markov model the absolizte value of the largest transient
eigenvalue is an upper bound for the rate of information perish-
m; o &

/ 3] The rate of perishing is a decreasing function o

A short transition section alters the basic decision model to allow

Sl ée ;x‘l' :lmnt of uncertainty for the exact timing of the decision. Basically

‘ the nevimodel of the dacision process recognizes that many decisions in

real 1ife are “triggered” by events which may be described by some sto-
chastic process. Without this uncertainty the decision maker could simply
discount the value of information because of perishing and would reduce
his problea to a static case, However, the uncertainty in timing forces
consideration of optimal policies of information replenishment, ,t\:hc second
main area of the thesis.

The major rasults of this section are:

1. ‘Rules of optimality are developed for singly and multiple occur-

. ring decisions. - ;

2. The optimality of periodic replenishment (under certain limiting
conditions), is established.

3. The suggestion that some of the research results of reliability
and maintainability theory may be applied to information replen-
ishment strategy.

The thesis closes with the customary delinsation of areas of further

.p}tutun and research.
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CHAPTER 1
INTRODUCTION

Man has a propensity to acquire and store items he will need to
satisfy future needs. History depicts prehistoric man carefully col-
lecting and hoarding food, stone tools, and animal skins to carry him
through an arduous winter. Modern man has perpetuated this characteris-
tic. However, in an age when physical wants are more easily satisfied
the emphasis has shifted from the acquisition of material objects. In-
stead, on an increasing scale, people, organizations and nations are col-

é lecting information as a hedge against tomorrow's demands. As Shubik
[21]* notes :

There is an old saying in bridge that a peek is worth
two finesses. In many instances the major weapon of
competition may be special knowledge or information.

ol o e

McDonough [3] highlights the trend by reporting that over 14% of the
total U.S. Labor force is engaged in clerical activities; over
10,000,000 people are directly concerned with the production and pro-
cessing of information; and at least 50% of the cost of running the
economy is information costs.

The very emphasis on information has led to inevitable problems
-=",.. in every .. sphere of modern life, the chronic condition is a sur-
feit of information, useless, poorly integrated, or lost somewhere in
the system" [7]. Wilensky continues with a desiderata for information:
clear, timely, reliable, valid, adequate, and wide-ranging--the obvious
connotation that these are more noticeable by their absence than by their
presence.

These problems atiuc in part because organizations have not adopted
means to rationalize the information process. Decision analysis, among
the many quantitative models of decision making, most explicitly treats
the value of information and provides a consistent basis for consideration

*
Numbers in square brackets refer to the Bibliography found in rear of
the thesis.




of the acquisition and use of information. Expository works by Howard
[14,15], North [18], and Raiffa (4], as well as a recent dissertation by
Miller [17], are significant buttresses for a methodology of information
resource allocation.

However, even these valuable contributions are silent on the dyna-
mics of information. Implicit in many of the qualitative analysis of
information acquisition (Wohlstetter [8], Wilensky [7]) and explicit in
criticism of national intelligence activities (e.g., post hoc analysis
of the Berlin Wall, Tet, and the Yom Kippur war) is a recognition of an
information value-time relationship. However, most quantitative analy-
sis of information treats the value of information as static, invariant
over time.* This dissertation, building on the seminal foundation of
the previous cited works, analyzes the dynamics of information.

Chapter 2 is the framework for the entire thesis. We perhaps all
share an intuitive feeling that the value of information decreases with
the passing of time. However, exactly what do we mean by information
"perishing''? 1Is this an inevitable phencmenon? How do we measure the
rate at which perishing occurs? 1Is the rate invariant? What is the
effect, if any, of risk aversion on this "perishing"?

Chapter 2 treats the depreciation of the value of information over
time. The phenomenon is indeed inevitable, and for states of informa-
tion that can be modeled by a Markov process we have a handy benchmark 1
for the rate of perishing. This yardstick, for the two-state case, is
related to the "shrinkage" as defined by Howard [2]. An important re-
sult is that the value of information '"perishes' at a rate equal to or
less than the absolute value of the largest ''transient' eigenvalue of
the underlying Markov process.

The results of Chapter 2 have merit in their own right. However,
an astute analyst, if he knew, for example, the exact timing of a deci-
sion could allow the necessary time for information collection, calcu-
late the depreciation of the value, and reduce the problem to essentially
a static situation. This, of course, assumes he knows the exact timing

*
Ransom [5] reports that strategic intelligence in wartime depreciates
at the rate of 10% per month. This is, at best, an empirical observa-
tion which lacks a rigorous definition and quantification of value.
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of the implementation of the decision. As illustrated in Chapter 3 many
decisions of importance and interest are implemented at an uncertain
time in the future. We slightly alter Howard's decision model [15] to
introduce an element of uncertainty in the time of occurrence of the
decision. Incorporation of this probability into the basic decision
model leads to fruitful study.

In particular, Chapter 4 reconsiders the rate of information perish-
ing in light of this uncertainty. We also treat intermediate information
acquisition and discounting of rewards as extensions of the basic results
of Chapter 2.

In a sense Chapters 3 and 4 serve as a transition from Chapter 2 to
Chapter 5, a consideration of the appreciation or replenishment of infor-
mation. We illustrate the meaning of an optimal policy of information
acquisition and determine rules of optimality for single and multiple oc-
curring decisions. In particular a decision occurrence described by a
geometric probability distribution serves as a metric for other distribu-
tions.

Chapter 6 builds on the results of Chapter 5 and extends the tech-
niques of information appreciation by utilizing results from the estab-
lished theory of maintainability and reliability. Several of these well-
established results lead to extensions of the original conclusions of
Chapter 5.

The final chapter summarizes the study and suggests areas for
further development and research. :

As noted previously this thesis fill a niche in a growing body of
work on information value theory. The intelligence agencies of this
country as well as analysts of many business firms are faced with a
formidable resource allocatién problem. There usually exists a multiple
array of collection devices, each with its own probability of acquiring
various pieces of data. These data in turn result in different updates
of prior information that influence one or more of a compendium of deci-
sions. These decisions, likewise, have different associated costs and
benefits as well as probabilities of occurrence.

One would be both naive and foolhardy to claim at this stage of
development a complete thiory of information resource allocation that
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would aid these decision makers. However, the results of this thesis are
a solid groundwork for the much needed follow-on research. The defini-
tion and concept of information perishing and the revision of the deci-
sion model lead to results that were previously tenuously shared and
accepted by many decision analysts but never precisely defined. The
theory of appreciation and the optimal policies of information acquisi-
tion are new to information value theory and presage even fuller exploi-
tation of reliability theory. While much of the reliability work has to
do with statistical inference and parameter estimation there is also a
large body of conclusions concerning maintainability and optimal replace-
ment policies. These results have yet to be fully mined for their appli-
cation to information perishing and replenishment.

The ultimate goal, of course, is a set of allocation rules for the
intelligence or information decision maker. This thesis forms a secure
stepping stone for reaching that goal.




CHAPTER 2
INFORMATION DYNAMICS

2.1 Purpose
This chapter examines the time variation of the value of information.

In particular, we define two key concepts, information perishing and the
rate of information perishing. We then proceed to develop several proper-
ties of these two essential parameters.

2.2 Introduction

Most of the expository discussions of decision analysis treat the
value of information as a static quantity [14,15,19]. Howard's well-
known bid problem [14], as an example, computes the expected increased
profit to the bidder, given clairvoyance or perfect information about
his own cost, to be 1/96 units. However, one may consider two extremes.
If the clairvoyant delivers the perfect information too late for the
bidder to incorporate the data into his bid, then the expected increase
in profit is surely not 1/96. Conversely, one may also argue that if the
bidder receives the information much earlier than the date of the bid,
he may feel that changing environmental factors would affect the validity
of the information. Therefore, the expected increased profit of 1/96 is
in a sense a conditional value--a value that is correct if the informa-
tion is “timely" and "fresh."

We may illustrate the dynamics of the value of the state of informa-
tion with an example.

2.3 le 1: o-State Markov se

We choose the simplest of examples where the decision maker can
choose either state "1" or state "2." When the true state of nature is
subsequently revealed, he receives a greater reward if he has correctly
chosen the state and a lesser reward (perhips a cost) for an incorrect
choice. His state of information is described by a Markov process.

Although not critical to the discussion we could suggest that the
situation represents such real-1ife decisions as stockage of item 1 or
item 2 where financial or storage constraints limit the seller's choice




to one or the other item; defense of Area 1 or Area 2 against repetitive
enemy attacks where the small size of the defending force or a lack of
transportation precludes defense of both areas; or even the 'pea in a
shell" game at the local carnival.
We precisely define the situation as:
1. The decision maker can choose state 1 or state 2 but mot both.
2. A Markovian model, Fig. 2-1, represents the model of his informa-
tion on state occupancy.
3. The decision maker can change his decision prior to each tran-
sition. However, he does not observe the process at any time.
In other words, he makes a series of decisions, e.g., 1, 1, 2,
1, ..., 2, etc., and at the end of the game is given some re-
ward contingent on the number of correct decisions.
4. The decision-outcome matrix is shown in Table 2-1.

TABLE 2-1
Decision-Outcome Results, Example 1
Decision Choose State 1 Choose State 2
8
S
“ | State 1 +100 -100
State 2 -100 +100
: .

2.4 The Optimal Decision with Only Prior Knowledge
Let

8(m) = 6(1)

be the decision to choose state 1 at transition m , and

sm) = 82

be the decision to choose state 2 at transition m . Assume the game or
decision process lasts for M transitions. The decision maker must

a priori make a serias of M decisions {6(m)} = {6¢0),8(1),...,8(0)]
such as

(80) = 8P ,5¢1) = &2 ,...,800 = sV}
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’t His prior knowledge is contained solely in the Markov model of Fig. 2-1.
Therefore, he would rationally calculate

Pr{s(0)=1|¢} = n - 8/17

and

Pr{s(0)=2|e} = m, = 9/17

L
% From Table 2-1 we may calculate the expected reward at transition m = 0 ,
¢ conditioned on the choice of 6(1) , 86 an example, as
(1) + 100
¥ <«v(0)|6(0)=8""",e>= m(0) m,(0)
L 1 L- 100
: = - 5.88

In general, the expected reward at any transition is

<@ |s@=t), e> = 2 n@ P, k=1,2 (2.1)
L

However, in the example, with only prior knowledge

m@ = n(=) =mn (2.2)
and

<v(m) | 5(m) = 8, > = 2 ﬂir?‘) y k=1,2 (2.3)
i
The optimal decision is defined by

orm) = max i) 6=, &>

N

POC

_1' [+ 100 -100] s i
= max ’ - ' c‘
8 [ 00 4100

lr.»

or

tom) = 62 , me0,1,2,...,8

The optimal decision, in effect, is no more than the optimal choice
of & column from the reward matrix of Table 2-1. Corresponding to this
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optimal decision is a reward
(2)
<v(m) | $*(m) , > = <v(m) | 5(m)=5""",¢> = 5.88
Some compactness in notation is achieved by defining

v (@) = w(m)|s@m)=67,e> (2.5)
and

vk(m) = <v(m)|s(m)=4*, &> (2.6)

The decision maker's expected future reward is also of interest.
We will use '"n" to index periods remaining and define the expected fu-
ture rewards with n time periods remaining as

<v(n) | 5*(n) , &> 2.7)
where 6%(n) implies

{6%(n) = &%, 5%(n-1) = &%,...,5%(1) = &%} (2.8)

In the example the optimal decision, as noted, is 82 for
every transition. Therefore, the expected future reward has a particu-
larly simple form

<v(n) |6%(n) , &> = <v(n) |s*(n)=t{?, ¢> = n(5.88) ,
n=MM1M2,...,2,1,0 (2.9)

This "ramp'" is plotted in Fig. 2-3a for M = 10 .
Again compactness is realized by defining

vk(n) = <v(n)|s%(n),e> (2.10)

for the expected future reward conditioned on the decision maker elect-
ing the optimal decision at each transition.

(The indices "n" for periods to go and "m" for periods past imply
that ntm = M for a process with horizon M . BSee Fig. 2-2.)

We may summarize the example. Based on a prior state of knowledge
contained in the Markov model of Fig. 2-1 the decision maker should
choose state 2 for the entire sequence. His expected reward per transi-
tion is +5.88.
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2.5 Optimal Strategy with Perfect Information

What changes would the decision maker effect if he were to receive
perfect information on the initial state (all other assumptions of the
example remaining the same)?

We may define the expected reward at transition m given the
starting state i as

q(m)lb(m)-a*,s(O)-i,p » 1=1,2 l (2.11)
or compactly as
vi(0) (m) = <v(m)|5s(m)=5%,8(0)=1,¢> (2.12)

The equivalent relationships for expected future rewards are

<v(n)| 6(n) =5*%,8(0)=1i,e>, 1 =1,2 (2.13)
and
Vi)™ = V@) | b(n) =~b%,5(0)=1,e> (2.14)

Finally, for perfect information at time m = 0,[PI(0)] , the expected
reward at any transition is

<v(m) | 5(m) =5%,P1(0) , &>

= m<v(m) | s(m)=s*,8(0)=1, > + m,<v(m) | 6(m)=b*,8(0)=2,6> (2.15)

We economigze further on notation by writing

@) = VBroy® = z YWioy®™ » 1=1,2 (2.16)
i
Analogously we have for expected future rewards
() =) V(o (@ (2.17)
i

We may use these results and the usual Markov matrix mechanics
(Howard [2]) to calculate the valus of perfect information as shown in
Table 2-2. The values in columns (5) and (9) are plotted as Fig. 2-3b.

11
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Figure 2-4a shows the expected future reward conditioned on receipt
of perfect information at m = 0 and the expected future rewards condi-
tioned on only the prior state of knowledge. Figure 2-4b indicates the
difference between these two quantities

A(n) = v¥(n) - v¥*(n) (2.18)

Examination of Fig. 2-4b reveals that although the perfect information
acquired at m = 0 initially places the decision maker in a relatively
favorable position this advantage diminishes over time and by the eighth
transition the advantage has disappeared. This decrement, which we shall
shortly define as information perishing, has a natural interpretation in
terms of response time. If the decision maker requires one period to
adjust his strategy to the receipt of perfect information at transition
gero, the value of this clairvoyance is 171.98; if he requires over eight
periods to react, then the information has no value.

The rate of decline of this relative advantage is also of inter-
est. We define

p(n) - Mo-1) for An) # 0

A(n)
(2.19)

= 0 for A(n) =0
This quantity is plotted in Fig. 2-5.

2.6 Basic Definitions
The phenomenon of the degradation of the value of information over

time, while apparently a characteristic of many real-life decision prob-
lems, is not extensively treated in the literature. North [18],
Smallwood [22], and Howard [13] discuss aspects of inference in a dynamic
situation while Robinson [20] reports on the practical difficulties of
estimating time varying probabilities. However, these articles are
limited to problems of inference without consideration of the value of
the information. The concept of information "perishing" appears more
general and powerful than implied by this literature.

We as a first step must agree on a definition of information
"perishing." Information may, of course, evolve over time without
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affecting the choice of decisions. As an example, suppose there exists
some vector valued state of information s which is a function of time.
Let s(t) represent this functional dependence and assume that

s(t) €S , a set of possible states of information. Then if &% = 6( )
for all s(t) c S , that is, the optimal decision is the same for all
states of information, would one characterize information acquired at

m = 0 as perishing? or is this instant perishability?

As a second example we consider the case where the decision maker
receives clairvoyance at m = 0 and also at m = o, ,m, > 0 . Although
we shall analyze this situation in scme detail in Chapter 4 it is perhaps
intuitively obvious that the second acquisition of clairvoyance 'wipes
out” the value of the first disclosure of perfect information. 1Is this
information perishing?

We precisely define information perishing. Let v (n) be the ex-
pected future rewards with n periods to go conditioned on acquisition
of information (perfect or imperfect) at m = 0 . Let v*(n) represent
the expected future reward based solely on prior knowledge at m = 0.
Let A(n) = v¥(n) - v¥(n) . If A(n) is a non-increasing function of
n without benefit of test, observation, experiment, or other information
acquisition, then the information acquired at m = 0 is perishing.

If A(n) = 0 , the information has perished. The rate of perishing,
p(n) , is defined by (2.19), i.e.,

n-1

2.7 Generalizations

We now rigorously prove several properties of information perishing
and the rate of perishing.

2.7.1 The Reward Structure

We have previously defined the expected reward at any transition m

(@ [s@=s™, e = Z m () £ (2.20)

There are two other forms of this upruuon that will be useful.
The first is
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The second results from the expansion of [P]m into a series of N dif-

(2.21)

ferential matrices as

[P1™ = [Qy) + n1Q,] + 2[Q,) + ..o #0510y 1 (2.22)
Substituting (2.22) into (2.21) yields

@ |s@=60, 6> = ¢ 4 ¢ P4 4 cl 2 (2.29)

Figure 2-6a plots the reward structure of the two-state examp'le we have
been considering, while Fig. 2-6b represents a general two-state N deci-
sion model. The extension to R state is obvious but not representable.

2.7.2 The Inevitability of Information Perishing
We have seen in the simple example that information perishes. How-
ever, we can establish this result for a far more general case.
Theorem 2.1
For any N-state Markov decision process where the decision maker
may choose both the transition matrix [P(l)] = {pu}(l) and
the reward from some constant reward matrix [R] = {ri}(k) (k and
1 contained in index sets, K and L of decisions and transition
matrices, respectively), A(n) is a non-increasing function of n .
Proof
Let 6(1’1) » @8 an example, represent the decision to choose the
first transition matrix and the first column of the reward matrix.
There are three cases to be considered:
Case 1. We may consider first the trivial case of some decision,
say 6(0’0), being: completely dominant, i.e., both v¥(m) and
vk(m) imply &% = 8(0'O) for a11 m . Therefore, A(n) = vk(n)
., =v¥(n) =0 , and A(n) 4is obviously non-increasing.
Case 2. Partial dominance may exist in the sense that v¥(m) and
v¥#(m) both imply &% = 6(0’0) for some m > LI If this be
true, and 1f n <M - B, then A(n) = 0 again, and the theorem
is true.
Case 3. The interesting case is the case of no dominance. We pro-
ceed by induction. With one time period remaining, to show that

18
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A(n) 1is a non-increasing function of n 1is equivalent to showing

A(1) - A(0) = 0 (2.24)
However,
A(1) - AC0) = [v*(1) - v*(1)] - [v*(0) - v*(0)]
= [vk(1) - v*(0)] ~ [v*(1) - v*(0)]

Counting forward we may write (see Fig. 2-2)

ve(1) = VRQM-1) + vR(M) (2.25)

and
vk(0) = vk(M) - (2.26)

Similarly we may express the other two terms as

vk(l) = v&(M-1) + v¥(M) (2.27)
and

vk(0) = vk(M) (2.28)
Performing the obvious subtraction we can express (2.24) as
A(1) - A(0) = y*(M-1) - v¥k(M-1) (2.29)

which is obviously greater or equal to zero, Assume the induction
hypothesis holds for m-1 time periods. It remains to show that
the theorem holds for n time periods to go, or that e

A(n) - A(n-1)-20 .

An) = [vk(n-1) + v*(1)] - [vk(n-1) + v¥(n)) (2.30)

vhere "', counting forward, is the transition at which there are
n transitions to go. Therefore,

A(n) = A(n-1) + v(n) - v*(n)

or

A(n) - A(n-1) = V() - v*(n)' 20
which completes the proof.
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} We may extend these results by consideration of a continuous time
process. We shall use "¢" to indicate time starting from time '"zero"
» and "t" to indicate time to go. We shall assume a constant but com-
pletely general generation of rewards as shown in Fig. 2-7.
To parallel (2.18) we define
T T
At) = j va(r) dr - | va(r) dr (2.31)
t t
= JJ [ve(T) - v¥*(7)] dr
t
To show that the information is perishing we show 3dA(t)/3(t) <0 , or
: 2 .2 ‘:[w(w) - vk(r)l dr 5 0 (2.32)
¢
= - [y®(t) - v¥(t)] < 0 forall t <T
Thus, we see that in a decision process that continues over some
period of time that any information is perishing. We emphasize this
” result by stating Theorem 2.2.
| Theorem 2.2
i All information is perishing (assuming the reward structure is
| constant over time).
0 2.7.3 The Rate of Information Perishing
a. Introduction. We have noted in Fig. 2-5 that the rate of in-
formation perishing as defined by (2.19) was always less than 0.7, the
*
absolute value of the transient eigenvalue. Is this result always
2l

true?
b. Initial Result. We may show that this result holds not only
in the example but in a far more general case,

The case we shall consider is this:

(1) HN-state process

(2) k decisions possidble with reward matrix

*rrunat connotes eigenvalues not equal to ome.
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(R] = (2.33)
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Let {r‘}(k) be a general element of [R] .

(3) The transition matrix [P) is not part of the decision. 1In

other words, [P] 1is invariant.

(4) The decision maker receives perfect information at transition

gero, but there is no observation or information after this.

(5) The decision maker has no risk aversion.

(6) A decision is possible at each transition.

We shall prove that p(n) < |11‘ vhere 1, is the maximum in ab-
solute value of transient eigenvalues associated with the transition ma-
trix (P] .

Theorem 2.3

For the n-state Markov process with k reward decisions and an

invariant transition matrix, p(n) < || , the absolute value of

the largest transient eigenvalue.

The proof of this theorem is of such length that it is reserved to
Appendix A.

¢. An Extension. We had limited the previous proof to decision
situations vhere the doghion was limited to a choice of state, and the
transition matrix was invariant. However, we may also extend the result
to the situation where the decision maker may elect not only the reward
structure but also the transition matrix.
Iheorem 2.4

For a n-state Markov process let k CK represent an index set of

rewvard decisions and 1 CL represent an index set of transition

matrix decisions. Then
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p(n) < Ikll'

L}
where |X1\ = max {xl(n.xlu),....xlu‘)} . Xlu) being the
greatest absolute value of the transient eigenvalues of [P(l)] -

The proof of this theorem will also be found in Appendix A.

d. The Acceleration of Information Perishing. Figure 2-5 shows
that p(n) 1is a decreasing function of n or that information perishes

more rapidly with the passage of time. We may show that this is a gene-
ral result for those decision situations where the transition matrix is
invariant. We first need to prove a lemma concerning the reward struc-
ture.
Lemma 2.1

For a N-state Markov process where the decision maker's alternatives

are limited to choice of columns from the reward matrix there exists
for some starting state, say s(0) = i , at most three optimal poli-
cies. Further, if all the eigenvalues are positive, there exists
at most two optimal policies.

PBroof
We use (2.22) to write

N1 N
<00 |s(0)=1> = max ) ] 3 4 o (2.34)
k gm0 1
where ).0- 1. Let M - so that x‘;-0 » J#0 . Obviously,
N
(k)

<v(M) |8(0)=1> = max q (2.35)

< 21 0%/ s

the "stationary" policy noted in Howard [2]. This is the first of
the two or three policies. Now assume XJ >0 ,all J . Ve
represent the scalar product of (2.35) by jc“‘) so that
N-1
<00 |o(0)=1> = max ) A} ™ (2.36)
k §=0
Assume that k = 1 for the M™® transition and that for the M + a

trangition, -M s g<®, k=2, For the two decisions ’c must
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differ in at least one term. We will let j = 1 be that term. By
the assumed optiulity

N-1
Mo < 2 o c(l) g 2 x’j’ jc(” (2.37)
j-o j-o
31 k12!
N-1
s @4 Y A e @om
=0
¥l
or
Mo (1) _ \Mre ((2)
and
1c(l) ” 1c(z) (2.40)

However, if 10(2) 2 10(1) , then decision 1 would be improved by
switching to decision 2 as all the other C's are the same, and
all the eigenvalues are positive. Therefore, there cannot be two
decisions that are optimal for the different transitions. Similar
reasoning prevails if ), <0 for some J except now the optimal
decisions may switch from odd to even transitioms.

This completes the proof of the lemma and allows us to state the

following corollary.

Corolla .1
For the N-state Markov process with an invariant transition matrix

n-1 n-
AL(TIA - z-AH v S 22 (2.41)
Proof

The corollary requires that

2(n-1) 2 Mn) An-2) T (2.42)

The proof follows by induction on n using the expressions for
Mn) , Mn-1) , and A(n~2) developed in (A.6), (A.7), and (A.26).
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Then Lemma 2.1 makes possible term by term comparisons. The details are
an exercise in tedium rather than enlightment and are omitted.

2.7.5 The Effect of Risk Aversion

a. Definitions. To this point we have tacitly assumed that the
decision maker based his decision on expected values. A logical next
step is consideration of the effects of risk aversion. We shall limit
the discussion to exponential utility functions.

A natural extension of the defining equation for A(n) [(2.18)] is

“an) = “Vk(n) - “v¥(n) (2.43)

where “\*(n) represents the certain equivalent with n periods to
go conditioned on receipt of perfect information at m = 0 , and
“V*(n) represents the certain equivalent with n periods to go based
solely on prior information. Howard and Matheson [16] have shown that
the "delta property'" of the exponential utility function allows summa-
tion of the certain equivalents.

Analogous to Eq. (2.19) is

~o(n) = D~y g0

~

&(n) (2.44)
- 0 » “An) =0
b. An Example. Assume that the decision maker in the basic ex-

ample has a risk aversion coefficient, v = 0.001 . We may calculate
“Mn) and “p(n) which are plotted in Figs. 2-8 and 2-9 (along with
the comparable values of A(n) and p(n) ).

c. Generalizations. Comparisons of ~A(n) and A(n) and “p(n)
and p(n) for the general Markov case are made possible by use of the
approximation

o) ~v(m) - § V) (2.45)
wvhere “v(m) , v(m) , and ;(ID represent the certain equivalent,
mean, and variance, respectively, of the profit lottery on the -th tran-

sition. (The approximation results in an error of less than 0.2% in the
example.)
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Approximation (2.45) allows (2.43) to be rewritten as

M
“aw = Y o - v ]- v +3 v [0 ]} 2.6

FM-n
M
= ) {wo - vep + 3y [0 - D)} (2.47)
&=M-n
M
=am+ ) v [0 - ] (2.48)

fM-n

For a "symmetric" reward matrix of the form

o AR M L RS -r
-T 7 e -T

[R] = (2.49)
-T -r +r

the variance with information is less than the variance without informa-
tion and we conclude the following theorem.
Theorem 2.5
For a symmetric reward matrix ~A(n) 2 A(n) . (For a general re-
ward matrix one may construct counter-examples to Theorem 2.5.)

We may also show

Theorem 2.6
For the symmetric reward matrix “p(n) < p(n) . By the use of
(2.48) we may write

M
Mo+ ) v [ - W]
~p(n) » ——— (D) «MEL 250
s+ ) v [0 - vo]
- ‘

We may simplify this expression considerably by letting




ph

v*(f) = S (as the variant without information
is a constant)

(LD = S(H , and

L = transition with n to go, and

(2.51)

V(L) = v¥(L) - v*

Substituting these into (2.50), cross-multiplying, transposing and
simplifying yields

M M
am) ) [s5(H) <MD ) [s-S(H]  (2.52)
M- (n-1) #M-n
M
VL) + M=) ) [5-5(0]
M- (n-1)
M
s Me-Dfs-s@ + ) 5501} (2.53)
#M- (n-1)
or
M
V(L) (n-1)8 + A(n-1)S(L) < A(a-1)S + V(L) z S(O  (2.56)
£ (n-1)
Dividing by V(L) S(L) results in
M
L s
(n-1)8 , A( 1) n-1)$ M- (n-1)
5 * VD STmsm * 8@ (2.55)
or
M
)Y so|- @us
n- ] n-1
8o -swl- 5D gl
As

Aé‘z;-y s-“%}ﬂl - nel (2.57)
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we may prove the inequality by proving

M
8(H |- (n-1)8
s M- (n-1)
@01 - 5a5) = 5D
or
M
z SD|_g
n-1
S - (n-1
i 7 JS%L)
M
sw) -s< ) [HR]-s
M- (n-1)
and
M
S(L) < -s-&_&)l-
4=M- (n-1)

But S(L) is the minimum variance so that

M
S(L) sE:-% S(L) < §§_—‘)1-
M- (n-1)

This completes the proof.
2.7.6 TIransient Processes

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

The previous examples involved only Markov chains with recurrent

states. We briefly digress to consider the transient chain shown in
Fig. 2-10. We shall assume a reward matrix

+100
(R] = |[-100
-100

=100 -100
+100 -100
=100 +100

If the process had run for some length of time, then

=0, ;;=0, and m = 1.0

3
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Figure 2-10 A transient state example
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3

In this case §&%(m) = 6(3) » and v¥(m) = 0(-100) + 0(-100) + 1(100)
= 100 . A(n) and p(n) are both trivially equal to zero.

We may create a more interesting example by assuming that the
process has just begun and that some outside probability mechanism such
as the flip of a fair coin determines if state 1 or state 2 is the ini-
tial state. In other words, as shown in Fig. 2-10,

P{s(0)=1|e} = P{s(0)=2]c} = 0.5

A(n) and p(n) are plotted in Fig. 2-11. The figure confirms that
A(n) 1is a decreasing function of n and p(n) < )‘1 = 40.7 .

2.8 Summary
This chapter has developed the fundamental concepts and results

necessary for an understanding of the dynamics of the value of informa-
tion. The most important result was the inevitability of information
perishing. Equally significant is the result that the value of informa-
tion for a Markov process perishes at a rate that exceeds the shrinkage
of the underlying process. The chapter also considered the effect of
risk aversion where the utility function can be modeled by an exponen-
tial expression. The following chapter extends these results by a slight
alteration of the basic decision model.
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CHAPTER 3
THE DECISION MODEL

3.1 Purpose
This chapter describes the decision model that will be used through-

out the remainder of the thesis.

3.2 An Historical le

During the 1960s the United States, as a portion of its NATO strat-
egy, pre-stocked the equipment for several U.S. Army divisions in Western
Europe. This equipment was matched to designated units based within the
United States. The anticipated mode of employment was an airlift of per-
sonnel to Western Europe, "marrying up" with the equipment, and subsequent
deployment in defense of NATO allies. The motivation for this plan was
to cut the reaction time in countering any Russian agressjon. The concept
was tested during the 1960s in a series of exercises dubbed "Reforger."

3.3 Comparison with the Extant Decision Model

A comparison of this strategy with the "usual" decision model re-
veals some subtle differences.

The existing model [15,19], depicted in Fig. 3-1, implicitly recog-
nizes a random event, "A decision is needed." The entire analysis and
interest then follows this random event. There is no subsequent uncer-
tainty concerning the occurrence of the decision.

In the cited historical example there is some probability that the
Russians will never attack Western Europe and that a decision, in the
sense of tactical deployments, will never be made. The U.S. strategy in
Europe is assuredly a complex set of supporting decisions. However, the

essence of the approach is shown in Fig. 3-2. The significant difference

is the recognition of uncertainty in the occurrence of the ultimate deci-
sion (the method of defending Europe).

This leads to these metaphores:

1. Reaction decision making. The decision maker sets his decision
vector after the need for a decision is recognized as a cer-
tainty or near-certainty.
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2. Contingency decision making. The decision maker partially
or completely sets his decision vector before the need for a
decision is certain.

Figures 3-3a and 3-3b illustrate the two concepts and suggest a
fundamental hypothesis: The set of alternatives available to the contin-
gency decision maker is at least as great if not greater than the set
available to the reaction decision makerx.

3.4 The Contingency Decision Model
Figure 3-2 does not completely tell the story of the European pre-

stock strategy. As we noted in describing the example the United States
periodically tested the plan, incurring some costs. In addition, the
type and amount of pre-stocked supplies might vary depending on the U.S.
state of information, and the final decision is obviously a function of
this initial decision. These nuances are depicted in Fig. 3-4.

We will find it helpful in our subsequent analysis to characterize
the event "Russian Attack" as a binary "outcome switch." In the "on"
position the decision maker completes his decision, if necessary, and re-
ceives the reward from his lottery. In the "off" position the decision
maker does not receive the outcome of his lottery but recycles to recon-
sider his pre-set decision.

The setting of the outcome switch may be affected by:

1. Competitive or Gaming Factors.

Example: The deployment of U.S. troops is contingent on the
exact timing of the Russian attack.

2. Environmental Factors.

Example: The decision maker will buy a new car when his present
one requires a new motor.

3. Factors within the Control of the Decision Maker.

Example: The decision maker will buy a new car in 1976.

4. A Combination of Previous Factors.

Example: The decision maker will buy a new car in 1976 unless
his present one requires a new motor prior to that
date.

There are also situstions wherse the decision may be repetitive, and

=




syopou SupjBw-UOFSTOSP OAML €-€ ®an833

’a +¥ 2%
ME”O.....QNO -Hvu = Un Hﬁﬁ.onoawo ..HOu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>