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ABSTRACT

The predictions of a computer simulation for high-drain, AgCl-Mg bat-
teries are compared to the observed performance of four full-size AgCl-Mg
batteries: the Mk 61 (Mod 0 and Mod 2), Mk 64 and Mk 67. The Mk 61 Mod 0,
like the Mk 64 and Mk 67 batteries, uses AZ61 magnesium anodes; the Mk 61
Mod 2 uses the high voltage magnesium alloy, AP65. These four batteries dif-
fer sufficiently in their configurations and were discharged over a wide enough
range of operating conditions to constitute a valid test of the computer simu-
lation's capabilities. The simulation gave voltage predictions accurate to
within 7% for over 90% of the discharge. Predictions for other useful param-
eters, such as electrolyte temperature, are also given. This simulation can
eliminate the need for most of the '"cut and try'" effort presently required in
AgCl-Mg battery development and should be helpful in system studies of this
battery.
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INTRODUCTION

Present design techniques for high-drain, water-activated, AgCl-Mg bat-
teries require considerable experimentation involving the construction and
testing of subassemblies as well as full-size prototypes. The operating con-
ditions for such batteries often encompass a wide range of temperature, salin-
ity, and pressure conditions. Limited discharge facilities and the expense of
in-water tests make it unfeasible to test water-activated batteries over their
entire operating envelope, thus increasing the technological development risk.

A computer simulation, which was developed as an aid to the design of
AgCl-Mg water-activated batteries, has been described (References 1 and 2).
Here we will compare the agreement between that simulation's predictions and
the observed behavior of four full-size, high-drain batteries. Of these bat-
teries, the Mk 61 Mod 0, Mk 64, and Mk 67 all use AZ61 magnesium alloy for
their anodes. The Mk 61 Mod 2 uses the high voltage alloy AP65' for its an-
odes. The batteries differ sufficiently in their configurations and were dis-
charged over a wide enough range of operating conditions to constitute a valid
test of the capabilities of the simulation.

CHARACTERISTICS OF THE MK 61 (MOD O AND MOD 2), MK 64, AND MK 67 BATTERIES

The Mk 61 Mod 0 and Mod 2, Mk 64 and Mk 67 are high-drain, water-
activated batteries which use a compact, rugged, lightweight, pile-type con-
struction (Fig. 1). Glass beads embedded in the cathodes act as separators,
permitting electrolyte to pass between the electrodes of the cell. Metal sepa-
rators are placed between adjacent cells to prevent unwanted electrochemical
reactions and to provide electrical contact.

In the pile-type construction parasitic currents flow between cells of
different potential because the cells are immersed in a continuous electrolyte.
The parasitic currents act as a load in parallel to the external load, causing
lower battery voltage and a reduced discharge life. The magnitude of the para-
sitic currents increases with the conductivity and volume fraction of the elec-
trolyte, the area of the flow passages above and below the battery, and the
cross-sectional area of the flow passages within the cells.

Of the four batteries, the Mk 64 operates at the highest current density
and has a parasitic-to-external current ratio of less than 0.05. The Mk 61 bat-
tery, which has the same flow passage area and cell configuration but operates
at about half the current density, has a ratio near 0.08. The Mk 67 battery
operates with a voltage control system which has the effect of increasing the
conductivity of the electrolyte as the discharge progresses; thus, its parasitic-
to-external current ratio increases during the discharge and, depending upon the

1AP65 is also called GEMAG or MELMAG.
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temperature and composition of the entering electrolyte, ranges from 0.19 to
0.25 in the early portions of the discharge, 0.25 to 0.33 when the discharge
is 90% complete, and 0.67 to 0.85 at the completion of the discharge.

The cells of the battery may be connected in series as in Fig. 1, or
they may be divided into two series-connected sections which are connected in
parallel to the load as in Fig. 2. The Mk 64 battery has 161 cells connected
electrically in series; the Mk 61 Mod 0, Mk 61 Mod 2, and Mk 67 batteries all
have two sections connected electrically in parallel, each section containing
118, 104, and 230 cells, respectively.

The Mk 61 and Mk 64 batteries have cells and flow passages of the same
size and shape (Table I and Fig. 3) and are designed to operate at near the
same power level. Since the Mk 64 has a single section and the Mk 61 has two,
the current density is nearly twice as high and the discharge period is
correspondingly shorter for the former.

The cells of the Mk 67 battery are rectangular in shape and are about
two and one-half times larger than the Mk 61 and Mk 64 cells (Table I and Fig.
3). The Mk 67 cathodes have about one-third greater capacity per unit area
than those of the Mk 61 and Mk 64 batteries.

The Mk 61 and Mk 64 batteries operate with an entering electrolyte of
constant flow rate. This produces battery voltages which are strongly depend-
ent on electrolyte composition and temperature, and which fall continuously as
the discharge progresses.

The Mk 67 battery is designed to operate within a few percent of 245 V
over the range of sea water temperature and composition found in the world's
oceans. This is accomplished by a voltage control system that recirculates a
constant flow rate of effluent back into the lower flow passage and adjusts
the flow rate of entering sea water to achieve the desired voltage (Fig. 4).

Table I. Summary of Battery Configurations

Mk 61 Mk 61
Mod 0 Mod 2 Mk 64 Mk 67

No. of cells 236 208 161 460
Nzéng:cggza;lﬁlions 2 2 1 2
Cathode area, cm? 396 393 396 1097
Cathode thickness, cm 0.038 0.037 0.038 0.055
Anode thickness, cm 0.028 0.028 0.028 0.033
Electrode separation, cm 0.058 0.058 0.058 0.058

Area of flow passage, cm? 10.24 10.24 10.24 67.25
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These particular batteries were chosen for this study because (a) their
physical dimensions and method of manufacture and testing were well documented,
and (b) the four batteries differed sufficiently in operating conditions and
physical configurations to provide a good test of the computer simulation's
capabilities.

RESULTS

The computer simulation's predictions are compared to observed battery
voltages, effluent electrolyte temperatures, and (for the case of the Mk 67
battery) electrolyte flow rates in Figs. 5-29. The observed values lie within
the crosshatched areas on the figures? and were obtained from discharges con-

ducted by the Quality Evaluation Laboratory of the Naval Torpedo Station, Keyport,

Washington.

The manufacturing tolerances, and to a lesser extent the test tolerances
of these batteries, allow a significant spread in battery performance. A mea-
sure of the maximum possible spread in performance was obtained by making three
computer simulations for each test condition studied. These were (a) for the
case where the battery was built according to the nominal specified dimensions
and tested according to the nominal specified test conditions, (b) for the case
where the battery was built with the most favorable set of dimensions allowed
by the specifications and tested according to the most favorable set of operat-
ing conditions permitted by the test specifications, and (c) for the case of the
least favorable set of dimensions permitted and the least favorable set of oper-
ating conditions permitted. These three conditions are referred to as the nomi-

nal, best, and poorest performance predictions, respectively, and are represented

by the solid lines in Figs. 5-29.

The computer inputs for battery dimensions and discharge conditions are
given in Tables II, III, IV and V. Two other computer inputs warrant discussion.
The computer simulation makes use of numerical analysis to account for spatial
and temporal variations within these batteries. This is done by dividing the
cells into a sufficiently large number of subcells so that spatial variations
in operating conditions within any subcell are small, and by dividing the dis-
charge period into short time intervals so that temporal variations within a
time interval are small. For this study we chose 25 subcells and a 10-sec time
interval. This was shown to be adequate by making checks in which the number
of subcells was increased to 100 and the time intervals decreased to 1 second.
Only negligibly small changes in the computer predictions were observed.

2Except for the Mk 61 Mod 2 discharges where the number of discharges was
small enough to permit plotting individual discharges.
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Table II. Battery Dimensions for the Mark 61 Mod 0
and Mark 64 Battery Simulations

Poor
Cathode area, cm? 394.29
Cathode thickness, cm 0.0356
Anode thickness, cm 0.0254
Silver foil thickness, cm 0.0013
Electrode separation, cm 0.0686
Cell thickness, cm 0.1309
Width of bottom and top 10.002

opening of cells, cm
Width of tape at top and 0

bottom of cells, cm -2654
Thickness of tape at top

and bottom of cells, cm 0.0025
Area of flow passage above 10.38

(or below) the battery, cm?

Table III. Battery Dimensions for the Mark 61 Mod 2 Battery Simulation

Poor.

Cathode area, cm? 391.0
Cathode thickness, cm 0.0356
Anode thickness, cm 0.0254
Silver foil thickness, cm 0.0016
Electrode separation, cm 0.0660
Cell thickness, cm 0.1286
Width of bottom and top 10.57

opening of cells, cm :
Width of tape at top and

bottom of cells, cm 0.4191
Thickness of tape at top

and bottom of cells, c¢m 0.0025
Area of flow passage above 10.46

(or below) the battery, cm?

4 APL-UW 7112

Performance
Nominal

395.72
0.0381
0.0279
0.0019
0.0584
0.1264

10.002
0.3112
0.0025

10.24

Performance

Nominal

392.5
0.0368
0.0279
0.0019
0.0584
0.1251

10.47
0.4826
0.0025

10.24

High
397.14
0.0406
0.0305
0.0025
0.0483
0.1219

10.002
0. 3569
0.0025

10.09

High

394.0

0.0381
0.0305
0.0022
0.0508
0.1215

10.37
0.5461
0.0025

10.02
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Table V.
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Battery Dimensions and Test Conditions

for the Mark 67 Battery Simulation

Battery Dimensions

Number of cells

Number of sections
Cathode area, cm?

Cathode thickness, cm
Anode thickness, cm
Silver foil thickness, cm
Electrode separation, cm
Cell thickness, cm

Width of bottom and top
opening of cells, cm

Width of tape at top
and bottom of cells, cm

Thickness of tape at top
and bottom of cells, cm

Area of flow passage above
(or below) the battery, cm?
Test Tolerances

Load resistance, ohm
Pressure, atm

New electrolyte flow
rate, gal/min

Maximum
Minimum

Recirculation flow rate,
gal/min
Electrolyte temperature, °C
High temp.
Ambient temp.
Low temp.

Electrolyte salinity, %o

High temp.
Ambient temp.
Low temp.

APL-UW 7112

Performance
Low Nominal
460 460
2 2
1086.13 1097.48
0.05207 0.05461
0.03048 0.03302
0.00127 0.00190
0.06604 0.05842
0.1397 0.1480
22.9387 22.8473
0.1359 0.2649
0.0025 0.0025
67.84 67.25
0.435 0.438
3.72 06
122.0 120.0
17.0 15.0
32.0 36.0
29.4 30.8
10.0 i
0.0 0.0
35.0 37.5
30.0 35.0
7.5 10.0

High

460

1108.
.05715
.03556
.00254
.05334
1562

SO S D

22;

66.

77

7558

.3937

.0025

67

0.441

118.
13.

40.

32.
15.

40.
40.
12.

(S22 ab)

.40

o O

LT
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The Mk 61 Mod 0 Battery

Figures 5-8 present a comparison between the predicted and observed
voltages for the Mk 61 Mod 0 battery.® These four test conditions encompass
four levels of temperature (0.8, 12.8, 15.6 and 31.1°C) as well as two levels
of salinity (31 and 38%q), pressure (15 and 45 psig), and resistance (0.72
and 0.580).

The computer simulation predicts low voltages in the early part of the
discharge, and therefore the predicted discharge periods are too long. A sig-
nificant number of the batteries performed better than the highest predictions
of the computer simulations in all four test conditions. Thus, unless the
batteries were built or tested outside of the allowed tolerances, it must be
concluded that the voltage predictions for the Mk 61 battery are intrinsically
low. However, the magnitude of this discrepancy is not large, especially in
view of the 6% spread in observed voltages and the 5-20% spread in the observed
discharge time to a cutoff voltage of 100 V (0.85 V/cell). By comparison, with
the same cutoff voltage the predicted voltages are within 6% of the observed
voltages (taken to be the center line of the observed voltage envelope) for
100% of the low temperature discharges (Fig. 5), 92% for the two sets of dis-
charges near 15°C (Figs. 6, 7), and 97% for the high temperature discharges
(Fig. 8).

The predicted and observed Mk 61 Mod 0 effluent temperatures are com-
pared in Figs. 9-12. Except for starting transients caused mainly by the lim-
itations of the test facility, the observed and predicted temperatures are in
good agreement. The predicted temperatures would have to be about 1 to 2°C
higher to be consistent with the voltage predictions. However, this is not
much larger than the uncertainties in temperature measurement and is well within
the accuracy required for battery design.

The Mk 61 Mod 2 Battery

The Mk 61 Mod 2 battery differs from the Mk 61 Mod 0 battery primarily
in that its anodes are made of AP65 magnesium alloy. This permits a reduction
in the number of cells from 236 in the Mk 61 Mod 0 to 208 in the Mod 2 battery.

The predictions of the computer simulation are compared to the observed
voltages in Figs. 13-15. The predicted voltages for the case of a battery
built to nominal dimensions and tested according to the nominal values for the
discharged specifications are from 3% to 7% lower than the observed voltages
during the first three-fourths of the discharge. Thereafter, the observed volt-
ages fall below the predicted voltages. The predicted voltages are high in the
latter portions of the discharge because the lower predicted discharge rate
causes a longer predicted discharge life.

3This battery uses AZ61 anodes.

APL-UW 7112 7
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The agreements between the observed and predicted voltages obtained
for the Mk 61 Mod 2 battery are similar to those obtained with the Mk 61 Mod 0
battery. Since the difference between the Mod 2 and the Mod 0 is that the
former uses AP65 anodes instead of AZ61 anodes, these results indicate that
the voltage predictions of the computer simulation are equally good for both
alloys.

The predicted and observed Mk 61 Mod 2 effluent temperatures are com-
pared in Figs. 16-18. As is the case with the Mk 61 Mod 0 the observed and
predicted temperatures are in good agreement with the computer simulation
predicting temperatures 1° to 3°C higher than that which would be consistent
with the voltage predictions.

The Mk 64 Battery

The Mk 64 battery is designed to operate at the same power level as
the Mk 61 but for a shorter period of time. Since it has only one section
compared to the Mk 61's two, and since the cells are the same size (Table I),
the current density is roughly twice as high.

The observed voltages (taken to be the center line of the observed
voltage envelope) are within 2% of the nominal predicted voltage until the
observed voltage drops to 100 V (0.62 V/cell) at 3.7 min (Fig. 19). The ac-
curacy of the simulz.ion decreases between 3.7 and 5.2 min with 2 maximum
error of +15% occurring at 4.5 min. The low predictions of the simulation
beyond 5.4 min are the result of the higher predicted exhaustion rate during
the 3.7 to 5.2 min period.

The errors at or below 100 V result from the limitations of the semi-
empirical model upon which the simulation is based (Refs. 1 and 2). Fortun-
ately, enough is known about these limitations that the operating regions
where serious errors might be expected can be identified. In practice, this
is not a serious consideration since the model works well over the range of
operating conditions of interest in modern battery design.

Observed and predicted effluent temperatures are in excellent agreement

(Fig. 20). The computer simulation's slightly high temperature predictions are
consistent with the slightly high voltage predictions.

The Mk 67 Battery

The Mk 67 battery was tested for three conditions: (a) high tempera-
ture, high salinity (Figs. 21-23), (b) ambient temperature, normal salinity
(Figs. 24-26), and (c) low temperature, low salinity (Figs. 27-29). The high
temperature, high salinity discharges will be discussed first.

8 APL-UW 7112
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Although the Mk 67 battery is designed to operate at 245 V, the per-
formance of the battery is such that even at its maximum flow rate of 120 gal/
min the voltage does not fall to 245 V until the 7 to 9 minute mark for the
high temperature, high salinity discharge conditions (Fig. 21). This permit-
ted us to determine the adequacy of the computer simulation for the Mk 67 bat-
tery when discharged at constant flow rate. The agreement is excellent, with
the simulation predicting voltages accurate to better than 1% for the first
S min and to within 2% until the 8-min mark.

At the 8-min mark the observed voltages begin to fall approximately
0.8 min earlier than that predicted by the '"low performance'" predictions of
the simulation. An examination of the flow rate data for this condition
(Fig. 23) shows that the experimental reductions in flow rate lag behind those
of the simulation. This lag in flow reduction, which is caused by equipment
limitations, explains much of the discrepancy found after 8 min. Another pos-
sible source of low observed voltage, especially at low flow rates, is that
significant amounts of Hz are quite likely recirculated into the lower flow
passage by the recirculation pump (Ref. 3). This is most likely to occur
near the end of the discharge when flow rates are low, because of the increas-
ing volume fraction of H, at low flow rates. In spite of this, the predicted
and observed discharge life agreed to 5%, based upon the ''nominal'' computer
predictions and the average observed time to 160 V (0.7 V/cell).

The predicted and observed temperatures are in excellent agreement for
the first 4 min of the discharge where the flow is constant at 120 gal/min
(Fig. 22). Thereafter, the observed temperatures were lower than the predict-
ed temperatures, reflecting the high observed flow rates (Fig. 23) that were
responsible for the low observed voltages described above.

The comparisons between the predicted and observed voltages, tempera-
tures, and flow rates when the Mk 67 battery is discharged at 12.8°C are pre-
sented in Figs. 24, 25 and 26, respectively. The nominal voltage predictions
are within a few percent of the observed voltages for 96% of the discharge
period to a cutoff voltage of 160 V (0.7 V/cell).

The temperature and flow predictions are in good agreement with the
observed results over most of the discharge (Figs. 25 and 26). During this
period, which ends at about 7% to 8 min, the computer predictions imply that
the Mk 67 battery is performing between the nominal and the best expected of
it."* Thereafter, the observed flow rates decrease and the observed temperatures

*The 'best', "nominal" and "poorest’ lines on Fig. 22 illustrate the relation-
ship between the "intrinsic'" performance of a Mk 67 battery and its effluent
temperature. During the period when the flow is constant at 120 gal/min, the
effluent temperatures are highest for the 'best' performing battery and lowest
for the poorest performing battery. The reverse is true once the voltage con-
trol system begins to reduce the flow rate, because the flow rate required to
maintain the battery at 245 V is highest for the best performing battery.

APL-UW 7112 9
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rise faster than the predictions of the computer simulation. This apparent
decrease in the Mk 67 battery's intrinsic voltage capabilities could be the
result of H, recirculation.

Figures 27-29 present the agreement between the simulation and the
observed results for the case of low temperature and low salinity. The
predictions of the simulation are excellent between the 1) and 7-min mark.

The discrepancies in the first 1) min of the discharge are caused by
starting transients. The battery is filled at a flow rate of 120 gal/min until
the system pressure reaches 45 psig, whereupon the flow rate is reduced to the
30-40 gal/min required to bring the battery voltage up to the desired 245 V.
The wide range of observed voltages found in the first 1) min (Fig. 27) results
from variations in the time it takes to accomplish this task. In contrast, the
computer simulation simulates operation in which the filling time is very short
with a flow control valve with infinitely fast and accurate response. This con-
dition is best approached by the battery behavior given by the ''leading edge"
of the observed voltage envelope. It is significant that the agreement between
the simulation and the leading edge is excellent.

Low temperature, low salinity discharges of the Mk 67 battery are fre-
quently marked by clogging and electrical arcing within the battery in the per-
iod beyond 7% min. This, along with the probable recirculation of H,, accounts
for the poor performance during this period. Since the simulation assumes that
no voltage losses from undesired effects such as arcing or clogging occur, a
valid comparison during the latter portion of the discharge would be that of
the trailing edge of the voltage envelope and the nominal predicted voltage line.
These two lines are in good agreement, reaching the cutoff voltage of 160 V (0.7
V/cell) within 0.5 min of each other.

Thus, the nominal voltage predictions of the simulation are in excellent
agreement for 95% of the discharge time to a cutoff voltage of 160 V if the lead-
ing edge of the voltage envelope is used during the first 1) min of the dis-
charge to compensate for the effects of start-up procedures and if the trailing
edge of the voltage envelope is used beyond the 8-min mark to compensate for the
effects of arcing and clogging.

The predicted temperatures (Fig. 28) and the flow rates (Fig. 29) are in
good agreement with the observed results, especially when allowances are made
for the starting transients and for the clogging and arcing which take place
near the end of the discharges.

DISCUSSION
When limitations of the test facility and the effects of clogging and

arcing are taken into account, the voltage, flow, and temperature predictions
of the computer simulation are in good-to-excellent agreement with the observed

10 APL-UW 7112
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performance of the Mk 61 Mods 0 and 2, Mk 64, and Mk 67 batteries. The con-
figurations of the four batteries used in this study are sufficiently diverse
that these results are applicable to all high-drain, AgCl-Mg battery configu-
rations known to this author. Furthermore, the temperature and salinity of
the electrolytes used in the discharges reported here cover the extremes found
in the world's oceans with the exception of a few small regions such as those
at the bottom of the Red Sea where extremely warm concentrated brines are
found. On this basis we conclude that the simulation is more than adequate
for use in carrying out parametric studies or for the design of high-drain,
sea water-activated batteries which use either AZ61 or AP65 magnesium alloy,
the most common alloys for such batteries today.

APPLICATIONS

The computer cost of simulating a battery discharge ranges from §$15-
$30. The cost of discharging a full-size battery ranges from $2,000 to
$30,000 (Ref. 1). In addition to the advantage of low cost, the simulation
gives information on the spatial and temporal distributions of such quanti-
ties as temperature, electrolyte composition, and current density that are
difficult or impossible to obtain from battery discharges. A further advan-
tage of the simulation is that the range of operating conditions which can
be studied is not limited by the availability of discharge facilities or by
the practicality of tests conducted at sea. This latter is a significant
problem, not only because of the high costs of field operations and instru-
mentation problems but because of the unpredictable occurrence of many of
the test conditions which are of interest. Thus, the computer simulation
permits rapid and inexpensive determinations of the behavior of competing
battery configurations permitting a large reduction or even the complete elim-
ination of the '"cut and try" effort previously required to design batteries.
The ability to evaluate the performance of candidate battery configurations
for any desired operating condition considerably reduces the technological
risks of battery development. These comments apply with equal force to system
studies involving the application of high-drain, AgCl-Mg batteries.
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Figure 1. A four-cell series-connected section. The current ig trans-
ferred to the load by bus rods (not shown). Glass beads imbedded in the
AgCl provide interelectrode spaces through which the electrolyte passes.
The silver foil provides electrical contact between the cells while act-
ing as a barrier to chemical reactions between the AgCl and Mg. The edges
of the magnesium-silver foil assemblies are taped to prevent electrolyte
from reaching the back of the anodes.
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Pigure 2. A battery composed of two series-connected sections, containing
four cells each, which are connected in parallel. The cell assembly is of
the same construction as that in Fig. 1, but there is symmetry about the
negative bus plate.
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Figure 3. Configuration of the
Mk 61, Mk 64, and Mk 67 cells.
(dimensions in centimeters)

Figure 4. A battery compartment
with provision for voltage control
(as in the Mk 67). The entering
electrolyte mixes with the portion
of the battery effluent recycled
by the recirculation pump before
entering the flow passage under

the battery. The intake flow of new
electrolyte is adjusted by the flow
eontrol valve located at the exit.

Pigure 5. Predicted and observed
voltages of the Mk 61 Mod 0 battery
when discharged at low temperature.
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Figure 8. Predicted and observed
voltages of the Mk 61 Mod 0 when
discharged at high temperature.

Fi{gure 9. Predicted and observed
effluent temperatures of the Mk 61
Mod 0 when discharged at low
temperature.
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Figure 10.

Predicted and observed

effluent temperatures of the Mk 61
Mod 0 when discharged at 12.8°C.

Figure 11.

Predicted and observed

effluent temperatures of the Mk 61
Mod 0 when discharged at 15.6°C.
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Figure 16. Predicted and observed
effluent temperatures of the Mk 61

Mod 2 when discharged at Low
temperature.

Figure 17. Predicted and observed
effluent temperatures of the Mk 61

Mod 2 when discharged at 12.8°C.

Figure 18. Predicted and observed
effluent temperatures of the Mk 61

Mod 2 when discharged at high
temperature.
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Figure 19. Predicted and observed
voltages of the Mk 64 battery.

Figure 20. Predicted and observed
effluent temperatures of the Mk 64
battery.
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Figure 21. Predicted and observed
voltages of the Mk 67 battery when
discharged at high temperature.

Figure 22. Predicted and observed
effluent temperatures of the Mk 67

battery when discharged at high
temperature.
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Figure 29. Predicted and observed
flow rates of sea water entering
the Mk 67 battery when discharged
at 0°¢C.
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