
I ~ AD— AO’eb 879 NAVAL SURFACE WEAPOt$ CENTER WHITE OAK LAB SILVER SP—ETC FIG 9/5
COMMON SIGNAL PROCESSING MODULES.CU)
MAY 76 C N PRYOR, L S HAYNES

UNCLASSIFIED NSWC/WOL/TR—76—175 NL

lcd -

ACADI~~~79

IS _____ ___

_ flEND
DAT’

F! L• ~E 0

______ ______ 2-77
00~

N
_____ ____________

NSWC/WOL TR 76.175

t . COMMON SIGNAL PROC ESSING MODULES

BY C. NICHOLAS PRYOR
L S H A Y N E S

ORDNANCE SYSTEMS DEVELOPMENT DEPARTMENT

10 MAY 1977

Approved for public relee e; distribution unlimited.

‘—‘ r~-~ ‘~~~~

-
L)

NOV 30 1977

I,
’ ‘--I ~_ ~~~~~~~~~/4,

>-
NAVAL SURFACE WEAPONS CENTER

D.hlgren, Virginia 22448 • Silver Spring, Maryland 20910

~~~~~~~~~~ ~~~~~~~~~~~~~ . —--.-.-— . . -  - ~~~~~~~~~~~~~~~~~~~ 

.



— - - - -

UNCLASSIFIED
SECURITY CLASSIF ICATION OF THIS PAGE ($~i•n Das. Eng.,.d) 

____________________________________

READ INSTR UCTIONSREPORT DOCUMENTATtOIl PAGE BEFORE COMPLETING FORM

~~~~~ h_m1r4.. • 2. GOVT ACCESSION P40. 3. RECIp IENT’S CATALOG NUMBER

NSWC/WOLJrR—76—175__~ __________________
~~~ ~~~~~ .~ r p~c pO  i”~~...- .GSOVE R EO——~~ ~~~~Lir— ~~~~~~~~~

____t
Coxnmon Signal Proce8sing Modu1es~J ~~~ Fina~,~~6~~L

~~~~~~ ~~~~~~~~~~~~~ Jh~~~RT JUUIIER

~~~~~~~~~ 
oia~~~~~yor 1 

S. CONTRACT ANT NuJEJR(.)

‘2~~~~ :
~~~~~~ yneL j  

_ _ _ _ _ _ _ _ _ _ _ _ _

I PERFORMING O R G A N I Z A T I O N NAME AND ADORESS 10. PROGRAM ELEMENT. PROJECT . T A SK
AREA & WORK UNIT NUMBERS

Naval Surface Weapons Center 0; M~T-03L-000 /ZF6 1-0O1 ;
White Oak , Silver Spring , MD 20910 ZF61-OO1; 32519-002;

I~~ arena? as..I I . CONTROLLING OFFI CE NAME AND ADDRESS

•p’ May ~~76 /
•L. ~~~~~~~~~ ~~ ,.

__

11.3
II. MONITORING AGENCY NAME B ADORESS(iI di U.,onI f tom Controllint Offi c.) IS. SECURITY CLASS. (.1 ShI . c.port)

UNCLASSIFIED
IS.. DECLASS IFICATION/D OW NGRAOING

SCHEDULE

IS. DISTRI UTION STIAEMEN (of Ski. RoperS)
—

Approved for public relea8e; distribution unlimited
—---- -

17. DISTRIBUTION STATEMENT WTfl• 011?OC 1 1!..

ZF~ :L
~~~ 04] 

from R.po,S~

1$. SUPPLEMENTARY NOTES

IS. KEY WORDS (ConSInu. on ,.v. r.. .Sdo fl n.c•..my ond i~ .nt l~~ by block numb.,)

microcontroller,
microprocessor ,
signal processing modules
microprogramining

20. A~~~~ RACT (Conlinu. on r.v. r.. aid. St .,ac..aas7 Id Sd..nSSty by block numb.,)

Currently, special purpose hardware Is designed for each newweapon system, with little or no capability of being easilymodified or adapted to other similar applications . This paperdescribes a group of small, low power signal processing modules,with a compatible , flexible structure for Intercommunication ofdata and command and control information . Instead of’ designingsystems ffrom scratch~ for a unique application1 system designers- -~~~~

DD JAN 73 ~~~~~ 
EDITION OF 1 NOV 55 5 OBSOL ETE UNCLASSIFIED
S/N 0 1 0 2 • 0 1 4  4601

SECURITY CLASSIFICATION OF THIS PAGE (~~i. n Dot.

~~~~
. / ‘2~

__ -— —.-—..---,. -~~
-
~~~~~~~~

-~-



— .— -~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. 

~
. ..- .---.-

UNCLASSIFIED
..LLU 4 I T Y  CLASS IFICATION OF THIS PAGE(Wh .n Dos. Ent.r.d)

will be able to configure and then program the standard digital
modules into small or large systems, optimized to their
particular requlrement8. Implementing hardware in this
manner will substantially reduce development time, testing
requirements, logistics problems, and life cycle costs, and
increase the versatility and reliability of the resulting produc

p

UNCLASSIFIED
SECURITY CLASSIFICATION OF TIllS PAOE(IP?I .n Data tntIr .d)

— - - ——-~~~~~~~~~~~~~~~~~ m 
---U--. 



-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

NSWC/WOL -fR 76— 175

P R E F A C E

This report describes a set of small , low power signal
processing modules capable of being configured into a wide range
of weapons systems . This work was performed by the Digital and
Signal Processing Branch of the Naval Surface Weapons Center.
The effort was supported primarily as an internal exploratory develop—
ment task , work unit MAT.-03L—000/ZF61—oO1, and certaIn aspects of
the work herein described were supported by the mobi~le mine project ,work unit S25l9—002.

EDWARD C. WHITMAN
By direction

*

~ 

_
~_L 

~~~~~~~~~~~~~


r — . —

~

-

NSWC/WOL PR 76—175

CONTENTS
Page

JUSTIFICATION FOR COMMON MODULE DESIGN

SELECTION OF CMOS TECHNOLOGY 6

SUBSYSTEM INTERCONNECTI ON PHIL OSOPHIE S
- ,

-

7

Wait Line Concept 7

Horizontally and Vertically Organized Systems 8

INTER CONNECTION PORT DEFINITION S 10

Output Port 10

Input Port 10

Control Port 10

Other Lines 13

Reduced Flexibility Ports 13

STANDARD MICROCONTR OLLER

General Definition

Specific Implementation 16

Control Stack 16

Basic Timing and Interrupt Signals 16

Instruction Repertoire 16

Instructions 21

Clock System 22

Clock Generator 22

Wait Lin~ 23
Clock Enable 23

2 -

-
~~~~~~~~~~~

-
-,.--~~ -~~~-- _ _ _



~ 
—V-- 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 
- ~~ -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~_ _ _~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-‘I,

1,
NSWC/WOL PR 76—175

CONTENTS (Cont.)

Page

Interrupt Facility 23

Initialization 26

BASIC TYPES OF MODULES 21

Program Memory Module 27

Read/Write Data Memory 27

Control Element 27

Pr ior it y Selector 27

Proce ssing Element s 35

EXAMPLE OF A DIRECT EXECUTING COMPUTER IMPLEMENTED WITH 37
THE MI CROCONTROLLER

3

_ _ _ _

~ ,,
~~~~~~~~

— —,---,,----- =—~
- .-..--.--- - — -. —-.-.--

NSWC/WOL IR 76-175

I

COMMON SIGNA L PIIOCESSING MODULES

JUSTIFICATION FOR COMMON MODULE DESIGN

There are currently a number of programs proposed or presently
in exploratory development in the areas of advanced mines, torpedoes,
surveillance sonobuoys, and remote sensors systems whose signal
processing requirements overlap to varying degrees. The
requirements include case orientation sensing, correlation , spectrum
analysis, and post—analysis processing for automatic line detection ,
line integration and tracking, bearing computation, and target
tracking and classification. Historically , special purpose hardware
was designed for each weapons system, with little or no capability
of being easily adapted to other similar applications .

A number of shortcomings exist in this approach. For example :

1. There is a large amount of redundant effort expended in
the design of similar hardware.

2. Methods and hardware for simulation and testing of weapons
systems must be designed independently for each system.

3. Failure analysis must be done separately for each weapons
system.

14~ Growth capability of hardware systems is minimal.

In short, many devices which require similar types of complex
data handling are designed entirely independently . Increased
cost due to duplication of effort , longer development times, and
inferior products result .

The standard modules, which this paper describes , are a group
if small, low power digital signal processing modules. These
modules will be capable of being combined in various ways to
implement a wide range of weapons systems . Instead of designing
systems “from Scratch” for a unique application , system designers
will be able to configure the standard digital modules into small
or large systems, to meet their particular requirements.

Li 

--- ---- ----.- --.-- -. . - - - — - . - - - -  —-— --— - ..— j _ . ___ _ _ --.- _ ..._ -_ .- , - -—- -  ----—rn ._.~~-----—-- - .~~-— — - - - —  A~i~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-

NSWC/WOL TR 76-175

The primary requirement of any such standardized processing
elements is that they have a compatible , flexible structure for
intercommunication of data and command and control information.
The intercommunication structure will be continually emphasized
in the following chapters . .

--- - - , . - - .~~~-~~~~ —-~~~~~~~~~~~~ . , - - -

- .,~~

NSWC/WOL TR 76—175

SELECTION OF CMOS TECHNOLOGY

The choice of CMOS technology for the microcontroller was
dictated by the low power requirement for the m odules. No other
currently available technology could have met the requirement.

A read only memory is an integral part of the microcontroller.
Presently a MOS memory is being used because there are no convenient
CMOS ROMS. We can expect more practical low power ROMS to be available
in the next few years. Until then, in many applications, the higher
power ROMS may be used. If they are turned off when the ROM is not
actually doing calculations, the power they use is proportional to
the amount of computation done, and will be very small for problems
not requiring large amounts of computation.

6

_ _ _ _ _ ~~~

~~
__ I__~_

— —,
~ ----.--.--,—-,.-- ~~~ —,-~~ ---- ---.-------~-—---. -- ~~ -~~~---~

-.,--- - -
~—-~

-.---
~~
-- --

NSWC/WOL TR 76-175

SUBSYSTEM INTERCONNECTION PHILOSOPHIES

Wa it Line Concept

-
The processing modules discussed in the previous óhapter must

be capable of being easily configured Into relatively complex
structures. Many tasks, for example , will require several processing
units, each performing part of the total amount of work to be done.
The synchronization and communication philosophy followed in the
design of the overall system is extremely Important if the system
Is to be expandable in size and function. If the initial
formulation is not adequately general , then complex systems will
be messy or impossible to design . If the configuration and
communication structures are too general, then simple systems will
be unnecessarily slow, complex , and costly.

In the simplest systems or subsystems of larger systems , there
Is one processor which is the “boss”. This processor is entirely
responsible for controlling every operation done by every device
on every clock cycle . The control signals from this processor may,
for example , connect directly to the gates , and busses within
the module , controlling the data flow in a direct way . This
processor always knows whether a particular module is busy or
not , since no other processor can issue commands. The QED (Quick
and Easy Design) program (reference (1)) at the Navy Electronics
Laboratory Center , San Diego , deals primarily with this level of
system structures.

Subsystems , as described above , may be combined into systems
employing levels of processors . At any level, there is only one
“boss” controlling the devices at its level. Now however, a given
device may itself be a “boss ” of the devices at the next lower
level. The boss does not now know the exact status of a
device because it in turn depends on the devices it controls.
A synchronization scheme is now needed to see if a “boss” can
accept another command , and If a desired operation is complete.

Subsystems can be combined into more complex systems, where
several “bosses ” can command a single module . Resources are now
shared by many processes. A memory , for example , may be used
by several processes. A synchronization scheme is needed to see
If the memory Is available . Priorities are needed to insure that
the most Important processes receive service first , yet every
process receives some service. In addition, a communication network
is required to multiplex commands and data to or from a given
resource.
12175 Program Quick and Easy Design “QED” of Systems Through High
Level Functional Modularity, TR 1904, N. L. Tinkelpaugh and
0. C. Eddington , 28 Jan 1974.

7

_ _ _ _ _ _

NSWC/WOL PR 76—175

The actual Interconnection hardware Is dependent on the
particular system. What is of concern here is the command
structure which will enable systems to be conveniently configured
at both the lowest and highest levels wIthin the system.

The command s tructure chosen for use in the modules being designed
Is based on a WAIT LINE. When a command is issued to several processes,
the Wait line is immedIately grounded , forcing the requesting process
to wait . When all of the processes receiving the command have
completed enough processing to permit the requesting process to
proceed , (having removed any data from the busses , etc.) then the
Walt line is raised .

In the sinplest subsystem, no Wait lIne is needed. The “boss ”
processor knows what is busy and what isn ’t. The Wait line is
merely shorted to the Hi supply .

In systems consisting of levels of subprocesses , If a process
is commanded to perform an operation, it grounds its Wait line
stopping the commanding processor. It will unground the Wait line
when it is permissable for the commanding processor to proceed .
If there are several levels, there will be one separate Wait line
for each level.

In the most complex systems, there are several processors
competing for services from the same processes. The communication
network must contain the necessary bus structures and priority
arbitrators to insure that only one command actually reaches
a process at a time , and that if the commanded process grounds
Its Wait line , then the Wait line of the commanding process wIll
be grounded halting its operation.

Horizontally and Vertically Organized Systems

Subsystems, and finally systems can be organized with
either horizontal or vertical command structures. In a
horizontally organized system , command lines are not decoded.
Each line represents a separate command , and as a result, many
commands may be given simultaneously. In a vertically organized
system, command lines are decoded , so that only one command is
given at a time .

In the design of a complete system , both horizontally and
vertically organized controllers will be employed. At the lowest
level, primarily horizontal control word bits or fields will be
connected directly to the gates and control points within a
processing module . At this level, the sequence of control signals
will cause the data flow necessary to perform the processing task
required. As the commanding controller knows exactly what
the status Is of what It is controlling , the Wait line will not
normally be used.

8

_____________ —a—

—-..——----- -.- ---~ - -- --
—

-

-—---—— - —---. --.

~~~~

NSWC/WOL I’R 76—175

At higher levels within systems , primarily vertically organized
control lines will be decoded into specific high level commands to
the lower processing modules. The Wait line will be used here
to stop the higher level module until the receiving module can
respond to the command .

Naturally , contiollers can be partially vertical and partially
horizontal , having several decoders , and hence permitting several
simultaneous c~~imands. The Wait line will be used to stop the
commanding process until the receiving processing modules can
respond to the request . 

— ..-- -. ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - - - - --~-—..-—--— --—---------- - - - --- - --- - - .- --~~.-—- ________



— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

I
NSWC/WOL TR 76-175

INTERCONNECTION PORT DEFINITIONS

Three kinds of ports are considered among the digital processing
modules , and a given module may have one or more of each type of
port . The three types are : Output Ports, Input Ports , and
Control Ports.

Output Port

An out put port cons ists of an Output Ena ble (OE) line , a
Wait line, and some number of Output Data lines, as shown in
Figure la. The OE line is an Input to the port , while the Wait
line and the Data lines are outputs of the port . The output data
lines are to be implemented with tn —state drivers , which are in
their high impedance state whenever the OE line Is high . When the
OE line goes low, the out put data lines are put in their low Impedance
state to output the appropriate data. The Wait line output Is
connected to commanding processes as described in the previous
section.

Input Port

An input port con sists of an Input Enable line, a Clock line ,
a Wait line and some number of Input Data lines , as shown in
Figure lb. Each input data line connects to an Input latch In the
module which holds some previous value while either the IE line
or the Clock line is high . When both the clock line and the
IE line are low , the latch passes the input data. The new data Is
held by the latch when either the clock or the IE line returns high .
Norma lly the IE line is stable dur ing any per iod t hat the Cloc k
line is low. The Wait line is normally left in the high state
and is pulled down whenever the IE and Clock line have gone low
and the module has not yet accepted a new data input . Pulling
this line low delays t he control ling device unt il the module has
accepted the new data.

Control Port

A Control Port has a Clock Out line , a Wait line , and some
number of Control Level outputs as shown in Figure 2. The control
levels are used as Output Enable and Input Enable lines for various
contro lled Out put or Input port s and for other control informat ion
(generally going to var ious data inputs of controlled modules) as
desired. The control output s change only during times the clock
is high and are stable when the clock is low . The Wait line is
an input which stops the clock whenever it Is pulled low .
When the Wait line is pulled low by some external device , the
clock proceeds normally until it reaches its LO state. Then it
stops in the LO state unt il the Wait line return s high , at which
time it resumes normal operation. See Figure 2.

10

_

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—,- -

~
.-—-- - — — --

~
-- --- i——- — -

~ T~— - ~--
-

NSWCIWOL/TR 76- 175

r — -

TRI-
STATE — —

SOURCE D R I V E R S

—

DATA

____r
LOGIC

/
~~ WAIT

FIG. la OUTPUT PORT

f~4 STABLE
~~~~~~~ 

DATA ____ 

LATCHES

— 

I I CLOCK~~~ 
+

INPU T
______________________ 

ENABLE~~

WAI T -~ 

LOGIC

FIGURE lb. INPUT PORT

11



- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— 

—- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- -
~~~

- - --- — _——-- - -,-.
~
- .

~~
--—- -—— .

~ 
-- 1

- NSWC~NOL/T R 76-175

I

I-
4 I

L~~~ J

;
i
;9
I

~1
_ _ _ _ _ _ _ _ _ _ _  .41

0_t g; 
~u~~~

_ - -,-~~~~~~z z
0
0

I U.

C’,
IC ’
z

-J
-j

0
I-

0

I _ _ _  _ _

12

IIiIIII.._ - A~_ -- . . .~ . - - .  —_---_.-.-—~~~~-------.--~.~~~~~~~~—- ~~~~~~~~~~~ ~



______________________________________ 
--- - —.-- - — - --~-—~~~~ .—~~ - -.--- — — —  

. ~~~~~~
-:

NSWC/WOL TR 76—175

Othe r Lines

In addit ion to Out put , Input , and Control ports, modules
may also have discrete status input or output lines. Status
output lines indicate some discrete bit of information from
within the module and may be active at all times. Status input
lines provide a module with a means of testing discrete
information from some other module .

Reduced Flexibility Ports

Input , Output , or Control ports may be implemented with less
than full flexibility. For example a control port which never has
need to delay an input or output operat ion may be imp lemented
without a Wait line . Output ports for functions which will always
be connecte d to dedicated inputs may be imp lement ed wit h no Enable
line. Input ports not needing lat ches may be imp lemented without
Clock or Input Enable line , or only an Input ~~able line may be
required if strobing of input data is not required. For modules
having more than one port , some signals such as data Input or output ,
Wait lines , or Clock lines may be common. However It should be
recognized that any of these steps reduces the ult imate flex ibilit y
of application of the device.

13

_ _ _ _ _ _ _ _ _ _ _ _



.-— ----.— -,---

~~
——-, —.

-
. 

~~~~~~ -~~~~~~.

NSWC/WOL PR 76—175

STANDARD MI CROCONTROLLER

General Definition

Figure 3 is the conceptual diagram of the microcontroller module
of the Standard Signal Processing modules.

The basic function of the microcontroller is to provide the
operation sequence control for a larger processing system. This is
done by controlling the address fed to a control memory, from which
micro instructions for the entire processor are read . A portion of
each microinstruction is used by the microcontrol ler to determine
the address of the next operation , the remainder is available for
control of the remainder of the processor. The microcontroller
must be capable of providing basic timing signals to the
remainder of the processor and of test ing processor information for
conditional branches in the sequence. In addition , some means must
be provided for recognizing requests from higher level element s
in the system or interrupts from within the system being controlled.
The microcontroller defined here is an eight bit slice capable of
being implemented in a single 48 pin integrated circuit package .
Any number of slices may be combined to yield an arbitrarily wide
controller.

As shown in Figure 3, the basic 8 bit Program Counter (slice)
can address up to 256 words of Control Memory . This Program
Counter can either be incremented during an operation
to permit micro instructions to be execute d in norma l sequence ,
loaded from an address input field to permit arbitrary jumps , or
it may interact with a Control Stack. The Stack is used to hold
return addresses during subroutine execution or interrupt handling
and may also be used as a loop counter for repeated executions of
blocks of microcode . The function to be performed is determined
by four Funct ion Code Inputs (exten ded in some cases by f ive bits
of the Address Inputs) , and a single Test input is provided for
conditional branches.

Basic timing of the microcontroller is generated by an
Oscillator input . The Oscillator drives a Clock Generator which
produces an output clock signal used to drive any controlled
devices. A Clock Enable input determines whether the Clock
Output is generated on each cycle , and a Wait line returning
from the controlled devices permits these devices to delay
instruction execution as necessary .

The Microcontroller chip is also provided with an Interrupt
capability, permitting it to recognize interrupt requests from
external devices and to respond to them.

14

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— —~~~ — 
- 
- - 

—

p
NSWC IWOL/TR 76-1 75

ADDRESS OUT
TO ROM

101 11 iti1~__ _ _ _ _PROGRAM COUNTER — INITIALIZE

NEXT ADDRESS IN 
_______

r
FROM ROM A17 : 

______  ~~ CARRY OUT

= — 
-
~~ INCREMENT. CARRY TO NEXT

MOVE LOGIC 
— IN  SL ICE

MO: ~~ INCREMENT

~~
. s~ 

STACK DATA

~ TO EXTERNAL STACK
CONTROL CONTROL STACK 

_ _ _ _ _ _ _ _ _ _ _ _ _

EXTERNAL< I_ in ii EXTERNAL STAC K
DEVICES I I I ‘ -

~~~ CONTROL

FUNCTION A14 ~INPUTS _________

FROM ~I FUNCTION

FROM ROM ROM F3 AjO ~ I DECODER • — TEST

_ _ _ _ _ _ == _____________
FO

CLOCK ENABLE —

OSC
~~~~~~~~~~~~~~RA1OR 

~~ CLOCK OUT

INTERRUPT REQUEST — INTER R PT __

IN TER RPUT CLOCK — LOGIC 
— INTER RUPT W AIT

FIG. 3 MICROCONTROLLER FUNCTIONAL BLOCK DIAGRAM 

-~~~~~ —-~~~~-- ______



- 
~~~~~~ L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

v--~~~=._ ~~~~~~~~~~~~~~~~~~~~~~~ -~~~ ~.,— .

NSWC/WO L TR 76—175

Specific Implementation

Control Stack

The 8—bit microcontroller slice contains one 8—bit stack
register , and a 2—bit stack address counter. In the simplest
configuration the single stack register may be used to store a
return address - for a subroutine or interrupt routine ; or it
may be used to store a loop counter for repeated execution of blocks
of microcode . If this single “stack” register Is insuff icient ,
an RCA CD 4036 Li—word by 8—bit COSMOS RAM connected directly to
two control signals , the 8—bit stack data bus, and 2—bit address
counter , as shown In Figure LI , provides a 5—word stack.
If more than 5 words of stack are needed , an external module
can be added to provide additional stack locations.

Basic Timing and Interrupt Signals

Basic timing signals are provided externally through an
oscillator Input . This signal Is connected to a clock generator
which sequences instruction execution within the controller, and
produces an output clock signal used to drive any controlled
devices. A clock enable input determines whether the clock
output is generated on each cycle, and a Wait line returning
from controlled devices permits these devices to delay instruction
execution as necessary .

The microcontroller chip is also provided with an interrupt
capability, permitting it to recognize interrupt requests from
external devices and respond to them. Much more detail of the timing
and interrupt signals will follow in subsequent sections .

Instruction Repertoire

Assuming there is no interrupt to be executed , the function
executed on a given operating cycle of the microcontroller is
determined primarily by the four function code input lines F3
through FO. The instruction set is designed to permit use of
the microcontroller in either vertical or horizontal micro-
processor organizations, as will be discussed further later.
The functions performed by each of the Function Code states are
described below .

Figure 5 shows a detailed diagram of the microcontroller.
Table 1 defines each control point within the processor. Table 2
shows a tabular description of’ exactly what the state
of each control point is for each operation .

16

— ~~~~~~~~~~~~~~~~~~~~~~ - - -~~~~—-—.,

~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -,.~ -,.- --—--~ ~~~- . ------ -—-----

NSWCIWOL/T R 76.175

2 —

w o
XI -

I
IC ’

-j
0
I-
2
0
C.)
0

C.,

17 

-~~~~~~~--~~~~--- - .____



r —~~~~~~~~~~~~ - --

N~~~~cmoI. Th~~.~
,, ~‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~ 

~~~ 

~
I
.

I I

Ii -
~ ii~~~~

— =i-
~~~~

• ~~~~~ ~~~

- [-~~ 
- — :=~1=f~~ ~~~~~ 

-‘I

-

~~~~~~ th~ 
- H-~

=~~-~~
•
~~~~ 

-±-~

~~
__

_ L~J : f f  
______

-~~~ - I~~ ~ 
I~~~~I ~~ ~~~~~~~ -

I I I 
. . - If I

_____________________ I C I . . . ~ —Ih ~

_ _ _ _ _ _  
_____ ... _i I

, 

I

~jL’ 
~E~~L~L ~~~JTtIETtiV,~~~~

- — - 
~~9r 

~~c~ ~~-~~‘I L~
~I,c=~~ ~~~- .-

- —  
_
i • -

~~I I

Is ~~
- ~-

L _ _ _ _ _  _ _ _ _



- - - - - -— -- ~~~~~~~~~~~~~~~~~~~~~~~~~ -~~--~~~~~~~~~~ ---—-~~~—— - - .  -

NSWC/WOL TR 76-175

~i ~-4~~~~~~ ~~~~~~~~~ C) V ‘ O W  0 I
-: ~ ~ W r 4 0 j ’O ~~~~~4-~ 4.4

I rl~~~ Q~~~~~ 4)
0 0  0 .0 I~~~.Q r-4 0 ~~ ~~~~~~~~0 0
4J~~~~ 4 ~~ Q u ~ ~~~.Q 4 ) 0 0

H ~~~~ - ‘-4 U) I~
4 )0  O ’ ~~~ W ’ 0 ’ 4  ~~~ 4-)

~~~~~4J 4) ‘ 0 4 )  ~ s E 0 . 0 .0 I
P U) 4) 4 J P =

~~ ~~~~~~~~~~~~~~~ ç ~~~~~~~~-‘-I ~~~~~~~~ P ~ C.) U .
~~~ t C.) I-~ I-i U)

P’0 0- P 4-~~ 4 0 0  0 ~~~~~~~~ $.~i ~~~ 0

U) 0 ~~~~~~~~~~~~~~~~~~~~~ 
) 

~~~~~~~~~~~ 0 4 J 4 ~ I~ ~~Z H I~~~H- ~- l O 0 0 0  Z~~~~~U ) 0 0  =

z - -- — -- --
‘-4
o -~~~~~~~

~~ 14
H ~~ 0 . 1 0 0 ‘-4 0 r-4 0 r1 0 ,-4 0 0 1 0 .-I

o U) ~- 1 0 0 .-I 0 0 ‘-I
~~~

E-~ I 0 ~~~~’

z 
_ _

0
U

i-I U) =
4) Cl)

I-i U) O~‘—I .0 0 ~~~ 0
4.4 ~~0

C.) 4-’
.,-I 0 0

E ‘0 U 4) 4)

4-’ $1  4) 4)
() U) 4) 14 U C.)

o ‘0 ~ 
.,.4 .,.4

14 4.’ ‘0 Q >. ~. U
to 0 4) a)

4.’ 4.’ ‘0 ‘0
Z 0 14 0
0 4.’ 0 0 4) Q r4 r4
H 4-1 4.’
E-. 4’ 4.’ 4.’
U r-I .~ CO 14 14
Z Qi.~ U 14
~ ~~U 0 .,4 4.’ 4)
rz4 ~~~~~~~~ t71 ‘-4 ‘4 ‘4-4 X

4.’ U 4) 4)
IO U) to 14 Cl) U)

t O W  ‘-4 ‘-4 Cl) CO
0 0  4) 4) 4-’ 0 0 ‘-4 r~1 4 4 )  i—I i-4 U) 14 $ 4 1 4  C~4) .0 .a -’-i 4) 4) 4) ~
0~~~ ~~W 0 O’O ..~~ ~~~~

tz~ I~1 1 4  U U~~ U) U)

a)
4) 4) 4.’
~ ~~~~~~ $ - i 4 ) U  ~~I

~~ H 4~) ($ 0 .0  4)~~~ W
~~ U) U) ~~~ O~~~~~~ ’0 04 r-4 ~~I U) ~ .
4 0 4) ’-1~~~~’0~~~ W 0 ~~ 0
z ~ m U)0~~~~~~ HU) m



~
-
~~~~~~~~~~~~~

--- - - - — --
~

-.-
~~~

---—------ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘

NSWC/WOL TR 76—175

~~~~~~~~~~~~~~ 
.

~~ 
‘~~ ~~ ~~

_ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _

0 0
-
~~~ ~ 0 — 0 ~~ — ~~ 0 0 0 0— -  - _ — —- -- 

- ~~~
;— ---

— I a a
c m c

— ‘ . .
~~

______ r— —— — —

~~~

.

—

~~~~~~~~~

— — - ——

2

- - ____ _ _ _ _  _ _ _  _ _ _ _ _ _

~~ .~~ .~~ ~~ .~~ ~~

— _ _ _ _  = = == _ _ _ _  — — — ____ — — — — _ _ _ _ _  —— r4— . — — — — ____ — — — _____ ______

0 0 0 ~ 0 — 0 ~~ 
- 

— .— 0 0 0 0 — 0

0 0 0 ) 0 — 0 ~~ 
._ 0 0 0 0 0 0

.1-4

S a 
.~~ I 

4).~
0 o a 0 0 0 — : a 0 0 0 0 —

-~~ 0
— — — — —  ____ — — — — ~~. — — — —  ____ _ _ _ _ _ _

0 ~~ I — ~~
. .

~~ 
V V V 0 .—

C’J

~ :g ~ ~~ ~ ~
- .0

_ _  _ _  
_ _  — — _ _ _  _ _ _  

El

0 0 0 P — a — — — 0 0 0 0 0

Ia
0

0 0 ~~ ~~~ ~~ ~~ ~~~~. ~~ 
0 o 0 0 0

!~~ L
2

________ 

t j  0 I a 0  l-P~~~ Ia Ia —

20 

-



~~~~~~ -~~~~~~~~~--~z- - — — -

-~~
T / W OL TR 7 6— 1 7 5

Instructions

NOP (Code lxxx) No—operation.

When P3 is a 1, control signals C1—C7 are all blocked.
Regardless of the other function control bits , t he contro ller
performs nc other internal instruction than to step the program
counter to the next sequential address. This function is provided
to control other processors . The single bit P3 determines whether
the microinstruction is an internal operation or another processor
function. Whenever P3 is a 1, all other bits normally used by the
microcontroller (F2 through FO and the 8—address input s per slice)
are available for other functions .

JUMP (Code 0001) Jump to Instruction given by Address.

Thi s function code provides an unconditional jump to the -
microinstruction specified by the address input bits Al7
through AlO.

JTL (Code 0011) Jump on Test Low.

Causes a jump to the instruction specified by the address
input s if the signal on the test input is low. Otherwise the
next instruction in sequence is fetched.

PUSH (Code 0100) Push Address Inputs onto Stack.

Causes the word on the address inputs to be pushed onto the
control stack and all previous contents of the stack to be
pushed down . The next microinstruction in sequence is then
fetched. This instruction is normally used to initialize a loop
count . If rio external memory is connected to the microcontroller ,
then the stack contains only one element . The “push” operator
degenerates into a “store ” operator. With a single CD 4036
connected as shown in Figure 4, the stack then contains five
elements. The programmer , however , must prevent stack overflow .

TNIJ Test for Non—zero , Increment and Jump .

The contents of the top word of the control stack are tested
for zero . If it is non—zero , the value is incremented and returned
to the stack , and the address inputs are loaded into the program
counter to cause a jump to that address in the microprogram .
If the top ~ord of the control stack is zero , the word is popped
from the control stack and the next instruction in sequence is
fetched. This instruction permits the top word in the control
stack to be used as a loop counter , with control passed to the
beginning of the loop until the loop counter wraps around to zero ,
at which tine the count is popped from the stack and control passes
to the instruction following the TNIJ . When the stack is zero ,
thIs operation requires two machine cycles to complete.

I

- - - - _- — -- . - . —--- .

~

-~~---
--- ---— .--

~~~~~~~~~~~ 

-



NSWC/WOL TR 76—175

JSUB (Co de 0110 ) Jump to Subrout ine

The content s of the program counter plus one are pushed
onto the control stack , and the word on the address input is loaded
into the program counter. This causes a jump to the location
specified by the address inputs while saving a return address
in the control stack.

Operate Group (Code 0111)

The funct ion or funct ions performed when the operate group
code is encountered depend on the content s of address input bits
AILI—A IO . Each bit has a discrete meaning as follows :

A114 Raise Interrupt Wait Line .

A13 Set Interrupt Enable Flip Flop.

Al2 Reset Interrupt Enable Flip Flop.

fl i Return-Load Top Stack Word into Program Counter.

Note that the JSUB operation stacks the value of the
program counter +1 (i.e. the address of the next
instruction to be executed).

AlO POP — Pops top word from Stack.

This particular operation is a two—cycle operation.
When the POP operation is called for a one cycle delay
In the execution of the POP is Initiated to give the
All contro l signal , if it is on , a cycle to
transfer the top stack element to the program counter.
The POP operat ion may occur without the return operation
Al). being set also , but the POP operation will still
require 2 cycles.

Clock System

The Clock system provided on the microcontroller module
cons ists of t he Cloc k generator , the Clock Enable signal , the Cloc k
output, and the Wait line . An external clock is connected to
OSC , and it provides the basic timing of the microcontroller.

clock Generator

The Clock generator uses the basic timing signal to form a
pulse train consisting of 3 periods of high level and one of low
level. Internal operation of the microcontroller is controlled
by the resulting pulse train. While the clock is high , the next
microinstruction is fetched from control memory , and all the decoding
and settling of the binary values of the various processor control

22 



— ------ —- — --- - - -.~~~~~.‘——----- -- -- -
~~

----------•----
~ 

- -----

~~

---. I----— 

NSWC/WOL TR 76-175 
- -

points occur . On the negative clock transition, the relevant
microo pera tions (as shown in Table 2 ) are performe d , and new
control values set up. On the positive going clock transition
(as shown in Table 2), the program counter is changed , and the
next instruction fetch begins . If an instruction causes the
stack to change , the change always occurs on the falling edge of
the clock. The program counter always changes on the rising
edge -

Wait Line

The Wait line input provides a means for a controlled device
to delay execution of a microinstruction by pulling this line
to ground. The Clock generator will not proceed from the Lo to
the Hi output state while the Wait line is grounded. If a controlled
device wishes to delay execution of a microinstruction , it must
recognize the instruction and ground the Wait line before the
leading edge of the clock signal. The Wait line may be released
at any time , using the explicit instruction Raise Wait Line .

Clock Enable

The CLX ENB line Inhibits CLX OUT signal (the output stays
in the high state) when it is grounded , even though internal
operations of the microcontroller continue . This provision is
primarily for cases in which some instructions are for internal
microcontroller use and others are for commanding external
functions from controlled devices. In this case , tying the
CLX ENB input and the F3 input together causes a CLX OUT pulse
to occur , cloc king ex terna l res isters , etc., on ly for NOP instruc-
tions (P3=1) where bits P2 through FO and all address inputs
are available to control these external devices. When F3 = 0, these
lines provide information to the microcontroller itself , an d are
not available to control external devices. Since F3 = 0 , the
clock out pulse does not occur and external devices are unaffected.

Interrupt Facility

The microcontroller module is internally capable of handling
single level interrupts through the three interrupt signals ,
INT RE Q , INT CLX , and INT WAIT . The INT REQ and INT CLX are a
control level and clock signal , respectively, from a requesting
device , and an interrupt request on these lines consists of a
simultaneous zero on these two inputs. The reason that two lines
are required is that the interrupt request line may be the output
of ano ther control ler ’s ROM control memory . Each time that controller
change s its address counter , no ise “glitches ” will look like Interr~~t

• re ques t signals , and whenever the requesting processor executes an
Internal control instruction , the interrupt re quest line may go low
for a full cycle . By having the interrupt clock line coming from
the clock out of the requesting process , both of these problems
are solved. The microcontroller acknowledges an interrupt request

__ _ _



~~~~~~~~~~~

_

~~~

_ _ _

~~~~~~~~~~~

_ _ _

NSWC /WOL TR 76—175

immediately by grounding the INT WAIT line . This returned signal
represent s an unprocessed interrupt and may be use d to halt the
requesting device.

The interrupt logic contains an interrupt enable flip—flop which
may be set or reset under microprogram control. Whenever this flip—
f lop is set and an unprocessed interrupt is waiting, an interrupt
occurs on the next microprogram cycle (unless the previous operation
was a two—cycle operation in which case it is delayed one cycle).
The interrupt function simulates a JSUB85 and consists of pushing the
program counter contents (the address of the next sequential micro-
ins truct ion) onto the stack and forc ing the program coun ter to “85”
to force a jump to location 85. The interrupt enable flip—flop is
also reset in the process , so that additional interrupts cannot occur
until the programmer chooses. The instruction at location 85 is then
fetched and executed . As described above , the INT WAIT line remains
grounded until it is reset to a high level by the appropriate
instruction.

There are no restrictions on when the interrupt ing process
must raise the interrupt request and/or interrupt clock lines.
The circuitry used insures that regardless of how slow (or fast)
the interrupt ing process is, exactly one interrupt will result
from any coincidence of the low INT REQ and INT CL lines.

This interrupt facility is designed to permit the microcontroller
to be seen as an asynchronous device within a larger system , so that
it can be requested to perform a service and may delay execution in
the larger system until it is ready to accept the task. Depending
on the way the interrupt enable flip flop is handled in the
microco de , this new request may either interrupt an on—going task
or may be held until a previous task is completed. The interrupt
facility may also be used within a system to provide transparent
handling of some controlled device such as an A/D converter or to
provide the basic timing for a repetitive task which is started
on each interrupt .

While only a single level interrupt is designed into the micro—
controller hardware , extensions to multi—level priority interrupt
structures can be developed through microcodirig and external priority
encoding hardware . Figure 6 shows a convenient way to permit an
interrupting process to be able to generat e many dist inct commands
without requiring the interrupted process to use microcode to
determine which command to execute, or how , in ot her words , to imple-
ment vectored interrupts. The interrupting process generates the
interrupt , and at the same time , places a one or more bit “interrupt
code ” on predetermined control l ines. The Interrupte d process will
immediately ground its wait line , stopping the Interrupt ing process
with the above code still on its output control lines. The control
lines containing the code are connected via an AND/OR select or 3
state device to the interrupted process ’ address inpu ts . When the

- - ~~
—

~- - ~~~~~~~~~
--

~~~~~~~ •~
--- —

NSWC /WO L/TR 76-175

-J 
___________________0

I-.

_ _ _ _ _ _ _  

_ _ _ _ _  _ _ _

_ _ _  
~~~~~~~~v, 

C.)
‘~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~- 2

________ LI 1 1 1 1 1 1 1 1 ~~~~~ ~— 4-
I-

I
_ _ _

—
~~~~~ 

~~~~~~~~~~~~~~~ r—— — Ui

~~~~~~~
U)
wC.)o ~ 2

0 —0 0Ui Q 0 ‘Ii-J

o 0 0
I— 4-

- C C.)
I- 0 UiU) 0 —
z C.) ’-—U. 4- 4-. U)

_ _ _ _  _ _ _ _ _  w 2
1-TI Dw  ~~I- —

4-
—

~~~~~~~~~~~~ C o 0
UJ UJ ,(

0
Ui 4- .

O 4- CD

C,
C.) Ui —

~~~~~~ cr~~~~ ~~~ ~~ 0 U.
Ui _i ~~2 ~ 0

C,) 4- ( )  0 —
C,)

- 4 0
l u J  I I I  l i i i z0 -J ~io I-I 

—

~~~~~~~~~

I_ JIII 11111111

•
I-

—----- - -~~~~ -~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —-- —-— — --- ---- ---.~-~~~~~~~~~ -‘—

NSWC /WO L TR 76— 175

interrupt process can process the interrupt , it merely executes a
jump instruction with a single dedicated control bit selecting the
“interrupt code” as Its address input . Different Interrupt codes,
then , will cause jumps to unique locations to handle the interrupt .

Initialization

The microcontroller automatically executes the instruction
at location 0 in the control memory (all address bits equal 0)
whenever the Initialize input is raised. Also, the clock generator
is set to its Lo state , hence if several microcontrollers are
initialized simultaneously, and have a common clock, they will
operate synchronously. Even when interrupted or temporarily caused
to wait by a grounded Wait line, they will operate synchronously.
A process always urigrounds its Interrupt Wait line on the failing
edge of its clock. The process which was caused to wait by its
grounded Wait line but may now proceed , will have stopped with Its
clock line low. On the next (common) oscillator pulse , both processes
will see the rising edge of their clocks , and hence remain in
synchronization.

The Init ialize signal also resets the Interrupt Walt line ,
and clears any existing interrupt requests. The Initialize signal
must last at least two clock cycles , and the OSC input must provide
clock signals during these two cycles.

26

- -~~----——~-~- - -—. ~~~~~ -~~~~~ —-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -‘-----— ~~~~~
—

-
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-- -

~ 
- - — 

~~~~

NSWC/WOL TR 76-175

BASIC TYPES OF MODULES

The purpose of any proces sing syst em is to execut e some form
of an algorithm . If It is desired to configure a system to
execu te an algor it hm out of basic modules , then several ty pes
of modules are needed.

Program Memory Module

The algorithm is encoded into a sequence of instructions to
be executed by a Control element . The instructions are stored
in a program memory module . Since the program must be non-volatIle,
a Read Only Memory is used:

Read/Wr ite Data Memory

In addition to the program memory, there must be read,’
write memory for storage and retrieval of data.

Control Element

The Control element reads and executes the program algcrithm .
The controller performs certain con trol operat ions itself , and as
required by the program algorithm , delivers commands , cont ro l signa ls ,
and data to processing modules to perform processing tasks. The
microcorrtroller to be used for this purpose was described in the
previous chapters.

Priority Selector

If , in a system , it is necessary to have several modules
accessing a single other module , and if t hes e commands can overlap
or occur simultaneous ly in t ime , then a device to resolve confl icts
is needed. The device to accomplish this task Is called a priority
request arbitrator , prior ity selector , or port expander.

Figure 7 shows a prior ity selector us ed to resolve conf licts
when two or more modules can simultaneously access the same
process. It operates as follows :

1. Two (or more) modules simultaneously request service
from a processing module. The request for service is
made by grounding the request line . To prevent noise
on the request line from being interpreted as a request ,
the priority selector does not actually respond to any
request until the Interrupt clock line also goes low .
Figure 7 shows the way in which the microcontroller
descr ibed In previous chapter is connected to generate
t he request and clock signals to a process ing module or
priority selector.

27

~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _ _ _ _

NSWC/WOL TR ib-17E~

When the Re quest and Clock lines from one or more modules
go low , the priority selector immediately grounds the
Wait line to the requesting modules until it can determine
which should be given priority. -

2. If the receiving PM is busy, then the priority selector
must wait. When it is no longer busy then the command and
clock signals from the selected request ing PM are passed
to the receiving PM. The receiving PM immediately
grounds its Wait line , and will leave it grounded until
it has finished any processing which must be completed
before the requesting PM can proceed.

3. When the receiving PM raises its Wait line, the Wait
line to the requesting PM is immediately raised ,
permitting It to read an answer from the Bus , etc.
if the receiving process was an output port , or to
remove the data from the bus if the port was an Input
port .

4. The communication path between the requesting and receiving
modules established by the priority selector will not be
relinquished until the command line returns Hi, and is Hi
when the clock signal goes Lo. At that point , the
communication path is disestablished , and another PM
given priority. If the command line is still low when
the clock goes low,then this is interpreted as another
command and is passed to the receiving PM exactly as
before . In this way , once communicat ion is established,
the requesting process can give as many commands as desired.
Note that the requesting process can execu te any number
of internal commands without relinguishing the comzi~unlcation
path so long as it does not lower its clock out signal .

5. The mult iplexer can actually be a separate module from
the priority selector . The multiplexer then need not have
a specific number of bits. With a separate mux , if more
bits are needed , another mux module can easily be added.
Another approach is to have the priority selector outputs
connect to three state control inputs on the requesting
and receiving devices , and set up the communication path
that way. Using this scheme , no multiplexer ’s are needed,
and there are less interconnecting wires.

Thus far , we have assumed the priority arbitrator Is connected
between processes which always ground their Wait line when issued
a command . If the receiving device is simpler, then a minor
refinement is required. Assume as shown in Figure 8 the receiving
device is an input port . When the priority arbitrator passes a
command and clock signal to the input port , if t he port can acce pt
data, it simply opens Its latches to receive data, without

28



-- •- —‘--- - _
~~~~•~~~~tI ~~~~~~~~~

- - .~~~~~~~~—----‘~~~~~~~~ ~~~~~i~~~~~~~~~~~
- — —..——-

~~
-

~~~~~~~~
--—,-.— - •— _--- - -

NSWC /W OL /TR 76-1 75

N
• 4 4

0 4- 4-
2 4 4

0
LU 0

2

0 —~~~ ___________  
U.

-I _ _ _ _ _ _

C.)— — —  4-
2

0
LU

I-
2

I- —

z 
_______

LU

8

_ _ _  —-- -—— S _ _  _ _ _ _ _ _ _ _ _ _ _ _



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -?Z’~ — 
- - - —5- , 

________ - - -

NSWCIWOL/TR 76-175

L L [ 
~~~~~~~~~~~~~

0 0 UiZ

Ui Z C.)

LU

r
0

<~
-
4L. NO

—
0 0 UiuJ

—~~~~~ - Q .
0 0 4

0
C.) Ocn02 0 —

~~~< U i

1-
~“ 0  ~~~~~~~~

—
o
Mi

p 

~~~~~~~~~~

I
~~4 U .

-

-

0
2

2 0
Mi 2). 4

O~~~~~Z W

‘s~~~~~~r~~~~~~r ~r ~r~r ~p p
30


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--

NSWC/WOL TR 76—175

grounding its Wait line . Without that positive response , the
previously described arbitrator would not know when to raise
the Wait line of the requesting module . In order to solve
this problem , when the priority arbitrator grounds the. Command
and Clock line to a rece iving module , if it does not receive
a wait signal from that module within some fixed time , then It
will raise the Wait line of the requesting module . This gives
the receiving module time to ground its Walt line . This time must
be greater than the maximum delay through the receiving module and
any other arbitrators connected to the output of the first. This
problem could also be solved by always requiring an input port
to lower its Wait line for one clock pulse as a positive response ,
even if it is not busy.

In simple structures where a receiving module is impervious
to “glitches”, as for example , an output port , then the interrupt
cloak signals can be tied to ground and not used. Now , however , the
priority arbitrator will have no way to know if a second command
is being Issued unless the Command line goes high . When this occurs ,
since now the Command line is high while the clock is low , the
priority selector will disestablish the communication path , and may
reassign priority  to anot her request.

As a specific example of the priority selector, its operation
as a memory port expander will be described. Assume , as shown in
Figure 9, that two PM’s ground their request and Clock lines
simultaneously . The priority selector immediately returns a Wait
signal to both , and then determines which has the higher priority.
When that decision is made, the Command and Cloc k lines to the
selected PM (#2 for example) are grounded , and t he mux set to
interconnect the buses from the requesting and receiving modules.
The receiving module immediately grounds its Walt line . Assume the
command code on the command inputs to the receiving module indicate
that a read address command is to be executed. The requesting PM
will already have the address on the bus , hence the receiving
module can either latch the address and begin reading the memory ,
or address the memory directly with the address on the bus. When
the address Is no longer needed on the bus , the receiving module
raises its Walt line . The priority selector immediately
ungrounds the Wait line of the requesting process. The data path
previously established is not relinquished and on the next
occurrenc e of the low cloc k, the prior ity  selector will pass anot her
command to the receiving module . The command code will indicate
that the result of the previous read should be placed on the buses.
The receiving module will Immediately ground its Wait line , and will
raise it when the desired memory word is on the bus , The priority
selector will unground the requesting processes Wait line , an d It
will read the result from the bus on the next leading edge of
it internal clock.

3].

-~~ -



-~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ----~~~~~~~~~~~~~ -~~~~~ ~~~~~~~~~~~~~ 
~~~~~~~~~~~~~ ~~~-- -

NSWC/WOL/TR 76-17b

4
4-.
4
a

N

2
U)
C,)
Mi

_ _ _ _ _ _ _C.) 0o 4-
4

a.
0

I-

C.)
4- 4

I-

x 2
-m

0_ liii 0 2
4 —

~ 2 0
4-

0
4 0 UJ p

Ui a. 2
4-. ~

- 2
4 0

a. U
4- 4- 4-

C., 0a.
0 4-

>-
4- 2 I-

32

- — - S
~~~~~~~~~~~~~~~~~~~~ ~~~~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- -

NSWC/WOL/T R 76-175

I I C.)

I I 0

I I
I U)). X < —

I I Ui4-~~~ -4
I I :— ~~~~ o~~~zL L 2 0 0

UJ~~~~ W

~~~~— 4~~~<0
N~~~~~~~3< - -

—

4 - 4  0

-2  Z ’-~~O a .
U w UJO

UJ~~~ 2 0 2 w  —2 w  
~~~~~~~~~~~ 

0
U. U . Ui

I- I -w N

4-

i/ i
~~~~~~~k’

~~~ U. 4~~~~~8

U)
LU —
C,) 4- .,- Mi
(4

Ui~~~

4-~~~~Z M i Z Z w N

~~~~~~
4

~~~~
< O2 d

~r r~r ~rN r r~~h ~r r
U ~~~~~~~~~~~ U U)~~~ < U 4

33

5- .- -5- — .---~~~~~~ ——-~ 5—- _-- 5--~~ -- 5- -~~~~~~~-- -S - —— ~~~~~ - — -~~


~~~~~~ -- - -
~ 

--5-  -- 

~~~~~~~~~~~~~
- _ - -~~~~~~~~~~~~~~~~~~~

—-
~~~~~~~~ 

- - - - - 

— — -

NSWCtWOL/TR 76.175

Ui
_______________________________________ I-

cc

4

O O~~4 0 c c
Ui 2 U .

_ _ _ _ _ _ _  

cc < 0

0 4 - O O U J0 4 0 0 c c
N 0 < 0 4 < 4-

~.1 cc X w I I~~ a0 0 4- u # ~~uua.
z

cc ..J~~~~J ..i 02 • _ _ _ _ _

(4 C.) X 4-Mi -m cc
I- 0a.

a. l i i i  _ _ _ _  _ _ _ _ _ _

t i l l  
>.

_  0

_ _ _ _ _  

0 0
2

314

- -5 - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- _ i1~~~~~

-5—-- 5—. — — -5—
— — ——-5-—.- —.-—--——- -5----.. —-— -5 — _________________________________- - -~~~ - -- -

NSWC/WOL TR 76—175

In the above example , as long as the requesting process keeps
its Command line low (while the clock Is low) then any amount of data
can be transferred. If the command is a write , then the data and
address can be sent simultaneously, and only one command is needed.
If the bus is to be multiplexed , then the address can be sent first —

followed by the data and write command on the next instruction .

Processing Elements

The “Processing Elements” of a system are the elements which
receive commands and data , and map these into some input . Examples
of Processing Elements are:

a. A/D or D/A converters

b. Logic , and/or ar ithmet ic elements, etc.

c. Digital filters

a. FFT or correlat ion processors

A good example of the advantages possible using a microcontroller
instead of a single ch ip microprocessor are seen in the area of
communication and synchronization . In a conventional fixed
architecture processor, if a processor A requires a predetermined
piece of data from an asynchronous processing element B, A would execute
the following type of code.

Process A

L Disable Interrupts I
r Interrupt B
L to request data

~~~~~~~~~~~~~~~~~~~~

Read Input Port

Enable Interrupt

ProcLd

_ _  - - -- - -  _ _ _ _ _ _ _ _ _ _ _



—5----- - —
~~~~~

—— -- .5—. 5- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

5-5-.

~

- 5 • - 5

~~
5- 

NSWC/WOL TR 767-175

Us ing the microcont roller , a sing~e instruct ion

“INTERRUPT B—READ B’s BUS”

can easily be implemented by connecting one (or more ) of A’ s
arbitrary control lines to B’s interrupt inputs, and another to a
tn —state buffer which , when Hi, connects B’s bus to A’ s bus .
Process B (assuming It is also a microcontroller) immediately
(combinatorially ) returns a WAIT signal before the rising edge of A’ s
clock , at which time A would latch in the data on the bus . The
WAIT signal freezes Processor A , poised ready to read the required
data item . B removes the WAIT as soon as the data is on the bus ,
and A latches the required data item . Numerous instructions been
eliminated , no output port is required , and the communication is
faster .

Muc h more powerfu l forms of inter process commun ication can be
implemented. It is easy, for example to connect some of A ’ s
contro l lines to imp lement instruct ions in Processor A which
commandeers (transparent to B) some or all the resources of B.
A could read or alter B’s memory and input or out put port s , or use
its arithmetic processor.

36

- 
--- -— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-—-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



5 - 5 -  5-•
~
- 5 5 - -5-5-5- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

NSWC/WOL TR 76—175

EXAMPLE OF A DIRE CT EXE CUTIN G COMPUTER IMPLEMENTED WITH THE
MICROCONTROLLER

Figure 10 shows a minimum capability digital computer implemented
from several element s, including the previously defined microcontroller
module. The arithmetic capability is provided by existing RCA Type
4057 Arithmetic/Logic Units. The computer is a “Harvard Type”
machine in that memories for its program and its data are logically
separated. It operates by direct execution of programmer—generated
microcode , rather than by microprogrammed emulation of some virtual
mac hine in struct ion set , so th e Contro l Memor y containing t he micro-
code is also the Program Memory . This approach provides the fastest
execution of the program , but the instruction set seen by the prograniner
consists only of very basic operations. However , in this instance
the instruction set approaches that normally found in the smallest
minicomputers , so that programming at the microcode level is not an
undue hardship . A vertical organization is used in the microcode ,
so that each instruct ion is either a sequence contro l instruct ion
executed by the microcontroller or an execution type instruction
performed by other elements. Again th is is similar to the ins truct ion
set seen in small minicomputers. While this architecture has been
investigated primarily to determine the capability of the microcontroller
and the 14057 ALU to form a useful computer , it may form a useful data
processor in certain small applications. The simple architecture
does , however , have several obvious limitations , the most severe of
which is its inability to compute or modify a data address. This is
a basic requirement in any operations on data arrays.

Because the program and data memor ies are separate , there is no
necessary connect ion between the data wor d width and the instruc tion
word width. The data width In the figure is shown as arbitrary ,
although the four—bit slice width in the 4057 would dispose one to
use some multiple of four bits. The instruction word width was
arbitrarily chosen as 16 bits. This choice , along with the
instruct ion format chosen , limited the length of t he Program Memo ry
to 256 words and the length of the Data Memory to 128 words. These
cou ld be expanded by increas ing the width of the Program Memory word,
but they would generally be adequate for small processing problems .

The instruction set is basically determined by the instruction
sets of the microcontroller and of the ALU . The most significant
bit of’ the instruction word is used by the microcontroller to
determine whether the operation is a control or execution type .
The next three bits are deco ded by the microcontroller for control
Instructions and form Device Select Enable , Memory Cyc le Ena ble ,
and Read/Write Select control bits for the execute type instructions .
The next two bits select one of four test lines for conditional jump
Ins truct ions , and the remaining ten bits form an address field for all
control instructions . For execute Instructions the eight least
significant instruction bits are used for data memory address

37

- - 5 --- -- —~~~~ - — - ——— - -—— - — - 5 - — - - - -~~~~~~~~- - - -~~~~~~~~~~~~~~ -

-~~~~~ -
-

~~~ 

- -5 - - -  -.5-5-.- -~~~~ -~~ -

NSWCIWOL/TR 76.175

~,1
___  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

i—H-

4 —
~~~~~~~~~

- o r-—-

a 
~~

1~~~1~I cc
— • 

- — —

U
I- -i . .

— T hJ I I
I I  —

U I I  a I-
I— . _ .  I Ix I I  ~~~~~~~~~~~~~~ U
_ _ _ _  

I I  -I I~ LU
I I  ~~~~~~ X

-5-ft 

LU
_ _ _ _ _ _ _ _  4-U

— LU
— cc

a
_______ 5 — . .  — 4

_ _ _ _ _ _  U.— 0
_______ LU

-

IL

1 1 1 1 1 1 1 1
S..

I-
—

60
m U~~~ Z
~~

O~~~~~~~ lf l * ( ’ ) C 4 . O w z
U i.. u. u . u 4 4 4 4 4 - 4-( -( ~.. —

‘ ‘ ‘ i l . .  - —  
~
•
~1~

•

38

~ . r--r-— — 5- - - - -;a~_____ . _ - . i til r_ P r  - —  - -



-
~~ ~~~~~~~~~~~~~~~~~~ .5- .. 

- -
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

NSWC /WOL TR 76—175

informa t ion, while the next fou2’ higher bits select the ALU operation
code. When the Device Select Enable is low , the four least significant
bits also select one of sixteen control bits for controlling I/O
devices. -

The useful instruction set resulting from this architecture is
shown in Table 3.

39

- - - —~~~~~ -- — - -~~~~~ - - - - - - - — - 5- —- --~~~~~~~~-5- - -—~—~~~~~~~~~~~~ —-5--— — -- - ~~~~~~~~ .S~~~~~5---

-
5-

~~~~~
5-

~~~~~~~
5- 5-5-5-5-

~~~~ 
-5- - 

___________ _~~~~~~~~ __-5__ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~5-~~5_~_— - —I’l

l

NSWC/WOL TR 76—175

TABLE 3

INSTRUCTION SET OF DIRECT EXECUTING COMPUTER

I 0 0 0 0 x X X X X x x x x x x x I NOP

No operation is performed. Proceeds to next Instruction .

0 0 0 1 X X A A A A A A A A A A JUMP A

Uncond itional jump to locat ion A

L 0 O l 0 N i A A A A A A A A A~~7 JTLn A

Jump if test line n is Lo , otherwise go to next instruction.
n is a number from 0 through 3. The four test lines are connected
internally to tests such as Accumulator zero test or sign test , or to
discrete tests in I/O device interfaces.

LO 1 O 0 X X N N N N N N N N N ~~fl
- PUSH N

Push the number N onto the control stack arid proceed to the
next instruction. Normally used to initialize a loop counter.

[O 1 O 1 X X A A A A A A A A A A } TIJ A

If loop counter non-zero increment counter and j wnp to location
A. Otherwise pop loop counter from control stack and proceed
to next Instruction .

[O 1 1 0 X X A A A A A A A A A A 1 JSUB A

Jump to subroutine at location A. Save current address plus
one by pushing onto control stack.

I 0 1 1 1 X X 1X X X X X S S S S ~~1 OPGRO U P
Any set of the following 5 operate group instructions may be

combined Into one instruction by setting the corresponding bit of’ the
S fIeld. 140

—5-- ~~~~~~~
=-=

~ -- —- - -5-

-
- — . 5 - — . --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~ - 
5-.----- —- --- -

NSWC/WOL TR 76—175

L~I~~1 1 X X X  X X X X O  1 0 1  lT INTE

Set Interrupt Enable flip—flop . -

i O 1 ] . 1 X X X X X X X O O 1 1 1 I  INTD

Reset Interrupt Enable flip—flop .

[611 1 1 X X X X X X X O O O i ~~~J POP

Pop word from top on control stack and procee d to the next
instruction . Usually used to remove a loop counter from the stack
when exit from loop occurs before count reaches zero.

0 1  1 1 X X  OO 1~1 RETURN

Jump to return location in top word of control stack. Usually
used in conjunction with POP for subroutine return.

I~I~~~ i i X X X X  
- 

X X X l  0 0 1 ii RAISI

Raises the interrupt wait line , permitting an interrupting
process to proceed.

I o ~c~c x
5-
~~~~~~~ x x7 NOP

No operation is performed. Proceeds to next instruction.

1lI~~~~o I T i~~ p_~~D D D D D ~ AND D

AND the contents of data word D to the accumulator.

[r~~i x o o i o x x x x x x x x J DEC

Decrement the accumulator by one .

—
---- 5---— —_- 5-—- — -- 5- ——----—-

~~ -~~~ ——-5~~~ -

-~~~
— -

----5 - -- -
~~~~~~~~~~~~~~~

-- -
~~~~~~

--

- - - ______________________ - -

1~

NSWC/WOL TB 76—175

I 1 1 l X 0 O l 1 X X X X X X X ~~1 INC

Increment the content s of the accumulator by one .

L~~1 1 X 0 1 0 0 X X X X X X X X NEG

Negate the number in the accumulator .

t l l O l 0 l 0 l D D D D D D D~~~ SUBN D

Subtract the accumulator contents from the content s of data
memory word D and place the results in the accumulator.

I 1 1 O 1 O 1 1 O D D D D D D D D] ADD D

Add the contents of data memory word D to the accumulator.

I 1 1 O 1 O 1 1 1 D D D D D D D D 1 SUB D

Subtract the contents of data memory word ID from the accumulator.

I l 1 1 X 1 0 0 0 X X X X X X X x J SET

Set the accumulator to all ones.

1l i i X l 0 O l X X ~~~X X x X x 1 CLEAR

Clear the accumulator to all zeros.

I l l O l l O l 0 D D D D D D D ~~1 XOR D

Exclusive OR the contents of data memory word D to the accumulator.

142

_ _ _ _ _ _ _ 5 - —~~~~~~~~~~~~~~~ -~~~~~~~~ ---

a--- -

-
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 

p _  
~~~~‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

-.-
~
- -

NSWC/WOL TB 76—175

L 1 1 0 1 1 0 1 1 D D D D D D D D I O R D

OR the contents of data memory word D to the accumulator.

1 O 1 1 1 0 0 D D D D _D D D DI LOAD D

Load the accumulator from data memory word D.

11 1 X 1 1 O 1 X X X X X X X X~ LEFT
-:

Shif t accumulator left one bit .

l x i i 1 0 X X X X X X X X J RIGHT

Shift accumulator right one bit .

(l l l X l l J . 1 X X X X X X X X I ROTR

Rotate accumulator content s right one bit .

j i 1 0 0 0 0 O O D D D D D D D ~~J STORE D

Store accumulator contents in data memory word D.

Ii 0 1 1]. 1 0 0 X X X X N N N Ni INPUT N

Load accumulator from input device N, N, from 0 through 15.

Ii 0 1 0 0 0 0 0 X X X X N N N N I OUTPUT N

Piacc accumulator content s in output device N , N from 0 through 15.

143

- —--5 — -
~~~~~~~~~~ -- - - —5-- - - -—- - -—-—- -- - -~~~~~ - - - -—-5-~~~~~~~~~~~~~ -— - - - - -~~~~~~~~~ - --



. - ~~~~ - ~~~~~~~~~~~~~~~~~~~ 
- - - - -: —

~~~~
—

~~~~ 
- -

NSW C/WOL TB 76—175

DISTRIBUTION LIST

Copies
Commander
Naval Sea Systems Command
Was hington , D. C. 20362

Frank Henry (0333) 1
W. W. Blanc (0333) 1
R. Schuetzler (663C1) 1

Comma nder
Naval Air Systems Command P

Washington , D. 0. 20360
D. Rosso (AIR 370) 1
A.  Sto ne (AIR  37 0K) 1
A.  ?isano (A~ B 3~ QA~.) 1
E.  Benson ( A I M  5j ~ 0) 1

Commanding Officer
Naval A ir Develo pment Center
Warminster , PA 1897 14

D . Ru sso ( 20 5 14 )  1
J. Howard (205) 1

Defense Documen tation Center
Cameron Station
Al exandria , VA 223114 12

Chief of Naval Operations
Washington , D .  C. 20350

P J.  R.  Blouin (NOP 32 5) 1

1.

1



~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ______ —- 
—

-5— __
;__:— - —

~~~~~~~~~
---- - - ~~~~~

—
~--

- 
- — - ,uI~

NSWC/WOL TB 76-175

DISTRIBUTION LIST (cont .’i

Copies

Proj ect Manager
REMBASS
Building 1443
Fort Monmouth , ~ ew Jersey 07703 1

Commander
Naval Ocean Systems Center
San Diego , California 92132

B. Martine z (Code 4 3 00)  1

Commander
Naval Underwater Systems Center
Newport , Rhode Island 02840

C. N. Pryor 4

ADTC/AFATL
Eglin Air Force Base , Florida 325142

Dr. J. G. Constantine (DLJM) 1

2

-5-.. - -


