_/’ﬁD*hD“& 879

UNCLASSIFIED

| oF |
b

\DAQABE

NAVAL SURFACE WEAPONS CENTER WHITE OAK LAB SILVER SP==ETC F/G 9/5 3
COMMON SIGNAL PROCESSING MODULES, (U)
MAY 76 C N PRYORr L S HAYNES

NSWC/WOL/TR=76=175 NL

NSWC/WOL TR 76-175

ADA046879

COMMON SIGNAL PROCESSING MODULES

BY C. NICHOLAS PRYOR
L. S. HAYNES

ORDNANCE SYSTEMS DEVELOPMENT DEPARTMENT

10 MAY 1977

Approved for public release; distribution unlimited.

- -~
EERE
M= ST Blw)

Y/ NOV 80 1977

NAVAL SURFACE WEAPONS CENTER

Dahlgren, Virginia 22448 e Silver Spring, Maryland 20910

AD No.———
DG FILE COPY

@

Jmm = = 8. CONTRACT R(e)
/O £. Nic olasz ryor
L. S. /Haynes
/ . MING ORGANIZATION NAME AND ADDRESS 10. ::ginﬂAaoeﬂLKEnE:‘TT'NPURMOIJEEEJ' TASK
Naval Surface Weapons Center’ 0; MAT-03L-000/ZF61-001;
White Oak, Silver Spring, MD 20910 ZF61-001; = §2519-002;
1. CONTROLLING OFFICE NAME AND ADDRESS A
; //) LY May 1976]
r: ES
43
T3 MONITORING AGENCY NAME & ADDRESS(i{ different from Controlling Office) | 15. SECURITY CLASS. (of thie report)
=) UNCLASSIFIED

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

NSWC/WOL /TR=76-175

OVERED

WD < .
Common Signal Processing Modulesf“ <322>F1ng}/ﬂé crtoﬁ

P Waf UMBER

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if neceseary and identily by block number)

microcontroller,
mlcroprocessor,

signal processing modules
microprogramming

20. AQKRACT (Continue on reverse side if necesesary and identify by dlock number)

Currently, special purpose hardware is designed for each new
weapon system, with little or no capability of being easily
modified or adapted to other similar applications. This paper
describes a group of small, low power signal processing modules
with a compatible, flexible structure for intercommunication of’
data and command and control information. Instead of designing

systems Yfrom scratch® for a unique application, system designers.
DD , 9%, 1473 eoiTion oF 1 NOV €813 OBSOLETE UNCLASSIFIED

JAN 73

”

e - ucmcm-—n//
3727 J75 / -

UNCLASSIFIED

LLLURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

will be able to configure and then program the standard digital
modules into small or large systems, optimized to their
particular requirements. Implementing hardware in this

manner will substantially reduce development time, testing
requirements, logistics problems, and life cycle costs, and
increase the versatility and reliability of the resulting producﬁﬁ

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

NSWC/WOL TR 76-175

PREFACE

This report describes a set of small, low power signal
processing modules capable of being configured into a wide range
of weapons systems. This work was performed by the Digital and
Signal Processing Branch of the MNaval Surface Weapons Center.
The effort was supported primarily as an internal exploratory develop-
ment task, work unit MAT-03L-000/ZF61-001, and certain aspects of
the work herein described were supported by the mobile mine project,

work unit S2519-002.
WC.m

EDWARD C. WHITMAN
By direction

NSWC/WOL TR 76-175

CONTENTS

Page

JUSTIFICATION FOR COMMON MODULE DESIGN
SELECTION OF CMOS TECHNOLOGY
SUBSYSTEM INTERCONNECTION PHILOSOPHIES
Wait Line Concept
Horizontally and Vertically Organized Systems
INTERCONNECTION PORT DEFINITIONS
Output Port
Input Port
Control Port
Other Lines
Reduced Flexibility Ports
STANDARD MICROCONTROLLER
General Definition
Specific Implementation
Control Stack
Basic Timing and Interrupt Signals
Instruction Repertoire
Instructions
Clock System
Clock Generator

Wait Line
Clock Enable

o

v ‘/!vfl‘ﬁm

NSWC/WOL TR T76-175

CONTENTS (Cont.)

Interrupt Facility
Initialization

BASIC TYPES OF MODULES
Program Memory Module
Read/Write Data Memory
Control Element
Priority Selector

Processing Elements

EXAMPLE OF A DIRECT EXECUTING COMPUTER IMPLEMENTED WITH
THE MICROCONTROLLER

ani o b ot g
BE——_
N

Page
23
26
21
27
27
2T
27
35
37

NSWC/WOL TR 76-175

COMMON SIGNAL PROCESSING MODULES

JUSTIFICATION FOR COMMON MODULE DESIGN

There are currently a number of programs proposed or presently
in exploratory development in the areas of advanced mines, torpedoes,
surveillance sonobuoys, and remote sensors systems whose signal
processing requirements overlap to varying degrees. The
requirements include case orientation sensing, correlation, spectrum
analysis, and post-analysis processing for automatic line detection,
line integration and tracking, bearing computation, and target
tracking and classification. Historically, special purpose hardware
was designed for each weapons system, with little or no capability
of being easily adapted to other similar applications.

A number of shortcomings exist in this appréach. For example:

1. There is a large amount of redundant effort expended in
the design of similar hardware.

2. Methods and hardware for simulation and testing of weapons
systems must be designed independently for each system.

3. Failure analysis must be done separately for each weapons
system.

4, Growth capability of hardware systems is minimal.

In short, many devices which require similar types of complex
data handling are designed entirely independently. Increased
cost due to duplication of effort, longer development times, and
inferior products result.

The standard modules, which this paper describes, are a group
>f small, low power digital signal processing modules. These
modules will be capable of being combined in various ways to
implement a wide range of weapons systems. Instead of designing
systems "from Scratch”" for a unique application, system designers
will be able to configure the standard digital modules into small
or large systems, to meet their particular requirements.

NSWC/WOL TR 76-175

The primary requirement of any such standardized processing
elements is that they have a compatible, flexible structure for
intercommunication of data and command and control information.
The intercommunication structure will be continually emphasized
in the following chapters.

. oty

NSWC/WOL ‘TR 76~175
SELECTION OF CMOS TECHNOLOGY

The choice of CMOS technology for the microcontroller was
dictated by the low power requirement for the modules. No other
currently available technology could have met the requirement.

A read only memory is an integral part of the microcontroller.
Presently a MOS memory is being used because there are no convenient
CMOS ROMS. We can expect more practical low power ROMS to be available
in the next few years. Until then, in many applications, the higher
power ROMS may be used. If they are turned off when the ROM is not
actually doing calculations, the power they use 1s proportional to
the amount of computation done, and will be very small for problems
not requiring large amounts of computation.

NSWC/WOL TR 76-175

SUBSYSTEM INTERCONNECTION PHILOSOPHIES

Wait Line Concept

The processing modules discussed in the previous chapter must
be capable of being easily configured into relatively complex
structures. Many tasks, for example, will require several processing
units, each performing part of the total amount of work to be done.
The synchronization and communication philosophy followed in the
design of the overall system is extremely important if the system
is to be expandable in size and function. If the initial
formulation is not adequately general, then complex systems will
be messy or impossible to design. If the configuration and
communication structures are too general, then simple systems will
be unnecessarily slow, complex, and costly.

In the simplest systems or subsystems of larger systems, there
is one processor which is the "boss". This processor 1s entirely
responsible for controlling every operation done by every device
on every clock cycle. The control signals from this processor may,
for example, connect directly to the gates, and busses within
the module, controlling the data flow in a direct way. This
processor always knows whether a particular module is busy or
not, since no other processor can issue commands. The QED (Quick
and Easy Design) program (reference (1)) at the Navy Electronics
Laboratory Center, San Diego, deals primarily with this level of
system structures.

Subsystems, as described above, may be combined into systems
employing levels of processors. At any level, there 1is only one
"boss" controlling the devices at its level. Now however, a given
device may itself be a "boss" of the devices at the next lower
level. The boss does not now know the exact status of a
device because it in turn depends on the devices it controls.

A synchronization scheme is now needed to see if a "boss" can
accept another command, and if a desired operation is complete.

Subsystems can be combined into more complex systems, where
several "bosses" can command a single module. Resources are now
shared by many processes. A memory, for example, may be used
by several processes. A synchronization scheme 1s needed to see
if the memory is available. Priorities are needed to insure that
the most important processes receive service first, yet every
process recelves some service. In addition, a communication network
is required to multiplex commands and data to or from a given
resource.

l2175 Program Quick and Easy Design "QED" of Systems Through High
Level Functional Modularity, TR 1904, N. L. Tinkelpaugh and
D. C. Eddington, 28 Jan 197h.

'

NSWC/WOL TR 76-175

The actual interconnection hardware is dependent on the
particular system. What is of concern here is the command
structure which will enable systems to be conveniently configured
at both the lowest and highest levels within the system.

The command structure chosen for use in the modules being designed
is based on a WAIT LINE. When a command is issued to several processes,
the Wait line is immediately grounded, forcing the requesting process
to wait. When all of the processes receiving the command have
completed enough processing to permit the requesting process to
proceed, (having removed any data from the busses, etc.) then the
Wait line is raised.

In the simplest subsystem, no Wait line is needed. The "boss"
processor knows what 1is busy and what isn't. The Wait line is
merely shorted to the Hi supply.

In systems consisting of levels of subprocesses, if a process
is commanded to perform an operation, 1t grounds its Wait 1line
stopping the commanding processor. It will unground the Wait line
when it 1s permissable for the commanding processor to proceed.

If there are several levels, there will be one separate Wait line
for each level.

In the most complex systems, there are several processors
competing for services from the same processes. The communication
network must contain the necessary bus structures and priority
arbitrators to insure that only one command actually reaches
a process at a time, and that if the commanded process grounds
its Wait line , then the Wait line of the commanding process will
be grounded halting its operation.

Horizontally and Vertically Organized Systems

Subsystems, and finally systems can be organized with
either horizontal or vertical command structures. 1In a
horizontally organized system, command lines are not decoded.
Each line represents a separate command, and as a result, many
commands may be given simultaneously. In a vertically organized
system, command lines are decoded, so that only one command is
given at a time.

In the design of a complete system, both horizontally and
vertically organized controllers will be employed. At the lowest
level, primarily horizontal control word bits or fields will be
connected directly to the gates and control points within a
processing module. At this level, the sequence of control signals
will cause the data flow necessary to perform the processing task
required. As the commanding controller knows exactly what
the status is of what it is controlling, the Wait line will not
normally be used.

T ——

i
|
|

1
i
|

1
4

NSWC/WOL TR 76-175

At higher levels within systems, primarily vertically organized
control lines will be decoded into specific high level commands to
the lower processing modules. The Wait line will be used here
to stop the higher level module until the receiving module can
respond to the command. ;

Naturally, controllers can be partially vertical and partially
horizontal, having several decoders, and hence permitting several
simultaneous commands. The Wait line will be used to stop the
commanding process until the receiving processing modules can
respond to the request.

NSWC/WOL TR 76-175

INTERCONNECTION PORT DEFINITIONS |

Three kinds of ports are considered among the digital processing
modules, and a given module may have one or more of each type of
port. The three types are: Output Ports, Input Ports, and
Control Ports.

Output Port

An output port consists of an Output Enable (OE) line, a
Wait line, and some number of Output Data lines, as shown in
Figure la. The OE line is an input to the port, while the Wait
line and the Data lines are outputs of the port. The output data
lines are to be implemented with tri-state drivers, which are in
their high impedance state whenever the OE line is high. When the J
OE line goes low, the output data lines are put in their low impedance
state to output the appropriate data. The Wait line output is
connected to commanding processes as described in the previous $
section. i

Input Port

An input port consists of an Input Enable line, a Clock line, %
a Wait line and some number of Input Data lines, as shown in ?
Figure 1lb. Each input data line connects to an input latch in the F
module which holds some previous value while either the IE line i
or the Clock 1line is high. When both the clock line and the i
IE line are low, the latch passes the input data. The new data is '
held by the latch when either the clock or the IE line returns high. 5
Normally the IE line is stable during any period that the Clock
line is low. The Wait line is normally left in the high state i
and is pulled down whenever the IE and Clock line have gone low
and the module has not yet accepted a new data input. Pulling
this line low delays the controlling device until the module has
accepted the new data.

Control Port |

A Control Port has a Clock Out line, a Wait line, and some
number of Control Level outputs as shown in Figure 2. The control
levels are used as Output Enable and Input Enable lines for various
controlled Output or Input ports and for other control information
(generally going to various data inputs of controlled modules) as
desired. The control outputs change only during times the clock
is high and are stable when the clock is low. The Walt line is
an input which stops the clock whenever it is pulled low.

When the Wait line is pulled low by some external device, the
clock proceeds normally until it reaches its LO state. Then it
stops in the LO state until the Wait line returns high, at which
time it resumes normal operation. See Figure 2.

1)

NSWC/WOL/TR 76-175

DATA
SOURCE

\
TRI-
STATE
N OUTPUT
DRIVERS }DATA e a
- our STABLE

LOGIC

INPUT
DATA
STABLE

FIG. 1a OUTPUT PORT

= WAIT

OUTPUT
ENABLE

NN

LATCHES

ATA 4

_ >

CLOCK i

1A

INPUT
ENABLE

WAIT T—

LOGIC

FIGURE 1b. INPUT PORT

15

e ——— T e e e e e e

it

1H0d TOHLINOD C Oid

3
"-hl,
SINIT TOHINOD ~Som——]
el et
st

———

||.I.|_ livm | Livm 1HO0d TOHLNOD

B EEE——

el Do =l 11 5 | 100 %2012

IONVHI
SINN
JOYLINOD
= “LSNI [
1X3N
anva $$300V

ANVWWOD "318V1S —= e
S3NIT ANVINWOD

NSWC/WOL/TR 76-176
12

NSWC/WOL TR 76-175

Other Lines

In addition to Output, Input, and Control ports, modules
may also have discrete status input or output lines. Status
output lines indicate some discrete bit of information from
within the module and may be active at all times. Status input
lines provide a module with a means of testing discrete
information from some other module.

Reduced Flexibility Ports

Input, Output, or Control ports may be implemented with less
than full flexibility. For example a control port which never has
need to delay an input or output operation may be implemented
without a Wait line. Output ports for functions which will always
be connected to dedicated inputs may be implemented with no Enable
line. Input ports not needing latches may be implemented without
Clock or Input Enable line, or only an Input Enable line may be
required if strobing of input data is not required. For modules '
having more than one port, some signals such as data input or output, i
Walt lines, or Clock lines may be common. However it should be j
recognized that any of these steps reduces the ultimate flexibility
of application of the device. |

13

NSWC/WOL TR 76-175
STANDARD MICROCONTROLLER

General Definition

Figure 3 1s the conceptual diagram of the microcontroller module
of the Standard Signal Processing modules.

The basic function of the microcontroller is to prcvide the
operation sequence control for a larger processing system. This is
done by controlling the address fed to a control memory, from which
microinstructions for the entire processor are read. A portion of
each microinstruction is used by the microcontroller to determine
the address of the next operation, the remainder 1s available for
control of the remainder of the processor. The microcontroller
must be capable of providing basic timing signals to the
remainder of the processor and of testing processor information for
conditional branches in the sequence. In addition, some means must
be provided for recognizing requests from higher level elements
in the system or interrupts from within the system being controlled.
The microcontroller defined here is an eight bit slice capable of
being implemented in a single 48 pin integrated circuit package.
Any number of slices may be combined to yleld an arbitrarily wide
controller.

As shown in Figure 3, the basic 8 bit Program Counter (slice)
can address up to 256 words of Control Memory. This Program

Counter can either be incremented during an operation

to permit microinstructions to be executed in normal sequence,
loaded from an address input field to permit arbitrary jumps, or

it may interact with a Control Stack. The Stack is used to hold
return addresses during subroutine execution or interrupt handling
and may also be used as a loop counter for repeated executions of
blocks of microcode. The function to be performed is determined

by four Function Code inputs (extended in some cases by five bits
of the Address Inputs), and & single Test input 1is provided for
conditional branches.

Basic timing of the microcontroller 1s generated by an
Oscillator input. The Oscillator drives a Clock Generator which
produces an output clock signal used to drive any controlled
devices. A Clock Enable input determines whether the Clock
Output 1s generated on each cycle, and a Wait line returning
from the controlled devices permits these devices to delay
instruction execution as necessary.

The Microcontroller chip is also provided with an Interrupt

capability, permitting it to recognize interrupt requests from
external devices and to respond to them.

14

R —

h_:“.v Sy b w Wv v -1
i
g |
! NSWC/WOL/TR 76-175
: ADDRESS OUT
' TO ROM ,
e
|
- A0 A7
PROGRAM COUNTER INITIALIZE
NEXT ADDRESS IN
FROM ROM A7 CARRY OUT -
- INCREMENT TO NEXT
S ,
MOVE LOGIC CARRYIN ¢ \cE
AI0 INCREMENT
- STACK DATA
TO EXTERNAL STACK
CONTROL CONTROL STACK = e
LINES TO - ¥
EXTERNAL 1 S0 EXTERNAL STACK
DEVICES ' | CONTROL _
v)
/g -
FUNCTION AI4
INPUTS
FROM FUNCTION
FROMROM || ROM |F3 AT DECODER Lo
D g -
FO B
CLOCK ENABLE
cLock F_lj:)o—J CLOCK OUT
osc GENERATOR B
L WAIT
INTERRUPT REQUEST
INTERRUPT INTERRUPT WAIT
INTERRPUT CLOCK LOGIC
s FIG. 3 MICROCONTROLLER FUNCTIONAL BLOCK DIAGRAM !

1

e et

e Ty

NSWC/WOL TR 76-175

Specific Implementation

Control Stack

The 8-bit microcontroller slice contains one 8-bit stack
register, and a 2-bit stack address counter. In the simplest
configuration the single stack register may be used to store a
return address for a subroutine or interrupt routine; or it
may be used to store a loop counter for repeated execution of blocks
of microcode. If this single "stack" register is insufficient,
an RCA CD 4036 4-word by 8-bit COSMOS RAM connected directly to
two control signals, the 8-bit stack data bus, and 2-bit address
counter, as shown in Figure 4, provides a 5-word stack.

If more than 5 words of stack are needed, an external module
can be added to provide additional stack locations.

Basic Timing and Interrupt Signals

Basic timing signals are provided externally through an
oscillator input. Thils signal is connected to a clock generator
which sequences instruction execution within the controller, and
produces an output clock signal used to drive any controlled
devices. A clock enable input determines whether the clock
output 1s generated on each cycle, and a Wait line returning
from controlled devices permits these devices to delay instruction
execution as necessary.

The microcontroller chip 1s also provided with an interrupt
capablility, permitting it to recognize interrupt requests from
external devices and respond to them. Much more detail of the timing
and interrupt signals will follow in subsequent sections.

Instruction Repertoire

Assuming there 1s no interrupt to be executed, the function
executed on a given operating cycle of the microcontroller is
determined primarily by the four function code input lines F3
through FO. The instruction set 1s designed to permit use of
the microcontroller in either vertical or horizontal micro-
processor organizations, as will be discussed further later.

The functions performed by each of the Function Code states are
described below.

Figure 5 shows a detalled diagram of the microcontroller.
Table 1 defines each control point within the processor. Table 2
shows a tabular description of exactly what the state
of each control point 1s for each operation.

16

NIVLS QHOM S HOd AHOW3W TVNH3ILX3 OL NOILDOINNOD v 'OId

= v LvS
= ov ovs
" LI8IHNI dIHD LI19IHNI QV3y dod
- SSVdA8 AHOW3IW 31I4M HSNd
@ |
- LS
n i] T r
o | —
m LS
1n0 NI [T ssna 4371041NOJOHIIN
m viva viva [i viva i
NOVIS™ ety
e [h'll'_
——
0s NIV1S
WVH 118 8 Xy 950vQD VO IVNY3ILX3I OL

WITIONINGD FHL 40 WVHDVIO LINJHID G3TIVAIa SO

GG R
1 . ‘3 -« 3 4 *y .
Flk =k =
~ . T el —I|
| e e | 05 TR | e] s .

- el — = . —ie -
e e PR , o
T s o i~ »
_ 2 o B F G —0

L11] |- g 2 Fﬂ. Ly
Eih . - - L-ut,.. - (L

; - _

i |

i i

i

=2—F

NSWC/WOL TR 77-178

1 -

it
—t

g

" d0od " T |
- 0 .d0d, O3 9O0TASpP Teuaalxa syeubrs dod
2 +HSOd. 1 |
M = 0 +HSNd, O3 9O0TASpP [BUISIXD STeRUbBTS HSNd |
i 3UO ppe - Uo 3Tq AxxeD | 0 19ppe |]
= QU0 ppe 30U Op - 33O 3Tq AxIe)d T I03 ut Axxed 3TQq 3ISITI STOIIUOD T I0H!
M Ioppe 03 pe3eb 3INd3Ino Oe3s 0T &
e ! 309713S
S | Iappe 03 pa3eb xajunod EmumoumM 10 anliey
W I9appe o3 3nduTt ON | 00 aappe 03 3Indur STOIJUO) I3ppyY
‘ aTqeus o0 s1qeud
L pa1q ARG L x93sthax ¥200TD
PaTgesTIp 3}O0TD 0 3yoe3s doj 03 3D0TD saTqeud 3¥oe3s
paTqesTp 3Inding T 4
j . patqeus Ind3no | 0 ssnq e3ep }Oe3s I03F Teubrs afqeuy 93e3sS €
| ﬁ< LIV - OIY s3ndut | !
m Ss9Ippe WOIJ }¥Oe3s pue Dd 03 3ndul 0T |
umvvm@ | m
| . .
. jJo 3nd3no woxj }de3s pue D4 03 usmcH_ 10 “ joeys o3 pue
i i 3oe3s 10 Iajunod wexboad o3 3ndut ON 00 I923unod urexboad o3z 3ndutr sSTOIJUOD IsDd
! | | SINTVYA
d , INIYA/NOILONNA d7149I1SS0d NOILONAd IWYN
i SLNIOd TOYLNOD 1 d7dVYL

P

NSWC/WOL TR 76-175

A aa ity o s i e

TR . B 0 S i i g
' : sanTBA 3UT0d TOJ3UO) *Z I3TAqRY :
ONILIVA
S1dNAAIINT ON
01 S1 %3012
1=8N3 NI
IHsLIVM INI 00 . .|
L= INDNIVLS 0 S, Ty ot b
100000000+3d | © L 2 NI || 0 0 1 24 0 0 - 1IN]
1+1ND1S*INDLS 00
10101010 +2d 10101010]
4AVIS
37803 S,LYW | 10 1 (sa0qe s¥) ot 0
“IN] 1359 | O 0 1ndino | ¥3oay 1 0] L 0 w3aqy NI
10 10
143d*2d | © l 2d ¥3gav 0 0 P) 0 0 [yivesd
10 10
(43d*2d [© t 3d y3aav 0 0 P PP 0 0 PP £1veL)
[0} 0 Qua v}
142d+3d | 0 1 2d ¥300v 0 0 p PP 0 0 PP 39534 21¥e/)
00001 (110
0 suojdo /3 oL 10 YV LIV 2<_
1 99V1S+3d | 0 possaipavbas ouis | wiaov 0 0 P PP 0 0 PP Wimada [1ysL)
L=INDLS>INILS |
1434+34 (0suamadzy)) 10 o _ 5 S o i
' 2d ¥
4d0d 13 t t L PP 0 0 ¥30av d0d=01veLd
1¥2d
WNILS*INDLS ot (saoqe sv) oL 10 oLt
142dHWIS | 0 P PP v l l L 2 t 0 ¥300v anse
3d+2d 10 10 . 10 1 10
AIWIS d0d | © 0 2 ¥3aav 0 (] [VLS 1 340 HILIRS| ¥300V 4d0d
10 10
1¥+2d oL 0 0 1 \ 0 ™ 010
pepuseous | °f P 5d Iv — .
143d4+2d
Cwoseas | Lt 5 1w it 0 »] 0 0] 1 ot
4404 135
lu-on<
3.7”.
HsNd Hsnd
10 10 o1 0010
IVe11S
(oIS | © 1 24 ¥300v 0 A P PP 1 0 1V HSNd
oL :
1 [ﬂ" _“ Q a p pp 0 2 PP M 100
143d+34 | © 1 N MB_. 0 0 P PP 0 0 Pp WL e
ol 000
v | o] P v 0 0 p PP 0 0 (2 rpn.
10 10
t43d*3d | © t Y] ¥3a0v 0 0 P PP 0 0 P xxxy
INJLS 33 3
4d0d (1] 08 730 (] %3019 AIWVLS]
NOILVY340 | 10S| 1 10M v.:.: ¥00v | 1534 ||-ow1 100 HShd 1108 1nen1 ¥300Y uvs € 1524 NO11Vu340
’ ANT) AI01)

SINTVA INIOd T0UINGD

(V]

s

SR

NSWC/WOL TR 76-175

Instructions

NOP (Code 1XXX) No-operation.

When F3 is a 1, control signals C1l-C7 are all blocked.
Regardless of the other function control bits, the controller
performs no other internal instruction than to step the program
counter to the next sequential address. This function is provided
to control other processors. The single bit F3 determines whether
the microinstruction is an internal operation or another processor
function. Whenever F3 is a 1, all other bits normally used by the
microcontroller (F2 through FO and the 8-address inputs per slice)
are avallable for other functions.

JUMP (Code 0001) Jump to Instruction given by Address.

This function code provides an unconditional jump to the
microinstruction specified by the address input bits AlT
through Al0.

JTL (Code 0011) Jump on Test Low.

Causes a jump to the instruction specified by the address
inputs if the signal on the test input is low. Otherwise the
next instruction in sequence is fetched.

PUSH (Code 0100) Push Address Inputs onto Stack.

Causes the word on the address inputs to be pushed onto the
control stack and all previous contents of the stack to be
pushed down. The next microinstruction in sequence is then
fetched. This instructlon is normally used to initialize a loop
count. If no external memory is connected to the microcontroller,
then the stack contains only one element. The "push" operator
degenerates into a "store" operator. With a single CD 4036
connected as shown in Figure 4, the stack then contains five
elements. The programmer, however, must prevent stack overflow.

TNIJ Test for Non-zero, Increment and Jump.

The contents of the top word of the control stackare tested
for zero. If it is non-zero, the value 1s incremented and returned
to the stack, and the address 1nputs are loaded into the program
counter to cause a Jump to that address in the microprogram,

If the top word of the control stack 1s zero, the word is popped
from the control stack and the next instruction in sequence is
fetched. This instruction permits the top word in the control
stack to be used as a lcop counter, with control passed to the
beginning of the loop until the loop counter wraps around to zero,

at which time the count 1is popped from the stack and control passes
to the instruction following the TNIJ. When the stack is zero,

this operation requires two machine cycles to complete.

9
[

NSWC/WOL TR 76-175

JSUB (Code 0110) Jump to Subroutine

The contents of the program counter plus one are pushed
onto the control stack, and the word on the address input 1is loaded
into the program counter. This causes a jump to the location
specified by the address inputs while saving a return address
in the control stack.

Operate Group (Code 0111)
The function or functions performed when the operate group

code is encountered depend on the contents of address input bits
AI4-ATI0. Each bit has a discrete meaning as follows:

ATl Raise Interrupt Wait Line.

AI3 Set Interrupt Enable Flip Flop.

Al2 Reset Interrupt Enable Flip Flop.

ATl Return-Load Top Stack Word into Program Counter.
Note that the JSUB operation stacks the value of the
program counter +1 (i.e. the address of the next
instruction to be executed).

AIO POP - Pops top word from Stack.

This particular operation is a two-cycle operation.

When the POP operation is called for a one cycle delay
in the execution of the POP is initiated to give the

AIl control signal, if 1t is on, a cycle to

transfer the top stack element to the program counter.
The POP operation may occur without the return operation
AIl being set also, but the POP operation will still
require 2 cycles.

Clock System

The Clock system provided on the microcontroller module
consists of the Clock generator, the Clock Enable signal, the Clock
output, and the Wait line. An external clock 1s connected to
0SC, and it provides the basic timing of the microcontroller.

Clock Generator

The Clock generator uses the basic timing signal to form a
pulse train consisting of 3 periods of high level and one of low
level. Internal operation of the microcontroller is controlled
by the resulting pulse train. While the clock is high, the next
microinstruction is fetched from control memory, and all the decoding
and settling of the binary values of the various processor control

22

NSWC/WOL TR 76-175

points occur. On the negative clock transition, the relevant
microoperations (as shown in Table 2) are performed, and new
control values set up. On the positive going clock transition
(as shown in Table 2), the program counter is changed, and the
next instruction fetch begins. If an instruction causes the
stack to change, the change always occurs on the falling edge of
the clock. The program counter always changes on the rising
edge.

Wait Line

The Wait line input provides a means for a controlled device
to delay execution of a microinstruction by pulling this line
to ground. The Clock generator will not proceed from the Lo to
the Hi output state while the Wait line is grounded. If a controlled
device wishes to delay execution of a microinstruction, it must
recognize the instruction and ground the Wait line before the
leading edge of the clock signal. The Wait line may be released
at any time, using the explicit instruction Raise Wait Line.

Clock Enable

The CLK ENB line inhibits CLK OUT signal (the output stays
in the high state) when it is grounded, even though internal
operations of the microcontroller continue. This provision is
primarily for cases in which some instructions are for internal -
microcontroller use and others are for commanding external
functions from controlled devices. In this case, tying the
CLK ENB input and the F3 input together causes a CLK OUT pulse
to occur, clocking external resisters, etc., only for NOP instruc-
tions (F3=1) where bits F2 through FO and all address inputs
are available to control these external devices. When F3 = 0, these
lines provide information to the microcontroller itself, and are
not available to control external devices. Since F3 = 0, the
clock out pulse does not occur and external devices are unaffected.

Interrupt Facility

The microcontroller module is internally capable of handling
single level interrupts through the three interrupt signals,
INT REQ, INT CLK, and INT WAIT. The INT REQ and INT CLK are a
control level and clock signal, respectively, from a requesting
device, and an interrupt request on these lines consists of a
simultaneous zero on these two inputs. The reason that two lines
are required is that the interrupt request line may be the output
of another controller's ROM control memory. Each time that controller
changes its address counter, noise "glitches" will look like interruwpt
request signals, and whenever the requesting processor executes an
internal control instruction, the interrupt request line may go low
for a full cycle. By having the interrupt clock line coming from
the clock out of the requesting process, both of these problems
are solved. The microcontroller acknowledges an interrupt request

23

NSWC/WOL TR 76-175

immediately by grounding the INT WAIT line. This returned signal
represents an unprocessed interrupt and may be used to halt the
requesting device.

The interrupt logic contains an interrupt enable flip-flop which
may be set or reset under microprogram control. Whenever this flip-
flop is set and an unprocessed interrupt is waiting, an interrupt
occurs on the next microprogram cycle (unless the previous operation
was a two-cycle operation in which case it 1s delayed one cycle)

The interrupt function simulates a JSUB85 and consists of pushing the
program counter contents (the address of the next sequential micro-
instruction) onto the stack and forcing the program counter to "85"
to force a jump to location 85. The interrupt enable flip-flop is
also reset in the process, so that additional interrupts cannot occur
until the programmer chooses. The instruction at location 85 is then
fetched and executed. As described above, the INT WAIT line remains
grounded until it 1is reset to a high level by the appropriate
instruction.

There are no restrictions on when the interrupting process
must raise the interrupt request and/or interrupt clock lines.
The circuitry used insures that regardless of how slow (or fast)
the interrupting process is, exactly one interrupt will result
from any coincidence of the low INT REQ and INT CL lines.

This interrupt facility is designed to permit the microcontroller
to be seen as an asynchronous device within a larger system, so that
it can be requested to perform a service and may delay execution in
the larger system until 1t is ready to accept the task. Depending
on the way the interrupt enable flip flop is handled in the
microcode, this new request may either interrupt an on-going task
or may be held until a previous task is completed. The interrupt
facility may also be used within a system to provide transparent
handling of some controlled device such as an A/D converter or to
provide the basic timing for a repetitive task which is started
on each interrupt.

While only a single level interrupt is designed into the micro-
controller hardware, extensions to multi-level priority interrupt
structures can be developed through microcoding and external priority
! encoding hardware. Figure 6 shows a convenlent way to permit an
! interrupting process to be able to generate many distinct commands
1 without requiring the interrupted process to use microcode to
determine which command to execute, or how, in other words, to imple-
ment vectored interrupts. The interrupting process generates the
interrupt, and at the same time, places a one or more bit "interrupt
code" on predetermined control lines. The 1nterrupted process will
: immediately ground 1ts walt line, stopping the interrupting process
-g with the above code still on its output control lines. The control

i
£

lines containing the code are connected via an AND/OR select or 3
state device to the interrupted process' address lnputs. When the

24

S1dNYYILNI AIHOLIIA ONILNIWITdWI 9 OIS
[
i JOHLNOD 123135
: _— L
— dWNF | 68201 Z 'ON
R STTTETYT 43717104LNODOUHIIW 5
S L 1n0 T = 19313s
300040 —— SNOILYD01 o ss3vaav ssayaav £ HO/aNY
| HOLOIA ¢ -
1dNYY3LNI
R JOHLNOD HOLIMS —— n z 1s3n034 %2019
" Q3ilvoigaa — L 1dNYYIINI 1dNYYILNI
i
3 woy A o
E » o
-l
E
H
g 3009
_ 2 “INI
- 118
£
i e ke 1n0
v - Alll..llw“ 2012
! e L 'ON
5_ —- H37170HLNOJOHIIW P
SN = —
7 NI ”
N oy ssayaav f—
I@... LLO00000 000L ss3vaav —
3002 d0 | ——— 0
3 3000 F | ss3yaav 3000 04—
j 1dNYYILNI 1SINDIY OL "LSNI 0 b=
g wou 3718VN3 ¥2012

NSWC/WOL TR 76-~175

interrupt process can process the interrupt, it merely executes a

Jump instruction with a single dedicated control bit selecting the
"interrupt code" as its address input. Different interrupt codes,
then, will cause Jumps to unique locations tc handle the interrupt.

Initialization

The microcontroller automatically executes the instruction
at location 0 in the control memory (all address bits equal 0)
whenever the Initialize input 1s raised. Also,the clock generator
is set to its Lo state, hence if several microcontrollers are
initialized simultaneously, and have a common clock, they will
operate synchronously. Even when interrupted or temporarily caused
to wait by a grounded Wait line, they will operate synchronously.
A process always ungrounds 1its Interrupt Wait line on the falling
edge of its clock. The process which was caused to wait by its
grounded Wait line but may now proceed, will have stopped with its
clock line low. On the next (common) oscillator pulse, both processes
will see the rising edge of their clocks, and hence remain in
synchronization.

The Initialize signal also resets the Interrupt Wait line,
and clears any existing interrupt requests. The Initialize signal
must last at least two clock cycles, and the OSC input must provide
clock signals during these two cycles.

26

NSWC/WOL TR 76-175

BASIC TYPES OF MODULES

The purpose of any processing system 1s to execute some form
of an algorithm. If it is desired to configure a system to
execute an algorithm out of basic modules, then several types
of modules are needed.

Program Memory Module

The algorithm is encoded into a sequence of instructions to
be executed by a Control element. The instructions are stored
in a program memory module. Since the program must be non-volatile,
a Read Only Memory is used.

Read/Write Data Memory

In addition to the program memory, there must be read/
write memory for storage and retrieval of data.

Control Element

The Control element reads and executes the program algcrithm.
The controller performs certain control operations itself, and as
required by the program algorithm, delivers commands, control signals,
and data to processing modules to perform processing tasks. The
microcontroller to be used for this purpose was described in the
previous chapters.

Priority Selector

If, in a system, it is necessary to have several modules
accessing a single other module, and if these commands can overlap
or occur simultaneously in time, then a device to resolve conflicts
is needed. The device to accomplish this task is called a priority
request arbitrator, priority selector, or port expander.

Figure 7 shows a priority selector used to resolve conflicts
when two or more modules can simultaneously access the same
process. It operates as follows:

1. Two (or more) modules simultaneously request service
from a processing module. The request for service is
made by grounding the request line. To prevent noise
on the request line from being interpreted as a request,
the priority selector does not actually respond to any
request until the interrupt clock line also goes low.
Figure 7 shows the way in which the microcontroller
described in previous chapter is connected to generate
the request and clock signals to a processing module or
priority selector.

a7

NSWC/WOL TR /70-175

When the Request and Clock lines from one or more modules
go low, the priority selector immediately grounds the
Wait line to the requesting modules until it can determine
which should be given priority.

2. If the receiving PM 1s busy, then the priority selector
must wait. When it 1s no longer busy then the command and
clock signals from the selected requesting PM are passed
to the receiving PM. The receiving PM immediately
grounds its Wait line, and will leave it grounded until
it has finished any processing which must be completed
before the requesting PM can proceed.

3. When the receiving PM raises 1ts Wait line, the Wait
line to the requesting PM is immediately raised,
permitting it to read an answer from the Bus, etc.
if the receiving process was an output port, or to
remove the data from thebus if the port was an input
port.

L, The communication path between the requesting and receiving
modules established by the priority selector will not be
relinquished until the command line returns Hi, and is Hi
when the clock signal goes Lo. At that point, the
communication path is disestablished, and another PM
given priority. If the command line is still low when
the clock goes low,then this is interpreted as another
command and 1s passed to the receiving PM exactly as
before. 1In this way, once communication is established,
the requesting process can give as many commands as desired.
Note that the requesting process can execute any number
of internal commands without relinguishing the communication
path so long as it does not lower its clock out signal.

5. The multiplexer can actually be a separate module from

the priority selector. The multiplexer then need not have
a specific number of bits. With a separate mux, if more
bits are needed, another mux module can easily be added.
Another approach is to have the priority selector outputs
connect to three state control inputs on the requesting
and receiving devices, and set up the communication path
that way. Using this scheme, no multiplexer's are needed,
and there are less interconnecting wires.

Thus far, we have assumed the priority arbitrator 1s connected
between processes which always ground their Wait line when 1ssued
a command. If the receiving device is simpler, then a minor
refinement is required. Assume as shown in Figure 8 the receiving
device 1s an input port. When the priority arbltrator passes a
command and clock signal to the input port, if the port can accept
data, it simply opens its latches to receive data, without

28

HOLVHLIGHY ALIHOIHd 3HL 40 NOILVYH3dO £ Old

* € "ON $S3004d
__ 4 *\
%0012 D3y
<._.~< g :H; INI LN
__ e —
1 { —
&
2 ~ > ﬁ.
| « viva o e
“ m xnwWw I HOLVHL1ISHV ALIHOIYd
o — =
F3 viva
(8]
| =
: (7}
2
! D34 LINI * ﬁ * 034 INI
w 20719 INI M20712 1INI
] LivMm 1IVM
: e e
4 Z "ON $S300Yd L "ON S$S3204d
b . PR S
,k 1

i e o A

NSWC/WOL/TR 76-175

(G3NNILNOD) L 'O13

$S3ssSN8 viva
€ 'ONAGNV L 'ON Z 'ON 4O 1IVM 3Sivd s3assng viva
S133NNOJ XNW NOILYH3dO ANODJ3S LIVM 3Sivy € 'ON NV Z 'ON S1J3INNOD
ALIHOIHd NIAID 4314V G33004d NVI @33004d NVYJ XNW "ALIHOIYd
L ‘ON $S3004d Z 'ON SS$3004d Z 'ON $S3004d N3AID Z "ON $S3004d
1IvMm
e ToR TRVRNER] Wt) it i g R
D34 1NI

08 B el SRR 3

207D INI

HL1Vd NOILVIINNWWOD
HSI178v.1S3SIa 1ON

S300 HO1v4Hl1184HY ¢ ‘'ON 40
ALIHOIYHd ‘01 1714S 3NN 1IVM S3SIvy
SIHSINONIT3Y Z 'ON 1S3N03Y IINIS HOlvHl1184V
s 1IVM
[T
R O3 ANI
MJ301I 1NI
(| e it
1IVM
D34 1NI
2 it 20 WS

2072 1NI

$S3004d

¢ 'ON
$$3004d

L ‘'ON
$S3004d

30

NSWC/WOL TR 76~175

grounding its Wait line. Without that positive response, the
previously described arbitrator would not know when to raise

the Wait line of the requesting module. In order to solve

this problem, when the priority arbitrator grounds the Command
and Clock line to a receiving module, if it does not receive

a walt signal from that module within some fixed time, then it
will raise the Wait 1line of the requesting module. This gives

the receiving module time to ground its Wait line. This time must
be greater than the maximum delay through the receiving module and
any other arbitrators connected to the output of the first. This
problem could also be solved by always requiring an input port

to lower its Walt line for one clock pulse as a positive response,
even if 1t is not busy.

In simple structures where a receiving module is impervious
to "glitches", as for example, an output port, then the interrupt
clock signals can be tied to ground and not used. Now, however, the
priority arbitrator will have no way to know if a second command
is being issued unless the Command line goes high. When thils occurs,
since now the Command line is high while the clock is low, the
priority selector will disestablish the communication path, and may
reassign priority to another request.

As a specific example of the priority selector, 1its operation
as a memory port expander will be described. Assume, as shown in
Figure 9, that two PM's ground their request and Clock lines
simultaneously. The priority selector immediately returns a Wait
signal to both, and then determines which has the higher priority.
When that decision is made, the Command and Clock lines to the
selected PM (#2 for example) are grounded, and the mux set to
interconnect the buses from the requesting and receiving modules.
The receiving module immediately grounds its Wait line. Assume the
command code on the command inputs to the receiving module indicate
that a read address command is to be executed. The requesting PM
will already have the address on the bus, hence the receiving
module can either latch the address and begin reading the memory,
or address the memory directly with the address on the bus. When
the address is no longer needed on the bus, the receiving module
raises its Wait line. The priority selector immediately
ungrounds the Wait line of the requesting process. The data path
previously established is not relinquished and on the next
occurrence of the low clock, the priority selector will pass another
command to the receiving module. The command code will indicate
that the result of the previous read should be placed on the buses.
The receiving module will immediately ground its Wait line, and will
raise it when the desired memory word is on the bus, The priority
selector will unground the requesting processes Wait line, and it
will read the result from the bus on the next leading edge of
it internal clock.

NSWC/WOL/TR 76-17%

HOLVHLIGHV ALIHOIHd O1 NOILO3INNOD 1HOd LNdLNO HO LNdNI 8 'Old

€ 'ON 1H0d 1NdLNO HO LNdNI

2010 8N3 1NOo

viva 1ivm NI HO NI
— HOLVHLIGHVY ALIHOIHd
xXnn .
— B
viva -+ €gN3 ND2019
INI INI
319VN3
N30 LNI * * 1NI
— —
IVM ivm
Z 'ON SS3004d = “ L "ON $SS3204d

viva

2 (Q3NNILNOD) 8 'OId

w Z 'ON
$S3004d 4310373S NO 3NIT
LIVM 3SIVH 'SSNE NO SI

2 'ON V1VQ ‘LHOd 1NdLNO NV SI
‘L'ON $$320Hd 03193135 11 41:G3HOLV AQVIHIV
NO 3NIT LIVM NO 3NIT LIVM V1Va‘1HOd LNdNI NV Si
351V "a3GNNOHD 35IvY ‘G3ANNOYD SIHL 31 ‘3aNNOYD
1ON 3NIT LIVM LON 3NIT LIVM / LON S1 3NIT LIVM
LIVM
l | ki & Z | |
034 INI
| [m| / [| on ss300u4
%2012 NI
R
@ $3ssna v1va $3SSN8 € 'ON ONV Z 'ON
« €°ON ANV L ON LD3NNOD OL Wall viva 0332014 193NNOD O1 XNW %
£ 135 XNW 'L 'ON OL NIAID HIHLONV HIISNVHL ‘01 oLZ'CN 135 "ALINOIYd P
3 ALIHOIYd "ALIHOIYd 771LS INIM 1S3ND3Y LIWY >d N3AID Z ON
SIHSINONITIY Z 'ON
W] 1 | 1
= 1Ivm
- ® !
03u INI
_ g | [| 2 ON 53004

207D 1INI

1IVM L 'ON

_ L 'ON SS3004d

034 1INI

s
/
_ i L
N\
/

Lt

MNJ07J NI

H3IANVJIX3 LHOd AHOW3I SV G31J3INNOD HOLVHLISHY ALIHOIHd 6 'OId

I0HINOD AHOW3W
; av3y 40 1INS3H LNdLNO =1 AHOWIW
| 3114M ‘V1VQA ANV SSIHAAY HILV
A av3y ‘sS3HAAV HOLV1
Vviva 3L18M
$S3¥AAV HOLV1 1H0d 1nd1NO 140d LNdNI
an3 aNna 19
100 LIVM NI NI _LIVM
Y
J0H1INOD
sSN8 viva 03y
1N
R |
s
@
P T HOLVHLIEHV ALIHOIYd
E = xnwn T
i | =
o 4+ 2010 03y 034 201D ~
s - ANI ANI ANI LNI
: -
2
JOHLNOD
viva
1y
e
- LIVM LIVM
Z 'ON HOSS3204d L "ON HOSS3204d
JOHLNOD
viva

NSWC/WOL TR 76~175

In the above example, as long as the requesting process keeps
its Command line low (while the clock is low) then any amount of data
can be transferred. If the command is a write, then the data and
address can be sent simultaneously, and only one command is needed.
If the bus 1s to be multiplexed, then the address can be sent first -
followed by the data and write command on the next instruction.

Processing Elements

The "Processing Elements" of a system are the elements which
receive commands and data, and map these into some input. Examples
of Processing Elements are:

a. A/D or D/A converters

b. Logic, and/or arithmetic elements, etc.

c. Digital filters
d. FFT or correlation processors

A good example of the advantages possible using a microcontroller
instead of a single chip microprocessor are seen in the area of
communication and synchronization. In a conventional fixed
architecture processor, if a processor A requires a predetermined
piece of data from an asynchronous processing element B, A would execute
the following type of code.

Process A

f

LﬁDisable Interrupts

1

Interrupt B
to request data

Data Ready Flagl

No

LA Read Input Port

g

Enable Interrupt AJ

Proceed
39

NSWC/WOL TR 76+175

Using the microcontroller, a single instruction
"INTERRUPT B-READ B's BUS"

can easily be implemented by connecting one (or more) of A's
arbitrary control lines to B's interrupt inputs, and another to a
tri-state buffer which, when Hi, connects B's bus to A's bus,
Process B (assuming it is also a microcontroller) immediately
(combinatorially) returns a WAIT signal before the rising edge of A's
clock, at which time A would latch in the data on the bus. The
WAIT signal freezes Processor A, polsed ready to read the required
data item. B removes the WAIT as soon as the data is on the bus,
and A latches the required data item. Numerous instructions been
eliminated, no output port is required, and the communication is
faster.

Much more powerful forms of interprocess communication can be
implemented. It is easy, for example to connect some of A's
control lines to implement instructions in Processor A which
commandeers (transparent to B) some or all the resources of B,

A could read or alter B's memory and input or output ports, or use
its arithmetic processor.

36

NSWC/WOL TR 76-175

EXAMPLE OF A DIRECT EXECUTING COMPUTER IMPLEMENTED WITH THE
MICROCONTROLLER

Figure 10 shows a minimum capability digital computer implemented
from several elements, including the previously defined microcontroller
module. The arithmetic capability 1s provided by existing RCA Type
4057 Arithmetic/Logic Units. The computer is a "Harvard Type"
machine in that memories for its program and its data are logically
separated. It operates by direct execution of programmer-generated
microcode, rather than by microprogrammed emulation of some virtual
machine instruction set, so the Control Memory containing the micro-
code is also the Program Memory. This approach provides the fastest
execution of the program, but the instruction set seen by the programmer
consists only of very basic operations. However, in this instance
the instructlion set approaches that normally found in the smallest
minicomputers, so that programming at the microcode level is not an
undue hardship. A vertical organization is used in the microcode,
so that each instruction is either a sequence control instruction
executed by the microcontroller or an execution type instruction
performed by other elements. Again this 1s similar to the instruction
set seen in small minicomputers. While this architecture has been
investigated primarily to determine the capability of the microcontroller
and the 4057 ALU to form a useful computer, it may form a useful data
processor in certaln small applications. The simple architecture
does, however, have several obvious limitatlions, the most severe of
which 1is its inability to compute or modify a data address. This is
a baslc requirement in any operations on data arrays.

Because the program and data memories are separate, there is no
necessary connection between the data word width and the instruction
word width. The data width in the figure is shown as arbitrary,
although the four-bit slice width in the 4057 would dispose one to
use some multiple of four bits. The instruction word width was
arbitrarily chosen as 16 bits. This choice, along with the
instruction format chosen, limited the length of the Program Memory
to 256 words and the length of the Data Memory to 128 words. These
could be expanded by increasing the width of the Program Memory word,
but they would generally be adequate for small processing problems.

The instruction set 1is basically determined by the instruction
sets of the microcontroller and of the ALU. The most significant
bit of the instruction word is used by the microcontroller to
determine whether the operation is a control or execution type.
The next three bits are decoded by the microcontroller for control
instructions and form Device Select Enable, Memory Cycle Enable,
and Read/Write Select control bits for the execute type instructions.
The next two bits select one of four test lines for conditional jump
instructions, and the remaining ten bits form an address field for all
control instructions. For execute instructlions the eight least
significant instruction bits are used for data memory address

37

H31NdWOD ONILNDIX3 103HIA V 40 3TdWVYX3 0L *Old

NSWC/WOL/TR 76-176

D34 INI
T TR
il LIVM |
1IVM 1n0
1o N
1531
ov
v
_ 1 2019 i
-$S3¥aav4 %2071 - R_u n«
AHOWIW (LS0M 1000] w« m«
391A30 wh_ﬁwls\n_(wc niv 40 AHOW3W B | oV 55
N X8ZL l1anN AINO e 1INN v ™
Viva av3y ILIYM viva avay [+ T0u1NOD o,
| - 9L X952 —{ . ouow g
pR—— — —1 LV €4
sN8 viva _l 8N3 X7
SINIT —
1831 — XdW
-
43002
-3a
e e e ——— —— —— —— ——

NSWC/WOL TR 76=-175

information, while the next four higher bits select the ALU operation
code. When the Device Select Enable is low, the four least significant
bits also select one of sixteen control bits for controlling I/0

devices. :

The useful instruction set resulting from this architecture is
shown in Table 3.

NSWC/WOL TR 76-175

TABLE 3
INSTRUCTION SET OF DIRECT EXECUTING COMPUTER

0000 XX XXXXXXX XK NOP

No operation is performed. Proceeds to next instruction.

0O0O01XXAAAAAAAAAA JUMP A

Unconditional Jump to location A

(001 0NNAAAAAAAARR K] JTLn A

Jump 1f test line n is Lo, otherwise go to next instruction.
n is a number from 0 through 3. The four test lines are connected
internally to tests such as Accumulator zero test or sign test, or to
discrete tests in I/0 device interfaces.

[0 10O 0OXXNNNNNNNNN N | : PUSH N

Push the number N onto the control stack and proceed to the
next instruction. Normally used to initialize a loop counter.

01 01 XXAAAAAARAR MR AA)] TIJ A

If loop counter non-zero increment counter and jump to location
A. Otherwise pop loop counter from control stack and proceed
to next instruction.

011 0XXAAAAAAAARAR K] JSUB A

Jump to subroutine at location A. Save current address plus
one by pushing onto control stack.

EEETERFTE R ENETERS OPGROUP

Any set of the following 5 operate group instructions may be
combined into one instruction by setting the corresponding bit of the
S fleld. 40

NSWC/WOL 'TR 76-175

T i T F Tt 222031017 INTE

Set Interrupt Enable flip-flop.

el 113 iRtz A0 2 INTD

Reset Interrupt Enable flip-flop.

0111 XEE LR iR 6007 8] POP

Pop word from top on control stack and proceed to the next
instruction. Usually used to remove a loop counter from the stack
when exit from loop occurs before count reaches zero.

0111 XXX R L XA X0 000 RETURN

Jump to return location in top word of control stack. Usually
used in conjunction with POP for subroutine return.

o1l 1x X3 X i 0o00 1 RAISI

Raises the interrupt wait line, permitting an interrupting
process to proceed.

B11X0000XXXXXXXX| NOP

No operation 1s performed. Proceeds to next instruction.

11010001DDDDDDDD, AND D

AND the contents of data word D to the accumulator.

H11X003 0XXXXXXX %] DEC

Decrement the accumulator by one.

41

NSWC/WOL TR 76=175

113120012 XXX % % &2 & INC

Increment the contents of the accumulator by one.

(271 A0 a0 L XXX LT] NEG

Negate the number in the accumulator.

111010101 0DDDDDDD D] SUBN D

Subtract the accumulator contents from the contents of data
memory word D and place the results in the accumulator.

11101011 0DPBDPDDD D ADD D

Add the contents of data memory word D to the accumulator.

11121010111 DPEDDDDOD] SUB D

Subtract the contents of data memory word D from the accumulator.

11L11 X1 000X XXX 5% vl SET

Set the accumulator to all ones.

11 11X10061TXXXX% X% X CLEAR

Clear the accumulator to all zeros.

(11011010DDDDDDD D] XOR D

Exclusive OR the contents of data memory word D to the accumulator.

42

NSWC/WOL TR 76-175
!
1
1011011011 D0DDBDDDOD| OR D
OR the contents of data memory word D to the accumulator.
111011100DDDDDDDD] LOAD D
Load the accumulator from data memory word D.
L1 1X1101X i3 %X F % LEFT 1

Shift accumulator left one bit.

(211%X31110X5XXX%%% RIGHT

Shift accumulator right one bit.

1111X133332 1271 ROTR

Rotate accumulator contents right one bit.

ll 1000000DDDDDDDD | STORE D

Store accumulator contents in data memory word D.

[10111100XXXXNNNN] INPUT N

Load accumulator from input device N, N, from 0 through 15.

101 00000XXXXNNNN] OUTPUT N

Place accumulator contents in output device N, N from 0 through 15.

"3

NSWC/WOL TR 76-175

DISTRIBUTION LIST

Commander
Naval Sea Systems Command
Washington, D. C. 20362
Frank Henry (0333)
W. W. Blanec (0333)
R. Schuetzler (663C1l)

Commander
Naval Air Systems Command
Washington, D. C. 20360
D. Rosso (AIR 370)
A. Stone (AIR 370K)

A. Pisano (A A

E. gegsgn fAiE gggO})
Commanding Officer

Naval Air Development Center
Warminster, PA 18974

D. Russo (2054)
J. Howard (205)

Defense Documentation Center
Cameron Station
Alexandria, VA 22314

Chief of Naval Operations
Washington, D. C. 20350
J. R. Blouin (NOP 325)

Copies

i

1
1

12

NSWC/WOL TR 76-175

DISTRIBUTION LIST (cont.) ;

Copies

Project Manager
REMBASS
Building 443
Fort Monmouth, iJew Jersey 07703 3
Commander
Naval Ocean Systems Center
San Diego, California 92132

R. Martinez (Code 4300) 1
Commander
Naval Underwater Systems Center
Newpert, Rhode Island C284C

€. N. Pryor /]
ADTC/AFATL
Fglin Air Force Base, Florida 32542

Dr. J. G. Constantine (DLJM) 1

