"AD=AO46 873 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OHIO F/6 9/2 i

A MODEL FOR ESTIMATING THE NUMBER OF RESIDUAL ERRORS IN COBOL P==ETC(U)
JUN 77 C E MARTIN
UNCLASSIFIED AFIT=CI=77-97




o

|

ADA046873

DDC FILE copy

A

MODEL FOR ESTIMATING THE NUMBER OF RESIDUAL

SRRORS IN COBOL PRCGRAMS

Cecil E. Martin

A Dissertation
Submitted to
the Graduate Faculty of
Auburn University
in Partial rFullfillment of the
Requirements for the
Degree otf

Doctor of Philcsophy

e r}_.LL. n
NOV og 1977 '
Auburn, Alatama Rt
HLUU L
June 7, 1977 B

DISTRIBUTION STATEMENT A

-'Appxoved for public release;
! Distribution Unlimited




s

UNCLASSIFIED :
SECYRITY CLASS'FICATION OF THIS PAGE (Whan Data Entered) §5 il * ‘v
READ INSTRUCTIONS
‘@ REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
ER 'lTGov'r ACCESSION of-o—re r—‘
\
AT M 4— c1=17-97|V '1
JU_TITLE (and Subtitle) _________ 93 s e Y coymhio
@ A Model for Estimating the Number of Residual
{ Errors in COBOL Programs) Dissertation

LR 6. PERFORMING ORG. REPORT NI/MBER

7. AUTHOR(s)

@ Cecilml'i:w. artinj

- PERFORMING ORGANIZATION NAME AND ADDRESS

8. CONTRACT OR GRANT NI/IMBER(s)

10. PROGRE
A

ELEMENT, PROJECT, TASK
APE u

v
A WORK UNIT NUMBERS

AFIT Student at Auburn University, \/
Auburn AL

11. CONTROLLING OFFICE NAME AND ADDRESS Z

AFIT/CI ( ] . R AGES =57 1
WPAFB OH 45433

139 ga.%es
4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CL ASS. (of this report)

Unclassified

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

8. YU EMSQSY\O e ASE AFR 190-17.
m\%’i\}&m APPROVED FOR PUBLIC RELE

L F. , Captain, USAF
pirettor of Information, AFIT

i

! 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverae aide iIf necessary and identify by block number)

.

fsei

-

/ 3
DD , 5k'5s 1473  €oiTiON OF 1 NOV 65 1S OBSOLETE UNCLASSIFIED

: ¢ -/ :Z Z W SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) i

1
4
4




A MODEL POR ESTIMATING THE NUMBER OF RESIDUAL !

ERBRORS IN COBOL PROGRAMS

Cecil E. Martin

Certificate of Approval:

. D. Irwin, Prdfessor e
lectrical Engineering Professor
Engineering

([ okal B AT

G. Cox, Pr@fessor B. D. Carroll, Assfciate
ndustrial Engineering Protessor, Electrical
Enginceering

oS e gl (T

Drs "Ke 8¢ COOk, Jra Paul F. Parks, Dean
Assistant Professor Graduate School
Electrical Eagineering




VITA

Cecil E Martin, son of Stephen and Nell (Folks) Martin,
Sr., was born April 13, 1941, in Kite, Georgia. He attended
Bartow and Kite Elementary Schools and graduated from Kite
High School, Kite, in 1959. In September 1959, he entered
Brewton Parker College and received the degree of Associate
in Arts in June 1961. Subsequently, he entered Georgia
Southern College in September 1961 and received the degree
of Bachelor of Science (Math Education) in June 1963. In
February 1964, he entered the United States Air Force. He
is currently a Major and his nrofessional title is Computer
System Design Engineer. While in the Air Force, he has
attended several Universities. He attended Midwestern Uni-
versity in 1965. In June 1967, he entered Georgia Institute
of Technology and received the degree of “aster of Science
in December 1968. He began graduate study at Auburn Universi
in January 1975.

He married Virginia (Ginger), daughter of Thomas

.. rles and Rae (Fried) Grabfelder in July 1965. They have

ty

two daughters, Diane Michelle and Lisa Ann, and one son, L SEERUION for . V//

Thomas Cecil.

BRANNO L7

JusTIFiSA 1

8y . .
DISTRIBUTION 2¥2" * 70y £

—_—

Dist. A AR, ci /L




s S beed e i wesd MRS R R O O e e

DISSERTATION ABSTRACT
A M0ODEL FOR ESTIMATING THE NUMBER OF RESIDUAL

ZRR0ORS IN COBOL PROGRAHYS

Cecil E® ¥Martin
Doctor 2f Philosophy, June 7, 1977
(1.S., Georgia Tech, 1968)
(3. S., 5eorgia Southern College, 1963)

151 Typed Pages

Diracted by H. Troy Yagle, Jr.

Th2 nost significant problem facing the computer

233ion tolay is manifested in two major complaints about

BEDE
syftwara: it is too expensive and unreliable. Most comput-

ar oroiassionals racognize the high cost as largely a syap-
=32 HZ th2 latter zomplaint. The high incidence of errors
in s>ftware is the underlying reason . for uanreliability.

Th2 numnber of arrors uncovered during the software life
sy>le2 ais 1 significant iapact upon the cost in terms of re-
s521cs25 (oersonnel and computer) needed to correct the er-
roars. Th2 correction cost is a function of when, in the
37ftwir2 lifa cycle, an error is found. Software errors
founi iuring the davelopment phase generally cost less to
socrast than errors which ocenr during the operations phase.
Tharefosr=a, it i35 necessary to detect software (program) er-
rors 13 2arly as oossible--voreferably bhefore the software is

iv




made operational. Also, it is necessary to predict the num-

ber of residual errors ia a prograa to determine if anl when
the program goes operaticnal.

Program structural characteristics metrics (internal
complexity) is a means of estimating the number of errors.
Thirteen unrelated characteristics metrics are used to de-
fine 7 local complexities-—coantrol flow, input/output, data
handling, computational structural design, interface, and
data use--which are predictors of the number of errors in
COBOL programs. Linear models for each of these metrics are
available for predicting softvare errors.

Models developed from these metrics can be used to pre-
dict the number of errors in COBOL programs. The "pest"
single variable model for predicting errors is the Control
Plow Coamplexity metric model. The "best" amultiple variaole
model for predicting errors is the cne that contains all 7

local complexity metrics. The latter model can be used vwaen

dealing with many types of programs that are developed by
different organizations. However, each organization saould
estimate the model parameters relative to error data rroam

its development projects.




ACKNOWLEDGEMENTS

Performing research of this magnitude and nature is a
very larqge undertaking. Success would not have been possi-
ble without the assistance of several people. Therefore,
special thanks is given to Dcnald Wright, Robert Ben and
Bill Eiseman of the Air Force Data System Design Center for

all their assistance in okttaining error data.

vi




TABLE OF CONTENTS

LIST OP TABLES‘.-.'-.........-....o..c.......-..... ix
LIST OF PIGURES.........-...C..‘-......-0.0---.-..- xi

I. INTRODUCT IONe e e coseccsososncsosnncnesesscsnccnsnene 1
The Higqh Cost of Software
The Software Reliability Problean
Definition
The Problem
Purpose
Survey of Related Research

II. SOPTWARE ENGINEERING CONCEPTSececcecscceacanesa 14

Introduction

Definitions

The Goals of Software Engineering

The Principles of Software Engineering
Software Metrics

summarcy

III. SOFTWARE RELIABILITY CONCEPTSccececevcccsssace 27

What is Software Reliability?

Reliability as a Measure of Software Quality
what is an Error?

Do Software Pailures Occur Randomly with Tinme?
Reliability Models

Hazard Function for Softwvare Failures

Introduction
Terminology Revisited
Project Descriptions
Project 1
Project 2
Project 3
Approach to Data Collection
Software Characteristics
Structural Characteristics
COBOL Characteristics Analyzer Prograa 3
summary of Available Data for Each Project

vii




S e e e e G e s dessd o Gemed Geesw eaes M s e BB BB N

F_

v. ERROR DArA ANALYSISC.......Ql.l..........l... 61

Introductuon
Analysis of Empirical Data
Ssummary of Reqression Analysis
Reqression Analysis Coacepts
Simple Linear Regression Analysis Results
Multiple Linear Reqgression Analysis Results
Conclusions

VI. A MEASURE OF PROGRAM COMPLEXITYecececcessceessss 81

Introduction

Measures of Program Complexity

Regression Analysis of Program Complexity Met-
rics

Conclusions

VIiI. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS<eesesesss 105
summary
Conclusions
Recommendations
REFERENCES...Q-......‘......Q-.........‘Q.‘......Q.... 110
APPENDICES
A. Hardware Reliability ConcCepPtSecasceaccsacnscassaas 116
B Summary of Project 1 CharacteristiCSeeweecaseses 126

C. Summary of Project 2 CharacteristiCSeeeccasces.. 128

D. Summary of Project 3 CharacteristiCSeeceseese. 129

E< Summary of Project 4 CharacteristiCSeecescecceee 131

F. Application to Software ReliabilitVeeeececveseaes 132

viii




—
.

LIST OF TABLES

O (00 ~ (o)) (8] = w ~n
. . . . . . . .

L N =
w NN = O

14.
15.

16.
17.
18.

19.

Data Availability for Each Project . . . . . . . . . . . . .. 39
Error Categories . . . . . . S i o o s s e e 43
Avaitable Farallelers . © v 2 & o s v 5 e w e w sl wowow s e 46
Structural Characteristics Definitions . . . « . « + =« 2 « « & 49
Project OQne’Data o & s ¢ ol ale s v e e e s e e 53
ProJect TWo 088 « « c ¢ v & o o0 & Simie v o« sle o m o & s 54
Progect Theee Hata o o o s e o ot T a6 it 55
Descriptive Statistics for Project One Data . . . . . . . . . 58
Descriptive Statistics for Project Two Data . . . . . . . . . 51
Descriptive Statistics for Project Three Data . . . . . . . . 60
Summary of Single Variable Regression Data for Project One . . 68
Summary of Single Variable Regression Data for Project Two . . 69
Summary of Single Variable Regression Data for Project

) o T i Tt s A i e R R SR LR NS, Ar ot B W b s 70
Summary of Significance of Regression for all Projects . . . . 72
Single Variable Models for Predicting the Number of

EPYors 1 CUBUL PrOgrams . « « v v 5.+ & v s w o o 5 v » o o & 13
Variables Selected for Models . . o « ¢« ¢ ¢« ¢ v s o s & o & 75
Final Lists of Metric Variables Selected . . . . . . . . . . . "
Multiple Variable Models for Predicting the Number of

Errors in COBOL Programs . . . . . . ¢ XA Th 8 A e 78
Summary of Regression Analysis of Reduced Set of Variables . . 80




20.

2l.

a2,

23.

24.

25.

26.

Summary of the Complexity Metrics Regression Data

for Praject 1 . . . o . . Sy Gy R e e R R T

Summary of the Complexity Metrics Regression Data

for Prodeet 2 . L o e Pl TR e o T e T R pe R e

Summary of the Complexity Metrics Regression Data

for Project 3 . . s oL A B s e B e T e
Summary of the Complexity Metrics Regression Data
flop:Prodect 4 o v ol e s et DR e AP S A O e
Regression Significance of Complexity Metrics Versus

Numbav 0 f  EBraRS 0 o e e o o s e o s e e e e
Complexity Models for Predicting the Number of Errors

i GO B P RO G A S e i Tl T o Ul e eliiie otk ka Ral fat st e e e i
Total and Normalized Complexity Models by Project . . . . .

87

88

89

90

91

92
94




10.
§ P
12.
13.
14.
15.
16.
17.

18.
19.

Hardware/Software Cost Trends
Life-cycle Cost Breakdown

The Price of Procrastination

LIST OF F

IGURES

................

------------------

Input Space Sampling Provides a Basis for Software

Reliability Measurement

Software Reliability Oriented Life Cycle Plan . . . . . . . .

Characteristics Tree .

Failure Rate Changes as Errors are Removed
Hardware vs. Software Failure Curves

Exampie Output from CCA

-------------------

Percentage of Error Types for Projects 1and 2 . . . . . . .

Plot of
Plot of
Plot of
Plot of
Plot of
Plot of

Plot of
Project

Plot of

Plot of
Project

Control Flow Complexity Model for Project 3 . . . . .

I/0 Complexity Model for Project 3

the Data Use Complexity Model for Project 3 . . . . .

the Computational Complexity Model for Project 3

the Data Handling Complexity Model for Project 3

the Interface Complexity Mcdel for Project 3

the Structure Design Complexity Model for
P e R e | e S e e o e

the Total Program Complexity Model for Project 3

the Normalized Total Complexity Model for

I

xi

it i doab dibd e

12
16
17
33
34
51
63
95
96
97
98
99
100

101
102

103




1 l 20. Plot of the Normalized Control Flow Complexity
‘ % Model for Project 3 . . . U e e e b mid s eite e el 104
| § l 21. Component Failure Rate as a Function of Age . . . . . . . .. 120
: l 22. Exponential Distribution. . . . . e e e ey 121
7 f 23. Weibull Density for B=1 and B=2 . . . . . . S T ol Tontas e I 124
E% I 24. Failure Curve for Program 4 of Project 2 . . . . . . .. .. 136
| 25. Reliability Curves for Program 4 of Project 2 . . . . . . . . 137
}
{
) 1 4
f
1R Xii
bl . g
- : 3
1k »




s

ST

|

IR Y s i

i N a i : D " sl
i i it o i o v ani

I. INTRODUCTICN

The primary consideration in any system is that it per-
forms properly whenever the user wants to use it. For com-
puter systems, consisting of hardware, software and man-
machine interfaces, the most widely accepted and meaninjful
measure of performance is total system reliability. Total
system reliability is defined as the probability that every
subsystea perforas as intended for the necessary time and
under the conditions of customer use. Thus, there is an ob-
vious need to measure the reliability of the software sub-
system as well as the hardvware and the man-machine subsys-
tems. But the most significant problem facing the coaputer
profession today is a software problem that is manifested in
tWwo major complaints: software is too expensive and soft-
vare is unreliable. Most software professionals recocgnize
the former problem as largely a symptcm of the latter. Al-
though this paper's main focus is primarily on the probolem
of unreliable software, the problem of high cost is an
indirect issue because of its relationship to unreliability.
Therefore, to put the problem of unreliability into proper
pecrspective, the problem of high cost will be discussed
briefly. This discussion will stress the important role
that reliability plays in increasing the cost.

1




'F;_‘ Sed el ed el eed Gl el el Sae B R T A R

The High Cost_ of Software

There are several reasons why software is soO expensive.
The rest of this section willi discuss a few of them.

Computer systems are becoming more complex as faster
and more versatile hardware evolves. The resultant sophis-
ticated uses of the computer systeams demand that programaers
develop reliable software to drive the computer systel.
Additionally, the man-machine interface which is generaily
handled by software is becoming more and more sophisticated.
Consequently, software is beccming more and amore coamplex
because of the hardvware and the man-machine interface sub-
systems. This increases software development cost.

As we continue to automate processes which control our
life-style--bank accounts, air traffic control, medical sys-
tems, and defense systems--we have to trust more and more in
the reliable functioning of software. ©Nowhere is this more
evident than in the military where computers are being used
increasingly as the heart c¢f sophisticated weafpon systeams
such as the B~1 bomber or a real-time command and contrcol
system. They control their environments by receiving Jjata,
processing it and returning results fast enough to affect
the functioning of their environments. Reliable functioning
of softwvare is also critical in an on-line banking systen
where a software error (failure) may result in a loss of

thousands of dollars. To develop reliable software, we




F
t
J
I
t
I
:
!
I
!
!
I

3
spend more and more resources on quality control during
software development, thus, increasing the cost directlye.

Software is a big business in the U. S. today. The
annual cost of software is approximately 20 billion dollars.
Its rate of growth is greater than that of the economy in
gqeneral. Compared to the cost of hardware, the cost of
software--developaent and maintenance-—-is escalating along
the lines in Fiqure 1 [ 1] Studies [2,3] indicate that
software demand over the years 1975-1685 will grow about
21-23 percent per year. This is considerably faster than
the growth rate in software supply at the current estinmated
growth rates of the labor force and its productivity per in-
dividual which has a ccmbined growth rate of apbout 11.,5-17
perceat. Because of the demand and a shortage of experi-
enced programmers, error prone software will be developed.
Poor software reliability will be revealed by an excessive
number of software errors resulting in higher maintenance
cost and customer dissatisfaction.

Errors discovered after the software is operational
will impact greatly upon the cost of software because of
computer resources and manpover needed to correct tae er-
rors. About 70 percent cf today's software dollar goes into
software maintenance, and this number will likely grow [4].
This percentage varies by organizaticn. Maintenance cost
versus development cost for different organizations is
depicted in Fiqure 2 [5]. DeRose [6] estimates that it

costs the Department of Defense $75 an instruction to devel-




N

N

\

igure 1. Hardwar

1970
or

e/Software

Cost Trends.




5

P D e T L s b tem +4
| | |
jorqanization | Maintenance Development i
| | |
e s | i
| |

General Tel. [Fr e ey S SFERa e e 1
and Electric l.'.l.l .....O...........l.////////////////’
=== = = TEESsasS e e |

| ]

USAF Command P R i S S i S e i |

G G G S GwD C— = S — G e S E— — > G

and Control 1

USAF Command
and Control 2

[ S $——— ——— ——e— e ————— B - +J

0 25 50 75 100
Percent of 10-Year Life-cycle Costs

Pigure 2 Life-cycle Cost Breakdown.

i




6
op aviation software, but that the maintenance cost is a lot
more. On one particular aircraft ccmputer, maintenance cost
ran as higqh as $4000/instruction [7 ].

Proposed solutions to the cost problem invariaply in-
volve an attempt to raise prograamer productivity by de-
vising tools and techniques to allow prograammers to wWork
more guickly. But it should be obvious that the higha cost
of software is largely due to reliability problems. Cost 1is
not usually lovered significantly by increasing programmer
productivity if the latter is a measure of the speed ot
designing and coding the proqram. Depending on the situa-
tion, attempts to increase programmer productivity can in-
crease cost. The best way to sharply decrease software cost
is to reduce maintenance and testing cost by devising
techniques to produce reliable software. This is the pri-
mary motivation for a software reliability theory. The next

section will discuss the software reliability problem.

Definition

Software reliability is the probability that a given
program operates correctly, without an error, for some tiae
period on the machine for which it was designed. Correctly
means that the proqram performs as the ultimate user waats

it to.




|
1
1]
¢

i gl

The Problen

The high incidence of errors in sorftware is the
underlying problem of software reliability. It would bpe
fortunate if the well-developed thecry of hardware reliabii-
ity (see Appendix A) could be used to predict or enhance tae
reliability of software. Unfortunately, this is not tae
case since hardware reliapility theory is based mainly upon
the statistical analysis of randca and wear-out tailures of
components with age. in contrast software is not subject to
vearout failures once it is debugged.

There are other important differences petween hardware
and software which make the hardware reliability tecanniques
difficult to apply to software. The elementary componants
of software are instructions. They do not wear, break, or
deteriorate. All software errors are in some sense design
or implementation errors [3] which are comparable to burn-in
errors in hardware. When errors are found, they can be cor-
rected and are no longer present in the programe. In Jener-
al, programs are more complex than corresponding hardware
logic. Large proqgrams are frobaoly the most complex objects
built by man. Some of them have aillions of instructions.
The complexity of these programs is so great that it is not
well understood what the program can or can not do. Final-
ly, there is a lack of a scientific basis for understandiny
the nature of programs. In contrast, the scientific basis

of most hardware elements is well known.

T T il s




UCpose

Fiqure 3 shows a summary of current experience on the
relative cost of correcting softvare errors as a tunction of
the software life cycle phase in wahich they are corrected
S]] For obvious reasons, it is desirable to predict tae
number of errors in a software systea at the earliest aoxzent
in the software life cycle (development and operational
phases). Unfortunately there is no proven technique in
practice todaye.

The research done to date suggests the hypothesis that
profiles of actual program characteristics (internal com-
plexity) are good predictors of the number of errors in a
program. This paper will present the results of an analysis
of error data to determine if actual rrogram characteristics
are predictors of the number of errors, prorose a model for
predicting the number of errors in CO30L programs, and dis-
cuss the application of this model to software reliability.
The rest of this Chapter and Chapter II and III contain
background information only. The reader is directed to
continue reading this report at Chapter IV if he is already
familiar with softwvware engineering and software reliaoility

concepts.

—_—— et ===

Survey of Related Research
Over the past ten years, several investigations in the
area of softwvare reliability and phenomenology have been

undertaken., As a result of these investigaticns, reliapili-

RS




UOLIRUL]SEUIONd JO 3DLUud 3yl '€ 34nbiyg

@3123130 ¥YOUY3 HIOIHM NI 3SVHd

1S31 1831
NOILY¥3dO 3ONVLd3DOV LN3NdO13A3a 3002 NOIS3a SLN3W3VINOIY
T T T T J ‘ dis
= —12°0
ﬁ —s0
: T =
o (o) §
150D
T JAILVIIY
= —S
%02
= AJANNS MYL —- NVIG3IN —01
%08
|
L —0§
1 1 | 1 1 001




10
ty models which attempt to descripne the failure of software

have been proposed and discussed. These mougls were derived
from hardware reliability and have not been very successtul

« This failiure is primarily founded on two reasoans.

One, there are fundamental differences between software
phenomenology and the hardware-oriented assuaptions on which
the models vwere tased. The failure mechanism of a hardware
coaponent is by chance or by comronent wear-out whereas tae
failure mechanism of a program is a function of tne nuaber
of remaining errors in the progran.

Two, the fundamental statistical issues which eamanate
from the use of these models have, by and large, been
ignored. These issues pertain to model verification, tae
development of a procedure which formalizes the testing and
debuqging of software, and parameter estimation. In partic-
ular, the success of the models depends largely on tae
estimation of the original number (N) of errors in softiware
and the constant of proportiocnality (K) used in determining

failure rate. Of the several methods used, the method of

maximum likelihood gives the most reasonablie estimators for
N and K {8-10]. However, this method does not yield satis-
factory results [ 10].

Models are being developed which explain previous error

histories in terms of appropriate program phenomenologye.

These models are based on a view of a program as a maoping
from a space of inputs into a space of outputs; of prograna

operation as the processing of a sequence of points in the




E
1
%

l 11

input space, distributed according to an operational pro-
I file; and of testing as a sample of points from the input
space, [ 11,12] (see Figure #4). This approach can be used
conceptually as a means of appropriately conditioning time-
driven reliability models [S]. But, we still are not abie
to truly estimate the number of errors in software.
? Additional insights into reliability estimation have
é come from analyzing the software errors relative to actual
; characteristics of prograams. Currently, it seems that a
measure of program complexity offers the best estimator for
the number of residual errors in a program. Akiyama [ 13]
concludes that the number of program errors is strongly cor-
related to the number of conditions plus the number of calls
to other programs rather than proqgram size. Lipow and

} Thayer [ 14] suggests the interesting hypothesis that the

h number of program errors can be best predicted by a measure
of the internal complexity of programs. They, using eapiri-
cal data, concluded that the anumber of software errors found

in programs written in JOVIAL could be predicted by tae nua-

ber of branches, a measure of program internal coaplexity.

Herndon and Lane [ 15] developed an approach to the quantifi-
cation of software errors as a functicn of amodule complexi-
ty. Nodule complexity is based upon module composition.

The complexity measure was shown to be a useful managerial




JUBWAUNSEIW ALLLGRL|3Y B4BMIJOS

J0j Ssiseg e SapLAOud Bul|dwes adeds 3ndul " dunbiy

L,

® ® ]
N
BTN £660 = —— = (NNY LX3N 3UNTIV4 ON) 80Hd = UNIHL e
® [ ] L] ® 2 e z
L] e O
TR $34NTIV4 (€ ‘AVS) W NIVLEO ‘SLNdNI 000L IHL SS3J0Hd ®
e o
. e R S1NdNI 3AILVLN3SIHJIH ‘WOANVY (000L ‘AVS) NJDId
(]
o alehs oS YOLVWILS3 Q3SVIANN JONVIHVA-WNWINIW
° s & Jr & 8
ooo o o

MBS\ 4 1A A e i T T - st




T

O T ——_

B

13

tool. Program components with high complexity indicators
should receive more attenticn than cnes witn low complexity
indicators.

There have been several other investigations into pro-
gram coaplexity that did not address the error pébblem.
These are briefly summarized below. Flynn [16] suggests
that the number of nodes in the smallest path-isomorpaic
program scheme may be a useful measure of inherent prograna
complexity. Sullivan [17] proposas several complexity
measures--c1, c2, c3, pl1 and p2. The c1, c2 and c3 weasures
deal with control flow graphs of prcgrams. The pl1 and p2
measures deal with data flow graphs of programs. This re-
port pasically concludes that the number of conditicns plius
1 is a coaplexity measure of the ccntrol flow of a progranm.
McCabe [ 18] develops a grarph-theoretic complexity measure--
the nuamber of conditions in a program plus 1. He illus-
trates how it can be used to manage and control prograa com—
plexity. Additicnally, he proves that complexity is inde-
pendent of proqram size. It is appropriate at this point to
stress that most all of the software reliability models
enploy the program size. This may be one of the reasons why
the models have not been very successful in modeling the

failure rate of programs.

g
i




et ik

|

i e At v A

_,_‘.

A O O AN AN

ks o o A N

II. SOFTWARE ENGINEERING CONCEPTS

Introducticn

The TERM "software engineerinqg" was made popular by two
NATO conferences in 1968 and 1969 [ 23,24]. Since then the
development of software has evolved into an engineering dis-
cipline involving a multiplicity of specialized brancanes--
Requirements Engineering, Theory of Program Structures, Pro-
gramming Methodology, Software Reliability, Software Project
Management, etc. This chapter will briefly discuss those
concepts relative to estimating the number of residual er-
rors in progranms.

It is perhaps best to view this chapter as an attempt
to identify the underlying ccncepts of software engineering
in a form that permits the main issues of this paper to be

better understood.

Definitions
Software includes not cnly computer programs, but also

the associated documentaticn required to develop, operate,
and maintain programs. The generation of timely documenta-
tion is an integral part of the software development process

[5,25]7.




T

15
Software Engineering is the practical application of
scientific knowledge in the design and construction of com-
puter programs and the associated documentation required to
develop, operate, and maintain them. This definiticn covers
the entire software life cycle (see Fiqure 5), thus iaclud-
ing redesign and modification activities which are often

called "software maintenance" [5].

The Goals of Software Engineering

There are four fundamental goals of software engineer-
ing: modifiability, efficiency, reliarility, and understand-
abpility {261. Boehm [27] provides a larger list which ae
calls characteristics of software quality (Figure 6). In
what follows, this paper addresses some of these iarortant
goals, those considered basic in nature.

Modifiability implies controlled changes in which some
parts are unchanged while others are altered, all in such a
way that a desired result is obtained. Modifiability is
difficult to achieve because changes coccur for many reasons.
For example, vwhen transferring software té a new computer
or operating system, it is desirable to keep invariaat the
logical effects of the system, limiting changes only to nec-
essary machine-dependent aspects. Changes are also required
to add new capabilities, correct errors in the program, and
improve software performance. Different agproaches are nec-
essary to satisfy these.different types ot modifiability

261




.. ueld 3194 3417 pajuataQ A3L|lqeL|dY d4em}jos G dunbLy :

| M3IIA3Y SINIWIHINDIY
” SNOILVINWIS
A SASITNI3IHD

$7000104H4
NOILYOITVA SINIWIHINOIY

NVId 3ONYNILNIVIN
ONY SOHVONVILS

NVId NOLLYOITVA NOIS3Q

i , V4YILNI
7/ NOILVAITVAIY $30viHIL
VIHILIYD

JONVNILNIVY
ANV
SNOILYH340

S$30HNOS3H

ST0H1INOD
4531 NOILVAITVA
SITNA3IHIS

16

SNOILVY3403ud : SILLIAILDY o
Wy y

aNv 1531 1531 SNV1d VO ‘ALINIBVIT3Y
1viNIWJ013A3a

ALITBYTIVAY e
oNng3aq
ALITIBYIN3YE o

anNVv 3002
NOILLVAITVA ISYHd NOISS!'W HOV3 HO4
SAIN3IWIYINODIY ALITISVITIY

v

NDIS3Q
031v13a JYVMLI0S ONY WILSAS
NOILVQITVA

1 4

> NOIS3a A.Iu

AYVYNIWITIYG -
. NOILYAITVA

— > SIN3IW3IHIND3IY _
IYVYMLIOS

\ NOILYOITVA

h 4

o] SIN3IW3¥IND3Y
W31SAS




e B

“93J4] SOL3ISLud}dRJARY) 9 BunbiL4

SONIIW

| | | _ | | | I T | 1
iy _ _ _ | _ ! ! ! | ! 1,
| _ _ | _ ! _ ! “ ! _ !
_ | | _ _ | _ “ : _ | [
| b | m‘ | W | m | |
Alnigy Al sani] || Siraal ssin| | ssanaanvol atnig | | ANa ADNI san | |3aoNaac
=IN3WONY =109 | | -3515M80D ._..u%h ~a3n1on¥1s =NAWWOD | | -155320v oina| |-sswoa | A7) i3m0 -uummzn"
4 - R <
ALNISVINGOW ALNISYGNVIS¥IANN ALNISVLSIL oz._ruuﬂrwzu ADNIIDIAI ALNISVITY ALNIEVINOE
5 :
A
ALNISYNIVINIVW ALDILN SI-SY 1
ALNIN TVINID
E - e e " — Py Pt e -t -t ol s |

B v v




18

Additionally, modifiability implies not cnly the
ability to have an adaptable evolutionary design, eamploy
standardized software building-blocks, tune for performaance,
etc., but also the ability to maintain project schedules and
budgets. There has been much progress in achieving this
gqoal within the past ten yearse.

Efficiency, defined as the optimal use of computer re-
sources by a program, is a much abused goal. Primacily this
is because it is prematurely assigned a high priority in en-
gineering tradeoffs. Efficiency should be treated within
the context of other issues. For example, achieving modifi-
ability can provide the basis for meeting efficiency goals
during the maintenance phase of the software life cycle. In
addition, insiqhts reflecting a more unified understanding
of a problem have more impact on efficiency (via aostraction
and uniformity) than any amount of "bit twiddliag" within a
faulty structure. In general, the efficiency goal does not
dominate, as reliability and modifiability, the practice of
software engineering [26].

Reliability is an important goal which is much ian vogue
today. Reliability is concerned with ccnception, design,
and construction as well as failure in operation or perfora-
ance. Unlike efficiency which is often prematurely applied,
reliability is more often considered too late in the soft-
ware life cycle. Since reliability can ounly be built in at
the beqinning of the development cycle--it cannot pe an add-

on at the end--it is a primary problea to be solved in any

]
g
3
3
3
:
g
|
i




R T

19

software system. Hence, reliability has a crucial effect on

software engineering practices [26). Because of its iampor-

Understandability is the final basic goal which exerts

a stronqg influence in all aspects of software engineeringe
In particular, it is not a rproperty of legality. It is,
therefore, much more important since the entire conceptual
structure is involved [26,27 ]« Also, in any circumstance an
acceptable level of understandability either is or is not i

' tance, Chapter III will be devoted entirely to it.
l present. Thus, there is no middle ground. Although under- J

Snwms

standability is a prerequisite to reliability and aodifi-

ability, it also draws attenticon to an important bacrrier to

it--complexity [26 ]« 4anagement of complexity is a crucial

part of software engineering methods, and the need

to manaqge complexity arises from the goal of understandabil-
ity. The only way to achieve understaandability relative to
an inherently complex system is to impose an appropriate
structure and organizaticn on the software system.« A3 such,
the structure must be represented in a clear notion that
permits the different translations (requiremeants, design,
source coding, object coding, and documentaticn) to bridge
the gap between the actual system and an understaudable rep-
resentation of it. Thus, achieving understandaoility

depends as much upon the software engineering tools such as

compilers as on the methods such as structured programming

[26].




20

Other gqoals such as portability and testability are orf
lesser importance than the ones discussed above. Boehu
[27,23) discusses all of the above goals as characteristics

of quality software.

The Principles of Software Engineering

The principles of software engineering are modularity,
abstraction, localization, hiding, uniformity, coupleteness,
and confirmability. These principles are applied in various
combpinations throughout the fundamental software life cycle
{see Piqure 4) to achieve the desired goals discussed abpove
[5,251.

The decomposition of a system [29] depicts the prograas
or modules of the system organized into a structure by the
relationships (interfaces) among them. The seven princi-
ples, singly and in combination, are used to determine and
control those relationships [26]. They are used as decision
criteria to ensure that the resulting decomposition attains
the goals of the software systeme« Thus, each principle
deals with some aspect of the relationships-i.e., the
interfaces amonqg the modules or programs. The rest of tnis
section discusses each principle separately.

Modulacrity deals with the properties of a hierarchical
software structure. It has been given various definitions
by several authors [30-36)]. Basically modularity deals with
how the structure of an object can make the attainment of

some purpose easier. 1In essence, modularity is purposeful




B Riantabis e o B R

A TP WIS R TT IR o= ST

SIS ——

-

21

structuring [29 ). Therefore, the principle of modularity is
made concrete by explaining how certain constraints on the
structure of systems can make it .easier or harder to achieve
some goal such as modifiability, efficiency or reliability.

Imposing constraints on structures is the essence of
applying the modularity principle in sotftware engineering
[26]e PFor example, top-down structured programming [ 36]
which forces programmers to make expliicit the conditions
under whicn progqrams are designed and coded can help ensure
understandability and prevent errors [26].

It may be possible for a given program to satisfy all
goals simnltaneously. A program may have one structure if
modules are constructed according to cne rule (wmodule
strength) and a different structure if a different rule
(module coupling) is considered [4,37 ].

Abstraction is a very pecrvasive principle [34,21].
Despite the existence of thé above parpers, no practical dez-
inition of abstraction exists. However, most researchers in

‘
this field agree that the essence of abstraction is to ex-
tract essential properties while omitting nonessential
details. Hierarchical decomposition in the form of levels
shows abstraction in its best form. Each level or the
decomposition shows an abstract view of the lower levels
purely in the sense that details are subordinated to the

lover levels [26]. The top level expresses the prograa in

i




22
terms natural to the originator of the task while lower
levels express comnitments to specific ways of realizing the
terms of the higher levels [39].

when combined with the principle of completeness, ab-
straction ensures that a given level in a decomposition is
understandable as a unit without requiring either knowledge
of the lower levels of detail, or necessarily how it partic-
ipates in the system as viewed from a higher level. As
such, this principle is employed on the one hand to obtain a
description of some level of the system which could be real-
ized by any of several implementations, and on the other
hand to give a description of one part of a system which
could be used in many other systems requiring the same com-
ponent at that level of abstraction.

Abstraction interacts strongly with the purpose
underlying any particular decompositicn. Unless it is con-
bined with the principle of modularity, abstraction is of
little practical value. When employed to achieve the goal
of understandability, each decomposition level while
presenting more and more detailed views of the system aust
do so in terms that are understandable to the intended user
[26].

Localizaticn is concerned with physical proximity.
Things must be brought together in one place. Thus, the
localization principle deals with physical interfaces,
textual sequence, memory, etc. The other principlies can

interrelate the localized things to serve specific purposes.




23

Logical and physical records as well as pajed memories
are exaaples of localization. Also the avoidance of GOTO's
in structured prograaming is an aprlication of localization
to control structures which simplifies confirmability and
enhances understandability [ 26].

The Hiding principle, as discussed oy Parnas [ 29], 1is
used as the major criterion for a decompositicn into
modules. Although it is not the same, it is related to the
idea of postponing binding decisions in top-down progranm-
ming. The purpose of hiding is to make visible only those
properties of a module needed to interface with other
modules and to make inaccessable details that should not
affect other parts of a system. Abstraction assists in
identifying details that should be hidden. Basically,
hiding is concerned with access constraints [ 29].

Uniformity is also an important principle. Since it
ensures consistency, it is an obvious principle to apply in
software engineering. It is applied to notational matters
to vield notation (documentaticn) that is free of contfusing
and perhaps costly inconsistencies. When conbined with the
abstraction principle, uniformity implies a notation taat
pernits arbitrary mechanization of the internal detailing of
an object (the notation dces not ccnstrain one's choice of
implementation). Also, when the hiding principle is added,
the result is a notation that does not permit several imple-
mentation choices and also ensures that no unnecessary

details of specific implementaion are revealed by the nota-




e M R NS NS & 2.

24

tion. Basically, uniformity is the lack of inconsistencies
and unnecessary differences [26].

Completeness is another obviously important principle.
This principle ensures that all the essentials of an ab-
straction are explicit and that nothing essential is left
out. Every detail does not have to be shown, but the set ot
abstract concepts must cover every detail.

Wwhen completeness is applied to notational macters, it
requires that a notation provides a means for saying
everything that one wants to say. dhen it is combined with
abstraction, completeness implies that a notatioa should be
concise, permitting the suppression of invariant details in
favor of highliqhting the changeable details. Additionally,
completeness, when combined with uniformity and abstraction
and applied to the goal of efficiency, allows programmers to
select different implementaticn mechanisas to tune a sys-
ten's performance without having to change the form of any
subroutine call [ 26].

Confirmability is a principle that ensures that iafor-
mation needed to verify correctness has been explicitly
stated. This information is used for finding out whether
stated goals such as reliability have been achieved.

"Applied to design issues, confirmability re-

fers to the structuring of a system so it is

readily tested. It must be possible to stia-
ulate the constructed system in a controlled
manner so its response can be evaluated for
correctness. Applied to notaticnal matters,
confirmability means that a notation should

require explicit specification of constraints
that affect the correctness of a design or iam-

e A s i ks il ._“L_,.,A:‘

R Bt AP A I 05t T A s B




25

plementation (e.g., data declarations that

specify range of values and units of value

as well as mode of representation). Applied

to the practice of software engineering, coa-
firmability refers to the use of such metaods

as structured walk-throughs of design, egoless
prograaming [ 38), and other methods that help

to ensure that nothing has been overlooked." [ 26].

Software Metrics
The result of effective software engineering is the
production of a progqram that meets the regquirements
(assuming the requirements are accurately stated) of the

user. But, how can software be measured so it can be i

compaired aqainst specified goals of the user? Currently, q

measures of software attributes seem to be an answer.
The term "metric" by definition means a standard of i

measure. A software metric is defined as a uwmeasure of the

extent or deqree to which software fpossesses and exhibits a
certain property or attribute [27,28,40]). Software metrics
is discussed briefly in the following paragrapns. Chapter
IV will concentrate on the metrics applied to COBOL source

code as a measure of program comgosition.

It seems obvious that the sotftware profession is at the
point of moving from a haandicraft into an engineering indus-
try. There have been enough large failures in software pro-
jects to motivate us to acquire full ccntrol over the soft-
ware technology. To be successful and have full control, we
must be able to recognize and measure all critical factors,
and not simply the easily available ones, such as space and

time consumption. Software metrics is concerned with aeas-




26

uring all factors, simple and critical, related to software.

i*.

In particular, measures relating to the use of human talent
resources are of major interest because of its scarcity
today, compared to the relatively cheap machine resources.
Also, measures related to reliability are becoming more and

more important as computers are increasingly used for cru-

cial functions [40]. There are many other software ametrics
(see Fiqure 6) such as maintainability, portability, under-
standapbility, etc., but this paper is concerned with measur-
ing one characteristic--internal complexity of COBOL pro-

grams. These metrics will be discussed in detail in chapter

4.

Summary
There are many aspects of software engineering. The
intent of this chapter has been to focus the underlying
goals and principles of software engineering into a cohereat
framework for the readers of this paper. Software metrics
is applied to determine to what degree a certain attribute

is present in software.




S

III. SOFTWARE RELIABILITY CCNCEPTS

What is Software Reliability?

The most significant problem facing the software pro-
fessional today is unreliable software. This is the reason
for recent emphasis on developing a software reliabdility
theory. As previously defined, software reliability is tnae
probability that a given program operates correctly, without
an error, for some time period oan the machine for which it
vas designed. Software reliability is thus a function of
the number of errors in a frogranm.

Reliability is not an inherent property of a progranm;
it is largely related to how the program was designed, con-
structed, tested, and operated. The word probability in
the definition actually represents the probability that
there are no errors in the program given a valid input from
its input space. At times it is simply used as a qualita-

tive measure of the lack of errors in a program [ 4 ].

Reliability as a Measure of Software Quality

To provide a meaninqful assessment of software quality,
quantitative methods of evaluating software are being devel-
oped. Until recently, quality assessments have been subjec-
tive evaluations of software based cn program deficienciese.

27

——_"

s s




28

However, subjective evaluations for software are not con-
sistent with the use of the metnodologies used to measure
the quality of hardware. For complex computer systeas,
consisting of hardware, software, and human interface subp-
systems, the most meaningful measure of quality is total
system reliability. As such, the most meaningful measure of
software quality is the reliability of the software subsys-
tem. If software reliability is not explicitly stated it
must be determined from the specification of the total sys-
tem. A study of the total system reliability and cost-
benefit trade-offs will determine the reliability apportion-
ment among the hardware, software and human operated subsys-

tems [41).

What is an Error?

Although software reliability is the most appropriate
measure of software quality, there are terminology problenms
because the meanings of such words as software failure and
software errors are not entirely obvious by analogy with the
corresponding hardvware reliability concepts which are well
defined. A software error is present when an input is made
or a command is given and the program does not respond as
the user expects it to. A failure is an occurrence of an
error. A failure may be manifested in many ways. A com-
plete stoppage of the program may or may not OCCur.

Detection of failures is, to a large extent, a subjec-

tive decision which must be made by the users or the test




29
pecrsonnel. Hopefully, this decision will be made on the
basis of objective criteria such as performance specifica-
tions. In actual practice, failure detection depends on a
user's observation of an error, so, in effect, a software
failure is what a user says is an error.

After failures are detected a prcgrammer must analyze
the program and locate the causes of the failure. Basically
all errors are design or inplementaticn errors. Logical or
clerical errors in coding may be found to be responsible for
producing the incorrect results. Also the proqrah specifi-
cation could be in error. When errors are located, action
is taken to correct the errors to prevent recurrence of the
failures. The correspondence between software errors un-
covered and software failures detected is not necessarily
one-to-one. Many errors may occur without a failure being
detected, and a failure may be a result of several errorse.
Also, a software failure may be rerorted that is in fact no
software failure at all, but rather a user or hardware defi-
ciencye.

Failures differ with respect to their iapact on tne
mission of the software. Severe failures may result in a
failure of a mission, while less severe failures may only
cause aqqravations or limitations which have little effect
on the overall mission of the total system.

The reader, if he has written a large program, should
now be able to grasp the elusive nature of software reli-

ability. Sottware errors are not an inherent property of




30

software. Errors are basically human mistakes and wve can
never expect to find them all--reqardless of how well ue
test the programs. But, we can measure or predict the num-
ber of residual errors so we can decide when tne software

has reached an acceptable reliability level.

Do_Software Failures Occur_ Randomly with Time?

——— ——m e LSS

Unlike hardware, there is no physical mechanism which
generates software failures. When all errors are removed,
the software is 100 per cent reliable and will remain so
forever, provided no program changes are made. What then |

{
accounts for the randomness of software failures? !

Different input combinations result in a different re-
sponse from the software. The paths traversed within a
software proqram depend on the input combinations. Each
path can be thought of as containing fossible software er-
rors waiting to be discovered. Without correction, the saae
errors will occur each time the same logic path is executed.
If the errors result in an observable software failure,
the given failure can be reproduced at will, or it can be
avoided by user control of the input combinations. There-
fore, software failures are functions of the input
combinations-~-not random functions of time. However, in
reality, input combinations are chosen in a scmewhat random
fashion, and the resultant effect is that errors are un-

covered and failures are observed at random. It is with

i
:




—————

31
this meaning that we talk apout the random occurrence of

software failures [41].

Reliability Models

The most important unkncwn of software reliability is
the number of residual errors in a program. If an estimate
of this number were available during the testing stages it
would help determine when to stop testing. Also if we knew
the number of remaining errors in an operational prograam we
could estimate the cost of maintenance and estavlish a level
of confidence in the progqram. Other related attributes for
which estimates are desirable are the reliability of the
program and the mean~time—to-failure of the program. deas-
ures of the program's coamplexity would be useful to estimate
the number of errors and to judge the quality of the design.
If software reliability models were available that would
model software failures, then one could deal with the
unknowns of software reliability [4].

There are 3 types of softvware reliability models peing
evolved today. A number of sortware reliability models are
discussed in references { 42-47]. These models are closely
related to hardware reliability theory and contain signifi-
cant assumptions about the underlying probability distribu-
tion of software failures. References [48-56] are reli-
ability studies which contain evaluations of these models
relative to specific error data. These models seem to apply

only to specific situations and do not have general applica-

R




32

tion in any environment. The next set of models, discussed
in references [ 11,57-59 ], produce similar resuits, but are
not based on hardware reliability theory. The last set of
models is concerned with predicting the complexity of a pro-
qram [ 14-221. The rest of this chapter will discuss tne

hazard function for software failures.

We shall assume that a larqge program is resident in a
computer and is servicing a steady stream of dissimilar "ia-
puts". We shall assume that these infputs enter the prograa
at arbitrary points in time, and that each such entry can be
looked upon as an opportunity to detect an error in tne pro-
gram. Thus, we assume that software errors are detected in
a random manner.

Software dces not age with time, therefore, it is rea-
sonable to assume that its failure rate is constant between
points in time at which changes are made. Every tiame an er-
ror is detected, we eliminate it. If we ignore the possi-
bility of introducing newv errors then our failure rate 1s a
step function as indicated in Figure 7. Several variatioans
and justifications for this model have appeared in the lit-
erature. For the pucrpose of this paper, it will surfice to
illustrate that a program failure rate is decredasing and
will eventually go to zero, assuming there are no aodifica-

tions for new capabilities. This is in cortrast to the

hazard function of a hardware coampocuent (see Fiqure 38).




Failure
Rate

Fiqure 7.

(P e G e G —— - S S S e o= — e o

33

Failure Rate Changes As

K(MW)
|
|
L_K(N=1 v
|
|
LK(N=2) _
|
|
L—_...
- +- ————f—— —————— e e >
x (1) x (2) x(3)
Time

Errors Are Removed




34

Hardware “",,/’///

Software

Failure
Rate

r..__...__._....___._.._._‘

Figure 8, BHardware vs, Software Failure Curves




danec ¢

w2 ome

N

ST

35

At the start of the testing process, vwe assume that the
program contains an unknown number of errors, say N. The
failure rate is assumed to be proportional to the residual
number of errors in the program. Every time an error is en-
countered, the error is removed and nc new error is intro-
duced. Although these assumptions make the model less than
realistic, Jelinski and Moranda {42 ] have demonstrated the
usefulness of a model of this type in analyzing error data
from the U.S. Navy and the Apollo program of NASA.

Let x(1), X(2), <.« , denote the points in time at
which software errors are detected and corrected. Then, ac-
cording to the assumptions of the model, the failure rate
betveen x(i-1) and x(i) is K(N-i+1), 1 = 1,2, eee , 01, for n
€ N, where K is the constant of prorortionality. The fail-
ure rate generated by the testing process is illustrated in
Figqure 7. If T (i) denotes the time interval between x(i-1)
and x(i), then from the assumption that time-to-failure is
exponentially distributed
Pft(i) ) = PIT(i)St (i) ) = 1 - exp[-K(N-1+1)t(i)], K > 0,
and t(i) 2 0.

If K and N were known, then the reliability of tae
software prior to testing, the distribution function of the
time to test, the number of errors to be removed in order to
obtain a desired level of reliability, and other such infor-
mation can easily be determined. In practice, K and N are
unknown, and hence the estimation of K and N becomes criti-

cal.




36
In order' to estimate K and N, and to obtain a stopping
rule for testing the program, cne must use t(1), t(2), eee

t(n) as the realizations of T(1), T(2)s eee o« T(n), for n <

’

Ne This estimation problem is an unusual cne. The tiage in-

tervals t (1), t{2), <. , t(n), do not constitute a raandom
sample of size n from a single failure distribution, but
rather n samples, each of size 1, from n different but re-
lated distributions [10]. Therein lies the problea of pre-
dicting K and N.

Schneidewind (60,61] showed that error data fitted no
single underlying probability distribution. This is more
reason to believe that failure functions are not only func-
tions of the remaining errors but alsoc the composition of

the program itself.

The remaining chapters of this paper will be devoted to

developing and discussing a model tor estimating the number

of errors in COBOL programse.




IV. DESCRIPTION OF DATA

Introduction

Error data processing involves three interrelated ac-
tivities: collection, classification into error categories,
and analysis. Since collection and classification have been
dealt with adequately in cther sources [61-67] [50] (5617,
analysis is the primary ccncern of this paper. While analy-
sis has been the primary concern of this research, the other
t4o vwere considered by using ccncepts and technigues devel-
oped in other studies.

The purcpose of this chapter is to describe data that
are used to develop a model for predicting the nuaber of er-
rors in COBOL programs. Chapter V will present a detailed

analysis of the data described in this chapter.

Terminclogy Revisited

Although defined elsewvhere, several terms need
clarification to familarize the reader with what follows in
the rest of this paper.

The term software reliability, for the purpose of the
analysis of empirical data, needs to be redefined. Software
posseses reliability to the extent that it is expected to
perform its intended functions satisfactorily. With this in

37




e~

38

mind, errors in programs represent an inability of the pro-
grams to perform intended functions satisfactorily. An
error-free proqraam would be a reliable program. Henceforth
in this paper, anything that causes software not to perfornm
its intended function is an error. Specifically, the tern
ercor is a user dissatisfaction, which is documented on a
form, with the results of a program. The error may not nec-
essarilv be the result of an execution of a proqraia, €«Je,
degiqn reviews can result in the detection of errors.

The term project is the ccmbination of development ac-
tivities required to produce the software and its docuaenta-
tion. Three sources of data are used in this report. Be-
cause of the restrictions in employing the actual systea and
program names, the data sources are called Project 1, Pro-

ject 2, and Project 3. Each one will be discussed later.

Project Descriptions

The three projects represent small to large software

development activities. The application software for al.
three projects is written in COBCL. The smallest compilaoie
unit of source code is the program. Each project is dis-
cussed below. Table 1 lists the data available from each

proiject.

Project 1

Project 1 is a data collection system [67 ] consisting
of 5 batch proqrams with a total of 2280 lines of code.

The system provides an on-going data tase for input into re-




— b—d s

1)

2)
3)

4)

5)
6)

TABLE 1. Data Availability for Each Project

General Project
Descriptions

Design Problem Data

Problem Report
(Error) Data

Software
Characteristics

Testing Data

Computer Usage Data

Project

1

Project
3




i W EN TR -

40

liability models. The data Lase also contains program char-
acteristics as discussed in this paper. The system applies
to COBOL programs desiqned to execute on the Honeywell H6060
computer system throughout the Air Force. The S programs 1in
this system utilize a file management system availapole on

the H6060.

Project 2

Project 2 is an on-line system involving several kinds
of data processing activities such as personnel manajement,
accounting and finance, inventory etc. Only 14 programs are
available for analysis. There are 19Q45 lines of source
code in these proqrams. These programs execute on the

National Cash Register NCR8200 computer system.

Project 3

Project 3 represents an initial delivery of a large on-
line Command Manpower Data System (CMDS). CMDS is a resource
accounting and management informaticn system which supports
the Manpower and Organization function at Majcr Command
level throughout the Air Force. Data for 46 programs are
available for analysis. There are 54116 lines of source
code in these programs. These programs execute on the H6060
computer system and perform a wide variety of data process-
ing activities, general purpose utility, data retrieval,

data maintenance, etc.




41

Approach to Data Collection and Classification

It would be ideal to perform a study of this nature
using the same collecticn and classification tools and pro-
cedures for all projects. Since real data frcm on-going
projects within different organizations are being used, this
was not possible. Data sources are the normal data
collection and classification system cf the organization
developing the software. For example, the Air Force Data
System Design Center (AFDSCC) has a manual system for
collecting error reports. Project 3 data was recorded using
this systen.

Although the data is reasonably good, it is obvious
that it is not the same type of data from all projects.

This presented a problem when trying to classify an error
according to a specific category. Finally it was decided to
work only with actual errors that required a change in
source code to affect corrective action. By considering
only code change errors and performing analysis at the indi-
vidual program level, it was possible to generate similiar
data from all projects. Errors vwere classified into 12 cat-
eqnries. These categories are:

1) Coamputationa,

2) Logic,

3) Data Input,

4) Data Handling,

5) Data Output,

6) Interface,




7) Array Processing,
8) Data Base,
9) Operation,
10) Program Execution,
11) Docuamentation, and
12) Other
The cateqories along with types of ercors in each cate-

gory are presented in Table 2.

Software Characteristics

Boehm [ 27 ] presents a detailed discussion of character-
istics of software quality (see Fiqure 6). Thayer and Lipow
[50] discuss the two forms cf software quality characteris-
tics, those that can be quantitatively measured and those
that require some subjective evaluation. Both are needed to
explain errors. Both forms were considered by Thayer and
Lipov and examples are presented in Taple 3. The subjective
form did not show much promise as predictor variables for
the number of errors in programs. Since previous research
showed that software structure influenced the number or er-
rors and since our primary objective is to develop a con-
plexity model for predicting the number of errors in CCBOL
programs, this paper is concerned with only structural char-
acteristics. Only those that can be measured are considered

in this report.




43

TABLE 2. Error Categories

COMPUTATIONAL ERRORS

Incorrect operand in equation

Incorrect use of parenthesis

Sign convention error

Units or data conversion error
Computation produces an over/under flow
Incorrect/inaccurate equation used
Precision loss due to mixed mode
Missing computation

Rounding or truncation errcr

LOGIC ERRORS

Incorrect operand in logical expression
Logic activities out of sequence

Wrong variable being checked

Missing logic or condition tests

Too many/few statements in loop

Loop iterated incorrect number of times
(including endless loop)

Duplicate logic .

DATA INPUT ERRORS

Invalid input read from correct data file
Input read from incorrect data file
Incorrect input format

Incorrect format statement referenced

End of file encountered prematurely

End of file missing

DATA HANDLING ERRORS

Data file not rewound before reading

Data initialization not done

Data initialization done improperly

Variable used as a flag or index not set properly
Variable referred to by the wrong name

Bit manipulation done incorrectly

Incorrect variable type

Data packing/unpacking error

Sort error




e |

44

TABLE 2. Error Categories (Continued)

DATA OUTPUT ERRORS

Data written on wrong file

Data written according to the wrong format statement
Data written in wrong format

Data written with wrong carriage control

Incomplete or missing output

Output field size too small

Line count or page eject problem

Output garbled or misleading

INTERFACE ERRORS

Wrong subroutine called

Call to subroutine not made or made in wrong place
Subroutine arguments not consistent in type, units,
order, etc.

Subroutine called is nonexistent

Software/data base interface error

Software user interface error

Software/software interface error

ARRAY PROCESSING ERRORS

Data not properly defined/dimensioned

Data referenced out of bounds

Data being referenced at incorrect location
Data pointers not incremented properly

DATA BASE ERRORS

Data not initialized in data base
Data initialized to incorrect value
Data units are incorrect

OPERATION ERRORS

Operating system error (vendor supplied)
Hardware error

Operator error

Test execution error

User misunderstanding/error
Configuration control error

PROGRAM EXECUTION ERROR

Bad object code

R e R SR s )




r—

45

TABLE 2. Error Categories (Continued)

DOCUMENTATION ERRORS

User manual

Interface specification
Design specification
Requirements specification
Test documentation

OTHER

Time Timit exceeded

Core storage limit exceeded

Output Tine Timit exceeded

Compilation error

Code or design inefficient/not necessary
User/programmer requested enhancement

Design nonresponsive to requirements

Code delivery or redelivery

Software not compatible with project standing




A oM i i SN

RS-

|
|
§
§
|
é
i

F —

46

TABLE 3. Available Parameters

Program Structural Characteristics

Program size
Total source code statements
Executable statements
Non-executable statements
Machine dependent number of instructions
(ENTER SYMBOLIC)
Number of unconditional branches
Number of conditions in program
Number of direct interfaces
With routines within program and other application
programs
With operating system
Number of arguments in interface calls
Data interfaces

Number of global data blocks
Number of internal data variables

Number of procedures
Number of entry points
Number of exit points
Routine code type
Number of computational
Number of logical
Number of data handling
Number of I/0
Loop and nesting levels

Pages of documentation

§
|
|
|
{
|
|




47

TABLE 3. Available Parameters (Continued)
Computer time (clock time, not CPU time)
Development time

Test time

Subjective Characteristics

Routine difficulty at preliminary design
Routine difficulty after formal test and delivery

Design

Code
Debug/checkout
Implementation
Documentation

Routine type

Executive
Control

Setup

Input
Computational
Post processing
Output

Personnel data

Number of people working on routine
Load factor on each programmer
Programmer rating

Programmer/job evaluation




It

Structural Characteristic
Program structural characteristics are measurabnle.
They quantify the actual pnysical attributes of a prograa.
The application of metrics allows the quantification ot such
things as a program's size, input/output patterns, use of a
data base, computations performed, intecrfaces, use or the
various language elements, and logical complexity [ 17,18 ].
The approach taken was to provide as much gquantative
detail as possible. 1In an effort to tie specific error cat-
eqories to types of code within a prograa, 22 Jeneric types
of structural characteristics were chosen as language aet-
rics. The structural characteristics chosen for this study
are presented in Table 4. Please note that a measure for
each error category is included. The purpose for choosing
these characteristics is to measure the likelihood that a
prograa may have particular kinds of errors. These
characterisitcs will also be useful in future studies of er-
ror type distributions. Since there were no automated tools
availaple to collect structure data, a program was developed
by the author to analyze COBOL source code. This prograa is
called COBOL Characteristics Analyzer Program(CCA). It was

origjinally designed for the NCR8200 ccmputer system, and has

been converted to run on the H6060 computer.




49

TABLE 4. STRUCTURAL CHARACTERISTICS DEFINITICNS

NCO

1
Metric ! Definiticns
Variabnle i

|
i

LC | Number of logical conditions
|

I0 )} Number of input/ocutput statements
i

co { Number of arithmetic statements
1

DH { Number of data transfer statements
i

PC { Number of CALLS to external and
] 1internal routines
i

UBR { Number of unconditicnal branches
|

EXIT i Number of EXIT statements
!

STOP { Number of STOP statements
i

0scC | Number of CALLS to ofperating systen
|

ce | Number of CALLS to comfiler to COPY
] source code from the library
|

Is ] Total statements = NEX + NNEX
}

NEX [ Number of executable statements
|

NNEX { Number of non-executable statemeats
|

FD ] Number of file descriptioas
|

RD { Number of record descriptions or "01"
{ descripticans
|

DD } Number of data item descriptions
!

TD { Total descriptions = FD + RD ¢+ DD
i

DR | Number of data references
|
|
|

Number of comments

lavel




50

TABLE 4. STRUCTURAL CHARACTERISTICS DEFINITICNS
continued

-—— - ——— - ——————— - — —— —— —— - ————— - ——— ————————

- ——-—— - —— - - - - —— — —— — - - ——— - —— -

Metric I Definiticns
Variable |

|
]

PAR { Number of paragraphs
|

NL | Number of source lines
{ There can be more than cne statement per liae.
|

RW ] Number of references to "reserved" words
!

CO-BOL_Characteristics Analyzer Prcgranm

CCA is a utility program which statistically analyzes
COBOL source. It breaks a program's code into its language
elements. This analysis is done at the program level; how-
ever, it identifies interfaces between routines, between the
subject program and other applicaticn programs, and between
the subject program and the operating system. Tabdle 4 nas
presented the list of metrics chosen to quantify the struc-
tural characteristics of COBOL programs. CCA coaputes the
values for these metrics. PFigure 9 presents sample output
for a program called S-PTUO.

Please note that the columns PERCENT OF TOTAL and
PERCENT OF EXECUTABLE (see Figqgure 9) require special inter-
pretation. FPor example, the number of logical is 80. This

is not the number of logical statements in the progran, it

in the programe.

represents the number of logical cendition

st thest ,

e




Ad0D TREVilVAY 1544

51

29S aSONOM 3ANIS3Y HITKNN
€19 . =SIN3IWNOD 40 YIANNN
9€s =SNOTAGI%IS30 WILI VIVO 40 HIBWNN
209 =SINIWIAVLS 378VINI3X3 NON H3BWNN
LL6T¢SZ 10 134va NOISHIA

s9°2

€s’

-4 &4
ss° 2
Ly
99°L1
*8°02
y9°2e
€l°vl

378v1nd3x3

40 IN3JY3d
0v02
LYY
A 1
99S

‘Y2 wouy Inding 3|dwexy

821

se*

eo*y

06°1¢
€2
958
ot*ot
€8 gl
W'y

viol
40 LIN3J43d

2t
6tl
L2
001
ett
sul
oe

Y3URNN
=S3INIT 40 ¥3LWNN

=S3ININII3Y YIVA 40 Y3IBNNN

=SNOIL4IHIS30 OHOI3Y J0 HIHWNN

2SLIN3IN3LVIS 378VANI3IXI ¥IBWNN

oNnid~s
¥04

AYYHWNS SOIASIYILOVUVHI WYHOONd

‘6 24nbL4

STIv3 Y3 11dn0I
ST11¥D W3ILSAS OMILvY3dO
401s

11x3

SIHINVHE TYNOILIONOINN
$11vD 34N0320H4
ONITUNYH V1IVO
A*NOLLYLNGROD
1NA1N0/LNdNT

35901

$3714084 IN3NILVLS

09 =SHAVNOVHVYS4 MIGNNN

916  =SNOTivav1230 V101

’ =43530 3714 ¥IEHON .

U911  =SINIWILYIS WiOL
1161 *S2 10 131v0

:

:
' . r L r—% — — v b



i e

52

Each AND and OR is counted as a logical condition. Because

of this the PERCENT columns ‘will not add to 100 percent.

Summary of 2vailable Data for Each Project
Individual project data is summarized in Tabnles 5-7 re-

spectively. Tables 8-10 contain descriptive statistics for

individual project data. The error data were collected from
software discrepancy reports provided by project program-
mers. Program CCA was used to ccllect the structural char-
acteristics data. This data is analyzed in the next
chapter. When, in the course of analysis, specific project
data are germane to results, the reader is encouraéed to

refer back to the correspcnding data.




sy | €49 |9¢ 2€ d66 | 22 | 802 | 62 | S dse 69¢€ 619 | ¥ v 1 (]} 9s 8l lEL | SS 13 L 8S S
(oL | 52 {2 9L | ssz ) Wt 9 L S @8 €L €8L ) ¢ € i ol 8t 4 62 ] 9l 8l Sl v
o™ €LE | (65 |2V 4 968 | ¥9L | LeL | G2 | ¥ 262 96¢ 865 | @ S L 4 19 9l oL | 92 @z 61l 89 €
w
Sv Lt et ¢ 2sL ) LE 82 4 L CE 29 S6 4 L L € 4 S 9 L L €2 €l 2
e | 19 | ev d 185 | @dz | vLL ] 12 S €EE [ ¥24 9 | v St 4 41 92 11 174 St € €Y s2 L
MYy | N |¥vd | OON | ¥ aL aa a4 | G4 | XINN | X3N S1 0 S0 | 401S | LIX3 | ¥en d Ha 0 0/1 n (Nn)
$40443 ‘o
30 "oy | weaboay
WHYY3908d A8 SITOVI¥NVYA JI¥LINW 182191

Viva 3N0 12310¥d

'S 318Vl




e %wwm e | ots [oors| 2021) eou| ver | s | sz | dis | sz ¢ |6 | 2z | 1 g9 | sz |zev| 1z |60t |9 | e v ]
295 |ovdz 90 | €19 |ovv| ocs | 9es | ve | 9 | 209 | 995 | eouef st | ¢ | € | 2zt |eet | cz |oou| suu| sm |98 | v £l |
908 N;m_ as |ese |esee| wiel| zest| sut| v | vaeu| 129 |svedd @ |0 | 0 | 92 |2z |zt fesz| s | e | eou| 2 2t
1501 33_ o |sz5 |2909| a6 | si6) #s | s | 986 |26 |ssmf € [ @ | v | o |69 | & |we|eet| so0 | gst| s u
099t | 99se| 95z | 2v9 [wvor| 169 | 629 | 85 | v | o | ozve| ez € | ¢ | z | o |av9 | z8 |evs| oc | ecz | ssz| s oL
eut |vesiot | wee {1eo [ ez otzf ot | s [wsz [eat {0 |6 | 0 [ v |9z |s [ez{e ls [u| ® 6
vez |osw €2 st [oouf ss | 2¢ | ou | s [z |vee |ose]a [o | o | e [ve | Jes o] |oe| s e A
< |vee |y sz |soz fsaui| eov | eve | 15 | 6 |ssv |9sz | w99| @ o |« | w |« [o |w|s [e& |[u| s L
0 foy losz|s |ev fv6 [0 (a0 | ¢ | € {6 [e [czuf|d [@ [0 [ ¢ [ [z [e|s |9 |z ¢ 9
st [vsi|8 |ee jeouJoe |2z |s | e|ow a5 e o [o | v | e [e |z [w|t [8 |6 s 5
oze |eae |22 | 6o [ovzt] o6t | est| oz | s [ ez [ e [eis| o |8 | v | 6 |es |m |vaufes |5 |es | 2 v
1o {esol| €z |osz [osez| sve [ sdc | oc [ 9 [z [z [vo9{d (@ [t | s (o [o |ea|sz|eow |ve| at £
or {oct|e sz [wev|se{a |6 | 2z |ve @8 |wu|o [0 | v | « |22 |« |oz|o |6 |8 | s 2
98z |vvs vz |6 [oost| 61| 19| sz | € [voz |61z |ew| @ [ @ | v | ¢ [et |ou |6 [1s | || = 1
me | W fwve foon 0 o | a0 |ov | od fxaw | an | su |90 | 050 |eous | na |uen | ¢ ke f o o | o) |
WVY90Yd A8 S3IT18YI¥NVA DIN¥LIM Aty s

Viva OML 1230084 °9 378Vl




e foestfce | 9t [eaef see ftee {62 | S| 6 | @v6 [ew2t] 2 | 46 | U w feet | o9 | 99z) 56 | s | 222 61 61
aerfesis frer | e vl avo | wes {29 | 9 | emo el ooy | ¢ | 2z | L 9t | v | 16 | 926 | 65 1 | 6wt oc 21

3561 |619C | SW'2 221 | @sdv| sy | SLy | 95 1] odS €681 | 2av2 | 2 12 l 8l 3 6/ ary | vl Svt | 165 $2 o

vez w9 Yoz | @z |e20 fave 6t Jwy ] o | s9z | 692 |ves | ¥ | a1 1 v fee et [es ) | oas |6 t 9t

vv | € Jous |see {oce Jsv | v | s | owar Jawe [ 2 | 0 ¢ 2 |st | |w|en | o | S st

2t | @ fevt |ou |va |6 e 6t [ 89 | |@ |1 t € | |9 e |4 8t | st 3 vl

vo |6 leronpres 2z jrz | 2| owie | oew e |2 | t € |65 |89 |s6t|9z | £1 |26 S €l

SOrC ot foLe | SY O [EESUI| 32 ) 269 | 9t S | vt 665t | €265 | 2 v 1 Uz | 21@L | uee | viel| €2 | »5 | ¥8SL (9 4

i L ¢ e |es |t L] vs svofsat | ¢ | ¢ 1 ¢ |z L T S a |¢ l u
w0 ve | @ fese fvse fvez fez | 2 | wz |t Jeww | @ |6 1 v | el | 9% | 8 z ol
22 | 9 ety [fee |adc [ec [ z | ese | 9vz [se9 [ € [ ¢ t t jet fsz |9m |t | er |65 v 3

setefseez fett | 62 |usevfovzt) werfaue | 2 | evet | gedz|oveze [ € | 60 | U st fvot | sst|om|ou | av |eez £2 8

€5 |9 | te 2 €911} 622 | 18L | 9v 2 92 s | vt 2 [ L € 3] 82 9t | S 21 (41} 8 (4

cee (o5 [ve |t fees [est fest fse | ¢} ez | s |aws |2 |6 1 v lze | fw for | oer | s 9

goz Jus |vz | v fvey Joou Jasujse | 2| we | swe|mw |2 |8 l v fee | Jee o | o8 |2 £ s
cssufrzotface [ 9 |souefoce |62 {ec | 8 | Bee | avvrjem| z | ss | vt fvez | scu ) sov | v | 9 | ey 92 v

S22 |59 9 ¢ Ly Sl L S £ 114 2 25 (] 2 ¢ L () 9 ] [ 2L € 1 €

660 feertogt | o |esen] veo | 8ss f e | 6 | 959 | sed |weet| 2 | 21 1 e vt | oy |eer | ee | @er | 61t (¢4 F
@zzz|eve | v22 U ] 5288 @dvi] €521 6€L 8 96¥ 1 9681 | ¢6£€ | 2 s L £ 98¢t el | 6uv | vl ¥z | 218 b14 |

My | N | dvd | OON | ¥0 (1]} ag gy | 04 | X3NN X3N S1 b} 350 | d01S | 1IX3 | ¥8n ] Ha 02 0/1 n :Mw.wu -

SHYB90Y¥d A8 SITOVINVA DINLIW g b g
VIVO 3341 1230084 L 30V1
P S e e - — o—

o e : e o oo s e ST e iriuinen P SRS AL L




tus ¢St | €6 9 | Scez| 641 | v9L | €t 2 | est SLaL | S6LL | @ L5 ¢ 6 o1z vz f9se | as | sy 852 2z 3t
€8 |53dL | 26 6 1 €691] ¥92 | S12 | v 8 | 262 €29 |Sl6 | 2 L L aL. 261 | 6¢ 61 ] 9 | 9t £91 u i€
681 arel | 59t L ] 6lEZ]| 6bS | 665 | 9¢ b | 685 1v81 J de9l | 2 9 \ 9 S61 Lo ouv) L |es 2t 8 9¢
&) 56 Gl |vgdc| €8E | (bb | 2€ 12 205 26 oL | ¢ €€ L u £91 ¥s £9€ | 6F (S €22 18 SE
s Leh | ve 1 92UL| oLE | ¢L2 | s€ L Lve 99 [60L | € 12 L v €Y 6 WL | oL | $9 39 L ve
t(8 {2691 (€9 tte feaat| 12 { as | tv 8 ( @99 Sk (savt | 2 8 t L 62 v9 | 695 | S {5 6¥1 £l 13
6€E |68t | b2 e | S5€9 | eet | Ll |8t v | 9vL 652 [sdv | 2 8y L v £t 2l 69 | 9 ZL 29 S 2
dodt fsevt |29 vdL | oubL] @S | 285 | SE € 165 6.9 |2 | 2 €2 2 8 96 SE 292 | s2 93 vl g e
o €16 f1o6t | os 6eL o] etz | vo9 | 6r S €5¢ W6 15991 | 2 t ( 8 98 4] 6ty | 2€ £d1 621 St 13
w SISLISERL | L5t v Jovy2] e6r | @vv | 20 8 | 91§ gzl | ge9l | 2 vl L @2 e 7 se )y | g2t 92 14 62
£25 jesct ey €G21) 2oy | g2 | sy bi| SES 8€S | EwdL| 2 §2 L 9 69 o sv2 | 9L | ¢6 174 8 82
£€0C f2c6 | 2t 66t w2 | oz | o v | 292 Sv9 | (a6 | 2 teese v 99 ey | @2 99 |8 vaL ol L2
[} 8L12 asl P41 L 92
t6L 1636 | vL ] 12| dv2 | ¢d2 | 62 v | (52 L€L |uvs6 | 2 4 2z € vL sy | 22| Wy | est | 2EL 9 sz
ach [bbL | €9 Ly | 12il] 891 | 681 | 92 €| sst sly | €d9 | 2 1 L v 99 9y | 921 | 61 7y 28 v 74
12e ey | 9¢ ¢ | 684 | el ! UL | Ll €| evtl SeE [ 8vy | 2 8 1 2 €€ o | 01| €t 4] 11 £ €2
sy j1cL 119 v jdzelf 81z | 9sl |62 €| 862 vy |2€L | 2 6 1 8 9t vS | S¥L | Ry | 8 t6 S 22
(724 CATA R T te | €562 asv | udv | dv v | 8y 16tL) se9t| 2 6y L 8l €L | ode | s | e | e6L | c22 I 2
9¢9 |2€g | bt ¢ |ecvt]| 9s2 | zvz | oc 9 | slE €96 [ 188 | 2 1 l S 26 61 SeL | 8L It €61 2 0z
my | W [uvd Joon jua | oL | 6o | oy | a4 | XINN | X3N | SL | 22 | 9SO | dOLS | 11x3 fyan | 24 | MO | 03 | O/1 | 21 rm_.wu i
SHVYYOO0Y¥d AG S3ITIVIUVA DIULIW 5 b

panujiuo)

VivQ 334HL LI3C0¥d "L 378VL

B Py ey ey ey s et et Pl beed bl bl bl deed bed beed Bl e e



57

IR

e

siv lsec e 12 lewe | oozfesn ez | v [siz |sew Jowo| 2 | 0 [0 6 28 | 9z {oue { e | 2zv | 99 ’ o
oee foss {se [ @ fedc [ etzfest {ct (€ {522 {682 |ms) @ )@ | 1 oy | sz fso | v | ¢ §ct 8t st
sot fsact) se | oz fusdz) caefiso | we | s | sve | |sssuf 2 | ev | o z vou | @2 oz | @2 | o | 222 z vy
zez fsew e [ v feeo [esifean Jou |2 st [sez (e 2 | @2 {2 £ ev | o1 fee | st oz | s s (13
9 fect |6 e ez I'st oo v |t |es vw |t 2 | szt 1 v u e £ gL | st 1 2
tsz fves fve | v fees | osefest | ee [ e et |vez fow| 2|6 |t 9 8t | ot f{e | st] ww|oe2 2 T
o5 |eee | ov |9 fewer| cucfeecc [ os | v fose Jsis Jewe| 2| 9] 2t | ss | ez fvez | s2 [ e | vut 9 ov
06 fJaef st | 8c fovz | av |ec C T I 1 96 gt | 2 ) 1 (] 92 o | € 92 | @ 6 &€

mi | W |wva [0 [vo [ o1 | a0 | ow [os | xaw | xaw | su | 92 | 350 | gois |aix3 fuen | 34 | A |0 | o1 |1} ()
20443 ‘ON

SHYUDO0U¥d AS SITEVINVA JI¥LIN o
) panuyIvo)
VIVO 33UML 10300Ud 'L 318VL
s

a4
|

Dadbdiiline




e

58

00208 * %0562
€00C8°622%9
0000S° 591
00309°961
0070L°LSst6€1
oocee*Ls9eL
00C0B8*169¢
0C0CZ Lel
0L202%€
000CE"0015T
0000e*61822
cocoL eLeez9
00000 %
cocoz €2
ccocz o
000CB° €1
€00CZ°C6S
coccL s
COCOL LSLE
0C00S°9%%
00neL 01T
000C0°8BLLY
0000L°6%9

3INVIYVA

0000300°2611
0000C00°¢822
0033300°091
0000000°0S
00000CC°¥L82
000000G°¢0L
0000000°€C9
eraccoc Y8
CCcoa200° e
0003300° 868
0G2J000°€sTT
0C0LC00° 1502
0CCI360°01
G00000C"%E
€020000°9
0000000°LY
0000500621
€CJo000C"99
00030CC* 98¢
00003C0°s01
0000C00°901
ocoeccocose
0ooocoCc 6Ll

NS

62931L13°9L
196100%€ *€11
66562€5L°%
€26 06072°9
L€5138128°991
H506 16E 1 °6€E
8892€C2Z7 ¢tk
»€)2E8e S
L9365%LL"°0
9S2LL436° %S
$89%¢955°L9
L19eeL»z 211
61L29%58°0
26590951 °2
€0300C2Z°0
LLYZE137°1
8Y129%33°01
1895 1L32°2
g8522%1% %12
2LL986%%°6
S19TESLLY
T€55€L58°81
Lezziose 1

Nv3IW 4)
¥ouy3 31S

Viva 3NO 1J3r0¥d

00003900°05%
00202020°€L9
vCJ03030°¢eY
00202020°2¢
003020J0°C66
002030J0°2%2
00232030°622
00502030°s2
00302000°S
0C303000% et
€0203000°96¢
00233020°519
00J03030°%%
0C20202C°st1
000032302
00202000°21
0C202000°L9
0C323030°81
0CI22230°9%1
0C03202J3° 58S
0C2020J0°¢C¢
00302933°511
00203030°39

INIVA
ANAIXVA

00000000°S%
00000000°211
00000030%0°21
00000002°0
00000000°251
00020000°1¢
00006822282
cCcecosoae
CCCCCO030°1
00300000 ¢€¢€
00C0C200°29
C0OC000302°56
€002000J°0
00000000°€
00C0GJ00°1
00690303°¢
0000020721
00C0CO00°S
GoCcouCo0*9
0020GC0D* Y
00CO0C0I"L
oocoocoo°st
C0000002°€1

INTvA
WNAWININW

¥03 SJI1S11vLS 3A11dI¥IS30

STET969L°TL1
L6LY6SEY EST
£E089%98°21
02320CC0"YT
LB69YBEO"ELE
69758805 L8
QEY3SHBLT°SL
LEC%2ETLTT
180602€L°1
S6LIZFRB*221
LB3EBSCIN°TGT
20208995°052
00232000°2
€BLEJTTIB Y
C9e12L%%°0
2TSEBYTL E
612E0%62° %2
919156905
L513000€°19
19255CE1°12
6L90%125°01
BZLEE9IT 2%
0YETZ6BY 62

NJI1vIA30
GYVINVIS

*8 37avi

0000220%°8BF2
CCO0220%°9%5%
Ccono000"2¢
00CCCI02°21
©corcodsyLS
0COC000% 11
00000229°221
02000508°91
coCecl00d°y
€0CCIII9°6L1
00C0J2309°0€2
0GC02502°01Y
€0000032°2
02003328°9
c0002002°1
0000730%°5
0C002J08°S€E
00COC0D2 €1
ecoetdoetLL
0002020312
[lelVlvielcial A ¥4
0000300("*9¢
00000238°S¢

NV3d

wy
N
¥vd
JIN
¥0
a1
33
J¥

X3NN
X3N
S1
N
Js0
dJ1s
11¥3
¥an
Jd
H3
o]
01
el

378vivva

SR




'
i

59

0969°6L3151
96€6° 1991
£189°2C1Y
QELE*IITHS
*8%9°68%2a7S
ZH2E°6E29S2
2691°2080612
S510° 1261
LA Nl g

S0 191662
96F 5 R6R191
*%01°218989
2692°31
£052°0
9¢le"0
CH%6%°S 19
€0L9°1%692
2zZre-e062
9ZIE"FoLIE
€161°9%81
16L€°886Y
LSRL°UL1%9S
80€2°S8S

IINVIYVA

002)I0°SRSS
CC23CI°6%C61
CU22I2%8Y)
0C2220°76LF
D30000°%L1SE
000J00°LSLY
002)22°%C19
09020°°6LS
0C0279°67
0593307t Ls?
032239°063%
Cudd00 22821
C¢0J3J3%0°12
00039C°0
000000°H1
cLooo0 YL
€02302°2611
0CC200°9%S
0925(N°CYL2
CoCC00° 625
OCCOCO°TEET
Corod0°s%e
000220°22¢

Wns

LS0200LI° LY
$%25 1153 °81¢E
sZy9mit Ll
62166852 °29
ECSE29LE°LEY
TIG96H5L %1}
6L)%C653°621
€028 1¢55°CY
%028 1%3%°0
CEEZ US55 9ET
H9JG b9 5 °1NT
$IECHCIS5 122
18100ML0°1
00JCCL22°0
CEELEI] "0
LELZH0EI°9
£01%L873°€EY
BRZZSSTY ° %1
169 C2e3°LY
CERIETELAR S |
o¥68u933°31
C2%2¢te3t *61
2619%%3%°9

NV3IW 3D
¥0su3 1S

0602230203991
0032202J°995¢
00333032°9s2
eCs02Cl0°2%9
002030301591
002239222 % 141
G0223230°2661
0CIC3I20°%ET
0C302030°%6
0C202023°%22L1
0C2200J0 0251
003079232°4%€2
G030J233°s1
0CJICI0J2°9
00303330 ¢€
00333330 1¢L
0032)030°2%9
0C2CJ92)0°Z81
00350032°3%$S
00222229 5¢€1
0C2030J0°8¢€2
00352030662
0030330C°%8

3TVA
WA YA

e i o s

€0CO00C0*JY
cuC00002°%s1
00000390°¢
0002022)°s2
G0000223°%5
0002029)°a2
60090006 L1
coCcCCcoes* s
¢0C020C0°2
0GCII0II°%E
00000330°8Y%
€002000J°26
0003CJ32°0
0Cc03C000°0
000J0333°1
60202392°)
©06222303%°¢
0003002302
0023232)°32
00000302°)
¢ocodeed 9t
0C020222°2
00000003°)

INIVA
WAWINIW

VivVQ OML 1J370¥d Y03 SIOLASIAVLS 3AJ1dINIS3O0

CZLN6SED9EY
YIFEX1B1°E6TT
€57L1250°%9
6y I5%166°2¢82
29%669%8° 9012
62€26122°%0¢
EYERALZI0°8Y
0E0509¢9°6E
L32037% L1
$L558%11°60¢
0L16093F *2CY
622n%00L 828
SHELTIGEEC Y
02320C02°0
SH6HZTT7°0
2L191600°%2
SLSLIGET %91
99LHLLEGTES
€LspizezeeLl
®1212196°2%
SHYYYE916°69
2961%126°¢L
YEFYSIHT N

NOTIVIA3D
JuvaNvIS

*6 34Vl

EY1L6H25°36E
98ZYTLSE 0L
6251158279
TL687%T1L %32
€EY11532%°2162
Y1L9BZ%9°28Y
CONC2OGI" Y
9BZYTLSE 1Y
LARALEA X Ad 4
HZYTILGE"PLY
IBZYTLSITLTY
1LGHZYTZ 916
003CINIG 1
0C002322°)
6Zytisue1
1S82%125°61
ylLSR2%1°98
€%116826°RE
LAYRLFAZ RN A
62 IsaL LF
LSBZYTLD°G6
9HZYILSE 09
000033530°¢€2

NV I

"
w
¥vd
0DIN
L]
a1
33
J¥

X3NN
X3N
S1
2
50
418
11x3
wan
24
H1l
33

n

39YINVA

s

BEST AV




60

9869°5€652S
#€18°999528
€S00°1L%L
0660°8281
00LZ°15%091Y
61E6°9ET6L
1011°85%99
8296°%£9
€2%8°0€ 1
9550° 121658
1259 s%112L
9%2%° 1890111
90%1°0
L9¢2°L1y
gsL1°0
208L°1L1
L1S9°2e9862
6252°59922
»1E%Y°09%09
L123°2%L1
86%6°6522
218%°9L1ISL
t12%°0¢t

JINVIYVA

000220°089S€E
002200°9119%S
00009p°18LE
002900°1021
009200°t1E58
000200°68391
0023%0°2e6%1
0C2300°S1Lt
002220°8L2
00232210181
002J00°10SSE
000200°S09¢€S
000220°6L
0022C0°8001
000330°8%
0C0300°S%Y
003J320°¢L1LS
002JJ0°9L1¢€
0C0JC0°12s11
003230°¢e0Ll
009320°0S0€
000220°06L8
000000°%¢€S

LI

Viv0 33¥M1 1J3r0Yd

ZLZGSBZEE LOT
69226%L6°EETL
yizoivyL 2l
6L39C»J€e°9
615200%L *00€
0095L9LY 1%
6956162)°8¢
SYTTESILE
€95E5937°1
0CLY(I1D°EY
EEYYTIBIZ°S21

BLETYLIE°SST

%0%86921°0
0%%04119°€
02824132°0
91LY492E6°1
€8E9C%62°S2
0%196231°22
99%9G%52 *9¢€
€SL2s51°9
192€2620°L
LB12192Y 0%
6%3108€39°1

NY3INW 4D
¥ouy3 JIS

0000000°S9%€E
002020J)°291%
0030303°2¢e%
0020200° 112
0020J00°€ES T
0030202°02%1
003020)°¢€521
0020300°5¢€1
0030292°08
0022202°95%1
0020202°565Y
00J0J02°E2ZES
0029392°%
0030202°16
0030202°2
003022)°9L
00302022101
0020292° 166
0020203°%1€1l
0000300°€e2
0000002°202
0020)0)°%8S1
003230J°19

INIvA
NNdIXVA

¥4 SIIASILVIS

00C00000°S2
00000202°58
£0000302°9
c0020002°0
00000000°LY
00020300°SY
0000000272
06020C00" €
00020J00°1
00000000°52
0062020212
Q0000J00°2¢
00030303°2
00032J00°92
00020665°0
00000233°D
00000322°0
00000202°0
00000230°0
00020322°0
00000970°21
00020202°€
00099302°0

INTVA
WOWINIA

3A11414I530

L1528996°L2L
ZBEET299°806
BELLSHEY"98
6L5L29SL "2y
1162%81L°6E02
60LT1E6DE"TBZ
29501951 °1S2
$289%861°62
BTIIYI8eY° 11
YH62Z1S6L°162
6EIG6202°698
6561(4Y83°€s01
1%695098°0
€0ELE92Y°02
SZ5EE61%°0
2E%6%901°€1
9859%656°1L1
1629€¢8%°06 1
SL520108°S%2
9SAITULLYL 1Y
183258ES°LY
L%862E8T1° %12
192t1Z02%° 11

NITLIVIA3Q
0YVONYV1S

*01 318V

16€L1289°65LL
1928L%€E%°9L 1T
L1zs9se1°zse
$9567801°92
25956985°9581
16521251°L9¢€
$79567809°%2¢
0LRII2BZ LE
9281%¢9C"9
02002906 °€6€
15693390 1L L
9698092€ °5911
oEl6ELIL®T
BYENIETS 12
9281%E%9°1
YCET6EL9 B
0L8072ZRZ° %21
9ZRL%E%0°69
$112696%°062
€16€2120°L¢
EBLYEYDE"99
269%6989° 161
$9563809°11

NY3d

“y
N
¥vd
JIN
43
J1
b
L]
24
LERD
X3N

378vIwvA

BEST AVAILABLE COPY




o T

e

V. ERROR DATA ANALYSIS

Introduction

BError data analysis is important because of the
necessity to cope with problems of cost and software unreli-
ability. Examples of areas which benefit from error data
analysis include management of software development efforts,
design of software engineering techniques and tools, and
determining which software characteristics are relevant to
software reliability. This chapter is mainly concerned witn
the latter. The principal emphasis of this analysis has
been on individual program error data collected during
testing and operational usage.

There are many kinds of data available frouw the soft-
ware life cycle (see Figure 5). 3ince the main empaasis of
tanis research stems from the idea that much can be said
about the quality and reliability of software from the soft-
vare's error history, only error data were analyzed. The
primary approach has been not to repeat other research, but
to verify and expand previous findings.

The purpose of this chapter is to summarize an analysis
of data collected from the three projects. This will be ac-

complished by presenting the results of an empirical and




T

62

reqression analysis of the raw data. Chapter VI will

e ——— |
|
|

present the final empirical aodels developed from the analy-

sis summnarized in this chartere.

Analysis of Empirical Data

This section contains the results of an analysis of

software errors by type. Since error data by category type
¥as not available for Project 3, only error data from Pro-
i jects 1 and 2 were analyzed.

Using the error cateqory list in Table 2, the question
naturally arises "how many of each type were there?" This
analysis took place only at the maijor category level, and
only errors which reguired a change to the source code or
data base were examined. Categories "DATA INPUT ERRORS" and
"DATA OUTPUT ERBORS" were combined into "INPUT/OUTPUT ER-
RORS", Categories "DATA HANDLING ERRORS"™ and "ARRAY PROC-

ESSING ERRORS" were combined into "DATA HANDLING ERKORS.

Categories "OPERATION ERRORS", "DOCUMENTATION ERRORS"™ and

"PROGRAM EXECUTICON ERBORS" are included in cateqory "OTHER".

Figure 10 shows a percentage breakdown by major catego-

. ry for Projects 1 and 2. It also shows a percentage break-

down when Projects 1 and 2 are combined. Percentage preak-
downs appear to be reasonable for the type software for each
project. Project 2 is an cn-line systea and Project 1 is a
batch system. Variations exist in the percentage preakdowns
because of the kinds of operations the programs are

perforaing. Project 1 programs are performing mostly data




63

Tt pue |

18410 edeji0juj

s1oeflosd 10}

61°6|

ghi*fit

ofefit

9°fIT
LA

810113 GE¥ - peujqwo) sjaefoid

S3IHO0D31VI HOHH3

eseg
ejeg

2l I

9t L
nacL
26°9

=

s10113 s0¢ -z 19elosd N\

810413 0€L - L 1%9efoad

Bujipusy
ejed

n
Ve
o

N
w

sedA)] 1io0i13 jo eBejuediey

‘0L eunByy
2180 indwo)
ﬁl, — — e wUVHEREREE " " - -
o
W
=] ™
(o]
-
ow
e
s
=

9.
hsele

e - —pmm e --od
O 4% W 0w

O O
©
-

e - ————
2 2

R

xR




B i i A e G el dngiiio o ool L s e i i e i bt o s

64

input/output and data transfers. The logic within the pro-
grams is not very complicateds On the other hand the pro-
qrams in Project 2 are doing more ccmputations on the data

and the logic flow is more complicated.

The data for each project supports the notion that the
distributions of the types are application dependent. How-
ever, when the data from the two projects are compined, the
relative importance of the percentages changes. As onhe can

see the logic type has the highest percentage (24.06% vs

17.9%) . It is suggested that this will be true in the gen-

eral case.

Regression Analysis Concepts

Situations exist where there are two or more variabples
that are functionally related. The problem is to understand
this relationship. This is not an easy thing to do since
the relationship may be a simple or a complex one. dost
often, the functional relationship is extremely complex, or
completely unknown. The goal is to obtain a better under-
standing of the relationship and then use that information
for prediction, process optimization or contrcl.

The technique usually employed in these investigations
of relationships between variables is known as regression
analysis. Reqression analysis assumes the existence of a

functional relationship

Y = FI[x(1),%x(2), eee,x(n);B(0),B(1), «ce,B(n)] + e,




65

where Y is the response (or dependent) variable,

x{(i) (1=1,2,<<.,0n) are the independent variables, B (7J)
(i=0,1,«<.,n) are unknown parameters, and e is a randoa er-
ror component. The problem consists of estimating the
unknown parameters in the above equation.

The kind of relationship between Y and the independent
variables determine the type of regression analysis to per-
form. If the assumption of linearity appears reasonadle
then linear reqression analysis can be used. If linearity
does not seem reasonable then some other analysis tecanigue
must be employed. Since this research assumes linearity,
linear reqgressiocn analysis techniques are used. The rest of
this section briefly discusses linear regression analysis as
related to this paper.

If one wishes to determine the relationship between a
single independent variable, say X, and a single respouse or
dependent variable, say Y, then use simple linear regression
techniques. The equation to predict would be in the forz

Y = B(0) + B(1)x + e,
where "B(0)" is the intercept, "B(1)" is the slope and "e"
is the random error component. The procedure is to use tae
method of least squares to estimate "E(0)" and "B(1)" (63].

If one wishes to determine the relaticnship between
many independent variables and a single dependent variaple
then use multiple linear reqgression techniques. The ejua-
tion to predict would be in the forn

Y = B(0) + B(N)x(1) +# B(2)Xx(2) # «e« ¢ B(n)x(n) + e,




66

where B (i) 's are the unknown parameters (reqression coeffi-
cients) to be estimated using the method of least squares .
Y is the dependent variable, and x(i)'s are the known inde-
pendent variables.

For our purpose, the independent variables are the
characteristic metrics (see Table 4). The equation would
be, if all metrics were included, similar to the following
equation

N = B(0) # B(1)LC +# B(2)I0 +# B(3)CO + B(4)DH + B(5)PC +
B(6)UBR + B({7)EXIT + B(8)STOP + B(9)0SC + B(10)CC + B(11)TS
+ B(12)NEX + B(13)NNEX + B(14)FD + B(15)RD + B(16)DD +

B(17)TD ¢+ B(18) DR + B(19)NCO + B (20)PAR + B(21)NL + B (22)RW,

where B(i)'s are estimated using project data from Tables 5-7.

Most organizations do not want tc expend the resources
to collect data. As the number of variables increase so
does the collection and maintenance costs for metric and er-
ror data. Therefore, it is desirable to have a minimua num-
ber of metric variables to collect and maintain. Thus, the
objectives of the regression analysis are to determine which
metric variables singly correlated with the number of errors
and to determine the "best" groups with the minimum number
of variables to predict the number of errors in a programe.

The reqression results presented in the following sec-
tions are summaries of outputs from the Statistical Analysis
System 76 [69]. For the interested reader reference ([69]
explains different techniques for determining which vari-

ables of a collection of independent variables should most

[T PSHETEER——

i




67

likely be included in a reqressicn model. Since all

techniques (forward, backward, stepwise, maximum r-sJuare,
and ainimum r-square) were available in SAS76, they were all
used initially to screen the independent variable list. Two
statistics, "r-square" and "P", are used to determnine if a
linear relationship exists. "R-square" is the proportion of
variability in N that is explained by the relationship bpe-

tween N and the independent variables (characteristics met-

rics). "F" is a well known statistic used in tests of

hypothesise.

Simple Linear Regression_ Analysis Results

Each variable represents a metric which serves to meas-

ure to some degree the number of program errors. In order

to correlate the metric with the number of errors (N), a
single variable linear reqression analysis was performed cn
each metric variable.

A test of hypothesis was conducted on each metric to

determine if its regqressicn on N was significant. All tests
were set up in the following manner with a .05 level of sig-

nificance

H(0): B(1) = 0,

H¢(1): B(1) # 0.
and under the assumption that the e(i)'s are normally dis-
tributed. The regression statistics for each respective

project is5 summarized in Tables 11-13. The "Decision"

column indicates if H(0) is rejected or accepted. Rejected

B G il A T A e




BT e A e R S Gt b Sy G s el

| -

TABLE 11. SUMMARY OF SINGLE VARIABLE REGRESSION DATA

FOR PROJECT CNE

| | | |
Metric | R-square | F Value | Pr > F | Decisioa
Variabple | ] ) |
| | i 1
| | | |
LE | 0.944435 | 50.99 | 0.0057 | Reject H(0)
I0 | 0212239 | 0.81 | 0.4349 | Accept H{0)
(ap | 0.627788 | 5.06 | 0. 1100 |} Accept H(0)
DH ] 0943303 | 49.91 | 0. 0058 | Reject H(0)
PC ] 0.5669906 | 333 | 0.1418 | Accept H(0)
UBR | 0995352 | 720.16 § 0.0001 | Reject H(0)
EXIT | 0.285563 | 1.20 | 0.3535 | Accept H(0)
SIOoP | 0.056103 | 0.18 | 0.7013 | Accept d(9)
0SscC ] 0.074677 | 0.24 | 0.6564 | Accept H(0)
€E i 0.000000 | 0.00 | 1.0000 | Accept d(0)
TS ] 0.677116 | 629 | 0.0871 | Accept H (0)
NEX ] 0.945817 | 52.37 | 0.0054 | Accept H(0)
NNEX | 0.232533 | 0.91 | 0.4107 | Accept H (9)
FD | 0.111622 ) Co38 | 0.5827 | Accept H{(O0)
RD ] 0.745010 | 8.77 | 0.05395 | Accept H(0)
DD ] 0.430402 | 2.27 ] 0.2292 | Accept H(0)
TD ] 0.470261 } 2.660 ) 02012 | Accept H(0)
DR ] 0.885232 | 23.14 | 0.0171 | Reject d(J)
NCO ] 0.095886 | 0.32 )} 06121 | Accept H (0)
PAR ] 0.421933 | 219 | 0.2355 | Accept
NL ] 0557331 ) 378 | 01472 | Accept
RW | 0.877502 | 21.49 | 0.0139 | Reject
] | | |




TABLE 12. SUMMARY OF SINGLZE

FOR PRO

| |
Metric | R-squace | F Valu

Variable | |

} |

| |
LC ] 0952313 | 242.85
I0 | 0.769078 | 39.97
CO ] 0.413572 | 8.U46
DH ] 0.585479 | 16.95
PC 1 0.683309 | 25.39
UBR ] 0.684094 | 25.39
EXIT | 0.521244 | 13.06
STOP | 0.2815u46 | 4.70
0SC { 0.000000 0.00
cC | 0.237354 } 3.73
TS ] 04579287 | 16.52
NEX | 0869163 | 79.72
NNEX | 0.256202 | 4,13
FD ] 0.001341 0.02
RD ] 0.124145 | 1.70
DD | 0267050 ) 4,37
TD { 0.256989 | 4,15
DR | 0.884833 | 92.20
PAR i1 0.807197 | 50.24
NL ] 0715260 | 30. 14
RW I 0.594347 | 17.58
NCO | 0.709362 | 29.29

| |

69

JECI TWO

|

] C.C001
{ 0.0001
1 0.0131
| 0.0014
| C.0003
] C.0003
| ©€.C035
I 0.0509
{ 1.0000
}  0.6772
I 0.0016
| 0.0001
| 0.0643
] 0.90M
| 0.2166
| 0.C585
] 0.0643
{ 0.C001
| 0.0001
| 0.0001
I 0.0012
| 00002
|

Reject
keject
Reject
Reject
Reject
Reject
Reject
Accept

Accept i

Accept
Reject
Reject
Accept
Accept
Accept
Accept
Accept
Reject
Reject
Reject
Reject
Reject

VARIABLE REGRESSICN DATA

F
§

-




s

e

TABLE

Metric

LC
I0
co
DH
PC
UBR
EXIT
STOP
0sC
cC
IS
NEX
NNEX
FD
RD
DD
TD
DR
NCO
PAR
NL
RW

|
|
70 ]

13. SUMMARY OF SINGLE VARIABLE REGRESSICN DATA
FOR PROJECT THREE

...................................... . — |

i i | { 3

| B-square | F Value | Pr > F | Decision i

) | ) | 4

| | | | :

| | | l I

] 0.830952 | 216.28 | C.0001 | Reject H (D)

| 0081709 | 3.92 | 0.0Q541 | Accept H (0)

| 0.696377 | 100.92 | 0.G0017 | Reject H(N)

§ 0.751503 | 133.07 | C.C001 | Reject H{(0)

] 0.2959387 } 18.50 | 0.0001 | Reject Hd(0)

) 0.821583 |} 202.62 ] 0.0001 | Reject H(0)

] 0.209254 | 11.64 | 0.0014 | Reject H(0)

] 0.014800 | 0.66 | 0.4206 | Accept H(Q)

| 0«174450 | 9.30 | 0.0033 | Reject H({Q)

] 0.001323 ) 0.06 )} C.8103 | Accept H (V)

] 0.755609 | 136.04 | 0.0001 | Reject H(O)

] 0.809248 | 186.67 | 0.0001 | Reiject H(Q)

| 0.271785 | 16.42 | 0.0002 | Reject H (Q)

| 0010272 | Os46 ) 05027 | Accept H(0)

i 0162182 '} 8«52 | 00055 | Accept H(0)

| 0291375 | 18«14 | (0001 | Reiject H(0)

| 0.236922 | 17.70 | C€.0001 | Reject H (0)

| 0799424 | 175.37 | 00001 | Reject H (V)

] 0.023480 ) 1.06 1 03093 { Accept H (V)

| 0.647323 | 8076 § 0.0001 | Reiject #(0)

] 0.668134 | 88.58 | C€.0001 | Reject i (0)

| 0.742020 | 126.56 | 0.0001 | Reject H(0)

i | | !




S G S b AN o i A

: 7

means that the regqression of the metric on N is signifi-

'3 l cant. Accepted means that the regression is not signifi-

» 3 cante.

A summary of the significance of the regression of
single metrics on N is presented in Table 14. An "*" peans
the regression is significant. It is significant that *"LC"

is the highest ( reqardless of software type, operating mode

or other project differences) in Projects 2 and 3 and second

in Project 1. Variables "“DH" and "RW" were also significant
for all projects.

Althouqh most variables turned out to be significant
for one or the other projects, "LC" and "UBR" are more im—
portant since these can be obtained before coding starts
(they can be read directly froam "control flow charts). Tne
predicted linear equations for all variables by project is
contained in Table 15. An "*'" peans no equation was pre-

dicted for this project.

Multiple Linear Regression_ Apnalysis_ Results

The purpose of the multiple regression analysis was to
determine which metric variables should most likely be in-
cluded in a regression model. Mainly we were interested in
screening the list of 22 metric variables shown in Table &
to eliminate the ones that did not influence software error

datae.




fra— Fr— v £ R

TABLE 14.

Metric
Variable

LC
DH
UBR
DR
RW
co
PC
EXIT
NEX
Is
PAR
NL
NCO
0SC
NNEX
DD
TD
I0
STOP
ccC
FD
RD

B D LIS 3 > i i S - i Sl

72

SUMMARY OF SIGNIFICANCE OF

FOR ALL PROJECIS

REGRESSION

Two ] Three

* % ®

LR 2R K BE 3E R E B BE BE IR AR 2
# 0 % 3 % ® & o  *

* % ®

— . ———— — — — — — — — i —— — — — gy (o o b G — —




TABLE 15.

73

SINGLE VARIABLE MODELS FOR

PREDICTING

THE NUMBER OF ERRORS IN COBOL PROGRAIS

————— ——— — —— —————— — —— ——————— —————

Project Three

Inter-| Slope
cept |

—————— ———————— ——————— —— ———————

|

4.355) 0.033
* | *

3.157] (Q.2238
1.5251 0.040
8.758] 0.041
4.110] 0.060
7.7531 0.399
6.4921 0.234
* ‘ *x

0.632}) 0.010
2.272) 0.012
3.579] 0.020
* i x

* | x

3.3839 0.024
3.625| 0.022
24325) 0.9005
* | *

2.871] 0.106
C.477f 0010
1.127) 0.014

Metric { Project One | Project Two |
Variable | 1 ]
jrmemmmn—s s e e lss—==rc""c7
| Inter—-| Slope}l Inter-| Slopej}
] cept | ] cept | |
{ ] | | |
LE { 2.902 |} 0.587] 3.7311} C.319]
10 1 | * | 5.848] 0.303)
co ! * | * | 9.319]| 0.362}
DH | 4.623 | 0.404})] 5.640}) 0.104]
pC | * | % | Be9567| 0+371}
UBR 1-1.683 ] 1.047] 12.621}] 0.122]
EXIT ] x ) * ] 9.222) 0.714]
SIOoP | * ] * * | S|
ccC | * | * * L |
TS ! * | * | 2.645) 0.022}
NEX ] * ] * |- 0.422) 0.056]
NNEX ] ¥ | AN * | s
FD | * | * | = | LA
RD | * | . LR * | *
DD | * | L A | * | LA
TD | * i * | * | * |
DR 1-1.153 | 0.064)=- 0973} 0.010}
NCO | * 1 * j- 0.153} 0.0838])
PAR | * | * | 74294} 0.334)
NL | * { * |- 0.326} 0.017¢-
RW | 2.661 | 0.139] 60,015} 0.043)
|




D i i binsis a0 o o U 3 oI G il T

74

Analysis Using all Metric Variables
The basic approach to this part of the analysis was to

study the outputs trom all five techniques referenced aoove
and select the sets of variables most frequently included
for each project. Table 16 lists a few of the sets of vari-
ables selected for all projects. The highest "r-square"
value is given when the same set was selected more than
once. Column "Decisicn" reflects the decision relative to
the hypothesis

H{0): B(1)=B(2)...=B{n)= 0,
against

H{(1): B(i)#0 for at least one 1i.
and under the assumption that the e(i)'s are normally dis-
tributed. At a .05 significance level, at least one B(i) is
significantly different from zero for all selected groupse.
Table 17 contains the final list of variables chosen from

those shown in Table 16. Table 183 contains a summary of the

predicted equations for each set of variables by project.

The preceding discussion was ftased upon an objective
analysis of 22 variables without considering their relation-
ship to each other. Since some of the 22 variables were
known to be functionally related, i.e.,

TS = NEX ¢ NNEX and TD = FD + RD + DD, a sudbset of variabies ]

considered unrelated was selected and used in a regression
analysis. These variables are LC, IO, CO, DH, PC, UBR,
EXIT, stoe, OSC, CC, TD, PAR, and DR. The results froa this

analysis is presented in the next section.




TABLE 16.

75

VARIABLES SELECIED FOR MOUDELS

- — - - ——— —————— ————— ——  ————— — — - —————————— -~ ——————————

I |
| R !

———— ——— ——— ——— ———— -

] |
F | Pr>F |Deci-

|Square({Value | lsicn

| | | ] |

{ | | { |

JLC UBR 10.95851127.1110.0001)% H(0)
{LC STOP 10.99111612.2810.00011R H(0)
|UBR EXIT }10.5988)855.77)0.0012)R H(0)
| |

| l | i |

JUBR EXIT NNEX 1099991999.9910.0001|R H (0)
ILC UBR CC 10.99351850.6C)0.0001JR H(0)
JLC CO STOP 10.99991611.5110.0001)R H (0)
JLC CC NEX 10.9946]506.4C10.0001R H(0)
i | | | ]

| | { | |

JUBR IO EXIT NNEX 11.0C0C01999.9910.0001}3 H(0)

IDD TD DR RW 11.€000}999.99(0.0001}R H (0)
|LC CO UBR STOP 10.9915]461.51]0.0001|R H(0)
{LC EXIT CC NEX 10.99491441.86]0.0001]R H(0)
ILC UBR 0SC cC 10.8660] 66.2010.0001[R H(0)
|PC STOP CC NEX 10.8784¢4 74.0710.00014R H (0)
{ { | | |
i [ | i |
JUBR EXIT NNEX TS RW 11.0000}649.7C0.0001|R H(0)
{LC CO UBR STOP DR 10.99551354.02]0.0001 18 H(0)
ILC CO UBR DR PAR 10.9955]354.0210.0001}R H(0)
ILC PC EXIT STOP NEX 10.99751652.7710.0001}R E(0)
ILC UBR 0SC CC FD 10.8716] 54.29]0.000113 #(0)
|PC STOP CC NNEX NL 10.8808] 59.08J0.0001R H (0)
| | | | |
| | | | |
]LC IO CO UBR EXIT STOP DD | | ]
| TD DR PAR 10.99951643.0040.0001|R H (0)
ILC IO CO DH PC UBR DD TD | ] | |
| DR PAR 10.9951]645.00]0.0001JR H(0)
JLC IO CO UBR CC FD DR NL | ] ) I
| PAR RW 10.9927]1411.44]0.0002]R H(0)
ILC PC STOP NEX FD RC DD DR} I | I
! TS RW 10.999912310.710.0001|R H(0)
JLC I0 CO UBR STOP 0SC CC |

10

| FD RD TD

|
8662

| |
27.2510.0001R




PN Buwg  pus

76

TABLE 16. VARIABLES SELECTED FOR MODELS--Continued

ci-
on

H(0)
4 (0)

H(0)

|
No in|Variables Selected ] R F | PC>F |]De
Group] |Square|Value | |si
] | | ] |
| | | | |
10 J]LC PC CC NEX NNEX RLC DD TD] | | |
) NL TS 109135]) 36.9510.0001)R
JLC IO CO DH PC UBR EXIT ] | | |
] 0SC CC TD 10.99554408.1510.0001R
JLC IO CO UBR STOP 0SC CC ] | | |
| NEX FD DR 10.8333) 27.8410.0001]R
JDH PC STOP CC NEX NNEX EFD } |
i RD TS NL 10.8908) 23.55]0.0001]R

15 |LC IO CO UBR EXIT CC FD RD| | |

|
l STOP TD DR NL PAR RW DD}1.CCC0199999.]0.0001]R

ILC IO DH PC UBR CC NEX RD | | | i

| NNEX DD TD DR NCO TS NL]0.9216] 23.49)10.0001|R |

JLC CO DH PC U3R 0OSC CC FD | | | |
J RD DD TD NCO NL TS DR 10.9186| 22.56)0.0001|R
| | i | |

- —— ———— - —— - ——— —— —— —————————————— —— ————— —

| l
20 JLC IO CO DH PC UBR STOP CC|

I
|
| 0SC TS NEX NNEX FD RD | |
|
|

| DD TD DR NCO NL PAR 109244} 15.28]0.0001}R
ILC IO CO DH PC UBR EXIT CC| | |

| STOP O0SC TS NEX NNEX FD]| ] | i

| RD DD TD DR NL PAR 10.9244) 13.S9810.0001R ¢
!

! | | |

g(0)




- -

(I | ' |
| | |
[ | |
Q | | 1
m [} | |
& _ | “ ]
Q ) o LR JE 2 2 JE 2E N & 2R IR 2 BE BE BN 2R IR 2R 3 A }
I N |
- | | | |
)] | | | |
n ) | | |
n | — | [}
m _ ) oA |
- ] o) ]
m | o] [ I | LR BE BE IR R 2R BE IR IR IR BE R B I )
ot ] a ] «~ |
- |
] a
-g ]
> — cul“ = — Smm — ey e — —— e e e e amy W) w—n e Gwy v w— — —
e
]
) — |
0~ | Q | © ) LR R K 2R 3R IR BE B * )
& | o STl | |
] | o [} |
~ = ) o]
~ | d
o |
hal |
m || o
[ ] wn * % # B ®
%] | 4 |
- ] 9 1
-3 1 a
| 8 |
. | | == 3 == | = T v . S S . ——— - —— — — — —— — — — ——
-t [ | = §
= |
- ot |
[ | “ I N * *
| 1 |
[ ] | |
e _ | ] |
B | | | .
- ] | === e e o cmm | m e S SR G e R G GYR GED T CEY WP TP SR GED . wEn Gwp G e e
[ | | |
5] 1 ) | |
-3 I L | 2] 7] < )
m ] .A4Q | o] o] VW O o (5] O |
- [ | N o | VMOoOIDIOULUNLEHNOKM<cAZTNZ2AOUMA
(2 [ | M“.l “ HOHAOAMULUAODLMNEAMNZEMEHNZMAZZM
[}
SR nuu )
[ | > )
[} |
¥t

—— i § { ] ] $-




4t
3
]
3
4
Bl
i
}

T

78

*S043Z WO4J Ysinbullsip 07 payse|s ade s,0x

MYT00°0 + TINTTO - 0 -
4vdbb0°0 - @INZTO0 + ¥0200°0 + GL¥60°0 + GA8LO'0 - 04590°0 +
XINNIEE'0 - SL¥2€°0 + 22685°2 - ISO1L2°0 - dALS6YY' T - LIX3LYO°O -

48NS5£2°0 - Id2vE"0 - HA66Z°0 - @IZIE’0 - PICOE'0 - JTELE'0 - 226°S = N
MYT00°0 - INSOO'0 - ¥Vd620°0 -
¥a100 + GLE00°0 + I/80°Z - ISGSSO°0 + dALSL26°T - LIX3210°0 -
YINYE0 0 + IdT00°0 + HASTIO'0 + @3200°0 + BI2€0°0 + JIWI0'0 + 290°L = N
QL100°0 - J326€°2 - 2S@6¥0°0 + 11X3I620°0 -
¥8n220°0 + 2d600°0 - HOZI0°0 + BIST0°0 - AI6T0°0 + J7020°0 + €€9°G = N
1IX38¥0°0 - ¥9n9¥20°0 + HALOO"0 + HI900°0 + DIBI0°0 + LZE°€ = N
48NL20°0 + J1220°0 + 2L0°Y = N €
1IX30€1°0 - 4ANEO0 0 + HAE00'0 - PIY2T°0 + 271952°0 + 90G°1 - = N
Y8N600°0 + J1C0€°0 + TL6°€ = N 4
yange66°0 + 31620°0 + 9SS°T-= N I
"ON 123royd

* ST300W

SWY4904d 10800 NI Sy0dy3 40
YIGWNN 3HL INILITGIYd ¥O4 STIAOW IVIYVA INJILINW  "8BT 378VL

o




S i S B o NS N e i s it Aol A RS T
—= 2 kv 3

79

Analysis of Reduced Sets of Unrelated Variables

It is appropriate at this time to point out that analy-
sis was not performed for a project containing a number of
observations less than the number of metric variables.

All tests of hypothesis were set up in the followWing
manner with a 0.05 level of significance

H(O0): B(1)=B(2)=e<.=B(n)=0

against

H(1): B(i)# 0, for at least one i,
and under the assumption that the e(i)'s are normally Jis-
tributed. The results of this analysis are summarized in
Table 19. The regression is significant. Therefore, this
final set of 13 metrics is a good predictor of software er-
COrS.

Conclusions

The main purpose of the preceding analysis was to de-
termine if program characteristics metrics, which measure

program complexity, are predictors of the number of errors

in COBOL programs. It was shown, through simple linear and
maultiple linear regression analysis, that the nuaber of er-
rors in a COBOL program is a functicn of its structure which
is measured by characteristics metrics.

A set of 13 unrelated metrics was chosen as the final ﬂ

group of aetrics to predict the number of software errors.
The next chapter will specifically discuss how this set is

used as a measure of program complexity.




3

i

S, R LS

b it bbb

2 gt

*S049Z W04y WAy} Ysinbuilsip 03 payseys a4e s,0s

(0) H Y 1000°0 v8°81 5v88°0 Y0100°0 + ¥YdFE0°0 - 012000°0 - JIEPT“2 -
350250°0 + dpISYOT'2 - LIX3ISI0°0 - YGNZED'O +
426070 + HOTT0 + 0J800°0 + PI£20°0 + J010°0 + SI2°L = N
(0) H ¥ 1000°0 LL92 +v88°0 Y0100°0 + ¥Yd/€0°0 - DISKT°2 - ISGIS0°0 + 4fLSSO1°2 -
L1x3610°0 - ¥ENOEO"0 + HOOT0°0 + P1920°0 + JI010°0 + 88I°L = N
& (0) ny 1000°0 19°€5 20(8°0 20520°2 - 50S50°0 + ¥8N920°0 + O1£10°0 + D100 + €85°G = N
(0) n ¥ 1000°0 Cv 811 £9t8°0 Y9NL2C70 + DIT20°0 + 2i0°Y = N £
(0) Hy 2000°0 90" 1sY £666°0 0ECO°0 +
¥vd622°0 - O1110°0 - JDLSEET’9 + 5IX3202°0 - HANZHO'Q +
2d€AT°0 + HOEEO'0 + 0IIE0°0 + JIEZ'0 + 9EB'E - = N
(0) Wy 1000°0 88°01S 89560 YOE00°0 + YVA09Z"0 - YINZIT'0 + 0IS0T°0 + DTN6T°0 + 26°1 = N z
(0) Hy 2100°0 L1558 88660 11X3096°0 - ¥ANGRO'T + 0BI'T = N I
NOISI730 4<uyd INWA 4 33vnbs ¥ » S13004 123r0%d
$378VIYVA 40 13S 030N03¥ 40 SISATYNY NOISSIYIIY JO AYWWWAS “GT 318V1
l | ssomem | ———— [P

it A

2
s




] VI. A MEASURE OF PROGRAM COMPLEXITY

Introducticn

Initially it was hypothesized that the number of soft-
ware errors could be predicted from the internal conplexity
of the programs. But what does one mean by "internal coa-
plexity"? 1Is it a property that can be observed and meas-
ured, and perhaps even related to the number of errors in
programs?

Complexity of any object is some measure of the mental
effort [4,17] required to understand that object. 1In gener-
al usage, the complexity of an object is a function of the
relationships among the components of the object. As ap-
plied to computer programs, it is a measure of the internal
structural characteristics of the proqram. The previous
chapter presented the results of an analysis that showed
that actual program characteristics were related to the nua-
ber of program errors. The fpurpose of this chapter is to
define a "program complexity measure" froa these basic char-

acteristicse

Measures of Program_Complexity

A program is made up of many coamfonents such as object

instructions, data base descriptions, external data bases,

[ )
. 3

81

#3




e

o—

B —

82

other external proqrams such as the operating system and
other applicaticn programs, program logic, etc. These com-
ponents and the relationships among them determine prograa
complexity. The problem is to measure the degree to which
certain relationships exist within a fprogram. For exaaple,
the number of input/output statements measures, in sone
degree, whether an input/output relation exists between the
program and a data base. Complexity when applied to a spe-
cific relation is called local complexity. The complexity
of a program as a whole is defined in terms of local com-
plexities. There are 7 lccal complexities: control flow
complexity, input/output complexity, data use coaplexity,
computational complexity, data transfer complexity, struc-
ture design complexity, and interface complexity.

Control flow complexity is defined as the number of
logical relationships present in the source code. In a
COBOL program, these relaticns are manifested as IF, GOTO,
STOP, and PERFORM...UNTIL statements, and AND and OR condi-
tions. The Control Flow Complexity metric, CFC, can oe
numerically evaluated for each program by calculation:

CPC = LC + UBR + STOP
A Normalized Control Flow metric, NCFC, is defined as NCFC =
CPC/1000.

Input/output complexity is defined as the number of I/O

statements. The Input/Output Complexity metric, abbreviated

as IOoC, is

I0C = I0.




e e R v i " = 4
e i &ty i e DA < i il " id ; o b 3 i ol

33

Data use complexity is defined as the ratio of data
references (actual references to data items) to total data
definitions. Many data reference errors are made because
the assumptions made when defining data differs from the as-
sumptions made when using the data. For example, when
defining a data item as ALPHABETIC, it is assumed tnat oaly
alphabetic data will be stored; but, when numeric data is
stored in the data item it is assumed that the data 1item is
declared "numeric" or "alphanumeric". As the number or data
references increases relative to total definitions, the data
use complexity increases. The Data Use Comrlexity metric,
abbreviated as DUC, is calculated as

DUC = DR/TD.

Computational complexity is defined as the number of
arithmetic statements such as ADD, MULTIPLY, CCMPUTE, etcC.
The metric for this complexity is abbreviated as COC where

CoC = CoO.

Data transfer complexity is measured by the nuaber of
data transfer statements. This complexity metric,
abbreviated as DHC, is evaluated by counting the number of
data transfer statements (DHC = DH).

Interface complexity is measured by the number of sys-
tems interfaces (number of system routines called) and the
number of application routine interfaces (nuamber of internal
and external application routines called). The Interface
Complexity metric, abbreviated as IC, is defined as rollows:

IC = 0SC + CC + PC,




|-~ AD=AO46 873 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OHIO F/6 9/2

| A MODEL FOR ESTIMATING THE NUMBER OF RESIDUAL ERRORS IN COBOL P==ETC(U)
JUN 77 C E MARTIN

UNCLASSIFIED AFIT=CI=77=-97

END
DATE
FILMED
|2 - 7ﬁ




i PO -wm

-

84

where
0SC = number of system program interfaces

Ce number of compiler calls such as COPY

PC

number of applicaticn (internal and external)
routine interfaces.

Structural design conmplexity is a measure of the number
of distinct routines (number of comfponents) in a programe.
The Structural Design Complexity metric referred to as SC,
is numerically evaluated for each prograa by calculating:

SC = (PAR - EXIT) +1.
The 1 accounts for the main control flow routine.

Total complexity is a function of the 7 local coamplexi-
ties discussed above. The Total Complexity metric, referred
to as TC, is defined as fcllows:

TC = CFC + IOC + DUC + COC 4+ DHC + IC + 5C.
A Normalized Total Complexity metric, referred to as NTC, 1is

defined as TC = TC/1000.

Regression Analysis of Cowmplexity Metrics

Heretofore, data from 3 projects were used. But here, the
complexity metrics are analyzed using the original 3 data
bases plus 1 data base consisting of all 3 projects!' data
combined. The purpose for mixing the sources of data is to
observe what happens when different types of programs, de-
veloped by different organizations, are mixed. Hereafter,
the combined data base is referred to as Project 4. There

are 65 observations (programs) in this data base. Tabples

N




35

20-23 summarize the regressicn statistics for each respec-
tive project. The "Decision" coluan reflects the decision
at the .05 significance level relative to the hypothesis

H(0): B =0,
against

H(1): B # 0,
and under the assumption that the e(i)'s are normally dis-
tributed. Table 24 presents a summary of the regression
siqgqificance, at the .05 lavel, of the complexity metrics by
proijecte.

The "best" conmplexity nmodels, predicted by the Maximum
R-square technique, are listed by project in Table 25. The
maodels for total complexity and the normalized metrics, TC,
NTC and NCFC, are listed in Table 26. Actual data rpoints
(plotted as '+') and the regression line for project 3 are
shown in Fiqures 11-20.

Conclusions

The purpose of this chapter was to define and develop a
"program complexity measure" from 13 uanrelated characteris-
tics metrics selected from the analysis presented in tae
previous chapter. Seven local ccaplexities were defined and
used to develop a measure of total prcgram complexity. Met-
rics for each complexity were defined also. It was shown,
through simple linear and multiple linear regression analy-
sis, that the number of errors in COBOL programs is a func-

tion of these ccamplexity metrics.




S e

P S et e A i v M i Bl
0

36

Linear models developed from these metrics can be used
to predict the number of errors in COBOL programs. The
"best" single variable model for predicting errors is the
Control Plovw Complexity metric model. The "best” multiple
variable model for predicting errors is the one that con-
tains all 7 local complexity metrics. Analysis of Project 4
shoved that the latter model can be used when dealing with
many types of programs that are developed by different or-
ganizations. However, it is suggested that each organiza-
tion estimate the model parameters relative to error data

from its development projects.




87

DATA FOR PROJECT 1

METRICS REGRESSION

— - — ——— - —— — — ——— — ————————— — —— o — —————————— ———————

TABLE 20. SUMMARY OF THE COMPLEXITY
| |
Complexity) R-square | P Value
Metric | ]
Variable | |
| )
.......... l - - — - ' - —
| |
CFC } 0975512 § 119.51
I0C | 0212239 | 0.81
pOC | 0.258828 | 1.05
coc ] 0.627788 | 5.06
DHC | 0943303 } 49.91
) (e | 0091318 | 0.30
SC ] 0.459725 | 255
TC ] 0.934449 | 42,77
NTC | 0.934449 | 42.77
NCFC ] 0975512 | 119.51
| |

— - — - ——— — ——— ————— ——— — - —————— —— - —

0.0016
0. 4349
0.3814
0.1100
0. 0058
0.6212
0.2034
0.0073
0.0073
0.0016

| ane o o o s s e o e e e Gt Gt e e G S -

Reject
Accept
Accept
Accept
Reject
Accept

Accept ¢

Reject
Reject
Reject

b




TABLE 21.

- - - —— - —— - —————— - — - —— -

Complexity

Metric
Variabnle

- ——— — ——— ———————————— - —— — ————————— —

SUMMARY OF THE COMPLEXITY METRICS REGRESSICN

DATA FOR PROJECT 2

—— — — — — — — -

0.824537
0.769073
0.061079
0.413575
0.585479
0.727358
0.660955
0.903222
0.903222
0.824537

—— — —— —— — ——

- ———— ———

C. 0001
0. 0001
0.3943
0.0131
0.0014
C.C001
C.0004
C.0001
C. 0001
C.C001

-—— ——

Reject
Reject
Accept
Reject
Reject
Reject

Reject ¢

Reject
Reject

Reject i




39

TABLE 22. SUMMARY OF THE COMPLEXITY METRICS REGRESSICN
DATA FOR PROJECT 3
| | i |
Complexity] R-square | P Value | Pr > F | Decision
Metric | | ] i
Variable | ) | |
| | | |
---------- Imsr el T sl s s e e o e =
---------- Iesnamns | e === e el
1 | | |
CFC f 0.845919 | 241.56 | (0.C001 | Reject H(0)
I0C ] 0081709 | 3292 | 0.0541 | Accept H(0)
DUC |} 0.385898 ) 27.65 | C.0001 | Reject H(0)
coc ] 0696377 | 100.92 | (€.0001 | Reject H(0)
DHC ] 0751509 ) 133.07 |} 0.0001 ] Reject d(0)
IC }] 0.341395 ) 2281 | C.C001 | Reject H(J)
sC | 0.686314 | 96.49 | ©0.C001 | Reject H(D)
TC ] 0.806581 | 183.48 | 0.0001 | Reject H(O)
NTC § 0.806581 | 183.48 | (C.COU1 | Reject H (D)
NCPC | 0.545919 | 241.56 | 0.0001 | Reject H(O)
| | )

- - —— - —— —— —— —————— —————— —— - — - ————— - ——— ——————————————————




TABLE 23.

90

SUMMARY OFP THE COMPLEXITY METRICS REGRESSION

DATA FOR PROJECT &

Complexity|

Metric

Variabplie |

st e e [ e e et [ S e

s et e e e e ot o i

CFPC
I0C
DUC
caoc
DHC
IC
SC
TC
NTC
NCFC

|
|
|
l
|

l
0.3C0097 | 27.01

0.304956 | 27.64
0.3C0097 | 27.01
l

0.0001
0.0001

{ 0.0001
0172233 | 13.11 | C.CO006
0.151020 | 11.21 | 0.0014
0.346999 | 33.48 | C€.0001
0.270823 | 23.40  0.0001
0.106096 | 7.43 | 0.0C081
0.206157 | 16.36 ] C.0001
0.304956 | 27.64 | 0.0001

|

|

|

l

v — — G — — ot - — —

Reject
Reject
Reject
Reject
Reject
keject
Reject
Reject
Reject
Reject

H(0)
i (0)
d(0)
H(0)
H (0)
H (0)
i (0)
H(0)
H(0)
H(0)




—

ey =

91

TABLE 24. REGRESSION SIGNIFICANCE OF COMPLEXITY 4ETRICS

VERSUS NUMBER OF ERRORS

{
Complexity |
Metric |}
Variable |
|

1

|

CFC
DEC
TC
NTC
NCFC
CocC
IC
SC
I0C
buc

_____-______
TEER]

R B PRy oL e e
R E E R R
T B S L T
R RN R R R RN

e P PERRIENY

oo 2 40,




it ) v

Ad0D TIEVIIVAY 1534

*S0JAZ WO4) Wayy ySInfiugIsIp 03 PAPYST|S 1P S 0.

661650 ISELO°0 - D1950°0 + JNHASO0°0 + IBIVOZ0 + INAYLE'D + IFI6L0°0 + III6LN0 + (62" (-= M
£6166°0 JSEOL"0 -~ 2129070 + IHIY0Z°0 + INZ0E°0 + IIIZ0°0 + IIIIN0°0 + ¥I0 (- ..
0el66 0 ISEEL0 - 21290°0 + I3I7Z 0 4 INOLZ'0 + I4I(60°0 + 860°0 = N
BLLH670 IN00Z0°0 + IWISZ2Z°0 + INEIZ'D + DIINL0°D 4 £05°D-= "
> 18(86°0 0L10°0 + IAI522°0 + 24ILLO°0 + S+H°0 » N
! 16086°0 IEIECZ°G « 34IA0°G + §10°2 « N
¥529°0 247960°0 + €¥6°8 = N 2
, 00001 219¥1°0 - 20IE82°0 + IWIL10°0 = 94292570 + 951°E = N
: 66666°0 JI€91°0 - J6I6/2°0 + 237926°0 + (OZ'C = N
SLL66°0 20752°0 + 74292670 4 S02°0 = N
15526°0 24326C°0 ¢+ (420 = N 1
IWyn0s-y » ST300W 173004

SWYY90Wd 10900 NI SHO¥Y3
40 Y3ITWAN 3HL ONILII0IWd ¥O4 ST1300W ALIXIVHWOD °S2Z 378vL

- 2 e b




R

569€4°0 JSBEL"0 - 31820°0 + JHALOO'O - IPI6LL™0 + INASEP°0 + IFIE60°0 + 1362070 + SbB°2 = N

265¢€¥°0 . JS9EL°0 - J1¥20°0 + IBISLL'0 + INALIS°O + DBIBBO'0 + 247920°0 + €8P°2 = N

0£820°0 JS6EL°0 - J1£20°0 + 26I611°0 + IFI160°0 + 23I820°0 + €EV'V = N

029180 356£0°0 - J6I60L°0 + 24128070 + 247520°0 + 6OS'V = N

L63€E°0 JWILEL"0 + 26199070 + J3DLIC°0 + ¢BL'T = N

2ESLE’O J6I012°0 + MWI190°0 + VGB'E = N

00LvE'0 WIVSZ'0 + 68L°9 = N ’
62058°0 35500°0 - J1500°0 = JHO600°0 + J0IL10°0 - INAYH0°0 + IBINR00°0 + I4D220°0 4 t60°C = N

02058°0 J1900°0 - 2HG600°0 + J028L0°0 - INASYO'O + IGI900°0 + I3I220°0 + 20L°E = N

21058°0 31500°0 = J10600°0 + J0ILL0°0 = 190070 + I3I220°0 + ¥t2°E = N

S5€v8°0 J1¢00°0 - JMGLO0°0 + JBIY00°0 + I3DNZ0°0 + €S2°CE = N

LE6Y8°0 J1v00°0 - J1v00°0 . J10800°0 + J33120°0 + ISP’ = ...

¥02¢3°0 J1Q900°0 ¢ J4I120°0 + IES°E = N

165+8°0 J40620°0 + 690°% = N £
3Yvnbs-y s S71300W 1730084

pPanu|3U0d--62 318VL

—— pe— e —




94

TABLE 26. TOTAL AND NORMALIZED COMPLEXITY MODELS BY PROJECT

—

‘ PROJECT MODELS

- 3.728 + 0.183TC
3.728 + 153.060NTC
= 0.287 + 381.860NCFC

=> =Z> =
"
]

>

¢ = 1.374 + 0.042TC
= 1.374
= 8.943

+

41.977NTC
95.763NCFC

-_—r ="
+

= 2.220 + 0.011TC
.220 + 11.222NTC
= 4.069 + 23.830NCFC

_— = 2>
]
[AS)

+

= 7.489

+

0.012TC
11.666NTC
24.370NCFC

. 489

2) = 2
"
~
+

s 9,521

+




WWmwxC=

g O

Lw O wwm

70

60

50

40

30

20

10

95

PLOT OF CPC*N LEGEND: SYMBOL UJUSED IS +

B ot bt - e bt G b G e B tme = wm Gde e e e e S e e e e S e - e e e e -

0 500 1000 1500 2000 2500 3000 3500
CPC = CONTBOL FLOW COMPLEXITY

Figure 11, Plot of Control Flow Complexity Model for

Project 3




96
PLOT OF IOC*N LEGEND: SYMBOL USED IS +

70

60

50

wmmEawx

40

O

30

LWO W

20

10

— e s e e P o e - o o - - - . —— o ————— et - — - ——— = - e —

IOC = INPUT/QUTPUT COMPLEXITY

Figure 12. Plot of I/0 Complexity Model for Project 3

i s Y S

e s S




- |

PLOT OF DUC*J LEGEND: SYMBOL USZD IS +

70

60

50

mEmw =

40

g O

30

oo W@ty

20

10

S b mme — tma Gt s Gt Sen ) W e Gmm s P S e e e o e e e o e e - w— f S o e e - e e

DUC = DATA USE COMPLEXITY

Figure 13, Plot of the Data Use Complexity Model for Project 3




O DM x o=

ooty

70

60

50

40

30

20

10

P o oam o P e - S — P S e o e P - e e P e e - P - o - - ————

Figure 14.

98

PLOT OF COC*N LEGEND: SYMBOL USED IS +

COC = COMPUTATIGCNAL COMPLEXITY

Plot of the Computational Complexity Model for Project 3




m O ITmMmoEqQx

WoOWwMm

99
PLOT OF DHC*N LEGEND: SYMBOL USED IS +

70

60

50

40

w
o

N
o

10

0 200 400 600 800 1000 1200 1400

DHC = DATA HANDLING COMPLEXITY

Figure 15. Plot of the Data Handling Complexity Model for Project 3




*._,'4

tmw=ECx

O

Lw O

70

60

50

40

30

20

10

100
PLOT OF IC*N LEGEND: SYMBOL USED IS +
I
|
|
|
+
|
|
|
]
+
|
l
|
|
+
|
|
|
]
+
|
]
|
|
+ +
|
I
|
|
+
|
|
|
|
B
| ;
|
|
|
+
| $mmmm—— tmm————— e tmm————- $mm————— tmm D
0 200 400 600 800 1000 1200

IC = INTERFACE COMPLEXITY

Figure 16. Plot of the Interface Complexity Model for Project 3

1400




pPEHWZECR

MmO

(V- N elR- -l o]

101
PLOT OF SC*N LEGEND: SYMBOL USED IS +

70

60

50

40

30

20

10

— P o P o - v e P - o e P e e P e e o e o —— o e - —————

Figure 17. Plot of the Structure Design Complexity Model for Project 3




' 102

PLOT OF TC*N LEGEND: SYMBOL USED IS +

70

50

oTmwxa

40

" O

30

0O owidy

20

10

— P e e o o e o o o e e e P e e o - P - . = P = e e e P = s ——

0 1000 2000 3000 4000 5000

TC = TOTAL PROGRAM COMPLEXITY | 3

Figure 18. Plot of the Total Program Complexity Model for Project 3 | §




WM xXxaC=x=

O

VWO wwWts

70

60

50

40

30

20

10

Figure 19. Plot of the Normalized Total Complexity Model for Project 3

103
PLOT OF NTC*N LEGEND: SYMBOL USED IS +

—_ e e b e b b b — b ————

NTC = NORMALIZED TOTAL CCMPLEXITY




104

PLOT OF NCFC*N LEGEND: SYMBUL USEL IS +

Tmuwuxao=

WO

viwOoOw™w

NCFC = NORMALIZED CONTROL FLOW COMPLEXITY
Flgure 20, Plot of the Normalized Control Flow

Complexity Model for Project 3




B

— —

s ——————— - . i

VII. SOUAMARY, CONCLJSICNS AND RECOMMENDATIONS

Summary

The high incidence of errors in software is the
underlying problem of software reliapnility. But, the nmost
important unknown of software reliabpility is thke number of
residual errors in a program. If this number were availiable
early in the software development staces, the softwWare engi-
neering process would be enhanced greatly. Several other
unknowns could then be solved. One could determine when to
stop testing a program, estimate the cost of maintenance and
establish levels of confidence in programs ana systems of
programs, and develop more accurate software models that
vould model software failures more realisticallv. The
results would be the ability to deal with all the unknowans

of software reliability and reduce the overall cost cf soft-

vare.

The goals of this research were to determine if actual
program characteristics are predictors of the numder of er-
rors in COBOL programs, to define program coumplexity meas-
ures from proqram characteristics, and to propose complexity
models for predicting the number of errors in a COBOL pro-

grame

ks

105

e e Ce——




106
Through simple linear and aultiple linear regression
analysis of 3 sources of data, the number of errors in a
COBOL program was shown to be a function of its structure
which can be measured by 22 characteristics metrics. A set
of 13 unrelated characteristics metrics was selected froa
the 22 characteristics metrics to define 7 local conmplexity
metrics. The 7 local complexity metrics vere predictors of
the number of errors in a program. Ccnsequently, these met-
rics were used to estimate models to predict errors. The
"hest" single variapnle model for predicting errors is the
Control Flow Complexity metric model. The "pest" aultiple
variable model for predicting errors is the one that con-
tains all 7 local complexity metrics. Analysis of Project 4
showed that the latter model can be used when dealing with
many types of programs that are develcped by different or-
ganizations., However, each organization should estimate the
model parameters relative to error data froa its development
projects. Results relative to Projects 1, 2, 3 and 4 are
summarized in Appendices B, C, D and E respectively.
There are several applications for the complexity

models. Some of them are:

1) Estimating the number of errors in progranms,

2) Controlling the quality and structural complexity of

programs during design [18],
3) Estimating and allocating resources for prograa wmain-
tenance [ 15,621,

4) Estimating a level of ccnfidence in a program [4],




107

5) Developing failure, density, and reliability functions
for software reliability, and

6) Establishing a cut-off point for debugging and
testing computer software [10].

Regardless of application, however, it is necessary to es-
timate the number of errors. Once this nuaber is availaple,
the problems of software reliability can be treated more ef-
fectively. In order to jllustrate the application of tae
complexity model in determining software reliability, Appen-

dix F presents an example calculatica for Project 2.

Conclusions
A detailed look at error types showed that logic and
data handling were, percentagewise, the most frequent errors
in Projects 2 and 1 respectively. However, When error data
from both projects were combined, logic errors were the most
frequent 2rrors. It seeas that the percentage of error
types will vary depending on type of software; but, in gen-
eral, logic errors will normally be the most frequent.
Twenty—-two program characteristics metrics were
analyzed by regression analysis techniques. 3oth single and
Rultiple variable regression analysis showed that the rela-
tionship between the metrics and the number of errors was
significant. Both single and groups of the structural charc-
acteristics metrics were good predictors of the number of

errors.e The number of logical conditions is the "best"

single predictor. The number of unconditional branches is




e e

108

the "second best" single predictor. Different combinations
of metrics were qood predictors also. The metrics in the
"hest" equations, as determined by the Maximum R-sguare
technique, varied by project. However, "LC" and "UBR" con-
sistently appeared in the "best" equations. Thirteen unre-
lated metrics were selected to measure program coaplexity.

Total program complexity is measured by 7 local coa-
plexity metrics. Several ccmplexity mcdels are good predic-
tors of the number of errors in CUBOL programs. The "best"
single variable model for predicting errors is the Control
Flow Complexity metric model. The "best" nultiple variable
model for predicting errors is the cae that contains all 7
local complexity metrics. The latter model can pe used W#hen
dealing with many types of programs that are developed by

different organizations.

One very worthwhile outccme of this study was a posi-
tive attitude toward being able to predict software errors
from complexity measures. This paper only scratched the
surface by showing that program coaplexity could be used to
predict the number of errors in COBOL programs. However,
the measures should apply to all languages. Other research
areas are discussed belovw.

The results from the error type analysis indicate that

error types did have some sort of distribution. Complexity

DG N T el St it e s




109
metrics for specific error types would be very usertul for
costing and scheduling program maintenance.

The Data Use metric seems promising. It seems that tae
Reserve Word characteristic metric is related to this met-
ric. More research is needed to letermine if this is true.

It was shown that the number of errors are predictabdle
from coaplexity measures. We hyrothesize that the number of
personnel assigned to a development project, total software
cost, total development time, computer test time, nainte-
nance cost, and program enhancement cost are also functious
of program complexity measures. Additional research is

needed to determine if this ayfpothesis is true.




e

10.

11.

REFERENCES

B. W. Boehm, "Software and Its Impact: A Quantitative
Assessment," Datamation, Vcl. 19 - No. 5, May 1973, ppe.
48-59,

T. W. Dolotta et al., Data Processing in 1980-85. New
York: Wiley-Interscience, 1976.

"Jnited States Informaticn Processing/Data Autozation
Inplications of Air Force Command and Control Regquire-
ments in the 1980s (CCIP-85)," Technology Trends: Soft-
ware, Volume IV, October 1973.

Glenford J. Myers, Software Reliability Principles_¥%
Practices, A Wiley-Interscience Publication, John Wiley &
Sons, New York.Londcn.Sydney.Torcnto, 1976.

B. W. Boehm, "Software Enqginerring,'" IEEE Transactions
on_Computers, Deceaber 1976, pp. 1226-1241.

B. C. DeRose, '"Managing the Develorpment of Weapoun Systenm
Software,” in: Proceedings_of Ccnference on_Managiang_the
Development of Weapgon System Software, May 12, 1975, ppe.
4-1 through 4-12.

We L. Trainer, "Software: From Satan to Saviour," NAECCN
Proceeding, May 1973.

M. Lipow, "Maximum Likelihood Estimation of Parameters
of a Software Time—-To—-Failure Distribution," TRA Systeas
Group, TRW Report No. 2260.19-73D-15(Rev 1), June 1373.

Je Tal, G. H. Barber, and L. K. Timothy, "Development
and Evaluation of Software Reliability Estimators,"
Proceedings of the Tenth Hawaii International Conference
on_-System Sciences, January 6-7, 1977, pp. 230-233.

E. He Porman, et al, "An Empirical Stopping Rule for De-
bugging and Testing Computer Software," George Wasaington
University, NTIS No. AD-A016027, August 18, 1975.

E<. C. Nelson, "A Statistical Basis for Software Reli-
ability Assessment," TRW-SS-73-03, March 1973.

110




Py pee Gaad  Band  Ged Gaed BE BN

k]

| 3

- i _A‘..,(. - N

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

111

J. R Brown and M. Lifpow, "Testing for Software Reli-

Reliable Software, April z1~-23, 1975, IEEE Catalcyg No.
75, CHO940-7CsR, pp. 518-527.

F. Akiyama, "An Example of Software Systea Debugging,"
IPIP Congress 71, Lijubljana, August 1971, pp. 37-42.

M. Lipow and T. A. Thayer, "Prediction of Software Er-
rors," pProceedings 1977 Annual Reliability and
Maintainability Symposium, Januacy 1977, pp. 489-494.

M. A. Herndon and J. Lane, "“An Approach to the Quantifi-
cation of Software Errors as a Function of Module Coam-
plexity," Proceedings of the Tenth Hawaii International
Conference on System Scieaces, Jan 6-7, 1977, ppe.
265-2638.

Re Je Flynn, "On the Srmallest Number of Prograa Modules
Needz2d to Duplicate Dynamic Independent Interactions,"
Record 1973 IEEE Symposium cn_Computer Software Reliapil-
ity, New York, April 1973, pp. €5-6Y.

Je. BE. Sullivan, "Measuring the Complexity of Computer
Software," MITRE Corp., MTR-2648, June 1973.

T. J. McCabe, "A Complexity Measure,"™ IEEE Transactions

on_Software Enginz2ering, Vol. SE-2, No. 4, December 1976,
PP. 308-320.

M. Lipow, "Estimation of Software Package Residual Er-
rocrs," TRW-SS-72-09, Redondo Beach, California, Novemper
1972.

D. L. Parnas, "The Influence of Software Structure on
Reliability," Proc. 1975 Int. Conf. Reliable software,
April 1975, pp. 358-3b2.

P. Wegner, "Abstraction--A Tool in the Management of
Complexity," Proceedings 4th Texas_Symposium Computation,
November 1975.

E. W@. Dijkstra, "Complexity Controlled by Hierarchical
Ordering of Punction and Variability," Software Engineer-
ing, P. Naur and B. Randel, Eds. NATC, Jan. 1969.

P. Naur and B. Randal, Ed., Software Engineering
Technigues, Report on NATO Conference, October 1968.

J. N. Buxton and B. Randal, Ed., Software Engineering
Technigues, Report on NATO Conference, October 196Y.




112 ’

25. He. D. Mills, "“Software Development," [EEE Transactions
on_Software Engineering, Vcl. SE-2, No. 2, December 1976,
pP. 265-273.

26. D. T. RoOss, J. B. Goodenough, and C. A. Irvine, "Soft-
ware Engineering: Process, Principles and Goals," Comput-
ers, May 1975, pp. 17-27.

27. B. W. Boehm, et al, "Characteristics of Software Quali-
ty," TRW-SS-7309, December 28, 1973.

28. B. W. Boehm, J. R. Brown, and 4. Lipow, "Quantitative
Evaluation of Software Quality,” 2ud Intecnational
Conference on_Software Engineering, October 13-15, 1976.
PP 592-605.

29. D. L. Parnas, "On the Criteria to te Used in Decomposing
Systems into Modules," CACM, Vcl. 15, December 1972, pp.
1053-1058.

30. A. Cohen, "Modular Programs: Defining the Module,"”
Datamation, Vol. 18, January 1972, pp. 34-37.

31. J. B. Dennis, "Modularity," Advanced Course on_ Sortware {
Engineering, Berlin.deidleburg.New.York, 1473, pp

128-182.

32. B. H. Liskov, "A Design Methodology for Reliable Soft-
ware Systems," Proceedings 1972 FJCC, pp. 191-139.

33. G. J. Myers, "Characteristics of Composite Design,"
Datamation, Vol. 19, September 13973, pp 100-102.

34, J. B. Goodenough and D. T. Ross, "System Organization
Methodoloqy: An Analysis of Modularity," MAIDS_ Informa-
tion Dynamics Technology Requirements_Study, NTIS Docu-
ment No. AD7688Y3,/9, June 1973.

35. J. B. Goodenough and R. Zara, "The Erfects of 3Software
Structure on Software Reliability, Modifiability, and
Reusability: A Case Study and Analysis,” NTIS Docuament
No. AD787307/8, July 1974.

36 C. L. McGowan and J. R. Kelly, Top-down Structured Pro-
gcamming Techniques, Petrocelli/Charter, New York, 1975.

37. Progcamming Conventions and Standards, Developed by
SPERRY UNIVAC for the Marine Air Traffic Ccntrol and
Landing System, Contract: N003228-75-2-4223, August 11,
1976.

38. G. 4. Weinberg, The Psychology of Computer Programming,
New York: Van Nostrand Reinhold, 1971. ;




—— o—— S l

39.

“o.

41

4 2.

43.

4.

45,

u6.

47.

48.

49.

50.

51.

113

M. Woodger, "On Semantic Levels in Prograaming,"
Proceedings IFIP Congress 71, August 1971, pp. 79-33.

Tom Gilp, Software Metrics, Winthrcop Publishers, Iac.,
Cambridge, Massachusetts, 1977.

F. B. Richards, Computer Software: Testing, Reliapility

Models, and Quality Assurance, NTIS No. AD/A-001260, Navy
Postgraduate School, Mcanterey, California, July 1374.

2. Jelinski and P. B. Moranda, "Software 3eliapility Re-
search," Statistical Computer Perfcrmance Evaluation,
Edited by Walter FPreiberjer, Academic Press, 1972, ppe.
’465‘484-

M« L. Shooman, "Probabilistic Models for sortware Rell-
ability Predictuon," in Statistical Computer pPerforamance
Evaluation, Ed. by W. Freiberger, Academic Press, New
York, 1972, pp. 485-502.

M. L. Shooman, "Probabilistic Models for Software Reli-

Fault-Tolerant Computing, Newton Massachusetts, June
12-21, 1972, pp. 211-213.

M. L. Shooman, "Software Reliability: Measurement and
Models," Proceedings_ 1975 Annual Reliability and
Maintainability Symposiua, Washington, D« C., January
28-30, 1975.

Je. Do Musa, "A Theory of Software Reliability and its
Application,™ IEEE Transactions_Software Engineering,
September 1975, pp. 312-327.

Ne. Schneidewind, "A Model for the Analysis of 3oftware
Reliability and Quality Control," Presented at the 43rd
National Meeting of ORSA, May 1973.

De Tsichritzis and A. Ballard, "Software Reliability,"
I!_E_Qg, VOl. 11' No. 2' June 1973, PPe 113-12,4.

B. We. Wolverton and G. J. Schick, "Assessment of Soft-
vare Reliability," TRW-SS~73-04, September 1972.

T. A. Thayver, et al, “"Software Reliability Study," Pre-
pared by TRW Defense and Space Systems Group, Reaondo
Beach, California, for Rome Air Development Center,
RADC-TR-76-238, August 1976.

E« C. Nelson, "Software Reliability," TRW-SS-75-05, No-
vember 1975.

.




S4.

55.

56.

57.

53.

59.

60.

61.

62.

63.

114

J. R. Brown and M. Lirow, "Testing for Software Reli-
ability," TRW-SS-75-02, January 1975.

He T. Nagle Jre., D. B. Kimpsey, G. L. West, and D. B.
Bain, "Application of Reliability Techniques to BMD Soft-
ware," AU-EE-75-C-0034-1, Octooer 15, 1375.

A. N. Sukert, "An Investigation of Software Reliability
Models," Draft copy frcm RADC, August 1976.

I. A. Miamoto, "Software BReliability in On-line Real
Time Environment," Proceedings of the International
Conference on Reliable -Software, Los Anjeles, CA, April
21-23, 1975, pp. 194-203.

W. L. Wagoner, "The Final Report on a Software Reliabil-
ity Measurement Study," Report No. TOROO74 (4112)-1, The
Aerospace Corp., E1l Segqundo, CA, December 1973.

Be Littlewood, "A Reliability Model for Markov Struc-
tured Software," Proceedings of 1375 International
Conference on Reliable Software, April, 1975, pp.
204-207. '

B. Littlewood and J. L. Verrall, "A Bayesian Reliability
Growth Model for Computer Software,” Journal of the_ groyal
Statistical Society, Series C, Applied Statistics, 1973,
pPpP. 332-346.

G R Hudson, "Program Errors as a Birth-and-Death
Process," System Develcpment Corgoration SP-3011, Decem-
ber 1967.

N. Schneidewind, "An Approach to Software Reliaonility
Prediction and Quality Ccntrol,"™ Fall Joint Computer
Conference, 1972, pp. £37-847.

Ne Schneidewind, "Analysis of Error Processes in Comput-
er software," Proceedings 1975 conference on Reliabdle
Softsare, April 21-23, 1975, IEEE Catalog No. 75,
CHO40-7CSR, pp. 337-34b.

M. L. Shooman and M. I. Bolsky, "Types, Distribution,
and Test and Correction Times for Programming Ecrocs,"
Broceedings 1975 Conference on Reliable Software, April
21-23, 1975, 1EEE Catalog Noe. 75, CHO40-7CSR, pPe
347-357.

T. A. Thayer, "Understanding Software Through Analysis

of Expirical Data," Proceedings Nat. Ccmputer Conference,
1975, pp. 335-341.

L Y v b s P ey g

PR e 2SN amegERie SEmE B R S T




6U.

65.

66.

67.

63.

69.

70.

71.

115

Ce R. Litecky and G. B. Davis, "A sStudy of Errors,

Error-Proneness, and Error Diagnosis in COBOL,'" CACH,
Vol. 19, No. 1, January 1976, pp. 33-37.

E. A. Youngs, "Error-Proneness in Programming,'" Doctoral
Thesis in Computer Science, University of Norta Carolina
1370.

A. B. Endres, "An Analysis of Errocs and Their Causes in

System Proqrams," IEEE Transacticns Software Engineering,

June 1975' PPe 140-149.

D. E. driqht, "An Automated Data Collection System Used

for The Study of Software Reliability," Masters Thesis in

Computer Engineering, Auburn University, March 1977.

W. W. Hines, Probability and Statistics in Engineering
and Management Science, The Ronald Press Company, New
York, 1972.

A. J. Barr, J. He. Goodnigat, J. P. Sall, and J. adt.
Helwiqg, A Users _Guide to -SAS.76, SAS Institute, 1976.

I. Bazovsky, Reliability Theory and Practice, Prentice-
Hall, Inc., Engleveod Cliffs, New Jersey, 1961.

M. L. Shooman, Probabilistic Reliatility An Engineeriag
Approach, McGraw-Hill, New York San Francisco Toronto
London Sydney, 1968.




— e N

- ———

APPENDIX A
Hardware Reliability Ccncepts

A brief summary of the more imfportant concepts associ-
ated with the underlying mathematical reliability theory as
applied to hardware is presented for those readers
unfamiliar with reliability.

If a more detailed insight is desired then the reader

should seek other references such as [69-71].

Intrcduction

The reliability of a compcnent is defined as the proba-

bility that the coaponent will function within specified
limits for a specified periocd of time under specified envi-
ronmental conditions. The frequencies at which componeats
fail per unit time is called failure rate. Its reciprocal
value is called mean-time-to-failure, abbreviated as uTT?.
Several probability distributions are employed in the study
of reliability.

Time—to-Pailure Distribution

Let f(t) be the probability density of the time to
failure or malfunction of a component; that is, the proba-
bility that the component will fail betveen times t and
(t+At) is given by f(t).At. The prokability that the compo-

116




P

117

nent ¥will fail sometimes before t is given by

t
F(t) = [ f(t)dt
0
which is sometimes called the "unreliability" function.

BReliability Punction

The probtability that a component will survive to time t
is given by the reliability function
R(t) = 1 - FP(t).
The reader should note the relationships between f(t), F(t)
and R(t). 1In particular

f(t) = dFsdt = -dR/d4t.

Mean-Time-To—-Failure
A measure of effectiveness often required in reliabili-
ty is the MTTF. This is found by taking the first moment of

the mean of the time to failure distribution. 1In terms of

the density f(t),

MTTF = [ tf(t)dt.
0

An equivalent expression giving the MTITF in terms of the re-

liability function is

MTTF = [ R(t)dt.
0




118

Instantaneous Fajilure Rate

The probability that a component will fail ia the in-

terval from t to t+At, given that it has survived to time t,

is as follows:

_ F(t + at) - F(t)

Pt < T < t + &t]T > &) R(t)

dividing this expression by At yields an average rate
failure in the interval from t to t+At, given that it

survived to time t, as follows:

F(t +at) - F 1
[.( % AAz ﬁtj] R

By taking the limit of the last expressiom as At -+ 0,

instantaneous failure rate or hazard function H(t) is

tained; that is,
He) = 1im (E(esatFe)| . 1 - fdR(R)) . _1
o st R(E)  \ at R(t)

using the identities involving £(t), F(t) and R(t) we

the following equivalent expressions for H(t):

f(t)/R(t)

. _ dR(t)/dt
R(t)

H(t)

. .;'_t n [R(t)].

of

has

the

ob~-

get




R S TR,

119

This differential equaticn is sclved for RBR(t) to yield

t
R(t) = exp (- [ H(t)dt) ,
o
and since H{t) = f(t)/R(t) we get

f(t) = H(t) exp (- [ H(t)dt) (A1)
(o]

Expression (A1) shows that the time tc failure density is
related to the instantaneous failure rate function. Also
(A1) is a general expression that applies to any type of
failure density and hazard rate functicns. PFigure 21 shovws

a typical hazard function as a function of age.

The Exponential Model
There are situations wvhere a ccmponent reaches a point
in its life cycle where the failure rate is constant, that
is,
H(t) = c, e > De
On substituting into equaticn A1 we get the time-to-failuce
density -
f(t) = cexp(-ct), t >0
which is the exponential prokability deasity function, see
Piqure 22. Purther calculations show that
R(t) = exp(-ct)
and

MTTP = 1/c.

A e
\




T e T T S e AT T

39V 40 NOILDNNS Vv SV 31VY 3¥NTIVY LN3INOIWOD -T2 34nbi4

g (39v) 3417 9NILYM34O N
1 1 0
-—
B
r
" o=d
\ / 2
m
: B
-4
e
E
8
| aoi1¥3d
b NI-NYNG
LNOYVYIM 3417 3417 Ind3sSn
— S JL
s3ynlvd S3¥NTTIVY 3INVHI X IRIVZ
LNO¥Y3IM Awva |
ANV 3INVHI




—

[ &

r‘-—ll—-lb—-l&wsts

c £f(t) 8 cexp(-ct)

\

—_— k
(a) Density FPunction
1
R(t) = exp(~ct)
R(t)
o RS
(b) Reliability Function
)
¢
H(t) = ¢
-t |
(¢) Hazard Function

Pigure 22, Exponential Distribution




122

The exponential model is the most widely applied model
in reliability engineeringe. This is due to its simplicity
and its theoretical properties such as constant failure rate
and loss of amemory property [70,71]. 1In many situations
failures are described quite well by the exponential model,
but there are also many examples where it is not appropri-

ate.

The Weibull Model

The exponential distribution is a single parameter dis-
tribution which can be represgnted as a special case of a
more general two-parameter distributicn called the Weibull
distribution.

The assumption of a constant failure rate is often ap-

propriate for describing chance failures, but it is not
always sufficient. This is particularly true during the
early "burn-in" period and the late "wear-out" period in the
life cycle of a component, see Figure 21. Nor would the
constant failure rate be appropriate during a period of re-
liability growth due to improvements in the ccmponent.
Thus, it is obvious that a function that allows an increas-
ing or decreasing failure rate is required. The versatile
Weibull function is often used to approximate such failure
rates. The hazard function is

H(t) = A8¢31 : t>o 3 AB > o




123

Wwhen B < 1 the failure rate decreases vith time; if B > 1 it

increases with time; and if 8 = 1 the failure rate is con-

stant, see Piqgure 23. The distribution and density func-

tions are
flt) = ABt31 exp(-AtB), t>o
L B
F(t) = [ ABt™" " exp(-at”), t>o.
0

The reliability function is

R(t) = exp (-AtB)

The Weibull model enjoys widespread use because it can be

justified theoretically and because it is so versatile.

Others Models

There are other probtability functions which are useful
for describing the random nature of failures. They are the

normal, gamma, and lognormal.

2
-l(_t:_u)
NORMAL: f(t) = — e 2\ 0 Lo metekm

o /2n




124

£(t) _
f(t)= thB"’ exp (- xtB), >0

B=1 B=2

Plgure 23, Weibull Density for Ezl and B=2




125

and

a-1
! GAMMA: f(t) = t exp(-t/B) ; t,a, B>o0
: r1(a)Ba

and

LOGNORMAL: f(t) = ——— exp[-(1n t-a)2/28%] ; B > o .

V2r Bt

Por appropriate choices of parameters, the gamma and
lognormal functions can be made to represent increasing or
decreasing failure rates. The normal function is primarily

used during the wearout period of a ccmponent, see Figure

21.

Al




S —

APPENDIX B

Summary of oje 1 Ch teristics
Description:

Project 1 is a data collection system. The system pro-
vides an on-qoing data base for input into reliability
models. The data base also contains fgrogram characteristics
as discussed in this papef. The systea applies to COBOL
programs designed to execute on the Honeywell H6060 computer
system throughout the Air Force. The 5 programs in this
system utilize a file management system available on the
H6060.

Development Agency:

Air Porce Data System Design Center; Gunter AFS, Montgomery,
Ala.

Computer System: Honeywell H6060.

Operating Mode: Batch.

Nunber- of Programs: 5.

Language: COBOL .

Total Number of Lines_of Source Code: 2280.

Best Single Variable Characteristics Metric Model:

N = -1.683 + 1.087UBR.
Best Single Variable Complexit odel

N = 0.287 + 0.382CFPC.

126




127

Best Multiple Variable Complexity Model
N = 3.156 + 0.326CPC - 0.017I0C + - 0.146IC




APPENDIX C

Supmary of Project 2 Characteristics
Rescription:

Project 2 is an on-line system involving several kinds
of data processing activities such as personnel management,
accounting and finance, inventory etc. Only 14 programs are
available for analysis.

Development- Agency:
City of Montgomery Housing Authority, Montgomery, Ala.
Computer System: National Cash Register NCR8200.
Opegrating Mode: On-line.
Number of Programs: 14.
Language: COBOL.
Total Nuabeg of Lines of Source Code: 19045.
Best Single Variable Characteristics Metric Model:
N = 3.731 + 0.319LC.
Best sipngle Variable Complexity Model
¥ = 8.943 + 0.096CFC.
Best Multiple Variable Complexity Model
¥ = -1.291 + 0.079CFC + 0.019I0C + 0.314DUC + 0.208COC
+ 0.005DHC + 0.056IC - 0.0745sC

128




e

ey e

APPENDIX D

Summpary of Project 3 Characteristics

Descriptions

Project 3 represents an initial delivery of a large on-
line Command Manpower Data System(CMDS). CMDS is a resource
accounting and management informatici system which supports
the Manpower and Organization function at Major Command
level throughout the Air Force. The programs perform a wide
variety of data processing activities, general purpose util-
ity, data retrieval, data maintenance, etc. The proJjraas
utilize a file management system available on the H6060.
Developnment Agency:
Air Force Data System Design Center; Gunter AFS, Montgomery,
Alabana.
Computer System: Honeywell H6060.
Operating Mode: On~line and batche.

Number of Programs: 46.
Languages: COBOL, PORTRAN, and Assemktler (only COBOL

programs analyzed but CALLS to, and interface errors with,

FORTRAN and assembly language programs were counted).
Total Number of Lines of Source Code: 5S4116.
Best Single Variable Characteristics Metric Model:

¥ = 4.355 + 0.038LC.




130
Best Single variable Complexity Model
N = 4.069 + 0.024CFC.
Best Multiple Variaple Complexity Model
N = 3.094 + 0.022CFC + 0.C08IOC + 0.044DUC - 0.017COC

+ 0.009DHC + 0.005IC - 0.005sC




APPENDIX E

summary of Project 4 Characteristics
Rescription:

This Project is a combinaticn of Projects 1, 2 and 3.

Development Agencies:
Air PForce Data System Design Center; Gunter AFS, Montgoaery,

Alapama and the City of Montgomery Housing Authority.

Computer Systems:; H6060 and NCR8200.
Qoperating Modes: On-line and Batch.
Nuaber of Programs: 65.
Languages; COBCL, FORTRAN, and Assembly.
Total Number of Lines of Source Code: 75441.
Best_Single Variable Characteristics Metric Model:
N = 8.807 + 0.0650BR.
Best Single Variable Complexity Model
N = 6.789 + 0.254COC

Best Multiple Variabple Complexity Mcdel
N = 2.845 + 0.029CFC + 0.093I0C + 0.495DUC + 0.119COC




‘ .
o an S———a

APPENDIX F

Application to Software Reliability

Several models for predicting the number of errors in
COBOL programs are presented in this paper. The "“best" aul-
tiple variable coamplexity model for Project 2 is used in
this appendix. The equation is

§ = -1.291 + 0.079CFC + 0.019I0C + 0.314DUC + 0.208COC

+ 0.005DHC + 0.056IC - 0.074sC, (F1)

for the range of source data values coantained in Table 6.
But, how does equation (F1) apply to software reliability?
Basically, this equation offers a solution to the primary
problem in software reliability, that is predicting the num-
ber of errors in a program. Once this number is known, the
nazard, time-to-failure distribution, and reliability func-
tions can be derived. Also, the failure frequency and
mean-time-to-failure can be calculated, and stopping points
for testing programs can be established. To demonstrate how
this is done, the Jeliaski and Moranda (JM) [42] model (the
hazard function was discussed in Chapter III) is used. The

basic assumtions of the JM model are:

1) The amount of debugging time between error occurrences

has an exponential distribution with an error occurrence

132




e N T

PR P

!
E
|
133 1
rate or hazard function proportional to the number of
errors remaining.
2) EBach error discovered is immediately removed, thus
decreasing the total number of errors by one.

3> The failure rate between errors is constant.

The hazard function is

Bit(i) 1= K[N - (1 -1)]

K[ ¥-n) (F2)
vhere
N is the total number of initial errors in a progranm,
K is the proportionality coanstant,
t(i) is the i-th time debugging interval, i.e., the time
between the i-th and the (i-1)-st errors discovered, and
n is the total number of errors found to date.
As was pointed out in Chapter III, the critical problenm
is to estimate N and K. Equation (F1) is used to estimate N

and the following equation [42] is used to estimate k:

- n
K = - -- (E3)
e n
NT = F (i =-1) t(i)
i=1

vhere
n is the numer of errors found to date
and
n

T = Z t(i) is the total test time from start of testing.
i=1




e

[

b

134

From this one can obtain the time-to-failure distribution
(density function)

£(t) = K (N - n) exp [-K(N - n) t(i)]J. (F4)
The reliability function is

RIt(i) ] = exp [~K(N -n)t (i) ). (F5)

The mean-time-to-failure (MTTF) is

Example Calculations

Program number (observation) 4 from Project 2 is used
to illustrate the calculations. The cobserved number is 22
{(see Table 6). It is assumed that 5 errors have bpeen
detected during 8 days of testing. Therefore, "n" is 5 and
wr® is 8 time units. Each time unit is 1 day. The proce-
dure for calculating reliability eguations is:

1) Calculate N using equation (F1),

2) Calculate X using equation (F2), and

3) Calculate reliability statistics using relianility

equations (Fu4), (F5), and (F6).

Calculating Distributions
1) Por N where (see Table 6)

CFC = LC ¢ UBR ¢ STOP = 59 ¢ 59 + 1 = 119

I0C 10 = 57

DUC

DR/TD = 6.3474

CocC = CO = 53




135
DHC = DH = 124
IC=0SsC+CC*+*PC=0¢*%*0¢+ 18 =18

SC = (PAR - EXIT) * 1 = (22 =-9) + 1 = 14

N = =1.291 + 0.079 (119) + 0.019 (57) + 0.314 (6.3474)

+

0.208 (53) + 0.005 (124) + 0.056 (18) - 0.074 (14)

22.8

23 since N is an integer.

2) For R where

n=5, T= 8 and t(5) = 1
- n 5
K = - - - - -——— ——— - —— ———— ————
- n
NT =) (1 = 1) €t (i) (23) (B) - [0 + 1 + 2 + 3 + 4]
i=1
5 5
T mmmmmm———= = ———-- = 0.0287/daye.
184 - 10 174

3) The hazard function is

H(t) = K (N - n) = 0.0287 (23 - n).
A failure curve for different values of n is shown in Pigure
24,

4) The density function is

fle(i)] =K (N - n) exp [-K (N - n) t(i)].

0.0287(23 - n)exp[-0.0287(23 - n)t(i) ]«
5) The reliability function is
Rft(i) ) = exp [-0.0287 (23 - n) t (i) J.
Reliability curves for different values of n are plotted in

Piqure 25. A few calculations wvwere t(i) = 1 and n varies

are shown below:




Z Voefoid j0 y weiBoig 40} 8AINy e&injie4 p oinbi4

STVAHILNI 1S31 40 H3IEWNN

........ SEESE b1 21 I o1 6 8 L 9 S ¥ £ 4 I 0
ﬂcd

1’0
0
€0

¥O0

(3)H

S0

9°0

-8
"
n

Lo

T=u
o=u

80

60

p—t b i | _l",nwfl.{o..l:.IL




Z 12eloid jo ¥ weiboig 10) seaind Aijljqejey ‘s einbpy

sava/awiy

6l 8l 21 91 Sl vl €L CL KL OL 6 8 2 9 S ¥ £ CT L O
— anNNN-mMu” l . b

1’0

137

t&.!!.!zi... 0




I

138

If t(i) = 1 and n = 5 then

R (1) exp[—-0.0287 (23-5)1]
= exp[-0.0287(18) 1]
= 0.5966.

If t(i) =1 and n= 10 then

exp[-0.02287 (23-10) 1]

R(1)

exp[-0.0287(13) 1)
= 0.6886.
If t(1) = 1 and n = 22 then

exp[-0.0287 (23-22) 1]

R(1)
= exp[-0.0287(1) 1]
= 0.9717.
6) The mean-time-to-failure is
1 1

K (N - n) 0.0287 (23 - n)

=
)
-
"
]
]
[}
|
]
"

If n = 5 then
1 1 1

MTTP = =——=m=mmm—m= = —=m———-——x = ———-—- = 1,94 iays.

0.0287 (23-5) 0.0287(18) 0.5166

Establishing a Stopping Pcint for Testing

A cut off rule for determining when to stop testing is
simply when the reliability of the program reaches a desir-
able reliability for a specific time period. Let one assunme
that it is necessary for program 4 to operate 1 day with a
reliability of 0.9, When should one stop testing the pro-
gram? The ansver is after n errors have been reamoved. Cal-

culations for determining this number are shown below:




139

RITt(i) ] = exp[-0.0287(23-n)t (i) ]
0e9 = exp[-0.0287 (23-n) (1) ]

0.9 = expl[-0.6601 *+ 0.0287n]

ln 0.9 = [-0.6601 + 0.0287n)

-0.105= -0.6601 + 0.0287n

~0.0287n = -0.6601 * 0,105
-0.0287n = -0.5551

n = 19.34

n = 20, sinc¢= n is an integer.

Since 8 = 0.9175 for n = 20, one should stop testing the
program after 20 errors have been removed.

The next gquestion that one naturally asks is, "approxi-
mately how long will it take to remove 20 errors?" Assuming
systematic testing procedures are used, a rough estimate is
calculated by multiplying the MTTF by the number of
remaining errors in the progqram.

If 5 errors have already been removed then

MTTF(20-5) = 1.94(15) = 29.1 dayse.

This estimate should be updated as errors are removed fronm

the programe




