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ABSTRACT

This is the first of a series of papers constructing an information
based general theory of optimal errors and analytic computational complexity.
Among the applications are such traditionally diverse areas as approximation,
boundary-value problems, quadrature, and nonlinear equations in a finite or
infinite dimensional space.

Traditionally algorithms are often derived by ad hoc criteria. The
information based theory rationalizes the synthesis of algorithms by showing
how to construct algorithms which minimize or nearly minimize the error.

For certain classes of problems it shows how to construct algorithms (linear

optimal error aigorithms) which enjoy essentiaily optimal compi

respect to all possible algorithms.
The existence of '"strongly non-computable'" problems is demonstrated.
In contrast with the gap theorem of recursively computable functions we show

that "every monotonic" real function is the complexity of some problem.
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CHAPTER 1

BASIC CONCEPTS

Although this may seem a paradox, all exact science
is dominated by the idea of approximation.

B. Russell
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st of a series of papers constructing an information
theory of optimal error algorithms and analytic computational
complexity. Among the applications are such traditionally diverse areas as
approximation, boundary-value problems, quadrature, and nonlinear equations
in a finite or infinite dimensional space.

In this paper we deal with "general information'". Although general
information can be used to solve nonlinear equations (see Section 153),
"iterative information" is typically used for such problems. A theory of
optimal error algorithms and optimal order for iterative information is
developed in Traub and Wozniakowski [77c].

The general theory shows us how to construct algorithms which minimize
or nearly minimize the error. For certain classes of problems we show how
to construct algorithms (linear optimal error algorithms) which enjov essen-
tially optimal complexity with respect to all possible algorithms. The fact
that optimal algorithms depend only on the "information" used permits a
great simplification.

Traditionally, algorithms are derived by ad hoc criteria. The informa-
tion based theory rationalizes the synthesis of algorithms. For illustra-
tion we consider a relatively simple problem-univariate numerical integration.

Gauss quadrature formulas are widely used. The rformula is derived by

tue rather arbitrary criterion that it be exact for all polynomials of as
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1.2

high a degree as possible. There is no reason to think this optimizes either
error or complexity. The information based theory yields both optimal error
algorithms and the fact that these algorithms are essentially optimal with
respect to complexity among all possible algorithms. It turns out that
the optimal error algorithms use equi-spaced abscissas and are therefore
not Gaussian formulas. Furthermore their complexity varies inversely as
the "regularity'" of the class of integrands. It has been observed that
the numerical integration problem cannot be solved to within pre-assigned
error. We show (Section 12) that if we mildly restrict the class of
integrands we can always solve the integration problem to within pre-
assigned error.

The analysis ueeded to characterize and construct optimal error algo-
rithms for a particular problem area can be difficult. Note, however, that
this may be viewed as pre-conditioning since it need be done only once.

Among the major questions we pose and at least partially answer are:

1. What is a lower bound on the error of any algorithm for solving

a problem using given information? See Section 2.

2. 1In general is there an algorithm which gets arbitrarily close

to this lower bound? See Section 2.

3. When is the information strong enough to solve a problem arbitrarily

closely? See Section 3.

L. What is the most relevant information for solving a problem?

See Section 6.

5. 1f we are willing to pay enough can we always solve a problem

approximately? See Sections 7 and 9.

-
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For linear problems is there always a linear algorithm whose
error is within a constant factor of having optimal error?

See Section 7.

If we assume a Hilbert space setting, what characterizes those

problems which can be solved arbitrarily closely? See Section 7.

For certain application areas how does optimal error and com-
plexity depend on the "regularity" of the class of "problem

elements'? See Sections 11, 12 and 13.

Analytic complexity is similar to abstract and concrete complexity in

focusing on lower bounds of problem complexity. Analytic complexity obtains

its characteristic flavor because:

L.

Problems cannot be exactly solved with finite complexity.

In concrete complexity, problem elements are assumed given and
information operators do not explicitly occur in the theory
because they are identity operators. See Section 3 for examples.
In analytic complexity only certain "information" about the

problem element is obtainable.

We summarize some of our complexity results below.

Consideration of the pre-image set of an "information operator"

gives us a general adversary principal for deriving lower bounds.

We demonstrate the existence of 'strongly non-computable'" problems.

See Section 6.
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3. We show the existence of arbitrarily hard problems. Furthermore
"every monotonic'" real function is the complexity of some problem.
See Section 9. This may be contrasted with the gap theorem of

recursively computable functions (Borodin [72]).

4. For certain classes of problems we can obtain lower bounds on the

"inherent problem complexity" for all possible algorithms. See

Sections 7 and 10.

5. For "linear optimal error algorithms" the difference between

upper and lower bounds is very small. See, for example, Sections

9. 10, tl.

6. We perform worst case analysis over all problem elements in a
class. In contrast with other recent complexity results, we
believe that the worst case results hold for "almost all" prob-

lem elements.

Although we feel that progress has been made towards a general theory,
much remains to be done. See Section 16 for a partial list of extensions.
Application of the general theory to various problems of interest will
require substantial work for each problem,

We summarize major concepts and results of this paper.

Section 2. We define d(?,S), the diameter of information M for the problem

S, and r(N,S), the radius of information M for the problem S and show

(Theorem 2.1) that r(R,8) provides a best possible lower bound on the error

of any algorithm using.the information N, We define interpolatory algorithm

and show (Theorems 2.2, 2.3) that any interpolatory algorithm has an error

which differs by at most a factor of two from a lower bound on the error.
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We also show that there is always an algorithm which is arbitrarily ciose
to the lower bound. We observe (Corollary 2.2) that a problem S using

information N can be solved to within an error whose norm is at most €

iff r(M!,S) < e.

Section 3. We introduce our model of computation and the major complexity
concepts. In particular, we define primitive operations, permissible
information operators and algorithms. We define the e-complexity of a
problem in a class of permissible information operators ¥ as the complexity
of solving problem S to within € if the best algorithm and the best informa-

tion from Y are used.

Section 4. 1In Sections 4-9 we consider linear problems and linear informa-
tion. The cardinality (card(?)) of a linear information operator is defined

and we show (Lemma 4.2) that information operators with finite cardinality

equal to n can be represented by n linearly independent linear functionals.

Section 5. We consider problems specified by a linear solution operator S
and a linear restriction operator T. We show that the dependence of d(R,S,T
on N is only through the kernel of M. We define index (S,T) and show
(Theorem 5.2) that if card(M < index(S,T) the solution cannot be ap-
proximated to within e even for arbitrarily large €. 1In particular, if
index (S,T) = «, the problem cannot be solved by any information operator

with finite cardinality.

Section 6. For fixed cardinality what is the most relevant information for

solving a problem? Formally, the n-th minimal diameter of information,

d(n,S,T), is the diameter if the best information of cardinality at most n

is used. Theorem 6.1 shows d(n,S,T) is completely determined by the
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operator ST-I. A problem is e-non-computable if d(S,T) = lim d(n,S,T) 2 2¢
n—oa:

and is convergent if d(S,T) = 0. We show that d(S$,T) can be any number.

Section 7. 1f the image of the restriction operator is a Hilbert space then
the problem (S,T) is convergent iff S’I‘“1 is a compact operator. This implies
(Corollary 7.1) the existence of linear problems which cannot be solved to
within arbitrary € with any finite number of linear functionals. 1In a
Hilbert space the problem of most relevant information of cardinality n is

completely solved (Theorem 7.2).

Section 8. To minimize combinatorial complexity it is desirable to use

linear algorithms. We construct (Theorem 8.1) linear interpolatory algorithms
whose error is within a numerical factor of optimality. If in particular

the image of the restriction operator is a Hilbert space then we construct

(Corollary 8.1) a linear interpolatory optimal error algorithm.

Section 9. We specify our model of computation for .the linear case. We
show (Theorem 9.2) there exist linear problems with essentially arbitrary
complexity. This implies (Corollary 9.1) there exist arbitrarily hard

linear problems and that there are no '"gaps" in the complexity function.

Sections 10-15. We apply the general theory to a variety of problems. See

the Table of Contents for a list. We confine ourselves here to relatively
simple problems in order to concentrate on ideas and avoid overwhelming the

reader with technical details.

Section 16. We list some extensions to the theory which will be reported

elsewhere.

Glossary. For the reader's convenience a glossary of important definitions
LIl L2 d &

and symbols is provided.




“TER AND RADIUS OF GENERAL INFORMATION

be a subset of linear over the real

)

Let

3 a space }l

Consider a linear or nonlinear operator S such that

ield.

(2.1) ‘s iw SR

where 3}, is a linear normed space over the real or complex f

be a given number. Our problem is to find an e-approximation x
x & R, kel g = SEEN, i.e.

(2.2) || x-af| < ¢

or complex

fiel

Let

]

for all £ € 3) We shall call S the solution operator, f a problem element
aud 2 a soluiion element. We shall often refer to S and its domain t\) as
the problem S.

Je RS A

To find an e-approximation we must know something about the operator S.
Let
5 Y g I
2.3 T [)m‘ 3

- » J
be an information operator (not necessarily linear) where §. < Dny < 3, and
o ) t )

\/,’)

35 is a given space. MN(f) is called the information of f.
lems the information operator 2l is not one-to-one

define the solution element o« = S(f). Thus there

problem elements f & 30 with the same information.

Let

Let £ € 3, -

(2.4) v(f) = {f: E) = W) and f € %)

For

may exist many

1

different

most prob-

and N(f) does not uniquely
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. : o™ L -
be the pre-image set of y = N(f), v(f) = N (y). Note that V(f) is not

empty since f € V(f) for every f € 3, Furthermore let
(2.5 u(f) = {s(bHh: fE vH)

be the set of all solutions S(E)of problem elements E which share the same

. : -1

information as f, U(f) = S(X "(y)). Then knowing only MN(f) it is impossible to
recognize which solution element ¥ = S(f) or ¥ = S(f) is being actually

approximated for all f € V(f). This adversary principal can be sechematized as

follows: E
30 $(3y
V(EY = T ey u(E) = s Ly
S
. -
f{ / A= QU
e
gL
5"(30)
y = R(f)
Figure 1

As we shall see below, the diameter d(M,S) and the radius r(%,S) of
the set U(f) play essential roles. These concepts are defined as follows.

Recall that for a set A, A © 32,

(2.6) diam(A) = sup || a,-a, ]|
al,afSA =

is called the diameter of A and
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(2.7) rad(A) = inf sup |

ag% aFA

w
|
~

is called the radius of A. Roughly speaking, rad(A) is the minimal radius

of a "ball'" which contains A. If there exists c, ¢ E_FE, such that

(2.8) sup || c-a, || = rad(a)

ac A 1

then ¢ is a center of A. Note that c can be an element outside A and need

not be unique.

Definition 2.1

We shall say d(®,S) is the diameter of information & for the problem S

iff
(2.9) d(,S) = sup diam(U(f)) (= sup sup || S(E)-S(©) !D.
£ fed  feV(f)
0 0
We shall say r(R,S) is the radius of information N for the problem S iff
(2.10) r(R,S) = sup rad(U(f)) Gsup inf sup || a-S(E)i,‘). - |
f€3, 63, &3, fev(f)

It is obvious that
(2.11) d¢R,8) S 2r(H,8).

Furthermore if U(f) has a center c(f) for every EE SO and U(f) is symmetric

with respect to c(f), i.e. u + c(f) € U(f) implies -u + c(f) € U(f), then
(2.12) doR, 8y = 2e(,8).

For many M and S it is much easier to compute the diameter d(R,S) than the

radius r(%,S).




2.4

We shall show that the radius r(M,S) is a lower bound on the error of

any algorithm for solving « = S(f). By an algorithm we mean an operator

P AT, - 3,

(See also the definition of "permissible algorithm" in Sec-

tion 3.) We are interested in algorithms which approximate # = S(f). Let

(M,S) be the class of all such algorithms. Since c(ﬂ(?)) = o(M(f)) for

all E € V(f), o has to approximate any element of the set U(f) = S(ﬂ-l(y)).

This is shown in Fjigure 2

e

A S(3y)

=T =
V() =X () UE) = S Ly))
s
£
Vi
aw ! ©
N(3)
y = n(£)
Figure 2

Definition 2.2

We shall say e(v) is the error of algorithm ¢ iff

(2.13) e(®) = sup || ®(N())-s(HH]] . .
f€3,

Note that (2.13) can be rewritten as

(2.14) e(® =sup sup | R(E)-S(D | = sup sup || p(ace)-F| .
56,30 fev(f) ff—:i‘so asU (f)
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It is intuitively obvious that the radius r(R,S) is a lower bound on the

error of any algorithm. A formal proof is provided by

Theorem 2.1

For any algorithm 9, ® © ¢(@®,S),
(2.15) e(®) = r(N,S). ]

Proof

Let £ € J,. Then due to (2.7) and (2.14) we get

rad(U(f)) < sup || o) -2l sep).

U ()
Thus r(%,S) = sup rad(U(f)) S e(w) which proves (2.15). [ ]
b= g

This generalizes Theorem 4 in Micchelli and Rivlin [77] where S and 2
are assumed to be linear.

We define "interpolatory algorithms'" and show they are within a factor

of 2 of the radius r(%,S

Definition 2.3

? I I ’ : : :
An algorithm ¢, © € ¥(2,S), is an interpolatorv algorithm iff

(2.16) @L(A(E)) = S(f)
for some f € VE) [ ]

This means that knowing the information {1(f) one finds a problem element

E (which always exists) which has the same information as f, Eé v(f), and




~

2 = S(f) is proposed as an approximation to & = S(f). In practice f is chosen

1 " i n \J - I L) ) T :
to be "simpler" than f. Note that © (S1(f)) € U(f). In some cases, an assumption
how to choose a unique f is added. Examples of interpolatory algorithms
are known for such problems as nonlinear equations, approximation and

quadrature.

Theorem 2.2

For any interpolatory algorithm @I, mI € 27,9,
(2.17) e(@)) $d@,s) S 2 r(2,s). =

Proof

Take any f € 30. Then
Il ot mee))-so) || < || s(B-se) ]| = dem,9)

:ince ge V(f). Taking the supremum with respect to f we get (2.17). fa

We seek '"optimal error algorithms' which are defined as follows.

Definition 2.4

We shall say e(M,S) is the optimal error iff

(2.18) e(M,S) = inf. e(w).
wed(M,S)

We shall say qu, uﬁe € 3(M,S), is an optimal error algorithm iff

(2.19) e(n %) = e(M,S). [ ]

Combining Theorems 2.1 and 2.2 we see that any interpolatory algorithm is

nearly an optimal error algorithm.




2.7
Corollary 2.1
< : p T T2 . - ) 0
For any interpolatory algorithm o, © € %(0%,5), with the convention ) =hyl
1
e()
(2.20y 1 = — < 2.
' e(M,S) |

We now prove that the optimal error e(R,S) is equal to the radius r(Q,S).

Theorem 2.3

(2.21) e(M,S) = r(M,S). ]

Let 8§ > 0 be an arbitrary number. Define an algorithm ¢, as follows.

Let

b4

where || ci(f')-aﬂ < rad(U(f)) + 5 for all 5€ u(f). Thus c,(f) is almost a

center of U(f). Then

sup || S(£)=m (R(E)) || =

|
|
i

e(T,S) < e(n,)

fe’(o
= sup sup I a-c (f) | € sup rad(U(f)) + 3 =
f(-.’(o 2 U (f) fE.:"QO

= r(M,s) + 5.

Since & is arbitrary, e(M,S) < r(MN,S). Due to Theorem 2.1 we know that
e(MN,S) = r(MN,S) which proves (2.22). |
See Micchelli and Rivlin [77] where a similar result is established for

M and S linear. Theorem 2.3 motivates using a center c(f), if it exists,




as an approximation to « = S(f). Suppose that U(f) has a center for any

£ EX

0 >

Definition 2.5

i C Cc = " . -
An algorithm © , © € 3%(M,S) is a central algorithm iff

(2.23) o (E)) = c(f)

where c(f) is a center of U(f). |

2 4

Theorem 2.4

Any central algorithm is an optimal error algorithm, i.e.,

(2.24) e(w) = r(M,S). "
Prnof
Note that
e(s) = sup || S(D)-o0 () || = sup sup || Fe(D) ]
feQ, f€3, €U (f)
= sup rad(U(f)) = r(RX,S). |

f&30
As we shall see in Section 8 an interpolatory algorithm may turn out
to be an optimal error algorithm.

Recall we wish to find an e-approximation to o = S(f) for all f . ’%,

i.e., to find x(f) such that !|x(f)-all< €. Due to Theorem 2.3 we get

Corollary 2.2

It is possible to find an e-approximation to & = S(f) for all f€ 30 iff




(2.25) x®(R,5) < e, <]

We wish to stress that an information operator M has to be defined in
such a way that M(f) is "computable'" for every f € 30. This rules out many
operators as "permissible" information operators. For instance, let SI(f) = £
be the identity opetator I. Then, since I is one to one, r(I,S) = 0 for any
solution operator S. However N(f) = f is "computable" iff f can be repre-
sented by a finite dimensional vector, i.e., Sl is a finite dimensional
space. As a second example, consider M(f) = S(f). Then r(S,S) = 0 but for
most problems S(f) is not '"computable" and U = S is not a ''permissible"
information operator. See Sections 3 and 9 for a precise definiticn of our

model of computation. Examples of computable operators will be found in

Sections 10-15.

Example 2.1
To illustrate the above concepts we consider the following problem.

n
Let 31 = C[0,1] be the class of n times differentiable functions of one

variable, n 2 1. Define

€2.25) S(E) = f

that is, § = I. Note that (2.25) is a formulation of the approximation problem.
Let 1 )
fES = {f: £€ 3 and max |4 (x| 511
0 1 n'
0sts]

Consider the information operator R given by

(2.26) N(f) = [f(tl),f(cz),...,f(tn)]




for some distinct points t €.[0,l]. This means that we want to approximate
n
f from 30 knowing only the values of f at n points. Let w(t) = rj (t=-¢.).
i

- i=1
Then f € V(f) implies

£(t) = £(t) + g(t)w(t)

where g is the nth divided difference of f-f and || 8]l = max [g(t)| s2. 1t
0st<l
is easy to show that d(R,S) = 2r(R,S) and

(2.27) r(@®,9) = || w|| = 2/4".

Furthermore (2.27) holds with equality for information ! of the form (2.26)

i-1

* m
¢ ™ 2 COS(E; e m) which are the zeros of the Chebyshev poly-

with t, =
i

.~

L #
. 1 .
nomial Ln(:(t+1)). See Section 11.
If & & Z'An we can find an e-approximation to o = S(f) = f for all
*
f 6:30 using the information operator N with t, = t;. For e < 2/4", the
information operator N of the form (2.26) does not supply enough information

to find e-approximations for any ci. .

We conclude this section with a historical note. The ideas presented
here have been implicitly used by a number of people for a particular prob-
lem or a class of problems. The key point was always to find a problem
element f which shares the same information as f and the distance between S (f)
and S(E) was an inherent error of any algorithm. See among others Winograd
[76] who introduced a very general '"fooling'" technique and showed its impor-
tance for a number of problems, Micchelli and Rivlin [77] who considered
linear operators S and qU, and Wozniakowski [75] who introduced the concept
of order of information for the solution of nonlinear operator equations.

Brent, Winograd and Wolfe [74], Kung [75], Kacewicz [75, 76a, 76b]), Meersman




[76a,76b], Traub and Wozniakowski [76a], Wozniakowski [76] all considered
the solution of nonlinear equations and Werschulz [77a,77b] dealt with the

maximal order of numerical integration and differentijiation.




3. COMPLEXITY OF GENERAL INFORMATION

We present our model of computation which consists of a set of primi-

tive operations, permissible information operators and permissible algo-

rithms. In what follows we shall use the words cost and complexity inter-

changeably.

Context will make it clear whether we mean algorithm complexity

or problem complexity.

Model of Computation

(1)

(i)

(iii)

We assume that the computations are performed on a random access

machine. Let p be a primitive operation. Examples of primitive

operations include arithmetic operations, the evaluation of a
square root or of an integral. ©Let comp(p) be the complexity of

p; comp(p) must be finite. Suppose that P is a given collection

of primitives. The choice of P and comp(p), p € p, are arbitrary

and can depend on the particular problem being solved.

Let % be an information operator. We say that I is a permissible

information operator with respect to P if TN(f) can be computed

by a finite number of primitive operations from P for all f 6,30.

Let comp(N(f)) denote the information complexity of computing

MN(f). We assume that if N(f) requireskthe evaluation of primi-

tives p;,p,s--,P, then comp(M(f)) = comp(pi).

i=]
Let ¢ be an algorithm which uses the permissible information R.

To evaluate no(M(f)) we:




3.2

(a) compute y = (f),

(b) compute ©(y) .

The complexity of computing y is given by (ii). We say that o

is a permissible algorithm with respect to P if @(y) can be

computed by a finite number of primitive operations from P for

all y = N(H), f 6,30. Let comp(2(y)) be the combinatory

complexity of computing y. We assume that if «o(y) requires the
1

evaluation of primitives ql’qQ""’qj then comp(w(y)) = R comp(qi')..

i=1
Remark 3.1
Let N be a permissible information operator. This means that N(f) can
be computed from the set of primitives P. Often there exist many different
algorithms for computing N(f) and the optimal computation of N(f) can be
treated as a subproblem. However, we assume that an algorithm (possibly not

optimal) for the computation of MN(f) is defined by a "user". n

Example 3.1
1
Suppose we wish to approximate S(f) = ;f(t)dt where f' isa piecewise
L -
continuous scalar function and J f'(t))"dt s 1. Define two sets of primi-

tives, Pl = {the evaluation of an integral} and P2 = {arithmetic operations,

the evaluation of a function}. Note that N(f) = S(f) is permissible with

resbect to P1 and not permissible with respect to P2. Of course r(S,S) = 0,

However, S is a primitive only in P An example of a permissible information

1°

operator for P, is M(f) = {f(tl),f(t?),...,f(tn)] for equally spaced tie [0,1].

2
It is shown in Section 12 that r(®,8) = 0(1/n). B

We showed in Section 2 that a necessary and sufficient condition for

finding an e-approximation to o = S(f) is r(M,S) < e. If r(N,8) 2 e then the




L

information operator N does not supply sufficient information to solve the
problem. We say that the problem S with an information operator R is

e-non-computable if r(N,s) = e. 1f N is permissible, r(MR,S) < e, and there

exists a permissible algorithm ¢ such that e(p) < e, then the problem S with

N is called e-computable with respect to P.

Suppose then that r(R,S) < e for a permissible N and assume that 3(e),
the class of all permissible algorithms for which e(p) < €, is non-empty.
We want to derive lower and upper bounds on the complexity of finding an
e-approximation using any o € %(e).

Since the set of primitives P is fixed, we do not mention the dependence
of complexity on P. Let @ € 3(e). Then the complexity of an algorithm ¢ is

defined by

(3.1) comp(p) = sup (comp(M(f)) + comp(w(N(£)))).
f€30

We define optimal complexity algorithm (Definition 3.1) and inherent com-

plexity of a problem (see Definition 3.2).

Definition 3.1

We say comp(R,S,e) is the e-complexity of the information M for the

problem S iff

inf comp(w), if r(M,S) < e
oed(e)

(3.2) comp(M,S,e) =

+ @ , otherwise

We say ¢pc’ qPC € #%(e) is an optimal complexity algorithm iff

(3.3) comp(m ') = comp(M,S,e). ]
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3.4

(3.4) comp(N) = sup comp(N(f))
fe ‘\0

be the information complexity of ¢}, Suppose that the combinatory complexity

of every algorithm o, 9 € 3(e), for M(f) such that comp(N(f)) = comp(M) is
bounded below by m(M). More precisely, let
(3.5) m(M) = inf sup comp (p(M(£))) .

oed(e) f: comp (N(E))=comp(N)

In general, m(M) depends on the total number of "independent pieces' of

information M. See Section 4 and 9 where the 'cardinality" of information M

is introduced and its influence on the combinatorial complexity of ¢ is
shown. For linear problems, as we shall see in Sections 8 and 9, it is pos-
sible to find optimal algorithms whose combinatory complexity is proportional
to the '"'cardinality" of ¢

From (3.4) and (3.5) we get
(3.6) comp(M,S,e) 2 comp(N) + m(M).

Furthermore if there exists o€ 3¥(€) such that comp(a(N(f))) << comp(N) for

all £€ 30 then

(3.7) comp(MN,S,e) = comp(T)

Equations (3.6) and (3.7) motivate our interest in comp ().

Suppose that € tends to zero. Then if r(R,S) > 0, the fixed information
M is weak for the problem S for sufficiently small e. However in many cases
we can choose a permissible information operator M = M(e) such that

r(N(e),S) < e and solve our problem using the information M(e).




3.5

Let Y be a class of permissible information operators such that

(3.8) inf r(M,s) = 0.
Mey

Note that (3.8) means that we can solve the problem S for any € using a

suitably chosen information operator from Y.

Definition 3.2

We shall say comp(¥,S,e) is the e-complexity of the problem S in the

class Y iff

(3.9) comp(¥,S,e) = inf comp(M,S,€). o]
v

- <

Note that comp(¥,S,e) is a nonincreasing function of €. We shall prove
in Section 9 that comp(Y¥,S,¢) can be an essentially arbitrary nonincreasing

function of e¢.

Our setting is sufficiently general that it includes problems for
which information operators do not play a role. Examples are combinatorial
problems and such problems of linear algebra as matrix multiplication and
the direct solution of linear systems. For such problems the information
operator is the identity operator N(f) = f where f belongs to a finite
dimensional space. Furthermore the information complexity comp(I) = 0 since
there is no cost in computing M(f) = f. Note that r(I1,S) = 0 for any prob-
lem S because M = I is one to one. Thus we can define ¥ = {I}. Typically
we seek the exact solution ¢ = S(f); thus £ = 0. The complexity is given by

comp(1,S,0) = inf comp (o(f)) .
@: e(p)=0

Therefore in algebraic and combinatorial complexity we seek an algorithm

which finds o = S(f) and has minimal combinatory complexity.
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3.6

Example 3.1. Matrix Multiplication

Let f = [A,B] where A and B are nxn matrices. Then the matrix multi-
plication problem may be formulated as S(f) = A*B. Let N(f) = £ = [A,B].
This means that all coefficients of A and B are known and we seek an algo-
rithm with minimal combinatory complexity which yields the matrix x(f) = A*B.

If the cost of each arithmetic operation is taken as unity, then

cln2 < comp(I,S,0) < czns, B = 1og2 7

for some positive constant <, and c,- The actual value of comp(I,S,0) is

unknown. ]

Example 3.2. Sorting

Let £ = [£ ..,fn] where fie. D and D is an ordered set. Define

12530+

S(f) = [fil,fiz,...,fin]

where £ s £, = ...s=f.  and i
o i i
1 2 n
the sorting problem may be formulated as o = S(f). Let T(f) = f and € = 0.

1""’in is a permutation of 1,...,n. Then
We seek an algorithm which finds S(f) with minimal cost where the cost is

taken as the number of comparisons. The complexity of this problem satisfies
comp(1,5,0) = (n log, n) (1+o(1)) [

Recently there has been an interest in finding e-approximations to the
solutions of algebraic and combinatory problems. For some problems the
complexity comp(I,S,e) is significantly smaller for positive e than comp(I,S,0).

Examples may be found in Garey and Johnson [76].
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Example 3.3. Polynomial Zero

Let f = (ao,al,...,an] where the a, are the coefficients of an nth
degree polynomial, P(x). Let P(a) =0, = S(f). For algorithms which
require knowledge of the ai, '31 (f) = £. On the other hand, there exist
iterative algorithms requiring only that P and P' can be evaluated at any

point and R, (£) = [x,P(x),p"' (x)]. [}

<




CHAPTER II

LINEAR THEORY

We assume that the solution operator S, the "restriction' operator T

and the information operator T are linear.

4. CARDINALITY OF LINEAR INFORMATION

Let 31 - 33 be a linear information operator where 33 is a linear space.

ker ® = {f: N(E) = 0} be the kernmel of N. We shall prove in Section 5 that

the dependence of the diameter of information on M is only through the
wernel of N,  This suggests we should
operators with the same kernel.

Let ﬂl: 31 - 33 and ﬂzz “1 - 3% be two information operators where 35

is a linear space not necessarily equal to 33.

Definition 4.1

We shall say ﬂl is contained in mz (briefly ﬂl‘i Wz)iff ker ﬂz C ker q..

We shall say ﬂl is equivalent to N2 (briefly ﬂl X ®) iff ker ﬂl

Note that "x" is an equivalence relation.

ker .

r~

We want to show that ml < M. can be characterized by the rank of a

2
certain matrix. We first briefly recall some facts on linear spaces. Let A

be a linear subspace of 31. Then there exists a linear subspace Ad of ﬂl

such that

“.1) 3 =A @ At

Let



o

4

In general, A~ is not uniquely defined. However, if }1 is a Hilbert

space and A is closed, then there exists a unique orthogonal At to A such

A

that (4.1) holds. 1In either case At is isomorphic to the quotient space T, A and

U

d /
(4.2) codim A =f dim A~ = dim 3] N

The space .-\‘L is called an algebraic complement of A in the space 31

lLet LI’L”"”’LN be linearly independent functionals. By

- t
(4.3 "\1 ;s (LlyLﬁa a[n}
- 5 . t s
we mean ‘Rl(f) = le(:),L,,(f),...,Lm(f)? EQ:M' where "t'" denotes the transpose

of a vector and f € ;“(1.

Lerma 4.1

t t
m =7 1 ( =T 5 Sk :
Let T, _Ll,Lz,...,LnJ and ﬂz LLn+1’Ln+2""’Ln+k] be information
operators.
(i) ’711 = ‘.‘?2 iff k 2 n and there exists a nxk matrix M such that
'Rl = MR, and rank M = n.
P = = s & " z m .
(ii) Let k n. Then 'Rl '32 L€ "11 "12 2
Proof
(i) Suppose that ker '.*12 C ker '.'11. Let 31 = ker R, € (ker ‘R,,)‘L and
X
: = A E) = &, . 8 s the
(ker '.'12) 11n(g1,,2, ’“k) wheﬁe Ln+j( i) i and i denotes the
'4 ) 5 = VP 3 ~
Kronecker delta. Then f fo + i Lmi(f)f‘i where fO € ker '.‘12 and f € F‘(l.
i=1

Since foe— ker ‘31, we get




(4 4 (f) = - & 5 i
4.4 Lj(f L Lm—i(“l‘j("i) for 102 iaer s 5Tk

i=1

This yields ®, = MR with M = (Lj(i.l)). Let (ker ‘.‘21)" = lin (MysTyoee-sT)
where L.(M,) = &,.. Set £ =T, in (4.4) for i = B2 e ey B Then
i [ %) i

1 = M[R,(T,) ,'3,(‘2\,...,71‘('“\‘3 where 1 is the nxn identity matrix. This

implies that rank M = n and completes this part of the proof. Suppose now
that ‘Z’tl = M. Then h € ker %, implies ‘Rl(h) = >m2 (h) = 0 which yields

—_
—

1!
2 5
(ii) Suppose that ‘.‘11 - ® . Due to the first part of Lemma 4.1 we
& -1

get ?y = M where the nxn matrix M is nonsingular. Then 2, =M 'Rl which

implies M, < R, and R %2 m . The second part of (ii) is trivial. Hence

2 1 1 2

Lemma &4 .2 is proven. ]

Wwe now show that any information operator M where n = codim ker M is

finite may be represented by n linearly independent linear functionals.

Lemma &4 .2

Let M be an information operator and n = codim ker ' < + =. Then there

exist linearly independent linear functionals L,,L,s+:«50 such that
172 n

~ = o
RE R where By = (Lyslpseelyl .

Proof
i e :
Let (ker ) = rllln(;,l,gz,...,'{n). Every element f has a unique repre-
sentation f = fO + L Li(f)gi where fo € ker T and Ll’LL’"'"Ln are
linearly independen%ziinear functionals. Since ker m= {f: Li(f) = 0,

{=1,2,...,n} = ker 'Rl we get m:ml. a




Lemma 4.2 states that an information operator where n = codim ker M is
finite is equivalent to an information operator generated by n linearly
independent linear functionals. Observe that to know ﬂl(f) one has to
evaluate n linear functionals. This suggests the following definition of

the cardinality of .

Definition 4.2

We shall say that card(®) is the cardinality of the information M JEE

(.5) card(™ = codim ker 2. |

We shall prove in Section 5 that unless the cardinality of the informa-
tion M is sufficiently large, the diameter of information is infinity and

the problem cannot be solved with this information.

To illustrate the concept of cardinality we consider two examples.

Example 4.1

t

Let = [L ,Ln] . From the above considerations easily follows

Plgsee

that card(M < n and card(M) = n iff Ll’L ..,Ln are linearly independent.

2
»

Example 4.2

Let f: D cC™ -=C™ be a k times differentiable function. Let

NE) = f(k) (%) for x € D.

- {
Note that f(x) [fl(x),fz(x),...,fm(x)] where fj: D~ Q} is a scalar

(k) k-

5 (x) can be represented by (?+k {) linearly independent func-
k

tionals of the forn = ————ELJL———- - .

e form L(f) by where x [xl,xz,...,xm] and Py 20,

OX, ...
1 m

Py + Py + so0 + Py * k. This yields

function. f




card(M = m(rm—:- 1> .

1f N(f) = [f(x),f‘(x),...,f(n_ 1) (x)] 1is the so-called standard information,

then
n-1
- (o+k-1\ _ _/mn-1
card (M 2 m( K ) m n-l) ’
k=0
This shows the dependence of cardinality on the dimension of the spaceq_m. | |

We end this section by showing that there is a one-to-one correspon-
dence between information operators and subspaces of 31.

Let M be an information operator with card(M) = n. Then A(T) af ker T
has codimensionality equal to n. Furthermore '3\1‘1 '312 implies A(‘Rl) = A('.‘lz) .

We now show that the converse statement is also true.

Lemma 4.3

Let A be an arbitrary linear subspace of 31 such that codim A = n.

Then there exists a unigue {(up to the equivalence relation) information
operator M with card(M = n such that A = ker M. ]
Proof
e n
= ~ -l 4 = 3 =
Let 31 A & A+ where A 1in(>1,52,...,§n). Then f fo - I..i(f)'::i
i=1
where f0€ A and Li(Ej) = 6ij' Define
W [ basesrsli] s
1A St

Since LI’L2""’Ln are linearly independent, card(M) = n and ker M = A. To

prove the uniqueness, observe that if A = ker ml = ker mz then ‘Rl: ‘.‘12.

This completes the proof. |
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5. INDEX OF A LINEAR PROBLEM

We consider in this section linear information operators for the solu-

tion element o = S(f) where S: 31 - % is a linear operator and 3, is de-

>0
fined as
(3.1 H=lED : |fref =1]
where T: X - = T(Y,) is a linear operator and ¥ is a linear normed
11 % \~1 \1&

space over the real or complex field. We shall call T the restriction operator.

This means we want to find an e-approximation to the solution o = S(f) for
all f such that || Tf|| s 1.

To stress the dependence on T we shall replace S by (S,T) in all basic

definitions. For instance we shall refer to the problem (S,T), the diameter
d(ﬂlS,T), etc., where T is a linear information operator.

Without loss of generality we choose a bound H Tf” < 1 instead of iinH <c
for a positive constant ¢. Indeed, let T1 = %T. Then [iTlfH < 1 is equiva-
lent to || Tf|| S c. It is easy to observe that d(%,s,T) = cd(ﬂ,S,Tl) and
all estimates on complexity are linear in c.

We now show that the dependence of d(%,S,T) on N is only through the

kernel of T.
Lemma 5.1

(5.2) d(M,s,T) =2 sup || sh||
hev(0)

where V(0) = ker M N Y (See (2.4).) ]

0°




502

Proof
Set ¢ =2 sup ||sh|l. Let f€ 3, and £C V(f). Then h =

1
hev (0) <
and || Th|| < 1. This yields

|| st-st||=2| sh|| s <.

Taking the supremum with respect to f and f we get d(M,5 T) S c. To prove
the reverse inequality, let h € V(0). Set £ = h and f =-h. Then f € V() = v(0)

and

2| su|| = || sE-s£|| s d(?,s,T).

Thus ¢ < d(N,S,T) which completes the proof. [

From Lemma 5.1 we immediately get the following Corollary.

Corollary 5.1

If % %, then d(W,,5,T) < d(R,8,1),
1f ‘Rl,. ‘R2 then d(’.‘lz,S,T) = d('ﬁl,S,T). [ ]

In Section 2 we showed that the radius r(M,s,T) is the intrinsic error

of the information M and the problem (S,T). Due to Lemma 5.1 we get
e = r(,s.T) s 2¢c

where ¢ = sup || Sh|| . We now show when r(%,5,T) = c.
hev(0)

Lemma 5.2

If for any f € 30 there exists hOE ker M such that Tho = Tf then

r(®,s,T) = sup || sh| . [ |
hEV(0)




5.3
Proof
Let a = S(f-ho). Then for any f=f+h€ V(f), h€ ker M, we get
| a-sf|| = || sz| where z = hy +h € ker M. Since Th, = Tf, [| Tz|| =

| T(z-h )+Tf| = || Tf|| S 1. From (2.10) and Lemma 5.1 we get

| 0 I

r(R,S,T) = sup sup || a-S’f-H = sup H Sz” = %d(‘n,s,T) .
ﬂiao ftev(f) = V(0)
X g
Since r(M,s,T) 2 5d(R,s,T) for any R, S and T, Lemma 5.2 is proven. ]

We want to examine when the diameter d(R,5,T) is equal to infinity.

(0f course, d(N,5,T) =+ = implies r(N,S,T) = + ®.) We begin with

Theorem 5.1

If ker @ N ker T £ ker S§ then d(TM,S,T) = + =, ]

Let h€ ker ® N ker T and h € ker S. Then T(ch) = 0, R(ch) = 0 for any
constant c¢. Then H S(ch) || = }cl H Sh”—‘ + @ with }c, - + ®,  Due to Lemma
5.1 we get d(N,8,T) =+ <=, [ ]

Theorem 5.1 states that ker @ N ker T has to be contained in ker S for
d(RN,s,T) to be finite. We prove that ker M N ker T < ker S implies that
the cardinality of M is at least as large as the "problem index". Let

ker T = (ker T N ker S) € A(T,S),

(5.3) * *
= £ £
A(T,S) 11n(§1“2,.--,>n*)

where A(T,S) is an algebraic complement of ker T N ker S in the space ker T

*
and

* * *
1”"’§n* form a basis of A(T,S), n =n (T,S) S+ =,




5.4

Definition 5.1

We shall say that index(S,T) = dim A(T,S) is the index of the problem

*

(S,T). We shall sometimes write index (S,T) =n . |
Note that index(S,T) = dim(ker T) - dim(ker T " ker S) whenever either

dim(ker T) or dim(ker T N ker S) is finite. We are ready to prove the main

result of this section.

Theorem 5.2

If card(M < index(S,T) then d(M,s,T) = + =. »

Proof &
e n

*
We show that ker M N ker T £ ker S. Define f = c; §i€LA(T,S).

i=1
We want to find a nonzeroc vector <Cl’C2”"’Cn*> such that £ € ker 1. From

T & A B FTE L VY.
LCulila 4 .4 LU LULLOUW

Ui

L . 1 - oy S - $ ! . < 2 - s R N S
that tnere exisis an information operator

R, =(L,L,,...,L ] where m = card(M) < index(S,T) such that ker @ = ker M.
1 12 m % i
n
\ %*
Thus £ € ker N iff L, (f) = e, L,(E,) =0 for j = 1,2,...,m. Hence we
J ~ 1 §oti

%

get a homogeneous system ofisl m linear equations in n unknowns. Since

m < n*, there exists a nonzero vector (Cl’cz""’cn*) which is a solution

of the system. Thus 0 # f € A(T,S) N ker N, This means that a nonzero f

belongs to ker M N ker T and fﬁ! ker S. Due to Theorem 5.1 we get

d(R,8,T) = + =, ]
Theorem 5.2 states that every information operator with cardinality

less than the index of S and T does not supply enough information to solve

the problem. For index(S,T) = + = we get the following corollary.




5.5

Corollary 5.2

If index(S,T) = + = then the problem (S,T) cannot be solved by any
information operator with finite cardinality. [ |
We illustrate the atove results for some restriction operators T. We

begin with T = 0.

Lemma 5.3 (No restriction operator)

Let T = 0. Then

(i) d(M,S,0) is either zero or infinity. More precisely ker T # ker S

implies d(M,S,0) = + =, ker ® < ker S implies d(RN,5,0) = 0.

(11) index(S,0) = dim(ker S)* is finite iff S is a finite dimensicnal

operator, i.e., dim 8(31)< + @, |

Proof

Since T = 0, J; = 3, and ker T = 31. If ker ® N ker T = ker N £ ker §
then d(M,5,0) = + = due to Theorem 5.1. If ker M < ker S then Sh = 0 for
all h € V(0) = ker ¥ < ker S. Thus d(R,5,0) = 0 by Lemma 5.2. This
proves (i) .
4 o 18

From (5.3) we get A(0,S) = (ker S)” and index(S,0) = dim(ker S) . It
is well known that index(S,0) is finite iff S is a finite dimensional
operator. This proves Lemma 5.3. [ ]

)

(
As our second illustration consider T = Dk, k20, i.e., Tf = f‘k for

a scalar function f. 1If S is a one-to-one operator then
A(T,S) = ker T = {f: £ = 0}

and index(S,Dk) = dim (ker T) = k. Hence we have to compute k linear functionals

to assure that card(®) = index(S,Dk) and ker ® Nker T = ker S = {0}.




6. OPTIMAL LINEAR INFORMATION OPERATORS

o

Assume that n = index(S,T)

-

< + =, We construct an information operator

Y *
M with card(N) = index(S,T) such that ker @ N ker T < ker S. Recall that

* _* *
A(T,S) is defined by (5.3) and A(T,S) = lin(gl,’;,,,...,fn#;. Let
* -~

n
. 4 o E s ®
31 = A(T,S) ©A(T,S)” and f = L.(E)E. + £
is= p & r
* * *
Li(Z)) = 8 ;. Then R = a(T,Sr

| where fle A(T,s)t and

Lemma 6.1

Let
*

1’

t

* ¥ *
6.1) ™ =[L Lz,...,Ln*]

* ~
Then ker T ker T < ker S. |

£ *
n

T % +*
Let £ € ker T. Then f = fo + Li(f)";i where fOE ker T N ker S. 1If

* * i=1 %*
f € ker @ then L;(f) =0 for i = 1,2,...,n and f = foe ker S. This

proves Lemma 6.1. [ ]

To simplify further considerations and to assure that ker N ker T < ker S
we shall consider throughout this section only information operators I such
that '."l* = M. (This means ker N < ker 'R* and ker M N ker T C ker ‘.'1* N ker T C ker S
due to Lemma 6.1.)

We show the diameter of d(TM,S,T) can be computed in terms of the inverse

operator T-l which is defined as follows. (T is not one-to-one in general.)

Recall that 3‘ = T(31) and

(6.2) 3, = ker T Nker S A(T,S) & (ker T,




Thus £ = £, + £ + f2€ 3, where foe ker T N ker S, fle A(T,S) and

£, € (ker T)l. From Lemma 5.1 it follows that the dependendence of T on the

*
diameter d(N,S,T) is only through the kernel of M . Let f € ker 31*. Then

* -
f=f + f_ since fl € A(T,S) = (ker )J'. Define a linear operator T 1: 3[. = 31

0 2
such that

(6.3) 71z £,

where z = Tf.
We check that 'I‘-l is well-defined. Let z = Tf = Tg where
+
g = go + 82 € ker M. Since T(f~g) = 0, f-g = (fo-go) + (fz-gz)e ker T which

yields f This proves that T-lz does not depend on a particular choice

-
@ ey
) -1 ‘
of pre-image of z. Hence T is well-defined.
As an example ohserve that T = 0 implies @ = [0} and 0_1 = 0,

Let K: 3‘. - 32 be a linear operator and let B be a linear subspace of

36 . Denote

6.6) [kl < sup [ xe|l

“ z”SI,ZEB

We are ready to prove

Lemma 6.2

Let m* < M. Then

(6.5) d(®?,s,T) = 2| ST-IHr(ker 7 :




e

Proof
¥ ~1

Note that ker = ker 1 assures that we can use T ~ defined by (6.3)
for the linear subspace T(ker M. Lemma 5.1 states that d(N,S,T) = 2 sup }]ShH
where ®h =0 and || Thil = 1. Let h = hy + h, due to (6.2), Then Sk = sh, and
Th = Th, . TLet z = Th € T(ker . Observe that T-lz = h2 and ST-lz = sh,.
This proves (6.5). |

Lermma 6.2 states that the diameter d(M,S,T) is equal to twice the norm

-1
of the linear operator K = ST in a certain linear subspace B = T(ker M.
This suggests the following problem. For a fixed integer n find the most
relevant information operator M, card(M) < n, that is the operator which
minimizes d(M,S,T) among all information operators with cardinality < n.
This is equivalent, as we shall prove, to finding a linear subspace B with
*
codim B € n-n which minimizes ||K|E among all linear subspaces of codimen -
*

sion S n-n

To formalize this problem let ?n be the class of all information

operators N such that T c M, card(M) < n where n = index(S,T).

Definition 6.1

We shall say d(n,S,T) is the n-th minimal diameter of information iff

(6.6) inf d(T,S,T) if n 2 index(S,T)
TEY
d(n,s,T) = n

+ @ if n < index(S,T)

We shall say W:l is an n-th optimal information iff
oi
(6.7) d(n,S,T) = d('.‘tn 13 Tl |

We define d(n,S,T) =+ ® for n < index(S,T) since for any N with cardinality
less than index(S,T), d(M,S,T) = + ®. See Theorem 5.2. We illustrate Defini-

tion 6.1 by the following example.




6.4

Example 6.1
Let dim 31 =+ @ and let T = I be the identity operator. Define

S =c¢cI for a positive constant c. Then
(6.8) d(n,ecI,I) = 2c, vn.

m v £ { = = J
Indeed let M € A Then ker ® # {0} and d(?,S,T) Z}ICII&er o 2c. Note

i1}

that (M (£f)) 0 is an optimal error algorithm since e(w) = ¢ = %d(ﬂ,S,T) =

= r(R,S,T). This means that no matter how many linear functionals are com-

puted the zero of the space 31 is the best approximation to the solution

Sf = cf for some f such that I|f” S 1. See Schultz [73] for related material.
However for the identity information operator M(f) = f we get ker @ = {0}

and d(I,cI,I) = 0. Note that card(I) = + «. This shows that d(n,S,T) can

be a discontinuous function of n at infinity. ]

From Example 6.1 we get the following corollary.

Corollary 6.1

For every € (no matter how large) there exists a linear problem (S,T)
with finite index for which one cannot find an e-approximation using any
finite number of linear functionals. | ]

We show that the n-th minimal diameter and the n-th optimal information

are fully determined by the operator K = ST-I. Let

(6.9) b(m,K) = 2 inf j]x]%
Bcfk, codim B < m

be the m-th minimal norm of the linear operator K.

Suppose there exists a sequence {Bm}, m = 0, such that

(6.10) b(m,K) = ZIIKIE and codim B_ < m.
m




6.5

Let WJ‘ = ?’sm = B~ and

k
6.11) g =g + ( M
(G52 & >0 /& Lim g) im

i=1

5 2o - " ;
e I R = ‘ ) ! = n) = i <

where ‘%06 B and ‘m in( 1m’ 9m’ 3 with k = k(m) codim 8 m.

We shall call B, an m-th minimal subspace of the linear operator K.

* * * *
Recall that L_,L "Ln* form M . See (5.3) and (6.1). Define

1 2,..

* % * t
<12 A =7 » o il R o oo . o +o .
RhisLE. qn ‘Ll LZ’ Ln"’Ll,n-n"T’ ’Lk(n-n“),n-n“T]

We are ready to prove the main result of this section.

Theorem 6.1

The information ‘J’Zn defined by (6.12) is the n-th optimal information and
* Sk
(6.13) d(‘ﬁn,S,T) = d(n,S,T) = b(n-n ,K), K=ST , n = index(S,T). [ ]

Proof

To prove Theorem 6.1 we need two lemmas.

Lemma 6.3

Let B be any linear subspace of ‘2 with codim B = k < 4 «, Then there

exists a unique information R such that

ks

Y N o,
(ii) T(ker M) = B,

(iii) card(® = k+n*. [ |

Proof of Lemma 6.3

Let 3/4 =B &gt and B+ = 1in('f'\1,T1,),..'.,le). Thus for every g € 3& we
K &
have = + j 3 n nYy = § ;
g 29 L i(g) N where goé B and Li( 'j) JIL Define

i=]




6.6
(6.16) R = [L ,Leyeuusl 4L T,L.T,...,L.T]".
. 411 :) bl [].\)‘1 ’ 2 L BUR )‘k i
* . * -
Then ker R = {f: L (f) = D,Lj(Tf) =0, 1™ 1,2,c.0,0 5 1= 1,2,...,k} € ker

This proves (i). Let h € ker M. Then L,(Th) = 0 for i = 1,2,...,k and
Th € B. Hence T(ker M < B. Now let g be an arbitrary element of B, i.e.,
Li(g‘l = 0 for i = 1,2,..,,k: Since g€ 3,4, there exists f € §. such that

g = Tf. Decompose f = fO -+ f1 + f2 where fOG ker T N ker S, fle A(T,S)

and f, € (ker T)‘L. See (6.2). Then g = Tf = Tf7. Since LI(Q! = 0 for

<
i=1,2,...,n and L _(Tf,) = 0 for i = 1,2,...,k we get £, € ker T and
2 & e

g = Tf, € T(ker M. This yields T(ker M) = B which proves (ii).

e

To prove that card(R) = k+n we show that I‘;""’Ln""LlT’""L‘KT are

linearly independent. See Example 4.1. Assume that

s

n k
2 i s
) el .+ ) 4LE)E=0, VEC ..
— ) S — s Sl =
i=1 i=1
_* _* ~'f: *
Set f = ‘_L where fl,:_,‘,...,En._t, form a basis of A(T,S). See (5.3). Then
“
* %* % Jo
T, = 0 and L (€. ) = § .. This ylelds ¢, = 0 for £ = 1,2....,n . Now let
i i ij i
Tl = T, and set £ = £ . Since L. .(FE.) = L. (N,) = §. ., we get 4, = § for
i i i j 1 G i ij i

o+

i=1,2,...,k. This proves that card €)= k+n .
We now show the uniqueness of N. Suppose that an information operator
- T i VR W,
1 " [hpelgreccaly gt
%* *
that h € ker ﬂl implies L (h) = 0 for i = 1,2,...,n . Next T(ker ﬂl\ = B
i

- g o i
satisfies (i)-(iii). Thus ker '31 C ker % means

means that h € ker 7, implies ThE B, i.e., L;(Th) =0, i = 1,2,...,k. Thus
h € ker R and ker ml C ker R, Since card('.‘ll) = card(M), from Lemma 4.1 we
get ‘.'117~ M . This completes the proof of Lemma 6.3. [ ]

-1
Due to the uniqueness of N we shall write @M= T (B). Note that 'Rn

- *
defined by (6.12) is equal to T (Bn-n*) where Bn-n* is the (n-n )th

minimal subspace of K.




Lemma 6.4

*

Let card(™ = n. Then codim T(ker M < n-n . |

Proof
Let B = T(ker M and let k = codim B. From Lemma 6.3,‘721 = T (B) has
) ok %
the properties 1 < ‘.“ul and card('ﬂl) = k+n . Repeating a part of the proof

of Lemma 6.3,it is easy to show that ker M < ker ﬂl. From Lemma 4.1 we get

.

W

*
N, = M? where the (k+n )X n matrix M has rank M = k+n . This is possible
*
only if k < n-n which completes the proof. B
We proceed to prove Theorem 6.1. From Lemma 6.3 we know

d(® ,s,1) = 21|KHBn = bamn K.

=11

Let ® be any information operator from ":’n. From Lemma 6.4 we get

*
dim T(ker R) < n-n and

d®,5,D = 2l Klhpear m2 b(n-n ,K) = (R ,s,1).

This proves that ??n is the n-th optimal information and d®,S,T) = d(n,S,T) =
b(n-n*,K). This completes the proof of Theorem 6.1. | |
1f d(n,S,T) = 2e then it is impossible to find an e-approximation no
matter which information operator N with card(M) < n is used. 1In this case
we have to increase n and possibly find such m > n that d(m,S,T) < 2e. This
motivates our interest in the dependence of the n-th optimal diameter d(n,S,T)

on n. Note that d(n,S,T) is a nonincreasing function of n.

Definition 6.2

We shall say d(S,T) is the diameter of problem error in the class of

information of finite cardinality iff




6.8
(6.15) d(S,T) = lim d(n,S,T).
n-—.cc
We shall say that the problem (S,T) is strongly non-computable if d(S,T) = + =,
is €-non-computable if d(S,T) = 2e¢ > 0 and is convergent if d(S,T) = 0. ]

We now show that the diameter of problem error d(S,T) can be any number.

This shows that for any e there exist linear problems which are e-non-computable.

Lemma 6.5

Let # € [0, + ®]. Then there exists a linear problem (S,T) such that

(6.16) d(S,T) = 5. W

Proof

Let 5 = + ®, Define T

0 and let S be a one-to-one operator. From

Lemma 5.3 we get index(S,0) = + « for infinite dimensional ,‘51. Thus by Theorem 5.2,
d(n,S,0) = + @ for any finite n and d(5,T) = + = = A. Now let 5 € [0, + =).

From Example 6.1 we get d(n,gI,I) = 8 for any n. Thus d(S,T) = 5 which

completes the proof. a8

In the next section we show when the problem (S5,T) is convergent and

how to find the n-th minimal information.




Lib* S A

7. CONVERGENCE AND MINIMAL SUBSPACES FOR A HILBERT SPACE

In this section we assume that "2 is a Hilbert space. Recall that the

problem (S,T) is convergent if d(n,S,T) — 0 when n = + =. See (6.3).

Theorem 7.1
Let 3} be a Hilbert space and index(S,T) < + ®. The problem (S,T) is
-

convergent iff K = ST-l is compact. [ |

Proof

Recall that K: “(A -+ 3 1is compact iff K may be uniformly approximated
by finite dimensional linear operators, i.e., there exists '}\n‘ such that

i) K : x - . 1s lir
(i) ‘(n '}a 32, i\n is linear,

e b X {0 ) -
(ii) dim }\n(l < +

(ii1) lim [k - K || = 0.

n-om

Suppose that the problem (S,T) is convergent, i.e., lim d(n,S,T) = 0.

n—<

¢ p - - . 1
This means there exists a sequence of information operators {'Rn; such that

card(‘.‘ln)f- n and lim d(‘ﬁn,S,T) = 0. Due to Lemma 6.2 and Lerma 6.4 we get
n—®

‘R s = 2 I -~ = 3
d( ILTRY) [ !\[‘Bn 0, B = T(ker "ln)

*

: & nd

d din < n-n . X} = ) =g +
and codim Bn n-n Let '\Q Bn Bn and let g 24 gl where goe Bn,

1 I ,
gle By and (8,,8,) = 0. Define

i L8 = Kg.»
(7:1) kng kgl
Then Kn is a linear operator from 34 to 32 and dim kn(i}.) = dim ]\(B‘;) S dim Bn

*
S n-n < 4 %  Furthermore




A oBotlo 12

ek el = Il kegll = Nkl Wegl= el Al elf-ls 117 =

< flxlj, |
n

This proves that || ‘\'-KnH < H \]LB - 0 which means that K is compact. This
n

24

completes the first part of the proof.
Suppose now that K is compact. Then K may be uniformly approximated

by il\nq Define Br) = ker Kn where p = codim ker Kn <+ «, From Lemma 6.3
{ ¢

- ’ ' ’ : -1
we know there exists a unique information operator T G ™ T (B_ ) such
p p

*
that t < (R,, o and card(l’lp +r1*)= p+n . From Lemma 6.2 we get

S

T T = 21 ] : For e o= X
d(.p RTERS 2| I\Ik3 Since Kg = (K-K )g for any g C,Bp , we have

}] KgH < I} K-th l 2|l Hence ‘I K lB < H K-KnH - 0 with n - + =. Finally

P
* ) =L e
d(p +n ,S,T) < d(‘ﬂp ST S 2|| P\HBP - 0.

Since d(n,S,T) is a nonincreasing sequence, then lim d(n,S,T) = 0 which
completes the proof. B [ |
Remark 7.1

It is possible to generalize Theorem 7.1 for the case that S& is not a
Hilbert space and for problems (S,T) with nonzero d(S,T). We shall not
pursue the generalization in this paper. B

Theorem 7.1 states necessary and sufficient conditions for the problem
(5,T) to be convergent. Note that in many cases K = S'I‘-1 is not compact.
This holds, for instance, for S = T = I and infinite dimensional SL

We show how to find minimal subspaces of K assuming that K is compact

*
and K(?;l‘) & 35 Let X be an adjoint operator of K. Define a self-adjoint

and compact operator




2
By o df R
(7.2) }\1=}‘“3a*3a'
o ol -
Decompose 31 = ker kl = (ker kl) where the orthogonal complement (ker K)
is spanned by eigenvectors of Kl’ i.e.,
7.3) ker K \l = 1in(E€. € g <S4+ ®
(/. (ker 1’ ln(;19;2)~-'):l)) r s+ @
F =\\=
B1et ™ 3y
where \. > 0 and X\, 2\, 2 ..., (£.,8.) = 8,.., Ifr is finite we formally
i 1 2 dstiss 35 ?
put Ki = 0 and §i = 0 for i 2 r+l. Due to compactness of K, lim A = 0,
i
g
Every element of f 6,32 has the unique decomposition f = fO + (f,ii)’l
where Q)G ker Kl' Define i
7.4) * S LIREE  * sl 2n
(7 & Bn-n“ ker K1 lln(’n-n++l ‘r)’ n T
and an information operator
‘ s x = % t
€7 +5) Hn(f\ = [Ll(t),...,Ln*(f),(Tf,;l),...,(Tf,fn_n*\]
* *
where Ll""Ln* are given by (6.1). We are ready to prove
Theorem 7.2
” * il
Let 35 be a Hilbert space, n = index(S,T) < + «, and let K = ST =~ be

a compact operator such that K(ga) & 34

The information operator Nn defined by (7.5) is the n-th optimal informa-

*
tion, Bn_n* defined by (7.4) is the (n-n ) th minimal subspace of K and

*
7 2 = = - 4 = 9,
(7.6) d(R,s,T) = d(n,S,T) = b(n-n ,K) =2 /)‘n-n*-f-l . =




7.4

Proof

We first show that B, is the k-th minimal subspace, k = n-n . Let fEin. Then

k
>}
F = € N E Y& vk e 4 Z '2 = (£ = 4 Yy =
f=f£. % ) (£,8)8 where £, € ker K, and || RE|] (RE,KE) = (K f,6)
C i=k+1
(£,5)]°%, s A | f!F. Since this bound is sharp we get || K|l = .\
i ’ o4 | i e 1 ; ! 'Bk " k+1
i=k+]
Let now B be any linear subspace such that codim B < k. Then J, =B %—Bl and
o o
Bl = lin(7T,,7N.5++.,7 ) where m = codim B < k. Furthermore f = f_ + L.EYN.
L2 m 0 = b

for certain linear functionals Ll,Lq,...,L and fO € B. Thus f € B iff

T

k+1
L. (f) = £ i = 2 n. = E = L= 2 T
Miﬁf 0 for i j S P Let £ o S5 Then Li(f) 0 for i L2y te oyt
i=1
is equivalent to MC = 0 where M = (Li(Ej)) is the m x (k+1) matrix and
2 % 6. 7€ guise ] Since m < k+1 there always exists a nonzero solution
=2 k+1 k+1
¢ and therefore a nonzero f = ci{i which belongs to B. Then
—
i=1
kf]
i sl a s - Lo 2
l| i\f‘l o (l\lf'f) il I, lcil ‘\i e \'k+1” f“
i=1
which yields || K & 2 ey ™ ||K|hk. This proves that B, is the k-th minimal
*
subspace and b(n-n ,K) = 2./A %
\ ‘n=n"+1
L : @ - ’ i -
Note that Bk = 11n(§1,§2,...,7k) and Lik(f) - (f, i) for 1 = 1.9.c0i5Ks

See (6.11). Thus the information operator !% defined by (7.5) is identical
with (6.12). From Theorem 6.1 we get that ﬂn is the n-th optimal information

and

*
= = - = 2,
d(ﬂn,S,T) d(n,S,T) b(n-n ,k) 2ka-n*+1

This completes the proof. L]




The information ‘.‘In supplies the best possible information on the
problem (S,T) in the class ‘:'n. Note that the evaluation of (Tf,ii) means
that we compute the ith component of Tf in the eigenvalue decomposition of

Kl.
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8. OPTIMAL ERROR ALGORITHMS FOR LINEAR CASE

[}
=
=
—~
e
J
T
B
=)
o)
-
o
-

In this section we give optimal error algorithms ass
and T are linear operators.

Lemma 8.1

Suppose that for every f € J there exists f such that

8.1) R =NE) and TP = 0.

Then the algorithm ¢ (R(f)) Sf is an optimal error algorithm and

NS} S
c.
~
3
w3

(8.2) e(e) = rM,5,T) =

Proof

Since h = f = £ € ker ? and H 'I’h“ <1, we get from (

wu
PO

w0
~
m
I
w
=
A

sup | shll = % d(*,s,T)

| o)) -
heker T, || Th;isl

Thus by (2.13) e(®¥) = sup H f.:('.'?(f)-S(f)H 5-21 d(N,s,T). However (2.11) and
f

1
(2.15) state that e(®) =2 r(H,S,T) 2 5 d(M,s,T) which proves (8.2). &

&
Let & = le,LZ,.. : ,Ln'; and card (M = n. To minimize combinatory

complexity (see Section 9) we seek optimal (or close to optimal) error algo-

n

rithms which are linear, i.e., =(A(f)) = & L (f)g, for some elements
TR i i

) i

P PTRRETL

We first consider the case that k = dim 31 < 4+ =, Note that for every

information operator N, card(M) < dim 31.




Lemma 8.2
- 1 t
Let M = le,Lz,-..,Lk] .
If card N = k = dim 31 < + @ then d(N,5,T) = 0 and there exist elements

gl,gz,...,gk such that

k
dif - W
C f)) = C =
p(R()) L Lyj(P)sg, = sf
i=1
is a linear interpolatory optimal error algorithm. [ |

Proof

Since card N = dim 31 <+ =, ker R = {0} and (ker m)i = 31. From Lemma
5.1 we get d(R,$,T) = 0. There exist 81989518y suih that 31 = lin(gl,gz,...,gk\
and Li(gj) = éij' Then for every f 6.31 we get f = Z Li(f)gi. This shows
that ©(f)) = Sf is linear and interpolatory. Sincéaé(o) =0, v is an optimal
error algorithm. | ]

Without loss of generality we shall consider throughout this section

information operators

(8.3 B= (L, L .0k

)

2

where n = card(®) < dim 31. In Section 4 we showed that unless ker W N ker T

o

is contained in ker S, d(?!,$,T) = + ®. This assumption holds if ® < R where

: k. * * * t * *
(8.4) R = [L.,L ,svesl o] and L (§.) = &,
) it n ij

*
is defined by (6.1) with n = index(S,T) < 4+ =, Therefore we assume that &

defined by (8.3) satisfies

% % *
) by, ® L, for £ = ],2,..e50t gy B € n
i |




Lemma 8.3

Suppose that there exist elements g ,3,, - from 31 such that
8.6) L.(B.) = §&, . and T(g.) =0 fior £,3 = 132500 - 0%
(8.6 IL“-‘J §3 n (fbl or 1,] 1<y n
n
Then ©(A(f)) = L Li(f\Sgi is a linear interpolatory optimal error algorithm
and =1
e(9) = v(R,8,T) = = 4(N,8,7). B
Proof
 — n n
2t £ = . L. (f) = g.) =L, for i = 1,2,...,n.
Let L Lj(f)gj Then L\t) L_‘LJ.(f\Li(:,j Ll(f\ or i 2, ,N
=1 =1
Thus S(E) = N(E) and 9(R(f)) = Sf which proves that © is a linear and inter-
polatory algorithm. Since T(E\ = 0, Lerma 8.3 foliows from Lemma 8.1. .

Lemma 8.1 and 8.3 are not applicable unless there exists an element f
which shares the same information as f and belongs to ker T. We now show how

to find a linear optimal (or close to optimal) error algorithm in general.

. S
(8.7) ¥ = T(ker ) © T(ker T

- = Al -
12 lpseees k" From Lemma 6.4 we know that

where T(ker fhl = 1lin(7
1 %*
k = dim T(ker ¥) = n-n . Then for every g € 34 we have
k
§ = / )T
(8.8) g 24 - Ri(gv i
is]

where 84 € T(ker %) and R

I’RZ""'Rk are linearly independent linear func-
tionals such that Ri(wj} - :ij' Def ine
ll go ”
(8.9) ¢ = sup ——

g€y, | &ll




T — =

8.4

Note that ¢ depends on ker =l and T but is independent of J, and S. Further-

1
more ¢ = 1 and if T(ker =0) is closed then ¢ is finite. If q& is a Hilbert

2
space then we can assume that T(ker ®) is the orthogonal complement of

T(ker ), (Ti,ﬁj\ = :ij' Ri(g) = (g,ﬁj\ and ;;}F = ‘;gOJF - Z‘j(g,”i)jz
which implies ¢ = 1. " =l

Let X = ker R < (ker ?hl. Then f = f_+ L.(f)§, where f € ker 0

=1 0 i i 0
w 1=l * *
and Li(ij) = Sij For B = B2y e vyl Ei = Ei for i = 1,2,...,n , where ii
=

is defined by (8.4). Note that Tf = TfO - Li(f)ii since Ti? = 0.
Thus i=n +1

k = dim Lin(TE «,,...,T5).

* 5
There exist linearly independent elements 7 g

*
Bk, gervies such that TE, = 0
0+ n i

k

* %
and Si € lln(;n*+l,...,t Vel = o 1, nek,

n
* X
Let m = n-k. Since jk = T(Jl) there exist SR such that
- - * 3 P
g = T:m+i for L = L,2,..:sK. Déefine
%
(8.10) M = Li(ﬁj)) = 2T

We show that M is nonsingular. Indeed, let

%* *
clLi(il) + ...+ ani(En) =0 for 1 = 1,25 v stts

s &

%* o
Then 7 = clil + ..+ cnin@, ker ® and TF € T(ker M) . Since TE; = 0 for

*

L - = £ = 4 g = [
i 1,2,...,m=n-k, we get T§ c lT‘ 1 + + ch°n c 111 <
) 8
n ] i i g Wiy W = U
+c T € T(ker This implies ¢ 1 e, 0 Hence

%* ¥ 1
F = = e L i = ie
E=c 8+ e # cmgm (ker M which yields c1 ™ e . 0. This proves

that M is nonsingular. Define




8.5
£ t.=-1_. * el it

= e T -
(o ‘I II'L‘_‘ v"wn = (M) —1)-:) . ,‘Jn
Note that L.(g.,) = 6., for i,j = 1,2,...,m. We are ready to prove the main

Sy i
result of this section.
Theorem 8.1
Let n = index(S,T) sn = card(N) < + =, Let CoBirigrer s be defined

by (8.9) and (8.11) respectively. Then

n

(8.12) »((f)) = , L.(f)Ss.
[ i 1

i

is linear, interpolatory and an optimal error algorithm within a factor of

(- O P
(8.13) rdﬁJ)Sem)sgdmﬁx)Scrwﬁﬁh w
Proof

y iy -
Since Tf TiO + L Li(f)T:i we get

i=1
n
= : E.) j = 2 ynrw gk
(8.14) Rj(Tf) L Li(i) Rj(T_i for j 12 ,k
i=1
_%* * :
Set f = Ei for £ = 1.2,:.us00 10 (8.14) . Since T‘i = 0 for 1 <€ n-k and
%
F = i = § i > o)
Rj(T°i) Rj(ﬂi_m) %em, ] for i > m, we get

(8.15) [0,1] = MM

where 0 is the k x (n-k) zero matrix, T is the k X k unit matrix and

= z = i, =
My = RUTED) 1= 1,2,k 3 = 1,2,.00,m,




8.6

Since M is nonsingular we have

-1
(8.16) M, = [0,IM .

From (8.11) and (8.16) we get

fc = - t
D s siel 3 LG = ( M
_Tgl’ ’T‘;nJ (\1) [0) ’0: 117 \2: ,lel s
k
(8.17) Tg. = ROCEE il
i o j i 3
j=1 .
We are ready to prove optimality of o(N(f)) = /2 Li(f)Sg,. Let
i
i = i=1
= ) ( S i = § 2 =7 . s
f L Li(f 2 for f ‘]O Since Li(gj) 15 then T(f) t(f) Thu
i=1

o(Uf)) = Sf is an interpolatory algorithm. Let h = f-g, h€ ker M. From

(8.17), (8.14) and (8.8) we get

= = k
= - = - -3 e =
Th 4153 ol Li(f)'l‘ig.L Tt L Li(’f) L Rj(T°i) l}j
i=1 i=] j=]_
k ,n k
= = / ) £ N = f - Y, =
Tf - L L Ly(ORITED) M, = TE - R(TOT,
j=1\i=1 j=1

(Tf) , € T(ker D.
Then || Thi| = [| (TE) || < ¢|| T£]| S ¢, due to (8.9). Thus

|| w(R(£)) - sf]l= || sh||sc sup || sh] S§ d(®,s,7) = er(R,8,1).
hé€ker T

|| Th[fs1

c
Since f is an arbitrary element of 30, e () 5 d(N,8,T) and of course

e(v) =2 r(M,S,T). Hence (8.13) is proven which completes the proof. | |




Remark 8.1

Theorem 2.2 assures us of the existence of an interpolatory algoritim
whose error is within at most a factor of two of the optimal error. Theorem
3.1 shows how to construct a linear interpolatory algorithm whose error is

within at most a factor of c¢ of the optimal error. [ |

Note that if ¢ = 1 then ® defined by 8.12) is optimal. This leads to

Corollary 8.1

If 3 is a Hilbert space then the algorithm ¢ defined by (8.12) is a

linear interpolatory optimal error algorithm and

e(e) = r®™s,T) = || ST_li:’l‘(ker . .
Corollary 8.1 and Lemma 5.1 yield
Corollary 8.2
1f ﬁi is a Hilbert space then
d@®,s,T) = 2x(RN,S,T). [

The problem of linear optimal error algorithms was considered by many

authors including Bakhvalov [71], Bojanov [74] and [76], Micchelli and

ivlin [77] and Smolyak [65]. They assumed that the solution operator S is

a linear functional and 30 is a convex and balanced set. See also Golomb

and Weinberger [59] for some related material and discussion.




9. COMPLEXITY FOR THE LINEAR CASE

We specify our model of computation for linear problems (S,T) and

linear information operators N as follows. (For the general case, sece

Section 3.)

Model of Computation for the Linear Case

(1)

(fatad),

Let P be a given collection of primitives, We assume that the
addition of two elements of 32, f+g, and the multiplication of an

element of 37 by a scalar, cf, are primitive operations which

belong to P. We also assume that every linear functional L,

L 31 - q:, is a primitive operation which belongs to P. This

t

implies that any linear information operator % = [L_,L ...,Ln]

1 2°

L,,...,Ln are

of finite cardinality is permissible where Ll’

arbitrary linear functionals.

To normalize the measure of the complexity we assume that the cost

of the addition of two elements of 3, and the multiplication of an

element of 3, by a scalar is taken as unity. Note that for a

<

finite dimensional space 32, m = dim f&, unit cost means the cost
of m scalar additions or multiplications.

Let comp(L) denote the complexity of evaluating a linear
functional L. Let R = [LI’LZ""’Ln]t be a linear information
operator with linearly independently linear functionals L

. 1

’

11L2v
card(M) = n. We assume that N(f) is computed by the independent

n

evaluation of Ll(f),Lz(f),...,Ln(f) and the information complexity,

see (3.4), of M is given by




(9.1) comp(N) = comp(L.) -
L g i

i=1

LE cnmp(Li\ = < then comp () = ne, which shows how the informa-

tion complexity depends on the cardinality of 2.

(iii) Let © be a permissible algorithm which uses N(f) and finds an

€e-approximation to a = S(f). Let d(p) be the combinatory com-
plexity of ©. For all problems of practical interest, ¢ has to
use every Li(f\, i=1,2,...,n, at least once and d(op) = n-1l.

We rule out special problems and information operators, assuming

that d(p) = n-1 for every algorithm under consideration. |

Example 9.1

Let P = {arithmetic operations, the evaluation of linear functionals,
the evaluation of a function, the evaluation of a dcrivacive}. Let
N(f) = f(x),f'(x)} where f is a function in a space of dimension m, m S =,

Assume ©(MN(f)) = x - (f'(x))—lf(x).

Case 1. m < =, Let comp(L) = c for every linear functional L. Then

11

comp(f(x)) = me ), comp(f'(x)) = mzcl. We compute ¢(N(f)) by solving the

appropriate linear system by Gaussian elimination. Thus, by (ii),

% -
d(rp) = O(m ) times unit cost. We conclude

+ mzc + d(op) .

comp(®p) = me 1

Case 2. m = ®, We add the solution of a linear system to our set of primi-

tives; let the complexity of this primitive be c Let comp(f(x)) = ¢

4 2’

comp(f'(x)) = cy- Then comp(cp) = ¢, +¢c5+c,. ]




9.3

This model of computation is an idealized one since we assume that
every linear functional is a primitive operation. However, even in this
idealized model we shall prove that the complexity of a linear problem (S,T)
as a function of e can be essentially any decreasing function of e.

Let @ be a linear algorithm, i.e. o(N(f)) = L‘ Li(f)gi for certain

i=1
elements gl,gz,...,gn from f&. The element g depends on M,S and T but is

independent of f. Therefore the elements 812855-++»8 can be precomputed.
The computation of o(N(f)), given e, requires at most n multiplications
and n-1 additions which are primitive operations with unit cost. Thus, any
linear algorithm o is permissible and its combinatory complexity is at most
2n-1. Due to (iii), every linear algorithm is within a factor of 2 of
minimal combinatory complexity. Therefore to make combinatory complexity
small it is desirable to make the cardinality of & as small as possible
under the constraint that r(R®,s,T) < e.

Fix M, S and T. Recall that ¢(e) is the class of all permissible algo-
rithms ¢ which use the information operator N and whose error is not larger

than e, e(p) < e.

Lemma 9.1

Let r(M,s,T) < e. Assume there exists a linear algorithm o in 3(e).

Then,

2n~1 comp(M,S.T, €)
(9:2) <1+ comp(m) < comp(m> s comp (¢) T a




9.4

PI'O\‘f
Since a linear algorithm is permissible, %(€) is not empty. The
complexity of a linear algorithm ¢, comp(®), is not larger than comp(R) + 2n-1,

Since comp(N,S,T,e) 2 comp(N) + n-1, (9.2) is proven. | |

Note that if comp(T) 2 n then (9.2) yields

2n-1 . comp (N,5.T,e)
3n-1 comp (@)

1
(9.3) 5 s & 1.

In many cases comp(M) >> n which yields

(9.4) comp(R,S,T,e) = comp(w) = comp(M

for every linear algorithm .
Fix S,T, and let € tend to zero. We seek the minimal cardinality of an
information operator ® such that r(R,s,T) < e. Let ¥ be a class of permissible

information operators such that inf r(%,S) = 0. See (3.8). Define

ey

(9.5) m(¥,5,T,¢) = minfcard(®: R EY, r(N,s,T) < el.

We shall say m(Y,S,T,e) is the e-cardinality number for the probiem (S,T)

in the class Y. Note that m(Y¥,S,T,e) is a nonincreasing function of e.

Let YU be the class of all linear information cperators 2 such that
@

card(M < + =, (N is permissible due to (i)!) Note that U L I < YU where
n=n
Yn, see Section 6, is the class of all information operators N such that
@
*
N <N card(M) < n. Furthermore U Yn = YU if index(S,T) = 0.
n=0

The class YU contains all information operators of practical interest
since every information operator which is to be computed has to have
finite cardinality. Therefore the e-complexity comp(YU,S,T,c) is the

inherent complexity of the problem (S,T).




i)

We show that m(YU,S,T,CS can be essentially any decreasing function of

€. More precisely assume that e belongs to the interval (O,e Let

s
0
(9.6) g: (0,¢0] - &

be a decreasing function such that g(eo) 2 1 and lim+g(¢) = 4+ ®,
e~0

Theorem 9.1

For every function g defined by (9.6) there exists a linear problem

(S,T)such that
(9.7) g(e)~1 < m(¥,8,T,e) <g(2), ¥e € (0,¢, 1.

Furthermore there exists a sequence {ei} such that eiE,(O,eo], lim e = 0
i-e

and

(9.8) m(¥;,S,T,e;) = g(e). n

Proof

Let g-lz [ g(co), + °=)--oR.+ be the inverse function of g. Define
B. = e+1 for i < g(e,) and B, = g-l(i) for i 2 g(e.). Note that lim B, =
i 0 0 1 0 - e

Let S& = 32 = 1in(§1.§2,...) be an infinite dimensional Hilbert space

F = i =
where (;i,gj) 5ij' Define T I and
@

(9.9) Sf= | B (£,8)F .
i=1

Thus S is a self-adjoint and compact operator. Furthermore Sfi = sigi for

L= 12,00

* *
Note that n = 0 where n = index(S,I). From (7.2) we get Kl = S2 and

the eigenvalues of Kl satisfy Xi = Si for 1 = L, 2,4




9.6

Let m = m(YU,S,I,e). This means there exists an information operator mO
such that card(ﬂo) = m and r(mO,S,T) < e. Moreover for every & such that

card(M < m, r(R,S5,T) 2 €. Due to Theorem 7.2 and Corollary 8.1 we know that

8

< (N < e.
e T!( 0,S,T) e

Thus m+1 2 g(co) + 1 and En+1 = g-l(m+1) < € which yields m > g(e) - 1.

Furthermore for N = mﬂ, defined by (7.5) we get card(ﬂnhl) < m and

1

,S,I) = B = e. This yields m < g(e) and proves (9.7).
o1 m

r (N

Let € = B.

: = - o ;
i+1 for i g(eo). Then €; & (O,eo] and l}m € 0 Since

i
r(mi,S,I) =B . =€ wegetm(¥ ,S,I,e) = i+l = g(e;). This proves (9.8)

i+1 i U
and completes the proof. ]
Theorem 9.1 states that m(YU,S,T,e) can be an essentially arbitrary
function of €. Recall that the e-complexity comp(YU,S,T,e) of the problem
(S,T) in the class YU is defined by (3.9). From Theorem 9.1 we can conclude
that comp(YU,S,T,e) can depend arbitrarily on €. To show this, assume

for the sake of simplicity that the complexity of evaluating any linear

functional Li is fixed, comp(Li) =cy-

Theorem 9.2

For every function g defined by (9.6) there exists a linear problem

S,T such that

(9.10) g(e)(c+1) - ¢, - 2 < comp(¥,S,T,e) Sg(e)(c; +2) - 1, ve €(0,¢). B

Proof

Consider the problem S,T defined in the proof of Theorem 9.1. Thus,
the e-cardinality number m = m( YU
complexity R such that card(®) = m, r(R,5,T) < e, satisfies

»S,T,e) satisfies (9.7) and the information




e

(9.1 (g(e) = e, < comp(?) = m(i’U.S,T,e)c1 Sg(c)cl.

Since the problem (S,T) is defined in a Hilbert space, Corollary 8.1 assures
the existence of a linear optimal error algorithm o, e(m) = r(R,s,T) < e.

Thus
(9.12) m-1 + comp(M) < comp(‘i’U,S,T,e) < comp v S 2m-1 + comp ().

From (9.11) and (9.12) we get (9.10). B
Theorem 9.2 states that comp('t’U,S,T,c) is roughly the same function of
e as the e-cardinality number m(“.’U.S,T,e). Note that the function g can

tend to infinity arbitrarily fast as e tends to zero. This proves

Corollary 9.1

(i) There exist linear problems with arbitrarily hard complexity.
(ii) There are no "gaps' in the complexity functions. n

This may be contrasted with the theory of recursively computable func-

tions where complexity gaps are known to occur (Borodin [72]).

Remark 9.1

We assumed that N consists of linear functionals which are computed
independently and therefore comp(M) = nc, . For some information operators,

N(f) can be computed faster than nc For instance assume that Li(f) = f(xi)

1

for distinct points x,, {1 = 1,...,n, where f is a polynomial of degree n-1.

i
Then the complexity of Li is 0(n) but N(f) can be computed in O(n logzn).

In fact, Theorem 9.2 remains valid under the relaxed assumption that

comp (M(f)) = ®(n) where w is an increasing function cf n with lim w(n) = + =, &
N~




10.1

CHAPTER ITI

APPLICATTIONS

In this section we apply the general theory to a variety of problems.
We consider rather simple problems since we wish to show the importance and
usefulness of the ideas and avoid overwhelming the reader with technical

details.
10. APPROXIMATION IN A HILBERT SPACE

.3+-+) be an infinite dimensional Hilbegt space over

Let H = lin(il,’

the real field R where (£,,£.) = & .. Thus f CH iff f = (£,£E.)E, and
® 1773 ij L 2
k 2 = i=1
J (f,iiﬁ < =, Let {Ei} be a nonzero sequence of real numbers such that
i=1
Ig.] <18,.,] for all 1. ILet
i i
@®©
(10,1) 3, =Q = {£: £ €8 and Y B E,£)2 <+ o,
1 e i )_i,
i=1

We consider an approximation problem defined by

(10.2) sg¢=£, £ €

where 3, = {f: £ € 3, and || T£]| < 1} for
x©

(10.3) TE= ) B, (£,£)8,  =T(Y) cH

2=

*
We first find the index n = index(I,T). Since ker S = {0}, (5.3)

%
yields A(T,S) = ker T and n = dim(ker T). Let i  be the largest index such

0

*
that f, = 0 for & = 1,2,...51, (B, # 0). Thenn =i <+ =, Note that
i 0 19+1 0
* .
N (F) = [€,5,),(F,7) ..., (£,54) ] satisfies Lemma 6.1, i.e.,




10.2
ST P L - i - % sl w1
ker R T= (0} = ker S. From (6.3) we easily find the inverse of T °,
@
-1 e
r £ = E—(f,i.)’.
& B, L
i=n 41
) L | -1 . e " = Lo S
and XK = ST = T ~, Note that K is self adjoint and Kji = — €. . Thus K.is
g, i
compact iff lim Ei = + @, From Theorem 7.1 it follows that the problem (I,T)
is convergent iff lim Ei = 4+ =,
L '
We want to find the n-th optimal information ﬂq for n 2a . Since
K(J) ©3, we get from (7.5) that
. .

PN - TR " = o E
(10.4) B () = [(£,5),(£,5),...,(£,5)]

<

is the n-th optimal information and due to Theorem 7.2 and Corollary 3.1

we have

(10.5) r(‘.‘ln,s,r) =—lq—1——r :
“nt1!

The linear optimal error algorithm  defined in Theorem 8.1 is given by

n
1
(10.6) »@ (£)) = (E;E )€ 5 ela) =
n ~ 124 ,Sn+1,
j=]
x
Note that ¢ is the initial section of f = A,(f'i-‘f-'
1 &
i=1

We analyze the complexity of this problem. Recall that YU is the class

of all linear information operators with finite cardinality. It is easy to

see that the e-cardinality number m = m(YU,I,T,e), see (9.5), is equal to

1
the smallest number n such that T“;——T < e. Since there exists a linear
8
1

optimal error algorithm for any e we get bounds on the e-complexity of the

problem (S,T) in the class ?U,




10.3

¢10.7) (c1+1)m(f”,I,T,e) - 1 <comp(¥. ,I,T,e) s (c1+2)m(YU,I,T,e) -1
L

i

where o is the complexity of evaluating a linear functional of the form
(f,§i). Note that m depends only on how fast Ei goes to infinity and due

to Theorem 9.1, m = m(?U,I,T,e) can be essentially any decreasing function

of e.




1.1

11. UNIFORM APPROXTMATION

Let k be an nonnegative integer. Let 31 = C[0,1] for k = 0 and

k-1 (k)
3 = {2 v€ ¢ 0,11, £99€ 1_f0,10} with || €]l = max |£(t)|. Let
Nstsl]

Y =3, and J =1 [0,1]. Define
2 1 % <
(11.1) Sf = £, Tf = E% g
o ‘e (9,080 ) . Lz y .
Since ker T = (f: f = 0}, we obtain n = dim(ker T) = k. Consider an

information operator
, e - &
(L 2y SR = ‘_f(tQ,f(tz),...,f(tn)]

for distinct :ie.EO,lj,i = 1,2,...n with n 2 k. Note that ker R Nker T =
{0} = ker s.

For k = 0, Example 6.1 yields r(N,I,I) = 1 for any information operator
with finite cardinality. To assure convergence of the problem (I,T) we

assume k =2 1. We consider two cases.

Case 1, n = k.

n
Let w(t) = ﬂ(c-ti) and g, (€) = w(t) ’{(t-ti)w'(t‘,)} for £ = 1,2,...,n.
i=1 §
Observe that gi(tj) = Eij and T;\.;,L = (0, From Lemma 8.3 we know that

n
(11.3) ((E)) = L E(e)s, (®)

il

is a linear interpolatory optimal error algorithm. Furthermore Sf(t) = @(N(£f) =

g(t)w(t) where g(t) = f(tl,t ,tn;t) is the n-th divided difference of

gr e
f and h gH = 1. This yields




112

(11.4) e(® = ({1, = || of .

’ ) % *
We seek optimal points tl""’tn which minimize e(r) = e('ﬂ,,tl,tz,...,t )

* *
It is well-known that tl,...,tn are uniquely defined by the zeros of the
. 1 . * T i-1
Chebyshev polynomial Tn(;(t+1)), i.e., ci = 2 coslz=—+ —n—-r'.) - 1 for
i = 1.2....,0 and
* * 2

(11.5) e('c,tl,---,tn) ‘—';—n S

Case 2, n > k.

Micchelli, Rivlin and Winograd [76] show there exists a linear optimal

error algorithm «© such that e(on) = r(R,1,T) and
(11.6) (% 1,7) = || q

where q is a perfect spline of degree k having at most n-k knots and q(ti) = 0

k)
for i = 1,2,...,0, H%,—H= 1. Furthermore if t, = 0, t, = 1and

1
A = -
& lsr;ms:-l (ti+1 t:i) they prove
k
A '
(11.7) ——;‘ < r(N1,T) sl‘—l'; X,
4 B

* * *
Furthermore the points Estysenoaty which minimize r(R,1,T) =
(N, I,T; tl,tz,...,tn) are the zeros of the Chebyshev perfect spline of
* *
degree k with n-k knots and r(%,I,T; tl""’tn) is the n-width of 30 in the

sense of Gelfand (Tichomirov [69]) and

*  * * k
(11.8) r('ﬁ,I,T,tl,t ,...,cn) = ck’nh , ¥n >k,

- - 1
s < - -
where 0 < ¢, kon S Sk < + @ for some constants ¢, and ¢, h == | |




11.3

We analyze the complexity of uniform approximation. Let

Y be the

class of all information operators N such that Nf) = [f(tl),f(tz),...,f(tn)]t

2 ]
for any distinct ti and any n. If —~ < e then choose n = k and (11.5)

Ak

assures that the e-complexity of the problem (I,T) in the class ¥ satisfies

(11.9) (e +Dk-1 = comp(¥,1,T,€) % (¢ +2) k-1

where < is the complexity of one function evaluation. If

n = n(e) be the smallest integer such that

€11.10) n > —Sal

Due to (11.8) we get BEL/BG'< n(e) < 5€;/55 + 1. We have

(11.11) (cl+1)n(e)-1 < comp(¥,I,T,e) S (cl+2)n(e) - 1.

Note that (11.11) is tight for ¢, >> 1. The conditions (11.10) and (11.11)

1

state that

1
comp(¥Y,I,T,e) = 0<?f:>-
NE

This shows that asymptotically in e, complexity decreases as the regularity

of the class of problem elements increases.




12,1
12. EVALUATION OF INTEGRALS ]
Let k be a nonnegative integer. For k = 0 let }1 = C{0,1] and for k =2 1

let 31 = {f f(k) is piecewise continuous on f—l,l]}. Define 32 =
l = sz-l,lj and

: 1 (k)
(12.1) Sg& = J f(t)dt and Tf = oy f .

=1 C

Consider the information operator 3 given by

(J=1)

(j-1) t
£ {2 PRREIE 1 PR (t )]

(12.2) N(E) = ff(tl),

for =1 < tl <, € ae S t, < 1 where j =1 for k = 0 and j-1 < k for k = 1.

* -
Note that card(®) = jm Since n = diam A(T,S) = k - Pijq we have to assume

2
-1
sm 2 "
jm k ‘—2-]

For k = 0 it is easy to verify that r(R,s,1) = »/2 no matter how many

function evaluations are known. To assure convergence of the problem (S,T)
we have to assume k 2 1. For k = j this problem was considered by Bojanov [76]
who showed the existence of a linear optimal error algorithm . His analysis
is based on Smolyak's lemma (Smolyak [65], Bakhvalov [71]). Note that Theorem
8.1 and Corollary 8.1 assure the existence of a linear optimal error algo-
rithm defined by (8.12) for any j and k.

For the sake of simplicity we assume here that k = j. Then the error

e(p) = r(N,S,T) is given by Bojanov,

2k 2k: 2k+
(cl'l) +1 (1-tm) +1 1+1 1
(12.3) ¢(R,s,T) = TRET + TRr T
1‘1

where Ek is the minimal error of approximation of the function t




polynomials of lower degree in the space L,. From Akhieser [56, p. 19] we

get
o

(12.4) E (et) /T 1 (1 (k)

2.4 B o + 0 .

k A 2k+1(2k!) 2 Ak
How should the points cl’c'7" .,t:m be chosen so as to minimize the radius
r(«,5,T)? Bojanov shows
. . 0 k

(12.5) min r(N,S,T,tl,...,tm) = hm Ek

&
i

foas -1
where h'_l =:<T-1 +25 2%;1 < Bf; = ﬁ(l + o(m)) and the optimal points are

equal to

* 2 , /(2
(12.6) €, ==~1+ (E (2k+D)/2) " 20

-h 4+ 2@(i-1)h .
m m

* “*
170 tm are equally spaced.

Note that t
Observe that commonly used Gauss quadrature is not an optimal error algo-
rithm since it is based on the zeros of orthogonal polynomials which are not
equally spaced.
We analyze the complexity of evaluation of integrals. Let ¥ be the

class of all information operators of the form (12.2) for any distinct >

any m, and with k = j. Let m = m(e) be the smallest integer such that

k
(12.7) hm Ek <€

For small ¢, m = —1—1&(1 + o(l)). From (12.7) we get bounds on the e-complexity
4e

comp(Y,S,T,e),

k k
(i-1) (i=1)
(12.8) m(e) & (£ ) + km(e)-1 < comp(Y,S,T,e) S m(e) Z‘c(f ) + 2km(e)=-1
i=1 i=1




12.3
where c(f(L-l)\ is the complexity of one evaluation of f(l-l). For small
Ca=1) -
€ and c(f ) = <y I, (12.8) becomes
3 k
(32.9) comp(¥,S,T;e) = Cly s
ael'k i

This shows that asymptotically in e, the e-complexity comp(¥,S,T,e) is a de-
creasing function of the regularity parameter k.

We conclude this section by the following remark. It is well known
that it is impossible to find an e-approximation to the integral of f knowing
only the values of f and/or its derivatives at arbitrary but finite number

of points. The argument is that adding, for instance, the polynomial
m

w(t) = ¢ r1 (t-ti)zJ to a function f, one does not change the information
i=1 -1
on £, R(f) = R(f+w), but the value of integral [(£(t) + w(t))dt can be

-1
arbitrarily different from the integral of f. 1In our setting we rule out

this argument since we consider functions whose kth normalized derivative
is bounded by one. We show that provided k =2 1, then the integration prob-
lem can always be solved to within any € and that at worst the complexity
goes as 1/e.

Compare with the result of Bojanov [74] who shows that for analytic f

and T = I, comp(Y,S,T,e) = O(cl(log %)2).




13. EVALUATION OF A FUNCTION AND BOUNDARY VALUE PROBLEMS

Let 31 =l TN {f: f is continuous on [ 051 Jrand £ € Lm(O,l)} with the

“~

uniform norm i;r|f=max [£(x)]. Let 3& =L (0,1). Define
1sxsl
L

CI3. 1) (SE)(x) = J G(x,t)£(e)de, TE = £
0

where G =2 0, G # 0 is a continuous function on [0,17 x (0,1]. The informa-

tion operator N is given by

: - E
2 ‘_‘t = 4 Silae
(13.2) (1) Lf(to),f(tl), S E(E 1)]

where k- ih, h = 1/(n+1) and card(N) = n+2.
Thus we want to approximate the function (13.1) knowing the value of

the integrand f at some points and the bound H f'H s 1. Define

f(t,) 0 %¢<hfa,
(13.3) f(t) = £ (t) tohf2 S €< B2, L= L2 n,
-h/2 st < 1.
f(trﬂ-l) tn+1 h/ t 1
Thus f is a piecewise constant function. Note that ;(ti) = f(ti) and Tt = 0

~

almost anywhere. Since f does not belong to 30 we cannot use Lemma 8.3.

However we can still show that the linear algorithm

h/2 1
(13.4) @(N(f)) = Sf = £(ty) % G(x,t)dt + f(t ) 1-g/2c(x’t) 4

n ti+h/2

+ [ E(e) ‘f/ G(x,t)dt
; t.-h/2
i=] 3

is an optimal error algorithm. Indeed




13.2
n ti+h 2 ti+1
Sf = o(N(H)) = 2 J G(x,t)(f(t)-f(ti))dt + ) G(x,t)(f(t)-f(ti+1))dt
it 1 54 ti+ﬁ,2

Since f(t) - f(ti) = f(t,ti)(t—ti), with the first divided difference
if(t,ti)i s 1, we get

1
(13.6) || sE=o(R(EN || s || 6 G(x,t)q(t)de|| =|| sqll

where
t-t, €. St = ti+h/2

1 1

(13.7) q(t) =

t, -t t.+h/2 st s ¢, ..
i+l i i+1

Note that q(ti) =0 for i = 0,1,...,n+1 and Tq = +1 almost everywhere. Thus

q € ker R and || Tq|| S 1. From Lemma 5.1 we get

|| SE-o(REN|| 551 d(R, 8, 7) = (R5.7)
which proves optimality of ®. It is easy to verify that
(13.8) e(® =r(@®s,m) = |[sqf=ch

where ¢ = cn(G) and there exist two comstants ¢ = ¢(G) > 0 and ¢ = ¢(G) <+ @
such that ¢ < S < ¢ for all n.
We analyze the complexity of evaluation of (13.1). Let Y be the class
of all information operators of the form (13.2) for some n. Let n = n(e)
ke the smallest integer such that

Cc

-t &
(13.9) s S L

Due to (13.8) we get c(G)/e < n(e) + 1 <c(G)/e + 1. Then the e-complexity

comp(¥,S,T,e) satisfies
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(13.100 (C1+l)(n(e)+2\ - 1 < comp(¥,S,T,e) = (C1+2)(n(€)+23 -1

where c1 is the complexity of one function evaluation. For small

€ and ¢, > 1, (13.10) becomes
©1
(13:11) comp(¥,5,T.e) = =

It is possible to generalize this result and to show that if

" Y 1 1 N
31 = (£ F E,C& (0,1) and f(K)E, LG(O,I)} and Tf = éT t(k) there exists a
linear optimal error algorithm ¢ which uses the information (13.2) with

n 2 k such that
: IR . . %y
(13.12) e(» = r(M,s,T) = 0¢h), comp(¥,S,T,e) = 7
»/€

Furthermore it is possible to show that for any distribution of points ti

such that r(N,s,T) =2 a Be for

in (13.2) there exists a positive constarnt a K

k
all n 2 k. Thus choosing the points equally spaced does not change the
dependence on h.

We note that the solution operator S defined by (13.1) can describe a
boundary value problem. 1Indeed, if G is the Green function of a boundary

value problem then «(x) = (Sf) (x) is the solution of this problem. For

instance if

t(1l-x) 0=t s,

(13.13) G(x,t) ={
x(l-t) ¥ St =1,

then ~ satisfies the boundary value problem

all(x) = _f(x) for x 6 (0!1)
(13.14)

a(0) = a(l) =0 .




4.1

14. EVALUATION OF DERIVATIVES

Let 31 = Ck(-l,l), 32 = Ck-1(~1,1) and 5&= C(-1,1) for an integer

k = 1 with the uniform norm || f||= sup [£(t)|. Let
- 1<e<1

(14.1y SE = £'(0), Tf = i— g (0
and let the information operator N be given by
(14.2) T(f3h) = [£(0),£(h),£(-h),...,E(nh),£(-nh) "

where the parameter h € (0,1/n), card(®) = 2n+1.

Thus, for a given h we want to find an approximation to f'(0) knowing
function evaluations at the points jh for j = 0,+1,...,+n. Note that
round-off error analysis indicates that h should not be too small.

For the sake of simplicity we solve this problem for k = 2n+l. Note

that ker R N.T = {0} © ker S. Let

n
t 2 2.2
(14.3) gj(t) - (:-j:)w?(jh) where w(t) =t J:l(t -i"h%)

for j = 0,+1,...,+n. Note that

3+1 2
)" (n!)’ -
Tatek)ten=jit * 4 " Eleeeodn

(14 .4) 35(0) = 0, g'J(O) -l

Since g, (ih) = 6i and Tg, = 0, Lemma 8.3 assures us that

J j 3

- ¢ - $+1
ANy m § <S80 N (=1 A
(14.5) @@R(£f;h)) [_‘f(Jh)SgJ(t) h o L JErDLme]T (£(jh)-£(-3h))
j=-n j-]_

is a linear interpolatory optimal error algorithm. The algorithm (14.5) is
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known as the nth central difference formula., We seek e(¢). Since

n

£(e) = 2 f(jh\g;(t) = g(t)w(t) where g(t) is the kth normalized divided
j=-n )

difference of f and |g(t)| = 1, then

£1'(0) - o(RE5h)) = g(0)w' (0).
This yields
N o ]
(14.6) e(®) = r(R,8,T) = (n')’h2",

Werschulz [77b] considers the dependence of e(®) on h and says ¢ has
order of accuracy p if e(yp) = O(hp). The equation (14.6) agrees with his
result that every algorithm which uses the information (14.2) has order of
accuracy no greater than 2n.

We analyze the complexity of evaluation of derivatives. To find an

e-approximation to f'(0) for every £ 6.30 we require
¥
(16.7) e(p = (n'.)zh"n <)

With h, e fixed this determines n. Note that h might be chosen as small as

possible consistent with good round-off. If (14.7) holds then
(14.8) (2n+1)(c1+1) - 1< comp(®,s,T,e) s (2n+1)(c1+2) -1

where < is the complexity of one function evaluation.
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15. NONLINEAR EQUATIONS

There exist problems for which we usually do not use fixed information
M. For instance, the solution of a nonlinear equation f(x) = 0 is often
approximated by an iterative algorithmwhich repetitively uses an information
operator ﬂ(f;xi) where X i=1,2,..., is a current approximation to the
sought solution. Information operators of the form ﬂ(f,xi) are studied in
Traub and Wozniakowski [77c]. Here we want to show that it is also possible
to deal with nonlinear equations for a fixed information operator. We shall
show that some known iterations are "asymptotically' optimal error algorithms.
Since this problem is nonlinear we cannot use the results of Sections &4
through 9. Our analysis will be based mostly on Section 2.

Let

(15.1) £f: DE B, - B

1 2

where D = {x: || x|| < 2R} and B B, are Banach spaces over the real or com-

1’
pléx fields of dimension m, m = dim(Bl) = dim(Bz), 1 Sm s+ ® Let 31 be

the class of all operators f which are k-~times differentiable in the Frechet

sense on D, k 2 2, Define

(15.2) Iy = JA4,,4) = if: £ & 3, and there exists o = a(f)|| «f| < R, such
that £(@) = 0 and [|f' (" 82 [[< A, and
-1 £®
|| £' () ; ik-_—'@-(lll < A for all x€ D}

for constants A2 and Ak which satisfy the condition

(15.3) ZkAk(3R)k'1 + 20,R < 1.
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ro

The solution of nonlinear equations in 50 is described by

1
(15:.4) S¢fy = £ (0), X = B .

We first show that S is well-defined. It suffices to prove that

£zl = 0 for H xH < R has a unique solution z = f-l(O), tor £ 6,30. Let

¥ ol ! ' e
(13.5) R Ge 3k = £ (v + ey ey (}:;}T—-dt
0 .

for x,y €D and j < k. Then
(15.6) f£(x) = f(a) + £'(a) (x-@) + Rz(x,a;f)
and f(x) = 0 is equivalent to the equation
X = ~£' () Ry (e, 3 6,
From (15.2) and (15.3) we get for || x|| s R,

| x=all < a, |l x-alf < a Rl x-all <3| x-nf

<

which implies x = . Thus S is well-defined by (15.4) and ~ = S(f) satisfies
the nonlinear equation f(a) = 0.

Define the information operator

g (k=1)

(15.7)  R(E) = [y(£), £ (E)),..., "

where y = y(f) is an approximation to the solution o = S(f), || y|| <R.
We want to find d(qN,8), the diameter of information M for the problem

S. See (2.9).
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Lemma 15.1

A

1-A2R

| y(6)-so |[9.

(15.8) dt,s) s

3
sup
f630
Proof

& 2 - - =) = =03 e

Note that R(f) = N(f) implies f (y) = £ (y) for j = 0,1,...,k-1 and

£, f G,Eb. Then

£(x)-f(x) = Rk(x,y,f-§>.

Since E(x) = 0 is equivalent to f(x) = Rk(x,y,f-f) and f satisfies (15.6),

we get
df ‘1# s
(15.9) x = H(x) = o + f'(a) (R (x,y,f-f) - Rz(x,o{,f)].

We show that H is a contraction on J = {x: !ix-a“ s %I}y-y“ }. Indeed,
3.k 1
Faco-all < 28 =yl + a, | x-alf < 28, "Il y-olf + 74, | y-alf <

| ‘ k-
5111 y-all (6A, (3R) o A,R) 551” y-a|| due to (15.2) and (15.3) Furthermore

: : -1 ao k=1
|| H' (%) || s 2ka, | x-y“k + 24, || x-of| = 2k, (2R) + 24, R <1

due to (15.3). Thus the equation (15.9) has a unique solution 7,
[ 1 w = o :
Iall < 31l y-all = R. Set x = & in (15.9). Then || &afl = 2a, || &yl + A2]E-a|[2

which yields
3 k
A Gl y==lb
1 - AZR

|| &a =

This proves (15.8) and completes the proof. ]

We want to prove that (15.8) is, in general, sharp with respect to ]b(f)-S(f)|r.

Lemma 15.2

1f y(f) approaches o = S(f) then
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(15.10) diam(%,8) = 24, sup Ul y®-s) If‘(l + o(]| y(B)-s() |NI. (]
f€30
Proof

The equation (15.9) for x = & yields
(15.11) || @&af =24 || y(f)—a“k + 4| a~a1|2.

Since || a2l = O([iy(f)—a]r), (15.11) can be rewritten as || &-qaf| S

2AkI'Y(f)‘WIF(l + 0(1)). Since this bound is sharp we've proven (15.10). B
Lemma 10.2 states that the diameter diam(R,S) is roughly equal to

2Ak ;2? I{y(f)-s(f)lﬁ where k is the first omitted derivative in the informa-

tion (15.7).

We establish asymptotically optimal error algorithms for the problem S.

Let
= ] k-1 k-1
(15.12) f(x) = £@) + ' x-y) + ... + (_k-lT f( )(y) (x-y) .
Note that N(7) = N(f). From (3.10) in Traub and Wozniakowski [77b] we know
that
k(k-1) k-2
= A, + ——=A (2| y-«l|)
~1 -1 F" y NE df -
| F @ < 5w,

5 k-1
1 - A, y-alrka, Gl y-alb
Thus f € 30(Xz(y),0) where ;z(y) = A2 + O(H y-q” ). Define the algorithm
(15.13)  o(M£)) = s(b),

{.e., 9(A(f)) is a unique solution of the nonlinear equation g(x) = 0. The
) rithm (15.13) is known as the interpolatory iteration In and was con-

[raub and Wozniakowski [760, 77a, 77b]. Note that for n = 2 we
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get one step of Newton iteration since E(x) = f(y) + £'(y) (x-y) and

~

QEND) = &= £(y) - £' (N EY).

Lemma 15.3

(i) For any y(f) the error of ¢ is bounded by

(15.14) e(® s7r3R

sup Gl y(0-s(8 [k
2 €S

0
(ii) 1I1f y(f) approaches o = S(f) then the algorithm ¢ is asymptotically

optimal, i.e.,

(15.15) e(®) =1(R,5) =4 sup | y(£)-s6) Hk. a
£€3,

To prove (15.14) we repeat the proof of Lemma 10.1. Note that Rk(x,y,f-g)
in (15.9) for f defined by (15.12) has the bound || R (x,y,£-5) || < Akllx-ynk
which yields (15.14). The same argument enables us to conclude that
e(p) =A ?up | y(f)-S(f)Ir' for y(f) approaching @. Thus, from Lemma 15.2
we get

N

e(p) 3-% d(R,8) = r(R,s)

which proves (15.15). ]
The algorithm (15.13) is known to have maximal order of convergence
among all iterations using the information of (15.7); see Traub and Wozniakowski
{76a]. Lemma 15.3 states that this algorithm has asymptotically optimal error
in the class 30.
Complexity of the algorithm (15.13) and its dependence on k were con-

sidered in detail by Traub and Wozniakowski [77b].
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CHAPTER 1V

CONCLUDING REMARKS

16. COMMENTS AND EXTENSIONS

This is the first of a series of papers in which we develop an informa-
tion based theory of optimal error algorithms and of problem complexity.
We conclude this paper by a partial list of interesting problems and exten-

sions which will be studied in the future.

1. 1In this paper we restrict ourselves to general information
operators N = N(f) and illustrate our concepts and results by
simple examples. Future papers will be devoted to complete analy-
sis of an application area in this general framework. We will
include the effect of computing N(f) approximately, problem con-

dition, algorithm stability, and the cost of arithmetic precision.

2. For some problems information operators have additional structure.
For instance, "iterative'" information operators N = ﬂ(f,xi,xi_l,... i

depend on current approximations to the solution and they are used

for i = m,m+1l,... . The parameter m measures the size of "memory"

used in the process. For m = 0 we have information operators

"without memory'", for m 2 1 "with memory". See Traub and Wozniakowski [7741.

3. 1In Chapter 2 we deal with linear information mostly of the form
R(E) = [L1<f),Lz(f),...,Ln(ﬂ]c defined by n independently given
linear functionals LI’L ""’Ln' A natural generalization is an

"adaptive'" linear information operator of the form
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— . . t
m(f) i [Ll(f) ’Lz(f’Ll(f)) g0 ’Ln(f’Ll(f) ycee ’Ln-l(f))]

where Li depends linearly on its first argument. This form
enables us to use the previously computed functionals to deter-
mine the next functional. Such adaptive information is widely

used in practice in a number of application areas.

In Chapter 2 we deal with linear problems defined by two linear
operators S and T. The restriction operator T defines the domain
of problem elements. 1In several applications we take T = %T Dk,
the kth normalized derivative operator, and we show that complexity

decreases as the regularity parameter k increases. We believe this

to be a general phenomenon.

For some problems the domain SO is defined by a two sided inequality
on T, i.e., 30 = (£ € 31: 0<c s | f]| s 1} for a constant c.
Sometimes 30 is defined by more than one linear operator, e.g.,

30 = {f 6,31: ¢y s H Tif” <1, for i = 1,2,...,m} for nonnegative

constants ¢ »C

12€90 09

All basic results of Chapter 2 are for a linear operator S. Much
of the linear theory can be generalized to nonlinear operators S.
For instance, assume that there exist two linear operators S, and

1

S2 such that

” Sl(fl-fz) “ s ” S(fl)—S(fz) ” < “ Sz(fl-fz) ”

for all f1 and f2 from the domain of S. Then
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d(®s)) =d@,s) =d(@®,s,)

and one can apply the linear theory to S1 and S2 to derive lower

and upper bounds on the diameter d(I,S) and complexity of the

problem S.
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GLOSSARY

We summarize below basic concepts used throughout the paper. We list
a symbol, its meaning, and the section reference where this symbol appears

for the first time.

Symbol Meaning fection Reference
S the solution operator, sometimes called the 2, (2.1)
problem, S: 30 - 32 and 30 c 31
30 the domain of S 2, (2.1)
31 linear space, 30 c 31 2
32 the range of S 2
€ | error parameter, € > 0 2
x = x(f) e-approximation, ]|x-a]l< e, 2, (2.2)
f the problem element, f 6-30 2
o | the solution element o = S(f) 2
N | the information operator, J: Dy = 33 2.5 1(21.3)
33 the range of M 2y (2+3)

d(R,8) | the diameter of information R for the problem S| 2, (2.9)

r(R,s) the radius of information M for the problem S 2, (2.10)
¢ | algorithm, ¢: m(go) - 32 2

e (o) the error of algorithm o 2y (2:13)
(!, s) the class of all algorithms using the informa- 2

tion N for the problem S

wI interpolatory algorithm 2y (2.16)

e(:1,8) the optimal error 2, (2.18)

woe optimal error algorithm 2, (2.19)

() central algorithm 2y [24£3)




G.2
Symbol Meaning gec tion Reference
B the set of primitives 3
comp (N(£)) the information complexity of computing T(£) 3

where N _is a permissible information operator

comp (@(y)) the combinatory complexity of computing y 3
where ¢ is a permissible algorithm

3(e) the class of all permissible algorithms for 3
which e(p) < €

r(R,s) = e the problem S with information M is e-non- 3
computable
r(R,s) < e the problem S with permissible N and 3
d(e) # p is e-computable with respect to P
comp(¢) | the complexity of an algorithm ¢ 3y (3.1)
comp(?N,S,¢e) | the e-complexits of the information N for the 3, (3.2)
problem S
) optimal complex’™ asigorithm 3, (3.3)
comp (M) | the information complexity 35 (3:4)
Y| a class of permissible information operators 3, (3.8)

comp(¥,S,€) | the e-complexity of the problem S in the class 3, (3.9)

¥
9?1 c L‘!z ker _mz C ker le 4, def. 4.1
Ull‘;i mz ker ml = ker ‘RZ 4, def. 4.1
algebraic complement of A 4, (4.2)
codim A | codimension of A 4, (4.2)
card(M | the cardinality of the information T 4, (4.5)
T | the restriction operator, T: 31 - 34 Sy (5D
3“ the range of T 5, (5.1)
d(N,s,T) | the diameter of information N for the problem 5
(s,T)
index(S,T) | the index of the problem (S,T) 55 def. 5.l
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Symbol Meaning Section Reference
A(S,T) | algebraic complement of ker T N ker S in the 5, (5.3)
space ker T
* * g *
§1""’§n* basis of A(T,S), n = index(S,T) 5, (5.3)
3 *
N | information operator such that card(M ) = 6, (6.1)
index(S,T) and ker " N ker T C ker S
Y | the clgss of all information operators M such 6
2! that W< N and card(M <n
T-l the inverse operator of T 6, (6.3)
d(n,S,T) the n-th minimal diameter of information 6, (6.6)
m:i n-th optimal information 6, (6.7)
K | the linear operator K = ST.1 6, (6.9)
b (m,K) the m-th minimal norm of the linear operator K | 6, (6.9)
Bm m-th minimal subspace of the linear operator K | 6, (6.11)
d(s,T) the diameter of problem error 6, def. 6.2
d(S,T) = + @ | the problem (S,T) is strongly non-computable 6, def. 6.2
d(s,T) = 2¢ the problem (S,T) is e-non-computable 6, def. 6.2
d(s,T) = 0 | the problem is convergent 6, def. 6.2
m(¥,S,T,e) the é-cardinality number for the problem (S,T) 9, (9.5
in the class Y
YU the class of all linear information operators 9

M such that card(M) < + «
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20. abstract (continued)

.which enjoy essentially optimal complexity with respect to all possible al-
gorithms., The existence of "strongly non-computable' problzag is demonstrated.
In contrast with the gap theorem of recursively computable functions we show

, that "every monotonic" real function is the complexity of some problem.
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