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AB STRAC T

Th i s  is Lhc f ir 3 t  of a s e r i e s  of p ;I?ors co n st r u c t i r ~4 an i n f o rm a t i o n

~)aseO ~~n~~ra~ t h e o r y  ~)t  )p tL ma l e r ro r s  and ana ly t i c  compu t a t i o n al  eomp 1t~x i t v .

.•\~:‘on : the  a p n l i c a t i o n s  are such t r a d i t i o n al l y  d ive rse  areas as a p p r o x i m a t ion ,

b ou n d a ry -  v a l u e  p rub  lem s , q u a d r a t u r e , and n o nl in e a r  e q u a t i o n s  in a f i~ i~ e or

i n f i n i te  d i m e n s i ~ n a l  sp ace .

T r a d i t i > r a l i v  algorithm s are often derived by ad hoc criteria . The

in f o r m a t i o n  based t h o or v  r a t i o n a l i z e s  the s y n t h e s i s  of al~~o r it h m s  by showin~

how to c o n s t r u c t  al gor i thms w h i c h  m i n i m i z e  or near l y min i~~i z e  the e r ror .

For c e r t a in  c l a . s t s  of oroblems i t  shuvS how to c o n s t r u c t  a l g o r i t h m s  ( l i n e a r

o p t t :~a t  e r ro r  a i g or i t h r ~s w h i c h  en joy  es~ eu L i d l 1y  ~p L i~&a1 L o~~~~~i t : :  v w i th

resoec t  to a l l  p o s s i b l e  ai~~o r it h m s .

The existence of “strongl y non-computable ” problems is demonstrated .

In contrast with the gap theorem of recurs ively computable functions we show

that “every racootonic ” real function is the complexity of some priblem .
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~~ ic c~ t ; c! :pl’~;

A l t h o u~ h L i i . ; nay se.n a p .ir:id :~, a l l  exi t scienr~-
is d o m i  n l i t  .! by  t he idea of  app ro :< j n i  t ion

B . Russ ’~l1

1_ l TFC ,~U C 1

Th is  is the  f i r s t  o f  ii s e ri e s  of p ;w t  rs c o r i ot  r u t t i n o  i i i  i n t o r r n o t ion

b ased  cent- ra~ t h or ’. of  op t  ima l er r or  a I ~o r i  t h ms  and . in a lv t  ic c o m n i i t ; i : I n a l

c cm ~~le : : i t  . A m o n a  t h e  a p p i  i cat  ions  ar c  such t r : i d i t i on a l l v  d i ver s e  i r o n s  as

a p p r o x i m a t i o n , b o u n d a r v — : nl ue  p r o b l e m s , q i o d r a t u r e  , and n o n l i n e a r  •~-qoa t  ions

in !~~n i t c  or i~~f 1 n 1t e  d i m ~’n s i o n a 1  sp a - c .

In t h i s  p a ;e r  we deal  w i t h  ‘‘ go n~~rn l  i nf o r m . i t  ion ’’ . A l  t h o u g h gener a

I n t ; r m i t  i o n  can  be :sod to  s o l v e  non !  ine :;r  eq i at  i on s  (st e sect  ion 15)

3 t~~r a t  i- .-e n f o r m i t  Lii ” is t v p  I c a l  lv us ed  f o r  soon  p r ob l  e~ns - A t h e o r y  of

o p t i m a l e r r o r  :~ 1 i z o r i t n m s  and o p t i m a l o r d e r  t o r  i t e r a t i v e  i n f o r m a t i o n  is

d e v e l o p e d  in T r au b  and To~in i akowski  [7  Pc

The g en L r a l  t h t o r ’ ;  show -~ us how to c o n s t r u c t  i I . g o r i t l i r ~s wh i ch m i n i m i z e

or n e : ir l v  n i i n i n i i . ~e t i l e  e r r o r .  For c e r t a i n  c l a sse s  of  p r o b l e m s  we sho w how

to c n n - t  r u c t  . t l . n r i t h m s  (I  i n e a r  op t  inoil e r r o r  .1 1  gor  i t h m s )  w h i c h  e nj o y  essen-

t i a l l y  op t  inal  c omp l e x i t y  w i t h  r e s p e c t  to a l l  p o s s i b le  a l g o r i t h m s . The f a c t

that opt ima l a l o or  I t hro s depend  o n ly  on the  “ i n f o r m a t i o n ” used p e r m i t s  a

great simp l i i i c a t ~ on.

T r a d i t i o n i i l v , a l g o r i t h m s  a re  d e r i v e d  by ad hoc criteria. The informa—

t ion bas ed  t h ~ o rv  r a t  i o i i l  zos the synthcs is of al g o r i t h m s . For i l l u s t r a —

i i i  we c o n s i d e r  a r e l a t i ve l y simp le p r o b l e m — u n i v a r i a t e  n u m e r i c a l  i n t e g r a t i o n .

t i - s  q u a d r a t u r e  f o r m u la s  are wide l y used .  The f o r m u l a  is derived b

t o ,  r a t h e r  i r b i t r . t r v  c r i t e r i o n  that it be e x a c t  f o r  a l l  p o l y n o m i a l s  of as
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high a degree as p o s s i b l e .  There is no reason to think this opt imi zes  e i t h e r

error or c o m p l e x i t y .  The information based theory y i e l d s  both optima l error

al gorithms and the fac t that these algorithm s are essential l y opt ima l with

respect to complexity among all possi ble algorithms . It turns out that

the optima l error algorithms use equi -spaced abscissas and are therefore

not Gaussian formulas . Furthermore their comp lexity varies inversel y as

the “regularity ” of the c lass of integrands. It has been observed tha t

the numerical integration problem cannot be solved to within pre -assigned

error. We show (Section 12) that if we mildl y restrict the class of

integrarids we can always solve the integra tion probl em to within pre-

assigned error .

Thti au~~i yb i ~ ~~~~~~~ io cnaracterize and construct optima l error algo-

rithms for a particular problem area can be diffic ult. Note , however , th at

this may be viewed as pre-condition ing since it need be done only once.

Among the major questions we pose and at least partiall y answer are :

1. What is a lower bound on the error of any algorithm for solving

a problem using gaven information? See Section 2.

2. In general is there an algorithm wh ich gets arbitraril y close

to this lower bound? See Section 2.

3. When is the informat ion strong enough to solve a problem a rb i t r a r i l y

closel y? See Sec t ion 3.

4. What is the most relevant information for solving a problem?

See Section 6.

5. 11 we are willing to pay enough can we always solve a problem

approx imately? See Sections 7 and 9.
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b .  For l inear probl em ; is there always a l inear al gorithm whose

error is within a constan t factor of having optima l error?

See Section 7.

7. If we assume a Hu bert space setting , what charac terizes those

problems wh ich can be solved arbitrarily cl osel y? See Sec tion 7.

8. For certain application areas how does optima l error and com-

p lex ity depend on the “re~ u 1ar ity” of the class of “prob lem

elements”? See Sections 11 , 12 and 13.

Anal ytic comp lexity is similar to abstract and concrete complexity in

focusing on lower bounds of prob lem comp lexity. Analytic complexity obtains

its characteristic flavor because:

1. Problems cannot be exactly solved with finite comp lexity.

2. In concrete complexity, problem elements are assumed given and

information operators do not exp licitl y occur in the theory

because they are identity operators. See Section 3 for examn ies.

In ana lytic complexity only cer ta in “information ” about the

problem element is obta i n able .

We sunanarizc some of our c omp lexity results below .

1.  Considerat ion of the pre-image set of an “inform ation operator ”

gives  us a general adversary pr inc ipa l  for deriving lower bounds.

2. We demonstrate the existence of “strongly non-computable ” problems .

See Section 6.
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3. We show the existence of arbitrarily hard problems . Furthermore

“every monotonic” real function is the complexity of some problem .

See Section 9. This may be contrasted with the gap theorem of

recursively computable functions (Borodin [72]).

4. For certain classes of problems we can obtain lower bounds on the

“inherent problem complexity” for all possible algorithms . See

Sections 7 and 10.

5. For “linear optimal error algorithms” the difference betwec-i

upper and lower bounds is very small. See, for examp le, Sections

9 , 10 , 11.

6. We perform worst case analysis over all problem elements in a

class .  In cont ras t  with other recent comp lexity results , we

believe that the wors t case results hold for “almost all” prob-

lem elements.

Although we feel that progress has been made towards a general theory,

much remains to be done. See Section 16 for a partial list of extensions .

Application of the general theory to various problems of interest will

require substantial work for each problem .

We sunmiarize major concepts and results of this paper.

Section 2. We define d(~l,S), the diameter of information ~ for the problem

S, and r(~B,S), the radius of information ‘II for the problem S and show

(Theorem 2.1) that r(~R,S) provides a best possible lower bound on the error

of any algor ithm using the information ~R. We define interpolatory algorithm

and show (Theorems 2.2 , 2.3) that any interpolatory algorithm has an error

which differs by at most a factor of two from a lower bound on the error.
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We also show that there is aiwuvo an algorithm which is arbitraril y C i o s e

to the lower bound. We observe (Corollary 2.2) that a problem S using

inf ormation ‘
~~ can be solved to within an error whose norm is a t  most  e

i f f  r (~ l , S) < ~~~.

Section 3. We introduce our model of computatjc)n and the major complexity

concepts. In particular , we define primitive operations , permissible

t h for m at i o n  ope ra to r s  and a lgor i thms . We d e f i n e  the e-comp lex i ty  of a

prob lem in a class of p e rm i s s i b l e  i n f o r m a t i o n  operators  as the c or .mlex ity

of solving problem S to within C if the best algorithm and the best informa-

tion from are used.

Section .~~~~ In Sections 4-9 we consider linear problems and linear informa-

tion . The cardinalitv (eard(~ )) of a linear information operator is defined

and we show (Lemma 4.2) that information operators with finite cardinality

equal to n can be represented by n linearl y independent linear functionals .

Section 5. We consider problems specified by a linear solution operator S

and a linear restriction operator T. We show that the dependenc e of d(~t,S,T)

on 21 is on ly through the kernel of ~l. We def ine index (S,T) and show

(Th eorem 5.2) that if card (~~ < index (S,T) the solution cannot be ap-

prox imated to within e even for arbitraril y large c. In particular , if

index (S ,T) = 
~~~, the problem cannot be solved by any information operator

w ith finite cardinality .

Section 6. For fixed cardinality what is the most relevant information for

solving a prob lem? Formall y ,  the n- tb min ima l diameter of information,

d ( n,S,T), is the diameter if the best i n fo rmat ion  of c a r d i n al i t y  at most n

is used. Theorem 6.1 shows d (n ,S ,T) is comp le tely de term ined by the

_ _ _  J
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opera tor  ST
1
. A problem is s -non -comput able  if  d ( S ,T ’) u r n  d(n ,S ,T) 2 2€

ard is convergent if d (S ,T) 0. We show that d(S,T) can be any number.

Section 7. If the image of the r e s t r i c t i o n  opera tor  is a H i l b e rt  space then

the problem (S.T) is convergent i ff  ST 1 
is a compact operator.  This imp lies

(Coro lLary  7.1) the existence of l inear problems which cannot be solved to

within arbitrary € with any finite number of linear functionals. In a

Hi] .bert  space the problem of most relevant information of cardinality n is

comp letely solved (Theorem 7 .2 ) .

Sect ion 8. To minimize comb inatorial  comp lex i ty  i t  is des i rable  to use

l inear al gori thms . We construct  (Theorem 8.1) l inear i n t e rpo l a to ry  a lgo r i t hms

whose error is wi th in  a numerical  fac tor of op t ima l i ty. If in p a r t i c u l a r

the image of the restriction operator is a Hi lbert space then we construct

(Corollary 8.1) a linear interpolatory optimal error algorithm .

Section 9. We specify our model of computation for~the linear case. We

show (Theorem 9.2) there exist linear problems with essentially arbitrary

complex i t y .  This implies (Corollary 9.1) there exis t  a r b i t r a r i l y  hard

l inear problems and that  there are no “gaps ” in the complex i ty  f u n c t i o n .

Sec t ions 10-15. We appl y the general theory to a variety of problems . See

the Table of Contents f o r  a l i s t .  We conf ine  ourselves here to re la t ivel y

s imp le problems in order to concentrate on ideas and avo id overwhelming the

reader with technical details.

Section 16. We list some extensions to the theory which will be reported

e lsewhere.

Glossary . For the reader ’s convenience a glossary of important definitions

and symbols is provided .
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• D I A ~~~Ti.R A~~ RA~
) U S  ;1 ( ; L~;LE ~\

Let 
~ 

~~o a subs~ ’t u l  a 1~~n c i r s t a c o  ~~~ the rL ; l or c n 1 e : ~: t i 0 l 1 .

Co n;; f J~~r a l~ o•ar or nonli o a r  o p e r a tor  S such that

( 2 . 1 )  S: ~~

~~ is a I ip .ear  nor ~:od space  ove r t h e  r e a l  or connie: . :  f L u I d .  l e t  ~

be a ~ i’;u n :v: -:5 ’ r .  ‘or nrob  Ion is to f i n d  an € — r o x i n o t i n :~: x (f)

2 ’ t o  S ( f ) , i c .

( 2 . 2 )  ~x—~~~ < €

i t  a~ f 
~~ ~‘c shall call S the sol’it ion ‘o rat_~r , f a Dr~ h r ~~~~~~ oo~~ 

—

a 5~ o u L L : n  e ie ; ’;cn t .  ~‘e sh a l l  o f t e n  r e f e t  to S and its  du m t f n  a~

the or U• L ~~

To f ind an ~~orox m a t  ion  we ntis t ~‘one th  ing  aboot  th e  u :n ro t o r  S.

L e t

( 2 . 3 )  2~: ~

be an 1ni r a J t i ) n o n e r a~~~r (r iot  n e c€  s o a r i lv  l i nu a r )  .~‘h er ’  ~~ • C and

is  a iven ~~ ace  . f~( f  is c a ll e d  tb  :nf:rmation of i . F u r  mo st  pr~C —

i oo; t h e  n for:nzi t f un  one r o t o r  .i is not  one — t o —  on~ and 2~( 1) Joe not  wi I ~oc l v

;Ief the tb :  s o lu t i o n  e I . o~~ I ; t  ‘~ S (L) . TIL l:; thsre may exist :Ld5v Jif Lu r ent

or •b em c l o r n e nt :  f C with the ;ane information

t t  I ~~~~~~~~~~~ Let

(2.4) V (f) = C f:  ~ ( f )  = ~l ( f )  and f 
~~

. %~



•, •
~

he the or e -  m aCe :;et f i 21(f), V ( f  ‘1 = 21 l
(~: . N o t e  th a t  1(f is not

cnn ty  s ince  f 
~ 

\j(f) for every f ~ ~~~~~~ l:n rtht rnor•~ let

( 2 . 5~ C ( f )  ~S ( f  f C V ( f ’  1

be t he  set  of a l l  s o l u t i n u  S ( f ~~of p r o b i e m  e l e m e n t s  f wh ich share the same

m n f o r m a t i o n  as f , U ( f ~ S(21 1
(y ~ ) .  Then knowing n~ y W t ( f  it  is imp s sib l e  to

r e co gn i z e  wh ich s o l u t ion  e l emen t  ~ = S ( f i  or ~ S ( f )  is be ing  a c t u a l l y

anproxinated for all ? ~ V ( f ~ . Th i s  adver !arv or i n c ip a l  can be schematized as

• ) l i O w s :
_________________ 

S(~j0
)

7 ( f )  21 ’(y)  1 7 ( f )  = S(21 1( v ) ~
S_ _ _

=

Fi gure 1

As we shall see below , the diameter d ( ~l , S) and the rad ius  r (~t , S) of

the  set I J ( f )  p lay  e s sen t i a l  ro les . These concepts are d e f i n e d  as f o l l o w s .

R e c a l l  t ha t  f i r  a se t  A , A ~

(2.6) d i a r n (A  sup [J a , — a 9
a
1
,a
2
€A

is ca l l ed  the d i amer e r  of A and
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( . ~~~
) rad (.\)  = in f  sup  a-a

1 H
a1~~, a~~.A

j~~ cal  l e d  the radius of A. R o ; ’g i i l v  sn e a k i n g ,  ra d ( A ~ is the m i n i m a l radius

of a “ ha l  I” ~hicI; con t a i n s  A .  I f  there  e xi s t s  c , c C ~~~~~ , such that

( 2 . A )  : O l p  c—a
1 1 

rad (A)
a~~ A

then  c is a c en t er  of  A. Note  tha t  c can be an e l emen t  o u t s i d e  A and need

not  be un i q u e .

b c i i n it i o r i  2 . 1

We shal l  say d(21,S) is the diameter of information 21 for the nr~ blon S

i f f

( 2 . 9 )  d ( 2 1, S) sup d i a m ( U ( f ) ) 
~~
= sup sup S(f)-S(f)

“ f~~.’( f )

We shall say r (21,S) is the radius of infornatJo~i 21 for the problem S iff

(2.10) r(21,S) = sup r a d ( U ( f ) )  sup inf su~ a-S(f) 
~~~~~~

.

fE.~~~ \.. fG3
0 

a€~~~ EGV(f)

It  is obvious  tha t

(2.11) d(21,S) � 2r(21 , S)

Fur the rmore  if 12(f )  has a center c(f) for every f E  ari d 12(f) is svrmaetr ic

with respect to c(f) , i.e. u + c ( f )  C U ( f )  imp l i e s  -u + c ( f )  E U ( f )  , then

(2.12) d(~l,S) = 2 r (~l,S).

For many 21 and S it is much easier to compute the diameter d(21,S) than the

rad ius  r (~l,S)
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We shall show that the rad ius r(21,S) is a lower bound on the error of

any a l g o r i th m  for  soLv ing  ~i = S (f )  . By an al gor i thm we mean an operator

~ : 2l(~~~) s.,. (See also the definition of “oermiss ible  alg rithrn” in Sec-

tion 3. We are interested in algsvrithms which approximate ‘~i S(f . Let

~(~i~,S) be th e class of a ll such algorithms . Since ~(~t(f)) - (1)) for

a l l  f C 1(1 , ; has to anprox irnate any element of the set 12(f)

This is shown in Figure 2.

_________________ 

S(30
)

7(f) = ~ ‘(y) ( f )  S(~~~~(y) )

y 21 ( f )

Figure 2

Def in i t i on  2 . 2

We s h a l l  say e( .~) is the error of al g o r i t h m  i f f

(2 .13)  e(~~) sup cp(~) L ( f ) ) — S ( f )  . Iie~0
Note that (2.13~ can be rewritten as

(2.14) e(~~) sup sup tp (cJl(f))-S(?’) = sup sup ~ (21(f~ )-~~ç~
f€.3

0 
f€ V ( f )  f€3,~ ~~~U ( f )
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2 . 5

It  is into it ive 1’; ob v i o u s  t h a t  the rail ins r (~1, S is a 1 “.~‘er bound on t i c

error of any .~i lg o r i t hn .  A for: ::a l p roof  is pr . v i d e d  b~

Theorem 2 . 1

For any a l g o r i t h m  ‘;, ; E ~~21, S

(2.15) e(:;) � r ( 2 1, S) .  I

00 f

Le t f C. 
~~~~ 

Then due to (2.7) and (2.1’.)  We g et

rad ( U ( f )) � sup ~ç(2~(ffl-~~~ � e(~;).

~E~J ( f )

Tin s r(2~,S) sup rad (U(IU ) � e (cp) which provt s ( 2 . 1 5 ) . I
f~~ o

This ge n e r a l i z e s  Theorem 4 in l d i c c h el l i  and R i v l i n  ~~ 7 ]  where  S and

are assumed to be l inear.

We d e f i n e  “ i n ter p o l at o r v  a l gor i th n s ” and show they are within a factur

of 2 of the rad ius  r (2i , S ) .

D e f i n j t i o ~ 2 . 3

An a l go r i t hm ~~~~
, ~~ E ~(~I ,S), is an interpolatorv al gorithm iff

(2.16) p
1
(~i(f ) )  = S ( f )

for some fE, V(f). I

This meant that knowing the information %i (f) one finds ~ problem element

f (which always exists) which has the same information as f , f ~ V ( f )  , and
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= S(f) is proposed as an approx imation to ~ S(f )  . In p rac t ice  f is chosen

to be “s imp le r ” than I .  Note that ~D
t(~l(f)) C U ( f ) .  In some cases , an assumotion

how to choose a uni que f is added . Examp les of in te rpola tory  a l g o r i t h m s

are known for such pr oblems as nonl inear  eq uations, approximation and

quadra tu re .

Theorem 2.2

For any interpolatory algorithm C

( 2 . 17 )  e(~
1) � d(~t ,S) � 2 r ( i~,S) .

Pr oof

• Take any f € Then

1 ~~(~~ f))-5(f) S(f)-S (f) � d(~~,S)

ince f E  V ( f ) . Taking the supremum wi th  respect  to f we get ( 2 . 1 7 ) . I

We seek “optima l error al gori thms” which  are de f ined  as f o l l o w s .

Definition 2.4

We sha l l  say e(21,S) is the optima l error if f

( 2 .18 )  e(~~,S) inf e (r ~) .

We shall  say ~oe ~oe 
€ 1(%S), is an optimal error algorithm iff

(2.19) e (,D
oe

) = e(~~,S) .  I

Comb ining Theorems 2 . 1  and 2 . 2  we see tha t  any in terpolatory a l g o r i t h m  is

nearly an optimal error algorithm .
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C or a l  l ar v  2 . I

For any i n t e r n o l a t o r y  algorithm tt
1

, .;1 E ~~~~~ v it h  the convention = 1,

(2.20~ I � (~~ s) � 2 .  I

We now prove t ha t  the optimal error e (1,S) is equal to  the r a d iu s  r ( 2 1, S)

Theorem 2.3

(2.21 ) ei 21,S ’L = r(21,S) .

Proof

Let I) be an arbitrary number. Define an algorithm -;. as follows .

Let

(2.22~ r.(21(f)) =

where c~ ( f — ~~II � rad(U(f)) ± ~ for  a l l  ~ E 1 2( f ) . Thus c.(f) is almost a

center of lUf). Then

e (21,S) � e(t-~) = sun S (f)—tt (21(f))
f(~ 

r

= sup sup -c � sup rad 2 ( f )  ) +
• fE . T~)

= r (~l ,S) + ~~.

S ince ~ is  a r bit r a r y , t (21, S) � r ( 2 1 ,S) .  ~1e t o  Theorem 2 . 1  we know tha t

e( 2 1, S )  r ( 2 1, S) which  proves ( 2 . 2 2 ) .  I

See Micchelli an d R iv li n [7 1 1 where ~‘ ~.m ilar r e s u l t  is established for

21 and S linear. Theorem 2.3 motivates using a center c (f) , if it exis ts,
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as an approx imation to ~ = S(f) . Suppose that 13( f )  has a c e n t e r  for  any

I E

Pe finition 2 5

An a lg o r i th m  • C . C
E ~(21,S~ is a c e n t r a l  al g o r i t hm  iff

( 2 . 2 P  ~~~(i( f ) ’  = c ( f )

where c ( f ~ is a cen t e r  of  U ( f ~~. I

Theorem 2.A

Any central algorithm is an optimal error algorithm , i.e.,

(2.2~.) e(~~
) r(21,S) .  i

Pr oof

Note that

e(’.~) sup S(f)_~r
c
(~t(f)) sup sup ~—c(f)

fE~~~ f€ ~~ E .U (f )

sup rad (12(f)) r(’Jl,S) .  I
fe~~

As we sha l l  see in Section 8 an interpolatory al gorithm may turn out

to be an optima l error a lgor i thm .

R e c a l l  we wish  to f i nd  an e-approx~ mation to ~ S( f )  for  a l l  f E

i . e . ,  to f i nd  x ( f )  such tha t  j x ( f ) _
~ I I< C .  Due to Theorem 2.3 we get

C o ro l l a r y  2 . 2

It is poss ib le  to f ind an £-approximation to ry = S(f) for all f € il l
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(2.25) r(2i ,S) c. I

We wish to stress that an information operator 21 has to be d e f i n e d  in

such a way tha t  21( 1) is “computable” for  every I € 
~~~ 

This rules out  many

opera to r s  as “p e r m i s s i b l e ” in format ion  operators . For ins tance , I~~t ‘-t(f) = f

be the i d e n t i t y  operator  I. Then , s inc e I i~ one to one , r ( I , S)  = 0 far any

solution operator S. However 21(f) f is “computable” 1ff I can be repre-

sented b y a finite d imensional vector , i.e., is a finite d imensional

spac e. As a second example , consider 21(f) = S(f). Then r(S ,S) = 0 but for

most problems S(f) is not “computable” and 21 = S is not a “permj~ sib~~ ”

information operator. See Sections 3 and 9 for a precise definition of our

model of computation. Exrnnp ies of computable operators will be found in

Sections  10- 15.

Examp l e 2.1

To illustrate the above concepts we consider the follow ing problem.

Let 
~l 

= C~ [ O ,l] be the class of n times differentiable functions of one

var iable , n � 1. Define

(2.25) S(f) = f

that is , S I. Note that (2.25) is a formulation of the approximation problem.

Let
f C = (I :  f ~ ~l 

and max ~ -f~~~(x) I ~ 1).
0�t �1

Consider the  information operator 21 g iven by

(2.26) 21(f) [f( t
1

) , f(t
2
),...,f ( t ) 1
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for some distinct p o i n t s  t . E  [0 , l J .  Th i s  means tha t we want  to approximate

f from 
~~ 

knowing onl y the values  of I a t  n p o i n t s .  Let  u~( t )  fl ( t -t . , .

Then f C V ( f )  i m p l i e s

f ( t )  = 1(t)  + g ( t ) w ( t )

where g is the nth divided differenc e of ~-f and ~~ 
max g ( t )  � 2.  I t

0 �t ~ 1
is easy to show that  d(21, S) 2 r ( 2 1, S) and

( 27) r(21,S) �

Furthermore (2.27) holds with e q u a l i t y  for in format ion  21 of the form (2.26)

* 1~T i- iw i t h  t
1 

a a 2 cos(.y~ + —~-- ~r ) which  are the zeros of the Che byshev po ly-

notnial T(~~( t+ l ) )  . See Section 11.

If £ ~ 2 14~ we can find art C-approximation to ~ = S(f) f for all

f € using the information operator 21 with t . = t ., . For € < 2/ 4
n the

information operator 21 of the form (2.26) does not supply enough information

to f i n d  i-approximat ions  for  ~~~ t ., . I

We conclude this section with a historical note . The ideas presented

here have been implicitly used by a number of people for a particular prob-

lem or a class of prob lems . The key point was always to find a problem

element f which shares the same information as f and the distance between S ( f )

and S (f, was art inherent error of any algorithm. See among others Winograd

(761 who introduced a very general “fooling” technique and showed its impor-

tance for a number of problems , Micchelli and Rivlin [77] who considere d

l inear operators S and 21, and Wo~niakowski [75] who introduced the concept

of order of information for the soluti.on of nonlinear operator equations .

Brent , W inograd and Wolfe [74], Kung [75], Kacevicz [75, 76a, 76b3,Meersman



2.11

[76a ,76b J, Traub and Wozniakowski {76aJ, Woz’niakowski 17 6J all considered

the s o l u t i o n  of non l inear equat ions  and Werschu iz [77a ,77b] deal t with the

maximal order of numerical integration and d i f f e r e n t i a t i o n.
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3. COMPLEX ITY OF GENERA L INF ORMATION

We p r e s e n t  our model of compu t a t ion  wh ich cons i s t s  of a set of orimi-

t ive opera t ions , p er m i s s i b l e  in fo rmat ion  operators and permissible algo-

ri thms . In what f o l l o w s  we shall use the words cos t and complexity inter-

changeab ly. Context will make it clear whether we mean algorithm complex ity

or prob lem comp lex i ty .

Model of Computa t ion

( i )  We assum e that  the computa t ions  are performed on a random access

machine . Let p be a pr imitive operation. Examples of prit~itive

opera tions incl ude ar ithmetic opera tions , the evaluation of a

square root or of an integral . Let comp(p) be the comp lex ity of

p; comp(p) must be finite . Suppose that P is a given collection

of pr imitive s. The choice of P and coxnp(p) , p €~ P, are arb itrary

and can depend on the particular problem being solved.

(i i) Let 21 be art information operator . We say that 21 is a permissible

information operator with respect to P if 21(f) can be computed

by a finite number of primitive operations from P for all f 6

Let comp (21(f)) denote the information complexity of computing

21(1). We assume that if 21(1) requ ires the evaluation of primi-

tives 
~~~~~~~~~~~~ 

then comp(21(f)) = 
_ comp (p~).

i= 1

(iii) Let p be an algorithm wh ich uses the permissible information 21.

To eva lua te  ~ (2 1 ( f ) )  we :
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(a)  c ompute y = 21( f ) ,

(b) compute  ~ (y )

The c omp l e x i t y  of computin g y is g i v e n  b y ( i i )  . We say tha t  ~

is a p e r m i s s i b l e  a lo o r it hm  w i t h  r e spec t  to P if  ~ (v )  can be

computed by a finite number of primitive operations from P for

a l l  y 21( 1) , f C ~~~~~ . Let comp (~;(y)) be the combinator :,

c omp l e x i ty  of c o m p u t i ng  y .  We assu : e t h a t  if ;(y) requires the
I

evaluation of primitives q
1

,q 7, ...,q. then como (
~~(v)) ‘

i = l

Remark 3.1

Let  ~l be a ncrm~ s s i bl e  i n f o r m a t i o n  o p e r a t o r .  This  mean s t ha t  2l (i~ can

be computed from the set of p r imi t i ve s  P. Of ten  there  e x i s t  many d i f f e r e n t

a l g o r : th m s  for  comput ing  21 ( f )  and the o p t i m a l  computa tion  of 21 (f) can be

t r ea t ed  as a sub prob lem.  However , we assum e that  an a l g o r i t h m  (poss ib l y not

optimal) for the computation of 21(f)  is d e f i n e d  by a “user ” . I

Example 3.1
1

Suppose we wish to a p p r o xim at e  S ( f )  = f(t)dt where I’ isa niecewise
1 

2c o n t i n u o u s  s ca l a r  f u n c t i o n  and ( f ’ ( t ) )  d t  � 1. De f ine two se t s  oi pr im i-
0

t ives , P 1 
= ~the eva lua t ion  of an i n t e g r a l)  and P

2 
= ~a r i thm et i c  ope ra t ions ,

th e  e v a l u a t i o n  of a f u n c t i o n) .  Note  that  2 1 ( f )  5( 1) is pe rmiss ib le  w i t h

respect  to P
1 and not  p e r m i s s i b l e  w i t h  respect  to P2 .  Of course  r ( S , S) 0.

However , S is a pr imi t ive  onl y in P 1. An examp le of a pe rmiss ib l e  information

opera to r  fo r  P
2 is 21 ( f )  = [ f ( t ~ ) , 1(t 7 ) , . . . , f ( t ) ] fo r  equal  lv spaced t .6 [1 ,1].

i t  is shown in Section 12 that r(21,S) 0(1/n) . U

We showed in Section 2 t ha t  a necessary and s u f f i c ient  cond i t i on  for

finding an c-approximation to ~ = S ( f )  is r ( 2 1,S) < c. If r ( 2 1,S) � c then the

- -~
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i n fo rma t ion  operator 21 does not supp ly suffic ient information to solve the

problem . We say tha t the problem S with an information operator 21 is

c-non-computable if r(21,S) � e . if 21 is permissible , r (21,S) < e, and there

exists a permissible algorithm w such that e(cp) < e, then the problem S with

21 is called c-computable with respect to P.

Suppose then that r(~l,S )  < € for a permissible 21 and assume that 
~(c),

the class of all permissible algorithms for which e (cp) < C , is non-empty .

We want to derive lower and upper bounds on the comp lexity of finding an

c-approx imation using any w€.. ~
(c) .

Since the set of primitives P is fixed , we do not mention the dependence

of comp lex i ty  on P. Let p €  ~(e) . Then the comp lexi ty  of an al gor i thm ~ is

defined by

(3.1) cornp(q)  sup (comp (21(f)) ÷ comp(~,(21(f)))).f€~~

We define optimal complexity algorithm (Definition 3.1) and inherent com-

plexity of a problem (see Definition 3.2).

Definition 3.1

We say comp (21,S,c) is the c-complexity of the information 21 for the

problem S iff

I tnf cotnp(m), if r (21 ,S) <

(3.2) comp (21,S , c) a

L + , otherwise

We say ~OC 
~
oc
E ~b (c) is an optimal complexity algorithm iff

oc
(3.3) comp (~ ) — comp(21,S,c). I

- -~
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Let

(3.4 comp (2b = sup comp(21 (f))

fE~

be the information comp lexi ty of 2.~ 
Suppose that the combinatory comp lexi ty

of every a lgo r i t hm ~~~, ~p €  ~(c), for 21(f) such that cornp (21 ( f ) )  comp (21) is

bounded below by rn(21) . More p r e c i s e l y ,  le t

(3 .5 )  m(21) inf sup cotnp(cp(21(f))).
-~€~(c) f: comp (21(f))comp(2~)

In general , m(21) depends on the tota l number of “ independent  p ieces” of

i n f o r m a t i o n  21. See Section 4 and 9 where the “cardinal ity” of information 21

is introduced and its influence on the combinatorial complexity of ~ is

shown . For l inear problems , as we sha l l  see in Sections 8 and 9, it is pos-

sible to f ind op tima l al gor ithms whose combina tory comp lexi ty is propor tional

to the “c a r din a l i t y ” of ~~~ .

From (3.4) and (3.5) we get

( 3 . 6 )  comp (21,S , c) � comp (21) + m(21) .

Fu r the rmore  if there ex i s t s  r j ~~~ ~~(e) such that  comp (~, (2 1 ( f ) ) )  comp(21) for

.311 1€ then

(3 . 7) comp(21 ,S , c) ~ cotnp(21)

Equations (3.6) and (3.7) motivate our interest in comp (21).

Suppose that c tends to zero. Then if r(21,S) > 0 , the fixed information

21 is weak fo r  the prob lem S for  s u f f i c i e n t ly small  c. However in many cases

we can choose a permissible information operator 21 = 21 (c)  such tha t

r(21(e ) ,S) < c and solve our problem using the information 21(c).
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Let ~ be a class of permissible information operators such that

(3.8) inf r(21,S) = 0.

Note that (3.8) means that we can solve the problem S for £ using a

suitabl y chosen information operator from Y.

Definition 3.2

We shall say ‘omp (~’,S,c) is the c-complexity of the problem S in the

class W i f f

(3.9) comp(’i’,S,e) — inf comp(21,S,e).

Note that comp(1,S,e) is a non increasing function of £. We shall prove

iii Section 9 that comp (’~,S,c) can be an essentially arbitrary nonincreasing

function of c.

Our setting is suffic iently genera l that it inc ludes problems for

wh ich informa tion opera tors do not play a role. Examp les are combinatorial

problems and such problems of linear algebra as matrix multip lica tion and

the direct solution of linear systems. For such problems the information

operator is the identity operator 21(f) f where f belongs to a finite

d imensional space. Furthermore the information comp lexity cotnp(I) 0 since

there is no cost in computing 21(f) = f. Note that r(I,S) 0 for any prob-

lem S because 21 I is one to one . Thus we can define ~‘ = {i). Typically

we seek the exact solution ~ S(f); thus c 0. The comp lex ity is g iven by

coinp(i,S,0) = irtf comp(~ ( f ) )
~~ : e(cp) 0

Therefore in algebraic and combinatorial comp1edt~y we seek an algorithm

which finds 
~
. — S(f) and has minimal combinatory complexity.
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Example  3 . 1 .  M a t r i x  M u l t i p l i ca t ion

Let f = [A ,B ]  where A and B are nxn mat r i ces . Then the m a t r i x  m u lt i -

plication problem may be formulated as S(f) A*B. Let 21(f) = f = CA ,B 1 .

This means that all coeffic ients of A and B are known and we seek an algo-

rithm with minimal combinatory complexity which yields the matrix x(f) — A*B.

If the cost of each arithmetic operation is taken as unity , then

c
1
n
2 

� comp (I,S,0) ~~~~ ~ log
2 

7

fo r  some posi t ive  cons tant c 1 and c2. The actual value of comp (i,S ,0) is

unknown . I

Examp le 3.2. Sorting

Let f = [f 1, f2 , . . ., f ]  where f .€. D and D is an ordered set. Define

S(f) 
~~i 

~~~ ,... ,f . ]
1 2 n

where f~ ~ f . � ... � f . and i
1
,...,i is a permutation of l,...,n . Then

1 
L

2

the sor ting problem may be formulated as ~ S(f). Let 21(f) f and ~ = 0.

We seek an al gorithm which finds S(f) with min imal cost where the cost is

taken as the number or  comparisons . The comp lexi ty of this problem satisfies

comp(I,S ,0) (n log
2 
n)(l+ o( l ) )  I

Recentl y there has been an interest in finding c-approximations to the

solutions of algebraic and comb inatory problems . For some problems the

complexity comp(I,S,c) is significantl y smaller for positive c than comp(I ,S,0).

Examples may be found in Carey and Johnson ~76 ] .
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Example 3.3. Pol ynomial  Zero

Let f {a0,a1
,.. . ,a )  where the a . are the coeffici’~nts of an nth

degree polynomial , P(x). Let P(~) 0, ~ S(f). For algor ithms which

require knowledge of the ~~~ 211 (f) 
= 1. On the other hand , there exist

iterative algorithms requir ing only that P and P’ can be eva luated at any

po in t and 212(f) tx ,P(x ) ,p ’ (x) ~~. I
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CHAPTE R II

LINEAR T}EORY

We assume that the solution operat)r S, the “restriction ” operator T

and the information operator 21 are linear.

~~~. CARD~~~AL I TY OF LINEAR INFORMATION

Let 21: be a l inear information operator where is a l inear space. Le~

ker 21 ~f: 21(f) 
= o) be the kerne l ~f 21. We shall prove in Section 5 that

the deoendence of the diameter of informat ion  on 21 is onl y through the

kernel o~ 21. This su~~gt 5 t 5  we should not distingui3h between two information

operators w i t h  the same kerne l .

Let 21
i
: 

~ 
T~ and 212 : 

~ l 
-. be two information operators where

is a l inear space no t necessar i ly equa l to ~33.

De f i n i t io n  4 . 1

We shall say 211 is contained in 212 
(briefl y 21

1 
21
2
) iff ker 21

2 
ker

We shall say 21
1 

is equivalen t to 212 
(briefl y 21

1 ~ 
21
2
) ill ker = ker 21,,. I

Note that “~~“ is an equivalence relation .

We want to show that 211 
C 21

2 
can be characterized by the r=.~k of a

certain matrix . We first briefly recall some facts on linear spaces. Let A

be a linear subspace of 
~~~~~

. Then there exists a linear subspace A~ of

such thac

(4.1) A



In ~zei i e r i~ , j ; fl~~ t un i qu el y del  m e d . l~owever , if  is a Hu ber t

spac e a n i  A ~~~~~~~~ e:~~~ L~ r e  O~: i $ ~ts a u n i q u e  or t h  ~eona1 A
1 

t ‘ A ~. : ‘ch

t :ia t (-. . I hotd~ . e i~ he r ca~ e is i ~or.~or~~iic to the qu o t i e n t  space 
~~ 

A

4..~ codim A d i~ A1 = Jim ~~
‘A .

The space A1 is called an al gebra ic comp lement of A in the space

Let L
1

.L 2 ,.. . ,L be l inear l y independen t functionals. By

(t .3) = [L
1
,L2 ,.. .,L i t

~~ mean 21jf) = rL
1
(f) ,L2 ( f  ,. . . ,L ( f ) 1

t~~~~~~
(

~~~~ where “t” denotes the trans~ e~ e

of a vec tor  and 
~

Lerma . I

Let L 1,L2 , .  . .,L ] ~ and 
~~2 

= [L +i , L +2~~
.. . ~~~~~~~~~ be in fo~~a tion

o p e r a t o rs .

(i~ iff k a and there exists a n:’k matrix ~ such that

21
1 

= 

~~2 
and rank >~ a.

( i i )  Let k n .  Then 211
C 2 1

2
i f f 21

1~~~~21
2

. I

Proo f

(i) Suppose that ker 21
2 ~ 

ker 21
1
. Let ker 21,, ~ (ker and

(ker 21
2
)i = 1in (~ 1

,~ 2
,.. . I !.k ) whe~e L~~~(~ 1

) 
~i j  and denotes the

Kronecker delta . Then f f + L . ( f ) ~ where f E~ ker 21 and fE . ~0 n+i i 0 2
i.= 1

Since f0
€. ker 21k, we get
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K

~~~~~ L .lf ~ 
L~~~

. (L
~~
Lm~ 

f o r  j = 1,2 , . . .  , n.

i=l

This yields 21
1 

>‘21~ with 
M a (LJ ~~~) ) .  Let (ker 211

) 1 = ha 
~~1 ’ 2 ’

~~
”’ fl

~

where L. (.~ ~~~
. . . ~et f ~~~. in (4 .4)  for  i = 1,2,... ,n. Then

. 11  
U 

1.

I 
~~~~~~ 

,21

2 2~ 
~~~ ,21~~( ~~~) where I is the nm identity matrix. This

imp l ies that rank n and comp let es this part of the proof. 
Suppose now

that  21, ~~~~~~~~ Then h € k er  “
~., 

implies 21
1

(h) = M~l
2

(h~ 
= ) which y ields

C., ,-~~~~~

( i i  ~~~‘o~e that 21~ : 2 1,, . Due to the f i r s t  par t  of Letiu~a 4 . 1  we

= ~~~ where the am :~atrix M 
is nonsingular . Then 21

2 
= which

im:,lies 21~ 
and 21~~~ 21.,. The second part of (ii) is trivial. Hence

Lezm~a 3.2 is proven . 
a

We now show that an’; information 
operator 21 where a = codim ker 21 is

fis ite may be pr ’e~~t ed by a linearly independent linear functioflalS.

i.e~ma 3 .2

Let 21 be an information operator 
and a = codirn ker 21 -‘- ~~~ . Then there

exist linearly independent l inear functiOflals L1, L9 ,. . . ,L such tha t

21~~ 211 where = [L 1,L21...~ L~~J .  I

Proof

Let (ker 21)~ 
= ~~~~~~~~~~~~~~~~ 

Every element f has a unique repre-

sentation f f + L (f’~~. where f €. ker 21 and L ,L , . .  . ,L are

0 L. i ~ 0 1 2  a

l inearly independent linear functioflals. Since ker 21 = ~f :  L.(f) 0,

i 1 ,2,.. .,n) = ker 211 
we get 21~~ 21k.
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Leema ...2 states that an information operator where ii codim ker  21 is

f i n i t e  is e qu i v a l e n t  to an information operator generated by n linearly

independent  l inear f u n c t i o n al s .  Observe that  to know 21
1

( f )  one has to

evaluate n linear functionals. This suggests the following definition of

the cardina l ity of 21.

Definition 4.2

We shall say that card(21) is the cardinality of the information 21 iff

(4.5) card(21) = codixn ker 21. a

We shall prove in Section 5 that unless the cardinality of the informa-

tion 21 is sufficientl y large , the diameter of information is infinity and

the problem cannot be solved with this information .

To illustrate the concept of cardinality we consider two examples.

Examole 4.1

Let 21 = [L 1,L2,. . . ,L ] ~ . From the above considerations easily follows

that card(21) � a and card(21) n iff L1,L2,. ..,L are linearly independent.
a

Example 4.2

Let f: D C~~~~
m ~ m be a k times differentiable function . Let

(k)
21(f) f (x) for x ~ D.

Note that f(x) [f 1
(x),f

2
(x),...,f (x)J

t 
where f .: P is a scalar

(k)function . f~ (x) can be represented by 
(
~~~_1) l inearly independent func-

ftionals of the form L(f) a where x [x 1, x2 , . .  . ,x j
t and p~, 

� 0,

(‘xl
p
1 + p

2 + . . .  + p = k. This yieldsm
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card (~~ 
a m(~~~~ 1)

If 21 ( f )  [ f ( x) ,f’ (x) ,.. . ~~~~~~~~~ ~ (x)  ] is the so-called standard information ,

then

car d (21) 
n-i 

=

k— 0

This shows the dependence of cardinality on the dimension of the space~~
m
. I

We end this section by showing that there is a one-to-one correspon-

dence between information operators and subspaces of

Let 21 be an information operator with card(21) a. Then A (21) ker 21

has cod iinensionality equal to n. Furthermore ~~~ 21
2 

ii piles A(21
1

) = A( 21
2

) .

We now show that the converse statement is also true.

Lenuna 6.3

Let A be an arbitrary linear subspace of such that codim A a a.

Thea there exiSts a unique (up to the equivalence relation) information

operator 21 with card(21) = n such that A = ker 21. a

Proof

Let A ~~~~ where A~ = ~~~~~~~~~~~~~~~~ Then f f
0 + L~ (f)~~.

where f
0€ A and L~ (~~) 

a 

~~~~~~~~ 

Define

21 a {L1,L2
,.. . ,L ] t

Since L1, L21...,L are l inearly independent , card (21) = n and ker 21 A. To

prove the uniqueness , observe that if A a ker a ker 21
2 

then 21
1~

Z 21
2
.

This completes the proof. I



5. 1

~~~. T~~;i EX T .\ Li~J AR PROBLE M

~e consider :n this sect :en l inear information operators for the solu—

t~ on element ~ S(fl where  S:  ~~~~ is a l inear opera tor  and is de-

f i ned as

(5~~I) = E. 
~ 

: Tf ~I �

where T: .
)
,~ = T(~~1~ is a linear operator and is a l inear normed

space over the real or comp l ex field. We shall call T the restriction operator.

This means we want to find an €-approximation to the solution ~~‘ 
= S(f~ for

all f such that H Tf ~ � I.

To stress the dependence on T we shall rep lace S b y (S ,T) in all basic

definiti. n~~. For instance we shall refer to the problem (S,T), the diameter

~(~~ S,T), etc., where 21 is a linear intormation operator.

w ithout loss of generality we choose a bound Tf~ ~ 1 ins tead of Tf
~I ~ c

for a positive constant c. Indeed , let T
1 

= ‘~T. Then Ii T~ f~ � I is equiva-

lent to TfH � c. It is easy to observe that d(21,S,T) cd (21,S,T1
) and

ill estimates on complexity are l inear in c.

We now show that the dependence of d(21,S,T) on 21 is only through the

kernel of 21.

Lemma 5 .1

( 5 . 2 )  d ( 2 1, S ,T) a 2 sup II Sh il
hE V (0)

where V(0) ker 21 
~ 
%~. (See (2.4).) I



5 . 2

Pr

Set c = . sup Sh~ . Let f E. and f € .  V ( f )  . Then h = 4 ( f _ f )  (~. ker 21
hE.V(0)

and ii Th~ � 1. This y i e l d s

ii Sf—Sf~j = 2 j~ ShH 
� c.

Taking the supremuin with respect to f and f we get d(21,S ,T) � c.  To prove

the reverse inequality , le t  h € V(0) . Set f = h and f = -h .  Then f € V ( f )  V ( 0)

and

2~ Shil = Sf-SfH � d(21, S , T ) .

Thus c � d(21,S,T) which completes the proof. U

From Leumna 5 .1  we immediately get  the f o l l o w i n g  C o r o l l a r y .

Corollary 5.1

If C 21
2 

then d(212 , S,T) � d(211,S ,T) ,

If 21~% 212 then d(212,S ,T) = d(211,S ,T). I

In Section 2 we showed that the radius r(21,S,T) is the intrinsic error

of the information 21 and the problem (S,T). Due to Lemma 5.1 we get

c � r(21,S,T) � 2c

where c sup Sh~ . We now show when r(21,S ,T)  = c.
hE.v (0)

Lepxna 5.2

If for any f E. 3~ there exists h0 E ker 21 such that Th0 
= Tf then

r (21,S,T) sup II Sh U  . I
F~ .V (0 )
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Proof

Let .‘ S( i _ h ~~ . Then for  any f = f + hE V(f) , hE ker 21, we get

a-Sf  II = where z h 0 + hE. ker 21. Since Th
0 

Tf , H TZII =

H a Tf H � 1. From ( 2 . 1 0 )  and Lemma 3 .1  we i~et

� sup sup 1 a-Sf~ = sup Sz~ =

f€ . V ( f )  £V(0)

Since r~21,S ,T\ ~d(21,S,T) for any 21, S and T , Lemma 5.2 is proven. I

We want to examine when the diameter d(21,S ,T) is equal to infinity .

(Of course , d(21,S,T) + imp lies r(21,S,T) = + . )  We begin with

Theorem 5.1

If ker 21 ‘ ker T ker S then d(21,S ,T) = + . I

Proof

Let h€ ker 21 ~
‘ ker T and h ~ ker S. Then T(ch) = 0, 21(ch) = 0 fo r  any

constan t c. Then S(ch) H = c l  Sh~~-. + ~~with ~~ — + . Due to Lenina

5.1 we get d(21,S,T) + . I

Theorem 5.1 states that ker 21 ‘
~ ker T has to be contained in ker S for

d(21,S,T~ to be finite . We prove that ker 21 fl ker T C ker S implies that

the cardinality of 21 is at least as large as the “problem index”. Let

ker T a (ker T ker S) ~ A(T ,S) ,
(5.3) * * *A(T ,S) = lin(~~1,~ 2 ,.. .,~~~~~*)

where A (T ,S) is an algebraic comp lement of ker T fl ker S in the space ker T

* * * *and 
~~~~~~~~~~ 

form a basis of A(T,S), n a (T,S) �+ ~~~.
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Definition 5.1

We shall say that index(S ,T) dim A (T,S) is the index of the problem
*(S ,T). We shall some times write index (S,T) = n . U

Note that index (S ,T) = dim (ker T) - dim (ker T ker S) whenever either

d im(ker T) or dim (ker T ker S’) is finite. We dre ready to prove the ma in

result of this section .

Theorem 5.2

If card(21) < index (S,T) then d(21,S,T) = + .

Proof *

We show that ker 21 ~ ker T ~ ker S. Define f = c. ~~€A(T,S).

We want to f ind a nonzero vec tor (c
1
,c
2
,. . .,c *) such tha t f € ker 21. From

L~c~na 4.2 it follows that th~ ie exists aLl LL~fora~atLou operator

= [L 1, L
2

, . . ., L ]~ where m card(21) index(S ,T) such that ker 21
1 

= ker 21.

Thus f 6 ker 21 iff L.(f) c . L.(~~.) = 0 for  1,2 , . . . ,m.  Hence we

ge t a homogeneous system of m linear equations in n unknowns . Since

m < n , there exists a nonzero vector (c
1
,c~~,. ..,c*) wh ich is a solution

of the system . Thus 0 f ~ A(T ,S) ~ ker 21, This means that a nonzero f

belongs to ker 21 ~ ker T and f% ker S. Due to Theorem 5.1 we get

d(21,S ,T) = + ~~~
. I

Theorem 5.2 states that every information operator with cardinality

less than the index of S and T does not supp ly enough informa t ion to so lve

the problem . For index (S,T) = + we get the following corollary .
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Corollary 5.2

If index(S ,T) = + then the problem (S,T) cannot be solved by any

information operator with finite cardinality. I
We illustrate the aLo’ve results for some restriction operators T. We

beg in with T a 0.

Lemma 5.3 (No restriction operator)

Let T O. Then

(i) d(21,S,0) is either zero or infinity . More precisely ker 21 i± ker S

imp lies d(21,S,J) = + , ker 21 C ker S imp lies d(21,S ,0) 0 .

(ii) index(S ,0) = dim(ker  S)~ is f i n i t e  i f f  S is a f i n i t e  dimensional

opera tor , i.e., dim S(
~~i
)< + ~~

. I

Proof

Since T ~ ~o ~ and ker T = If ker 21 ker T a ker 21 ~ ker S

then d(21,S,0) = + due to Theorem 5.1. If ker 21 C ker S then Sh = 0 for

a l l  h 
~ 

V(0) ker 21 C ker S. Thus d(21,S,0) = 0 by Lemma 5.2. This

proves (i

From (5.3) we get A(0 ,S) = (ker sY~ and index(S ,0) = dim(ker S)~~. It

is well known that index(S ,0) is fin ite iff S is a finite dimensiona l

operator . This proves Lenina 5.3. I

As our second illustration consider T a ~k, k � 0, i .e., Tf = f~~~ for

a scalar function f. If S is a one-to-one operator then

A(T ,S) ker T C f: f~~~

and index(S ,D
k
) dim (ker I)a k. Hence we have to compute k linear functionals

to assure that card (21) � index(S ,D
k) and ker 21 fl ker T — ker ~ a j o) .



6.1

0.  OPTtNAL LINEAR INFORMATION OPERATORS

*
Assume that n = index(S ,T) + . We cons truct an information operator

* * *21 with card(21~~~ index(S ,T) such that ker 21 ker T = ker S. Recall that

* * *A ( T ,S) is d e f i n e d  by ( 5 . 3 )  and A(T , S) = 1in( ~~1 ,~ , , . . . ,~ . Let
* 

n
a

= A( T ,S) ~~A (T ,S)~ and f = L . ( f ) ~~. ± f where  f € A ( T , S~~ and

* 

i i 1 1

LJ~~.)  = A . Then 21

Lemma 6 .1

Let

* * * * t(6 .1) 21 =

Then ker 21
* ker T ‘C ker S. U

Proof *n
* *Let f € ker T. Then f = f + L . ( f)~~ . where f € ker T ker S. If

0 ‘~~~~~i 1 0
* * i=l *

f € ker 21 then L.(f) 0 for i = l,2,.. .,n and I = f
0€ 

ker S. This

proves Lemma 6 . 1.  j

To simplify further considerations and to assure that ker 21 ker T C ker S

we shall consider throughout this section only information operators 21 such

* *that 21 C 21. (This means ker 21 C ker 21 and ker 21 ~ ker T C ker 21 ker T C ker S

due to Lettu~a 6 . 1 . )

We show the diame ter of d(21,S ,T) can be computed in terms of the inverse

operator  T
1 wh ich is d e f i n e d  as follows. (T is not one-to-one in genera1.~

Recall that T(~~) and

( 6 . 2 )  a ker T fl ker S A(T,S) (ker T)1.
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Thus f = f
0 + f

1 + E where f06 ker T fl ker S, f
1 
6 A(T,S) and

f ., € (ker T)~~. From Lenina 5 . 1  it f o l l o w s  that the dependendence of T on the

d iameter d(21,S,T) is only through the kernel of ~~~ Let f 6 ker 21*. Then

f a f~ + f
2 

s ince f
1 
6 A(T,S) (ker 21*)~L~ Define a linear operator T

1
: ~ 

-,

such that

(6.3) T ’z

where z = Tf .

We check that T 1 
is well-defined. Let z a Tf a Tg where

g g
0 + ~2 

6 ker 21*. Since T(f-g) a o, f-g = (f
0-g0

) ÷ (f
2
-g
2
) € ker T wh ich

yields f
2 

— g
2
. This proves that T

1z does not depend on a par ticu lar choice

of pre- iimage of z. Hence T
1 

is well-defined .

4q Rfl ~~~mple observe that T a Q implfes — [0) and 0
_ i 

0.

Let K: — be a linear operator and let B be a linear subspace of

Denote

(6.4) K~~ ~~ sup II KzjJ
II zJJ�l ,~~~B

We are ready to prove

Letxzna 6.2

*
Let 21 C 21. Then

(6.5) d (21,S,T) — 2 11 ST
1 II J.(k 21)~ U



6 . 3

i~r)of

* -l
Note that ker 21 C ker 21 assures that we can use T defined by (6.3)

for the l inear subspace T(ker 21~ . Lemma 5.1 states that d(21,S,T) 2 sup II S h j j

where 21h = 0 and 1 T h J j  1. Let  h = h 0 + h2 due t° (6.2~ • Then SI~ Sh~ and

= Th ,, . Let  z = T h E .  T(ker  WO . Obs erve t h a t  T 1z h
2 

and ST
1
z = Sh 7 .

This proves (6.5) . I

Lemma 6.2 states that the diameter d(21,S ,T) is equal to twice the norm

or the l inear operator K = ST
1 
in a certain l inear subspac e B = T(ker 21).

This suggests the following problem . For a fixed integer n fthd the most

re levant  informat ion  operator  21, card(21)� n , that is the operator which

minimizes d(21,S ,T) among all information operators with cardinality � n.

This is equ ivalent , as we shall prove , to finding a linear subspace B with

codim B � n-n which minimizes KjI~ 
among all linear subspaces of codimen —

sion ~ n-n

To forma lize this problem let ~ be the c las s of all inf ormation
ii —

operators 21 such that 21 C 21, card(21) � n where n index ( S , T ) .

Definition 6.1

We shall say d(n ,S ,T) is the n- th minima l diameter of information iff

(6 .6) ~ nf d(~~,S,T) jf n index(S ,T)

d(n ,S ,T) ~~~~~~~

+ ~ if a < index(S , T)

We shall say 2101 is an n- th optima l i n fo rma t ion  1ff

(6 . 7) d (n ,S , T) = d(21°’, S , T) .  U

We deti :~e d(n ,S ,T) a + ~ f or n < index(S ,T) since for any 21 w i t h  c a rd ina lit y

less than Lndex (S,T ) ,  d(21,S,T) + ~~~. See Theorem 5.2. We illustrat o Defini-

t ion 6.1 by the followin g examp le.
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Example 6.1

Let dim = + ~ and let T = I be the identity operator . Define

S = ci for a positive constan t c. Then

(6 .~~) d ( n ,cI , I~ = 2c , Yn.

Indeed let 21 e ‘
~
‘
n~ 

Then ker 21 ~ ~o) and d(21,S,T) = 2jJ cII
~ er 21 

= 2c . No te

that ;(i(f)) 0 is an optima l error algorithm s ince e(~ ) = c ~ d(21,S ,T)

= r (2 1, S ,T ) .  This means that no matter how many linear func t ionals are com-

puted the zero of the space is the best approximation to the solution

Sf a cf for some f such that II f~I £ 1. See Schultz [73] for related material.

However for the identity information operator 21(f) f we get ker 21 =

and d (I,ci ,I) 0. Note that card(I) = + . This shows that d(n ,S ,T) can

be a discontinuous function of a at infinity . I

From Example 6.1 we get the following corollary .

Coro l l a ry  6 . 1

For every 6 (no matter how large) there exists a linear problem (S,T)

w ith finite index for which one cannot find an 6-approximation using any

fin ite number of linear func t ionals . I

We show that the n- th min imal diameter and the n-tli optima l information

are fully determined by the operator K a ST 1
. Let

(6.9) b (m ,K) 2 m l  K JJ ~
BC~~ , codim B ~~m

be the m- th minima l norm of the l inear operator  K.

Suppose there exists a sequenc e [Bm )I m 0, such that

(6.10) b (m,K) — 2 J J  K J~ and codiin B ~ m.



6.5

- .1Let ~ = 
~ and

n m

k

(6.ll~ ~ = g + L . ( g )
0 — im

1=1

where g~~E. B and 
~~~~~~~~~~~~~~~~~~~~~ 

with k = k(m) = codim B
, �m.

We shall call B an m- th minima l subspace of the l inear onerator N.
m

Recall tha t L
1
,L
2
,...,L *  form 21* . See (5.3) and (6.1). Define

* * * t( 6 . 1 2 )  = 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We are ready to prove the main result of this section .

Theorem 6.1

The information defined by (6.12) is the n- th optimal information and

* -l  *
(6.13) d(21 ,S ,T) = d(n,S,T) b(n-n ,K) ,  K ST , n = index(S ,T) .  I

Proof

To prove Theorem 6.1 we need two Lemmas.

Lerruna 6 . 3

Let B be any l inear subspace of wi th  coditn B = k < + ~~~. Then there

ex is ts a un ique in fo rmat ion  21 such that

*
(i) 21

(ii) T(ker 21) B,

(ii i) card(21) = k+n . U

Proof of Lenuna 6.3

Let a B +  B’and B1 a linC~1, Tt~~,..
’
.,T~

) .  Thus for every g 6 we

have g — g
0 + L~ (g)~~ where g 0 E. B and L 1(~1~) 

a Define

j a 1
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* 1:
( 6 . l 4~ ~l [L l ,L 2 , . . ., L .

~
,L lT ,L 2 T , . . ., LkT]

Then ker 21 [1: L . ( f )  = 0 ,L . ( T f )  = 0 , i = 1 ,2 ,.. .,n , j = 1, 2 , . . .  , k~ C ker ~~~~~.

This ~r ov cs  ( i ’~. Let  h ~~ ker  21. Then L . ( T h )  = 0 for  i = l , 2 , . . . , k and

T hE .  B. Hence T(ker 21’~ C B. Now l e t  g be an a r b i t r a r y  e~~~r~e n t  of B , i . e . ,

Q fo r  i = l , 2 , . . . ,k .  Sinc e g~~ ~~, there  e x i s t s  I such t h a t

= Tf. Decompose f = f
0 + + f

2 
where f

0 6 ker T ker S, f1 
G A ( T , S

and f 2 ~ (ker T)L . See (6.2). Then g Tf Tf
2
. Since L.(f7) = 0 f u r

i = l , 2 , . . . ,n and L . (Tf 2 ) = 0 t o r  i = l,2 ,. ..,k we get ~ 2 ker 21 aud

= Tf ., 6 T(ker 21) . This yields T(ker ~~ = B which  proves ( i i ) .

To prove that card(211 = k+n we show that L
l
,...,L *,Ll

T,..., L
~K

T ar e

line arl y independent. See Examp le !~.l. Assume that

k( c L~ + d .L .~~ f = 0 , ~ f 6
i i  1 1)

\i=l i=1

* * * -Set I = where ,!,, . . . ,~~~ ~ torm a basis of A (T,S1 . See (5.31 . Then
1 n

* * * *= 0 and L .~~~ . ) = 5 . . . This yields c . = 0 fo r  i l , 2 , . . . , n . ~cw ~et1. 1 13 1.

= Tf . and se t : = f , . Since L . Tf . ) = L . fl . ) = 5 . . ,  ye 4et d . = 1 for
1 1 1 3 1 3 1 1

*i = l ,2 , . . . , k .  This proves that card ~Th= k+n

~ e now show the  uniqueness of 21. Suppose that an information operator

21
1 

a [L
l~
L
2~~
...,L.K ~~~ satisfies (il- (iii) . Thus ker C ker 21 means

tha t h € ker 21
~ 

imp l ies L (h) 0 for I = l ,2 ,...,n .  Next T(ker 21
1
1 8

means that h E .  ker implies mE B , i.e., L~ (Th) = 0, 1 1,2 ,...,k. Thus

h 6 ker 21 and ker C ker 21. Since card (21
1
) = card(21), from Lerrnna 4.1 we

~.t 21 . This comp le tes the proof of Len~na 6.3. U

Due to the uniqueness of 21we shall write 21 = T 
1
(B). Note that 21

d e f i ned by (6.12) is equal to T (B~~~~*) where Bn n * is the (n-n ) t h

minima l subspace of K.
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i. C~~~1d ~)

l e t  ca rd 21’ n .  Then codi :n T ( k e r  21) ~ n-n . I

Proof

Let B = T(k :r  21) and le t k = codim B. From Lemma ~~~~~~ = T
1( B )  has

the nr oterti o s 21 and card (21
1

) k+n . R e p e a t i ng  a p a r t  ~f the ~roo f

) t  Letrrr .a i, . 3 , it  is easy to show t h a t  ker 21 C ker 21
~
. From Lemma 6.1 ye get

= ~~ where the (k+n ) X  n m a t r i x  M has rank M k±n . This is rossible

on ly  if  k n-n wh ich comp le tes  the p r o o f .  I

We proceed t~ prove Theorem 6 . 1 .  From Lenana 6.3 ~

d(21
n~

S
~

T) = 2 1 1  K L 3 
= b ( n _ n *, N~~.

Let  21 be any i n f o r m a t i o n  opera tor  from 
~~~~~

. From Lemma 6.4 we ~et

dim T(ker  ~L) ~ rj - ~~ and

d(21, S , T) = 2 l ~ K;~~(k 21)~ 
b (n-n ,K) = d(21 ,S , T ) .

This prove s that 21 is the n—th optima l information and d (~l ,S,T) d (n ,S,T1 =

b (n-n ,K). This comple tes the proof of Theorem 6.1. I

If d( n,S,T) � 2€ then it is impossible to find an c-approximation no

matter which information operator 21 with card (21) � n is u s e d .  in t h i s  case

we have to increase a and poss ibl y find such m ~ a that d(m ,S ,T) < 2€ . This

mot iva tes  our i n t e r e s t  in the dependence of the n- th optimal diameter d(n,S ,T)

on n. Note that d(n ,S ,T) is a non increas ing function of n.

D e f i n i t i o n  6 .2

We s h a l l  say d ( S , T) is the d i ame te r  of p rob lem error in the c lass  of

information of finite cardinality iff
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~~~. 13~ d . t~,T1 lim d(n ,S ,T)

We sh al l say that the p r o b l e m  (S , T) is s t rong l y n o n - c o rr i ou t a b l e  if d ( S ,’r) = ± =,

is c-non- co mp u t a b l e  if d ( S , T) 2c  0 and is convergent if d(S ,T) 0. •
W e now ShO W tha t the d iame ter of p rob lem error d ( S , T) can he any number .

This shows tha t  fo r  any c there exist l inear problems which  are c-non-computable.

Lemma 6 . 5

Let 6 ~~~), + ~
] .  Then there exists a l inear problem (S,T) such that

( 6 . 1 6 )  d ( S ,T) ~~. I

Proof

Let ~ = ÷ . Define T = 0 and let S be a one- to -one  op e ra to r .  From

Lemma 5. 2 we get index (S~ O) = -
~

- ~ for infinite d imensional 
‘)

~~~ • Thus by Theorem 5 . ,

d(n ,S ,31 = + for  any finite a and d(S ,T) = + = ~~. Now le t  ~ 6 [2 , +

From Examp le 6.1 we get d(n41,I) -~ for any a. Thus d( S ,T) ~ wh ich

comp l etes the oroof. I

In the next secti n we show when the p r o b l e m  (S , T~ is c o n v e rg e nt  ~nd

how to find the n- tb minima l information .
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‘ . CON\~ER LN CE A~1i) >~IN I ~ AI, SUBSPACES FOR A HILBERT SPACE

In t h i s  s ec t ion  we assume t h a t  ), is a Hi l b e r t  space. Recall that the

problem (S,T) is convergent if d ( n , S , T) 0 when a + ~~~. See (6.d~

Theorem 7 . 1

Let ~ be a Hu bert space and index (S,T) ± ~ The problem (S,T) is

convergen t iff K a ST is compact. U

Proof

RecaU that K: 1.~ = is compac t iff K may be un iform ly approximated

by f inite d~ mensiona l linear operators , i.e., there exists ~~~ such that

(i) K :  ~~ 
— 

~~~~
. 
~
‘n 

is l i near ,

(ii) dim (~t < +
fl (4

(:ii) h i m  K - K u  a 0.

Suppose that the problem (S,T) is convergent , i.e., h im d(n ,S,T) = 0.

Th is means there exists a sequence of information ooerators ~‘ such that

card(~l )~~ n and u rn d(21 ,S ,T) a 0.  Due to Lemma 6.2 and Lemma 6.4 we get
a-.. =

d( 2 1 S ,T) 2~ K~8 
— 0, B = T(ker 21 )

and codiri B � n-~n~~. Let B + B~~ and le t  g g
0 + g

1 
where g

0
6 B ,

B~~ and (g
0
,g

1
) 0. Define

(7 .1) K g  a K g
1
.

Then K is a l inear operator from to and dim K (~~ ) dim K ( B ~) -
~ dim

� n-n < + ~~~. Furthermore
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/ 2 2I (}:-K ~1~~1 l  = Il 
~ ‘o~ ~ 11 K~~~L 1 ~r ) 1 i = II K~~~~~. I g !  - H g

1 :

II lB H g I l .

Th is rrovos that <_ K
~~JJ ~ H K J~ 0 which means that V is c ompact. This

c oan-letus the fLr st part of the proof.

Suppose now that K is compact. Then K may be uniformly approx imated

b .- ~K 
- . ~e f ine B ker K wh ere p = codim ker K + ~~~. From Lemma 6.3

n p n a

vu kn~x~ there exists a unique information operator 21 • = T
1
~~B 1 suchp ± n ~ p

that 21 C 21 . and card(21 ~~~ p + n .  From Lerruna 6.2 we zet
p -~-u p +n

d 2 1  *,S ,T~ 
= 2~ j K L  . Since Kg = (K-K )g for any g E.B , we have

II K g I~ ~ Ii K~N I l  I g I . Hence 1 N I L  � H K-K H — 0 with n + ~~. F ina l l y
p

d (p +n*,S,T) � d(21 
+n*~

S T )  
~ 2~ KIL -. 0.

Since d(n ,S,T) is a nonincr eas ing sequence , then h i m  d (n ,S ,T) = ‘3 wh ich
a

cop~~letes the proof. U

V~ nark .~~~ 1

It is possible to generalize Theorem 7.1 for the case that is not a

H i bert space and for problems (S,T) with nonzero d(S ,T) . We sha l l  no t

pursue the generalization in this paper. I

Theorem 7.1 states necessary and sufficient conditions for the problem

(S ,T) to be convergent. Note that in many cases K ST
1 is no t compac t .

This ho lds , f or ins tanc e , for S = T = I and infinite d imensional

We show how to find minima l subspaces of K assuming that K is comrra ct

and K(~~ ) C 
~~~~~. Let K be an adjoirt operator of K. Define a self-adjotht

and compact operator
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-. dt  ~( p . 1 K
1
~~~~~~~K K :  ~~~~~~~~~~~

Decompose 
~~ 

= ker K
1 

(ker l(
l
)
~~ 

where the orthogonal complement (ker

LS spanned by eigenvec tors of K
1
, i.e.,

(7 .3~ (ker  K 1~
1 

= ~~~~~~~~~~~~~~~~~~~ r �+ ~~,

K
i i .  i. i

wh ere \. 0 (3 and X � X..~ � ..., 
~~~~~~~~~~ 

= 
~~. .. If r is f i n i t e  we f o r m a l ly1. 1 z ~i~~~ j  13

put ~. . = 0 and 0 for i r÷1. Due to compac tness of K, him ~~ = 0.
1 1. 1.

Every element of f 6 has the unique decomposition I = f~ + 
— 

~~~~~~~~~~~~~~~~~

where f 3 6 ker K
1
. Define i—i

*(7 .41 B -
~ 

ker K h i n ( ~ * ,...,~~~ ), n � an - n  I n-n ±1

and an information operator

* * t( 7 . 5) 
n~~ 

a [L
1

( f )  ,.. . ,L *(f) , (Tf , 1 ) ,. . .,(Tf ,~~~~~~~*1

where L 1,. ..L~~~ are given by (6 . 1 ) . We are read y to prove

Theorem 7 .2

* -lLet 
~3, be a H i l b e r t  space , n = index(S ,T) < + ~ and let  K ST be

a compac t opera to r  such tha t  K ( 34
) C

The information operator 21 defined by (7.5) is the n- th optimal informa-

tion , B~~~ * de f ined b y (7 .4) is the (n_n
*
) th minima]. subspace of K and

(7 .6) d(21 ,S,T) = d (n ,S,T) a b(n-n ,K) a 2.’X *+l I
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o
We first show that B

k 
is the k- th minima l substace , k n-n . Let fE 

~~~ 
Then

4- (f ,~~~ i~~ • where  f ( ~ ker K
1 

and H Kf = (K f , N f i  = (K
1
f ,f) =

i k— l

\÷~ 
f~
2
. Since this bound is sharp we get H Bk

L t t  !~~“4 ~3 be any linear subspace such that codim B ~ k. Then 
~ 

= B + B~ and

= ~~~~~ ~~~~~~~~~~~~~~~~~~~~~ I where m = codim B ~ k. Furthermore I = f + L .(fr .1 0 .~~ ii=l

for certain l inear functimals L
1
,L~~, . .. ,L and f

0 
6 B . Thus f ~ B if f

k+ 1

= ‘) f o r  ~ 
a 1 ,2 ,...,m . Let I = c .~~. . Then L . ( f )  = 0 for  i =

i= I

is e q u i v a len t  to ~!c ~ where ~ 
= (L.(~~ .)) is the m / (~~~l) matrix and

c rc ,c . ,. .. ,c ]
t~ Since in ~ k+I there always exists a nonzero solutionI k+l k+l

c and therefore a nonzero I a cj~ j which belongs to B. Then

i l

k+1

II Kf IF (K
1
f ,f) = 

i l  

c . 1 \ . 
~ ~~1 H ~ IF

wh ich ields H KIL T .,‘
~~~~~~~~~ 

= II K~L .  This proves that is the k- th minima l

suhs :ace and b(n—n K) = 2 ‘X ~n-n +1

Note that B~~ 
a 

~~~~~~~~~~~~~~~~~ 
and L ik (f ) (f ,~~.) for i = 1 ,2,...,k.

See (6.11). Thus the information operator 
~ 

de f ined by (7 .5) is identical

w ith (6.12). From Theorem 6.1 we get that 21 is the u- th optima l i n f o r m a t i o n

and

d(21 ,S,T) = d (n , S , T) a b ( n _ n*,k) a 2\’X~~~~~+ 1

Thi comp letes the proof. U
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The information 21 supplies the best possible information on the

probl em (S ,T) in the class 
~~~~~

. Note that the evaluation of (Tf,~~.) means

that we compute the ith component of Tf in the eigenvalue decomposition of

K
1
.

I —
~~~~~

- . . - . .- . ---- —-—-- - 
-~



‘ .4

8.1

S. f l ( ’T  ~ t .\I. E R P OR A L~~)R ~T}C1S FOR LI~fl.AR CASE

~n thie section we g ive o nt i m a l e r ro r  a lo ri thins assum i ng that 5, ~

and T ar e 1 .nt dr “wrators.

_______ 
1

Sunpooc that f ~r t o r y  f C there exis~~ f such that

(3 .11 ~~ f i = ~~~ and T (f) = 0.

Then the al4or~ thm :1 (f)) = Sf is an optima l error al gorithm and

(3. ) e ( ; )  r (F~,S ,T) = d (21,S,T1~ I

Proof

Sinc e h f — f C ker 21 and H T hu  � 1 , we get from (5.2)

- S(f) H = Sh~~ � sup II S h H  = 
~~ 

d (2 1, S ,T) .
F~~ker 21, Th~~~l

Thus hv (2.l3~ e (~~) sup H ;(21(f)-S (f) d (~~ ,S,T). However (2 11) and

(2.15) state that eh) r(~~,S ,T) .~ ~ d (21,S ,T) wh ich proves ( 8 . 2 ) .

Let  2 [L 1,L2
,... ,L J ~ and card (21) = n.  To min imize combinatory

comp lexi t -.’ see Section 9) we seek optima l (or close to op timal) error algo-

a

rithm s wh ich ar e  l inear , i.e., ~(21(f1) a L ( f ~~ for some elements
1 1

‘ • . . ‘ ‘
~n .

We f i r s t cons ider  the case t h a t  k a dim - + ~~~. ~ote that for every

~r:- .atiu n operator 21, card (21) � dim
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Lemma 3.2

Let 21 = [L 1, L2 , . . .

If card 21 k = dim ~~ < + then d(21,S ,T) = (3 and there exis t elements

such that

~~ i~~1 

L jf)Sg . = Sf

is a l inear in terpola tory op t ima l err or a lgo r i thm . I

Proof

Since card 21 dim + ~, ker 21 = ~~ and (ker = 

~~~ 
From Lemma

5.1 we get d (~~,S,T) = 0. There exist g ,g , .  . . ,g such that ~ h i n ( g  ,g , . .  . , a , )
1 2  k k 1 1 2

and L.(g.) 
~~~

.. Then for every f 6 we get f = L.(f)g.. This shows

that ~(~~ f)) 
= Sf is linear and interpolatory . Sinc~~~~(c) 

= 0, -t is an optima l

err or al gorithm . I

Withou t loss of generality we shall consider throughou t this section

information opera tors

(8.3) 21 a 
~~~~~~~~~~ . . ,L

where n = card (21~ dim ) . In Sect ion 4 we showed tha t unless ker 21 ~ ker T
‘-1

is contained in ker S , d(21,S ,T) = + ~~~. This  a s sump t ion  h o l d s  if  C 21 wher e

* * * * t * *(3.4) 21 = [L 1, L2 ,. • ,L * ]  and L .(~~~
)

*
is d e f i n e d  b y ( 6 . 1 )  w i t h  n ind ex(S ,T) < + . Therefore we assume that ~

def ined  by (8.3) satisfies

(8.5) L
i 

— L . f or j  = l ,2 ,...,n , n n .
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Lert-ai 3 . 3

~-o i n p o s o  that thor : exist elements a
1 

, . . . ,g f rom .~ such that

(3 .o ’ L~~~~.
) = l . and T(g .) 0 f or i , j  l ,2 ,...,n.

a

Thcn ~~~~~~ ‘) (f) Sc . is a linear internolatorv ~ntinsj l er r o r  a l o o r i t h r n
L I 

-

i=l
and

e(~ ) rC,S ,T) = 4 d(.i,S ,T ) .  U

Pr o o t
a 

-~

Let  f = L . ( f ) g . . Then L . ( f )  = L .(f ~~L.(g.) = L.(f) for  i = l , 2 , . . . , n.
3 3 1 ~~~~J 1. 3  1.

jal j=1

Thus ~t(f 21(f) and :(~i(f)) = Sf which proves that : is a linear and inter-

‘)olatorv :iicorithm . Since T (f) = 0, Lenuna 8.3 follows from Lemma 3.1. I

Lemma 9.1 and 3.3 are not app l icable unless there exists an element f

w h i c h  shares the sane information as f and belongs to ker  T. We now show how

r find a l inear ontima l (or close to onti~nal~ err or al gor ithm in genera l .

Let

~ T(ker ~~ ~ T(ker

wh ere T(ker ‘JIY~ lin (L
1
, 

~~~ 
~~~~~~~~ Fr~ m LensrLa 6 .4  we know that

k = d in  T(ker  .~ ) ~
— n-n  . Then for every 6 34 we have

k

(L 1~ g g 0 
- ~~

i=1

where g
0 E~ T(ker 21~ and R 1

,R
2
,.. . , R..~ are linearly independent linear func-

tionals such that R (~h ’  ~ . . ~~~~i .1 i.j

(3.9) c a sup
II gi l



—

8.4

N o t e  th at  c dI -slo nd:; on Per  .~ m i  T but  is independent  of 
~ l dnd S. Fur ther -

more c a 1 and i f T(k er ~li is closed then c is finite . If is a Uilbert

snace then we can assume that T (Per ~t)~ is the orthogonal complament of

T(ker 21), = RJ~~
) 

~~~~~~~ and H -
~ 

= 
~ + 

i~ l~ 

(g,~~;)j
2

wh~ ch tmp lies c = 1.

Let = ker 21 (ker 2l)~~. Then f = f
0~~~ ~~~L~~(f)~~~ where f

0 
C ker 21

and L.(~~.) = 5 . . fo r  i , j  = 1,2 , . . . , n , 
~~~

. = 

~~~

. fo r  i 1 , 2 , . . . ,n , where 
~~~

.

is defined by (3 .4) . No te tha t Tf Tf + L .(f)~~ . s ince T~~. = 0.(3 1 1 1

ian +1Thus

k = dim l t n( T
~~ *+ i , . .  . ,T~~~~~~ .

* * *There exist linearly indeoendent elements 
~~ ,. .. ,~~~ such that T~~. = 0- n+ 1 n-k

and 
~~~
, € hin (~ ~~~~~~~~~~~~~~~~~~~~~ 

)
1
i = n + 1 ,...,n-k.

Let ~ = n-k. Since 34 = T(31
) there exist 

~~~~~~~~~~~~~ 

. .,~~~ such tha t

= T~~ . for  i = 1 2 ,.. .,k. Define
I m4-i.

(8.10) M = L .(~~.)) 
j,j  = 1,2,... ,n.

We show that ~-( is nons ingu lar . Indeed , let

c 1
L . ( ~~1

) ÷ ... + cL. (~~ ) a 0 for i = 1, 2 , . . . ,n .

*Then = c + ... + c C ker 21 and T! 6 T(ker 21). Since T~~. a 0 fori _ i a n

a 1,2 , . . .  ,man_k , we get T~ = c~~~1Tç~ 1 
+ . ..  + c~~T~~ = c~~ 1~ 1 +

+ C
k C T(ker  Tht . This implies C

1 
a a C = 0. Hence

a c ! + + c (ker 21) which yields c ... c 0. This proves1 1  m m  i m

tha t M is nons~ neula r. Define
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’ - = 1 t 1

- . . , ~ . . . . , ~. — 1 ‘ — : ‘ 
• ‘ ii

t e  thst L~ (~~~i for i , j  a 1,2 ,... ,m . We are read-.- to trove the main

n- en I t - ‘ th ~s se ct  i o n .

3 .

L et  a = irmdex (S ,T) � a = card (2~) < + ~~~ . L et  ~~~~~~~~~~~~~ be ue fined

by o.9~ an ! (9.11) respectively . Then

n

3. 12 )  ; 1. i(f  = L .(f)S g.
1. 1

i=l

is l inear , internolatory and an optima l error algorithm with in a factor of

C , I . e .,

(8.13) r(~.fl,S,T) � e(~ O �~~~ d(21, S , T) � c r(21,S ,T ) .  U

Proof
n

Since Tf = Tf + L .(f)T!. we get
0 L.~ j. 1.

ia 1

a

(3 .14) R .(Tf) = L.(f) R .(T ~~.) for j  a 1,2,. ..,k.
3 - 1 3 2.

j= I

Set f a  !~ for  i 1 ,2 ,...,n in (8.14) . Since ~~~ = 0 for i � n-k and

R .(T!.) = R (. ) = 5 . - f or i in , we get
j  ~~i j  1—rn 1—n ,J

( 8 . 1 5 )  [0 , 1] = M
1

M

where 0 is the k ~ (n -k)  zero m a tr i x , I is the k x k un i t  m a t r i x  and

a (R (T!~~) )  i = 1,2 ,... , k , j  a 1,2 ,...,n.
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Sinc e >1 is n o n s i ng i i la r  we have

(8.16) N
1 

= [0 ,I1M
1
.

From (8 .11)  and (8.16) we get

[~ g 1
,...,Tg j

t 
(N
t
) 

l
~ o , . . . , o , ~~~~~~~~~~~~~~~~

k

(3.17) T~~.
2. ‘— 3 1 3

jal a

We are read y to prove optirnality of ~ (2 1 ( f ) )  a L.(f)S~~. . Let

f = L .(f)g. for i G  3~. Since L .~~~.) = 5 . . ,  then 21(i) 21(f). Thus

a Sf is an interpola tory al gorithm. Let h f-f , hE ker 21. From

(3 .17 ) , (3 .14) and (8.8) we get

= Tf - 
~~ L . ( f ) 1~~. = Tf - ~ L . ( f )  R~ (T~~.Y7 . =

i=1 i=l j=1

k

= Tf - I L .( fR .(T~~.)) ~~~ . 
= Tf - R . Tf)~~. =

2. 3 1J 3 3 j
/ j=l

= (T f )
0

C T(ker  21’) .

Then Thu = II (Tf )
0 1! � c j j  TfII C , due to (8.9). Thus

— S f H  = H Sh il � c sup H Sh i l  ~~~ d ( 2 1,S , T) � cr ( 21,S,T).
h€ker 21

ThIl �1

Since f is an arbitrary element of 
~~~~ 

e(’p) �~~~ d(21,S ,T) and of course

e(~~ -~ r ( 2 1,S ,T ) .  Hence (8.13)  is proven which comp le tes the proof. U
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3. 7

Remark .~~~ 1

Th.-orem 2.2 ass~ r~ s us 01 the exis tence ot an L n t e r p  ilatorv il aoritlzn

wh ose  error is w i t h i n  a t  most a factor of two of the optima l error . Theorem

~~~. 1 show s imo w to c o n s t ru c t a I tricar interpolator’ : a I gor  thm whose err r is

w:thin a: most a f ac to r  of c of the optima l error . I

Note that if ~ = I then d e f i n e d  by~~~.l2) is optimal. This leads to

lorol larv 8. 1

I f  .
)

, is a Hilbert space then the al gorithm -; d e f i n e d  by (8 .12)  is a

l :near intertolatory optima l error algori thm and

e(~t) r(21,S ,T) = H ST 1
L1’(ker Jt) . I

Corollary 9.1 and Leimna 5.1 yield

Corollary 3.2

If ~ is a Hu bert spac e then

d(21,S,T) 2 r ( 2 1,S ,T ) .  I

The problem of linear optima l error algo r ithms was cons idered by many

authors includin g Bakhvalov [71], Bojanov 74]  and r 7 6~~, M i c ch e l l i  and

RivI in [77] and Smolyak [65]. They assumed that the solution operator S is

s linear func t ional and is a convex and balanced set. See also Golomb

and Wein berger 159] for  some rela ted ma terial  and disc u ss ion .
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9 .1

. . COMPLEXITY FOR THE L INEAR CASE

We specify our model of computation for l inear problems (S ,T) and

l inear in f or m a t i o n  operators  21 as f o l l o w s .  (For the general  case , see

Section 3 .)

Model of Computation for the Linear case

(i) Let P be a given collection of primitives . We assume that the

add i t i on  of two e lements  of ~~ f+g , and the multip lication of an

elemen t of ~~ by a scalar , cf , are pr imitive operations wh ich

belong to P. We also assume that every l inear func t ional L ,

L: 
~ l 

-. ~j .,  is a pr imitive operation wh ich belongs to P. ThIs

imp l ies that any linear information operator 21 L
1
,L2,... ,L 1 ~

of finite cardinality is permissib le where L1, L.,,...,L are

a rb i t r a ry  l inear f u n c t i o n a l s .

(ii) To normalize the measure of the complexity we assume that the cost

of the addition of two elements of and the multip lica tion of an

elemen t of ~ ., by a scalar is taken as unity . Note that for a

f i n i te dimens ional space ~~, in = dim 
~2’ 

uni t cos t means the cos t

of m scalar addi tions or multip l ica t ions .

Let coinp(L) denote the complexity of evaluating a linear

f u n c t i o n a l  L . Let 21 = [L 1, L2,...,L )t be a linear information

operator with linearly independently linear functionals L1,L2,. ~~~~~

card(21) = a. We assume that 21 ( f )  is computed by the independent

evaluation of L
1
(f)~ L2

(f)~~...~ L~ (f) and the informat ion  comp lexi ty ,

see (3.4), of 21 is given by



9.2

n

1 c~ y : ’ ~~2o 
L 

comp (L.~
i l

I f  c imp ~ I. .

~~ 

c~ then  comp(21) = 
~~C I which show s how the informa-

t I on complex itv depends  on th e  ca ru  in a l  it;! i i  21.

(Li ~~ 
‘ t - he a permiss ible aloorithm wh ich uses 21(f and finds an

C-ap p r ox i m a t i o n  to ~ S ( f ) .  Let  d ( t )  be the combinatorv com-

p lexit y of ‘;. For a l l  p rob lems  of practical interest , ~ has to

u se  ever’; L.(f), i. — 1 ,2 ,...,n , at least onc e and d(;) -~ n- I .

We rule omi t special problems and information operators , assuming

that d (~~ n-I for every al gorithm under consideration. U

Ex~Lmfl le °. I

Let P ~ar t thmetic operations , the evaluation of linear functionals ,

the evaluation of a function , the evaluation of a derivative L Let

21(f) a ,t ( x ) , f ’ ( x ) ~~ where f is a function in a space of d imension in , in �

Assume ~(21(f)) = x - (f’ (x)) 1f(x).

Case 1. a < . Let c om p (L )  = c 1, f or every linear functiona l L. Then

c omp (f(x ) a mac 1, comp ( f ’ (x ) )  = m2
c 1. We compute -p ( 2 1 ( f ) )  by solving the

Jon ropr iote Ur.t-ar system by Gaussian elimination . Thu s, by (ii) ,

d(~; 0(m
2) times unit cost. We conclude

comp ( rp) = mc + 
I 
+ d (~p ) .

Case 2. in = 
~~~. We add the s o l u t i o n  of a l inear sys tem to our set  of primi-

tives; let the comp lexity of this primitive be c
4
. Let comp(f(x)) = c,,

cotnp(i’(x)) c 3. Then comp (cp) a c2 + c3 ~- c , . I
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This mode l of computation is an idealized one since we assume that

every linear functional is a primitive operation . However , even in th is

idealized model we shall prove that the complexity of a linear problem (S,T)

as a function of e can be essentially any decreas ing function of e.
n

Let mp be a linear algorithm , i.e. c~(21(f)) = 
~ L~ (f) g

1 
for certain

i—I
elements g

1
,g2,..•,g from The element g. depends on 21,S and T but is

independent of f. Therefore the elements g
1
,g
2
,...,g can be precomputed.

The computation of ~(21(f)), given 21(f), requires at most a multiplications

and n-i additions which are primitive operations with unit cost. Thus, any

linear algorithm ~ is permissible and its coinbinatory complexity is at most

2n—1 . Due to (iii), every linear a lgor i thm is wi th in  a factor  of 2 of

minima l combinatory comp l ex i t y .  Therefore to make comb inatory complexity

small i t  is desirable to make the cardinality of 21 as small as possible

under the constraint that r(21,S,T) < e.

Fix 21, S and T. Recall that $(e) is the class of all permissible algo-

rithms p which use the information operator 21 and whose error is not larger

than C , e(c~) � e.

Le=a 9 . 1

Let r(21,S,T) < c. Assume there exists a linear algorithm in ~(c).

Then,

(9.2) 
(1 + + 2n ; 1)  � comp (~~,S~ T , e) 

~ 1.
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Proof

S ince a l inear  a lg o r it h m  is p e r m i s s i b l e, ~ (e)  is not  e m p t y .  The

c o m p l e x i t y  of a l inear algorithm ‘;, cotnp (~), is not  larger than comp (21) 2n-1.

Since comp(21,S,T,e) � comp (21) + n-i , (9.2) is proven. I

N ot e that if comp (21) n then (9.2) yields

(9 .3) 2n- 1 ~ comp (21,S ,T,e’f 1.
- 3n- i comnp(q)

In many cases comp (21) n wh ich y ields

(9. 4) comnp (21,S,T,e) comp(w) -~~ coinp(21)

for every l inear algorithm -;.

Fix S,T, and let € tend to zero . We seek the minimal cardinality of an

in format ion  operator  21 such that r(21,S,T) < c. Let V be a class of permissible

iaformatwn operators such that i f  r(2t,S) = 0. See ( 3 . 3 ) .  De f ine

( 9 . 5 )  m ( ± ’ , S ,T , e) = min [card( 21) : 21 6±’, r ( 21,S,T) < e).

We sha l l  say m (~- ,S,T,e) is the e-cardinality number for the problem (S,T)

it -. the class ?. Note that m~~~, S ,T , c) is a nonincreas ing func t ion  of c .

Let be the class of all l inear information operators 21 such that

card(21) + ~~~. (21 is permissible due to (i) ~.) Note tha t  U 
* ~~ 

where

: , see Sec tjofl 6 , is the class of all information operators 21 such that

21* C 21, card (21) � n. Furthernore U Y Y if index (S,T) 0.
naO n U

The class contains all i n fo rmat ion  operators of practical interest

since every information operator wh ich is to be computed has to have

finite cardinality. There f ore the c-complexity comp (’±’~~S,T,c) is the

inherent cotnplexity of the problem (S T).
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9.5

We show that m(±’
~~
,S,T,€) can be essentially ~~~~ 

decreasin g funct ion of

c - More precisel y assume that e belongs to the interval (O,eo
]. Let

(9.6) g:  (Q, c 0 ] 
—

be a decreasing function such that g(e0) 
� 1 and lim g(e) — + ~~~.

e-.o

Theorem 9.1

For every function g defined by (9.6) there exists a linear problem

(S ,T)such that

(9.7) g(e)—l < m(
~
i
~~

S,T,c) � g(e), Wc

Furthermore there exists a sequence {c.) such that c.E. (0,eo ], li.mn e . a 0

and

(9.8) m( ’f
~~

,S ,T , e
~

) = g(e.). I

Proof

Let g ’: [g(c 0
), + ~) — R~~be the inverse function of g. Define

= c~+1 for i < g(e0
) and 

~~~

. g
’( i )  for i � g(e

0
). Note that u r n  

~~
. = 0.

Let 34 
= 

~2 
lin(~ 1,~ 2,...) be an infinite dimensional Hilbert space

where ~~~~~ 5 .. Define T I and
1 3 ij

(9.9)  Sf = 
~~ ~~~~~~~~~
1

Thus S is a self-adjotht and compac t operator. Furthermore Sf~ ~~~ 
f or

i — 1 ,2 

* * 2
Note that n 0 where a index(S ,I). From (7.2) we get K1 

S and

the eigenvaiues of K1 
satisfy X~ — for i = 1 , 2 
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Let in m(i
~u
,S,1,c). This means there exists an information operator

such tha t card (21
0
) = in and r(21

0
,S,T) < e. Moreover for  ever’; 21 such that

card(21) < in , r (21,S ,T) � C. Due to Theorem 7.2 and Corollary 8.1 we know that

� r (21
0 ,S ,T) ~Z e .

Thus m+l 2 g (€
0

) + 1 and = g 
1

(m+l) < e which yields in g ( e )  - 1.

Furthermore for 21 a 21
m-l 

defined by (7.5) we ge t card(21 
l~ 

< m and

r ( 21  , S , I) = � a. This yields ci � g(c )  and proves (9.7).
tIm- i In

Let e. ~~~~~~~~~~ for i � g ( e 0). Then e. 6 (O ,ao J and u r n  e . = 0. Sinc e

r(21.,S,I) = 

~~~~~~~~~ 

C . we get mH
~~

, 5 , I , C = i±l = g(cj. This proves (9.8)

and completes the proof. U

Theorem 9.1 states that m (±’u
,S ,T,c) can be an essentially arbitrary

function of a. Recall that the c-complexity comp C?~~ S,T,e) of the proble m

(S,T) in the class is defined by (3.9). From Theore m 9.1 we can conc lude

that comnp(±’~~,S,T,c) can depend arbitrarily on e. To show this , assume

for the sake of simp licity that the comp lexi ty of evaluatin g any l inear

functional L
i 

is fixed , comp (L.) c
1
.

Theorem 9.2

For every function g defined by (9.6) there exists a l inear problem

S,T such that

(9.10) g(c)(c1+1) 
— c

1 
— 2 < comp (Y

~
,S,T,e) � g(e)(c 1 + 2) 

— 1, ~ie 6(o,eo) .  U

Proof

Consider the problem S,T defined in the proof of Theorem 9.1. Thus,

the e-cardinality number m — m( ‘f’
u
,S,T,e) satisfies (9.7) and the information

complexity 21 such that card(21) — in, r(21,S,T) < c , satisfies
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(9 .1l~ (g(c) — i) c
1 

< comp(21) m (r
~~
,S,T,c)c

i 
� g ( c ) c~~.

Since the problem (S,T) is defined in a Hilbert space , Corollary 8.1 assures

the existence of a linear optimal error algorithm ro , e(rn ) a r(21,S,T) < c.

Thus

( 9 . 1 2 )  in - I  + cornp(21) � coTn~ (’?~~ S,T,e) � cotnp ~ � 2m- l + conip (21).

From (9.11) and (9.12) we get (9.10). U

Theorem 9.2 states that comp(’±’
~
,S,T,c) is rough ly the same function of

e as the c-cardinality number mC
~
t
~
,S,T,c). Note that the function g can

tend to infinity arbitrarily fast as € tends to zero. This proves

Corollary 9.1

(i) There exist linear problems with arbitrarily hard complexity.

(ii) There are no “gaps” in the complexity func tions . I

This may be contrasted with the theory of recurs ively computable func-

tions where complexity gaps are known to occur (Borodin [72 )).

Remark 9.1

We assumed that 21 consists of linear functionals which are computed

independentl y and therefore comp(~~ — nc 1. For some information operators ,

21(f) can be computed faster than nc
1
. For instance assume that L

1
( f )  — f (x ~)

for distinc t points x~ , i — 1,... ,n , where f is a polyn omial of degree n — i .

Then the complexity of L~ is 0(n) but 21(f) can be computed in 0(n log
2
n).

In fact , Theorem 9.2 remains valid under the re laxed assumption that

coinp (21(f)) 15(n) where i is an increasing function cf a with l im v (n )  — + . I
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CHAPTER III

APPLICATIONS

In this section we apply the genera l theory to a variety of problems .

We consider rather simp le prob lems since we wish to show the importance and

wo±fulness of the ideas and avoid overwhelming the reader with technical

d~ taLl S

10 . APPROXIMATION IN A HILBERT SPACE

a ~~~~~~~~~~~~~~~ be an infinite dimens ional Hu bert space over

the rea f i e l d  R where ~~~~~ = 5 .. . Thus f € H  iff f = 
~~~~~~~~~~ and

1 3 1) 1 L

2 
i=l

(f ,~~~) < . Let be a nonzero sequence of real number s such tha t

ia I

� 
~
. for all i. Let

i.

(10 .1)  
~l 

~f :  f E H and ~
2
(ffl

2 
<+ ~3.

We consider an approximation problem defined by

(10 .2 )  Sf a f , f € ~~

where a 
~f :  f 

~ 
and Tf 

~ ~ i3 for

(10.3) Tf = ~ ~~~~~~~~~ ~~ = T(31
) C H.

i 1

We f i r st f ind the index n* a index(I ,T) . Since ker S to), (5.3’

yields A(T,S) ker T and ~ = dim(ker T). Let i0 be the largest index such

that 
~~~

. — 0 for j = 1 ,2,... , ~0 +1 ~ 0) . Then n = i0< + ~~~• Note that

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i.e.,
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k~ r ~ T = ~er  S. F r ’ u ~ (~~.3 )  we easily f i n d  t~~e L I1~;er ~;e O~

- 

-
~
— ~~~~~~~~~~

~ :.  i -‘

j~~ -e-l

K = ~T
1 

= I . ~;ot~ t ha t  K is s e l f  adj oin t and K~~. = ~~. . Thus is
1 ~~~. ~~~

c ’~~ a~ t i~~ l i ~ 
~ 

a ~ ~~ From Theorem 7.1 it foll~~ s that the pr bler~ (,T~

C.  :~ . v r  0 :~~L j  f l~~m = + ~~.
I

~e ~a n t  to f i n d  the  n — t b  op t im a l i n f o r m a t i o n  ~‘i f r  . n . S~ :~ctn

K~ ~~ ~~~~, ~ e ~ct from (7.5~ t h a t

(1) .~+ 
n~~~~

is  the n- th optima l in format ion  and due to Theorem 7 .2 and Coro1 l ~i r’: ~. l

~ have

( l d . 5 )  r ( 2 1 , S , T) = 
1

n+ 1.

The l inear op timal error algorithm -~ def ined in Theorem 3 .1  is g iven  by

(l0.~~~ ~~~~~f)) = ~~~~~~~~~~~~ e(~~) = _____

~ete that is the initial sec tion of f = 1 (f , .) .
L~ 1 ~ l

i= 1

We ana lyze  the complexity of this problem . Recall that is the class

of all linear information operators with finite cardinality. It is easy t s

see that the c-cardinality number in m(
~

t
~~

, I ,T , c) ,  see (9 .5) , i- ; equal  to

the 9nallest number n such that < c. Since there exists a l inear
r~~l

optimal error algorithm for any c we get bounds on the c- comp l e x i t y  of the

problem (S,T) in the class
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(IOJ (c
1
÷1)m(~ ,,, i ,T,e — 1 ~~ comp(:11 ,I,T,e) � (ci+2)m( ’2’

~~
,I,T,e) — 1

where c . i~ the complexity of evaluating a linear functional of the form

( f ,~~.). Note that m depends onl y on how fast 
~~~

. goes to infinity and due

to Theorem 9.1 , ~ = m ( ?
~~

, 1,T , c) can be essen t ial l y any decreas ing func tion

of a .
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11 . 1 N  TF~~I-2~ APPR X ~ 1AT ION

Let k be an nonnegative integer. Let 
~l 

= C i O ,l] for k () and

J :  fE C~~~
1

{0 , l ] ,  f
( k)

6 L [ 0 , 1])  w i t h  f j j  max f ( t )  H Let

and ~, = L ’O ,l]. Def ine

(11 .1) Sf f , T f = ~~~~ f
( k )

- (k) *Since  ker T = 1 :  f 0~~, we ob ta in n = d im (ker  T) = k.  Cons ider  an

information opera:or

( 11.2)  ~~~f )  [f ~ t~~) , f ( t 2 ) , . . . , f(t )

fo r  d i s t i n c t ~.€  iO ,1],i a 1, 2 , .  . . n  w i t h  n k.  Note tha t  ker ~ ~er T =

ker S.

For k = 0 , Examnle 6.1 yields r(~~,I,I) I for any information op era tor

with finite cardinatity . To assure convergence of the problem (I ,T~ we

assum e k � 1. We consider  two cases.

Case  1 , ii K.

Let £ (t, = fl t_ t
~ ) and gj t) = w ( t )  ‘

~~(t-t .)~~’ (t.)) for 
j l , 2 , . . . ,n .

Observe t h a t  g . ( t  ) a 
~~~ and Tg.  0. From Lenuta 8 . 3  we know that

I. j U U

n

(11.3) ;(V~( f ) ) = ~~ f ( t . ) g . ( t )

i—i

is a linear ir.terpolatory optima l error algorithm . Furthermore Sf(t) — =

g (t)w (t) where g(t) f(t
1
,t2,... ,t ;t) is the n- th divided difference of

f and gi j 1. This yields
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(1l.~~ e(~
) = r ( 2~,I,T) =

We seek op timal points t1,...,t wh ich minimize e(~ ) = e(~~,t1, t2,...,t ).

it is well-known that t 1 , .  . . ,t are uniquely defined by the zeros of the

1 . * T i-iCheb yshev polynomia l T (5(t+l)), i.e., ~ 2 cos (~ -.- + — rr) - 1 for

= l ,2 ,. . ., n and

* * 2(11.5) e(-~,t1
,... 

~
t
n
)

Case 2, n > k~

Micchel l i , R ivl in  and Winograd [76] show there exists a linear optima l

error al gorithm such that e(ro) = r (21, I ,T) and

(11 .6) r (~~,I,T) = fl q I~

where q is a perfect spline of degree k having at most n-k knots and q(t.) = 0
(k)

f or i — l ,2,...,n , = I. Furthermore if 0, ~ 
a 1 and

max ( t . 
1
-t .)  they prove

l~.i*~—l 
1+ 1

k
A k ’ k

(11.7) —
~~ � r ( 21,I,T) � — .j

~ 
A .

4 4

Furthermore the points t
1
,t2,.. . ,t which minimize r (21, I ,T) =

r (~ ,I,T; t
1~~

t
2~~ 

,t )  are the zeros of the Chebyshev perfect spline of

degree k with n-k knots and r(21,I,T; t1,...,t
*
) is the n-width of 

~ 
in the

sense of Gelfand (Tichomirov [69]) and

* * * k(11.8) ~~~~~~~~~~~~~~~~~ ck n h , v n k ,

where 0 <
~~k 

� C
k f l  ~ Ck < + ~ for some constants !k and Ck~ h ~~~. I



11.3

We analyze the comp lexity of uniform approximation . Let ~ be the

class of a l l information operators ~ such that ~l(f) [f(t
1
) ,f(t2

) , . 
~
t
~
(t
n
) ]

t

for  any distinc t t . and any n. If < a then choose n k and ( 11.5)

ass ures that the a-complexity of the problem (I,T) in the class satisfies

( 1 1 . 9)  (c 1
+ l ) k — l ~ comp( .~, I , T , c) � (c

1+2 ) . k — l

where c
1 

is the comp lexity of one function evaluation . If � ~, l e t

n = n (e) be the smallest integer such that

(11 .10) n

Due to (11.8) we get n (c) � + 1. ~ e have

(11.11) (c
1
-4-l)n (c)—l � comp (~~,I,T,c) � (c1

+2)n(c) — 1.

Note that (11.11) is tight for c
1 

>~ 1. The conditions (11.10) and (11.11)

state that

comp( ? ,I,T,a) o(~— )
This shows that asymptotically in a , comp lexity decreases as the regularity

of the class  of problem elements  increases .
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12. E’.ALUAT ION OF INTEGRALS

Let k be a nonnegative integer . For k a let = (~~0,1] and for k � 1

- - (k) . . .let = j : f Us piecewise continuous on [-1 ,1];. Define 
~2 

= R ,

a L 2 [ - 1 , 1 and

(12.1) Sf f(t)dt and Tf a 
~~

- f (lo)~

Cons ider the information ope rator ~i given by

(12.2 ) ~ (f) =

for -1 � t
1 

t~~ < ... t � I where j a I for k a 0 and j - l  < k for  k � 1.

* 1k- li
~ote that card(’.~) jin. Since n = diam A(T,S) = k - 

~~~~~~ 

we have to ass ume

jm � k -

For k = 0 i t  is easy to verif y that r(21,S,I) = no mat te r  how many

function evalua t ions are known . To assure convergence of the problem (S,T)

we have to assume k � 1. For k = j  th i s  problem was considered by B o j a n o v [7 6 ]

who showed the existence of a l inear opt imal  error algor i thm ~~. H is anal ys is

is based on Smo lyak ’ s lenmia (Smolyak [65], Bakhvalov [71]). Note that Theorem

8.1 and Corollary 8.1 assure the existence of a linear optimal error algo-

r i thm def ined  b y (8 .12)  for  any j and k.

For the sake of simpl icity we assume here that k = j. Then the error

e(p)  — r ( 2 1,S,T) is given by Bojanov ,

( 12 .3)  r (21,S ,T) =
~~ (e 1

-l)2~~
1 

+ 

( l~ t
rn
)

2k+ l 

+ E~ 

m~ l

i— i

where E
k is the min imal error of approximation of the function by
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p~~~vn o m i a l s  t lower dti ~rce in the space !2~ From Akh icser [56 , p. 191 we

~z e t

_________ 1(L . 4) = 
.~. 2 k + l ( 2 k ’.)  2 4 k 

( 1 + o(kfl.

How should  th e  o o i n t s  t 1, t 7 , t be chosen so as to m i n i m i z e  the r ad ius

r(-’,S ,T~? Bojanov shows

(12.5) mm ~~~~~~~~~~~~~~~~~~ h
k 

E
k

where h = (~_ i +
2
~
/
~~±! . = !(1 + 0(m) ) and the optima l points are

equal to

* l ’ ’k)(12 . 6) t . = -l ± (E~ (2k+l) 2) h + 2(i- l)hk in m

Note that t
1
,. .., t are equa l l y spaced .

Observe that cotmnonly used Gauss quadrature is not an optimal error al~ o-

r ith ia  since i t  is based on the zeros of o r thogonal  pol ynomials wh ich are not

equally spaced.

We a n aiy z e  the c o m p l e x i t y  of eva lua t ion  of i n t e g r a l s .  Let  be the

class of all information operators of the form (12.2) for any distinc t t .,

any in , and with k = j. Let n = m ( e )  be the  s m a l l e s t  in t ege r  such tha t

(1 2 . 7)  hk 
E < a .i n k

For small a , m —~j-~ ( 1 + o( 1 ) ) .  From (12 .7) we get  bounds on the c-comp lex i ty
4€

comp (~~,S,T,c)

(12.8) m(c ) 

~~ 

0( f (i~~~) + km (a)-l � comp (~ ,S,T,e) � m ( e ) L c ( f
~~

’
~~~~~

) + 2~~~(c)-l
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where c(f~~~~~~) is the complexity of one e v a l u a t i o n  of f
(i l) For small

a and c(f(UH c
1 

1, (12.8) becomes

(12 .9) comp(’~,S,T,€) 
~ 

C
1

.
4€

This shows that asymptotically in a, the a-complexity comp (~~,S,T,e) is a de-

creas ing function of the regularity parameter k.

We conc lude this section by the follow ing remark. It is well known

that it is impossible to find an c-approximation to the integral of f knowing

only the values of f and/or its derivatives at arbitrary but finite number

of p o i n t s .  The argument is tha t adding , for  instance , the polynomial

— c fl ( t- t .)
2

~ to a func t ion  f , one does no t change the inf ormat ion

on f , ~l(f) = ~ (f+u ), but the value of integral ~f (f(t) + w(t))dt can be

arb itrar ily differen t from the integral of f. In our setting we rule out

this argument since we consider functions whose kth normalized derivative

is bounded by one. We show that provided k � I, then the integration prob-

lem can always be solved to within any € and that at wors t the comp lexi ty

goes as l ’ e.

Compare with the result of Bojanov [74 ] who shows that for analytic f

i n
and T 1, comp(~i’,S,T,e) O(c

1
(log — ) ) .
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13. E VALUAT ION OF A FUNCTION AND BOUNDARY VA LUE FROBIIIIS

Let = = f :  f is continuous on 0,1 ] and 1’ E L~~( ) ,l)~ with the

uniform norm f~ =max f(x) . Let = L~~(0 , I) . Define
1~x�l

I
( 13 . 1 )  ( S f ) ( x )  = G(x ,t)f (t)dt , Tf

a
wher e ; � 0 , C t 0 is a continuous function on 10 ,11 x T0 ,11 . The informa-

t ion ope ra to r  ~ is given by

( 13 .2  ~ ( f )  = [f(t 0
) ,f(t

1
) ,. .. ,f (t~~~~~~ ) ]

t

where  t . = iii , h = I (n+ 1J and card (~l) = n+2.

Thus we want to approximate the function (13.1) knowing the value of

the intcgrand f at some points and the bound f’ 1. Define

f(t
0
) 0 t < h ’2 ,

(13.3) f(t) = f(t .) t . — h ’ 2 � t < t . + h 2 , i = 1, 2 , . . .  , n ,

f ( t ~~~1
) t

+1
_h

~
2 � t � I .

Thus f is a p iecewise  cons tan t  function . Note that f(t
~
) = f(t~) and Ti = 0

almost anywhere . S ince f does not belong to we cannot use Lenuna 3 .3 .

Howevcr we can still show that the linear algorithm

h/2 1
(13.4) ~(~1(f)) = Sf — f ( t  ) f’ G(x ,t)dt + f(t ) 

~

‘ 
G(x,t) +

b rH- i l-h/2

n. t~ -i-h 2

+ f(t ) ~ G(x,t)dt
t —h 12

i—i  i

is an optima l error algorithm. Indeed
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n I~. ÷h 12 t .I 1 i+l
Sf - ;(~l ( f ) ) G ( x , t ) ( f ( t ) - f ( t . ) ) d t  + G(x , t ) ( f ( t ) - f ( t . ) ) dt

i 0  Ltl I 
t~ +~1 ’2

Since f(t) — f(t.) f(t ,t .) ( t - t . )  , with the f irs t divided difference

I f ( t ~ t~
) I � 1 , we ge t

1
(13.6 ) Sf—cp (~~(f)) 1 G(x, t)q(t)dt = JJ Sq

0

where

t — t . t .  � t � t .+h2
1 U 1

(13.7) q(t)
t . — t  t .+h/2 � t � t .

i+1

Note that q(t .) a 0 for  i = 0,1,...,n+l and Tq a +l almost everywhere . Thus

q E. ker ~t and JJ TqJ~ 
� 1. From Lenuna 5.1 we get

Sf—~~(~l(f))~ �~~ d(~ ,S,T) � r(~t,S,T)

which proves optitnality of ~. It is easy to verify that

(13.8) e(~) = r(~ ,S,T) — Sq Jj a c~h

where c C
n
(G) and there exist two constants £ = c ( G )  > 0 and c = c ( G )  < +  ~

such that c � c � c for all n.
— n

We analyze the complexity of evaluation of (13.1). Let Y be the class

of a l l  information operators of the form (13.2) for some n. Let n n(c)

l~e the smallest integer such that

C
( 13.9) —a-— .—

n+1

Due to (13.8) we get c(G)/c < n(€) + 1 � c ( G ) / e  + 1. Then the €-complexity

cotnp(’~,S,T,t) satisfies
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(l3.l0~ (c
1
+l)(n(c)+2) — 1 � comp (? ,S,T,c’) � (c

1+ 2 ) ( n ( c ) ± 2 ) — 1

where  c 
1 

is the  c~ m r O e x i t v  o~ one f u n c t i o n  e v a l u a ti o n . F ’r  s m al l

c and c 1 1 , ( 1 3 . 1 0 )  becomes

(13.11) comp(~,S ,T,e)

it is possible to generalize this result and to show that if

f :  f E. ck~~~(o,l) and ~~~~~ L~ (0 ,l)3 and Tf 
~~ 

f~~~ there ex ists a

linear optima l error algorithm ~; wh ich uses the in fo rmat ion  ( 1 3 . 2 )  w i t h

n � k such tha t

(13.12) e(~~ r(~~,S,T) = O(h
k
), comp( ? ,S ,T,e) =

Fur thermore  i t  is p o s s i b l e  to show tha t  fo r  any d i s t r i b u t i o n  of po in ts  t .

in (13.2) there exists a positive constaut a
k 

such that r(~l,S ,T) ~ ak
h
k 

for

all n k. Thus choosing the points equally spaced does not change the

dependence on h.

We note that the solution operator S defined by (13.1) can describe a

boundary va lue  problem.  Indeed , if G is the Green func t ion  of a boundary

~;alue problem then ~i(x) = (Sf) (x) is the solut ion of this problem. For

instance if

( t(1—x) 0 � t

(13.13) G(x,t)

~x(l—t ) x � t ~ 1 ,

then ‘~~ satisfies the boundary value problem

~ ~“(x) — -f(x) for x E (0 ,1)
(13.14) ~( ~(0) — ~(1) 

a 0
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14.1

14. EVALUATION OF DERIVATIVES

Let a Ck(_l l), 3~ = C
k l (..l ,l) and ~~~ C(-1,l) for an integer

k � 1 with the uniform norm f 
~ 

— sup (f(t)f. Let
- l<t<l

(l4.1) SI — f’ (0), Tf 1 
f
(k)

and let the information operator ~t be given by

(14 .2) ~t(f;h) 
2 [f(O),f (h) ,f(_h),...,f(nh) ,f(_ nh)J

t

where the parameter h €. (0 , 1/n) , card(s) = 2n4-l.

Thus, for a given h we want to find an approximation to f’(O) kn~
jing

function evaluations at the points jh f or j a O ,±l,...,±n. Note that

round-off error analysis indicates that Ii should not be too small.

For the sake of simplicity we solve this problem for k 2n+l. Note

that ker ~l fl.T to) ~ ker S. Let

(14.3) g~~(t) ( t j~~~~~ (jh ) where w(t) t 1 (t
2
-i
2h2)

for j — 0,±l,.. - ,±n. Note that

~ 
j+1 , 2

(14 .4) g~ (O) 
a o, g~ (Q) jh(n.i-J)~~(n—j)t 

j ±1,... ‘±~~~
•

Since g~ (ih) ô~~ and Tg~ 0, Le=a 8.3 assures us that

n n
(n ’) 2 1)~~~

1
(14.5) q (!R(f;h)) — ~~ f ( j h ) S g~~(t)  — 

~ L j(n-i-j)~~(n—j)’. 
( f ( j h ) — f ( — j h ) ~

j—n i—i

is a linear interpolatory optimal error algorithm. The algorithm (14.5) is

S -~
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as the n t h  c e n t r a l d i i  f er e nc e  ~rmu la .  We seek e (~~i . S ince

— f(jh)~z .~ t )  ~~( t l  i~(t) where ~ (t) is the kth  normal ized d ivided

n

d i f f e r ~ nce of f and g ( t  I , then

f’ (0) — c (~~( f ; h ) )  g ( 0 ) u )  (0) .

This yields

( 1~~.6) e (;) r ( 1~, S , T) = (n~)
2
h

Th
.

Wcrschulz r77b ] considers the dependence of e(~ ) on h and says has

order  ~f accuracy p if e(~~) 
= O(h~). The equa t ion  (14 .6)  agrees w i t h  h is

resi~lt that every al go r i t hm wh ich uses the i n f or m a t i o n  (14.2) has order of

accuracy n~ greater than 2n.

We ana l yze the c o m p l e x i t y  of e v a l u a t i o n  of de r iva t ives . To f i n d  an

c -aPprox ima t ion  to f ’  (0 )  fo r  every f 6 we require

2 1n
(1~~.7) e ( ; )  = (n ’.) h~ < a .

~ iti~ h , a f ixed this determines n. Note that h migh t be chosen as small as

possible consistent with good round-off. If (14 .7) holds then

(1. .8) (2n±l) (c
1
+1) — I � comp (~Jt,S,T,c) � (2n+l)(c

1±2) 
— 1

where c
1 

is the complex i ty  of one function evaluation .
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15. NONLTINEAR EQUATIONS

There exist problems for wh ich we usually do not use fixed information

~~. For ins tance , the solution of a nonlinear equation f(x) = 0 is often

approx imated by an iterative algor ithn~ik~ich repe titively uses an informa tion

opera tor ~ (f;x.) where x .,, i = 1 ,2,..., is a current approximation to the

sought solution . Information operators of the forts ~l(f ,x.) are studied in

Traub and Wo z~niakowski [ 7 7c ] .  Here we wan t to show that it is also possible

to deal with non linear equations for a fixed information operator . We shall

show that some known iterations are “asymp tot ically” optimal error algorithms .

Since this problem is nonlinear we cannot use the results of Sections 4

through 9. Omr analysis will be based mostly on Section 2.

Let

(15 .1) f :  D C B1 — B
2

where D ~x: ~j x~~ < 2R) and B
1
, B2 

are Banach spaces over the real or corn-

p ldx fields of dimension m , m a diin(3
1
) = dim(B

2
) ,  I � m ~~ + ~~. Let 3..~ be

the class of all operators f which are k-times differentiable in the Frechet

sense on D, k � 2. Define

(15.2) = 
~~

(A
2
,A.K
) — tf: f E.. and there exists n’ ~(f),Jj ~JJ � R, such

that f(ry) — 0 and I I I’ fl~
1 f”(x) 

< A
2 
and

f~ ( ) ~~
1 f~~~ (x) <~~~ for all x€ D)

for constants A
2 
and A

k 
which satisfy the condition

(15.3) 21~Ak ( 3R) k_ l + 2A2R < ~..
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The solution of nonlinear equati’n: , in is described by

(15.i~ ~ (f ~ = C 1
(0) 

~~
. B ,,.

We f irst show t h a t  S is veil—defined , It suffices to -rove that

f x ~ 0 for II x~ � R has a unique solution a = f
1 (0~~, fo r f 6 Le t

(15.5) R .(x ,v ;f) f~~~~(y + t(x-y))(x-y)~ ~~~~~ dt
0 3

f o r  x ,y 6 D and j � k.  Then

(15 .€ )  t ( x )  = f(-y) + f’(n’) (x— ~ ) ± R2
(x ,~j;f)

and f(x) = I) is equivalent to the equation

=

From ( 1 5 . 2)  and (15 .3 )  we ge t  for  x f f  ~

ii x-~4~ � A
2 jf x-~~~ A~ R ff x-~~ j ~~

which imp lies x = 
~~. Thus S is well-defined by (15.4) and ~, S(f) satisfies

the non l inear equation f(a) = 0.

Def ine the information operator

(15. 7) ~ (f) 
a [y( f )  f ( y ( f ) )  f (k l)

(~~(f)) ]
t

where y = y(f) is an approximation to the solution ~ a S(f), y f J � R.

We want to f ind d(~l,S) ,  the d iameter of information ~ for the problem

S. See (2.9).
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Lenuna 15 .1

2A,
(15.8) d(~~,S) 

~ 1 A R  sup (
~f f y(f)-S(f) j~ ) .

2 f€3~

Proof

Note that ~ (f) 
a 

~l(f) imp lies ?~~~ (y)  f
(J )
(
~~~
) for j 0 ,l ,...,k-l and

f , f €. ~~. Then

f(x)—f(x) = R~~(x ,y , f_f) .

Since f(x) = 0 is equivalent to f(x) R.~(x ,y , f~ f) and f s a t i s f i e s  (15.6),

we get

(15.9) x = H(x) ~ + f ’  (~ ) 1
~~~~(x ,y , f-f) - R

2
(x ,~~,f)).

We show that H is a contraction on J II x-~~f f � 
~) I y-~If ~~. Indeed ,

� 2A~~f f x -y J f ~ + A2 ff x-~~f~ � 2A
k
(~ )

k
fl y-~~j~ 

+ ~A~~j f y-c~~ 
�

~j f y-~~ (6A,~ (3R )k~~ + A
2

R) � 
~f f y~~~ f due to (15.2) and (15.3) Furthermore

~f H’ (x)jf � 2kA k If x-yf~~~ + 2A
2 ff x-~~f j � 2~~~~(2R) k~~ + 2A

2
R < 1

due to (15.3). Thus the equation (15.9) has a unique so lut ion  ,

I~ I! �~~J f y-
~~f j � R. Set x - ~ in (15.9). Then 

~-~f J � 2A~~f f ~-yf~ 
+

which yLelds
3 k

2A
k
(
~ jI y-~~f f~
1 - A 2

R

This proves (15.8) and completes the proof. U
We want to prove that (15.8) is, in general , sharp with respec t to J~r(f)-S(f) ~

Lesuna 15.2

If y ( f )  approaches ~ S(f) then
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(15.10) diam(~t,S) = 2A,~ sup ~~ 
y(f)-S(f) INl + o(jf y(f)-S(f) I I ) ) .  I

~~~

Proof

The equa t ion (15.9) for x = ~ yields

(15.11) 
~
-
~ I t � 2A~ f f y(f)-c4~ + A2 ff ~~~

S ince ~~ = O(ff y(f)_~~f j~o), (15.11) can be rewritten as &..o~j �

2Ak 11 y(f)-(yf~~(l + o(1)). Since this bound is sharp we ’ve proven (15.10) . I

Leusna 10.2 states that the diameter diam(~l,S) is roughly equal to

sup ff y(f)-S(f) where k is the first omitted derivative in the informa-

tion (l~ .7).

We establish asymptotically optimal error algorithms for the prc’5lem S.

Let

(15.12) f(x) = f(y) + f’ (y) (x-y) + ... + (k~~)’ 
f
(k
~
l) (y) (x~y)

k J

Note that ‘11” = ~l(f). From (3.10) in Traub and Wo~niakowski [77b] we know

that

k(k-l) k-2

(l(~)~~
l ~“~ c) 11~ 

A2 + 2 Ak (2 11  y-~i I )  

~ 
(y).

I - A2 y-~ f..kA,K
(_ I

Thus £ E~ ~~(A
2(y) ,

O) where A2
(y) = A2 + O( ff y-~yff ). Define the algor ithm

(15.13) q~(~i(f)) = S (f) ,

L .c., ~ (~l(f)) is a unique solution of the nonlinear equation f(x) = 0. The

(15 .13) is known as the interpolatory iteration I~ and was con-

,
~~ i.’r~d i traub iid Woz’niakowsk i ~~~~ 77a , 77b]. Note that for n = 2 we



15.5

get one step of Newton iteration since f(x) = f(y) + f’ (y) (x-y) and

cp(~t(f)) ~ a f ( y )  - f ’ (y) 1
f(y).

Lemma 15.3

(i) For any y(f) the error of cp is bounded by

(15.14) e(p) � 
1-A R 

sup (~f f y(f)-S(f)ff )
k

2 fE~30

(ii) If y(f) approaches o = S(f) then the algorithm 
~
p is asymptotically

optimal, i.e.,

(15.15) e(~p) ~~r(~l,S) 
~~

A
~R 

sup II Y (~
)— s f) It~. I

fE~ Q

Proof

To prove (15.14) we repeat the proof of Lemma 10.1. Note that R,~(x,y,f-f)

in (15.9) for f defined by (15.12) has the bound R.K
(x ,y)f_ f) � A.~ J f x-yjj

k

which yields (15.14). The same argument enables us to conclude that

e(p) 
~ 
A~ sup y(f)-S(f) f or y(f) approaching ~~. Thus, from Lemma 15.2

I
we get

e(p) ~~~ d(~ ,S) ~~r(~l,S)

which proves (15.15). U

The algorithm (15.13) is known to have maximal order of convergence

among all iterations using the information of (15.7); see Traub and Woz’niakowski

C76a). Lemma 1.5.3 states that this algorithm has asymptotically optima l error

in the class

Complexity of the algorithm (15.13) and its dependence on k were con-

sidered in detail by Traub and Woz’niakowski [77b].
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CHAPTER IV

CONCLUDING REMARKS

16 . COi~1ENTS AND EXTENS IONS

This is the first of a series of papers in which we develop an informa-

tion based theory of optimal error algorithms and of problem comp lexity .

We conclude this paper by a partial lis t of interesting problems and exten-

sions wh ich will be studied in the future .

1. In this paper we restrict ourselves to general information

operators ~ = ~ (f) and illus trate our concepts and results by

s imp le examples . Future papers will be devoted to complete analy-

sis of an app lication area in this general framework. We w411

include the effect of computing ~1(f) approximately, problem con-

dition , algori thm s tability , and the cost of arithmetic precision.

2 . For some problems information operators have additional structure .

For ins tance , “ i t e ra t ive” in format ion  operators ~ = ~
1
~(f ,x. 

~~~~~ 
,x . )

depend on current  approximat ions  to the solution and they are used

for ~ m ,m+1 The parameter m measures the size of “memory”

used in the process. For m = 0 we have information operators

“without memory”, for m I “wi th memory”. See Traub and Wo~
’niakowski [77q1 .

3. In Chapter 2 we deal with linear information mostly of the form

~ (f) — {L1
(f) ,L

2
(f) ,...,L (f))t def ined by n independently g iven

linear functionals L
1,L2,. 

. . ,L .  A natural generalization is an

“adaptive” linear information operator of the form
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~ (f)

where L. depends linearly on its first argument. This form

enables us to use the previously computed functionals to deter-

mine the next functional. Such adaptive information is widely

used in practice in a number of application areas.

4. In Chapter 2 we deal with linear problems defined by two linear

operators S and T. The restriction operator T defines the domain

of problem elements. In several applications we take T = 
~~~

the kth normalized derivative operator, and we show that complexity

decreases as the regularity parameter k increases. We believe this

to be a general phenomenon.

5. For some problems the domain is defined by a two sided inequality

on T, i.e., [f € o <C � Tf 
~I ~ 13 for a constant c.

Sometimes is defined by more than one linear operator, e.g.,

a {f € .3i : c~ ~ 
j J T~f~ � 1, for j = 1,2,. ..,m) for nonnegative

constants c
1
,c
2
,.. ,C .

6. All basic results of Chapter 2 are for a linear operator S. Much

of the linear theory can be generalized to nonlinear operators S.

For instance, assume that there exist two linear operators S
1 
and

S2 
such that

(( S1
(f

1
— f

2
) � f S(f

1
)—S(f2

) S2 (f 1— f 2 )

f or all f 1 and f2 from the domain of S. Then
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d(~i,S1) 
� d(~ ,S) 

� d (~l,S2)

and one can apply the linear theory to S
1 
and S

2 
to derive lower

and upper bounds on the diameter d(~ ,S) and complexity of the

problem S.



ACKN~~JLEDGMENTS

We wish to thank J. Bentley, A. Bojar~czyk, H. T. Kung, M. Sapsford ,

M. Shamos, B. Weide, and A. Werschulz for their comments on the manuscript.

We are grateful to Dorothy Josephson for her accurate and speedy typing.



G. 1

GLOSSARY

We summarize below basic concepts used throughout the paper . We list

a symbol , its meaning , and the section reference where this symbol appears

for the first time.

Symbol Meaning ection Reference

S the solution operator, sometimes called the 2, (2.1)
problem, S: -‘ 

~2 
and c

the domain of S 2, (2.1)

linear space, C 2

the range of S 2

c error parameter , c > 0 2

x = x(f) e-approximation, f J x-c~ JJ < e , 2 , (2.2 )

f the problem element, f €. 2

cy the solution element ~ S(f)  2

Ut the information operator, Ut: D~ 
-. 2, (2.3)

the range of Ut 2, (2.3)

d(Ut,S) the diameter of information Ut for the problem S 2, (2.9)

r(Ut,S) the radius of information Ut for the problem S 2, (2.10)

~p algorithm, ~p: Ut (~30) -. 2

e(cp) the error of algorithm cp 2, (2.13)

~ (Ut,S) the class of all algorithms using the informs- 2
tion Ut for the problem S

interpolatory algorithm 2, (2 .16)

e (Ul,S) the optimal error 2, (2.18)

~oe optimal error algorithm 2, (2.19)

central algorithm 2, (2.23)
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Symbol Meaning ection Reference

P the set of primitives 3

comp (Ut(f)) the information complexity of computing Ut(f) 3
where Ut is a permissible information operator

comp(q,(y) ) the combinatory complexity of computing y 3
where p is a permissible algorithm

~(c) the class of all permissible algorithms for 3
which e(cp) < £

r(Ut,S) � e the problem S with information Ut is c-non- 3
computable

r(Ut,S) < c the problem S with permissible Ut and 3

~ (e) ~ ,t~ is c-computable with respect to P

comp(cp) the complexity of an algorithm cp 3, (3.1)

comp (Ut,S,e) the €-complexf t ‘ of the information Ut for the 3, (3.2)
problem S

cp
0C 

optimal complex~~ ~igorithm 3, (3.3)

comp (Ul) the information complexity 3 , (3.4 )

a class of permissible information operators 3, (3.8)

comp(Y,S,c) the c-complexity of the problem S in the class 3, (3.9)

Ut1 C~ )t~ key Ut
2 
Cker Ut

1 
4, def. 4.1

Ut
2 

ker Ut
1 

= ker Ut
2 

4, def. 4.1

A~ algebraic complement of A 4, (4.2)

codim A codimension of A 4, (4.2)

card (Ut) the cardinality of the information Ut 4, (4.5)

T the restriction operator , T: -. 5, (5.1)

the range of T 5, (5.1)

d (Ut,S,T) the diameter of information Ut for the problem S
(S ,T)

index(S,T) the index of the problem (S,T) 5 , def. 5.1
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Symbol Meaning Section Reference

A(S ,T) algebrai c complement of ker T fl ker S in the 5 , (5.3)
space ker T

* * *basis of A(T , S ) ,  n index(S,T) 5 , (5.3)

information operator ~ such that card (Ut*) 6 , (6.1)
index(S,T) and ker Ut fl ker T C ker S

~1’ the class of all information operators Ut such 6
that Ut and card (U~) � n

the inverse operator of T 6 , (6 .3)

d(n , S ,T) the n- th minimal diameter of information 6 , (6.6)

n- th optima l information 6 , (6 .7)

K the linear operat or K = ST 1 6 , (6.9)

b(m ,K) the m- th minima l norm of the l inear operator K 6 , (6.9)

B m- th minimal subspaca of the linear operator K 6 , (6.11)

d(S ,T) the diameter of problem error 6 , def.  6.2

d(S ,T) + the problem (S ,T) is s trong ly non-comput~b1e 6 , def.  6 .2

d(S ,T) � 2e the problem (S ,T) is e-.non-computab le 6 , def .  6.2

d(S ,T) — 0 the problem is convergent 6 , def. 6 .2

m(Y ,S ,T , e) the ~-cardi nality number for the problem (S , T) 9 , (9.5)
in the class •‘f

the class of all l inear information oper ators 9
Ut such that car d(Ut) < +  ~
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and nonlinear equations in a finite or infinite dimensional space . Tradition-
ally algorithms are often derived by ad hoc criteria. The information based
theory rationalizes the synthesis of algorithms by showing how to construct al-
gorithms which minimi ze or nearly minimize the error. For certain classes of
problems it shows how to construct algorithms (linear optimal error a1~orithms~~
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20. abstract (continued)

.which enjoy essentially optimal complexity with respect to all Possible al-
gorithms. The existence of “strongly non-computable”problems is demonstrated .
In contrast with the gap theorem of recursively computable functions we show

- . that “every monotonjc” real function is the complexity of some problem.
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