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Abstract

A generalized connection network (GCN) is a switching network with N inputs and N
outputs that can be set to pass any of the NN mappings of inputs onto outputs. This
paper demonstrates an intimate connection between the problems of GCN construction,
message routing on SIMD computers, and ~ esource partitioning.TM A GCN due to Of man

- . 
ct 41-965] is here improved to use less than 8N log N contact pairs, making it the minimal

known construction.

Any GCN construction leads to a new algorithm for the broadcast of messages among
processing elements of an SIMO computer , when each processing element is to receive
one message. Previous approaches to message broadcasting have not handled the
problem in its full generality. The algorithm arising from this paper’s GCN takes 8 log
N (or 13 routing steps on an N element processor of the perfect shuffle (or
mesh-type) variety.

If each resource in a multiprocessing environment is assigned one output of a GCN,
private buses may be provided for any number of disjoint subsets of the resources.
The partitioning construction derived from this paper’s GCN has 6N log N switches,
providing an alternative to,~”banyan networks~ with 0(N log N) switches but incomplete
functionality. r -
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1. Introduction

A generalized connection network (GCN) is a switc hing network with N inputs
and N outputs capable of implementing any mapping of inputs onto outputs. In other
words, each output may be connected to any one of the inputs, for a total of
different connection patterns. Thus a GCN is more powerful than the connection
networks of 8enes [1965] et al, for a connection network handles only one-to-one
mappings of inputs onto outputs (N! settings). An important paramater of any GCN is
its delay, tha t  is, the maximum number of switches that separate any input-output pair.
For example , an NxN crosspoint switch is a GCN with N2 contact pairs and unit delay.
Ofman’s (1965] construction has 5 log N delay and iON log N contact pairs (all
logarithms in this paper are base 2). Ofman’s construction is here improved to 4 log N
delay and 8N log N contact pairs . Other GCN results are a construction with 8N log N
contact pairs but O(N log N) delay (Pippenger [1973]), a construction with 0(N513)
contact pairs (Masson and Jordan [1972]), and a non-constructive proof (Pippenger
[19773) that GCNs need only 0(N) more switches than connection networks. (The best
connection network construction has (6/ log. 3)N log N = 3.8 N log N contact pairs --
Benes (1965).)

Any GCN construction leads to an algorithm for the transfer of data among
processing elements of an SIMO (Single Instruction stream Multiple Data stream: Flynn
[1966]) computer. This data transfer is modeled as the routing of messages , each
orig inating at a processing element and destined for some subset of the other
processing elements. There have been many papers treating particular message
routing patterns on particular networks (Stone [1971], Siegel (1976], Orcutt
[1976], . . . ). The algorithm based on the GCN of this paper performs near -optimally
on any message distribution pattern in which each processing element receives at most
one message, on several popular SIMO interconnection networks. For an N element
computer , the algorithm requires 13N 1/2 routing steps on a square mesh-type array, 8
log N routing steps on the perfect shuffle , PM2I, and WPM2I networks , and 4 log N
routing steps on the Cube (see Section 3 for descriptions of these networks). All
other known GCN constructions lead to slower routing algorithms.

Finally, any GCN construction applies to the partitioning of multiprocessor
systems in the sense of Goke and Lipovski [1973]. if each resource is assigned one
output of a GCN, proper switch settings provide a private conductive path for each of
any number of disjoint subsystems. The banyan networks originally proposed for this
task do not implement all partitions when O(N log N) switches are employed. When
used for partitioning , 1/4 of this paper ’s GCN can be omitted, so that unrestricted
partitioning may be obtained with less than 6N log N switches.. No other known GCN
construction leads to smaller partitioners.

The new GCN construction is described in Section 2, its application to message
routing is elaborated in Section 3, and its related partitioning network is derived in
Section 4.
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2. A GCN Construction

A GCN may be represented as a graph with two ordered sets of N vertices each
(“inputs” and “outputs”), such that. for any sequence J1~J2r.~J~ 

(lsjk~N) there exists a
subgraph in which input vertex i is connected with output vertex Ic if f — i. In this

r model, vertices are wires and edges are switches; edges included in t he subgraph for a
particular 

~~~~~ 
are precisely those switches that must be closed to connect The ith

input to those outputs k for which i. A trivial GCN construction is the complete
bipartite graph on 2N nodes, which corresponds to the NxN crosspoint switch. Since
there are NN different ways of choosing the 

~k sequence, at least lg(NN) — N log N
contact pairs (edges) are required in any GCN.

A GCN construction may be obtained from the following schema (Of man (1965]).

o (N,N)- 0 (N,N)- 0
0 generalizer : connector o

Figure 1. Schema for a GCN construction.

The left-hand network produces the correct number of copies of each of the
inputs, which are then permuted to the proper outputs by the-right-hand network. It
is now necessary to examine connection and generalization networks in more detail.

2a. Connection Networks

An (N,N)-connection network is a switching network with N inputs and N outputs
capable of passing any of the N! one-to-one mappings (permutations of inputs onto
outputs). This is of course strictly less powerful than a GCN, in which the same input
may be connected to more than ~ne output at a time. Benes (1965] published the
following 4N log N construction in wh,ch an N-input connection network is synthesized
from 2 N/2-irtput connectors and 4N additional contact pairs.

2
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(N/2,N/2)- (N/2,N/2) -
connector connector

(N,N)-connector (2,2)-connector

Figure 2. Benes’ connection network.

The proper switch settings for any desired connection pattern may be found by
the method of Waksman [1968] in 0(N log N) time on a serial computer , the best result
known. The author has developed a divicfe-and~conquer approach that would run on
many N element SIMO computers in 0(N) time , but does riot know how to reduce this to
an acceptable (sublinear) figure. Thus it would seem that lengthy preprocessing time
will be required for each GCN setting. In some cases , it may he feasible to tabulate
precomputed GCN settings , although it would seem necessary to store O(N log N) bits

• for each setting.

It should be noted that this connector construction is symmetric about a
horizontal axis. In fact , the top log N layers and the bottom log N layers comprise
Omega networks (see Lawrie (1973]) that share a common level of switches.

?h. Generalization Networks

An (N,N)-generalizer passes input i to m~ different outputs~ where £ m~ 
— N

and m~?O. Thus it provides a particular number of copies of each input somewhere
among the outputs. The existence of (N,N)-generahizers with 0(N) switches has been
demonstrated non-constructivel y by Pippenger (1977]. Construction of a generahizer
can be accomplished by the following schema, due to Of man f 1965].

j 
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13

Figure 3. Schema for a generalizer construction. 
- -

The left-hand network routes all important inputs to its uppermost output lines.
More precisely, if rn of the inputs will not appear on any output of the generalizer, the
other N-rn inputs must appear on lines k 1 through kN..m of - the hyparconcentrator.
lhe right -hand network is responsible for producing the correct number of copies of
each of its inputs, but there , must exist some integer p such that Ic1~lc2~...1k~ ’ wilh appear
in the output at least once, while kp+I,kp÷2,...,KN will be ignored. Of man demonstrates
that the following network is an infrageneralizer.

k 11c2k3

(N/2,N/2) - (N/2,N/2)-
infragonerahizer infrageneralizer

-e--~ 0 0— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
p

r 1 1 12 13
(N,N)-infragenerahizer (2,2)-infr agener alizer

- Figure 4. Of mar’s infrageneralizer .

A more complete specifi cation of Ofman’s network is required. The leftmost mqoutput lines will bear copies of input kq~ the next mq4l outputs bear input kq.$.11 .
arid the rightmost m~ outputs ,bear input ~~ where n~1’Q for I~q~~p~N, mi~

O for kg or
i>p, and 

~~ 
m,—N. If q is chosen to be 1, this specification can be seen to satisfy the

requirements for an infrageneralizer. The proper switch settings for Ofman’s network
may be obtained recursively by using the upper switches to give each half -sized
infrageneralizer half the input signals. It should be noted that the signals required by

4

•
~~~~~~~~~~~~~~~~~~~~~~~~~~

‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— 

- ~~~~ — : ~~~~ ~~ -~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 
, -  —~--—. -~~ 

_ _

each half-sized infragenerahizer form a consecutive subsequence of the original inputs
(if the leftmost input is considered to “follow ” the rightmost one). -

An (N,N)-connection network could be used for hyperconcentratiOn, since a
hyperconcentrator merel y permutes its inputs. This is in fact Ofman’s approach,
yielding an (N,N)-generalizer with 6N log N contact pairs. Ofman’s construction can be
improved - by using fewer switches in the hyperconcentrator portion. Somewhat
surprisingly, Of man’s infrageneralizer is an “upside down” hyperconcentrator--the
dire’~tion of signal flow through the network is reversed by turning inputs into outputs
and vice versa. This equivalence will be verified by the demonstration of a
correspondence between any desired hyperconcentration function and an
infragerierahizer function. A hyperconcentration setting may be specified by a list of p
integers, ~~~~~~~~ with 1�n1<n2<...<n~~N~ corresponding to the indices of the inputs
whose signals are to appear in the first p output lines. The corresponding
infrageneralizer function is that input i should appear on m~ output lines, where m

~ 
—

- n,~~, n0 = 0, and ~~~ = n~~2 = = = N. Ofman’s infrageneralizer will connect
input i to outputs n~~ +l through n~; if swit’ches are opened to disconnect all but
output number n~ for 1�i�p, then the required hyperconcentration function ~s
imp lemented by the reversed infragerieralizer.

An example should clarify matters. A (8,8)-hyperconcentrator setting for n
~ 

—

(2 ,3,6,7,8) corresponds to. a (8,8)-infragenera lizer setting for ‘m
~ 

(2,1,3,1,1,0,0,0). In
other words, the problem of finding the proper switch settings to bring inputs 2, 3, 6,
7, and 8 to outputs 1, 2, 3, 4, and 5 (a-hyperco ncentration) may be solved by setting
Of man’s infrageneralizer to route input 1 to outputs 1 and 2; input 2 to output 3; input
3 to outputs 4, 5, and 6, input 4 to output 7; and input 5 to output 8.

outputs 1 2 3 4 5 6 7 8

Figure 5. An upside-down hypercOncer ttrator set for (2,3,$,7,8).

5A
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outputs

Figure 6. An infrageneralizer set for (2,1,3,1,1,0,0,0).

Since Ofman’s (N,N)-inIrageneralizer has 2N log N contact pairs, an (N,N)-
generalizer can be built with 4N log N contact pairs by attaching a infragenerahizer to
a reversed infrageneralizer (a hyperconcentrator ). Since the last stage of the
hyperconcentrator ’ is identical to the first stage of the infrageneralizer , the combined
functionality of these two levels of switches may be obtained with a single one,
elimi~iating 2N contact pairs. The (8,8)-generalizer obtained in this way is illustrated
below.

~~~~~~~~~ ~~~~~~~~~

>< ~~~~~

Figure 7. An (8,8)-generalizer.
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2c. The complete GCN construction

The astute reader will have noticed that the (N,N)-generalizer of Subsection 2b
is quite similar to the (N,N)-connection network of Subsect ion 2a. In fact , one merely
needs to “unshuff he ” the inputs and outputs of this (N,N)-co’nnection network to make
the two networks identical. Then, when concatenating ‘the generalization and
connection networks to obtain a GCN, the first stage of the latter can - be combined
with the last stage of the former to yield (for N—8)
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- Figure 8. An (8,8)-GCN. -

As it stands , there are 8N log N - 6N contact pairs in this GCN (N a power of 2).
However , 0(N) contacts may be stripped from the connector (see Wahcsman (1968]) and
the generalizer leaving 8N log N - 1O.5N + 11 contact pairs. These GCN constructions
have 4 log N - 3 delay. A~ alternative construction based on three-way branching
yields (N,N)-GCNs with (12/ log 3)N log3 N - (71/6)N + 13.5 contact pairs (N a power of

-
- 3), the author ’s best result (note: 12/log 3 = 7.6). This three-~way branching

construction has delay (4/log 3)log N - 3, which makes it the fastest known GCN.
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3. Message Broadcasting

An SIMO computer may be considered to consist of three major parts: a central
control unit, the processing elements , and an interconnection network. Each PE
(processing element) operates on data in its own local memory according to the
dictates of the central control unit. Data enters and heaves this local memory via the
interconnection network , which t yp icall y connects each PE to o,ne of several
neighboring PEs. For examp le, in a mesh-type computer each PE has at most four
neighbors. The situation may be depicted as follows , where the boxas are PEs and the
lines are possible connections.

Fi gure 9. A mesh-connected computer.

Note that PEs on the edges have fewer than four neighbors. Given the strongly
local nature of the connection pattern , efficient intercommunication algorithms would
seem necessary for effective use of such a computer. -

The message broadcasting problem may now be broadly stated. Initially, each
PE has generated a message of interest to some (possibly empty) subset of the other
PEs. Each PE is to receive exact ly one interesting message. How long does it take to
deliver all the messages , as a function of the total number -of PEs and their
interconnection pattern? Time is measured in the number of (parallel) unit—distance
message routings, i.e., if the mesh-type interconnection network is set to “up”, in one
time unit each of the PEs may receive a copy of the message sent by its downward-
adjacent PE. For simplicity, assume that no time is spent on selecting which message
(of possibly several ) will be sent from each PE. This assumption is valid on a computer
with a sufficienthy powerful control unit (each PE -is explicitl.y told which message to
send), and is nearly valid when routing decisions are made locally (for example, by
examination of “routing tags ” on the messages). - The algorithms of this paper will place
at most two messages in a PE at a time, so these routing decisions should not be time-
consuming. As mentioned in Subsection 2a, substantial preprocessing time will be
required for each distribution pattern , but will not be included in message delivery
time . - -

The next three Subsections will solve the message broadcasting problem for
several different interconnection networks.

- 8
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3a. Message broadcastj !~ on the mesh-connected computer

Referring to the N element mesh-connected computer of Figure 9, it may ‘be
seen that 4(N1/2 -1) time units may be needed by some • message broadcasting
patterns. It would take a message 2(N112-1) time to trav& from the upper-leftmost
PE to the lower -rightmost PE. During all that time the interconnection network has
been set to “left” and “down”, so another 2(N”2-1) time units would be required to
send a message along the reverse route. It is not known whether more compl icated
broadcasting patterns require more routing time. However , a large number of patterns
can be completed in 4(N1/2 -1) time -- the so-called Omega permutations
(Orcutt[1976]). Also, any one-to -one pattern (each message goes to exactly one PE)
can be accomp lished in- about 6N1/2 time, when N is very large (Thompson and Kung
[1977]). When N is small , 7(N~

12-1) time is suf f icient , as indicated later in this
Subsection. The main algorithm of this Subsection demonstrates that no broadcast
pat1ern need take more than 13N1/2 time units. /

A relationship between a GCN construction and a message routing algorithm may
be drawn in the following way. Each node of a GCN corresponds to a PE, and each arc
to a message routing. If each of the N input nodes of a GCN corresponds to a
different PE, and if the same condition holds for the output nodes, then any GCN
setting indicates how to perform the corresponding message broadcast : Careful choice
of t he nocle-PE numberings will result in a fast message broadcasting algorithm. For
example , on a 4x4 processor , the following indexing- scheme seems natura4 .

Fi gure 10. Natural indexing of a 4x4 mesh -connected processor. 
.

If the 16 nodes on each level of the (16 ,16)-GCN built according to Section 2

are numbered from Ieft(0) to right (15), then the corresponding routing algorithm may

be drawn as follows . -

9
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Figure 11. Routing on a 4x4 mesh-connected computer.

In general , this approach on an N element computer would require 3 (L 1,R 1)
routings , 4 (L 2,R 2) routings , 4 (L 4,R 4) routings, . . ., 4 (L N1/2 /2,R N 1/2 /2) routings,
4 (D 1,U 1) routings, 4 (0 2,U 2) routings , .  . ., 4 (0 N1/2 /4,U N’i2/4) routings,’and 2 (D
N112/2,U N 1/2 /2) routings. Note that there are four routings of every type in the list
except the firs t and the - last. This list sums to 14N ”2-18 time units. However, the
result can be improved to 13N 112 -16 by renumbering the nodes of the GCN. Since
the first routing type in the list above only occurs 3 times , it should be a relatively
long one, freeing a quick unit-distance routing for a step that is repeated 4 times. For
example , the GCN nodes may be indexed from left to right as
(0,2,1,3,4,6,5,7,8,10,9,11 ,12,14,13,15) on each level. This sequence was obtained from
the binary representation of the natural sequence by exchanging the least significant
bit with the (log N)/2 th least significant bit.

10
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If a particular message distribution pattern happens to be one-to-one (each
message goes to exactly one F’E), then the full power of a GCN simulation is not
required. Instead, a simulation of the connection network imbedded in the last half of
the GCN can be accomplished in 7Nh/2 _8 time units, using the natural correspondence
scheme.

The author cannot resist noting that Balcher ’s bitonic sorting network is a GCN
when run “backwards ” (proof supplied upon request). This leads to an alternative
algorithm for message distribution- that runs in time bounded by 14N”2 (Thompson
and Kung (1977]).

3b. Message broadcasting on a perfect shuffle computer - - -

The perfect shuffle interconnection (Stone [1971]) is nicely suited for message
broadcasting. A GCN may be simulated in 8 log N - 7 time units, giving a
correspondingly low upper bound for the time required by any message distribution
pattern .

let the PEs of a perfect shuffle computer be numbered from 0 to N-i. Each
index can be represented in log N m binary bits , bmbm_ i. . .b3b2b1. The perfect
shuffle interconnection network has just three settings, so that PE bm...bl is connected
to bmbm...1...b2l51 (“exchange ”), to bm..ibm...2...b2bibm 

- (“shuffle”), and to
bihmbm_i...b3b2 (“unshuff Ic”).

An optimal numbering of the nodes of Section 2’s GCN construction is easily
derived. Let the input nodes be labeled 0 (left) through N-i (right). -The labelings of
the next log N - I rows of GCN nodes a e  obtained by unshuffhing the binary
representation of the labels of the previous row. - For example, if N 8, the first row
is (0,1,2,3,4,5,6,7), the second row is (0,4,1,5,2,6,3,7), and the third row is
(0 ,2,4,6,1,3,5,7) . The (log N)th through the (2 log N - 1)th ro~ s are- labeled by
chuf fling the indices in the previous row. In the present example , the fourth row is
(0,4,1,5,2,6,3,7) and the fifth row is (0,1,2,3,~l,5,6,7). The (2 log, N - 1)th through the (4
log N - 3)th rows are labeled identically to the 1st through the -(2 log N - 1)th rows,
while the output row (the (4 log N - 2)th) is numbered naturally.

This GCN numbering may be motivated , by considering the corresponding perfect
shuffle network settings. In the exam ple above, the first two rows are (0,1,2,3,4,5,6,7)
and (0,4,1,5,2,6,3,7). Thus, after the first stage of GCN simulation, each of PE 0 and PE
4 has one of t1 e messages originally in PE 0 and PE 1; PE 1 and PE 5 have messages
from either PE 2 or PE 3; PEs 2 and 6 have messages from PEs 4 and 5; and PEs 3 and
7 have messages from PEs 6 and 7. This result may be obtained with only two unit-
distance routing steps: an exchange and an uns-huffle. The exchange transmits
messages between PEs 0 and 1, PES 2 and 3, PEs 4 and 5, and PEs 6 and 7. At this
point each PE has two messages , one of wh ich is selected to be sent out on the
urichuf tIe connection, while the other is ignored (des troyed). The message received by
each PE during the unshuffle operat ion is in the desired place, ready for the next
stage of GCN simulation. Succeeding stages , of the GCN simulation are handled

11

— - ~~~~~~~~~~~~~ —~~~~~~~
-- -- =

~~~~~~~~~~~~~~~~~~ :~~i~~~~ ~~~~~ 
‘

~~~~~~~~~~~~~~~~~~~~~ ~i~
’ _



— - ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— —---~,-—- --: —yr- - - -‘- - --  -i~ =~~—-’ - ,—-.—-,-- —r—— —-~.—---~~~--~~——--— — --- - .— ,—-.-- - --— —---- —r- _ _ 

~~—‘- -— -.-——-——— -.-,.

- similarly. The complete GCN simulation consists of (log N - 1) repetitions of (exchange ,
unshuff le), (log N - 1) repetitions of (exchange , shuffle), (log N — 1) repetitions of
(exchange , unshuffle), (log N - 1) repetitions of (exchange, shuffle), and one final
exchange , for a total of 8 log N - 7 time units.

The optimahity of this GCN numbering follows from the following considerations.
Each stage of the GCN consists of N/4 complete bipartite graphs on 4 nodes. The
shuffle and unshuff Ic network connections are not in themselves sufficient to simulate
any stage of the GCN since, for example , PE 0 is only connected to itself. Thus at least

- I one exchange step must be executed during the simulation of each GCN stage.
However , a shuffle or an unshuffle must occur between consecutive exchange steps (if

- not , the second exchange is superfluous). Since there are 4 log N - 3 stages in this
paper ’s GCN construction , a simulation requires 4 log N - 3 exchanges interlarded with
4 log N - 4 shuffles or unshuffles. This Subsection’s numbering and associated routing
algorithm realizes this lower bound.

For the special case of one-to-one m essage distribution patterns, 4 log N — 3

lime units ar e sufficient to simulate the last half of the GCN (a connection network).

- 3c. Messag~ broadcasting on Cube, PM2I, and WPM2I c.Q~ puters

The nomenclature of this section is due to Siegel [1976]. The Cube network is
similar to the one implemented in Staran, the PM2I network is similar to Feng’s Data
Manipulator , while the WPM2I is Siegel’s brainchild.

As before , let the PEs be numbered from 0 to N-i in m — log N bits:
bi~

bm_i...b2bl. The cube has m settings , where setting i conne~cts bm...bi to

~~~~~~~~~~~~~~ 
Using the natural left (0) to right (N-i) numbering for the nodes

on each level of the GCN, it should be clear that simulation of any stage of the GCN
takes only one time unit , so that at most 4 log N - 3 time units are required by any
message distribution pattern on the Cube.

The PM2I network has 2 log N 2m settings , corresponding to the addition or
subtraction mod N of 2’ for 0�km. The WPM2I connections are similar to those of the
PM2I network , except any “carry ” or “borrow ” will “wrap around” to the b~_2th bit.
Either network can simulate a naturally numbered GCN in two -time units per stage ,
giving a total of 8 log N - 6 time units for wor st- -case message broadcasting.

Of course , these bounds are cut almost in half for the special case of one-to-one
message distribution patterns. Only 2 log N - 2 time units are required for a Cube
simulation of a connection network (4 log N - 4 t ime units on the PM2I or WPM2I),
using the natural numbering scheme. . -
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4. Partitioning -

The use of switching networks in the partitioning of a multiprocessing system is
- treated in Goke and Lipovski (1973]. They propose connecting N resources to a

network flexible enough to provide private buses for disjoint “subsytems ” of the
resources. For example , if a particular terminal , processing unit, and memory device
are to be formed into an independent subsystem, the par titioning network is instructed
to form a private connection between their respective I/O ports. The partitioning
networks considered in this paper will merely connect appropriate I/O ports;
management of the bus thereb y created for each subsystem will~ be the responsibility
of the member resources. The most straig ht-forward partitioning network is based on
an N by N/2 crosspoint switch: each of the N resources can be independently
connected to any of N/2 internal buses. While this network is simple to configure and
has only constant delay, it requires 0(N2) switches . Another ne-twork considered by
Coke and Lipovski is an (N,N)-connector whose inputs are connected to its outputs.

- Although this device has only O(N ~og N) switches , its delay may be O(N log N). Goke
and Lipovski settled on “banyan networks ” with O(N log N) switches and Q(log N) delay,
but incomplete functionality (not all partitions could be achieved). 

- 
It should be clear

that an (N,N)-GCN provides unrestricte d freedom of connection between any of its N
outputs. This paper ’s GCN construction thus immediately gives’ a complete partitioning
network with O(N log N) switches and O(log N) delay. 

-

Actually, a GCN is an unnecessaril y complex partitioning network. The resources
w i l l  onl y be connected to the outputs of the GCN, so that the ordering of the inputs is
completely arbitrary . in terms of Section 2’s construction , this implies that the
hyperconcentrator “front end” is superfluous and may be removed . Since at most N/2
subsystems can have more than one resource , half of t he  inputs to the infrageneralizer
may be deleted. This and similar optimizations to the  infrageneralizer , coupled with
connector optimizat ions (Waksmari [1968)), yield a partitioning network with 6N log N -
8.SN + 8 switches. For example , the following is an (8)-partitio ner .

13
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Figure 12. An (8)-part itioner.

Set-up algorithms for this network are relativel y time-consuming, limit ing  i ts
practicality (banyan networks can be essentia lly self-confi guring, in O(log N) time).
When a new subsystem with k resources (k>1) comes into existence , it is assigned the
leftmost unused infragencralizer input and the k leftmost unused connector inputs.
The infragenera hizer can be confi gured in O(log N) -time , since it is a banyan. However ,
the connector setting may need radical changes for which the best known algorithm
(Waks man (1968]) requires 0(N log N) time on a serial computer .

The three-way branching constructions mentioned in Section 2 lead to another
partitioner with (9/ log 3)N log ’ N -- (59/6)N + 10.5 switche s, the best construction
known to the author (note: 9/log 3 5.7).

The author is indebted to Nicholas Pippenger for several stimulating discussions.
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