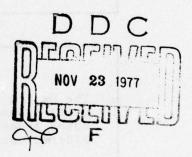
UNCLAS	SSIFIED	OCT 7	TSC-F	REMPFE	R 6	FAA-A	SP-77-1	.0 .		NL	4	
	OF ADA046829		มูดอภิณษ มหะอัพษา		antiine M							
									- Handler	Market Ind		
						And						1-
RITTET	(indication of the second seco					190 Parate Service Parate Service Pa						END DATE FILMED 2-77 DDC
						10. 10.						
										×		

REPORT NO. FAA-ASP-77-10

AD A 0 46829

PRELIMINARY LIMITED SURVEILLANCE RADAR (LSR) COST/BENEFIT ANALYSIS

Paul S. Rempfer


1

- 1

U.S. Department of Transportation Transportation Systems Center Kendall Square Cambridge MA 02142

OCTOBER 1977 FINAL REPORT

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

AD NO.

Prepared for U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Office of Aviation System Plans Washington DC 20590

NOTICE

.

ï

.

1

1

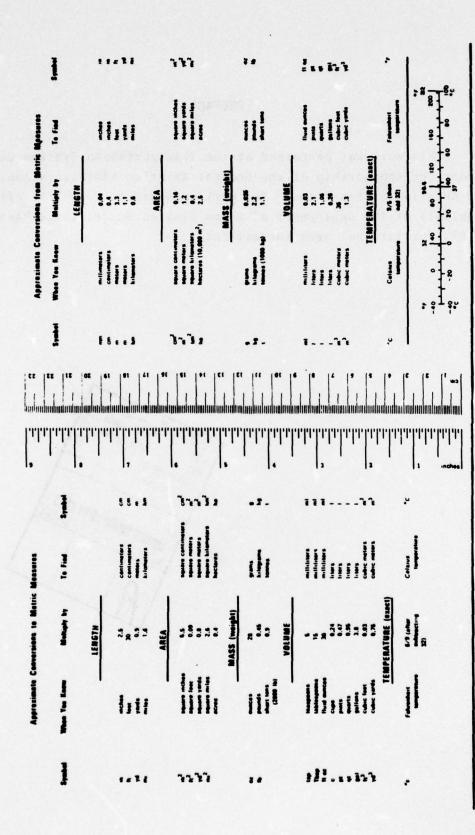
This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FAA-ASP 77-1 Title and Subtitle Octo 1077 PRELIMINARY_LIMITED_SURVEILLANCE RADAR Performing Organization Code (LSR) COST/BENEFIT ANALYSIS . agnization Report N TSC-FAA-77-16 Paul S. Rempfer 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) U.S. Department of Transportation FP707/R#118 Transportation Systems Center Contract or Grant No. Kendall Square C Cambridge MA 02142 1.0-Final Report. 12. Sponsoring Agency Name and Address U.S. Department of Transportation Decemi **r 19**76 Federal Aviation Administration April 1977. Office of Aviation System Plans Washington DC 20590 15. Supplementary Notes 16. Absort This report presents the findings of a cost/benefit analysis of the deployment of a new Limited Surveillance Radar (LSR). An LSR is an inexpensive, single channel, short-range (about 20 miles), primary radar for use at approach control facilities which cannot economically justify an Airport Surveillance Radar/Radar Beacon System (ASR/RBS). An LSR can also be used in tower cabs to aid in VFR operation where a BRITE display is not feasible due to coverage limitations dictated by obstructions or distance from the parent radar facility. The study is preliminary in that it is brief and uses rough estimates and assumptions for both benefits and costs. Its purpose is to give a gross estimate of the current deployment potential of the LSR and to aid in decisions regarding further system analysis, development, and testing. 17. Key Words 18. Distribution Statement Limited Surveillance Radar, LSR, DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, Cost/Benefit Analysis VIRGINIA 22161 19. Security Classif. (of this report) 21. No. of Pages 22. Price 20. Security Classif. (of this page) Unclassified Unclassified 54 Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 407082

PREFACE


This work was performed at the Transportation Systems Center under the sponsorship of the Federal Aviation Administration, Office of Aviation System Plans. The work consists of a cost/benefit analysis of the deployment of a new Limited Surveillance Radar (LSR) for terminal area surveillance.

PRECEDING PAGE BLANK-NOT FIL

4.5

METRIC CONVERSION FACTORS

iv

TABLE OF CONTENTS

Section		Page
1.	INTRODUCTION	1
	 1.1 Current System Description 1.2 Current System Costs	1 3 3 4 5
2.	ASSUMPTIONS AND APPROACH	6
	2.1 Discussion of Assumptions 2.2 Analysis Approach	6
3.	BENEFITS ANALYSIS	15
	3.1 Preliminary Analysis of Sample Airports	15
	3.1.1 LSR for VFR Application and TML 3.1.2 LSR For IFR Application	15 19
	3.2 Application of Establishment Criteria	20
	3.3 Final Screening of LSR Qualifiers	25
	3.4 Sensitivity to BRITE/TML Blockage Problems	28
	3.5 Sensitivity to Cost Estimates	29
	3.6 Net Benefits Estimate	35
4.	SUMMARY OF RESULTS	37
5.	REFERENCES	38
APPENDIX	A - EQUIPMENT COST ESTIMATES	39
	A.1 TELEVISION MICROWAVE LINK (TML)	39
	A.2 LIMITED SURVELLANCE RADAR (LSR)	40
APPENDIX	B - POTENTIAL SAVINGS ESTIMATE	42
	B.1 FULL COVERAGE ON RADAR APPROACH CONTROL	42
	B.2 FULL COVERAGE ON REMOTE BRITE DISPLAYS	43

LIST OF ILLUSTRATIONS

Figure		Page
2-1.	Classes of Mid-Air Collisions	9
2-2.	Analysis Approach and Products	9
3-1.	Sample Results for VFR Application	18
3-2.	Sample Results for IFR Application	21
3-3.	TML Coverage Distribution, Altitude 400 Ft	30
3-4.	Deployment Cost Sensitivity	34

LIST OF TABLES

Table		Page
1-1.	ASR/RB5 ANNUAL COSTS	3
1-2.	TML ANNUAL COSTS	3
1-3.	LSR ANNUAL COSTS	5
2-1.	ASR/RBS SITES	12
2-2.	TML BRITE SITES (EXISTING AND PROGRAMMED)	14
3-1.	AIRPORTS ADDED TO SAMPLE	16
3-2.	SUMMARY OF SAMPLE RESULTS	17
3-3.	FAA-OPERATED AIRPORT TRAFFIC CONTROL TOWERS BY RANK ORDER OF ITINERANT AIRCRAFT OPERATIONS WITH EQUIPMENT DISTRIBUTION - CY 1975	22
3-4.	FULL-TIME TOWERS QUALIFYING FOR LSR - CY 1975	26
3-5.	EXAMPLE, B/C COMPUTATIONS USING ASR ESTABLISHMENT CRITERIA MODELS - FORT MYERS PAGE FIELD, FLORIDA	27
3-6.	B/C RATIOS FOR TML AIRPORTS WITH LESS THAN 80 PERCENT COVERAGE	31
3-7.	SUMMARY AND SENSITIVITY TO COST	32
3-8.	HYPOTHESIZED LSR PROGRAM BENEFITS ESTIMATE	36

LIST OF TABLES (CONT.)

Tables		Page
A-1.	FY76 BRITE-TV REMOTING WITH ONE REPEATER - F&E COSTS	39
A-2.	TML ELEMENT ANNUAL O&M COSTS	40
A-3.	LSR F&E COST ESTIMATE	41
A-4.	LSR ANNUAL OGM COST ESTIMATE	41
B-1.	DISTRIBUTION OF CONVENTIONAL APPROACH CONTROL FACILITIES	42
B-2.	DISTRIBUTION OF CABS WITHOUT A BRITE DISPLAY	43

Name and Links

EXECUTIVE SUMMARY

This report presents the findings of a brief cost/benefit analysis performed for a Limited Surveillance Radar (LSR) concept. An LSR is an inexpensive, single channel, short-range (about 20 miles), primary radar for use at approach facilities which cannot economically justify an Airport Surveillance Radar/Radar Beacon System (ASR/RBS). It can also be used in tower cabs to aid in VFR operation where a BRITE display (fed directly from a collocated ASR/RBS or remotely from a parent radar approach control facility) is not feasible. The LSR's annual cost is estimated at about 1/3that of an ASR/RBS (when used for radar approach control) and about 2-1/2 times that of a BRITE/TML (when used only to aid VFR operation). The purpose of this analysis is to give a gross estimate of the current deployment potential of an LSR to aid in decisions regarding further analysis, development and testing. This study is not considered adequate to support an establishment criterion or a production procurement decision.

The analysis considers an LSR deployment for the year for which the most recent traffic activity data exists, calendar year (CY) 1975. The results indicate that as an upper bound, approximately 15 to 17 LSRs might be deployed. The deployment breakdown is:

a. Of the 146 tower cabs which do not have a BRLTE display (because they fail to meet current establishment criteria), approximately 11 to 13 could justify an LSR and its associated bright display on economic grounds (i.e., the benefit/cost ratio is greater than one).

b. Of the 11 to 13 tower cabs which could economically justify an LSR, approximately four to six could economically justify instituting radar approach control with the LSR. These sites currently operate approach control without radar. The LSR at the remaining seven cabs would be used primarily to aid in VFR traffic advisories. c. Of 79 of the 93 TML sites in operation, perhaps four have sufficient traffic and deficient enough low altitude coverage to justify economically an LSR to aid in VFR traffic advisories. The major assumptions leading to these results are (1) that an LSR would provide benefits equivalent to an ASR/RBS when used for approach control at small facilities at which it might be deployed, and (2) that an LSR driven BRITE display would provide benefits equivalent to a BRITE display driven remotely from an ASR/RBS when used for VFR separation advisories by the local controller.

A sensitivity analysis was made to examine the effect of increased F&E costs. With a 20 percent cost increase, six of the eleven baseline sites using the LSR only for VFR operations failed to qualify. This suggests a minimum deployment of nine to eleven LSRs, approximately half of which would be for radar approach control.

To estimate overall system benefits, an LSR program was hypothesized which would (1) develop the LSR in fiscal year (FY) 1978 and 1979, (2) deploy fifteen LSRs in FY 1980, and (3) operate the units for the next fifteen years. As traffic grew, LSR-equipped airports which qualified for ASR/RBS would be so equipped and the LSR moved to a newly qualified LSR airport. The unit would be easily and cheaply transported. This program would have a present value (base year 1977) cost of \$9,444,000 and a present value benefit of \$14,619,000 resulting in a benefit/cost ratio of 1.55. If the program start were postponed the benefit/cost ratio would be unchanged but the present value benefit and cost would be divided by 1.1^N, where N is the number of years the program is postponed.

1. INTRODUCTION

1.1 CURRENT SYSTEM DESCRIPTION

The primary purpose of VFR control towers is to prevent a collision between aircraft operating in the immediate area of the airport, and to expedite the flow of traffic. Aircraft are normally radio controlled within ten miles of the airport and visually separated within the airport traffic area. The tower establishes the sequence and clears aircraft to land and take off to provide safe runway utilization. Airborne separation exclusive of runway use (e.g., after takeoff or on the downwind approach leg) is the responsibility of the pilots although the tower does provide a landing sequence and advise users of threatening traffic and potential collisions if they are observed.

During IFR conditions, VFR towers can clear aircraft for takeoff and landing using prescribed procedures. However, VFR towers do not provide approach control service. Approach control service is provided by a nearby parent facility such as a TRACON, TRACAB or ARTCC. The VFR tower will intermix VFR traffic operating below ceiling with IFR arrivals, and will report visual acquisition of IFR arrivals to the controlling facility.

The capacity of the ATC system at an airport without its own radar is affected by the radar coverage of its parent approach control facility. If the controlling facility has good lowaltitude radar coverage (e.e., no terrain blockage), the capacity can approach that which would occur if the airport did, in fact, have its own radar approach control. However, if the approach control radar is far away or has low-altitude coverage limitations, successive arrivals must be adjusted to compensate for the separation needed to cover the time interval between loss of radar coverage and visual acquisition. This results in a reduction of capacity. Although radar separation in peak conditions can result in 30-40 arrivals per hour on a runway, approach control service provided from a facility without low altitude radar coverage can reduce capacity to 4-5 arrivals per hour.

When instrument operations into an airport with a VFR tower become substantial, and its capacity (due to radar coverage) is low, non-radar approach control authority may be delegated to the tower (or primary tower) for the airport(s) within the area of jurisdiction. In this case the tower will accept transfer of control and handoff from the ARTCC, and will control the arrivals using pilot position reports derived from radio navigational aids. Aircraft can be held and stacked by the tower and routed from the stack to the final approach fix for timed approaches. Capacity will depend on the locations and number of the radio navigation aids (i.e., the stack and approach route) and weather. The FAA has estimated arrival rates of from 6 to 16 arrivals per hour (varying with pilot and controller proficiency levels) for nonradar approach control.⁽¹⁾

When non-radar approach control cannot satisfy the demand for instrument operations, efficiency is increased by installing an Airport Surveillance Radar/Radar Beacon System (ASR/RBS) and implementing radar approach control. Approach control is either conducted from the cab (TRACAB) with Bright Radar Indicator Equipment (BRITE) displays, or from a separate approach control facility (TRACON). When the TRACON is used, BRITE displays are employed in the cab to aid the local controller in providing VFR service and in coordinating with the TRACON. Safety increases thanks to IFR separation assurance and VFR separation advisories, and IFR delay is reduced thanks to increased capacity associated with radar separation standards. The resulting capacity can be quite high (e.g., 30 arrivals/hour per independent runway) and is generally adequate except at the highest volume airports.

Once radar approach control is established and BRITE displays are furnished to the cab with a direct line from the ASR/RBS, BRITE displays can normally be furnished to other nearby tower cabs (within 20 miles of the ASR/RBS). The equipment used for doing this is the Television Microwave Link (TML), which consists of BRITE equipment and a microwave communication link for transmitting the TV picture to the nearby (staellite) airport. Digital remoting is also currently under test. Safety is increased thanks to VFR separation advisories and improved coordination with the TRACON.

1.2 CURRENT SYSTEM COSTS

The ASR/RBS is a fairly expensive system to install and operate. The estimated costs (based on 1975 report) are summarized in Table 1-1. $^{(1)}$

TABLE	1-1.	ASR/RBS	ANNUAL	COSTS
				000.0

Basic establishment costs - \$2 million*	The other
amortized over 15 years at 10%	\$263,000
Operation and Maintenance Costs	141,000
Staffing costs (5 additional controllers	
for radar approach control)	<u>96,000</u> \$500,000
* These costs will increase. FY79 F&E costs are estimated at \$2.7 million.	9

These costs assume an installation in a TRACAB mode with service provided from the cab. If space limitations in the cab preclude the installation of the required consciles, radar approach control receives its own separate facility (TR\CON), in which case some building expansion may be required. No such costs are included in the above estimate.

The TML is a fairly inexpensive system to install and operate. The costs are estimated in Appendix A and summarized in Table 1-2.

TABLE 1-2. TM	L ANNUAL COST	I'S
---------------	---------------	-----

Basic establishment costs	- \$163,400	
amortized over 15 years	at 10%	\$21,500
Operation and Maintenance	costs	<u>6,800</u> \$28,300

1.3 PROBLEM

In 1975 there were 233 approach control facilities. (2) Given the location of ASR/RBS systems, it is estimated that of these facilities, 174 are radar approach control and 59 are non-radar approach control unable to qualify for an ASR/RBS. The non-radar approach control sites would not derive benefits which exceed the cost of an ASR/RBS. Appendix B estimates that the 59 non-radar approach control facilities accumulate approximately \$8 million per year in delay and accident costs which radar coverage could eliminate. However, the high cost of the ASR/RBS (\$29.5 million per year to equip all 59 facilities for radar approach control) makes the realization of these potential savings impractical.

In 1975, there were 146 airport cabs without a BRITE installed or programmed. Based upon the assumptions in this study, these cabs accumulate approximately \$9.5 million per year in accident related costs, which could be eliminated by the installation of BRITE displays (see Appendix B). To equip these cabs with BRITE driven via TML would be comparatively inexpensive. This would cost \$4 million annually, resulting in an annual net benefit of \$5.5 million. However, deployment at these locations has not been practical, due primarily to the remoting range or line of site limitations of the TML.

1.4 LIMITED SURVEILLANCE RADAR (LSR)

The LSR is an inexpensive, all digital, primary radar for use at approach control facilities which do not qualify for an ASR/RBS and at cabs which cannot receive a BRITE display via TML because of inadequate radar coverage or excessive remoting range. Costs can be reduced further (beyond dropping secondary radar) because the radar has only a single channel and reduced range (20 nmi versus 60 nmi for an ASR/RBS), and because of the anticipated simplicity of installation. The current best estimate of basic costs for the LSR are estimated in Appendix A and summarized in Table 1-3.

Relative to the problems cited in Section 1.3, the cost of the LSR seems reasonable. The cost of full deployment to nonradar approach control facilities with radar approach control staff would be \$9.5 million, about 20 percent higher than the potential benefits of \$8 million. Some cost effective installations could be anticipated. Similarly, the cost of full deployment to

Basic establishment costs	- \$362,000	SPECIAL STREET
amortized over 15 years	at 10%	\$47,500
Operating and Maintenance	Costs	18,300
	Sub-total	\$65,800
Staffing costs if the LSR	is used for	ender zot
radar approach control	Total	<u>96,000</u> \$161,800

TABLE 1-3. LSR ANNUAL COSTS

unequipped cabs for VFR use (without radar approach control staff) would be \$9.5 million, which is approximately equal to the potential benefits. The question remaining is "Which and how many of the individual cabs and control facilities could support an LSR?"

1.5 STUDY SCOPE AND PURPOSE

This study represents a brief analysis aimed at estimating the current deployment potential for an LSR. The year examined is CY 1975 since traffic data for CY 1976 was not available at the time the report was being developed. The analysis did not make extensive use of present value discounting techniques but did amortize initial costs over 15 years at 10 percent. Present value discounting was used at the end of the study to provide a gross estimate of present value net benefits for a hypothetical LSR development/deployment program. Assumptions made in the analysis are rather gross and tend to favor deployment (e.g., it is assumed that the LSR, a primary only system, will be equivalent to the ASR/ RBS in providing separation assurance/advisories). The deployment may therefore be considered an upper bound. The purpose of the study is to develop a preliminary deployment estimate for an LSR so that management can decide if further activity is warranted. The study is not considered adequate to support an establishment criteria or a production procurement decision.

2. ASSUMPTIONS AND APPROACH

This section sets forth the assumptions and approach used in the analysis. A summary of key assumptions and estimates is presented below. The assumptions are discussed in Section 2.1.

- a. An LSR and an ASR/RBS would provide equivalent benefits for approach control at the small approach control facilities at which it would be deployed.
- b. A BRITE display, driven by either an LSR or a TML from a nearby ASR/RBS, would provide equivalent benefits to the local controller in the cab for providing VFR separation advisories and sequencing.
- c. An LSR would only be installed at an airport for approach control if the airport was not already provided radar service (by an ASR/RBS or ARSR).
- d. An LSR would only be installed at an airport for cab use by local control if the airport could not be provided with a BRITE via TML from a nearby ASR/RBS.
- e. It is estimated that 95 percent of midair collisions occuring at non-radar approach control facilities could be prevented by providing the facility with a BRITE display for local controller use since they involve at least one VFR aircraft in contact with local control and, therefore, would be preventable simply by providing local control with a BRITE display. This is to say that few midair collisions occur between IFR aircraft under non-radar approach control (e.g., only one such accident occurred between January 1964 and December 1971).

2.1 DISCUSSION OF ASSUMPTIONS

All ASR radars now equipped with an RBS have some form of beacon processing (i.e., beacon decoder or ARTS-3). Thus, as a minimum, target enhancement (and in many cases identity) is available for approach control and on BRITE displays for beacon equipped

targets. Because of this and the fact that the LSR has no broad band capability, assumptions (a) and (b) may be overly optimistic. If further work is done on the LSR, the differences between its operational parameters and those of an ASR/RBS should be examined more closely.

Assumptions (c) and (d) may result in a deployment estimate on the low side. LSRs may be applicable at existing and planned ASR/RBS sites. However, these sites were not considered in this analysis. In addition, existing and planned sites for BRITE TML equipment may suffer from low altitude surveillance limitations which an LSR would rectify. These sites are not considered in the basic analysis (although treated in a sensitivity analysis is Section 3.4).

Item (e) is an estimate which was made in the following manner:

1. Each midair collision occurring between January 1964 and December 1971 involving ATC services was examined using the accident summaries provided in Reference 3. This represented a total of 50 midair collisions. A breakdown of these collisions is given in Figure 2-1.

2. Those accidents were identified which might have been prevented by the deployment of a new radar/BRITE system. This set excluded accidents involving existing radar approach control, ARTCC control, and tower cab control where the tower and existing ASR were collocated permitting direct BRITE deployment to the cab. Twenty-three accidents were excluded, leaving 27 for further consideration.

3. Of the 27 accidents identified, an estimate was made of which could conceivably have been prevented by the installation of a radar and cab bright display at the airport/terminal facility involved. Examples of accidents conceivably preventable are accidents between VFR aircraft in radio contact with the cab but outside the visual range of the controllers which went undetected or were detected too late for corrective advisories to be given, and accidents between IFR aircraft under non-radar approach control in which instructions were not followed by an aircraft but went

undetected, resulting in a collision. It was estimated that 22 of the 27 accidents were conceivable preventable through estended radar display deployment.

4. Of the conceivably preventable accidents, only one involved non-radar approach control (over the 8-year period examined) whereas 21 involved a cab-controlled VFR aircraft. Thus, it was estimated that 95% of the preventable accidents associated with installing a radar and a BRITE display at the unequipped airports will be realized by use of the BRITE at the local controller position, without instituting radar approach control. Radar approach control will provide safer IFR operation, but few accidents occur under non-radar approach control due to the conservative practices employed. The chief benefit of radar approach control is to increase capacity (reduce delay) while maintaining a safe operation.

It should be noted that while there were no radar displays covering the 22 accidents at the time of the accident, that is no longer the case. Since then, ASR/RBS and TML systems have been deployed. The one accident under non-radar approach control occurred at Asheville NC, which now has an ASR/RBS. The 21 VFRrelated accidents occurred at 18 different airports, of which 14 now have a cab BRITE via TML. However, the 95% estimate will be used later in this analysis applied to current non-radar approach control facilities and unequipped tower cabs.

2.2 ANALYSIS APPROACH

The analysis approach taken in this study is shown in Figure 2-2. The analysis begins with the examination of a sample of approximately 100 airport towers consisting primarily of the towers similarly considered in the ASR/RBS Establishment Criteria report. ⁽¹⁾ Data used in this preliminary examination are for CY 1973, to be consistent with Reference 1 and to permit using computations already made in that analysis. In addition, the benefits models developed and used in Reference 1 are used in this preliminary analysis. Those models include methods for estimating the costs associated with midair collisions which would be prevented with the installation of an ASR/RBS/BRITE system (i.e., safety benefits) and the costs

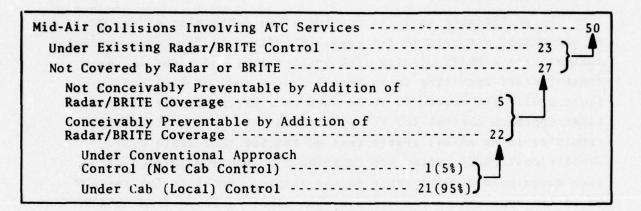


FIGURE 2-1. CLASSES OF MID-AIR COLLISIONS, JANUARY 1964 TO DECEMBER 1971



FIGURE 2-2. ANALYSIS APPROACH AND PRODUCTS

associated with IFR operations delay which would be prevented (i.e., delay benefits).

The preliminary analysis considers the deployment of an LSR at unequipped airports in two ways. The first is for radar approach control with a BRITE display (IFR application) and radar approach control staff resulting in an annual system cost of \$161,800 (see Table 1-3). The second is to be used as a BRITE display without radar approach control for VFR operations only (VFR application) resulting in an annual system cost of \$65,800 (See Table 1-3). Benefit/cost (B/C) ratios are computed for each application at each unequipped airport tower in the sample. Benefits for the LSR in an IFR application are assumed equivalent to those from an ASR/ RBS (Assumption (a)) and are simply taken from Reference 1. The benefits for the LSR in a VFR application are computed by using 95 percent of the safety benefits for an ASR/RBS/BRITE (Assumption/ estimate (e)) following the model in Reference 1. Based upon the B/C ratios, establishment criteria are hypothesized for the LSR in each application. In addition, since it was a simple addition to the analysis, B/C ratios are computed for the BRITE/TML with the assumption that its benefits are equivalent to those of an LSR in VFR application (Assumption (b)). This permitted examination of the current BRITE/TML extablishment criteria.

The second step in the analysis applies the hypothesized LSR establishment criteria to all towered airports using the most recent air traffic activity data (from CY 1975). But before applying the criteria, towers are eliminated from consideration which have an ASR/RBS on site permitting a BRITE cab display and radar approach control (Assumption (c)) or a cab with a BRITE display via TML (Assumption (d)). The 400 fulltime towers are taken from Reference 2. The existing/programmed ASR/RBS and TML sites were obtained from the ATC Systems Program Division, Terminal Branch, and are listed in Tables 2-1 and 2-2, respectively. The results of the screening establish a strong set of candidates for an LSR.

In the third step of the analysis the B/C ratios are computed for the LSR (in both applications) for the candidates identified by the hypothesized establishment criteria. CY 1975 air traffic activity data are used. The B/C ratios are then employed in a final screening of the candidate airports using the following rules:

a. If the candidate airport is already provided with radar approach control from a parent TRACON or nearby ARTCC, the LSR can only be deployed at that airport for VFR application.

b. If the candidate airport is within range of a TML (i.e., within 20 miles), an LSR is not required.

c. If the B/C ratio is less than one for either application, the candidate airport would not qualify for an LSR for that application.

d. If the B/C for an ASR/RBS is greater than one, the candidate airport would recieve an ASR/BRS and not an LSR.

Based upon the final screening a list of potential LSR sites was drawn up. The analysis concludes with a sensitivity analysis and overall deployment benefits estimate. TABLE 2-1. ASR/RBS SITES

FACILITY LOCATION/NAME

Abilene TX (Dyess RAPCON) Akron-Canton OH Albany NY Albuquerque NM Allentown PA Amarillo TX Anchorage AK (Elemendorf RAPCON) Andrews RAPCON-Washington DC Asheville NC Atlanta GA Atlantic City NJ Augusta GA Austin TX Bakersfield CA Balboa CZ Baltimore MD Bangor ME Baton Rouge LA Beale AFB-Marysville CA Beaumont TX **Billings MT** Binghampton NY Birmingham AL Boise ID Boston MA Bristol TN **Buffalo NY** Burbank CA Burlington VT Casper WY Cedar Rapids MI Champaign IL Charleston SC Charleston WV Charlotte NC Chattanooga TN Chicago IL (O'Hare) Chicago IL (South) Cleveland OH Colorado Springs CO Columbia SC Columbus GA Columbus OH Corpus Christi TX Covington KY (Cincinnati) Dallas TX (Addison) Dallas TX (Colleyville) Dayton OH (Wright-Pat. RAPCON)

FACILITY LOCATION/NAME

Daytona Beach FL Denver CO Des Moines IA Detroit MI Dulles-Washington DC Duluth MN Edwards RAPCON-Palmdale CA Elmira NY El Paso TX Erie PA Evansville IN Fairbanks AK Falmouth MA (Otis RAPCON) Fargo ND Fayetteville, NC Flint MI Fort Lauderdale FL Fort Smith AR Fort Wayne IN Fresno CA Grand Rapids MI Great Falls MT (Malstrom RAPCON) Green Bay WI Greensboro NC Greer SC (Greenville) Guam Gulfport MS Harrisburgh PA Hilo HI Honolulu HI Houston TX Huntington WV Huntsville AL Indianapolis IN Islip NY Jackson MS Jacksonville FL Kahului HI Kalamazoo MI Kansas City MO Knoxville TN Lafayette LA Lake Charles LA Lansing MI Las Vegas NV Lexington KY Lincoln NE Little Rock AR Long Beach CA

TABLE 2-1. ASR/RBS SITES (CONT.)

FACILITY LOCATION/NAME

Longview TX Los Angeles CA (#1) Los Angeles CA (#2) Louisville KY Lubbock TX Macon GA (Robins RAPCON) Madison WI Memphis TN Meridian MS Miami FL Midland TX Milwaukee WI Minneapolis MN Mobile AL Moffet NAS-San Jose CA Moline IL Monroe LA Monterey CA Montgomery AL Muskegon MI Nashville TN Newark NJ New Orleans LA New York (JFK) NY Norfolk VA Oakland CA Oklahoma City OK (Tinker AFB) Omaha NE Ontario CA (March RAPCON) Orlando FL Palm Springs CA Pensacola FL Peoria IL Philadelphia PA Phoenix AZ Pittsburgh PA Portland ME Portland OR Providence RI (Quonset RATCC) Pueblo CO Raleigh NC Reno NV Richmond VA Roanoke VA Rochester, MN **Rochester NY** Rockford IL Rome NY (Griffis RAPCON) Sacramento CA (MeClellan RAPCON)

FACILITY LOCATION/NAME

Saginaw MI Salt Lake City UT Santa Ana CA (El Toro RAPCON) San Antonio TX San Diego CA San Juan PR Santa Barbara CA Sarasota FL Savannah GA Seattle WA Shreveport LA Sioux City IA Sioux Falls SD South Bend IN Spokane WA Springfield IL Springfield MO St. Louis MO St. Thomas VI Syracuse NY Tacoma WA (McChord RAPCON) Tallahassee FL Tampa FL Toledo OH **Tuscon AZ** Tulsa OK Washington DC (National) Waterloo IA West Palm Beach FL White Plains NY Wichita KS Wilkes Barre PA Wilmington NC Windsor Locks CT Youngstown OH

TABLE 2-2. TML BRITE SITES (EXISTING AND PROGRAMMED)

AIRPORT LOCATION/NAME

Austin TX (Mueller) Abilene TX Alton IL Anchorage AK (Merrill) Arapahoe CO (Denver) Beford MA (Hanscolm) Beverly MA Broomfield CO (Jefferson Co.) Chesterfield MO (Spirit of St. Louis) Chicago Dupage IL Chicago Meigs IL Cincinnati (Lankin) OH Cleveland OH (Burke Lakefront) Cleveland OH (Cuyahoga Co.) Columbus OH (Ohio St.) Chino CA Carlsbad CA Central Islip NY Chicago (Dalwaukee) IL Dallas (Addison) TX Dallas (Redbird) TX Dekalb Peachtree GA Detroit City MI Dothan AL Detroit MI (Willow Run) Farmingdale NY Ft. Lauderdale (Exec.) FL Ft. Worth (Meacham) TX Fullerton CA Fulton Co. GA Fresno (Chandler) CA Great Falls MT Greenville SC Hartford CT (Brainard) Hawthorne CA Hollywood (North Perry) FA Hyannis MA (Post) Jackson (Hawkins) MS Kansas City KS (Fairfax) Kodiak AK Knoxville (Downtown) TN La Verne (Brackett) CA Louisville KY (Bowman) Melbourne FL Middletown PA Minneapolis MN (Flying Cloud) Montgomery AL (Dannelly Field) Macon GA (Lewis B. Wilson) New Bedford MA

AIRPORT LOCATION/NAME

New Orleans (Lakefront) LA Newport News VA Niagra Falls NY North Philadelphia PA Norwood MA Ogden UT Orlando FL (McCoy Jet Port) Oklahoma City (FAA Academy) OK Oklahoma City (Wiley Post) OK Oklahoma City (Will Rogers) OK Omaha (Eppley) NE **Opa Locks FL** Oxnard CA Palo Alto CA Panama City FL Phoenix AZ (Litchfield) Pittsburgh PA (Allegheny) Providence RI Pompano Beach FL **Riverside** CA Sacramento (Exec.) CA Sacramento (Metro.) CA San Carlos (Oakland) CA San Diego (Lindbergh) CA San Diego (Montgomery) CA San Francisco CA San Jose CA San Juan PR Santa Ana (Orange Co.) CA Santa Monica CA Seattle (Boeing) WA Shreveport (Downtown) LA Shieveport (Regional) LA Spokane WA San Antonio TX San Jose CA (Reid Hillview) Spartanburg NC Tamiami FL Teterboro NJ Torrance CA Troutdale OR (Portland) Tuscon AZ Tulsa OK (Riverside) Utica NY Van Nuys CA Westfield MA Wilmington DE Winston Salem NC

3. BENEFITS ANALYSIS

3.1 PRELIMINARY ANALYSIS OF SAMPLE AIRPORTS

3.1.1 LSR for VFR Application and TML

The LSR for VFR application and the TML deployment were considered first in the analysis. The 100 airport sample in Reference 1 was considered and those airports which qualified for an ASR/RBS which did not warrant decommissioning were omitted from further consideration. This represented 55 airports, leaving 45 airports for potential LSR/TML deployment. To these 45 airports, the 15 airports listed in Table 3-1 were added. These airports were selected randomly, to include ones which have either low itinerant operations or high itinerant and low air carrier operations. These classes of airport were not adequately represented in the Reference 1 sample. For the 60 airport sample the B/C ratios for an LSR (VFR application) and TML were computed using 95 percent of the safety benefits obtained from the Reference 1 model and the costs presented in Section 1. The results are given in Table 3-2. The airports marked with an (*) in the TML column have or are programmed for a TML.

In order to derive simple establishment criteria, the data shown in Table 3-2 were plotted in terms of annual itinerant operations and annual air carrier operations in Figure 3-1. In that plot, each data point represents one of the 60 airports in the sample. The distribution of the data points suggests the establishment criteria depicted by the two two-segment curves. Airports with traffic characteristics below the lower curve would receive no surveillance aids. Those with characteristics between the curves would receive a BRITE via TML if within range. And, those airports with characteristics above the upper curve would receive a BRITE via TML if within range but, if a BRITE were not possible, would receive an LSR. The filled-in symbols show the airports for which the B/C computation does not agree with the criteria. In most cases, the B/C correlated quite well with the criteria.

TABLE 3-1. AIRPORTS ADDED TO SAMPLE

.

AIRPORT	AIRPORT	ANNUAL OP FOR CY		BUSY HOUR INSTRUMENT	% IFR WEATHER	
IDENTIFIER	LOCATION/NAME	ITINERANT	INSTRUMENT	OPERATIONS	0700-2100	
HGL	Wheeling WV	29585	5807	8	-(*)	
ROW	Roswell NM	28852	9976	11	10.6	
PDT	Pendleton OR	27726	3994	12	6.5	
HOB	Hobbs Lea NM	20424	1312	6	5.0	
DET	Detroit City MI	27183	43429	21	16.2	
SLN	Salina KS	35387	12915	18	7.7	
EWB	New Bedford MA	53426	6390	19	-	
PMD	Palmdale CA	30849	17015	22		
HUF	Terra Haute IN	42386	16164	22	12.2	
JVL	Janesville WI	43637	6296	14	-	
MOD	Modesto CA	64690	3478	10	1195 - State 1	
GNV	Gainsville FL	55286	8896	12	-	
PIE	St. Petersburg FL	81379	13031	16	-	
IAG	Niagara Falls NY	70010	14148	19	15.9	
OXR	Oxnard CA	79816	14046	23		

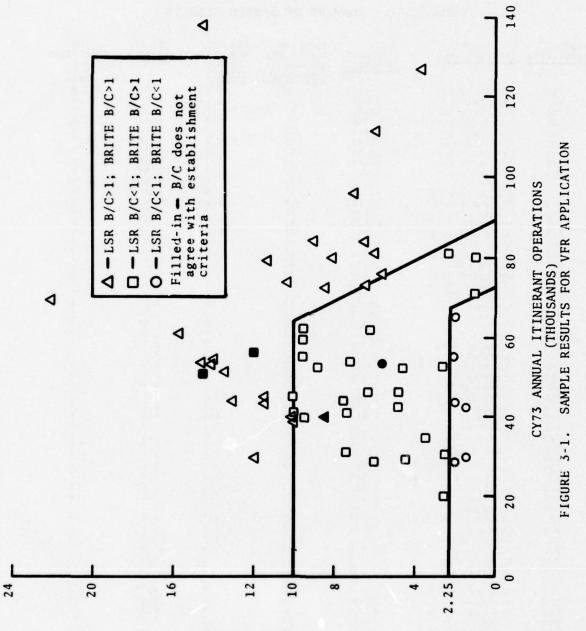

*Missing weather data not available.⁽⁴⁾

TABLE 3-2. SUMMARY OF SAMPLE RESULTS

AIRPORT IDENTIFIER	A I RPORT LOCATION/NAME	ANNUAL ITINERANT OPERATIONS	EXPECTED SAFETY COST SAVINGS (thousands\$)	VFR ONLY APPLICATION LSR B/C RATIO	TML B/C RATIO	IFR APPLICATION LSR B/C <u>RATIO</u>
FSM	Ft. Smith AR	53559	79	1.2	2.8	2.8
PSP	Palmsprings CA	72934	138	2.1	4.9	.9
TXK	Texarkana AR	41910	47	.7	1.6	.9
GJT	Grand Junction CO	39746	66	1.0	2.3	.6
TWD	New Haven CT	80868 96488	78 175	1.2 2.7	2.8	1.6
I LG FMY	Wilmington DE Fort Meyers FL	55386	22	.3	6.3*	1.2
MLB	Melbourne FL	80364	77	1.2	2.8*	.6
MDT	Middleton PA	50801	77	1.2	2.8*	.9
YKM	Yakima WA	62172	54	. 8	1.9	1.6
НОТ	Hot Springs AR	53554	51	. 8	1.9	. 6
DAB	Daytona Beach FL	138892	318	4.9	11.4	2.8
PFN	Panama City FL	51665	47	.7	1.6*	.6
ABY	Albany GA	61609	4 2 7 2	.6	1.4	.6
CID SUX	Cedar Rapids IA	53485	60	1.1	2.0	.9
ALO	Sioux City IA Waterloo IA	56702 45173	58	.9	2.1	1.2
MLU	Monroe LA	98556	48	.7	1.7	1.6
ORH	Worcester MA	51849	32	. 5	1.2	.3
AZO	Kalamazoo MI	79085	107	1.7	3.8	1.2
BIL	Billings MT	68985	176	2.7	6.3	1.9
MSO	Missoula MT	46432	37	.6	1.4	. 3
ELM	Elmira NY	50775	55	.9	2.1	. 6
UCA	Utica NY	41586	54	.8	1.8*	. 6
BIS	Bismark ND	39058	75	1.1	2.6	.9
RAP HTS	Rapid City SD	39068 45423	59 69	.9	2.1 2.6	.6
CPR	lluntington WV Casper WY	38555	72	1.1	2.6	2.8
CYS	Chevenne WY	44850	48	.7	1.6	. 6
DHN	Dothan AL	76152	133	2.1	4.9*	.9
BFL	Bakersfield CA	111287	199	3.1	7.1	2.2
PIH	Pocatello ID	32175	64	. 9	2.1	. 6
TOP	Topeka KS	83868	115	1.8	4.2	. 9
ABE	Allentown PA	84041	149	2.3	5.3	1.9
MKG PHF	Muskegon MI	40936	41	.6	1.4	. 6
KOA	Newport News VA Kona III	61407 30253	67 149	1.0 2.3	5.3	.6 1.2
IDA	Idaho Falls ID	29042	58	.9	2.1	
SCK	Stockton CA	71763	69	1.1	2.5	1.2
MFD	Mansfield OH	45607	41	. 6	1.4	. 6
LHY	Lynchburg VA	43278	65	1.0	2.1	.6
FAR	Fargo ND	55367	46	. 7	1.6	1.2
AVL	Asheville NC	53563	78	1.2	2.8	. 9
EUG	Eugene OR	72349	75	1.1	2.6	.9
GSP	Greer SC	43903	101	1.6	3.7	.9
HGL	Wheeling WV	29585	24	.4	1.9	
ROW	Roswell NM Pendlton OR	28852 27358	52 24	. 8 . 4	.9	.4
HOB	Hobbs Lea NM	20424	40	. 4	1.4	.3
DET	Detriot City MI	27183	. 159	2.4	5.7*	2.3
SLN	Salina KS	35387	41	. 6	1.5	.5
EWB	New Bedford MA	53426	35	. 5	1.3*	
PMB	Palmdale CA	30849	44	.7	1.6	
HUF	Terra Haute IN	42386	23	. 5	. 8	2.0
JVL	Janesville WI	43637	19	.3	.7	•
MOD	Modesto City	64690	25	.4	.9	
GNV PIE	Gainsville FL	55286 81379	25 43	.4	1.5	
IAG	St. Petersburg FL Niagra FAlls NY	70010	45	• 7	1.6*	.7
OXR	Oxnard CA	79816	60	.9	2.1*	-
UAN				•••		

*Airport has or is programmed for a TML.

BEST AVAILABLE COPY

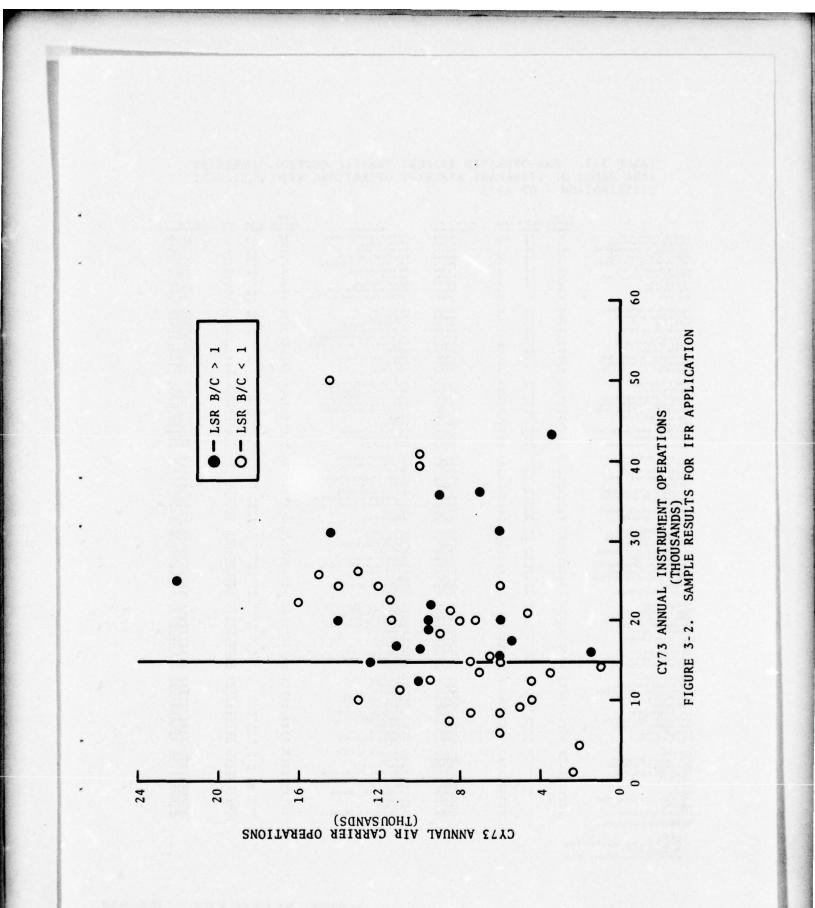
.

.

CY73 ANNUAL AIR CARRIER OPERATIONS (THOUSANDS)

To rationalize the dependence of the establishment criteria on the two traffic parameters, it is necessary to examine the safety model used. In that model the expected number of preventable midair collisions is a fairly linear function of annual itinerant operations. The more operations there are, the more likely it is that there will be accidents some of which will be preventable. Therefore, annual itinerant operations is one important parameter. Also as part of the model, the average cost per collision is estimated based upon the mix of aircraft (i.e., air carrier, air taxi, general aviation and military) at each airport. Due to the expense of the aircraft and the large number of passengers, the cost of an accident involving an air carrier is much larger than, say, an accident involving a general aviation aircraft (e.g., \$4 million versus \$200 thousand). Therefore, as the number of preventable accidents decreases (i.e., annual itinerant operations are lower), a certain level of air carrier traffic is required to offset the effect of the reduced accident rate with higher costs per accident. Therefore, air carrier operations is another important parameter.

This preliminary analysis is the only treatment of the B/C for TML in this study. Actual TML deployment is used in the next step of the analysis. However, it seems appropriate to note here that current TML establishment criteria involve only annual itinerant operations, with a required level of 35000 annual itinerant operations. $^{(5)}$ Although this criterion may result in deployment to some general aviation airports for which the benefits are marginal, the overall program benefits should still be quite high. Of some concern is the fact that some airports having a relatively high level of air carrier activity, which should be equipped, may be excluded by this criterion (see Figure 3-1).


3.1.2 LSR For IFR Application

This study considered LSR for IFR application with approach control. As with the VFR application, the ASR/RBS sites were subtracted from the 100 airport sample of Reference 1, leaving 45 airports. To these 45 were added seven of the 15 airports added to the sample for VFR application. Only seven could be added since weather data required in the IFR benefits computation was not available for eight of the airports. The resulting IFR sample contains 52 airports. The B/C ratio for the LSR (IFR application) was then computed using the results and/or models from Reference 1 and the cost estimate from Section 1. The results are given in Table 3-2.

In order to determine simple establishment criteria, the results in Table 3-2 were plotted on a chart of annual instrument operations versus annual air carrier operations as shown in Figure 3-2. In the plot, each data point represents one of the 53 airports in the sample. The distribution of the data points suggests that an establishment criterion based upon only two parameters is not very accurate in the IFR application. Other factors in the model are also important. However, since airports meeting the criteria were to be reexamined using B/C ratio computation, a criterion was chosen that tended to favor selection. The criterion was simply that the airport should handle more than 15,000 annual instrument operations a year.

3.2 APPLICATION OF ESTABLISHMENT CRITERIA

The establishment criteria defined above were applied to all towered airports in CY 1975. Airport towers at which there was an ASR/RBS or a BRITE via TML were first removed from the sample. Table 3-3 lists all towered airports in CY 1975 in rank order of itinerant operations. For each airport, it is noted whether the airport is an ASR/RBS site (A), has a BRITE cab display from an on-site ASR/RBS (B), has a BRITE cab display from a TML (T), or is unequipped and so is a candidate for an LSR (C). ASR/RBS and TML locations were obtained from Tables 2-1 and 2-2. The TML sites include sites for which the equipment is programed, but not yet installed. The BRITE displays from on-site ASR/RBS systems were taken from Reference 3. The list indicates that only 138 of 160 ASR/RBS sited airports have BRITEs in the cab. However, Reference 3 is several years old, and this information should simply be taken to indicate that most towers with an ASR/RBS on site are furnished with a BRITE in the cab.

TABLE 3-3. FAA-OPERATED AIRPORT TRAFFIC CONTROL TOWERS BY RANK ORDER OF ITINERANT AIRCRAFT OPERATIONS WITH EQUIPMENT DISTRIBUTION - CY 1975

13.6.		EQUIP.*				STATE APPPFV.	EQUIP.	-	
CHICAGO CHARE INTL	11	AB	1	668248	BUFFALO INTERNATIONAL	NY	AB	41	127479
ATLANTA INTERNATIONAL	GA	AB	2	46 3405	SATTA MONICA	C4	ĩ	82	1269+0
LOS ANGELES INTERNATIONAL DENVER STAPLETON INTE	CA Cr	AB	2	446732 365883	RICHMONE BYRD INTL CINCINNATI GREATER	VA KY	AB	83	126205
DALLAS FT WORTH FEGIONAL	TX	8	5	342116	SAN JOSE REID HILLVIEN	r.	A B	45	123347
JOHN & RENNECY INTL	NY	A 8	*	337049	CRI ANDO HEFNOON	FL	AB	86	123233
PHOENIX SKY HARBUP INTL	A2 NY	A 8 8		332851 328763	DALLAS ADDISON	CA TX	4	87	122232
SAN FEANCISCO	C.3	T	9	326677	ACCHESTER MONFOF COUNTY	NY			119666
VAN NUYS	CA.	1	10	320227	LITTLE POCK ADAMS FIFLE	AF	AB	90	119110
ASPINGTON NATIONAL	PC	AB	11	3115=2 306302	PRCV ICENCE		AB	91 92	110010
SANTA ANA	CA	T	13	304450	SAS PIECO GILLESPI	CA.	c	93	116010
PHILACELPHIA INTL	PA	AB	14	290104	EL PASC INTERNATICAAL	13	AB	94	115144
LONG BEACH	CA FL	AB	15	253552	ATLANTA DEKALT PRACHTREE	GA	-	95	115003
BOSTON LOGAN	**	AB	17	282735	AUSTIN	TR	÷	97	114472
PITTSEURGE GPEATER INTL MEMPHIS INTERMATIONAL	PA	AB	14	279249 274077	RENO INTERNATIONAL	-	AB	98	113656
HONOLULU	HÌ	Â	20	272333	SAP CAPLOS	CA .	C T	100	112643
FORT LAUCEPDALE	FL	AB	21 22	245730	CHICAGE DU PALE COUNTY APERTER D JEFFERSON CO	11	1	101	112447
DETROIT METEO WAYNE CO	-1	AB	23	235135	LOUISVILLE STANCIFORD		AB	103	111420
LAS VEGAS MCCASPAN INTL	NV	AB	24	231590	PARELSFIELD MEANINS FLC	"	A	104	111299
MINNEAPOLIS ST PAUL INTL	PN CA	AB	20	226352	SVEACUSE HANCECK INTL	-17	AB	105	111210
NPA LOCKA	FL	Ť	27	206	FATPPANKS			107	110516
BALTIMORE WASHINGTON INTL	7	AB	29	204974	LOUISVILLE ACHAN		Ť	100	109456
SFATTLE HOEING CLEVELAND HOPKINS INTL	CH	AB	30	196627	CETECIT CITY	-1	A B T	100	109946
SAN JUAN INTERNATIONAL	PR	A.,	31	164310	GREENSBERD RECTONAL	NC	A 8	111	107462
SALT LAKE CITY INTL DALLAS LOVE FIFLD	1.	AB	32	193693	LA VERNE BACKETT	CA FL	:	112	106045
CARLANC PITERMATIONAL	CA	AB	34	141015	CANAPO VENTURA COUNTY	C.	i	114	105500
NASHVILLE METRUPOLITAN	NJ	AB	36	190176	SANTE HAS BARE	CA 94		115	105350
INDIANAPOLIS WEIR COCH	IN	ÂS	37	148059	CHAPLESTON AFH MUNICIPAL	50	AB	110	105114
N FW ARK	NJ	AB	30	187 302	CAMP SEPINGS ANPEFES AFT	MO	AB	110	103958
HOUSTON INTERCONTINENTAL CHARLOTTE DUUGLAS	1x MC	A B A B	39	165270	GRANU PAPIES	21	AB	115	103494
TAMPA INTERNATIONAL	FL	A 8	41	184415	NAPE COUNTY		c	121	101430
COLUMBUS INTERNATIONAL TORPANCE MUNICIPAL	CH	AB	*2	110545	FAFFINCHALE HAFTICHE REALEARD	CT.	1	122	100075
AL BUQUEPOUE IN FP NATIONAL		AB	44	174686	HAWTHIPPE	CA.	÷	124	100001
MILWAUKEE MITCHELL	-1	AB	45	171649	CALCHACE SPRINGS	cr		125	100579
SAN ANTONIO INTERNATIONSL WICHITA MID CONTINENT	TX	AB	47	160134	ALPANY COUNTY	IN	AB	126	99656
KANSAS CITY INTERNATIONAL	+0	8	4.	169029	NOFLOCE	-	ĩ	124	99323
BURBANK TULSA INTERNATIONAL	CA CK	A B A B	50	16 53 33	PITTSHUPGH ALLEGHENY	-	AB	120	98736
CHICAGO MIONAY	n	A 8	51	14 3784	ATLANTA FULTON CULNTY	64	7	131	
SEATTLE TACOMA INTL POPTLAND INTEPNATIONAL	NA OF	AB	52	160000	LINCOLN MUNICIPAL	NF CA	A B	132	97677 97503
FRESNO AIR TEP-INAL	CA	AB	54	159528	KANSAS CITY PUNICIPAL			134	96792
ANCHOR AGE MER PILL	AE.	I	55	159225	EL PORTE	C A	C	135	96518
SAN DIFGO LINPBERG	CA CA	÷	50	157145	WESTFLELD VESU PEACH		c T	:36	96356
ISLIP MACAPTHUR	NY	AB	58	155 359	JACKSCHVILLE INTL	=	AB	138	95200
SACPAMENTO EXECUTIVE	FL CA	A B T	**	154364	POCKECPC IS FLYING CLOUD		I	130	94473
DAYTONA BEACH	F1	AB	\$0 61	147577		-	•	141	93249
DES MOINES MUNICIPAL	14	AB	62	143236	CINCINNATI LUNKEN BEIDGEPORT	C T	c'	142	93200
WHITE PLAINS WESTCHESTER	NY		63	140451	LANCASTER	PA	ċ	143	93038
ANCHORAGE INTL RAPCON BIRM IN GHAM	AK	ÂB	65	139901	CHICACO PALWAUKEE	NJ	. 1	144	•1071 •109P
TULSA RIVERSICE	CK	T	66	138000	SPF INGFIELD CAPITAL	ii	C	140	91060
ASHINGTON DULLES INTL	VA	AB	67	137550	HEVELY MUNICIPAL 2	-	T	147	90932
NEW OPLEANS MOISANT WINDSON LOCKS	LA CT	AB		135304	ALLENTURN CHAPLESTON		AB	149	90627
PALEIGH DUPHAN	NC	AB	70	134464	SAF ASOTA MARINTON	FL		150	
BEDFORD	-	T	*1	131630	WILPINGTON GP WILM	DE		151	
SAN DIEGO HONTGOMERY NEW OFLEANS LAKEFRONT	CA	+	72	131545	TOLFOC EXPRESS	-	C	152	87643
FULLERTON MUNICIPAL	CA .	÷	74	130522	SANTA RESA SOMOMA COUNTY	C4		154	
TUCSON	42	1.	75	130162	AKEPA CANTON PEGIONAL	CH	AB	155	87441
BOISE	10	AB	76 77	129231	FOFT WAYNE SAM JUAN ISLA GRANDE	1.	AB	156	R6933
ORLAHOMA CITY WILEY POST	OK	Ť	78	129022	LEXINGTON	**	AB	150	85293
CONCORD FORT WORTH MEACHAM	CA TX	¢,	70 80	128500	PALO ALTO ST THEMAS H S TRUMAN	VI	X	159	84727

Equipment designations are:

A-ASR/RBS B-BRITE direct from colocated ASR/RBS T-TML remote BRITE C-None of the above-candidate for LSR

BEST_AVAILABLE COPY

TABLE 3-3. FAA-OPERATED AIRPORT TRAFFIC CONTROL TOWERS BY RANK ORDER OF ITINERANT AIRCRAFT OPERATIONS WITH EQUIPMENT DISTRIBUTION - CY 1975 (CONT.)

TUNER	STATE	EQUIP.	PANK	NUPBER			EQUIP.	-	
ST PETERS BUPG CLEAR WATER DAN BIRY MUN IC IPAL MEL BOURNE	FL CT	ĉ	161 162	64300 P4272	WINSTON SALEM	NC FL	c T	241 242 243	59068 57616
READING	PA	cT	163	8412A 83924	LANCASTER FOR AIRPORT BANGOP INTERNAT ICHAL	CA ME	° 🔺	244	50551
SPOKANE INTERPATIONAL CHATTANODGA	NA TN	1.	165	#3801 #3671	GUL FFORT SAL INAS MUNICIPAL	MS CA	C * B	245	58343
TOPEKA PHIL IP BALLARD	KS	C B	167	A3493	NEN BECFOPD	MA	T	247	57850
COLUMBIA METPOPALITAN STOCKTON	SC	C A B	168	82759 82551	GPOTON TRUPBULL FAFGE HECTER FIFLD	CT ND	C A B	248	57750
LUBONCK	12	AB	170	#2127	SALEM MONARY FIELD	0.	c	250	57372
MIDLAND HARPIS PURG OLATHF	13 PA 85	ABAB	171	¢1701 79932	WILKES BARFE SPF INGFIFLD	PA MC	AB	251 252	57357 56897
DENVEP ARAPANCE COUNTY	co	C T	173	793#3 70302	WORCESTER MUNCIF CELAWARF COUNTY	IN	c	253 254	56333 56245
PEDRIA DRLANDO JETPORT	IL H	AB	175	79182	FURT SHITH NUNICIPAL	AP	AB	255	55919
ROANOKE	VA	AB	177	78909	PASCO TAL CITIES	WA TX	c	257	54913
NOL INE LIVERMORE NUNICIPAL	CA	CAB	178	70233 77400	ALTON CIVIC MEMORIAL	IL	A B T	258	54450 54337
PONTEPEY	C.	AB	160	74731	AMAFILLO	TX	•	260	53974
HYANN IS BILLINGS		T A B	101	74562 74005	COTFAN MILWAUKEE TIMMFOMAN	AL.	c ^T	261 262	53904 53740
CHAMPAIGN UNIV OF ILL	IL PI	AB	163	73960 73939	WATERLOC POCHESTER	IA	A 8	263 264	53503
ST PAUL	PR	c	145	*3*32	PENSACOLA	F.6	Â	265	53378
REDFORE JACKSON COUNTY	CR OF	ĉ	100	73858 73467	WILPINGTON NEW HANDVEP CO RENTON	NC	CAB	266 267	53364
COPPUS CHRISTI FCAT LAUCERDALE EXECUTIVE	18	AB	189	72494 72110	JACKSON REYNCLOS MUNIC	MI	CAB	268	52929
NEW HAVEN	ct	c	190	71767	CCLUMBUS	GA	ÂB	270	52834
COLUMBUS CHID ST	FL	I	191	71541	KANSAS CITY FAIRFAX CHFYENNE	K.S.	cT	271 272	52819 52773
EVERETT PAINE FIELD	hA	c	193	*1154	AUGUSTA	GA	AB	273	52502
FVANSVILLE AKRON MUNICIPAL	IN	C A B	194	70839	JACKSON MANKINS GREAT FALLS	MS	T	274 275	51019
FLINT RISHOP NEWPORT NEWS	MI	AB	196	70 330 70223	BINGHANTON BROOME COUNTY SAGINAN TRI CITY	**	AB	276	51724
SCOTTSDALE	42	C	108	70217	SAN ANCELO	TX	C	278	50936
PALM SPEINGS FUNICIPAL MANCHESTER	CA NH	c*	200	70216 70202	ST CROIX ALEX HAMILTON FAPMINGTON	VI	c	279 280	50787 50695
TALLAMASSEF RIVEPSIDE HUNICIPAL	FL	AB	201 202	70136	PUNTINGTON PANAMA CITY BAY COUNTY	**	A B T	261	50651
TROUTDALE	CR	ł	203	69947	ANN APBOR MUNICIPAL	#1	C	203	50249
SOUTH REND	IN	ABA	204	69642	ERIE SANTA MAPIA PUBLIC 2	CA	C A B	284	50148
NONTGOMERY DANNELLY FIELD	41	T	206	-64522	SAN DIEGO BROWN FIELD	CA	č	286	49884
CHINU	CA	A B T	207 208	68587 62477	WACO HUNICIPAL CECATUR	TX IL	c	287	49745
BRISTCL TOI CITY DETROIT WILLOW RUN	TN #1	A B T	20° 210	69062 67827	MILOL FTON MISMARCK	ND	c	249	49304
SAVANAN HUNICIPAL	GA	A 8	211 212	67570	GRANC JUNCTION	CC HI	ç	291 292	48937
STOUX FALLS FESS FLD	SD	ÅB	213	67250	MANSFIELD LAHM MUNICIPAL	OH	č	295	48666
SACHAMENTO HETPO HODESTO CITY COUNTY	CA CA	c	214	66673	ELMINA LAFAYETT PURDUE UNIVERSITY	IN	CAB	294 295	48576
FORT PYERS PAGE FIELD CSMROSH WITTMAN FIELD	FL.	ç	216 217	66407	ABILENE ST PETEPSBURG WHITT	TR	cT	296 297	47963
CLEVELANC CUYAHOGA COUNTY	CH	T	218	66329	ALBANY	GA	C	298	47710
MALLAS REDATAD	AL	AB	219 220	66144	NANTUCK FT HEN TAL		C	299	47637
FRESHE CHANDLEP MINNEAPOLIS CRYSTAL	CA	. 1	221	64915	CULUTH			301	•7271
PONPOE	LA	C A	227 223	64262 64142	WILLIAPSPORT PUEBLC	co	C A B	302	47248
HILL SOORD	CP .	c**	224 225	63671	GPANC ISLAND TEPRE HAUTE	NE	c	304 305	47043
BATON ROUGE PYAN FIELD	LA	AB	226	63234	AUPORA PUNICIPAL 2	11	c	306	40014
YAKIMA AIR TEPHINAL CEDAR RAPIOS	IA	AB	227	62714	LENISTON PAPKEPSPURG WOOD COUNTY		C	307	46749
GREFNVILLE MINICIPAL POMPANO REACH AIRPARK	SC FL	ł	224	62363	LA CROSSE SALINA	wt KS	c	309	46196
SPORANE FELTS FIELD HUNTSVILLE MADISON COUNTY	MA	C	231 232	61913 etel9	ANCHORAGE LAKE HOOD SPR		C	311 312	45553
WIAGANA FALLS		T	233	61452	TYLEP	TR	c	313	45486
EAST ST LOUIS AT STATE PE CHICAGO METOS	IL	¢ ,	234	61307	CRAIG FIELD JACKSONVILLE &	FL TR	c	314	45250
JACKSON NUN APPT SHREVEPORT DOM'TOW	PS LA	AB	236 237	60809	CLEVELAND SUPRE LARPPONT PAPID CITY	50	c	316	44897 44716
BEAUMONT PORT ARTHUR	12	AB	238	60207	ASHFVILLE	**	AB	310	10000
STOUR CITY HUNICIPAL GREEN BAY AUSTIN STRAUBEL	IA NI	A B A B	230	60040 59296	FAVETTEVILLE GRANNIS MUTCHINSON	NC K S	c * 8	314	44637 44351

Equipment designations are:

A-ASR/NDS B-ORITE direct from colocated ASR/NDS T-TML remote DRITE C-None of the above-candidate for LSR

BEST AVAILABLE COPY

TABLE 3-3. FAA-OPERATED AIRPORT TRAFFIC CONTROL TOWERS BY RANK ORDER OF ITINERANT AIRCRAFT OPERATIONS WITH EQUIPMENT DISTRIBUTION - CY 1975 (CONT.)

TOWER	STATE APORE V.	EQUIP	-		TOWER	STATE ARPREV.	EQUIP.	-	
JANESV ILL E	-	c	321	44131	KWAJALEIN AAF	WK	C	401	22521
L VY CHOUP G	VA	č	322	43512	BRUNSHICK SAINT SIMON	GA	C	302	223*4
PORGANTOWN		č	323	43426	BRUNSWICK SAINT SIMON HOBBS LEP COUNTY	NM	C	403	22293
MOSES LAKF GRANT		C	324	43106	LEPANCH 2	NM	ç	404	21221
GAEEA	SC LT	Â	325	4246A 42901	VALOUSTA MUNICIPAL ALFXAPCFIA 2	GALA	c	406	20378 20200
OGDEN MUNICIPAL MISSOULA		.'	327	42411	CFADHUPSE 2	AK	č	407	19405
KENAJ MUNICIPAL	AK	č	328	41310	NED BERN	NC	C	408	18254
IMPERIAL	ft	C	329	41052 405 34	DEEL VALLEY 2	42	C	409	15929
ALOONINGTON NOAMAL		c	330		NVETLE BEACH 2	sc	c	410	
HOT SPRINGS MEMORIAL MCALLEN	AR TX	ç	331 332	40868	PAY AGUEZ GALESBUPG PUNICIPAL 2	PR IL	c	411 412 413	15771
UTICA	NY	T	333	40522	KINSTER 2	NC	c		14079
CLARKS BURG BENFOUM	NO	c	334	40046	LEWISHURG GREENER IER	AK	č	414	13754
GRAND PORKS INTERNATIONAL JUNEAU	AK	ĉ	334	36797	VAL DEZ 2 FLORENCE CITY 2	ŝć	č	414	8924
T EX ARE ARA	46	č	337	39529	KODIAK	AK	T	417	7593
GOODYFAR	42	č	334	39 504	FLAGSTAFF 2	42	C	418	5017
SAN ANTON IO STINSON	12	T	339	39460	MAP TON WILL TAPSON 2		ĉ	41.	4160 2951
KLAMATH FALLS	CR	c	340	39162	HIAMI DADE COLLIER	FL .		420	
HAGEPSTOWN	MO	ç	341	38962		6	RAND T	FTAL	38041040
PENOL FTON REDDING	CA	ĉ	343	38502					
HILO GENERAL LYMAN FIELD	HI		344	38334					
CARBONDALE 2	IL	C	345	34 208					
SPARTANPURG	SC	1	346	30125					
TACONA INDUSTRIAL	14	c*	347	37628					
MACON LEWIS & WILSON	GA	T	349	37359	1. AIR TRAFFIC HU	BS ARE CLA	ASSIFIE	D AS FC	LLOWS
OU GUOU E	14	C	350	37312					
ATLANT IC CITY	NJ	*	351	36587	W MEDIUM 0.25%	(1,984,0 TO 0.995	(BETWEE	EN 496.	020 AND
TPAVEPSE CITY	P1	ç	352 353	36536 36257	S SMALL 0.055	077 PASS	(BETHE	-	
IDAND FALLS FANNING FIELD	10	ĉ	354	36101	494.0	19 PASSEN	FRS)		
KNORVILLE DOWNTOWN HIM	TN	T	355	35479	W NONHUB LESS	THAN 0.051	UNDER	\$ 99.20	4 PASSENGERS)
SOUTH LAKE TANDE	CA	C	356	35147					
A HERLING	••	e	357	34962	2. LESS THAN FULL				
BROWNSVILLE INTERNATIONAL TUSCALODSA VAN DE GRAAF	1X AL	č	359	34441	2. LESS THAN FULL	TEAR DATA.			
CHARLCTTESVILLE ALREMARLE	VA	č	360	34312	CODE INDICATES TYP	E OF CHANG	E TAKEN	PLACE	
LAKE CHAPLES	LA	AB	361	34081	C CONNISSIONED				
FRCED	CA.	c	362	34018					
POCATELLO	10	C	363	34001	C TOWER ST I	LOUIS SPIR	IT OF S	T LOU	MO 01-75
POUGHEEPSIE DUTCHESS CO	NY	C.	364	33833		TA MARIA P			AK 01-75
MERIDIAN KEY PLAINVIEW MALE COUNTY	PS TX	c *	365	33553		KANDRIA	UDETC		CA 02-75
ROSWELL	K#	č	367	33216	C TOWER IER	ANON			NH 04-75
CAPE GIRARDEAU HUNICIPAL	PO	ċ	368	32977	C TOWER KINS	STON			NC 04-75
PALNOM E	CA	C	369	32950	C TOWER KINS C TOWER BEVI C TOWER CRA	ERLY MUNIC	IPAL		MA 01-75
OWENSMORT CAVIESS CO ENID WOODR ING HUN IC IPAL	KY OK	c	370	32773	C TOWER TWI	IG FIELD J	ACKSONV	ILLE	FL 01-75 10 02-75
ENTO NOUN ING YOUR CIPAL	-	•			C TOWER WALL	A WALLA			ID 02-75 WA 01-75
ATHENS CLARKE COUNTY BATTLE CREEK	GA	ç	372	32576		ONDALE			IL 03-75
BATTLE CREEK	"		373	32473	C TOWER CHIC	0			CA 05-75 SC 08-75
KONA KE AHOLE	HI	ç	374	32033	C TOWER FLOW	RENCE CITY	-		SC 00-75
SANTA FE PINE OLUFF GRIDER FIELD	MM	č	375	31555 31533	C TOWER MARI	ORA MUNICI	MSON		IL 02-75 IL 11-75
REY WEST	FL	č	377	31195	C TOWER FLAC	STAFF			IL 11-75 AZ 09-75
COLUMBIA PEGIONAL	10	C	370	31154	C TOWER VALE				AK 01-75
JOPL IN	-0 CO	ĉ	379	31142	C TOWER PHOE	SBURG	VALLEY		AZ 10-75 IL 06-75
ASPEN PITE IN COURTY ITHACA TOMPEINS CO	NY	č	301	30447		M MYRTLE	BEACH		1L 04-75 SC 04-75
PONCE MERCEDITA	-	c	302	30833					
GLOOMINGTON MONAGE COUNTY	IN	ĉ	383	30710					
CHICO 2	CA	c	345	30549					
MARL INGEN INDUSTPIAL AP	T.	ç	384	30310		-			
ARONOPE HUNICIPAL	OK	č	307	30230	FULL TIME	TOWI	ERS	WIT	H
HEL ENA	PT	C	388	29497	LISTED				18 101 11 11 12
FAVETTEVILLE MARE FIELD	AR	c	389	29208	LISIED	EQUII	MEN	1	
WALLA WALLA 2	-	ĉ	391	20149	A = 160 (ASR/I	DRSI	1. 51	
PADUCAN BARKLEY FIELD		c	392	27019					
ST JOSEPH	MO	C	393	26553		BRITH	3)		
LANTON MARADP ROSS FIELD	MI	C	394	26351		TML)			
NARYSVILLE YUBA COUNTY	OK	ç	345	26146				-	
THIN FALLS 2	10	č	397	25400 25220 24597	C = 146 (LSR (CAND	IDA'	TES)
TUIN FALLS 2 R ING SALMON	AK	ĉ	396 397 398	24597					,
GRAND CANYON MUNICIPAL	AZ	C	399	23822					
Daw ILLE	n	c	400	22698					

A-ASR/RDS B-MRITE direct from colocated ASR/RDS T-TML remote DRITE C-Name of the above-candidate for 150 andidate for LSR

at designations are:

BEST AVAILABLE COPY

From Table 3-3, a list of 146 candidates for LSR deployment is obtained. The application of the establishment criteria to these candidates resulted in the list of 31 potential LSR qualifiers that would require further screening. These sites are shown in Table 3-4 along with the applications(s) for which each might be qualified.

3.3 FINAL SCREENING OF LSR QUALIFIERS

The final screening was applied to the 31 potential qualifiers using the rules set down in Section 2.2. Prior to computing the appropriate B/C ratios, the airports were checked for existing coverage. Two airports, although not programmed for a BRITE via TML, were well within TML range and so LSR B/C ratios were not computed for them. Two others were found to have existing radar approach control from a nearby facility, and LSR B/C ratios were not computed. Three others were provided with radar approach control service but were out of TML range. Since these three airports qualified for both VFR and IFR application, the LSR B/C ratios for VFR application were computed. The type of coverage and parent facility are given for each of these airports in Table 3-4.

The B/C ratios were computed for each VFR application using the Reference 1 model. The ratios for the IFR application posed a problem since the Reference 1 model for delay savings requires weather data which was not available on all airports. To solve this problem, it was necessary to alter the model. An example of how the model was altered is Fort Myers Page Field, Florida. The B/C computations for Fort Myers Page Field are depicted in Table 3-5. The resulting B/C ratio is greater than one, suggesting an LSR deployment for radar approach control. However, in CY 1975, Fort Myers only experienced 211 instrument approaches. This would suggest that for the small airports considered in this study, the estimate of delayed aircraft (item (6) in Table B-5) may be in error. In addition, in that estimate it is assumed that departures are delayed as much as arrivals, which is unlikely. When operating in IFR, lateral separation (i.e. diverging headings) can be applied

TABLE 3-4. FULL-TIME TOWERS QUALIFYING FOR LSR - CY 1975

AIRPORT IDENTIFIER	AIRPORT LOCATION/NAME	APPLICATION FOR WHICH QUALIFIES	CURRENT COVERAGE*	LSR B/C FOR VFR	LSR B/C** FOR IFR
BDR MMU CCR SEE APC VRB EMT	Bridgeport CT Morristown NJ Concord CA San Diego Gillespi CA Napa County CA Vero Beach FL El Monte CA	VFR VFR VFR VFR VFR VFR VFR	TML (1) TML (2)	1.2+ 1.0+ 1.4+ 1.0+ .9	
LNS PTK TTN SCK TOP	Lancaster PA Pontiac MI Trenton NJ Stockton CA Topeka KS	VFR VFR/IFR VFR/IFR VFR/IFR VFR/IFR	TRACON (3) TRACON (4) ARTCC (5)	1.2+ 1.1+ 1.7+ 1.9 1.5+	1.8/1.9+
MFR EUG LIH KOA	Medford OR Eugene OR Lihue HI Kona Ke HI	VFR/IFR VFR/IFR VFR/IFR VFR/IFR	AKICC(3)	1.3 1.1 1.4 2.8+ 2.3+	6.1/4.1 3.8/2.8+ .2/1.2 .0/.9
RDG≠ MHT PAE FMY SJT	Reading PA Manchester NH Everett Paine WA Fort Meyers FL San Angelo TX	IFR IFR IFR IFR IFR	ARTCC (6)		1.5+ .7 .5 2.6+
CYS BIS DEC IPT MFD	Cheyenne WY Bismarck ND Decatur IL Williamsport PA Mansfield OH	IFR IFR IFR IFR IFR			.4 .6 .9 .3 5.2
LSE ACT≠ MGW CKB PMB	La Crosse WI Waco TX Morgantown WV Clarksburg WV Palmdale CA	IFR IFR IFR IFR IFR	RAPCON (7)		.4 .4 .4 .3
*Potentia (1) M (2) O Existing (3) D	- Coverage from irimar RAPCON ntario TRACON Coverage from etriot TRACON hiladelphis TRACON	1FK	KAPLON (7)		

(4) FRIIAGEIPHIS TRACON
(5) Kansas City, ARTCC
(6) Seattle ARTCC
(7) Edwards RAPON

**{Incremental B/C for / Overall B/C with
Adding Approach Control / Approach Control }

If VFR B/C >1

BEST_AVAILABLE COPY

#Airports which are candidates for LSR deployment (not potential ASR/ RBS sites).

≠Scheduled for ASR in FY '78.

TABLE 3-5. EXAMPLE, B/C COMPUTATIONS USING ASR ESTABLISH-MENT CRITERIA MODELS - FORT MYERS PAGE FIELD, FLORIDA

(1) EXPECTED COST/COLLISION = \$1,579,000

USER ANNU CLASS NUME	AL OPERATIONS (a) HER FRACTION	AVERAGE COST PER COLLISION (THOUSANDS) (b)	FRACTION USER C AVG. COST PER C	
Air Carrier 400	.04	19,822	793	
Air Taxi 719	.08	3,349	268	
GA Itin. 5498	.58	625	363	
GA Local 2880		517	155	
Military 38		3,349	0	
9537	5 1.00		Total = \$1,579 =	
				Collision (Thousands)
(2) EXPECTED PRE	EVENTABLE COLLISION	NS/YFAR(C) = 0.32		(Indusands)
	Itinerant Operat			
	FITS = $(1) \times (2) =$			
	ST/HOUR OF DELAY =		*	
USER ANNU CLASS NUME	JAL INSTRUM. OPS ^(a) BER FRACTION	AVERAGE HOURLY COSTS/AIRCRAFT(d)	EXPECTED COST/He OF DELAY	OUR
Air Carrier 459	.19	1250	238	
Air Taxi 753	.32	375	120	
GA 1133		131	63	
Military 18	.01	375	\$425	
a sector as set			3425	
	AY SAVINGS/AIRCRA			
(5.1) Busy H	Hour IFR Operation	$s^{(a)} = 21$		
(6) EXPECTED AIR	RCRAFT DELAYED/YEA	$R = (6.1) \times (6.2) \times (5.1)$	= 1578	
(6.1) Busy H	lours/Year = 1252	(4 Hours Weekdays & 2 Hou	rs Weekends)	
(6.2) Fracti	on of Time Instru	ment Approach Weather Pre	$vails^{(f)} = .06$	
		(6) = \$122,700/YEAR		
	(IFR APPLICATION) osts (IFR Applicat	= ((3) + (7))/(8.1) = 1. ion) = \$161,800	07	
(a) From Referen (b) From Referen	nce 2 nce 1, Table 5			
(c) " "		ed upon item 2.1		
(d) " " (e) " "	Table 3 Table 6 bas	ed upon item 5.1 and frac	tion of GA from	itcm 4 Table
(f) From Referen		er apen recent off and read		

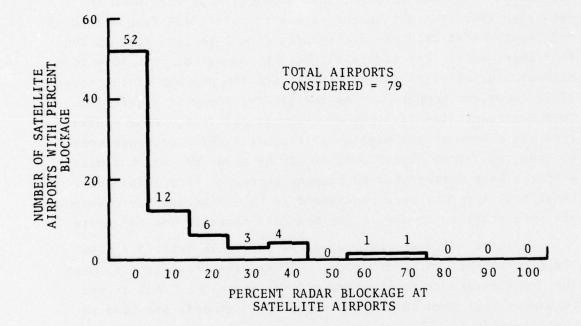
BEST AVAILABLE COPY

to successive departures between widely spaced arrivals, resulting in a higher departure than arrival rate. Because of these factors and the lack of weather data on all airports, the delay benefit model was altered by using the reported annual instrument approaches in place of the estimated aircraft delayed per year. Of the airports with weather data (13 airports), this change affected the deployment results only at Fort Myers. In this instance, with so few reported instrument approaches, the effect appears beneficial. The B/C ratio for Fort Myers with the revised model was .4, which resulted in its being dropped from the deployment list.

The B/C ratios are listed for each airport in Table 3-4. For those airports which qualified for both applications and whose B/C for VFR exceeds one, the marginal B/C resulting from adding radar approach control is also shown. In these cases, the marginal B/C was used to determine deployment. Thus, airports with high safety benefits but little or no IFR weather would not receive radar approach control but would receive a BRITE display for separation advisories and sequencing.

From Section 1, the annual cost of an ASR/RBS is about three times the annual cost of an LSR with radar approach control. Therefore, Table 3-4, two airports having LSR B/C ratios greater than three might warrant an ASR/RBS. These two airports might thus receive an ASR/RBS rather than an LSR and might not be LSR candidates. The LSR deployment, therefore, is reduced to 14 to 16 out of 31 airports, with four to six LSRs installed with radar approach control and 10 LSRs installed for VFR application. The 14 airports (excluding the potential ASR/RBS sites) are marked with a (+) in Table 3-4.

3.4 SENSITIVITY TO BRITE/TML BLOCKAGE PROBLEMS


For the benefits analysis, it was assumed that if an airport had or was programed for a BRITE via TML, it would not be a candidate for an LSR. However, at some airports which may have coverage problems, although a TML provides some assistance, an LSR might be much preferred. This possibility was investigated for terrain shielding using an analysis presented in Reference 6. It is pointed out that this is only a <u>partial</u> analysis, since shielding due to man-made obstructions (e.g., buildings, towers) is not included and may be significant. Also, not all sites were considered.

In Reference 6, 79 of the 93 TML sites in Table 3-3 were addressed. For each airport, topographical maps were used to establish line-of-sight to the parent airport's ASR from a grid of 392 locations at each of 10 altitudes from 0 to 1800 feet in 200foot increments. For each altitude, the number of grid locations without line-of-sight was determined and the percent of the total (392) locations computed. The results are shown in Figure 3-3 versus percent line-of-sight blockage at 400 feet. Four hundred feet was chosen as the minimum altitude for which coverage would be required. From Figure 3-3, it can be seen that all but nine airports have better than 80 percent coverage. For this study, these nine airprots were confidered to have unacceptable coverage and were examined to see if the benefits exceeded the LSR costs.

The nine airports considered are listed in Table 3-6 with their pertinent characteristics. Of the nine, four fail to meet the hypothesized criteria presented in Figure 3-1. All of the remaining five have an LSR B/C ratio which exceeds one, and so would justify an LSR. Of the five, one is San Francisco, with an extremely high B/C ratio. However, until it received its BRITE via TML (in the early 1970s) San Francisco had its own ASR-2. It is unlikely that such a major airport would have given up its radar for the TML if coverage was not adequate. Therefore, San Francisco was not added to the LSR deployment list. The four other airports were added to the list, as shown in Table 3-7. A cost sensitivity analysis was then performed for the airports on the list. It is presented in Section 3.5.

3.5 SENSITIVITY TO COST ESTIMATES

Table 3-7 presents a summary list of the 18 airports which might receive an LSR. The two airports which might warrant an ARS/RBS are not included. Development (R&D) costs have not yet

.

.

.

FIGURE 3-3. TML COVERAGE DISTRIBUTION, ALTITUDE 400 FEET

TABLE 3-6. B/C RATIOS FOR TML AIRPORTS WITH LESS THAN 80 PERCENT COVERAGE

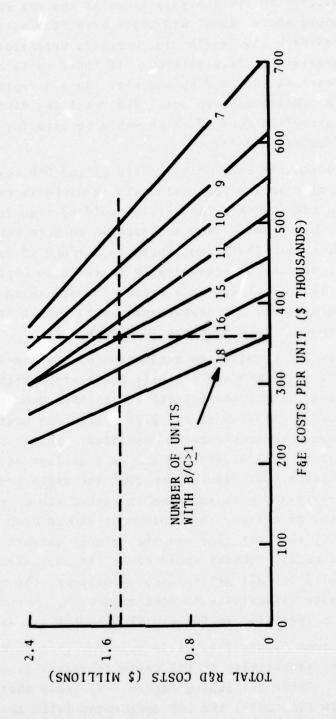
.

.

.

AIRPORT LOCATION/NAME	PERCENT COVERAGE	ANNUAL ITINERANT OPERATIONS	CY 1975 AIR CARRIER OPERATIONS	QUALIFY FOR LSR	VFR APPLICATION LSR B/C RATIO
San Francisco CA	70	326667	267627	Yes	43.6
Torrance Muni CA	70	175966	0	Yes	1.5
Tulsa Riverside OK	60	138000	0	Yes	1.3
San Jose Reid CA	70	123347	Ő	Yes	1.2
Troutdale OR	60	69947	ĩ	No	
Greenville Muni SC	60	62363	ō	No	and the second
Middleton PA	60	49304	11612	Yes	1.2
Ogden Muni UT	40	42901	55	No	
Spartanburg SC	30	38125	16	No	-

	BASE CASE LSR B/C		LSR B/C R	ATIO > 1	
AIRPORT LOCATION/NAME	RATIO	BASE CASE	PLUS R&D COSTS	10 PERCENT	20 PERCENT*
IFR APPLICATION					
Stockton CA	1.9	Х	Х	Х	X
Reading PA	1.5	Х	X	X	X
Eugene OR	2.8	Х	X	X	X X
San Angelo TX	2.6	X	X	X	X
Subtotal		4	4	4	4
Subtotal		4	4	4	•
VFR APPLICATION					
Topeka KS	1.5	Х	Х	X	X
Pontiac MI	1.1	Х			
Bridgeport CT	1.2	Х	Х		
Morristown NJ	1.0	Х			
Trenton NJ	1.7	X	Х	Х	X
Lihue HI	2.8	X	x	X	X
Kona Ke HI	2.3	x	X	X	x
Concord CA	1.4	X	x	x	
Napa Co. CA	1.0	X			
Lancaster PA	1.2	x	x		
Luncuster in					
Torrance Muni CA	1.5	x	v	v	
Tulsa Riverside Ol	K 1.3	X	X	X	Х
San Jose Reid CA			X		
Middleton PA	1.2	X	X		
MIGUIELON PA	1.2	х	Х		
Subtotal		14	11	6	5
Total Units		18	15	10	9


TABLE 3-7. SUMMARY AND SENSITIVITY TO COST

* Increase in F&E costs. O&M, controller (in IFR application), and R&D costs assumed constant. been considered in the analysis since it was not known how many systems would share them. R&D costs have been estimated by the Systems Research and Development Service, Detection Systems Branch, to be approximately \$1.5 million. If these costs are amortized over 15 years at 10%, and spread over the LSR deployment, three of the LSR candidates drop out. The resulting deployment would be at 15 airports, four of which would be used for radar approach control (see Table 3-7).

Of course, if each unit's share of the R&D costs were offset by a reduction in its F&E costs, all 18 airports could continue to justify an LSR economically. This would be true for increasingly higher R&D costs until even a reduction to zero F&E costs would not offset them. Therefore, there is a range of R&D and F&E costs which will produce an economically justifiable deployment of 18 systems. In fact, there is a range of costs which will produce any of the possible LSR deployments which result as the system costs increase. This is shown in Figure 3-4.

Figure 3-4 permits the estimation of the LSR deployment as a function of total R&D and per unit F&E costs. With R&D costs of \$1.5 million, if the nominal F&E costs (\$362,000; see Table A-3) were reduced by \$83,000 (i.e., \$1.5 million/18 units) to \$279,000, 18 units could be economically justified. In the figure, the nominal values of \$362,000 F&E and \$1.5 million R&D are depicted by dashed lines. It can be seen that the deployment to 15 airports is very sensitive to an increase in either R&D or F&E costs. Once to the right of a line, the deployment should drop to the units specified by the next line and the 15 unit airport deployment would drop to 11 units. (Costs would cause the four airports with B/C ratios of 1.2 to fall below 1.0.) Similarly, the nominal deployment is quite insensitive to cost reduction. A reduction in R&D of 90% or a reduction in F&E of 10% will not increase the deployment.

Also from Figure 3-4, it is apparent that as R&D costs increase, the sensitivity to F&E costs increases (i.e., the lines converge). Table 3-7 (using Figure 3-4) shows that for a 20% increase in F&E costs, the LSR deployment falls to nine.

.

34

3.6 NET BENEFITS ESTIMATE

Although this study considers only the CY 1975 LSR deployment potential, it is possible to estimate the net benefits of a program which would (1) develop the LSR in FY 1978 and FY 1979, (2) deploy the LSR in FY 1980, and (3) operate the units for the next fifteen years. Based upon the results presented in Table 3-7, fifteen units might be deployed and maintained. As traffic grows, unequipped airports would qualify for LSRs while LSR-equipped airports would qualify for ASRs. It is assumed that LSRs would be moved from the ASR-qualified sites to the new LSR sites, keeping the net number of LSRs at 15. In making the estimate of benefits, it is assumed that the average B/C ratio for the 15 airports will approximate the average B/C ratio of the 15 airports qualifying for the LSR in CY 1975 (See Table 3-7). Costs required to relocate LSRs in this arrangement are taken as the non-radar F&E costs from Table A-3 and are \$165,000 per relocation. It is further assumed that there would be one relocation every 2 years, beginning 5 years after the initial deployment.

The benefits estimate is made in Table 3-8. The results indicate that for a present value cost of \$9,444,000, a present value benefit of \$14,619,000 is accrued over the 15 year period. The program has a present value net benefit of \$5,175,000 and a benefit/cost ratio of 1.55. If the program start is delayed, the benefit/cost ratio would remain unchanged. However, the present value (base year 1977) net benefit would be divided by 1.1^N, where N is the number of years the program is postponed. HYPOTHESIZED LSR PROGRAM BENEFITS ESTIMATE **TABLE 3-8.**

T VALUE ^a		BENEFITS	0	0	0	1749	1590	1444	1313	1193	1085 .	986	896	814	740	673	612	556	507	461	14,619
PRESENT		COSTS	682	620	4078	450	409	372	338	384	279	317	231	262	190	217	158	179	130	148	9,444
	DISCOUNT	FACTORD	606.	.826	.751	.683	.621	. 564	.513	.466	.424	. 385	.350	.318	. 289	. 263	. 239	. 217	.198	.180	
		BENEFITS				2561 ⁸	2561	2561	2561	2561	2561	2561	2561	2561	2561	2561	2561	2561	2561	2561	38,415-
	TOTAL	COSTS	750	750	5430	629	629	629	629	824	629	824	629	824	629	824	629	824	629	824	17,805
VALUE ^a	STAFF	COSTS			ł	3841	384	384	384	384	384	384	384	384	384	384	384	384	384	384	5,760
YEARLY	O&M	COSTS			(275 ^e	275	275	275	275	275	275	275	275	275	275	275	275	275	275	4,125
	F&E	COSTS		٦	5430 ^d				4	165"		165		165		165		165		165	6,420
	R&D	COSTS	750 ^c	750																	1,500
	FISCAL	YEAR	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1661	1992	1993	1994	1995	Total

PRESENT VALUE NET BENEFITS = \$5,175,00 BENEFIT/COST RATIO = 1.55

1

a Thousands of 1976 dollars b FY77 base year at 10% c Half the \$1.5 million estimate each of two years c Half the \$1.5 million estimate each of two years d 15 units @ \$362,000 per unit e 15 units @ \$18,300 per unit f 4 units (IFR application) @ \$96,000 per unit g 4 units (IFR application) * 2.2 (Ave. IFR B/C) * \$161,000 + 11 units (VFR application) * 1.6 (Ave. VFR B/C) *\$65,000 h Estimated relocation costs

4. SUMMARY OF RESULTS

The following is a summary of the results from Section 3. The first five items apply to CY 1975, the year for which the study was performed.

- The CY 1975 analysis suggests a total LSR deployment at approximately 15 to 17 airports (see items (2) through (5) below). Four to six of these would be for radar approach control. Cost increases could lower the potential deployment.
- 2) Of the 59 non-radar approach control facilities in operation, six appear able to justify economically (with benefit/cost ratios greater than one) radar approach control with an LSR. However, two of these might justify an ASR/RBS and thus may not be LSR candidates.
- 3) Of the 146 tower cabs without a BRITE display, seven appear to justify economically a BRITE display without radar approach control via an LSR.
- 4) Of 79 of the 93 TML sites in operation, approximately four have sufficient terrain obstructions and adequate activity to justify an LSR economically.
- 5) If F&E costs are 20 percent higher than those used in the analysis, six airports which were to receive the LSR for VFR would probably be dropped from the deployment list as no longer cost beneficial.
- 6) If F&E costs are 20 per cent lower than those used in the analysis, one airport would probably be added to the deployment list for VFR application.
- 7) A benefit/cost analysis has indicated that if 15 LSRs are deployed in 1980 and operated for the next 15 years, the program (See Section 3.6) would accrue a present value (base year 1977) net benefit of \$5,175,000, with a benefit/cost ratio of 1.6.

37

5. REFERENCES

- Federal Aviation Administration, "Establishment Criteria for Airport Surveillance Radar (ASR/ATCRBS/BDS)," U.S. Dept. of Transportation, ASP-75-2, December 1975.
- Federal Aviation Administration, "FAA Air Traffic Activity -Calendar Year 1975," U.S. Dept. of Transportation, ADA 024328, March 1976.
- Mitre Corporation, "Civil Aviation Midair Collisions Analysis January 1964 - December 1971," prepared for Federal Aviation Administration, FAA-EM-73-8, May 1973.
- 4. National Climatic Center, Asheville NC, "Ceiling-Visibility Climatological Study and Systems Enhancement Factors," prepared for Federal Aviation Administration, ADA 012105, June 1975.
- 5. Federal Aviation Administration, "Airway Planning Standard Number One - Terminal Air Navigation Facilities and Air Traffic Control Services," Order 7031.2B, September 1974.
- Federal Aviation Administration, "FAA ASR Coverage," Draft Final Report, U.S. Dept. of Transportation, FAA-RD-74-103, June 1974.

activity to justify an DSR concentrativ. If Fab costs are 20 percent higher than those used in the analysis, six appoints which were to receive the DSR for VER would probably be propped from the deployment list as at longer cost beneficial.

1 14 Fab costs are 10 per cent lower than those used in the shalvais, one sirport would probably be added to the deployment list for VPR application.

A benefit/cost analysis has indicated that if 18 hBRs are deployed in 1980 and apprated for the next 15 years, the program (See Section 3-6) would rectue a present value (base rest 1977) net benefit of \$3,175,000, with a benefit/cost satio of 1.6.

APPENDIX A EQUIPMENT COST ESTIMATES

A.1 TELEVISION MICROWAVE LINK (TML)

The TML consists of three major elements. The TML Indicator (TMLI) includes the TV video reciever, antenna, BRITE display and ancillary interface equipment. The TML Transmitter (TMLT) is provided in two classes: a basic single channel unit (Class A) including a PPI, TV camera with a show decay rate vidicon, a transmitter, and ancillary interface equipment; and a dual channel input (Class B) including two PPIs, two TV cameras, a video mixer, a transmitter, and ancillary equipment. The Class A TMLT provides only radar targets (primary and secondary), while the Class B TMLT provides for alphanumerical data from an ARTS site. The TML repeater (TMLR) is a repeater for use when total transmission range exceeds 10 miles or when line-of-sight transmission is not possible. The TML is a complete turnkey system except for site preparation, which is accomplished by the individual region.

The unit whose costs are estimated here is a standard Class A system with 1 repeater. Data in Reference 6 indicate that the majority of TMLs require a repeater. Basic F&E costs are drawn from the F&E Cost Estimates Summaries Handbook and are presented below.

TABLE A-1. FY76 BRITE-TV REMOTING WITH ONE REPEATER - F&E COSTS

Regional Costs	\$43,800
Equipment Costs	$\frac{119,600}{$163,400}$

The annual O&M costs are drawn from the data developed under Order 1380.32, Airway Facilities Maintenance Staffing Standard Study, dated November 1975. Average costs are presented below.

39

TABLE A-2. TML ELEMENT ANNUAL O&M COSTS

TMLT Costs	\$3,300
TMLI Costs	1,600
TMLR Costs	1,900
	\$6,800

A.2 LIMITED SURVEILLANCE RADAR (LSR)

The primary elements of the LSR are the transmitter/receiver, antenna, signal processor, and display. The signal processor will be digital and will include a new system of clutter rejection called Moving Target Detection (MTD). Due to the digital nature of the target data, an improved (over BRITE) digital display will be possible, as will a convenient telephone line remoting from almost anywhere in the immediate airport area. The following is a list of pertinent features/parameters:

 a. Single channel system (not dual channel) MTBF estimated at 500 hours. MTTR estimated at one hour. System availability estimated to be 99.8%.

b. Frequency allocation is with S band (3500-3700 MHz).

- c. Coverage is as follows:
 - Range = 20 nmi Altitude = 10000 ft. Minimum Range = 0.5 nmi Azimuth = 360 degrees
 - Elevation = 1 to 20 degrees.
- d. Antenna 5.5 feet wide, 5 feet high.

Estimates of the F&E and O&M costs are made in Tables A-3 and A-4, respectively.

TABLE A-3. LSR F&E COST ESTIMATE

Radar Procurement costs Transmitter/Receiver \$64,000 Antenna/Pedestal 38,000 Signal Processor 30,000 Shelter 5,000 Built-in Test Equipment 10,000 Assembly and Test 20,000 Remoting and Displays 30,000 Total Radar Costs \$197,000 Establishment Cost Radar \$197,000 Spares (30%) 59,000 Test Equipment 10,000 MTI Reference Target 1,000 Contractor Turnkey and Shipping 30,000 Installation (Regional related costs) 50,000 Documentation 10,000 Factory Inspection 5,000 Total Establishment Costs \$362,000

1

L

TABLE A-4. LSR ANNUAL O&M COST ESTIMATE

Maintenance Costs	
Personnel (0.43 manyear at \$19,600)	\$8,400
Spares attrition at \$100/failure and MTBF = 500 hours	1,700
Equipment Refurbishment	1,000
Maintenance Training	3,000
Utilities (8KW @.05/kwh)	3,500
Test Equipment Replacement and Refurbishment Total Maintenance Cost	700 \$18,300

APPENDIX B POTENTIAL SAVINGS ESTIMATE

This section uses the results of the sample airport analysis to project potential savings.

B.1 FULL COVERAGE ON RADAR APPROACH CONTROL

There were 233 approach control facilities in CY 1975.⁽²⁾ Given the location of ASR radars, it is estimated that of these facilities, 174 are radar approach control and 59 are non-radar approach control. In the sample of 52 airports considered in the LSR IFR application analysis, 19 are towers which conduct non-radar approach control. Table B-1 shows the distribution of the 59 facilities, the sample of 19 facilities, and the average B/C ratio for the LSR (under IFR application) for each segment of the distribution. As would be

Annual	Number	Number	Average
Instrument Approaches	In Total	In Sample	B/C
0 to 1000 1000 to 2000 2000 to 3000 Over 3000	27 19 8 <u>5</u> 59	4 8 6 <u>1</u> 19	.78 .86 .93 .90

TABLE B-1. DISTRIBUTION OF CONVENTIONAL APPROACH CONTROL FACILITIES

expected, the average B/C increases as the volume of instrument approaches increases.

To estimate the overall potential benefits, the average B/C ratio for each segment (based on the sample) was multiplied by the number of actual facilities in each segment, the products combined, and the sum multiplied by the LSR cost estimate. The resulting estimated benefits, assuming full radar approach control, are \$8 million per year.

B.2 FULL COVERAGE ON REMOTE BRITE DISPLAYS

1

٤

As indicated in Table 3-3, there are 146 unequipped cabs which could utilize a BRITE display if remoting were possible (or costjustified). In the sample of 60 airports considered in the LSR VFR application analysis, 11 have or soon will have a BRITE display via TML. Table B-2 shows the distribution of the 146 unequipped cabs, the sample of 49 unequipped cabs, and the average B/C ratio for the LSR (under VFR application) for each segment of the distribution. As would be

Annual Itinerant Operations	Number in <u>Total</u>	Number In Sample	Average B/C
0 to 50,000	96	24	.79
50,000 to 100,000	46	23	1.16
100,000 to 150,000	4	2	3.98
Over 150,000	<u>0</u> 146	<u>0</u> 49	-

TABLE B-2. DISTRIBUTION OF CABS WITHOUT A BRITE DISPLAY

expected, the average B/C increases as the volume of itinerant operations increases. The estimated benefits assuming full BRITE deployment, computed similarly to those for approach control above, are \$9.5 million per year.

190 Copies