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VISCOUS EFFECTS ON A ROTATING IMPLODING
CYLINDRICAL LIQUID LINER

I. Introduction

Currently, there is a great deal of interest in the compression of magnetic fields and plas-
mas by means of the controlled implosion of highly electrically conducting hollow metallic
cylinders (liners). The liners are launched by means of either high explosives, |2 electromag-
netic inductive coupling,3—6 or hydraulic compression 7. The source energy which launches
the liner is converted into kinetic energy of the liner and eventually into internal energy of the
enclosed magnetic field-plasma mix. After the liner is stopped by the payload pressure (at the
inner turning point), it rebounds and the energy is returned to the liner, which moves radially
outward. Thus, the liner moves inward from the launch point to a minimum radius and max-
imum pressure condition at the inner turning point, and then back out again to the launch ra-
dius.

Different types of liner materials have been considered and launched upon purely mag-

netic field payloads as part of the NRL Linus program. These include solid Al and Cu liners
and liquid metal liners of a sodium-potassium (NaK) eutectic mixture’®. The current
configurations utilize liquid metal liners.
For the early liners®, a capacitor bank was used as an energy source and the liner had
two free surfaces, the inside compression surface and an outer free surface. In an elementary
fashion (detailed analytical and numerical analysis9 substantiates this), it can be shown that
the outer free surface is Rayleigh-Taylor unstable during the launch phase of the liner. The
inner free surface is stable during this phase. However, in the vicinity of the inner turning
point, the opposite is true: the inner free compression surface is Rayleigh-Taylor unstable,
while the outer free surface is stable.

The inner free surface can be stabilized by liner rotation about the cylinder axis, which
introduces a centripetal acceleration opposing R. With sufficient rotation, the inner surface can
be stabilized throughout the entire liner trajectory. It would then be unstable only because of
coupling to the outer surface during the launch phase. This, however, can be prevented by go-
ing to a "captive" liner’ where the outer surface remains in contact with a set of axial or radial
pistons driven by high pressure gas. This combination of rotation and hydraulic piston implo-
sion [eads to liners which are theoreticaily stable against Rayieigh-Taylor modes.

Manuscript submitted August 18, 1977.
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While rotational stabilization of the inner free surface has been demonstrated
theoreticallyil for an ideal inviscid liner and established experimentally,9 the precise role of real
liner fluid viscosity has remained an open question. In this paper we study the effects of liner
viscosity in the realistic limit of large Reynolds number [experimental Reynolds numbers Re
of the order of 2 x 10* are typicall. We find that viscous effects are concentrated in a thin
boundary layer at the free surface whose thickness is of the order of Re'2. The bulk of the
liner behaves essentially inviscidly. Within the viscous boundary layer, the rotational speed of
the liner at the free surface is reduced from that which would occur inviscidly. The boundary
layer thickness and reduction in angular velocity are determined as quadratures of the basic
state trajectory, R (). Numerical results are obtained for a model prescribed radial trajectory
and presented as a function of the compression ratio and Reynolds number.

II. Analytical Treatment

The liquid liner is assumed to undergo a cylindrical flow corresponding to the motion of
an infinite hollow cylinder which is imploding while rotating about’its axis. Rotation is neces-
sary both for the initial formation of the liner and to stabilize against the Rayleigh-Taylor in-
stabilities near the inner turning point. In this study we will concentrate on the inner free sur-
face and, without any essential change in the physics, will consider the liner to be infinitely
thick.

The following assumptions are made:
1. The liner is launched from a state of rigid rotation with angular velocity, (1,, at
time ¢t =0.
2. The liner is incompressible (constant density p).
3. The liner kinematic viscosity » is constant.
4. The flow is laminar.

5. The flow is one dimensional l;% = % = 0].

6. Surface tension is neglected.

lncompres;ibility of the liner in this case implies
9 o
or (ru) =0, (1)

where u(rt) is the radial velocity component. The radial component of the Navier-Stokes
equation governs the radial motion,

Su du _ v 1 ap _ 8 |[1]dru
6t+u8r r+pdr l}i‘)rr[ar

where v (r,1) is the zonal velocity and p(r,t) is the pressure. The angular momentum equation,
which is formed from the zonal component of the Navier-Stokes equation, is given as

Y Lol ov) =ur-a—[-];—a— (rv)]. 3)

|

9t ar ar

Substitution of Eq. (1) into Eq. (2) reveals that the right-hand side of the radial momentum
equation vanishes. Viscous effects arise only through coupling with the zonal momentum
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equation (3) by virtue of the centripetal acceleration term, —v2/r. An additional viscous effect
arises at the free surface, where the normal stress is balanced. This will be discussed later in
*he paper when we consider the boundary conditions.

The coupled Egs. (1-3) should be solved consistent with proper initial and boundary con-
ditions to provide u(rt), v(rt) and p(r.t). In order to emphasize the main physics of this
problem in its most simple form, we will instead consider the radial trajectory of the liner to be
prescribed, and generate consistent solutions to the angular momentum equation. The viscous
evolution of the angular momentum distribution is direct, while the viscous effects upon the
radial velocity field are mainly a result of the coupling to the zonal equation through the cen-
tripetal acceleration term, — (rv)?2/ .

A. Radial Trajectory

We therefore consider a prescribed radial trajectory of the free surface
R =R(f/’0; E). (4)

where 1o, the hydrodynamic time, represents the throw time (time required to go from the ini-
tial radius Ry €'/2 to the minimum radius Ry), and €72 represents the ratio of minimum to
maximum radius (compression ratio). These dimensions and parameters are indicated in Fig. 1.

Integrating the continuity equation (1) we obtain
ru = R dR/dt = K (1), %)
i.e,, ru is a constant throughout the liner at any given time . Therefore, the specification of
the free surface trajectory, Eq. (4), completely defines the entire radial velocity field.

The general approach applied in this study is valid for an arbitrary trajectory. For this
study, however, we take a "parabolic" form for the prescribed trajectory

2

2
1 t
RO € 3 l [l fo - (6)

It can be shown that this type of trajectory represents a realistic limit of a thin freely launched
liner, A/R < < 1, where A is the liner thickness. The numerical results to be presented in
this study will be associated with this trajectory. For strict consistency with our previous ap-
proximation that the outer radius is at infinity, it is necessary that viscous effects be confined to
a layer of thickness 8 < < A.

B. Initial and Boundary Conditions

We desire a solution to Eq. (3) with the prescribed trajectory given by Eq. (6). Since the
liner is launched from a rigid rotation state with angular velocity Q, the initial condition on
A(rt) =rvis

A(r0) =rQ0y, r> Rye 2, )

A suitable boundary condition must also be applied at the free surface, r = R(r). The
free surface is an interface between a liquid and a magnetic field or magnetic field-plasma mix-
ture. In either case, there should be negligible tangential shear stress L, at the free surface,
and the normal stress in the liquid liner should be in balance with the plasma and/or magnetic
pressure p, of the interior volume there. Therefore at the interface,

it el i




|
I
%

T =pur—[ ] (8)
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The vanishing of the tangential shear stress prescribed by Eq. (8) implies that at r = R (1) the
angular momentum satisfies

A = Crt. (10)

Thus the zonal velocity field is locally that of a rigid body rotation with arbitrary angular velo-
city given by the integration constant C, which is in general a function of time.

We notice that the boundary condition, Eq. (8), is satisfied by the initial condition, Eq.
(7), which specifies that the liner is launched from a state of rigid rotation.

Equations (7) and (8) provide one initial condition and one boundary condition for the
angular momentum equation, Eq. (3). An additional boundary condition is required since we
have a second order equation in ~ This second boundary condition arises as a far-field condi-
tion in the liner for r > R. To see this more clearly, we observe that the inviscid solution
(v =0) of Eq. (3), subject to the initial condition, Eq. (7), satisfies the full viscous equation,
but not the boundary condition, Eq. (8). We therefore anticipate that far from the free surface,
r > > R, the liner will behave inviscidly. A viscous boundary layer will exist at the free sur-

face v'! recovers the boundary condition, Eq. (8), at the free surface and matches with the
iny tion in the interior of the liner. This matching condition provides the second re-
qQ iry condition.

re 2 illustrates the nature of this viscous boundary layer. The liner is shown
launched at time t = 0 with a solid-body rotation corresponding to that of the apparatus, Q.
The liner is also depicted at a later time, t, after it has imploded to a radius R (). The inviscid
zonal velocity variation appropriate at that time is indicated by the solid line. This variation
corresponds to conservation of specific angular momentum rv for each of the fluid lamellae
composing the liner. The viscous layer or boundary layer correction is shown in the region &
by means of the dashed line. The viscous solution satisfies the stressless condition at the sur-
face and matches with the inviscid distribution in the interior. Viscosity is seen to slow down
the liner interface zonal velocity. This is important, as we rely on the strong zonal motion of
the inside surface in the vicinity of the turning point to stablize against Rayleigh-Taylor insta-
bilites.

C. Lagrangian Variables

Because of the motion of the free surface and the inherent competition between convec-
tion with geometric convergence and diffusion displayed by Eq. (3), it is more convenient to
transform to Lagrangian variables. We therefore take

£ =12 —R2(1), (11)

which is proportional to the displaced area relative to the moving interface and is conserved for
fluid shells in an incompressible liner. This transformation has been used previously by the
present authors in a related problem I

The angular momentum equation for 4 (£,r) becomes




%f— = 4v [R2u) +§l%;—’21. ' (12)
with initial and boundary conditions
A€0) = [R?(0) + £] O, (13)
= Gyes 14
and for &€ — oo,
A€ ~ Qg ¢ + R20)). (15)
Equation (15) requires that the solution match with the inviscid solution far into the liner.
D. Nondimensionalization
The dependent and independent variables are normalized as follows:
A =A/RZQy, 1 =11,
R =R/R,, £ =¢/RE.
Two dimensionless parameters characterize the problem:
R§
= W; a7
Re = R{/4viy. (18)

Re, a Reynolds number, represents the ratio of the viscous diffusion time R& /4v to the hydro-
dynamic time associated with the prescribed radial motion, ;. Since this is a boundary layer
problem, we anticipate that the viscous zone will scale as Re™ 172 As previously defined, € is
an inverse compression ratio representing the ratio of the final compression area to its initial
value for the prescribed trajectory. In terms of these non-dimensional variables, the relevant
equations and initial and boundary conditions become

94 =__ 2
a7 [R (1) + g] agl’ (19)
A(§0) = R2(0) + & (20)
A(0,1)
—-—(0 — 21
a¢ L R2(1) .
and
AGH ~ €+ (22)
at large ¢, where
RX(1) =1 + % -1] a-=n? (23)

A solution to Egs. (19-23) valid throughout Re — € parameter space represents a formidable
task. For large values of Re, the situation is significantly simplified. This limit is also of practi-
cal interest, as the Reynolds numbers associated with magnetic compression using NaK liners
are of the order of 2 x 104,
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E. Asymptotic Theory at Large Reynolds Number
We concentrate on the large-Reynolds-number portion of the Re — e parameter space.
In particular, we seek the behavior of Eq. (19-23) in the following asymptotic limit:
Re™2< <ex 1, (24)

and will apply the methods of matched asymptotic analysis to Egs. (19-23), taking advantage
of the small parameter Re™!/2. Henceforth, we omit the tilde from dependent and indepen-
dent variables, with the understanding that all variables are dimensionless.

a. Quter Solution

We expand the angular momentum A4 in a regular perturbation expansion in terms of the
small parameter Re ™!/2:

A€, r:Ree) ~ AD(Ere) +Re™124W (£10€) + -+ . (25)
To lowest order in Re™"/2, Egs. (19-23) become
94 )
31 =0, (26)
with
40 0) =¢ +%, Qn
s o e s 28)
—_— ’t 3 s
¢ R2(t)
and
A® () ~¢ +% 29)
at large ¢. The solution to Eq. (26) which satisfies Egs. (27) and (29) is
A® (gre) =¢ +%. (30)

This solution does not, however, satisfy the required stressless boundary condition, Eq. (28).
We therefore have the ingredients for a classical boundary layer. It is necessary to rescale the
independent variable ¢ tc recover the missing boundary condition and resolve this layer.

b. Inner Solution

The necessary stretching of ¢ is given as

n =Re!/2%, @31)
and the dependent variable is written as

A =Are). (32)
In terms of Egs. (31) and (32), the governing equations, Egs. (19-23), become

: ¥
34 _ (R2 (1) + nRe-12] 24 33)

Y, an?’
A(n0) -=% FpRe-1 (34)

kiR
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0A —1y AQ©.1)

22 (0,1) =Re V2 2 35

an 3 R2(1) e
A1) ~'£‘ +nRe V29 > > 1. (36)

The initial and boundary conditions satisfied by Egs. (34) and (36) are evidently the
inner representation of the inviscid solution and satisfy the differential equation Eq. (33). It is
therefore convenient to define a new angular momentum variable by means of

AGie) =A@ne) == +nRe™2|. 37
A (n,1;€) represents the viscous correction to the solution. Equations (33-36) become
Y =1/ 924
SLin R SLre
Y [R? (r) + nRe™ V4] om? (38)
with
A(0) =0, (39)
o7 ion ++
== (0.1) =Re™ V2 |——— -1, (40)
o R2(1)
and
lim A(n,t) =0. 41)

Y Fizrheed

We now expand Aasa regular perturbation expansion in powers of the small parameter
Re~ /2

A(;Ree) ~ A9 (rie) + Re 124 M) (qr:€) + --- 42)
To lowest order in Re~1/2 we find that
40 =), (43)
and to next order we obtain
7 (1) 27 (1)
S gy e (44)
ar an?
with
AD (n0) =0, (45)
7 (1)
S8 (0,0 =1/e B2 =1, (46)
an
and
lim 4V () =0, 47)

G o

Defining a new timelike variable, the age,
t
0 = | R2(t)ar,
j; %) 48)

reduces Eq. (44) to a diffusion equation which is identical to that governing diffusion in a slab,




aA”) 02;”)
a0 ~am?
It should be borne in mind that n is a dimensionless area and # is a stretched time variable
which is weighted over the trajectory. That is, even though Eq. (49) has the form of a slab
diffusion, it still includes effects of geometric convergence consistent with the liner motion
asymptotically correctly for the large Reynolds number considered here.

(49)

The solution to Eq. (49) with the conditions of Eqs. (45-47) is written as
] 2/4 (0 —7)

= Ire 2

AN (noe) = ‘ (1/eR2(z) —11. (50)
: f f e — i

Equation (50), the viscous correction to lhe angular momentum, is given as a quadrature over

the basic state trajectory R (7). That is, A1) is a function not only of the compression ratio e,

but of the details of the full trajectory in terms of the age defined in Eq. (48).

In summary, the angular momentum distribution is from Egs. (37) and (50)

A(ni:Ree) ~|— + 1 Re"'m]
y b 4(n—7)
- Re_"27l—”—f-‘—lzf——)]—- (1/eR? = 1). s1)
0 o—7)172

Of particular interest is the angular momentum at the free surface. This is basic to stabilization
of the Rayleigh-Taylor instability which could occur near the inner turning point 1 = f;. Tak-
ing n — 0 we find

"

- 1 el dr
A(0,r;Ree) ~ — —Re -—
: € N { (H o T) 1/2

Therefore, the angular velocity of the free surface is given as

SAEET S (52)
eR2(7)

N [ ‘ —|l (53)

2 R2(n) |€ 0 (0 —7)2|eR2(r)
or
n
() =py d7 1 a Yy
—— =1 —Re € , -1} =1 —Re "“fl1e) (54)
“lur .(!‘ (0 ‘—T)l’2 €R2(T)
where . szo/eR2 is the inviscid surface angular velocity. The reduction in anguiar velo-

city of the free surface from its inviscid value is seen to scale as Re™ 172
III. RESULTS

In this section we discuss some of the results obtained for this application. Particular em-
phasis will be placed on the viscous pertubation of the free-surface angular velocity, since this
quantity is most important in stable and well-controlled basic state motion.

The quadratures required to evaluate the scaled specific angular momentum profile [Eq.
(51)] were performed numerically. The integration variable was taken to be ¢ instead of #, us-
ing the transformation ¥ = di(d0/dr) and evaluating d¥/dr by Eq. (48). Dividing the range
of integration into 104 equal-time intervals and using the trapezoid rule yielded results accurate




to ~ 1%. Landen’s transformation'' was used to evaluate the incomplete elliptic integral
which results when parabolic trajectories [Eq. (23)] are employed in Eq. (54).

In Fig. 3, f as defined in Eq. (54), the viscous correction to the free surface angular velo-
city, is plotted as a function of time for various values of €. The viscous reduction in surface
angular velocity is seen to evolve from zero at 1 = 0 and increase with time, slowly at first, and
then rapidly near the inner turning point, 7 = 1. The maximum value, of order 1 in all cases, is
obtained shortly after the turning point for this model trajectory. As the liner moves outward
towards its maximum radius at ¢ = 2, the correction decreases. The correction does not vanish
entirely, however, even at =2 when the liner has returned to its initial radius. Figure 3
shows that there is signficant ¢ dependence in the effects produced by finite viscosity. In par-
ticular, we see that ftends to decrease as e—0. It can be shown in this limit that for r=1,

flre) ~ €72, (55)
while

S(ie) ~ €'/4, (56)
provided inequality (24) continues to hold.

At turnaround, where rotational stabilization is most critical,

lim e 4r(1e) =244 57
Therefore from Eq. (54),
Q,, —0)/Q,, =244Re"2!/4 =244 (Re)j}?, (58)
where
(Re)eﬁ' - Ro Rmax /4V’0 (59)

is an effective Reynolds number related to both the minimum and maximum radii of the tra-
jectory.

But it is also clear that
Iirr: f(t;e) =0. (60)

The behavior in both limits is shown in Fig. 4a, where we plot the surface angular velocity
correction at + =1 as a function of €. Figure 4b shows the same curve, scaled by e 410 ex-
hibit the asymptotic dependence of Eq. (56).

For liquid alkali metals, a typical viscosity is v=1 centipose. Taking f, = 107 sec,
R, =lcmande = 1073 yields (Re);}/zzloﬂ. Thus the relative change in surface angular
velocity due tu viscous effects is always less than one percent in cases of practical interest.

IV. SUMMARY

Viscous effects for imploding liners at large ratios of viscous diffusion time to hydro-
dynamic time (high Reynolds number) are confined to thin boundary layers near the stressless
free surface. The boundary layer thickness scales as Re "2, with the interior region of the
liner behaving inviscidly. The resulting problem has been solved by the methods of matched
asymptotic analysis. A boundary layer structure has been obtained which satisfies equations
identical to those associated with one-dimensional slab diffusion while properly including the
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effects of geometrical convergence. The results obtained indicate that the free surface angular
momentum is reduced from its inviscid value by an amount proportional to Re™'2,
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Fig. 1 — Geometry of the model used to study viscous effects
at the free surface of a rotating imploding liner.
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Fig. 2 — Schematic representation of the viscous
boundary layer at the free surface of the liner,
showing the reduction in surface zonal velocity
resulting from the condition of zero tangential
shear stress.
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Fig. 3 — Coefficient of the viscous correction
correction to surface zonal velocity vs time for
various compression ratios.
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Fig. 4(a) — Plot of the viscous correction coefficient
[Eq. (54)) at turnaround f{1;e) vs e.
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Fig. 4 (b) — Plot of ¢"}/4 (1), showing the asymptotic
behavior f(1) ~ ¢ 1/4 at small e.




