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COMPARATIVE STUDY OF THE AXIAL AND AZIMUTHAL BUNCHING
MECHANISMS IN ELECTROMAGNETIC CYCLOTRON INSTABILITIES

: I. INTRODUCTION

2 and Gaponov3 independently

In the late 1950s, Twiss,1 Schneider,
proposed a radiation mechanism involving electrons gyrating in an external
magnetic field. This phenomenon known as the electron cyclotron maser

429 14 is the

instability has been the subject of continuing activity=
relativistic mass dependence of the electron cyclotron frequency which
causes electrons to bunch azimuthally in their gyration orbits, and
consequently to drive the instability. Recently, intense research
activities to employ this interaction has occurred in the development of
a new microwave source called the gyrotron or electron cyclotron maser.
i Results reported so far are impressive in terms of peak power23
(1 GW at A = 4 cm) and in terms of efficient production of large c.w.
power!®:18 (12 kW at A = 2.8 mm and 1.5 kW at A = 0.9 mm). The high

3 power, high efficiency, short wavelength radiation produced by gyrotrons

T

can be employed, among other applications, to achieve local or global

heating of tokamak p]asmas.3°’31

On the other hand, Neibe132 and later aut:hov's33'41

have
investigated a different electromagnetic instability driven by the

anisotropic velocity distribution of electrons. In contrast to the

cyclotron maser instability, this instability is nonrelativistic in
Note: Manuscript submitted September 1, 1977.
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nature and will be referred to as the Weibel-type instability in the
present paper. In the absence of wave-particle resonances, the basic

42 in the

mechanism of Weibel-type instability is axial electron bunching
direction of wave propagation, caused by the ll.x Ed Lorentz force,

where v 1is the electron velocity compowent perpendicular to the wave

L
vector and B, is the wave magnetic field. In the presence of an electron
thermal spread, the distribution of axial velocity will tend’to spoil
the phase synchrony discussed, thereby reducing the growth.

There are fundamental differences between the two instabilities.
In addition to the qualitative difference in bunching mechanisms, the
Weibel-type instability does not even require an external magnetic field,
except to define an axis for the velocity space anisotropy. Yet, there
are also similarities between the two instabilities. Both will take
place for right;hand circularly polarized wave propagating along the
external magnetic field and the unstable spectra both scale with the
electron cyclotron frequency. From such similarities, one expects a
close relationship between the two instabilities. In fact, there have
been speculations among gyrotron researchers that the Weibel-type
instability might also be exploited for microwave generation, or may
even be responsible for some observations in gyrotron experiments.4
From the literature on the two types of instabilities, one finds that
investigations of these two subjects have evolved separately. Most
studies concerning the Weibel-type instability have been based on non-
relativistic models and thus do not include the cyclotron maser instability.
On the other hand, most treatments on the cyclotron maser instability have

concentrated on the azimuthal bunching mechanism. Hirshfield, et a16




briefly discussed the relative importance of the terms originating from
the two mechanisms in their result. They found that the azimuthal
bunching mechanism dominates when the wave phase velocity exceeds the

speed of light and vice versa, a conclusion we will verify from a

different point of view and elaborate further in the present treatment.

This study is motivated by recent interest in the cyclotron
maser instability. Its purpose is to examine the two bunching mechanisms
under a unified physical picture and thereby clarify the physical
relation between the two types of instabilities. OQur analysis will be
based on the following electron distribution function commonly adopted

for cyclotron maser studies,

fo = 8(p, - p o) &(p,)/2mp (1)

where p, P, are the transverse and axial momenta, respectively, Pio is
a constant and 6(x) is the Dirac delta function. Eq. (1) is a realistic
beam frame representation of the electron beams used in most gyrotron
experiments. For such a cold distribution function, wave-particle
resonances are absent. Our results are thus strictly valid for
sufficiently monoenergetic electron distribution functions which can
be approximated by Eq. (1).

We find from the simple model to be presented that there is indeed
a strong coupling between the bunching mechanisms associated with the two

instabilities. They are so related and inseparable that only a unified

physical interpretation can fully describe the physical processes involved




in either instability. Except for the special cases of zero external

magnetic field or infinite wavelength, the two mechanisms are always

simultaneously present and compete rather than reinforce one another.
By comparing the two mechanisms, we obtain a criterion for

determining the relative importance of the two mechanisms and identify

the two types of instabilities as the fast-wave and slow-wave branches

of the right-hand circularly polarized wave without actually solving
the dispersion're1ation. From the comparison, it can also be seen that
the two mechanisms interact in such a way that, for a given kz’ only one
branch can be unstable. Another significant feature resulting from the
comparison is that the (relativistic) azimuthal bunching mechanism may
dominate at "nonrealativistic" electron energies, while the (nonrelativistic)
axial bunching mechanism may dominate at "relativistic" electron energies.

In Section II we compare in detail the azimuthal and axial bunching

mechanisms. In Section III we illustrate the conclusions of Section II with

numerical examples. Section IV gives further discussions.




II. COMPARISON BETWEEN AXIAL AND AZIMUTHAL BUNCHING MECHANISMS

Consider an infinite and uniform plasma (density n) immersed
in a uniform magnetic field (Bogz). For waves propagating along the
magnetic field, it is well known that the electromagnetic and electro-
static effects are decoupled, resulting in purely electtpmagnetic
(V-E = 0) or electrostatic (VXE = 0) modes. The mode of interest here
is the electromagnetic mode with right-hand polarization (i.e., electric
“ield rotates in the same sense as electron gyration) and with wave

requency (or growth rate) comparable to the electron cyclotron fre-
quency (or plasma frequency). In such a case, the plasma ions simply
provide a charge neutralizing background and their dynamics can be
neglected. For the case of a pure electron gas (such as in gyrotron
experiments), we assume that the electron gas is sufficiently tenuous
that its static space-charge electric field can be neglected (a good
assumption for most gyrotron experiments).

Under these assumptions, the governing equations are the
linearized relativistic Vlasov equation,

) )
S—t—fl'#lorx‘fl-

o|m

i 1 - b
By g5 f1 = ek + T w8y - §5fo 0 (2)

and the field equation
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where fo and f1 are, respectively, the equilibrium and perturbed

distributions; E,, B, are the wave electric and magnetic fields; and
J, = - eff vd3p 4)
~ 1 ¥ (

is the perturbed current.
The solutions to Eqs. (2) through (4) can be obtained by
standard procedures.43 Letting all quantities vary as
exp(-iwt + ikzz) and applying the method of characteristics, we
obtain the relativistic dispersion relation for the right-hand circularly

polarized wave,

- © Ym ap op
2 200 ane ‘/' 1 z . (5)
wt - kz c mup '/o. pldpl dpZ s

2

D = 41rne2/m, Q

where w = eBo/mc, and

e
i ( 19p 2 c2+p22 /n? cc)%

Equation (5) can be integrated by parts to give

o o T w - k_p_/ym
2 e L 2 0 2z
- kzc = Zmupf pldpl/ dpz 5
(o]

e w = k,p,/Ym - QY

2( 2 2.2
pl@ 'kzc)

2
(w-kzpz/*{m - /Y )

(7)
212m2c2




In carrying out the integration by parts over p

and P, the

L
integrand in Eq. (5) has been differentiated with respect to P, and P,
The mz term in the numerator of the second term on the right-hand side

of Eq. (7) is the net result from differentiations of y with respect to

pL and P,
We may now compare Eq. (7) with the standard nonrelativistic

version of the same dispersion re]ation,44

L L] cw o= k,v
3 .22 2 e
w€ - k¢ = 21w d/ﬂ v, dv .Z(. dv_ f [,
z A 171 /. zZ 0 m-kZVZ-Qe

2,2
Z '
+(m-kvz-§2e)2] : (7)

Equation (7) isAinvariant in form under Lorentz transforiis and
in the nonrelativistic limif (c—=0c), it reduces to Eq. (7').

Comparing Eqs. (7) and (7'), one finds that the wz term in
Eq. (7), which originates from the relativistic mass factor y, is absent
from Eq. (7') as expected. Since this term is multiplied by pl?/cz, it
becomes small in the nonrelativistic limit. However, it is always an
important term in the physical sense because it gives rise to the cyclotron
maser instability.

For the distribution function given by Eq. (1), Eq. (7) reduces

to

- S S Blo
T B l (8)




2, 2 2\*
where v = (l + plo/m c ) and B, =P /Y MmC

For the same distribution function in the nonrelativistic limit,

Eq. (7') reduces to

2 22 2 kv §
w -kct= w = PR (8)
- L Z(w-Qe)2 ;
where Ylo = sloc

Again we point out that the difference between Eq. {8) and

Eq. (8') in the limit Yy oF 1 is the presence of the m2 term on the

right hand side of Eq. (8).

We will now seek a unified physical interpretation of the

O—

two instabilities. Consider an electron moving with velocity ¥y in

the wave fields which vary as exp(-iwt + ikzz). Conventionally, one
defines a Doppler shifted wave frequency wp =W - kzvz as the effective
wave frequency observed by the moving electron. To facilitate the

i physical interpretation of the present problem, we define instead

T

a Doppler shifted cyclotron frequency
9 = kzvz + Qe/y (9)

as the effective cyclotron frequency of a moving electron observed
by the propagating wave.
Figure 1 shows the instantaneous vector relationship of

the wave fields (gl and gl), the external magnetic field (go), the




positions (points 1 and 2) and perpendicular velocities (xl) of two
electrons located on the same vertical line (x=0) at the initial time
t=0. The projection of the unperturbed electron orbit on the x-y plane
is shown by the dashed circle. We have assumed that the wave propagates
in the positive z-direction.

The instantaneous value of Q at t=0 is

Q(0) = k,v,(0) +a,/v(0) = ./v(0). (10)
where we have let vz(O) = 0 in accordance with Eq. (1).

After an infinitesimal time At, the Doppler shifted cyclotron

frequency QD will be

QD(At) = ksz(At) + Qe/y(At) (11)

Equation (11) minus Eq. (10) gives

" 1 1
ap = kv, + Qg [7(0) ¥ ar 1(0)]

! or 8 ~kav, - 2.47/v2(0) (12)

where ARy = QD(At) - QD(O) » Av, = vZ(At), anu Ay = y(At) -v(0).

From the relativistic equation of motion,

8 ys oaf « &
mag Y e c'y-x'Bvl

we obtain

2 & =yome A X By ot e
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-e »

Substituting the relation (Faradav's law),

=<
gl ¥ w !S. X lgvl (15)
into Eq. (13) to eiiminate B,, we obtain
eky
TR R AR (6)

where we have let y(0) = Yor
Substituting Eqs. (14) and (16) into Eq. (12) yields

2
-ek wf
a0y = eZ(l- = ) v. . E. At (17)

~L )

From Eq. (17), we draw the following conclusions: ]
(i) Since v, for the two electrons are oppositely oriented,

Eq. (17) shows that AQD for the two electrons will be of opposite sign.

Consequently, if electron 1 slips (gains) in phase angle in the phase space
of the Doppler shifted cyclotron oscillation (QD) electron 2 will gain (slip)
in phase angle. As a result, the two electrons tend to bunch toward each
other. The first term on the RHS of Eq. (17) (due to sz) results in axial
bunching and the second term (due to Ay) results in azimuthal bunching.
(i1) The two bunching mechanisms will be simultaneously present
except for the special case kz =0 or Qe = 0.
(iii) As will be shown later, w and Qe are of the same sign.
Hence the two terms on the RHS of Eq. (17) are of opposite sign, which j .
implies that the two bunching mechanisms always combine in such a way as

to offset one another.

10




(iv) The azimuthal bunching mechanism dominates if

Wl

—232'> 19 (18)
Yokzc

and the axial bunching mechanism dominates if
e %
g 1. (19)

The same arguments leading to these conclusions also hold for
any electron pair in the same circle but on a vertical line with x # o
(see Fig. 1). Thus, the above conclusions apply to the system as a whole.
In comparing Eqs. (7) and (7'), we have shown that even in the
limit At 1, the relativistic and nonrelativistic versions of the
dispersion relation of the right hand circularly polarized wave iﬁ an
anisotropic plasma are qualitatively different. Here in the criterion

of Eqs. (18) and (19), we again see that v_ is not a decisive factor

(]
in determining the relative importance of the two bunching mechanisms.

This confirms our statement in Section I that electron energy is not the
criterion to determine whether a relativistic or nonrelativistic model
should be used to treat the present problem. The proper criterion is gqiven
in Eqs. (18) and (19).

Energy exchange processes between waves and bhunched electrans

for the two instabilities can also be viewed in a unified way. Consider
the phase space of the Doppler shifted cyclotron oscillation. If the
electrons are uniformly distributed in the phase space, then clearly no

net energy can be extracted from the electrons through their interactions




with the wave electric field. If the electrons are bunched in the phase
space of QD due to either the azimuthal or axial bunching mechanism, then
net beam energy loss is possible provided the bunched electrons remain

in the energy extracting phase of the wave electric field. This imposes
the condition w = - For the distribution function of Eq. (1), the
condition reduces to

w = /Y, (20)

Substituting Eq. (20) into Eqs. (18) and (19), we find that
E . ik
-ﬁ& >c (18')

z

is the regime where azimuthal bunching dominates, and

2
4 < (10')
kZ

is the r 1ime where axial bunching dominates.

alternative forms, Egs. (18') and (19'), of the criterion
in Eqgs ) and (19) provide a simple way for mode identification--the
azimuth bunching mechanism destabilizes the fast branch (vacuum mode)
of the right-hand circularly polarized wave, while the axial bunching
mechanism destabilizes the slow branch (whistler mode) of the same wave.

One notes that, because of the competitive nature of the two

bunching mechanisms, only one branch can be unstable for a given kz.

Thus the criterion in Eqs. (18') and (19') also serves to distinguish

the type of a given instability.




As a consistency check, we observe from Eq. (12) that for kzso,
only the azimuthal bunching mechanism is present. Thus we expect an
instability from Eq. (8) but not from Eq. (8'). The absence of
instability in Eq. (8') for kz=0 is obvious. To show that there is
an instability in Eq. (8) for k,=0, we neglect the first term on the

right-hand side of Eq. (8). The equation is then readily solved to give

Q B8, w
wrS o+ j20pP_ £ (21)
0 (27,)

This is the cyclotron maser instability in the limit kzso.
Substituting Eq. (21) into the right hand side of Eq. (8),

we obtain the following condition for neg1ebting the first term,

B, 2
__é%— cu il (22)
(279)* w,

In the limit kz-—-w, the axial bunching mechanism dominates
[see Eq. (19)]. Then, both Eq. (8) and Eq. (8') should yield the same
solution, as can be easily demonstrated. In this 1imit, w is also given

by Eq. (21), except that it is not subject to the restriction Eq. (22).




ITT. NUMERICAL EXAMPLES

In this section we present two representative numerical examples
to illustrate the various points made in Section II. For reasons
described below, we may distinguish two characteristic regimes according
to the ratio of electron cyclotron frequency to plasma frequency. In

regime I, w_ > Qe/yo while in regime II, w_< Qe/yo -

P P

In regime I, the cutoff frequency (wp) of the fast mode
exceeds the electron cyclotron frequency. As a'result, condition (20)
cannot be satisfied for the fast mode and only the slow mode can be
unstable (Weibel-type instability). This is the regime in which
nonrelativistic models give. fairly good approximations.

Figures 2a and 2b are, respectively, solutions of Eqs. (8) and
(8') (parameters specified in the caption). We have chosen a small
value for Y, SO that the relativistic [Eq. (8)) and nonrelativistic
[Eq. (8')] dispersion relations are different mainly because of the

2 on the right hand side of Eq. (8). Comparisons of

presence of the w
the two figures show that the nonrelativistic model, which neglects the
azimuthal bunching mecnanism in the Weibel-type instability, only
slightly overestimates the growth rate. In fact, the only noticeable
difference between the two figures is the threshold kz for the
instability. vThe example given in Fig. 2 is typical of the entire

range of Qg in this regime.




In regime II, both types of instabilities exist. All

the conclusions reached in Section II are exhibited in this regime.

Figures 3a and 3b are, respectively, solutions of Eq. (8) and (8')
(parameters specified in the caption). These two figures are typical of
the entire Ta damonstrate the point that relativistic effect
may be dom: . « elativistic energies, we have chasen a small
value for s (cu: esnuading to 10 kev)t The dominance of relativistic
effects results in the destabilization of the fast mode (dashed lines
in Fig. 3a). The competitive nature of the two bunching mechanisms

is apparent in Fig. 3a. We observe that the growth rates drop sharply
when quz ~ C, where the two mechanisms nearly cancel each other. For a
given kz’ there is at most one unstable branch, as has been expected
from previous considerations. Comparing Fig. 3a (relativistic model)
with Fig. 3b (nonrelativistic model), we find some striking differences
between the two models. First, the maser instability is absent from
the nonrelativistic model. Second, the nonrelativistic model sub-
stantially overestimates the growth rate in the region w/kz LC,
where the relativistic bunching mechanism is also important. For
larger values of kZ (w/kz << ¢), the nonrelativistic model begins to
yield more accurate results. Note that for smaller values of kz, the
growth rate for the slow wave mode drops to zero in the nonrelativistic
model. This is, of course, not due to cancellation from the
relativistic bunching mechanism. Rather, it is because condition (20)

is not satisfied for small values of kz.

15
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IV. DISCUSSION

For the distribution function chosen [Eq. (1)], we have shown

that a nonrelativistic treatment of the electromagnetic electron cyclo-

tron instabilities is essentially valid in the regime(s) Qe/Yow <1

P
and/or w/kZ << ¢, but becomes very inaccurate in the regime Qelvomp >1
and w/k, < c. In the regime Qe/vowp > 1 and w/k, > ¢, nonrelativistic

models are invalid because they completely miss the cyclotron maser

instability. Generalization of the present results to distribution

functions with large thermal spread can only be qualitative because

of the neglect of wave-particle resonances in our model. The principal
application of the present theory appears to be in the

area of gyrotron research. As noted earlier, Eq. (1) is a realistic

(beam frame) representation of the beam used in most gyrotron experiments.

The physical relation between the axial and azimdtha1 bunchina

mechanisms has generally been overlooked in gyrotron studies. Clarifica-

tion of this relationship may thus serve a useful purpose in identifying

and predicting the type of instabilities in gyrotron experiments. The

fact that only one type of instability can be present for a given wave-

length makes mode identification less ambiguous. For example, the fast

wave generated in the experiment of Chou and Pante]]4 has been attributed -
to axial bunching. In the light of the present study, it appears that |

the azimuthal bunching mechanism should have been responsible.

16




The authors would like to thank Dr. I. B. Bernstein,

Dr. A. T. Drobot, Dr. T. Godlove, Dr. V. L. Granatstein, and Dr.
P. Sprangle for many helpful discussions.

This work was supported in parf by BMDATC under Mipr.
No. W31RPD-73-2787 and in part by Navy Material Command under ONR
Task No. RF 34372401.

17




sos————

N 2 7

S, el
Vi&x

Fig. 1 — Instantaneous (t = 0) vector relationship of the wave fields (E; and B,),
the external magnetic field (By), the position (points 1 and 2) and perpendicular
velocities (v|) of two electrons. The projection of the unperturbed electron orbit
on the x-y plane is shown by the dashed circle, the center of which is taken to be
the origin of the Cartesian coordinate system. The positive z-axis points toward
the reader.
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