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Numerical Solution of Singular Integral Equations

• Forward and Body of Final Report

Many problems of geophysics, meteorology, biology, electrocardiography,

• scattering, etcetera may be solved via the solution of integral equations . By
• potential theory methods, the solution of partial differential equations --

• especially elliptic partial differential equations - - may be carried out via

the solution of integral equations. The integral equation fornuilation is very

appealing when it reduces the dimension of the problem by 1. This is parti-

cularly in~ortant in three dimensions, since the resulting algebra problem

obtained via direct application of finite difference or finite element methods

to a POE in 3 dimensions is so large that its nunerical solution is very costly,

and frequently impossible.

However, one encounters new difficulties in the solution of integral

equations, namely, the occurrence of singularities in the kernel, and the

occurrence of unknown-type singularities in the solution (singularities in

the solution may also pose a problem in the direct solution of POE) of the

integral equation. Standard methods of approximation based on exactness for

polynomials up to a certain degree are very poor, and frequent ly fail for

functions having such singularities.

• The purpose of this contract was to develop methods for solving integral

equations which work well in spite of the presence of singularities. This goal

• has been accomplished, in that the new approximation methods which we developed

[1]*, [2], [3]*, [4]*, [5]* do work well in the presence of singularities, and

indeed , the n-point methods converge at the rate

• *Here and henceforth “starred~’ ([ 1*) references refer to papers supported by
OAHC 04-74-G-0175 or by 0MG 29-76-G-0210.
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(1) II Error(n-point rule)II = e~~~

for the case of d dimensional problems [6] ‘~. This rate of convergence is

optimal [7], in that no class of n-point methods can converge faster if the

exact nature of the singularities of the solution is not known a priori.

The resulting system of algebraic equation obtained by combining the

Galerkin method with the derived approximation is of relatively small order

(usually less than 100 for 3d problems solved by 2d methods) and can be carried

out quite effectively [8]*, [9]*, [101*, [111*, [12] . Indeed, although the

methods [5]* lead to ful l matrices for the case of PDE problems, they converge

so rapidly that we believe that it will be far less expensive than by finite

element methods to solve 3d problems with them. At present this is only con-

jecture, since the methods are relatively new, and we have not yet attempted

the direct solutions of 3d PDE problems with them.

We wish to mention here that Sobolev and other Russian mathematicians are

also seeking optimal methods (especially quadrature rules) for solving elliptic

POE via integral equation methods [13] , [14], [15]. lVhile the optimal quadrature

rules which these mathematicians identify are not known, there do exist families

of known rules, which these mathematicians show to be “asymptotically optimal”,

i.e.

II Error (n-point optimal rule)II Sobel
II Error(n-point known rule)fl Soholev

where II • II Sobelev denotes a suitable Sobolev norm. For a Sobolev-type optimal

rule one has
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(3) II Error (n-point optimal rule)II Sobolev ~~ as n +

where A and c are positive constants, depending upon the particular Sobolev norm.

The reason for the relatively slow rate of convergence compared to (1) is that

functions are allowed to compete in the process of deriving the rule via the

norm (3) which have m(say) and only m derivatives at each point in the domain.

• Now the solution of an elliptic PDE generally has the following properties:

(i) It is an analytic function of each variable at each point of the

interior of its domain wherever the coefficients of the DE are

analytic;

(ii) It is an analytic function of each variable on the boundary wherever

the coefficients of the DE, the boundary data, as well as the boundary

(i.e. the boundary is an analytic surface) are analytic.

It seems that the Soviet Mathematicians have ignored these facts , dir ecting

themselves to the completion of the Sobolev theory, rather than to the optimal

methods of solutions of problems in applications.

In applications one may decompose a PDE problem into one over a finite

nunter (usually small) of regions, in the interior of which the solution is

analytic, since the location of the singularities can be determined a priori

if the coefficients, the boundary data and the boundary are known. One can

therefore achieve the rate of convergence (1) , which is much faster than the

optimal rate (3f of a Sobolev-type method. The process of subdividing the

* Once a rule is constructed which converges at the rate (3) , the error generally
• converges at the rate (3) , even if the functions to which the rule is applied are

• analytic. On the other hand, a rule which has the rate of convergence (1) also
• has the order of convergence .9) when it is applied to functions which are only m

• (i.e. the same number as the class for which the rule (3) was derived) times
differentiable.

_ __ _ _ _ _ _ _  _  _  _  A
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region in this way is described in [9]* and [ll]*. We thus claim that the methods

• that we have developed are superior to those of the Sobolev school; they are

also superior to finite difference and finite element methods, which also

converge at the rate (3) .

When the Galerkin method is applied to the solution of nonlinear POE or

integral equations one obtains a system of nonlinear algebraic equations. The

lack of good methods for solving such equations has led us to search for methods.

To this end, we have obtained a new method of computing the topological degree

[161*, [171* based on evaluating the sign of the nonlinear function on the

boundary of the region, which may be used to find regions containing a

solution, as well as methods based on this to find a solution [18], [19] ,

[201*.
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