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1. INTRODUCTION

It is well known that spinning a cone at an angle of attack in
flight will cause distortions to the cone's boundary layer. The
asymmetrical boundary layer due to the combined spin and angle of at-
tack of the cone produces an effective body shape which is asymmetric
with respect to the plane of anglie of attack. The inviscid flow
over this effective body shape produces not only 1ift but a side force
called the Magnus force or Magnus effect. This force is very important
in the fact that it is an undamped force that acts on the body during
its entire flight. Most studies of the Magnus effect have been restricted
to either laminar boundary layers or supersonic turbulent boundary layers.
This report investigates the distorted three-dimensional turbulent
boundary layer on a spinning cone at small angles of attack in incom-
pressible flow. The resulting boundary layer displacement shape could
be used to determine an effective body shape and thus the Magnus force.

]developed a method to calculate coupled skin friction

In 1972, White
and heat transfer in two-dimensional turbulent boundary-layers and also
for the calculation of three-dimensional turbulent skin-friction. In this
study, White used a hodograph model to represent the crossflow velocity
profile. In 1973, Jacobson, Vollmer, and Morton2 studied velocity pro-
files of the incompressible laminar boundary layer on a spinning cone.
They applied the ‘Mangler' transformation to the cone coordinate system
to develop the velocity profiles. These velocity profiles were then

used to determine the displacement thickness and Magnus effect. Also,

in 1973 White and Lessmann3 introduced a paper on compressible turbulent




skin friction and heat transfer in three-dimensional boundary layers.

In 1975, Sturek?

introduced a paper on the effects of the three-dimen-

sional boundary layer on the Magnus effect of spinning projectiles.

In this study he found that the effective body shape is a major con-

tributor to the Magnus effect, but the centrifugal pressure gradient

is equally important. He also found that the shear stresses in the

longitudinal and circumferential direction would affect the Magnus force.
During the period that the boundary layer was being investigated,

the transition from laminar to turbulent boundary layers was also being

studied. In 1972 Sturek5 performed experimental studies of the boundary

layer on a spinning cone at supersonic speeds. Besides investigating

transition, these experiments also showed the effects of spin on the

boundary layer of the cone. The boundary layer thickness and location of
the boundary layer transition were determined, and the Magnus force was
found to be very sensitive to the boundary layer shape. In 1973,Sturek6
published a more detailed paper on the same subject. Also in 1973,

Jacobson and Morton7

analyzed the stability of the laminar boundary layer
on a spinning cone. This study indicated that spin has a large effect on
both laminar boundary layer stability and transition. SturekB, in 1974,
published additional experimental results on boundary layer shapes and
transition, and the results extended beyond spinning cones to spinning
bodies of revolution. The bodies studied were sharp nosed and blunted
cones with and without cylindrical afterbodies. Experimental results were

9 in 1975 on the transition Reynolds numbers on axisym-

obtained by Potter
metric bodies near the speed of sound.
This report concentrates on the incompressible turbulent boundary

layer, while previous methods do not. In this report,the flow over the
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cone is broken into two parts, the inviscid flow and the boundary layer.
It is assumed that the boundary layer has no effect on the inviscid flow
and thus the inviscid flow is used as one of the boundary conditions for
the boundary layer equations. The other boundary conditions are on the
surface of the cone itself. Although this report does not present results
for the Magnus force, it could be determined by using the results from the
boundary layer calculations to determine an effective body shape and then
perform a new inviscid flow field calculation.

This report is divided into five major sections after the introduction.
The first section describes the basic equations and the development of the
velocity profiles used to apply the momentum integral technique. Then
these velocity profiles are applied to the boundary layer equations through
the momentum integral technique to develop two governing, quasi-linear,
partial differential equations. The next section describes the method
for finding the location of transition from a laminar to a turbulent
boundary layer and the initial turbulent conditions on the transition line.
The third section describes the numerical technique used to integrate the
governing equations. Section four describes the results that are obtained
from the computer analysis while section five gives conclusions derived

from these results.
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a parameter defined by equation (A-49) in Appendix A
b parameter defined by equation (A-50) in Appendix A
A,B,C,D,E coefficients in equations (36) and (37)
Ag parameter defined by equation (A-3) in Appendix A
A4 parameter defined by equation (A-7) in Appendix A
By parameter defined by equation (A-6) in Appendix A
B4 parameter defined by equation (A-13) in Appendix A
6 vector defined by equation (41)
C, parameter of integration in equation (23)
element of ¢
coefficient of skin friction
F solution vector of equation (41)
G]'GZl coefficients defined in A
H coefficient matrix of equation (41)
h(i,j) element of matrix H
i used as matrix subscript
IO-I2 coefficients defined in Appendix A
IC parameter used to describe matrix equation
IM parameter used to describe matrix equation
IP parameter used to describe matrix equation
J used as matrix subscript
J]-J6 coefficients defined in Appendix A
k subscript used in equation (40)
L length of cone, m
— - — " —

SYMBOLS
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exponent used in equation (35)

number of grid points in ¢-direction
coefficient defined in equation (4)
pressure, N/m2

empirical parameter for determining effects of angle
of attack on transition

velocity parameter defined in equation (21)
value of q where y+ = y; and U* approaches zero

Reynolds number based on the length of cone and free
stream properties defined in equation (A-47)

dimensional distance along cone generator, m
velocity component in s-direction, m/s
free stream velocity, m/s

skin friction velocity parameter as defined by equation
(13), m/s

nondimensional velocity defined by equation (14)

nondimensional velocity in S direction defined by
U= u/u

velocity component in the y-direction, m/s
velocity component in the ¢-direction, m/s
nondimensional velocity parameter defined by equation (15)

nondimensional velocity in the ¢-direction defined by
W=w/u,

nondimensional distance along cone generator defined by
x = s/L

nondimensional position of the transition 1ine defined
by equation (35)

height normal to cone surface, m
nondimensional height as defined by equation (16)

nondimensional height where q = q,

it s b




1am

empirical parameter of equation (35)

angle of attack, degrees

parameter defined by equation (18)

parameter defined by equation (30)

boundary layer thickness, m

nondimensional boundary layer thickness

parameter defined by equation (A-48) in Appendix A

tangent of angle between shear in ¢-direction and
shear in the s direction defined by equation (27)

Von Karmen's constant used in Prandt]l mixing length
equals 0.4

skin friction parameter defined by A = /275; or

A= ol

coefficient of viscosity in kg/m-sec (1.798 x 10'5 kg/m-sec)
kinematic viscosity in m2/sec (1.4639 x 1073 mz/sec)
arbitrary parameter used in equations (38) and (39)
density in kg/m3 (1.2283 kg/m3)

parameter defined by equation (29)

shear parameter in s direction N/m2

shear parameter in ¢-direction N/m2

coordinate measured around cone, degrees

velocity potential defined by equation (1)

cone semi-vertex angle, degrees

spin rate, revolutions per minute

SUBSCRIPTS

in external flow (external to boundary layer)
laminar boundary layer property
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g denotes grid point in ¢-direction
turb turbulent boundary layer property
W property at the wall or surface of cone
st property at edge of boundary layer
o free stream property
SUPERSCRIPT
+ denotes nondimensional quantity

; n denotes grid point in X-direction
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2. BASIC EQUATIONS

2.1 Inviscid Flow Theory

The inviscid flow theory used in this study was developed by
Jacobson, Vollmer, and Mortonz. The coordinate system is shown in Fig-
ure 1. The coordinate s is measured along the generator of the cone sur-
face, y is measured normal to the surface, and ¢ is the circumferential
angle. The semi-vertex angle of the cone is y, and the angle of attack
is a. The velocity components u, v, and w are in the s, y, and ¢ direc-
tions, respectively. The angular velocity of the cone, w, is assumed to
be constant, and it is positive in the direction of decreasing ¢.

Basically the incompressible inviscid flow is described by a velocity

potential, ¢p’ which satisfies Laplace's equation

2
=0 .
v 4 (1)

The boundary conditions on the cone require the velocity to be tangent to

the surface, hence

v=0 at y=0 ,
at infinity the flow is undisturbed

>

v¢p =M at y=>.
Since equation (1) is linear, the solution can be expressed as the super-
position of two velocity potentials, one due to the axial flow and the
other due to the cross flow. To simplify the solution, Jacobson, et al.,
assumed a slender cone at small angles of attack. They also assumed
that the boundary layer did not effect the external flow. The flow
around the body was approximated by a distribution of sources and

sinks along the axis of the body. This analycis leads to the following

. 4
'y 2




velocity components at the cone's surface
u N
Iiz = {f] - 20 sin ¥ cos ¢ (2)
Mo 0
e
0 = 20 sin ¢ (3)

where N is given by the solution to

s[[N"'%](TT'W)-'HJ
+ cos (y) cos[IN + g](n -y) - %] =0 . (4)

Euler's equations can now be used to calculate the pressure gradi-

ents as follows

2
SLap . ; aue 3 We 8ue i !E (5)
p 3 e 3s s sin ¥ 3¢ S
and
1 oP awe we awe ¥ ue "e (6)

“ossinyap Ye s *ssin v o s
Thus, the velocity components and pressure gradients are known at any

position external to the boundary layer.

?.2 Turbulent Boundary Layer Equations

The boundary layer equations for the coordinate system described

above ar'el0

Continuit

1 9 1 oW , v
_ssinwi?(USS1"w)+ss1nw3¢7+a—y'=° (7)
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s _Momentum
¢ Momentum |
and y Momentum
g—:=0 : (10)

1}
Ts = Moy
|
and
.
T¢‘Uay’

while their values in turbulent flow are given in the next section. With
these boundary layer equations are two sets of boundary conditions. On

the surface of the cone the no-slip boundary conditions gives

i y=0
r u=u"=0
. M 0
Rt LEE E siny . (1)
i

The other set of boundary conditions is at the edge of the boundary lay-

er where the velocities must match the external flow. Thus, at i

y=3$

=
u ue
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W=W

where u, is given by equation (1) and W, is given by equation (2).

2.3 Turbulent Boundary Layer Velocity Profiles

To apply a momentum integral technique to the boundary layer equa-
tions, choices for the u and w velocity profiles across the boundary lay-
er need to be made. First the u-velocity profile will be derived and
then the w-velocity profile.

Near the wall, the s momentum equation, equation (8), becomes

2
e e
S P oIS p 9y

which is exact at the wall and approximate away from the wall. Now as-
suming that this equation holds throughout the boundary layer, integrate

it with respect to y to obtain the following

w2
« T i
Ts’[as szy+(Ts)
W
Now substitute, in the above equation for Tgs A Prandtl mixing length,

Ky where k = 0.4, of the form

. 2.2 |aul u
s Y oyl 3y

to obtain the following

)
_a!=1%y.[ c

1 3P -
W, (L3P _"w
u =y [ ]y] . (12)

p 9s S

The negative sign in the above equation denotes separated flow because
of the negative velocity gradient; the plus sign denotes attached flow.
Define u* by

I r T TIPT W O R TE N S o
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e [(Ts)w]llz o

)

and note that u* has the dimensions of speed. Then define the following

dimensionless parameters:

ut = u/u* (14)

wo= w/u* (15)

yreLy (16)
W

Substitute these parameters into equation (12) with the plus sign to ob-

tain
2 1/2
§£=J_1+E%Lr£n_&;L_f (a7)
' xyt Ny * 9 (y*)° s u*

Now define part of the square root term in the above equation by

2

2
o = \’w _a_P- = ww \’w = vw l a_P. - _w_vi (]8)
* o
S u (Tsj as s (U*)3 (U*)3 p 9S S

W
Substitute for %-gg-from equation (5) and for W, from equation (11) into

the above equation to obtain

b U, W du
= W _—e _e_ n s _I__e_ v 2 2
e (u*)3 |:- Ue s + s [We ST v 3¢] w s sin ‘1’] . (19)

Use the definition of ag from equation (18) to get equation (17)
in the following form

+

1/2
ﬂ‘;=-‘—+[l +a y*] (20)
v S
dy  «xy
Now define q by
172
a= (140 (21)

plsmtn e




and then rearrange it to get

e
Y =3 (" - 1)
and then differentiate this equation to obtain
&' = L2qdq . (22)
S
Replace y+ in terms of q in equation (20) and integrate, holding s and ¢

constant, to obtain

R 5 +]
u =—{2q - 2n %:1-} = C0 (23)

K
where Co is a parameter of integration and may be a function of s and ¢.
Let q, be the value of q as u+ approaches zero from above. Then equa-

tion (23) gives

ut = % 2(a - q) + an [ . (24)

Now using equation (21) the following limit may be obtained

2
+ +

[q°+]]_ ]+%°‘syo+6(yo) ik
qo'.| 1 + +2

1+—2-asy°+d(yo) -1

2
+
2+%“sy;+d(yo)=

> o+ 00)
70 Yo + Oy ) Lk
where y; is the height where q = q, and also if _y; is small in comparison

to 6, then o

2
(q-q°)=q-[1+%asy;+d(y;)]=(q-1) ,

so that equation (24) becomes approximately

L PR el
u-K2(q-1)+1Ln[-g—+—-|—ul ]
Syo
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Equation (25) is the velocity profile used for the u-velocity. When
equation (25) is applied at the edge of the boundary layer it gives
-1
+
+_ 1 B 8 4 )
L 2(q(s+ 1) + zn[: Ea [o +J] (26)
§ s Yo
where q(S+ is the v-'v2 of q at the edge of the boundary layer.
Now that a ‘@ u-velocity profile has been found, a ve-
locity profile fc. .verse velocity, w, is needed. First define
the parameter © as Follows
1
o==2 (27)
Ts

An analysis of the w-velocity, as done with the u-velocity, produced a
velocity correlation that was much too complicated and thus, some other
means was sought. A hodograph model] is used, in this report, of the form

W-Ww 2
LU o £L
- 0 [1 -g-] +f [6]

where

and
W->W as y~>0

To satisfy the above boundary conditions a hodograph model of the follow-

ing form was used

W-W 2 W
L. " e _ WYy =
S R 11 I

Now define o and B as

gnde o BE sin y (29)
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L)
and
W
e
B === (30)
Ue
and substitute them into equation (28) to get
+2 + +
W= u: o+u [? [1 - ﬁ;] + (B - 0) ﬁ;-(z - i;]] (31)

This is the cross flow model used. Figures 2 through 7 show the u-velocity

profile while Figures 8 through 11 depict the w-velocity profile.

2.4 The Governing Equations

This section describes the procedure used to derive the governing
equations. A complete derivation of the governing equations is given in
Appendix A.

The first step is to take partial derivatives of the u-velocity pro-
file (equation (25)) and the w-velocity profile (equation (31)) with re-
spect to s and ¢. Then substitute these derivatives into the continuity
equation (equation (7)) and then integrate with respect to y to obtain

the following form

2|1
3o au: 3 r [u_]




Next, derivatives of the velocity profiles and equation (32) are

substituted into the s-momentum equation (equation (8)), integrated with

respect to y, and non-dimensionalized to obtain

A 1 + (e))| aa
(61-30562) 3x+m[33-3a564+)‘65+0)\[6 A-Io ]] 50

0t g Al oy e
s%nwa«p Ue X 1 Ue 3 X sin y

oW
s 4 A e
[“ S '63'367'°Gs]+xsinwﬂ&a¢ %

(0 ais
A4 ue G4 U:
- R 82 axz“’ *Xsinv axa¢+b

+—[69-BZG+A2]=UeRL s (33)

Similarily, derivatives of the velocity profiles and equation (32) are
substituted into the ¢-momentum equation (equation (9)), integrated with

respect to y, and non-dimensionalized to obtain

& . (e) ax
(e) 3 _ 2 Gle ae
-AG-M-O')\[J -5 B A 2% 615 —g-rn—'
U 1

A .8 A _e -
* g, o [" Gla"BGzo‘Gs] YU, e xsin v [" Gy * 8B G12]

A e 2 ot
i E s ol ‘Gzo} T n% (‘“6 ‘321]

6 (200
A e 13 A Gt
"RT_'G‘IOL §+°]+xs‘lnw[axa¢ ] +7[3>‘6
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Equations (33) and (34) are the governing equations, where x and
¢ are the independent variables while A and © are the dependent variables

and A is defined by
e L
s

where Ce is the turbulent skin friction coefficient in the s direction.
These equations, equations (33) and (34), describe the turbulent boundary
layer on a spinning cone at small angle of attack assuming that the ve-

locity profiles given in equation (25) and equation (31) are valid.
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3. TRANSITION FROM LAMINAR TO TURBULENT BOUNDARY LAYER

Before a finite difference method can be applied to the governing
equations, a starting line with known quantities is necessary. The flow
over the cone was assumed to be laminar from the nose to the transition
line and then abruptly becomes turbulent thereafter with no transition
region. The laminar boundary layer equations over the cone are solved
by the method of Jacobson, Vollmer, and Mortonz. Since equation (33)
and equation (34) are valid only in the turbulent flow, the transition
line was chosen for the starting line.

This section is divided into two subsections. The first describes
the position and shape of the transition line, and the second discusses

the method used for determining the values of turbulent parameters on

the starting line.

3.1 Transition

Three effects dealing with transition were investigated. First is
where the location of transition occurs on a cone at zero angle of attack
without spin. The second is the effect of angle of attack on the location
of transition, and thirdly, is the distortion caused by spin.

The first effect has been determined empirically from experimental

data by Potter9

for the special case of zero angle of attack without
spin. However, his equation for the transition location was for
Reynolds numbers on the order of 106. His Reynolds number was based on
the external flow parameters at the transition line and the distance the
flow has traveled over the cone to the transition line. Since the cases

considered here are for Reynolds numbers less than 104

PR

, Potter's experimental

T
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data was used to derive the following empirical relation for the transi-

tion position, X¢
u
4 =2 [—e] (35)

where Z = 883.25 and m=-0.33452. Since Ug itself is a function of x,
equation (35) must be solved iteratively for X+ This value of X4 deter-
mines the location of the transition 1ine, which on a cone at zero angle
of attack without spin is circular.

The effect of angle of attack without spin on the transition line has
also been estimated empirically. This empirical method was guided using

5’6. The basis for this method

the experimental results found by Sturek
is two ellipses joined together as depicted in Figure 12. This figure is
a view looking along the axis of revolution of the cone and the distance
from the center to the edge of the ellipse is the distance from the nose
of the cone to transition along a cone generator. These two ellipses
have one common axis of length X s this is the major axis of the ellipse
on the leeward side and the minor axis of the ellipse on the windward
side. The major axis of the ellipse on the windward side is (1 + Pt a)xt
while the minor axis of the other ellipse is (1 - Py a)xt. The parameter
Pt was empirically found to be 5.73.

The effect of spin was added by a point by point rotation of the
above described transition line. The amount of rotation caused by spin
is found by a two step process. First the location of maximum laminar
momentum thickness is found for a cone at angle of attack without spin.
Next the location of maximum laminar momentum thickness was found for the

cone at angle of attack with spin. The angular difference in the location
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of these momentum thicknesses is the amount the transition line is rotated
about the cones axis of revolution.
This method of describing the transition line on the cone matched

5’6’9. Now that the transition line is

the experimental data very well
known, the laminar solution can be applied up to this line. Then the

laminar skin friction coefficient, Ces and © are known at the transition
line. These values are used in the next section to estimate the corres-

ponding turbulent values of skin friction coefficient and o.

3.2 Turbulent Flow Properties on the Transition Line
Now that laminar boundary-layer properties are known on the transition
line, they can be transformed to turbulent properties. The necessary tur-

bulent data are the skin friction coefficient in the s-direction, Ces and

the shear angle, ©. Because of a lack of detailed information, it is as-

sumed that the skin friction in the s-direction changes across transition,

while skin friction in the ¢-direction remains the same across transition

and hence o must change across transition. Because of the assumed instan-

taneous transition from a laminar to a turbulent boundary layer, there

must be an instantaneous jump from laminar to turbulent values of Cs and o.
After a study of experimental and analytical work and shapes of boundary

layers on different bodies, it was noticed that the boundary layer thickness,

§, is continuous across transition while its derivative with respect to s,

38 , is not continuous. This condition was assumed to hold true for the
9s

instantaneous transition. Since the laminar solution is known up to tran-
sition, the laminar boundary layer thickness at transition can be found.

Then a skin friction jump will be found which makes the turbulent boundary
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of these momentum thicknesses is the amount the transition line is rotated
about the cones axis of revolution.

This method of describing the transition line on the cone matched
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known, the laminar solution can be applied up to this line. Then the

laminar skin friction coefficient, Ces and © are known at the transition
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line. These values are used in the next section to estimate the corres-

ponding turbulent values of skin friction coefficient and o.

3.2 Turbulent Flow Properties on the Transition Line
Now that Taminar boundary-layer properties are known on the transition
line, they can be transformed to turbulent properties. The necessary tur-

bulent data are the skin friction coefficient in the s-direction, Ces and

the shear angle, 0. Because of a lack of detailed information, it is as-
sumed that the skin friction in the s-direction changes across transition,
while skin friction in the ¢-direction remains the same across transition
and hence © must change across transition. Because of the assumed instan-
taneous transition from a laminar to a turbulent boundary layer, there
must be an instantaneous jump from laminar to turbulent values of Ce and o.
After a study of experimental and analycical work and shapes of boundary
layers on different bodies, it was noticed that the boundary layer thickness,
8§, is continuous across transition while its derivative with respect to s,

38 , is not continuous. This condition was assumed to hold true for the
s

instantaneous transition. Since the laminar solution is known up to tran- I
sition, the laminar boundary layer thickness at transition can be found. :

Then a skin friction jump will be found which makes the turbulent boundary
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layer thickness at the transition line equal to the laminar boundary
layer thickness.

The laminar boundary layer thickness at transition is defined as the
height, y, where u/u, = 0.99. Then equation (26) is used to determine the
skin friction jump in the following manner. From the inviscid flow solu-

x +
tion, u

s » and y; are not known. Notice that ag is a

is known butq ag
6 9

function of s, ¢, and Ces while q +1s a function of & and ag- At this
$
point the only unknowns in equation (26) are Ce and y;. As it turns out,

y; is a free parameter. The parameter y; is in equation (26) due to the

fact that the parameter of integration, C_ in equation (23) could not be

0
evaluated at y = 0 because the log term would approach infinity. The

value of y; was chosen so that equation (26) yielded a realistic Ce- The
parametery; could have been determined uniquely by first calculating the

]1, which relates

turbulent Ce by the method described by Spalding and Chi
turbulent skin friction to properties at the edge of the boundary layer,

and then solving equation (26) for y ;.
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layer thickness at the transition line equal to the laminar boundary
layer thickness.

The Taminar boundary layer thickness at transition is defined as the
height, y, where u/u, = 0.99. Then equation (26) is used to determine the
skin friction jump in the following manner. From the inviscid flow solu-

tion, u' is known but q » and y; are not known. Notice that ag is a

o
e gty S

function of s, ¢, and Ces while q +is a function of & and o At this
§

point the only unknowns in equation (26) are Ce and y;. As it turns out,
E y; is a free parameter. The parameter y; is in equation (26) due to the
| 5 in equation (23) could not be f
evaluated at y = 0 because the 1og term would approach infinity. The

fact that the parameter of integration, C

value of y; was chosen so that equation (26) yielded a realistic Ce- The

parameter'y; could have been determined uniquely by first calculating the

i 1

turbulent Ce by the method described by Spalding and Chi ', which relates

turbulent skin friction to properties at the edge of the boundary layer,

?—«v.

and then solving equation (26) for y ;.




4. NUMERICAL METHOD

Generally an analytical solution to the governing equations of a
cone with spin and angle of attack cannot be obtained. Therefore, a
numerical method is needed to solve them on a digital computer. The

numerical method is dependent on the coefficients in the governing equa-

tions (equations (33) and (34)) because they determine if the equations
are elliptic, parabolic, or hyperbolic. The full development of these
coefficients is shown in Appendices B and C. Let it suffice here to say
that all coefficients in the governing equations can be described as
functions of the independent variables, the dependent variables, and w.

Equations (33) and (34) can be written in the following form

A D) 30 390 =

A ox t By T Gt D L E, =0 (36)
2\ dA 90 90 -

o 2 i Gaae T U -l B o k&)

. Note that the coefficients of the derivatives in the above equations are
functions of the dependent and independent variables and, thus these equa-
tions are quasi-linear. In addition, an analysis of the coefficients

showed that the equations are hyperbolic. Hence, the solution can be

started from an initial data line (the transition line here) and marched

e et e S S S R A s 37

downstream.

Inherent to any finite-difference method are the questions of stability
and accuracy. Also since the governing equations are hyperbolic, care must
be taken to not exceed the zone of influence of the initial data line

segments (mesh width). The characteristic lines of the governing equations

were found to be practically parallel to the cone generators such that they
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crossed only at large distances downstream. Thus, the step sizes were
limited by stability and accuracy only. Explicit finite-difference

methods were tried first, but all were found to require unrealistically
small step sizes to maintain stability. Thus, an implicit finite-difference

scheme was decided upon.

B PR P & W R N P U e YT .

Now that o and Cg are known on the starting line (see section 3), A
is also known on the starting line since

f

This information is sufficient to start a finite-difference solution of !
equation (33) and (34). The following description of the finite-difference
method used is described for a circular starting line. However, the tech-
nique could be modified along with a change of axis system so that it could
be applied to the skewed transition 1ine which exists on a cone with spin
and angle of attack.

First a two-dimensional grid is placed over the x-¢ coordinates as
shown in Figure 13. The superscript 'n' denotes the x-position such that

x"+] = x" + ax, while the subscript 'i' denotes the ¢-position such that

W T N R S (R Gy, e

J
$ie1 = & + A¢. Assuming that the data is known on the circie where x = A ‘

"+], then the derivatives

and the unknown data is on the next line, x = x
of some variable, say £, are approximated by difference quotients in the

x-direction (marching direction) by a backward difference quotient

+1 n
n+1 gq - £

98 i el

X i A X (38)

and in the ¢-direction by a central difference quotient
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n+1 n+1
2™ Ein 7 G

|5 . 2 Ad (39)

The first difference quotient is a first order approximation to the deriva-
tive. These estimates of the derivatives are applied to equations (36) and

(37) and rearranged to obtain

n+1 n+l
B":H A:H B:H D, &
B IS L S S 0 B B B R i gt
20 Ti-1 Ax 7§ 206 i+l T 289 Ci-1 AX i
D:” A:ﬂ cn+1
i ntl _ _ ontl T i N
MY T i My vk I v (40)

where k = 1, 2.

This equation leads to a matrix equation of the form
HF=T (41)

where F is the solution vector.

The size of H, F, C are functions of the number of grid points, M,
in the ¢-direction. If the number of grid points in the ¢-direction is
M then H is a 2M by 2M matrix while F and C are 2M column vectors. The

vector of unknowns, F, is written as follows
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x“+1

;\n+1
M-1

‘n+1

|
1

n+1

n+l

n+1

OM-1

n+l

‘ )
n+l _ _n+l

n+1 n+1

Due to the conical nature of this grid 2 M1 = 9

The expressions for the elements of H, h(i,j), and T, c(i), can be written

more conveniently by defining the following

(
% if i is even
o ef
DL §f i is odd
'
2 if i is even

IC

n
A

1 if i is odd

and

Snd BB OD

it oy RS
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IM = IP -1

Now c(i) may be written as follows

An+1 cn+1
IC IC
iy oo=nE] IP .n IP n
el =By # =k ® =gy
IP
for any i

To describe h(i,j), there are three different cases depending on the value

of i. If i < 2 then h(i,j) may be written as follows

e

Ax

Brc
Ip i
Y J

h(i,3) =<

i=M+1

g
(&)
n
=
+
N

e e

0 for all other j's .




If 2 <i <2M - 1 then h(i,j) may be written as follows

( _n+l

B
ICrp
286

An+1
ICp

———

AX
Bn+1
ICp
IV
1
o™t
ICp
28
cn+'l
ICip

ix M+ IM+1

n+l
D
ICrp

NIvE M+ IM+ 2

L 0 all other j's

and lastly, if i > 2M - 1 then h(i,j) becomes




IC
IP 3
AX j=M j
4
h(i,j) = ¢ p™1 -
IC j
IP e _
s o FE |
+1 .
D'fc :
IP g 2 1 5
vl oo BN !
4
n+l
CchP
Ax j=2M
0 for all other j's

Since the coefficients

ATl endl nl endl 2]

are functions of the unknowns, a first guess of the unknowns at the (n + 1)

line 1is used to evaluate the coefficients. To obtain this first guess

a central difference explicit-finite method of the following form was

used
ntl  (.n n
D1 o i e ]2
X 1 Ax
and
n .n n
2| _ &1 S
%, T
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Then equation (41) is solved to get a better approximation of the unknowns.
Next the coefficients are reevaluated and the process is repeated until
the unknowns from one step are sufficiently close to the unknowns of the
next step. Note that the explicit forms above were used for the first
guess only. The solution technique is an implicit one.

This implicit finite-difference method was found to be stable even
at reasonably large step sizes. When applied to a cone at zero angle of
attack, with or without spin, it was found that only one or two itera-
tions were needed at each step to reach convergence. On a cone at angle
of attack, this method usually required about three iterations to converge
but could vary from one to ten iterations. The criterion used for con-

vergence was a relative error of 0.1 percent.
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5. RESULTS

The computer program was compiled in sections on an IBM 370/175
computer. The compiler used was the Fortran-H level compiler. The

execution time varied depending on the case being tested.

5.1 Special Case of a Cone with Zero Spin at Zero Angle of Attack

First it was decided to test the theory against known solutions for
zero spin at zero angle of attack of which there are manylo. Two methods
of solutions were used. One was with the full set of governing equations.
The other method was to reduce the two governing partial differential
equations to one ordinary differential equation since conditions of zero

spin and zero angle of attack give %%-= 0 for any parameter &.

Notice that in the case of zero spin, w = 0, at zero angle of attack,

e = 0, the following results may be determined

B=0,

c=0,

e =0,

LB
and

e=0.

Now apply these conditions to equation (33) to obtain the reduced equation

du 4 dz[—u]]
da A e (.2 + A e A
SR GLRTRE NG 0

(42)
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Since equation (42) is a first order ordinary differential equation, X

was found by using the fourth order Runge-Kutta integration technique‘z.

The other method employed both partial differential equations (equations
(33) and (34)), and the implicit finite-difference method mentioned pre-

viously. This check was performed as part of the debugging process for
the computer program.

Solutions were calculated for a 10° semi-vertex cone in a flow of
60.96 m/s (200 ft/sec). The length of the cone was 1.2192 m (4 ft).
Results of these solutions are shown in Figures 14 and 15. Figure 14
shows the boundary layer thickness for different skin friction jumps.
Figure 15 shows the associated skin friction. These results were found
to be satisfactory. The Runge-Kutta method took less than 10 seconds of
execution time while the implicit finite-difference method took approxi-

mately 1 minute.

5.2 Special Case of a Cone at an Angle of Attack with Zero Spin
The next step is to introduce angle of attack to the cone. From the

results of the zero spin at zero angle of attack case it was decided that
c
_turb
c
lam

using this value of the skin friction jump seemed to fit classical data

a skin friction jump of = 1.96 would be used because the solution

best. For this case an angle of attack of 5° was used. The free stream

velocity was again 60.96 m/s (200 ft/sec) on a cone of length 1.2192 m
(4 ft) with a semi-vertex angle of 10°.
In order to show the instability caused by an explicit finite-differ-

ence scheme, Figures 16 through 18 show results when an explicit finite-
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difference scheme was used to obtain solutions to the governing equations.
In these figures, the solution started oscillating even though the step
sizes satisfied the stability criterion. In Figure 16 a step size of
ax = 0.005, where x is non-dimensional length with respect to the length of
cone, was used along with 40 grid points around the cone to produce a 4¢
of 0.15708 radians or 9 degrees. Notice that the oscillation first occurred
at an x-location of about 0.38. In Figure 17 everything was kept the same
except the step size Ax which was changed to 0.01. This time the oscilla-
tion occurred at an x-location of about 0.6 which is better than in Figure
16. Finally in Figure 18 both step sizes were decreased to Ax = 0.01 and
A¢p = 0.07854 radians or 4.5 degrees, 80 grid points around the cone. The
flow remained stable here until x = 0.76. Although the solution for this
last case is nearly stable, the grid size, M, in the ¢-direction being 80
points required a large amount of storage, 400k bytes, and a fairly large
amount of execution time, over thirty minutes, on the IBM 370 computer to
arrive at this solution.

At this point it was decided to change to the implicit finite-differ-
ence scheme mentioned earlier. The step sizes were held the same as in
the explicit scheme to facilitate the comparison of these two methods.
Results of the solutions using this implicit scheme are shown in Figures 19
through 21. Figure 19 shows the solution on a 10° ccne at o = 5° without
spin. The free stream velocity is again 60.96 m/s (200 ft/sec). The step
size in the x-direction was 0.01 while the number of grid points in the ¢-
direction was 40, i.e., A¢ = 0.15708 radians. Figure 19 shows the boundary
layer thickness versus x at several different ¢-locations. Figure 20 is

similar to Figure 19 except Ax is changed to 0.02. In comparing Figures 19
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and 20, it can be seen that Ax has very little effect on the solution ob-
tained.

Finally,in Figure 21, the number of grid points in the ¢-direction was
changed to 20 to give a A¢ of 18 degrees or 0.314159 radians. Solutions
were obtained for Ax of both 0.01 and 0.02. Changes in Ax had very little
effect on the solutions obtained. The solution in Figure 21 is very similar
to the solutions shown in Figures 19 and 20. A small difference can be
noticed at ¢ = 180 degrees and this difference is in the curvature of the
boundary layer thickness curve.

It is seen that a better solution was obtained with the larger step
size in the ¢-direction because of the curvature of the boundary layer
thickness curve at ¢ = 180 degrees. These results show that the implicit
finite-difference method is stable and is fairly insensitive to step size
changes. Using the implicit method these solutions took approximately

2 minutes of execution time on the IBM 360 computer.

5.3 Cone at Angle of Attack with Spin

The case of the cone at angle of attack with spin is still being
studied. Preliminary investigations have been performed but a solution
has been obtained with a circular transition line only. The case of spin
at zero angle of attack was tried first and the results are shown in
Figures 22 and 23. The free stream velocity was again 60.96 m/s (200 ft/sec)
on a 1.2192 m (4 ft) 10° cone. The step size in the x-direction was 0.01
while there were 20 grid points in the ¢-direction. In Figure 22 the spin
velocity was 500 revolutions per minute or 52.3 radians per second while

in Figure 23 the spin rate was 400 revolutions per minute or 41.89 radians
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per second. It can be seen from these results that o is more sensitive
tb spin rate than is the boundary layer thickness, 6. In comparing
Figures 14, 22, and 23, there is very little change in & due to the spin
rate while in Figures 22 and 23 there is significant change in o.

The solution for the case of angle of attack with spin is shown in
Figures 24 and 25. This solution is for the cone conditions as in Figure
23 except o = 5°. Figure 24 shows the variation of boundary-layer thick-
ness while Figure 25 shows the associated ©. Since this solution is the
only solution obtained with spin and angle of attack, no trends could be
established. However, these initial results seem very promising and this

work is continuing. Execution time for these cases was an average of

2 1/2 minutes.
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6. CONCLUSIONS

The following conclusions were drawn from the analysis described

in this report:

[

The numerical method developed here gives results which follow the
trend of available experimental data and other analytical results.
When using an explicit finite-difference method to solve the governing
equations, small step sizes are required to obtain stable and accurate
results; the effect of small step sizes on the computer program is
large execution times and large storage requirements.

The implicit method described in this report overcomes the step size
problem and still remains stable and accurate.

Analysis of the governing equations showed them to be hyperbolic, but

BN el st o sk L4

the characteristics were practically parallel to the cone generators i
and thus the characteristics crossed at large distances downstream.
Because of the large characteristic distances, the step sizes used

were based on truncation error rather than on the zone of influence.

Large spin rates (cone base surface velocity larger than free stream
velocity) would cause the computer solution to break down, particularly

in the case of angle of attack.

{
5:
!
i
%

Computer solutions can be found in the cases where the spin velocity

produces a cone base surface velocity on the same order or less than

free stream velocity.

Typical execution times for the implicit finite-difference method was

less than three minutes on an IBM 370/175 computer.




7. RECOMMENDATIONS

"It is recommended that future work be conducted to include the
following: :
1. the skewed transition line,

2. and a better method for the calculation of y;, such as the method

of Spalding and Chi]].
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APPENDIX A

Derivation of Governing Equations

First rearrange the continuity equation (eq. (7)) to get the

following form

v _ du , u 1 W
7 R [as tstssing a¢]

and then non-dimensionalize to obtain

12y =-a_u__l[1 +ii‘£] o
Vu ay+ 3s S y* 35
+ &
1 oW 1 3u  +

Now use the velocity coorelations (eqs. (25) and (31)) and the

definition of o (eq. (19)) to evaluate the above. First expend the

derivative of the u velocity profile

+ + +
au = Q_y+ Ju auS au (A-2 )
as S g
as Qy+ ] aas

+ _u*
Since y = 771 then

W
+ *
Yy _ Y du
as vwas
*
v 9SS |u e
W e

S

v AIy———
"




Define A3 to be

* a+
PR TR T
3 u-*as ue oS u+ S
e
such that
+
N 4
9S A3y

The derivative of eq. (19) with respect to S gives

2 2
e R
3s (u*)3 e 3 as S S

2
ol T 1 i SRt B
sin ¥ 3s3¢ s 25 o & (e

+
R I N K
3 u* 3 uy, 3¢ "Z 3¢
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1 Yo 9 Ug 3sa"e
and A, u3[5 sin ¢ 2s9¢ [1 u. os) ("e
e
Uy W 3u
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(A-3)

(A-4)

(A-5)

(A-6)

(A-7)
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| and substitute into equation (A-5) to obtain
4
+ o |-
da 3a_ du u
3 _ "% 8 +\3 e o
s +as+"w(ue)[ 2 +A4] ’ (A-8)
u as
e
Substitute equations (A-4) and (A-8) into equation (A-2) to get
+
3a_ 3u
U _ + du s e +,3 ]
vl M S e gl PR LY ,
ay u
e
2
e
———Z——as + A4 > P ) (A'g)

Next look at the w velocity component. Using the chain rule of differen-

tial calculus, the following derivative is obtained

+ , + +
aw' _ oyt ', 2% aw’, 28 aw

2 26 ¥ Ta¢ da_ " 3¢ a8

+

S

+ + + _+
30 W, 30 3w, 38 oW
30 30 30 20 8¢ 5"

+

+
i L i (A-10)
2
aue

From the definition of y+ it follows that

+ * *
B oL r8 ¢ L0 . . (A-11)
% v, 2 e e Byy - i

The derivative of eq. (19) with respect to ¢ gives

2
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v * au w ou
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Now define the following
B, = 1 E—ﬁ-}l&.w __..I_.a_u_e
4 :3_ S 96 S 9¢ |e sin ¢y 9¢
e
W azu du, w du
i e 3 %67l ,_1___e]
s siny a¢2 U 3% s (e siny 3¢
+ 3 wz S sinzgy Y (A-13)
Ug Y

and substitute into equation (A-12) to obtain

2} 1
+ ol M8
da 3a_ du 3 [u ]
5.5 + e h
3t 9 * vy (ug) [ T 84] . (A-14)

Rearrange equation (26) to get
+
K Ug = 2(q6+ -1) + ln(q<S+ -1) - 1n(q6+ +1)

+ 1n(4) - Tn(ag y;)

then
+ 3q 3q 3q
L. R g ol & e y+f;‘§_
R -1 3¢ ~ - = +
3% i R LD T
ard rearrange the above to obtain
a.q q .8
s R i R G L G |
3¢ qz R q2 g % 3¢
i st
36"
and finally solve for % to obtain the following
¢ g ,-1)
T s T WY P (A-15)
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Next substitute equations (A-11), (A-14), and (A-15) into equation (A-10)
to get the following form

+ 32(]_]
9‘_":.=B +3W++ 3(’s")"'e.._v +)3[ Ug
+
+By|o| 2 - — M
i S q6+ 36
au"' S5 ST + + X 3u+
e [k§_ ow 90 oW, 0B oW _, 90 oW i 1 %
+3¢[ ]+a¢ae+a¢as+a¢ac+° % ° (A-16)

q
R
Substitute equations (A-9) and (A-16) into equation (A-1) to get the con-

tinuity equation in the following form

4
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e
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Define the following integral terms
+

I = r ut ay’ (A-18)
0
oy +
+ +
+ + + +
A A L AR VAT -f u* dy
ay 0
e
gy S (A-19)
+
Fah e
N u
e[ 2o (A-20)
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+
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0
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+
W
JZ b 3-&— dy (A-23)
0 S
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+
o 5
and J6 = fy 7 dy . (A-27)

Multiply equation (A-17) by dy+, and integrate, and substitute
equations (A-18) through (A-27) to obtain the final form of the continuity

equation
)
3a_ Su 3 u
L 5 a2l ol | S e + e
% By ¥ 0 # o lgte = ==+ v (U) [Tas +A4] I
e
i
au 3 u
+ 5 M + e
1 B,y —_ (u)) F— +B ]
SSin v 3 [ : ) w'e asa¢ 4
§+(q ,-1) i ey
["2 3 - "3] i aa_ue e
a.q
S st
+
u
2 3 J G0 ¥ b gyt (A-28)

a¢ 4 a¢ 5 a¢ 6 3

Now consider the conservation of momentum in the s-direction
(equation (8)) which can be rearranged and substitutions made from

equations (A-3) and (A-6) to obtain
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Use the u-velocity profile and equation (A-14) to obtain
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Substitute equations (A-9), (A-28) and (A-30) into equation (A-29) and

rearrange to obtain the following
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Integrate equation (A-31) from y+ =0 to y+
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(A-31)

(A-32)
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Define the following non-dimensional parameters

x = s/L (A-43)
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and then define
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Define the following non-dimensional parameters
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+
X = 4 (A-44)
u
e
U = U (A-45)
W
e 3 e »
we = ™ (A-46)
ul
RL = T;- (A-47)
2;2
e2 - w lé (A-48)
uuu
and then define
2
Bl e aUe+1+§53U—e W
U 3] x sin ¢ 3x3¢ Ue X e
e
aU W au
1 e e 2 g2 3x e
- smw‘w] P LR (‘ U—Ti']
el o U (A-49)
X X We sin ¢ 3¢
and
2
Bl E‘_e_ Mo s "y + (W
v 3 X 26 sinV .2 e
l e
A 1 We) (1 Mg 3 3y 3 % x sin? y Ve
| “ sty 5% {W;W'lg T3] Bt 5Ty (A-50)
e

R i s




so that

s adan St o e —7
O 2 it o <

48

(A-51)
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and then substitute these parameters into equation (A-42) to obtain the

following
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which is the final form of the s-momentum equation and the first governing

equation.
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Next consider the conservation of momentum in the ¢-direction
(equation (9)) which can be rearranged and substitutions made from

equations (A-3) and (A-6) to obtain
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First expand the derivative of the w-velocity correlation by the chain

rule as follows
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Then solve for e to obtain the following
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Substitute equations (A-4), (A-8), and (A-56) into equation (A-55) to get
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Now substitute equations (A-16), (A-28), and (A-57) in to equation (A-54)

and rearrange to obtain the following
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(A-67)

(A-68)

(A-69)

(A-70)
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Multiply the above equation by L and then substitute equations (A-43)
through (A-50) to get
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which is the final form of the ¢-momemtum equation and the second governing

equation.
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APPENDIX B

Evaluation of Basic Integrals

The evaluation of the basic integrals needed to evaluate the

coefficients in the governing equations is given below.
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APPENDIX C

Digital Computations for the Coefficients
to the Governing Equations
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Figure 3 U Velocity Profile
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Figure 4 U Velocity Profile
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Figure 8 W Velocity Profile
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Figure 13 Grid for Finite Difference
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Figure 15 Turbulent Skin Friction
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Figure 16 Boundary Layer Thickness
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Figure 18 Boundary Layer Thickness
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Figure 19 Boundary Layer Thickness
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Figure 22 Boundary Layer Thickness and Shear Angle
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Figure 23 Boundary Layer Thickness and Shear Angle
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Figure 24 Boundary Layer Thickness
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Figure 25 Skin Friction Shear Angle
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