
/ AD—AO ’46 703 STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE F/G 9/2 N1
THE LOGIC OF COP UTER PROGRAM$4ING.IU)
AUG 77 Z MANNA. R WALD INGER NOOO1le~ 75—C~ O816

UNCLASSIFIED STAN—CS’ 77 611 ML

046103

U

Stanford Artificial Intell igence Laboratory Augtim 1$77
Memo AI M-298 /

--
~~~~ /

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I 1 / )  ~~~~~~
Report ~~~~STAN-cS-77-61~ , A I —

~~~ / r

THE LOGIC OF COMPUTER PR OGRAMM ING .

“ ‘~ ZOHA B(MANNA and RICHARD /WALD INGER

) I / ( ~~~~ 
-

Research sponsored by

Office of Naval Research

National Science Foundation
and

Advanced Research Projects Agency
—-~~~

~~~ I :~~~~-“~,VI — — ‘ /

i
i

~~/ /4 ’ -
-

COMPUTER SCIENCE DEPART MENT
Sta nford University D tD c~

1: ~~E~~~ fl171F~Tfl
NOV 18 1977

H

~~~~~~~~~ 

c~
— ~~~~~~~~

ON S ATEMT~~Ff l
I Ipp~~ S~ for public relecBe;

Dtstrthutloi~ Unlimit ed

Ii~~ 
/ / / I / U /

/ ~:



UNCT IFIED
S E C U R I T Y  C L A S S I F I C A T I O N  OF THIS PAGE (W ~i.n Data EnI.r.d)

~~~~~ 
“

~~~ 
‘ E ~~~~~~~~~~~~~ P4 ’ E READ INSTRUCTIONS

rs rui~ u uu~..uM N I ~~ I IUI~ ~~U BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT A~~C SSI~~N NO. 3. RE C I P IE N T S  C A T A L O G  NUMBER

STAN— CS— 77— 6l ]~ AI M—298 _______________________________
4. T IT L E  (an d Sub tjtJr ) 5. TYPE OF REPORT & PERIOD COVERED

The Logic of Computer Programming Technical

1. PER~~ORMIt4 G ORG. REPORT P4IJMBCR

___________________________________________________ ATN— 9QR
7. AUTHOR( s) 5 . C O N T R A C T OR G R A N T  N U M B E R ( s )

Zohar Manna and Richard Waldinger N000l4—75—C—0816 **
N00014—76—C—0687 *

9. PERFORM INO ORGAN I ZATION NAME AND ADDRESS tO. P RO G R A M  E L E M E N T . PROJECT , TASK

Ar t i f i c i a l  Intelligence Laboratory * NR 049—389
Stanford University 

** NR 049—378Stanford , California 9/tlflS ___________________________

I I .  CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Mr. Marvin Denicoff , Program Director 
~ ~ 

1Q77 
/

Informat ion Systems , Code 437 , ONR 13. N U M ~~E R O F  PAGES

800 No. Quincy , Arlington , Virg inia , 22217 83
4 MONITORING AGENCY NAME & ADDRESS (If dlff.t.n I from Control ling Qu it-.) IS. SECURITY CLASS. (of th i a  fapo?t)

Philip Surra, ONR Representative
Durand Aeronautics Building , Room 165 15
Stanford University , Sta iford , Calif. 94305 ISa . 

~~H
C
~ Ô

A
I~~

I I I C A T I O N D O W N G R A D I N O

6 DIsT RIBUTION S T A T E M E N T  (of th Is R.port)

F DISTRIBUTION si ’~~
Releasable without limitations on dissemination. 

~ 
Approved f r 

-

17. DISTRIBUTION ST A TEMENT ‘of IS. abs tract .nt.rad In Block 20 , if dl f f. rw t  from R.port)

15. SUPPLEMENTARY NOTES

19 KEY WORDS (Conrin.Ia on .r.re. aid. If nat -s a l a ry  wd i d . n t if y  by block n~smb.,)

20 ABSTRACT (ConIInos on ,.r.,a. aid. If nao...ar~ wd id.n ti ly by block nua,b•r)

Techniques derived from mathematleal—legic promise to provide an alternative
to the conventional methodology for constructing , debugging, and optimizing
computer  programs . Ultimately, these techniques are intended to lead to the
automation of many of the  f ace t s  of the programming process.

This paper provides a u n i f i e d  t u to r i a l  exposit ion of the logical techniques ,
illustrating each with examples.~. .The osrrPngrhn ant l  l Ita r~n~ of each

DD 1 J A N 73 1473 ED 1TION OF I HOV 6S IS OUSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (W ttsn Oaf. Int.r.d)

_ _ _  .. ---~~~~-.



~
— -

~
---

~ . .

JJNCLASSIFIED . 
-

41 T V CLASSIFICATION OF THIS PAGE (When bat. Entered)

technique as a practical programming aid are assessed and attempts to
implement these methods in experimental systems are discussed.

I’
mis
~DC 

D~S1RlRu1t~ ’ ‘ . .  . .  ~I1 .‘

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAOE(W ~i.n Data Ent.rad)

_ __ _  .~~- - - -- . . - .--,.~~~~~~~~~~~~~ .- -~~- , 



- .  
-.- -

Stanford Artificial Intelli gence Laboratory August 1977
Memo AIM -298

Computer Science Department
Repor t No. STAN-CS-77-6 11

THE LOGIC OF COMPUTER PROGRAMMING

ZOHAR MANNA RICHARD WALDINGER
Artific ial Intelligence Lab Artificial IntellIgence Center
Stanford University SRI International
Stanford, California Menlo Park, California

Abstract:

... ~~~~~ Techniques der ived from mathematical logic promise to provide an alternative to the
conventiona l methodology for constructing, debugging, End optimizing computer programs.
Ultimately, these techn iques are intended to lead to the automation of many of the facets of the
prognmming process.

~This paper provides a unified tutorial exposition of the logical techniques , illustrating each
with exam p les. The stren gths and limnations of each technique as a practical programming
aid a re assessed and attempts to implement these methods in experimental systems are discussed.

Thus research was supp orte d in part by the Advanced Research Projects Agency of the
1) q ’a ?tment of Defense under Contract MDA 9O3— 76-- C— 0 206 , by the National Science
Foundation under Grant D CR 72— 0575 7 AOl , by the Office of Naval Research under Contracts
N00014 — 76—C—0687 and N00014—75—C—0 816 , and by a grant from the United States—Isr ael
Binationa l Science Foundation (BSF) , Jerusalem , israel.

The views and conclusions contained in this document are those of the authors and should not be
inter p reted as necessaril y rep resentin g the official policies , either expressed or Implied , of
Stanford Universit y ,  Stanford Research Institute , or the U.S. Government.

Copyright © 1977 by Zohar Manna and Richard Waldlnger,

~ ,~~~ 
. .

I 

-- ..~~~~~~~~~ - - -- - .~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Manna & Waldinger The Logic of Computer ProgrammIng

Contents:

I. IntroductIon 2

II. Partial Correctness 6

III. TermInation 27

IV. Well-Founded Induction 32

V. Total Correctness 35

VI. Correctness of Recur sive Prograre s 40

VII. Program Transformation 50

VIII. Program Development 61

IX. Ref .rence s 76

L - .  
~

. 
~~~~~~~~~ . ~~~~-- - -~~~~~~~~-~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


—-~~ — - .-

Manna & Waldinger The Logic of Computer Programming

I. Introduction

In June 1962, the first American space probe to Venus (Mariner I) went off course and had to
be destroyed because of an error in one of the guidance programs in Its onboard computer.
One statement of the program, though syntactically correct , had a meaning altogether different
from that intended by the programmer. Although few bugs have such spectacular effects ,
errors In computer programs are frequent and influential. There has been substantial effort
recently to apply mathematical rigor to the programming process and to enable the accuracy of
the machine to compensate for the error-prone human mind.

In the late nineteenth arid early twentieth century , mathematics underwent a process of
formalization and axiomat ization, part ially in an effort to escape from paradoxes and logical
errors encountered by previous generations of mathematicians. A similar process is underway
in the development of a logical theory of programs: This theory has alread y made our
understanding of programs more precise and may soon facilitate our construction of computer
plograms as well. Logical techniques are being developed to prove programs correct , to detect
programming errors , to improve the efficiency of program operation, to extend or modify
existing programs , and even to construct new programs satisfying a given specification; many of
these techni ques have been implemented in experimental programming systems. In the last
decade , this field of research has been extremely active; it now has the potential to exert a deep
influence on the way computer programs are produced.

The available techniques are alread y described in the literature , but the relevant papers are
scattered through many technical journals and reports , are written In a variety of incompatible
notations , and are often unreadable without some back ground in mathematical logic. In this
paper , we attem pt to precent the principal method s within a unified framework , conveying the
intuition behind the methods by exa m ples . and avoiding the formal apparatus of the logicians.

To facilitate a comparison between the various techniques , we use a number of different
algorithms for performing the same task ; to compute the greatest common divisor of two
integers. These algorithms are simple enough to be readily understood, but subtle enough to
demonstrate ty pical difficulties.

The greatest common divisor of two nonnegative integers x and y , abbreviated as gcd(x y) . is
the largest integer that divides both x and y . For instance: gcd(9 12) — 3 , gcd(12 25) — I, and
gcd (0 14) — II. When x and y are both zero there Is no greatest common divisor , because
every integer divides zero; on the other hand, when x or y Is not zero, a greatest common
divisor must exist.

A naive algorithm to compute the gcd of x and y might behave as follows: Make lists of all
the divisors of’ x and of all the divisors of y ; then make a third list of all the numbers that

2

. . . .~~~~~ _ _ _

Manna & Waldinger The Logic of Computer Programming

a ppear in both lists (these are the common divisors of x and y); finally, find the largest
number in the third list (t his is the greatest common divisor of x and y). The cases in which
x ot ~ is zero must be handled separately. This algorithm Is straightforward but inefficient
because it requires an expensive operation, computing all the divisors of a given number, and

because it must remember three lists of intermediate numbers to compute a single number.

A more subtle but more efficient algorithm to compute the gcd of two numbers can be devised .
t.Jnti l the first number is zero, repeat the following process . if the second number is greater
tha n oi equal to the first , replace it by their difference —— otherwise interchange the two
numbers — - and continue. When the first number becomes zero , the answer is the second
number This answer turns out to be the gcd of the two original numbers. The new algorithm
is more eff icient than the naive one, because it only needs to remember two numbers at any one
time and to perform the simple minus operation.

The above algorithm can be ex pressed as a stylized program:

Program A (the subtractive algorithm):
Input(x 0 Yo)
(r y) t- (~0 y 0)

moT e: if r = 0 then goto enough
if y � x then, y—x else (x y) ~- (y x)

goto more
enou gh: output~y).

The notation (x y) ~- (x0 yo) means that the values of x and y are simultaneously set to the
input values x0 and Yo• Thus, the statement (x y) ~- (y x) has the effect of interchanging the
va lues of x and y . This program causes the following sequence of values of x and y to be
generated in computing the gcd of the input values x0-6 and yo-3:

- 6 and y 3.
x - 3 and y - 6,
x — 3 and y — 3,
x . and y 0,
x 0 and y - 3.

ihius , the output of the program is 3.

Although the earlier naive algorithm was obviously correct , because it closely followed the
definition of gcd , It is by no means evident that Program A computes the gcd funct ion. First
of al l , it is not clear that w hen x becomes zero, the va lue of y will be the gcd of the Inputs;
that this is so depends on properties of the gcd function . Furthermore, it Is not obvious that x

3

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Manna & Wald inger The Logic of Computer Progr amm ing

will ever become zero; we might repeatedly execute the If—then—else statement forever. For
instance, consider the program A ’ obtained from A by replacing the conditional

if y ~ x then y ~- y—x else (x y) .- 1y x)

by
If y x then y ~ y —x else x~~x.-y

This program closely resembles Program A , and it actually does compute the gcd of its Inputs
when it happens to produce an output. However , it will run forever and never produce an
out put for many possible input values; for instance, if x~w 0 and Yo 0. or if x0. 0 and y0~x0.
Thus, if x0=y 0— 3 , the following sequence of successive values of r and y emerges:

r — 3 and y — 3,
x 3 and y 0,
x 3 and y - 0.
x - 3 and y = 0

These programs are as sim ple as any we are likely to encounter , and yet their correctness is not
inirnediately clear. It is not surprising, therefore , that bugs occur In large software systems.
Although programs may be subjected to extensive testing, subtle bugs frequentl y survive the
testing process. An alternative approach Es to prove mathematica lly that bugs cannot possibly
occur in the program. Although more difficult to apply than testing, suc h mathematical proofs
attem pt to impart absolute certaint y that the program is, Indeed, correct.

Techniques derived from mathematical logic have been applied to many aspects of the
programming process , including:~

• correctness: proving that a given program produces the intended results.

• t ermination: proving that a given program will eventually stop.

• trans formation: changing a given program Into an equivalent one, often to Improve its
efficienc y (optimi zation).

• development: constructing a program to meet a given specification.

These techniques are intended to be applied by the programmer , usually with some degree of
computer assitance. Some of the techniques are fairly well understood and are alread y being
incorporated into ex perimental programming systems. Others are Just beginning to be
formulated and are unlikely to be of practical value for some time.

4

Manna & Waldinger The LogIc of Computer ProgrammIng

Our exposition is divided between a basic text , given in an ordinary type font
and secondary notes interspersed throughout the text in a smaller font. The
basic text presents the principal logical techniques as they would be applied
by hand; the secondary notes discuss subsidiary topics , report on
implementati on efforts , and include bibliographical remarks. Only , a few
references are given for each topic , even though we are likely to lose some
good friends in this way. The hasty reader may skip all the secondary notes
without toss of continuity.

In the following pages, we will touch on each of these topics; we begin with correctness, the most
investigated and best understood of them all.

_ i

. —~~~~~~~~~~ --~~.- ~~—~~~~~~~~~~--- ~~~~- .

Manna & Wa ldlnger The Logic of Computer Programming

II. Partial Correctness

To determine whether a program is correct , we must have some way of specifying what it is
intended to do; we cannot speak of the correctness of a program in isolation , but only of its
correctness with respect to some specifications. After all, even an incorrect program performs
some computation correctl y, but not the same computation that the programmer had in mind.

For instance , for the gcd program we can specify that when the program halts , the variable y Is
intended to equal the greatest Integer that divides both Inputs x0 and yo; in symbolic notation

y = inax {u : ulro and ulyo}

(Here , the expression ~u : p (u) } stands for the set of all elements u such that p (u) holds, and the
expression v u ’ stands for “u divides v .“) We call such a statement an outp ut assert ion , because
it is expected to be true only when the program halts. Output assertions are generally not
sufficient to state the purpose of a program; for exam ple, in the case of the gcd , we do not
ex pect the program to work for any x0 and Yo. but only for a restr ic ted class. We ex press the
class of “legal inputs ” of a program by an input assertion. For the subtract ive gcd algorithm
(Program A). the input assertion is

x0 � 0 and Yo � 0 and (x 0 - 0 or Yo 0) .

We require that at least one of t he inputs be nonzero , because otherwise the gcd does not exist.
We do not state ex plicitl y that the inputs are integers , but we will assume throughout this paper
th a t variables always assume inte g er values.

We have ex pressed the specifications for Program A as a pair of inp u t—ou tput assert ions. Our
task now is to show that if we execute Program A on any input satisfying the input assertion ,
the program will halt with output satisfying the out put assertion. If so, we say that Program A
is total / .~ c o r rec t It is s omet imes conven ient , however , to sp lit the task of proving total
correctness of a program into two separate subtask s showing part ial correctness , that the
out put a s s e r t ion is sa t i s f i ed for any legal input if the program halts; and showing termination ,
that the program does indeed halt for all legal inputs.

The language in which we write the assertions Is different from the programming language
itself. Because the statements of this assertion language are never executed , It ma y contain
much higher level constructs than the programming language. For instance , we have found the
cet constructor {u : . . . } useful in describing the purpose of Program A , even though this
notat ion is not a construct of conventional programming languages. Written in such a high—
level language, the assertions are far more concise and naturall y expressed than the program
itself.

6

. , - .-
~~~~~~~~~~~~~~~~

. .
~~-~~~~~~~~ -- - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Manna & Waldinger The Logic of Computer Programming

It wil l be convenient for uc to ignore the problem of termination for a while and deal only with
pa r t i a l  correctness. In proving partial correctness , it helps to know more about the program
t han j ust the input—output assertions. Af ter  all , these assertions only tell us what the program
is expected to achieve and give us no information on how it is to reach these goals. For
instance , in understanding Program A , it is helpful to know that whe never control passes
through the label more , t he greatest common divisor of x and y is intended to be the same as
the g reatest common divisor of the inputs r0 arid Yo , even t hough x and y themselves may
have chan ged. Because this relationsh iu is not stated exp licit ly in either the input—output
assertions or t he program itself , we inc lucie it in the program as an intermediate assertion ,
exp”essed in the assertion language:

uix and u~~ = max { u : nix 0 and ulyo}

Another intermediate asserti on states that whenever we pass through more , t he program
var i a b les, x and y 

, 
obey the same restrictions as the input values x0 and y~ , I.e. ,

x � O a n d y � O a n d (x 0or y o ) .

~V r rewr i te  Program A below , annotate d with its assertions (within braces , “{ . . . } “). Note that
the asse rt ions are not intended to be executed , but are mere ly comments expressing relationships
that we ex pect to hold whenever control passes through the corresponding points.

Program A (annotated):
input(x 0 Y~

)
{ x 0 � 0 a n d ~~0 � 0 and (x0 w Oor y0 w 0) }
(r y) ~- (x 0 Yo)

more: { r � O a n d y � O a n d ( r - O o r y - 0 )
and tnax {u : u~x and uly}  max{u k o and u~y 0}

if r - 0 t h e n  goto enough
I f y ? x  then y~~ y— x elso (r y) e- (y x)
goto more

enou g h: { y - man y : uIx 0 and uty o} I
output(y)

Our goal is to prove that if the program is executed with input satisf ying the input assertion ,
and if the program haI rs . then the output assertion will hold wh~ i the program reaches enoug h.

For tl i ts purpose , we will show that t he intermed iate assertion i s  true whenever control passes
th roug h m o r e;  in ot her words , it is invar ia nt  at more. 1 he proof is by mathematical induction on
the number of times we reach more. That is, we wil l start by showing that if the input assertion
is true when we begin execution , the intermediate assertion will be true the first time we reach

‘7



—. fl _ _..—-_ ‘. —- - ,~~

Manna & Wald inger The Logic of Computer Programm ing

mo r e , we will then show that If the intermediate assertion holds when we pass through more ,
then it will be true again if we travel around the loop and return to more; therefore , it must be
true every time we pass through more.

Finally, we will show that If t he intermediate assertion holds at more , and if control happens to
pass to enough , then t he output assertion will be true. This will establish the partial correctness
of the program with respect to the given input and output assertions.

Let us first assume that the input assertion Is true when we begin execution , and show that the
intermediate assertion holds the first time we reach more. In ..‘ther words, if

� 0 and Yo � 0 and (r0 — 0 or Yo 0),

and we execute t he assignment

(x y)  
~
- (r 0 y0)

t hen
and ~~~0 and (x — O o r y w  0)

and ~‘:ax ~u : ulx and u~y} — mar{u : uIx 0 and ulyo}

the new values of r and y

Beca use the assignment statement sets x to 
~ 

and y to y
~
, we are led to prove the verification

c~ndi ro n

(I) x0 � 0 and Yo � 0 and (x0 — 0 or Yo — 0)

~~> x0 � 0 and Yo � 0 and (x0 0 or Yo • 0)

and ‘nax {u ujx 0 and 
~b’o} - mar{u : uIr0 and uty o}

(Here the notation A -> B means that the antecedent A implies the consequent B.) The
cons equent was formed from the intermediate assertion by replacing x by r 0 and y by Yo

Next , as suming that the intermediate assertion is true at more and control passes around the
lOOf) , we need to show that the assertion will still be true for the new values of r and y when we
return to more. In other words , If the intermediate assertion

x � 0 a n d y~~0 and (x 0or y 0 )
and max{u : utx and 

~IyI - max{ u : uIx 0 and uIyo}

holds , i’ the exit text x = 0 is false (i.e., x — 0) and if the conditional statement8



-~~ -~~~~~~-~~~ ~~~~. . - -

Manna & Wald inger The Logic of Computer Programming

i t y > x t h e n y + - y—r else (x y) 4- (y x)

is executed , then the intermediate assertion will again be true. To establish this, we distinguish
between two cases. If y 2 , the assignment statement , ~- y—x is executed, and we therefore
must prove the verification condition

(2) x � 0a n d y �0an d (x~~ Oor y O)
and max(u ugx and u~y} - maxlu : u~x0 and u~0) .
and x~ 0
and y � x
-> x � 0 and y—x ~ 0 and (x • 0 or y—x • 0)

and max{u : u~x and u~ —x} - max{u : u~x0 and ut’,0) .

The antecedent is composed of the intermediate assertion and the tests for traversing this path
around the loop. The consequent was formed from the intermediate assertion by replacing y by
y —n

In the alternate case, in whic h y < x, the consequent is formed by interchanging the values of x
and y. The corresponding verification condition is

(~~~) 
x �0 a n d y � 0a n d (x~ 0or y~ 0)
and mar{ u utx and u~y } - max{u : u~x0 and uIyo}
and x - 0
and y < x

~> y � 0 ~ r rdx�0 and (y ø 0 o r x s 0 )
and max{u : ut’tr and ulx } - max{u : uIr 0 and u~~}

To complete the proof we must also show that if the intermediate assertion holds at more and
control passes to enough , then the output assertion will hold. For this path, we need to establish
the verification condition

(4) x � 0 a n d y �0and ( r — 0 o r y ’~ 0)
and mar{u : ulx and u~y} - max{u : U~X0 and ut,o)
a n d x - 0
->  y - mar{u uix 0 and u~0}.

T hese verification conditions are lengthy formulas , but it is not difficult to prove that they are
all true Conditions (I) and (S) are logical identities, which can be proved without any
knowled ge of the Integers. The proofs of Conditions (2) and (4) depend on three properties of
the Integers :

9

_ _



~~~~~-~~--- -—~~~~~- —--~~~~
.- . - - -

Manna & Waldinger
.

The Logic of Computer Program mIng

(a) ulx and ub, => u~x and ub,—x

(the common divisors of x and y—x are the same as those of x and y),

(b) uIO

(any integer divides zero), and

(c) max{u : uIy)~~y i f y > 0

(an y positive integer is its own greatest divisor),

To prove Property (a), assume ulx and uj y . Then, we must show that ub,—x
as well. We know that ~-k. u and y - l .u , for some integers h and I . But
then y —x - (I—k) . u, and hence ub,—x , as we wanted to show. Similarly, if ufr
and uty —x , then r = m.u and y—x - n.u for some integers m and n . But
then y = x+(y—x) — (m +n) . u, and hence Ut, .

To prove Condition (2). let us consider the consequents one by one. That x�0, y—x �0, and (x~ 0
or y—x v 0) are true follows directly from the antecedents ,~ 0, yax and x~ 0, respectively. That

max{u : ulx and ut,—x) - max{u : uJx 0 and 14yo}

follows from the antecedent

max{u : u~x and ub,) - max{u uIx 0 and ub,o}

and Property (a).

To prove Condition (4), first observe that the antecedents imply

y>0 ,

becaus e x=0 and (x~ 0 or y~ O) imply y~ 0 , but y.O and y�0 imply y>O . Now , since x — 0
app lying Property (b) to

rnax{u : ulx and uty} - max{ u : ulx o and ut,0)

yields , .

,nar {u uly) - max(u : ujx 0 and ub,0) .

Because y>O , applying Property (c) yields

l0

- -~ ---

Manna & Waldinger The Logic of Computer ProgrammIng

- mar{u : u~x0 and ut,~} ,

the consequent of Condition (4).

This concludes the proof of the partial correctness of Program A. Note again that we have not
proved the termination of the program: we have proved merely that if it does terminate then
the output assertion is satisfied. A similar proof can be applied to Program A ’ (the program
formed from Program A by replacing the statement (x y) ~

(y x) by r ~- r—y), even though that
program may loop indefinitely for some legal inputs. Program A ’ is partially correct , though
not totall y correct , because it does compute the gcd of those inputs for which it happens to halt.

The proof of the partial correctness of Program A involved reasoning about four loop-free
program paths: one path from the input assertion to the intermediate assertion , two paths from
the intermediate assertion around the loop and back to the intermediate assertion , and one path
from the intermediate assertion to the out put assert ion. Had we not Introduced the
intermediate assertion , we would have had to reason about an infinite number of possible
program paths between the input assertion and the output assertion corresponding to the
indefinite number of times the loop might be executed . Thus, the intermediate assertion is
essential for this proof method to succeed .

Although a program’s assertions may become true or false dependIng on the location of control
in the program, the verificat ion conditions are mathematical statements whose truth Is
independent of the execution of the program. Given the appropriate assertions , if the program
is partially correct , then all the verification conditions will be true; inversely, if the program is
not partially correct , at least one of the verification conditions will be false. We have thus
transformed the problem of proving the partial correctness of programs to the problem of
proving the truth of several mathematical theorems.

The verification of a program with respect to given input-output assertions consists of three
phases: finding appropriate intermediate assertions , generating the corresponding verification
conditions , and proving that the verification conditions are true. Although generating the
verification conditions is a simple mechanical task , finding the Intermediate assertions requires
a deep understanding of the principles behind the programs, and proving the verification
conditions may demand ingenuity and mathematical facility. Also , a knowledge of the subject
domain of the program (e.g., the properties of integers or the laws of physics) is required both
for finding the intermediate assertions and proving the verification condItIons.

One way to apply the above technique is to generate and prove verifiation conditions by hand.
However , in performing such a process we are subject to the same kinds of errors that
programmers commit when they construct a program in the first place. An alternate possibility
is to generate and prove the verification conditions automaticall y, by means of a verification

I I

Manna & Wald inger The Log ic of Computer Programming

system. Ty pically, such a system consists of a verification condition generator , which produces
t he verification conditions, and a theorem prover , w hich attempts to prove them.

Invariant assertions were introduced by Floyd [1967] to prove partial
correc tness of programs , although some traces of the idea appear earlier in
the litera ture. King [1969] implemented the first system that used invariant
assertions to prove the partial correctness of programs. Given a program , its
input-output assertions, and a se t of proposed intermediate asser tions, King’s
system generated the verification conditions and attempted to prove them .
Some later systems (such as those of Deutsch [1973), Elspas , Levitt , and
Waldinger [1973] , Good, London, and Bledsoe [1975), Igarashi , London, and
Luckhani [1975], and Suzuki [1975]) adopted the same basic approach but
e m p loyed more powerful theorem provers to prove the ver i f icat ion conditions.
Ther e fore , they were able to prove the partial correctness of a wider class of
programs.

Althoug h the above systems have advanced somewha t beyond King ’s original
effo r t , they have two princi pal shortcomings. They require that the user
supp ly an appropr iate set of intermediate assertions , and their theorem
p r c . e r s are not powerful enough to prove the verif ication conditions for most
of the prog rani ’~ that arise in practice. Let us consider each of these
dif f icul t ies separatel y.

• finding lf l V i i ? U l f l t assertion s . Al though the invariant assertions required to
per for m , the ver i f icat ion are guaranteed to exist , to find them one must
rind”r sl md the program thoroug hly. Furthermore , even if we can discover
the program ’s pr incipal invariants (e.g., max tu : U~r and ut,} - max{u : u~xo
and ri [v0} above) we are likely to omit some subsidiary invariants (e.g., y�0
above) that are chIt necessary to comp lete the proof .

Of course , it would be ideal for the programmer to supp ly only the program
and its input-output assertions and to rely on the verification system to
construct alt the required intermediate assertions automaticall y. Much
research in thi~. d irect ion has already been done Isee , for example , German
and Wegbre rt [1975] and Katz and Manna [1976].) However , it is more difficult
for a computer system to find the appropriate assertions than for the
programmer to provide them, because the principles behind a program may
not be readil y revealed by the program ’s instructions. A less ambitious goal
is to require the programmer to supply the princi pal invariants and expec t the
system to fill in the remaining subsidiary assertions.

• provin g veri f ication conditions. Verification conditions may be complex
f ormulas , but they are rarel y subtle mathematical theorems. Current
verification systems can be auite effective if they ire given strategie s

12

— - - -- - - - ., . - - - -.

Manna & Wald inger The Logic of Computer Progra mming

specificall y tailored to the subject domain of the program. However , the
programs we use in everyday life rel y on a large and varied body of subject
knowledge , and it is unusual that a system can verif y a program in a new
subject domain without needing to be extended or adapted in some way (cf.
Waldinger and Levitt [1974]). Of course , some of this difficulty may be
remedied by future theorem proving research and by the development of
interactive verif ication systems.

The invariant assert ions that we attach to intermediate points to prove partial correctness relate
the values of t he program variables at the intermediate points to their initial values. For
instance , in Program A we asserted that

r � 0 a n d y ? 0 and (~~ 0or y~~0)
and max [u u~x and ut,} max{u : ul.~0 and ut,0)

at t he label more. A more recent method , the sub goal—assertion method, employs subgoal
a;se1tions that relate the intermediate values of the program variables with their ultimate
valu es when the program halts , For Program A the subgoal assertion at more would be

x ? 0 an d y ~ 0 and (r w 0 o r y � O) ..‘ > y
~
- mar{u : u~x and Ut,),

where y~ deno tes the final value of y at termination. This assertion expresses that whenever
contro l passes through more with acceptable values for r and y , the gcd of the current values of

~ arid y will be the ultimate value of y.

We prove this relationship by induction on t he number of times we have yet to traverse the
loop before the program terminates. Whereas the induction for the invariant-assertion method
fo llows the direction of the computation , the induction for the subgoal—assertion method
prOceeds in the opposite direction. Thus , we fir st show that the subgoal assertion holds the last
tinw contro l r asses t hrough more

,
when we are about to leave the loop. We then show that if

the subgoa l assertion holds at more after traversin g the loop, t hen it also holds before traversing
the loop This implies that the subgoal assertion holds every time control passes through more.
Finally, we show that if t he subgoal assertion is true the first time control passes through more ,
the desired out put assertion holds.

To apply this method to prove the partial correctness of Program A , we need to prove the
following verification conditions:

(I) x — 0
[x > O and y � O and (x • Oo r y - O) -> y - max{ u : ulx and ut,))

(the subgoal assertion holds when we are about to leave the loop).

l~

-~ . .-~ -‘ . -~ —, -- .- - .--
_

~~~~ .
_ - - -  ~~~~~~~~~~~~~~~~~~

Manna & Waldin ger The Logic of Computer Programm ing

(2) [ x � O a n d y — x �Oand (x - Oor y—x - 0 )  -> yq - max{ ulx and ut,—x} ]
and ~ - 0
and y � x
-> ( x  ~ 0 and y ~ 0 and (x • 0 or y - 0) —> y~ — mar{u ulx and ut,J )

(the subgoal assertion after traversing the then path of the loop
implies the subgoal assertion before traversing the path).

(3) [y �  0 and r � 0 and (y — 0 or x - 0) •> y1 - mar{ u : ut, and u~x}
and x v 0
and y r
-> E x 2 0 and y � 0 and (r - 0 or y - 0) -> y~ - mar{u : ulx and ut,} )

(the subgoal assertion after traversing the else path of the loop
implies the subgoal assertion before traversing the path).

(4) x0 � 0 and Yo 2 0 and (r0 — 0 or Yo - 0)
a n d [ x 0 > O a n d y0 � O a n d (x0 - 0o r y0~ 0) - yr - mar{ ulx o and ut,o } )

- nra~{u u~x0 and ut,o)

(t he input assertion and the subgoal assertion the first time we enter
the loop imply the output assertion).

E ach of thes e conditions can be easil y proved . Conditions (I), (2), and (3) establish that our
intermediat e assert ion is indeed a subgoal assertion. Thus, whenever control reaches more the
assertion holds for the current va lues of the program variables x and y and the ultimate value
yf of y Condition (1) then ensures that the truth of the subgoal assertion the first time we
reac h nzore is enough to establish the desired output assertion. Together , these conditions prove
the partia l cor rectness of Program A.

From a theoretical point of view , the invariant-assertion method and the subgoal—assertion
method are equivalent in power . in that a proof of partial correctness by either of the methods
can immediatel y be rephrased as an rquivalent proof by the other method. In practice ,
however , for a given program the subgoal assertion may be simpler than the invariant
assertion , or vice versa. It is also quite possible to apply both method s together in verifying a
single program. Thus, the two method s may be regarded as complementar y.

The subgoal-assertion method was suggested by Manna [1971] and developed
by Morris and Wegb reit [1977] .

in demonstrating the partial correctness of Program A , we employed rigorous but Informal

II

_ _ _ __ _ _ _



Manna & Waldin ger The Logic of Com puter Programming

niatheniatical arguments. It is possible to formalize these arguments In a deductive system,

muc h in the same way that logicians formalize ordinary mathematical reasoning. To introduce
an i nva r ian t  deductive system for the invariant—assertion approach, we use the notation

{P) F ~i’ •)t

whe re P and Q !s and F is a program segment (a sequence of program
Instruction s), to mea Is before executing F, and if the execution terminates , then
(.~~ will hold afte rw r~ . . . ‘ an ex pression of this form an invariant statement. For
in st ance ,

{x < y}  (x y) .- (y ~ .) {y < r )

is a t rue invariant statement , because if the value of r is less than the value of y before
inter chan ging those values , the value of y will be less than the value of x afterwards.

Using t h uis notation , w e can express the partial correctness of a program with respect to its input
and output assertions by the invariant statement

input assertion ) program {output assertion)

This statement means that if the input assertion holds, and if the program terminates, then the
out put assertion will hold; therefore , it adequate ly states the partial correctness of our program.

To prove such invariant statements we have a number of rules of Inference, which express that
to inler a given invarIant statement it suffices to prove several subgoals. These rules are
usu all y presented in the form 

A~

B

meanin g that to infer the consequent B it suffices to prove the antecedents A 
~
, A 2 

I lere B is an invariant statement , and each of A 1, A 2, ..., A 1~ is either a logical statement or

anot her invariant statement. We have one rule corres ponding to each statement in our
language.

• assignment rule. Corresponding to the assignment statement

(x 1 x 2 . . . x~) ~- (t 1 2 . ta),

which assigns the value of each term t to its respective variable x1 simultaneously, is

15



Manna & Wald inger The Logic of Com puter Programming

l’(r i X 2 . . . X~~) — >  Q(t , t 2 . . . t ,~)

{ P(x 1 x2 . . . x ~)} (r i x2 . . . x n ) 4 -  (t 1 (2 . . . t~ ) {o~x i x2 ... x~)},

w here P(x~ x2 . . . x~ ) and Q~(x 1 x2 . . . x,~) are arbit rary logical statements , and

Q~t i ~2 ‘ . t~) is t he result of simultaneously substituting t~ for x~ w herever It appea rs in

Q(X 1 X 2 n~ 
In other words , to infer the invariant statement

{ P(x 1 x2 . . . x 1~)} (x 1 x2 . . . x 1~) ~- (t~ t 2 . . .  t ,~) (Q.~~i ~2 . x,~) },

it suffices to prove the logical statement

P(r 1 r 2 . x~~) — >  °~~i ~2

For example, to prove the invariant statement {x y } (r y) .- (y r )  [y � x} it is enough to
prove  r <y  => x S y .

This rule is valid because each x~ has been assigned the value t~ by the assignment statement.

T h u s , Q(r 1 ~2 . r~) will hold after the assignment if ~~~ t 2 . ~
) held before. Because we

a t e  assuming P(r 1 X 2 . .  . X~~) held before the assignment . it is enough to show

- - x,~) — >  Q~t I t a ).

• c~”dt t i onal  r u/ c .  The rule for the statement “if R then  F 1 else F 2” is

(P and R) F 1 {Qj. (P and -.R) F2 (Q)
{P} if R then F 1 else F2 {QJ

That is , to establish the consequent it suffices to prove the two antecedents (P and R} F i {QJ.
corresponding to the case that R is true, and (P and — R} F2 {QJ, corres ponding to the case that

R is false.

To treat loops in this notation it is convenient to use the while statem ent instead of the goto.
The statement

wh ite R do F

m ea ns t hat the program segment F is to be executed repeatedl y as long as the logical statement
R is true In other words , this statement is equivalent to the program segment

16

I, 



Manna & Waldinge r The Logi c of Computer Programming

more: If not R then goto enough
F
goto more

enoug h:

The mor e concise structure of the while statement simplifies the formulation of its rule.

• while rule. Corresponding to the while statement we have the rule

P ~~ > I, (I and R} F (I), I and —R = >  Q
{P} while R do F {QJ

for any I. Here , I plays the same rote as the invariant assertion in our informal proof; the
condition “P —> I” states that the invariant I is true when we enter the loop; the condition
“(I arid R) F (I) ” conveys that If I is true before executing the loop body F, and If the execution
ot F terminates , I will be true afterwards; then the condition “I and -.R —> Q,,’ ensures that if
control ever exits from the loop, then Qwill be true.

To apply the while rule to infer the desired consequent , we need to find a logical statement I
sa tisf ying the three antecedents.

• concatenat ion rule. This rule enables us to make inferences about the concatenation F 1 F2 of
two program segments, F~ and F2:

(P) F 1 {R}, (R} F2{QJ

{P} F , F2 {OJ

for any R. The consequent follows from the antecedents. For suppose that P holds before
executing F 1 F2, and that the execution terminates. Then R holds after executin g F1 (by the
first antecedent), and therefore Qholds after executing F2 (by the second antec edent).

These are all the rules in our deductive system. Additional rules are necessary if we wish to
add new statements to our programming language.

To prove an invariant statement (P F (QJ’ we apply the appropriate inference rule, of the
form

A i, A 2 A~

{PJ F {QJ

17 



Manna & Waldinger The Logic of Computer Programming

If A , is an invariant statement, then it is of form {P’) F’ {Q’}, where F’ Is a subsegment of F.

In this case, we repeat the process for this antecedent. On the other hand , if A~ i s a log ical
statement , we prove it directl y without using any of the rules of the invariant deductive system.
Eventua’ly, all the subgoals are reduced to logical statements , which are proved to be true.

To establish the partial correctness of a program with respect to given input—output assertions,
we prove the invariant statement

(input assertion) program (output assertion)

In this case, the logical statements produced in applying the above procedures are the program’s
ve~if ~cat ion conditions.

To show how this formalism applies to the partial correctness of the subtractive gcd algorithm
(Program A). we rewrite this program using a while sta tement instead of a goto:

Program A (with while statement):
input(r0 yo)
{ x 0 � 0 a n d y0 �0a nd (xo w 0 o r y0~~ 0) }
(x y~ - (x 0 yo)
while x - 0 do

{ i n r ’a r i a n t (x  y)
if y � x then  y .- y—x else (x y) ~ (y x)

= mf1~~(u  : uIx 0 and ut,o) I
output(y) ,

w he re ~~:‘~r,qnt(r y) is  taken to be the same invariant we used in our informal invariant—
asse rt ion proof , ie ,

~ 20 and y � 0 and (x~~0or y~~0)
and maxlu Uk and ut,) - max{u : u~x0 and ut,0) .

This program has the form

input(r0 yo)
{ x 0 ? O a n d y0 0 and (x0 .100r y0 0) }

Body A
y - mar lu : ulx o and ut,0)

output(y),

and the invariant statement to be proved is

18



---.-~~- - . -~~~~~~~ - ---

Manna & Wald inger The Logic of Computer Programming

Goal l .  { r 0 � 0 a n d y0 �0and (x 0~ Oo r yo ø0) }
Body A
{ y=max{ u : uj x 0 and u[y 0} }.

Note that Body A is a concatenation of an assignment statement and a whIle statement ; thus ,
the concatenation rule tells us that to establish Goal I it suffices to prove

Goal 2. r~ 2 0  and y~ � 0 and (xo�0or yo~~0)}  (x y) .- (xoy o) {  R(x y) )

arid

Goal 3. { R(r y)} while x~ 0 do . . .  { y - .mar{u : uJx 4, and ut,0) }

for some assertion .R(x y) . Here, R(x y) can be taken to be invariant(x y) itself. (If we make an
inappropriate choice for R(r y) , we may be unable to complete the proof.)

To infer Goal 2, it suffices by the assignment rule to prove the logical statement

Goat 4. x0 � 0 and Yo e 0 and (x0 w 0 or y~- ø  0) ~~ > in varian t(x 0 yo).

which is easily established , because inuar ian t(x 0 yo) is simp ly

? 0 and y0 0 and (x 0~ 0 or Yo 0)
and max{ u : u1x 0 and ut,~) - mar ~u : ulro and ut,~) .

The while rule reduces Goal 3 to the trivial logical statement

invar iant(x y) -~ invar iant(x y) ,

and t he two new subgoals

Goal 5. { inv ariant(x y) and x .0)  If y ~ x then  ... else . . .  ( invariant(x y ) )

and

Goal 6. invar ian r (x y) and x - 0 -> y - max~u : Uk0 and ut,0).

The  if—then—else rule reduces Coal S to

Goal 7. { inv ar i ant(x y) and x. 0 and y ~ x} y ~- y’-x { in variant(x y) }

and .

Goal 8. ( inva r ia n t(x y) and x .0 and y c r } (x y) .- (y x) { invar lan t (x y)  }.

19



- . . - --~~~~~~~~~~ —~~~ -~~ 

Manna & Waldinger The Logic of Computer Programming

A pp lyin g the assignment rule to each of these goals yields

Goal 9. in va r- i an t (x y) and x~ 0 and y � x —> invarian l (x y—x)

and 
.

Goal 10. inv a~ian t(r y) and x 0 and y < x -> invariant(y x).

Now t h e  remainin g Goa ls 6, 9, and 10, like Goal 4, are all logical statements; these are the four
ver i f ic a t ion conditions of Program A. Each of these statements can be shown to be true, and
the p artial correctness of Program A is thus established.

The above deduction can be summarized in the following “deduction tree”:

C 

Goal 1

tenat ion

C (oa 1 2 D Go~il  3 
D

~~~~ j • n r : (  ni w h i l e

Gozi I I ID C~~
0a 1 3

(
Goa l 6

i f — t h en — e l ~~(‘

C (~ . 1 7 Goa 1 8
ID

a ss ~ i gn rnen t a s s i g n m e n t

(~ i Gon 1 10 1)

20

Manna & Wald inger The Logic of Computer Programming

The above invariant deductive system is essentiall y the same as the one
introduced h’~ Hoare [1969].

W heiie .’er a new deductive system is developed , it is natural to ask whether it
po5sesses certain desirable logical proper ties. The deductive system we have
presented has been proved (Cook [19761) to have the following properties:

• soundness. If the verif ication conditions of a program are true , the
program is indeed partially correct.

• corn p ler ’ene ss . If the program is partiall y correct , its veri f icat ion conditions
ar e true.

We have presented the inference rules for only a very simple programming
language. Such rules have also been formulated for go(o ’s , procedures , and
other common programm ing fea tures (e.g., see Clint and Hoare [1972) and
A~.hc rof t , Clint , and Hoa’e [1976]) . However , when more comp lex features are
in t ro duced , finding sound and complete rules to describe them becomes a

~er roL i ~. chal lenge. It has actuall y been proven impossible to formulate
complete rules of inference for certa in programming constructs (Clarke
[1977]).

Part of the difficulty in formulating rules of inference fo r certain constructs
arises because , traditionall y, programming languages have been desi gned
without considering how programs using the ir constructs are to be verified. It
has been argued tha t programming languages desi gned to allow easier
veri f icat ion wil l also faci l i tate the construction of more comprehensible
pr ograms. Some recent programming languages designed wi th such
cons iderat ions in mind are LUCID (Ashcr of t and Wadge [I977}) , EUC LID
(Lampson et at . [1977]) , CLU (Liskov [1976]), and ALPI-i’ARD (WuIf , London, and
Shaw [1976]).

()ui ti eatment of part ial correctness has been rather idealized: our programming language
includes only the simplest of features , and the program we considered was quite
st raightforward. We have not discussed the more complex problems that occur in verifying the

inds of programs that actually arise in practice.

Let us briefl y mention a few of the trouble spOts in proving the correctnes s
of prac t ica l programs.

• corn p ute r ar i t/ r r ne f ic . We have assume d that the a rithmetic operat ions
performed by the computer correspond precisel y with the ideal opera tions of
thn mathematician; in fact , the computer is limited in the precision to which a
real number can be represented. Consequently, our notion of correctness

21

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _



-~~~-.. --~~~~~~
. -

Manna & Wald inger . The Log Ic of Computer Programming

should be modified to take into account that a computer program only
computes an approximation of the mathematical function it is intended to
compute (see , e.g., Hull, Enright , and Sedgwick [1972J).

• cleanness. A computer program may be incorrect not only because it fails
to sat is fy its output specification , but also because of mishaps that occur
during the com putation: it may generate a number larger or smaller than the
computer system can store (o verflow or underfiow), for instance , o it may
attempt to divide a number by zero or to find the square-root of a negative
number. ,it is possible to prove that a program is clean (i.e., that no such
accider f ’f can occur ) by establishing an appropriate invariant before each
pr ogram statement that mig ht cause offense (Sites [1974J) . For example 1
before a statement z ~ xl, we can introduce the assertions that y ~ 0 and
that E ~ Ix/yI ~ E , where € and E are the smallest and largest positive real
numbers , r~ spective ly, tha t the computer system can store.

• si de—effects. Many programming constructs have indirect side-effects:
their execution can alter the properties of entities not exp lici tl y mentioned by
the instructions themse lves. For instance , suppose our programming language
allows assi gnment to the elements of an array. Then the instruction A[iJ ~
which assigns I to t he ith element of an array A, can alter the value of A[j J if
it happens that i = j  , even t hough A[j] itself is not exp licitl y mentioned in
the instruction. To prove the correctness of programs employing such
constructs requires an altera tion of the principles outlined here. For example ,
one consequence of the assignment rule is the invariant statement

{ P } x . - t ( P } ,

where the variable x does not occur in P. If array assignments are admitted,
however , one instance of this sta tement is

{A [jJ~~ 5) A[i) f- 4 { A [ j )— 5 } .

Th is s tatement is false if I can equal j  . (For a discussion of such problems ,
see Oppen and Cook [1975J. )

• int er rn edi ~te be havior of p rog ra m s. We have formulated the correctness of
a program by providing an output assertion that is intended to be satisfied
when the program terminates. However , there are many programs that are
not expected to terminate , such as airline reservation systems , operating
sys tems , and conversa tional language processors. The correctness of these
pr ograms cannot be characterized by an output assertion (e.g., see Franc ez
and Pnueli [1975]). Moreover , cer tain properties of such programs are more
natura ll y expressed as a relation between events that occur while the
program is running. For instance , in specif y ing an operat ing system , we might

22

~

- - -

~

.--- —~~.-. —
~
--

~~~~~~~~~~~~~~
-
~~

~ -- — - --

Manna & Wald inger The LogIc of Computer Programming

want to state that if a job is submitted it will uttimatet y be executed. Even if
the operating system does terminate , this property cannot be expressed
conveniently as an output assertion. Similarly, in specif ying the security
propert y of a data base system, to ensure that a user cannot access or alter
any tile without the proper authorization, we are concerned with the
intermediate behavior of the system during execution, and not with any final
outcome.

• indeterminacy. Some programming languages have introduced control
features that allow the system to choose arbitrarily between several alternate
courses of action during execution. For examp le, the guarded command
construct (see Dijkstra [1975]) allows one to express a program that
computes the gcd of two positive integers as follows:

input (x 1, Yo)
(r y) ~- (r ~ Yo)
d o x > y -> x~- x — y
o x > y -> (x y)~~ (y x)
o y > x -> y - y - X

-

od

output(x) .

This denotes that if x > y, we can execute either X 4- x—y or (x y) ~- (y x),
while if y > x we must execute y r- y—x. The statemen ts within the do .,. od
construct are executed repeatedly until neither condition x > y or y > x
app lies, i.e. until x — y. (The terminator “od” of the constrw ’ is merel y “do”
backwards.) Although for a given input there are many ways of executing the
program, the ultimate output is always the gcd of the inputs. Extensions of
our proof methodology exist to prove the correctness of such programs.

• parallelism. We have only considered programs that are executed
sequentially by a single computer processor , but some programs are intended
to be executed by several processors it the same time. Many different parts
of such a program might be running simultaneousl y, and the various
processors may cooperate in producing the ultimate output. Because the
various processors may interact with each other during the computation, new
obstacles arise in proving the correctness of a parallel program. For example ,
it becomes desirable to show the absence of deadlock , a situation in which
two processors each halt and wait for the other to conclude some portion of
the task , thus preventing the completion of the program’s execution. To
prove the correctness of parallel programs requires special techniques; this is
currently an active research area (cf . Ashcrof t (1975), Hoare [1975), Owicki
and Gries [1976]).

23

- . . - - - - - - --— . - -
~~~~

. - -~~~~~--~~~ _ _



-.--~ - - ._ —~ - .  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Manna & Wald inger The Logic of Comp uter Programming

• ver y large programs. For the sake of clarity we have discussed only the
verifica tion of small programs , but in practice it is tne large and complex
sys tems that reall y require verification. As one would expect , the verification
of such programs is obstructed by the larger number and greater complexity
of the intermediate asser tions and verification conditions. Furthermore , the
specifications of a large sys tem are likely to be more difficult even to
f ormulate: one must detail all the situations a spacecraft guidance s~’s t em is
expected to handle, for instance , or all the error messages a compiler is
expec ted to produce. Finall y, in a larger system the specifications are likely
to be higher-level and more abstract , the discrepancy between the
specifications and the implementati on will be greater , and the verifica tion
conditions will be corresp ondingly more difficult to prove than we have found
so far .

It has been argued that such large programs cannot be verified unless they
are given a hierarchical structure that reduces their apparent complexity. A
hierarchicall y structured program will be decomposed into a few top-level
rio dules , each of which in turn will be decomposed into a few more detailed
modules a t a lower level, The veri f icaton of a module at a given level thus
involves only a few lower-level modules, each o f which may be regarded as a
primi tive instruct ion. Therefore , the program becomes understandable , ar,d its
verif ica tion manageable. (Examples of hierarchical decomposition are given, -

e.g., in Parnas [1972J and Robinson et al. [1975).)

One might hope that the above methods for proving the correctness of programs, suitabl y
extended and incorporated into verification systems , would enable us to guarantee that
programs are correct with absolute certa inty. In the balance of this section we will discuss
certain theoretical and philosophical limitations that will prevent this goal from ever being
reached. These limitations are inherent in the program verification process, and cannot be
surmounted by any technical innovations.

• We can never he sure that the speci fications are correct.

In verif ying a program the system assures us that the program satisfies the specifications we
have provided. It cannot determine , however , whether those specifications accurately reflect the
intentions of the programmer. The intentions, after all, exist only in the mind of the
programmer and are inaccessible to a program verification system. If he has made an error in
e’~pressing them, the system has no way of detecting the discrepancy.

For exam p le, in specifying a sort program one is likely to assert that the elements of the array
are to be in order w hen the program halts, but to neglect to assert that the array ’s final contents
are some permutation of its original contents. In this event, a program that n’ierely resets the
first element to I, the second to 2, and so on , may be verified as a correct s r t program .

2*

- -

~

. - . --

~

-

~

- - - . . -~~~ ~~~. - ~~~~
. ..-- -~~~~~~~ - . - . - . --

~~~
-- - -



Manna & Wald inger The LOgIC of Computer Programming

However , no system will ever be able to detect the missing portlor of the specification, because
It cannot read the mind of the programmer.

To some extent , these difficulties can be remedied by the use of a well—designed , high—level
asseit ion language. The programmer can ex press his intentions in such a language quite
naturall y, and with little chance of error , presumably because he thinks about his problem in
the same terms as he ex presses it.

• No verification syste m can verify every correct program.

For a system to verify a program, it must prove the appropriate verification conditions.
Ty picall y, these conditions are logical statements about the numbers or other data structures.
Any  c’~stem that attem pts to prove such statements is subject to certain theoretical limitations,
no mattei how powerful it may be. In particular , it is known to be impossible (as a consequence
of Godel’s Incompleteness Theorem) to construct a system capable of proving every true
st.~tement about the numbers. Consequently, for any verificatio n system there will be some
correct program that it cannot verify, even though its specifications are correct and complete.

This theoretical limitation does not preclude the construction of theorem provers useful for
program verification. A fter all, verification conditions are usually not deep mathematical
theorems , and it is entirely possible that a computer system will be develo ped that will be able
to verify all the programs that arise in practice. But no matter how powerful a verification
system may be, w hen it fails to verif y a program we can never rule out the possibility that the
failure is attributable to the weakness of its theorem prover , and not to an error In t he
program.

• We can never be certain that a verification system is correct.

When a program has been verified, we must have confidence in the verification system before
we believe that the program is really correct. However , a program verifier , like any large
system , is subject to bugs, w hich may enable it to verify incorrect programs. One might
suppose that bugs in a verification system could be avoided by allowing the verifier to verify
itself. Do not be fooled: If the system does contain bugs, the bugs themselves may cause the
program to be verif ied as correct. As an extreme case , a ver if ier with a bug that allowed It to
verify any program, correct or Incorrect , would certainly be able to verif y Itself.

This philosophical limitation does not imply that there is no use in developing verification
systems Even if the system has bugs itself, it may be usefu l In finding other bugs in computer
programs A large system (which presumably had some bug), written by a graduate student to
check mathematical proofs, was able to discover several errors in th~ Princip ia Mathematica of
Whit ehead and Russell , a classical source in mathemat ical logic; a slightly Incorrect program

25



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Manna & Waldinger The Logic of Computer Programming

verification system could be of comparable value. Moreover , once we have developed a
verification system we make It the focus of all our debugging efforts , instead of spreading our
attention over every program that we construct. in this way, although we can never hope to
ac hieve utter certainty that the system is correct , we can establis h Its correctness “beyond
reasonable doubt.”

Gerhart and Ye lowitz [1976) have presented a collection of programs whose
verifications were published in the literature but which contained bugs.
DeMitlo , Lipton, and Perlis [1977] advance a philosophical and “sociolog ical ”
argumen t against the utility of verif ying pr ograms. Dijkstra (1977) expresses
pessimism about constructing a useful automatic verifi cation system.

Crit ics of logical techniques for ensuring program correctness often
recommend the traditional approach to detecting bugs by pro gram testing . In
this approach , the program is actuall y executed on various inputs, and the
resul ting outputs are examined for some evidence of error. The sample
inputs are chosen with the i”tention of exercising all the program’s
c omporienls , so that any bug in the code will be revealed; however , subtle
bugs of ten escape the most thorough testing process. Some bugs may escape
because they occur only upon some legal input confi guration that was not
anticipa ted , and therefore not tried , by the programmer. Other bugs may
actual l y occur during a test execution but escape observation because of
human carek’ssness . These problems are discussed in a specia l section of the
IEEE Tuin sact io ns on Software En gineerin g, September 1976.

Some e f fo r ts have been made to apply log ical techni ques to systematize the
testing process. For instance , the SEL ECT system (Boyer , Elspas , and Levitt
[19~5]) at tempts to construct a sample input that will force a given path of
the program to be executed. The EFFIGY system (King [1976)) executes the
program on symbolic inputs rather than concrete numerical quantities , thereby
testing the program for an entire class of concrete inputs at once.

The techni ques we have given in this section establish the partial correctness of a computer
piogram but not Its termination. We now turn our attention to techniques for proving the
termination of programs

26


~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~ .- -

Manna & Wald inger The Logic of Comp uter Programming

Ill . TermInat ion

Proving the termination of programs can be as difficult as proving partial correctness. For
instance, consider the following program:

input (x)
w h ile x - I do

if even (r) then x .- 42 else x +- ~x + I
output(x) .

Th is program is known to term inate for eve ty posit ive integer less than ~~. 108. However , for
over a decade no researcher has succeeded in proving its ter mination for every positive integer ,

• nor in producing a positive integer for which it fa ils to terminate. Resolution of this question
could depend on some deep unknown property of t h e  integers.

Let us examine the subtractive gccl algorithm (Program A ) again to see informally wh y we
believe it terminates for every input satisfying the input assertion.

input (x 0 Yo )

{ x 0~~ 0 and y0 �0and (xo .~ 0or y0~~ 0) }

(x y)~- ( x 0y 0 )
more: ( x ? O a n d y ? O a n d (x O Or y O)

and max 3iz : ujr and u~y} rnax {u : uIx o and uLy o}
If x - 0 then goto enou gh

If y ?  x then  y ~
.- y —x else (x y) ~

.. (y x)
goto m o ! e’

enou gh: { y rnax { u : u~x0 and ujy 0)
out put(y).

Note that in showing the partial corre ctness of this program we have established as invariant
that x and y will always be nonnegative at more. Now , observe that every time we go around
t he 1001), eit her x is reduced , or x is held fixed and y is reduced. First , x is reduced if x and y
are interchan ged, because ~ is less than r in this case. On the other hand, if y is set to y—x ,

then r is held fixed and y is reduced , because x is positive when this assignment is executed.
The crux of the argument lies in observing that we cannot forever continue reducing x, or
holding x fixed and reducing y, wit hout eventually making one of them negatIve, contradicting
t h e  invariant.

To make this argument more rigorous, we introduce the notion of the lexico graphic ordering >‘
on pa i rs of nonnegati ve inte gers . We will say that

(x , yi ) > (x 2 y2),

27 

-- .- .-—
~~~~~~~~~~~~ -~~~~~ 

~~~~~~~~~~~~~~~



~

Manna & Waldinger . The Logic of Comput er Programming

i.e., (X i yi) is greater than (x 2 y2) under the lexicographic ordering, if

>

or x 1 r2 and Yi > Y2

(Thus (2 2) > (I 100) and (I I) > (I 3).) The set of pairs of nonnegative integers has the
special property that there exist no infinite decreasing sequences under this ordering; i.e., there
are no sequences sucti t hat

(x 1 Yi )  > (x 2 y 2) > (x 3 y 3) >

Proof: Suppose that (x ! y I ) ,  (x 2 Y2)’ (x 3 y 3), . . .  is an infinite decreasing
sequence of pairs of nonnegative integers. The definition of the
lexicograp hic ordering then requires that x 1 � x 2 � x3 � .. .  , but because
t he nonnegative integers themselves admit no infinite decreasing sequences ,
there must exist some n such that x~ = rn,i x~,2 = . . . .  (Otherwise we
could extract an infinite decreasin g subsequence from x 1, x2, x3 
The definition of lexicographic ordering, again, implies that then y,~ > Y~.I
> Yn ,2 > . . . ,  which violates the same property of the nonnegative integers.

In general , if a set is ordered in such a way that there exist no infinite decreasing sequences, we
say rh~t the set is a ive1I— fourzde~i set , and the ordering a well—founded orderin g. Thus, the
lexicog rap hic ordering is a well-founded ordering on the set of pa irs of nonnegative integers , as
we showed above.

The nonnegative integers themselves are well-founded under the usual > ordering. However ,
the t e exist other well-founded orderings over the nonnegative integers. For example, the
ordering defined so that x > y if y prope rly divides x , i.e.,

y lx and y -

is a well-founded ordering.

The we ll-founded set concept allows us to formulate a more rigorous proof of the termination
of Program A.  To construct such a proof, we must find a set W with a well-founded ordering
>. and a termination expression E(r y), suc h that .w henever control passes through the label
more , the value of E(x y) belongs to W , and such that every time control passes around the loop,
the value of E(x y) is reduced under the ordering >. This wil l establish the termination of the
pr ogi am, because if there were an infinite computation, control would pass through more an
infinite number of times; the corresponding sequence of values of E(x y) would constitute an
infinite decreasin g sequence of elements of W , contradicting the well-foundedness of the set.

28 

~~-. . -—- —-~~~-- --- - - -~~~~~ . .~~~— — ..- 



-- - ~~~~~~~~~~~~~~~~~~~~ 
.-

~~ - ~~~~~
-

M a n n a  & W alding s r The Logic of Computer Programming

To formulate such a termination proof for Program A , we must prove the following three
termination conditions for some Invariant assertion lnvarianl (x y) at more:

(1) invaria nt(x y) — >  E(x y) € W

(the value of the ex pression belongs to W when control passes through
more)

(2) inv a r ia nt (x v) and x- 0 and y > x => F(x y) > E(r y — x)

(the value of the expression is reduced if control passes through the
then branch of the hoop), and

(3) in var ia n t (x y) and x 0 and y < r =‘  E(x y) > E(y x)

(the value of the expression Is reduced if control passes through the
else branch of the loop).

Because the invariant will be true every time control passes through more , the above conditions
c u f f  ice to establish termination.

Perhaps the most straig htforward way to construct such a termination proof for Program A Is
to fo llow our informal demonstrat ion and to take W to be the set of pairs of nonnegative
Iii~r~~ i s , > to be the lexicograp hic ordering, arid E(x y) to be the pair (x y) itself. The Invariant
a cc ~,tinn i n i ’a i i an t (x  y) can simp ly be taken to be x 2 0 and y 2 0. The termination conditions
ar e then

(I) x > 0 and y 2 0 (x y ) E {pairs of nonnegative integers),

(2~ x ? 0 and y � 0 and x~ 0 and y � r => (x y) > (r y—x ), and

(3) x~~0 and y � O a n d x 0 a n d y < x  -, (x y) ) ’ (y x) .

We have alread y indicated in our informal argument the justification for these conditions.

A trickier termination proof may be constructed by taking W to be the nonnegative Integers, )
to be the usual > ordering, and E(x y) to be the expression 2x + y. The termination conditions
are t hen

( I) x � 0 and y ~ 0 —> 2x + y e  (the nonnegative integers) ,

(2) x~~0 and y ? 0 a n d x �0 a n d y �x  -> 2 x + y > 2 x + ( y — x ) ,and

29 

- — . . ---- -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Manna & Waldinger The Logi c of Computer Programming

(3) x � 0 a n d y � O a n d x~’0and y < x ~~~> 2 x + y > 2 y + x .

These conditions can also be easily established. -

The above description illustrates how to prove the termination of a program with only a single
loop. If we want to apply the well-founded ordering method to show the termination of a
p1 ogi aiii with several loops, we must designate a particular loop label within each of the
program’s loops. We choose a single well-founded set and with each designated loop label we
associate an ex pression whose value belongs to the well-founded set. These expressions must
ne chosen so t hat each time control passes from one designated ioop label to another , the value
of the expression corresponding to the second label is smaller than the value of the expression
corresponding to the first label. Here, ~smalier ” means with respect to the ordering of the
chosen well-founded set. This method establishes the termination of the program, because if
there were an infinite computation of the program, control would pass through an infinite
se quence of designated labels; the corresponding sequence of values of the expressions would
co nst it ut e an infinite decreasing sequence of elements of the well—founded set , contradicting the
wel l- - fot indedness of the set , as in t he one—loop case.

The well—founded set approach introduces machinery to prove termination completely different
f rom that required to prove partial correctness. There Is an alternate approach which extends
the invariant-assert ion method to prove termination as well as partial correctness. In this

we alter the program , associating with each loop a new variable called a counter. The
counter is initia lized to 0 before entering the loop and incremented by I within the loop body.
We must a lso supply a new intermed iate assertion at a point inside the loop, ex pressing that the
corresponding counter does not exceed some fixed bound. In proving that the new assertion is
invar ian t , we show that the number of times the loop can be executed Is bounded. (If for some
reason control never passes through the assertion , the number of times the loop can be executed
is certain ly bounded - by zero.) Once we have proved that each loop of the program can only
be executed a finite number of times , the program’s termination is established.

For instance , to prove that our subtractive gcd algorithm (Program A) terminates , we introduce
a counter i , and establish that the assertion

i � 2x 0 + Yo

is invariant at more. To show this , it is actually necessary to prove the stronger assertion

x 2 o a n d y � 0 and 2 x + y + i~~2x0 +y0

is iuiva r iant at more. (The stronger assertion implies the weaker because if x � 0 and y � 0 then
2x + y ? 0.)

- 30



Manna & Waldinger The Logic of Computer Programming

A tign’iented with the counter I and the new intermediate assertion, Program A appears as
follows:

Program A (with counter):
input(r0 y 0)
(x 0 > 0 and Yo ~ 0 and (r0~ 0 or y0 w 0))
(r y)  (x0 Yo)

more: ( x 2 o a n d y �O a n d 2 r + y + i � 2 x 0 +y0 }
if x = 0 then goto enough
if y >  x then  y ~- y—x else (x y) 

~
- (y x)

i 4-

goto more
enoug h: output (y).

The new asser tion is clearly true at more initially; it remains true after each execution of the
loop bod y, because eac h execution reduces the quantity 2x + y by at least I, and i is increased
by only I.

The counter method yields more information than the well-founded set method, because it
enables us to establish a bound on the number of times each loop is executed and, hence, on
the running time of the program, w hile termination is being proved. By the same token,
however , the counter met hod is more difficult to apply, because it requires that suitable bounds
be known , and we often can prove that a program terminates without knowing such bounds.

Well-founded sets wer e first used to prove t he termination of programs by
Floyd [1967J, in the same paper in which he introduced the invariant-
assertion method. The alternate approach1 using counters , was suggested by
Knuth [1968). The program verifier of Luckham and Suzuki [1977) proves
lermination by this method.

31

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Manna & Wahli nger The Logic of Computer Programming

IV . Well-founded Induct ion

The well-founded sets that we have used to prove termination actuall y have a much broader
domain of app lication; they can serve as the basis for a proof by mathematical induction using
the following principle of well—founded induction:

Let W be a set with well-founded ordering >
To prove P(w) holds for every element w of W ,

consider an arbitrary element w of W and prove that
P (w) holds under the assumption that
P(w ’) holds for every element w ’ of W such that w > w ’.

in other words, in attempting to prove that every element of a well—founded set has a certain
property, we can choose an arbitrar y element w of the set , assume as our Induction hyp othesis
t hat every element less than w (in the well—founded ordering) has the property, and prove that
w has the property too. (In the special case that no element of W is less than w , the inductive
assum ption does not tell us anything, and is therefore of no help in proving that w has the
prope; ty.)

For example , suppose we want to show that every integer greater than or equal to 2 can be
expi-essed as a product of prime numbers. We can use the principle of well—founded Induction,
ta king W to be the set of integers greater than or equal to 2, and > to be the ordinary “greater—
than ” ordering, which is a well-founded ordering of W. Thus, to prove the desired property,
we let w be any element of W , and show that w can be expressed as a product of prIme
numbers using the induction hypothesis that every element of W less than w can be expressed
as a product of prime numbers. The proof distinguishes between two cases: if w is a prime,
the property holds, because the product of the single prime w is w itself. On the other hand, If
ri’ is not a prime , it is the product of two integers w 1 and w 2, each smaller than w and greater
than or equal to 2. Because w 1 and w2 are each members of W less than w under the ordering
> , our induction hypothesis implies that each of them is a product of primes, and hence w Is
also a product of primes. We then conclude by well-founded induction that every member of
W can be expressed as a product of primes. (Alternatively, we could prove the same property
taking the well-founded ordering x > y to be the properly—divides relation defined earlier, I.e.,
y lx and y r. Clearly, if w is the product of w 1 and w2, then w > cr’ 1 and w >‘ w 2 under this
ordering.)

The validit y of the principle of well-founded induction is a direct consequence
of the definition of a well-founded set. For, suppose we have used the
induction hypothesis to prove that P(w) holds for an arbitrary w, but that
there actuall y exists some element w 1 of W such that -‘P( w 1 ). Then for some
element w 2 such that w 1 > w2, — P(w 2) holds as well; otherwise , our proof

32



Manna & Wald inger The Logic of Com puter Programming

using the induction hypothesis would allow us to conclude P(w 1 ), contrary to

our supposition. The same reasoning applied to w 2 implies the existence of

an element w3 such that w2 > w3 and - ‘P(w3), and so on. In this way we can

construct an infinite descending sequence of elements w 1, w2, w3, . . . of

W, such t ha t rv~ > 102 > W 3 > . . . , contradicting the well-foundedness of W.

Many of the proof techniques we have already introduced may be regarded as applications of
t he principle of well-founded induction. In the remainder of this section we will look back on
t he invariant-assert ion method , the subgoal—assertion method, and the well—founded ordering
method , to see how each of them may be viewed as an instance of well-founded induction.

In introducing the invariant—assertion method to prove the partial correctness of the subtractive
gcd algorithm (Program A), we invoked ordinary mathematical induction on the number of
times control has passed through the loop label more since the beginning of the execution.
Alternativel y, we can regard this method as an application of the princip le of well—founded
induction , takin g W to be the set of positive integers , and > to be the usual “greater—t han”
ordering between them. The property we wish to prove is that , for every positive integer n ,
the intermediate assertion will hold the nth time control passes through more.

To prove the desired property, we let n be any positive integer , and we show that the
intermediate assertion holds the nth time control reaches more , using t he induction hypothesis
that the intermediate assertion holds the n’th time control reaches more , for every positive
Integer n ’ such that n > n ’. The proof distinguishes between two cases: if n = I. then control
has reac hed more for the first time, and the induction hypothesis gives us no information; we
prove that the intermediate assertion holds as a direct consequence of the input assertion .
(This corresponds to the verification condition for the initial path from star t to more.)  On the
other hand , if n > I, control has passed through more previously; our Induction hypothesis tells
us (taking n’ to be n— i )  that the intermediate assertion held the previous tIme control passed
through more. We use this induction hypothesis to show that the intermediate assertion still
holds. (This corresponds to the verification conditions for the paths from more around the loop
and back to more.) We can then conclude by the principle of well-founded induction that the
intermediate assertion holds every time control passes through more , i.e., that it is an invariant
assert ion. The balance of the proof, that the output assertion holds when the program halts , is
concluded in the usual way (corresponding to the verification condition for the path from more
to n o ug/c .)  This shows that the invariant-assertion method may be regarded as an application
of the princip le of well-founded induction.

in app lying the subgoal-assertion method, we remarked that the mathematical induction
employed is precisely the reverse of that used in the invariant—assertion method . In fact , we
could also regard the subgoal-assertion method as an application of the well-founded induction
principle, but Instead of basing the Induction on the number of time control has passed

33

_ _ _  _ _ _ _ _  _ _  ~~~~~~--. ~~~-- .- --



Manna & Waldinger The Logic of Computer Programming

throug h more since the execution began, we would consider the number of times control wil l
pass through more before the execution terminates. (This is a finite number if we assume that
the program does terminate.)

The invariant-assertion and the subgoal-assertion methods prove partial correctness , but do not
establish termination. It is possible to use the principle of well—founded induction to prove
termination as well as partial correctness , In fact , the well—founded ordering method for
proving termination ma y be regarded as another application of well—founded induction. For
instance , recall that to apply the well—founded set method to prove the termination of Program
A , we need to find a well-founded set W ordered by the ordering > and a termination
ex pression E(x y) such that whenever control passes through more , the value of E(x y) belongs
to W , and such t hat whenever control passes around the loop, t he value of E(x y) is reduced
tinder the ordering > . To phrase this method as a well-founded induction proof, we prove the
pioperty that if during a computation control passes through more , the computation will
te iminate. The well—founded set used as a basis for the induction is the set of pairs of
nonneg ative integers , and the ordering >> is defined by

(w 1 w 2) >> (to i ‘ w 2 ’) if E(w w 2) > E(w i ‘ w 2 ’)

~Ve show that the property holds for arbitrary values (w 1 w 2) of the pair (r y) at more , assuming
the induction hypothesis that the program will terminate if control passes through more with
values  (to I ‘ tt 2 ’) of (x y) such that (to I 102) >> (10 1 ’ 102 ’), IC. , such that E(w w 2) >‘ E(w ‘

Following the two well—founded sets in the termination proofs of the previous section , we c an
either take E(x y) to by (x y) itself , and > to be the lexicographic ordering between pairs of
nonnegative integers , or we can take E(r y) to be 2x+y, and > to be the usual greater-than
ordering between nonnegative integers. The details of the proof then correspond closely to the
steps in the well-founded set termination proof.

In proving partial correctness by the invariant-assertion and the subgoal-assertion methods , we
employed well—founded induction based on the number of steps in the computation; for this
iraco n they are classified as forms of compu tational induction. On the other hand , our proof
of termination employed an induction independent of the computat ion; such proofs are

~rne~ ally referred to as structural induction proofs. We have seen that both computational
induction and structural induction may be regarded as instances of well-founded induction In
subsequent sect ions we will encounter this principle in many other guises .

34 

—~~~~
,---— - - . -.--- ------ . . -. -- - -.------ -,



____________________ 

Manna & Wald inger The Logic of Computer Progra mming

V. Total Correctnes s

So far we have considered correctness separately from termination; to prove that a program
halts and produces the desired result required two separate proofs. In this section we will
introduce a technique that establishes the total correctness of a program, I.e., its termination and
correctness , with a sIngle proof.

In our previous correctness proofs we attached assertions to points in the program, with the
intended meaning that the assertion is to be invariant , that is to hold every time control passes
throug h the corresponding point. Conceivably, the assertion could be proved to be invariant
even though control never passes through the point in question. In particular , we can prove
that the output assertion is invariant even though the program never halts; thus , a separate
te i mination proof is required .

In t u e  method we ate about to introduce , we will also attach assertions to points in the program .
but with the intended meaning that sometime control will pass through the point and satisf y the
attached assertion. In other words, control may pass through the point .~riany times without
sat isi ying the assertion , but control will pass through the point at least once with the assertion
satisfied ; therefore , we call these assertions intermittent assertions. If we manage to prove that
the output assertion is an intermittent assertion at the program’s exit , we have simultaneously
shown that the program must halt and satisfy the output assertion. This establishes the
Pt oglam ’s total correctness

We will use the phrase

sometime Qat L

to denote that Q is an intermittent assertion at the label L, i.e.. that sometime control will pass
through L with assertion Q satisf ied . (Similarly, we could have used the phrase “always Q at
L” to indicate that O is an invariant assertion at L.) If the entrance of a program is labelled
start and its exit is labelled enough , we can express the total correctness of the program with
respect to an input assertion P and output assertion R by

if sometime P at start
then sometime R at enough.

Generally, to prove this statement as a theorem, we must affix intermittent assertions to some of
the program’s intermediate points, and supply lemmas to relate these assertions. The proof of
these lemmas typically employs well—founded induction.

To illustrate this method we mtroduce a new program to compute the greatest common divisor.

-- — -
~~~~~~~~~~~~~~~~~~~~~~

—
~~~~~~~~~

-- . --- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. .— -~~~~~~ - .-

Manna & Waidinger The Logic of Computer Programming

Program B (the symmetric algor Ithm):
lnput(x0 yo)

start: (x y) ~- (x0 yo)
more: if x = y t hen goto enough

reducex: if x > y then X ~- x—y
goto reducex

reducey : if y > x then y ~- y— x
goto reducey

goto more
enoug h: output(y).

This program is only intended to be used for positive ~ and Yo’ whereas the previous Program

A can also be used when either x0 — 0 or y~ 0.

The intuiti ve basis for this program rests on the following three properties of the integers:

(a) :ik and u~y <-> ulx—y and u~
(the common divisors of x—y and y are the same as those of x and y),

(b) ulx and ii~y <=> ujx and uly —x
(the common divisors of x and y—x are the same as those of x and y), and

(c) tnax{ u : u~y} = y if y > 0
(any positive integer is Its own greatest divisor).

We would like to use the intermittent-assertion method to prove the total correctness of
Program B. The total cot rectnes s can be ex pressed as fo llows:

Theorem: if sometime x0 > 0 and Yo > 0 at st art
then sometime y max (u : u~x0 and utyo} at enough. .- -

l’his theorem states the termination as well as the partial correctness of Program B, because it
acs p it s that control must eventua lly reach enoug h, the exit of the program, given that It begins
execution wit h positive r0 and y~.

To prove this theorem we need a lemma that describes the internal behavior of this program:

Lemma : if sometime x = a and y - b and a , b > 0 at more
or sometime x = a and y b and a, b > 0 at reducer
or sometime x = a and y = b and a,b > Oat reducey

then sometime y = max~u : ula and utb) at enough.

36

—. . — — ______

Manna & Waldinger The Logic of Comp uter Programming

To show that the lemma implies the theorem, we assume that

sometime x0 > 0 and Yo > 0 at start

Then control passes to more , with x and y set to x0 and Yo respectivel y, so we have

sometime r - x0 and y - Yo and x0, Yo > 0 at more.

But the n the lemma iniplies that

sometime y - max{u : uixo and ulyo} at enough,

which is the desired conclusion of the theorem.

It remains to prove the lemma. We assume

sometime x = a and y = b and a , b > 0 at more
or sometime x a and y - b and a , b > 0 at reducer
or sometime r a and y b and a, b > 0 at reducey

and show that

sometime y = max{u : u~a and ulbi at enoug h.

The pioof emp loys well-founded induction on the set of pairs of nonnegative integers, under
the well-founded ordering > defined by

(a b) > (a ’ b ’) if a+b > a ’+b’ .

in other words , during the proof we will assume that the lemma holds whenever x=a ’ and y =b’ ,
w here a+b > a ’+b ’; i.e., we take as our induction hypothesis that

if sometime x = a ’ and y = b’ and a ’, b’ > O at more
or sometime x — a ’ and y — b’ and a ’, b ’ > O a t reducer
or sometime r — a ’ and y . b’ and a’, b’ > Oat reduce,

then sometime y = max{u : usa ’ and ulb ’} at enough.

The proof distinguishes between three cases.

Case a - b: Regardless of whether control is at more , reducer , or reduce,, contro l passes to
enoug h with y = b, so that

sometime y — 6 at enough.

37

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . - ~~~~~~~~~~ ~~~--



- .—. - -—-.- — . . - . - . .—--. - --- —. - —-- —.- -—-——- . --—-—- -— - .=- .______ J_

Manna & Wald inger The Logic of Computer Programming

But in this case 6 - max{u : ulb} - max{u : U~a and ulb} , by Property (c) above. Thus,

sometime y = mar{u : ula and uIb~ at enough ,

which is the desired conclusion of the lemma.

Case a > I’: Regardless of whether control is at more , reducex , or reducey , control reaches
ietiiicex and passes around the top inner loop, resetting x to a—b , so that

sometime x = a—b and y - b at reduce r.

For simp licity, let us denote a— h by a ’ and b by b’ . Note that

a ’ , h ’ > 0,
a+b > a ’+b ’ , and
mar{ u : ula ’ and ulb ’} - mar {u ul a— b and ulb} - max{u : ula and ulb}.

This last condition follows from Property (a) above.

Because a ’, 1” > 0 and a + 6 > a ’ + b ’, the induction hypothesis implies that

sometime y max{u : ula ’ and ulb’} at enough;

i e . by the third condition above ,

sometime y = max {u : ula and ulb } at enough.

This is the desired conc lusion of the lemma.

Case h a. i h is case is disposed of in a manner symmetric to the previous case.

This concludes the proof of the lemma. The total correctness of Program B is thus established.

I “~~ t ic  sr’.. how we would prove the correctness and termination of Program B if we were using
the met hods of the previous sections instead.

1 he 1’a rt ia l correctness of Program B is straig htforward to prove using the invariant—assertion
method introduced in Section II. The invar iant—as sertions at more , reducer and reducey, can all
be taken to be.

38

_ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _  
~~~~~ --- -~~ .~~~~~~~~~~ , _ _


- .

Manna & Waldinger The Logic of Computer Programming

x > 0 and y > 0
and max { u : ulr and i4y} - mar{u : ulro and u~y o} .

in contr ast , it is awkward to prove the terminatior ’ of this program by the well—founded
ordering approach we discussed in Section III; it is possible to pass from more to reducer, from
vr (lucex to reducey , or from reducey to mote without altering the value of any program variables.
Consequently, it is difficult to find expressions whose values are reduced whenever control
passes from one of these labels to the next. One possibility is to take the well—founded set to be
the pairs of nonnegative integers ordered by the lexicographical ordering; the expressions
corresponding to the loop labels are taken to be

(r+y 2) at more ,
if r x y then (x +y I) else (x+y 4) at reducex , and
if x < y then (x+y 0) else (r+y 3) at reducey .

It can be shown that as control passes from one loop label to the next the values of the
cot responding expressions decrease. Although this approach is effective , it is unduly
comp licated

The above exam p le illustrates that the intermittent-assertion method may be more natural to
apply th an one of the earlier methods. it can be shown that the reverse is not the case: a proof
of partial coi rectness by either of the methods of Section II or of termination by either of the
methods of Section III can be rephrased directly as a proof using intermittent assertions. In this
sense, the inteim ittent assertion method is more powerful than the others.

The intermit tent-assert ion method was firs t formulated by Burstall [1974) and
further developed by Manna and Waldinger [1976). Different approaches to
its formalization have been attempted , using predicate calculus (Schwarz
[1976)) , a deductive system (Wang [1976]), and modal logic (Pra tt [1976]).

39

-~~~~~~~~~-~~~~~~ --- -~~~~~~-.~~~~~~~- - ---- —-~~~~.—.-

Man na & Waldinger . The Logic of Computer Programming

VI . Correctness of Recursive Programs

So far , we have indicated repeated operations by a particular kind of ioop, the Iterative loop,
which is expressed with the goto or while statement. We are about to introduce a new looping
construct that is in some sense more powerful than the iterative loop. This construct , the
rec uts ive call , allows a program to use itself as its own subprogram. A recursive call denotes a
repeated operation because the subprogram can then use itself again, and so on.

For instance , consider the following recursive version of our subtractiv e gcd al gorithm
(Program A):

Program A (a recursive version):
gcdminu s (r y) <= if x = 0

then y
else if y � x

then gcd minus (r y—x)
else gcdminus~y r)

In other words , to compute the gcd of inputs x and y, test if x — 0; if so, return y as the output;
othei wise test if ~ 2 x; If so. return the value of a recursive call to this same program on inputs
x and y— x ; if not, return the value of another recursive call, with inputs y and x. For example ,
in com puting the gcd of 6 and S we get the following sequence of recursive calls:

gci lminus (6 3) <= gcdminus(3 6) <. gcdminus(3 3) <— gcdmin us(S 0) <— gcdmlnus (0 3) <— 3.

Thus, the value of gcdmin us(6 3) is 3. Although a recursive definition is apparently circular , it
reprec r’nts a precise description of a computation. Note that gcdmlnus is a “dummy” symbol
and , like a loop label, can be replaced by any other symbol without changing the meaning of
the program.

A recursive computation can be infinite if the execution of one recursive call leads to the
execution of another recursive call , and so on , without ever returning an output. For examp le,
the program

gcdnostop (x y) <— if x - 0
then y
else u f y ? x

then gcdnos top(r y— x)
else gcdnostop(r-.y y) ,

which is obtained from Program A by altering the arguments of the second recursive call,

40

-~~~~~~~ --
. . . -- . . - . -~~~~- - - .

-

~~~~~~~

Manna & Waldinger The Logic of Computer Progra mming

computes the gcd of those inputs for which it halts. However, this program will not termInate
for many inputs, e.g. If x~ O and y - Oor if x~ 0 and y - x. Thus, for x — S and y - S we
obtain the infinite computation

gcdnost op (3 5) <— gcdnos top (5 0) <— gcdnostop (S 0) — gcdnostop( 5 0) <— .

Our recursive version of Program A describes essentially the same computation and produces
the same outputs as the iterative version. in fact, it is straightforward to transform any
iterative program into a recursive program that performs the same computation. The reverse
transformati on, however, is not so straightforward; in translating a recursive program into a
corresponding iterative one, it is often necessary to introduce devices to simulate the recursion,
complicating the program considerably. Some computational problems can be solved quite
naturally by a recursive program for which there is no iterative equivalent of comparable
simplicity.

As a new specimen for our study of recursion we will Introduce a recursive cousin of the
greatest common divisor algorithm of Euclid, which appeared in his Elements over 2200 years
ago.

Program C (the Euc lidean algorithm ):
gcdrem (x y) <- if x - 0

then y
else gcdre m(rem(y x) x).

Here rein (y r)  indicates the remainder when y is divided by x. Program C, like Program A ,
computes the gcd of any nonnegative integers x and y, where x and y are not both zero. The
correctness of this program will be seen to depend on the following properties of the Integers:

(a) ulx and uly <-> uk and uprem(y r) if x -0
(the common divisors of x and y are the same as those of x and
rem( y x), if x — 0),

(b) ulO
(every integer divides 0),

(c) max{u : u~y} - y if,> 0
(every positive integer is its own greatest divisor), and

(d) x > rem(y x) ~ 0 if x > 0.

II -

~~~ .~~~~~~~~~ -~~~~~~~~~~~~~~~~ -- - -- - - -~~~--  


.~ . ~~~~~~~~~~~ .~~~~~~~~~~~~~~~~~

Manna & Waldinger The Logic of Computer Programming

The reader may be interested to see a proof of Property (a). Suppose that
uir and uty and that r — 0. We need to show that uj rem(y x) . We know that
r k. u and y I. u, for some integers k and 1. But rem(y x) is defined so
that y — q.x +r em (y r), where q is the quotient of y and x. Therefore rem(y x)
= y — q ’x — l ’u — q . k . u = u ’(l — q ’k) , so that ufrem(~ x), as we intended to
pr ove. The proof in the opposite direction is similar .

~Ve would like to introduce techn iques for proving the correctness and termination of recursive
piograms In proving the properties of iterative programs, we often employed the princip le of
we ll- founded induction. We distinguished between computational induction, which was based
ott the numhei of ste ps in the computation , and structural induction, which was independent of
‘he compt it. ition These versions of the induction principle have analogues for proving
p i pct t i i of rec i i is t v ’~ pt ngrams We wi ll illustrate these techniques in proving the correctness
ati d trrnlinat ion of the above recurs ive Euchdean algorithm (Program C).

1 n app ly com putational inouct ion to Program C, we perform induction on the number of
recut s iv e .~ lls in the computation of gcdretn(r y) . (This number is finite if we assume that the
com putat ion terminates) Thus , in proving that some property holds for gcdrem(x y) , we assume
inductively that the property holds for gcdrem(x ’ y ’) , where x ’ and y ’ are any nonnegative
integers such that the computation of gcdrem(r ’ y ’) Involves fewer recursive calls than the
comp utation of gcdre ’n(x y)

Now , let us use computational induction to show that Program C is partially correct with
respect to the in put specification

~ 0 and y �0 and (x -0 or y-O) ,

and the out put sp eci f ication

gcdre in (r y) = max{u : u)x and u~y} .

Thus, we must prove the property that

For every input x and y such that
x �0 a n d y ? 0 and (xø0o r y O),

if the computation of gcdrem (x y) terminates , then
gcdre vn(x y) - max{u : u~x and u~ }.

Therefore , we consider arbitrary nonnegative integers x and y and attempt to prove that the
ahove property holds for these integers, assuming as our Induction hypothesis that the property
holds for any nonnegative integers x ’ and y ’ such that the computation of gcdrem(x ’ y ’)
involves fewer recursive calls than the computation of gcdrem(x y).

42


~~~~--—~~~~~~~ -~~~~~~-- -_ ~~~~ -~~~~~~~ 

Manna & Waldinger Tb. Logic of Compu ter Programming

Thus , we su ppose that

X 2 0  and y ~ 0 and (xui O and y o),

and that the computation of gcdrem(x y) terminates. We would like to show t hat

gcdrem (x y) - mar fu : ulx and u~ } .

Following the definition of gcdrem , we distinguish between two cases.

If x — 0, then Program C dictates that

gcdrem(x y) - y.

But because we have assumed that x~ 0 or y. 0 and that ,? 0, we know that y > 0. Therefore,
by Properties (b) and (c),

mar~u : ujx and Ut,) - max{u : ut,) -
Thus ,

gc drem (x y) -, - rnax{u : u)x and ut,} ,

as we wanted to prove.

On the other hand, if x~ 0, Program C dictates that

gcdrem (x y) - gcdrem(re ai (.y x) x).

Because a recursive call to gcdrem (rem (y x) x) occurs in the com putation of gcdrem(x y) , the
computation of gcdr em( rem(y x) x) involves fewer recursive calls than the com puation of
gcdre tn(x y).

Therefore we would like to apply the Induction hypothesis, taking x ’ to be rem( y r)  and y’ to
be x. For this purpose , we attem pt to prove the antecedent of the induction hypothesis, i.e.,

rem(y x) � 0 and r 2 0 and (rem(y x ) l  0 or x- 0)

and that the com putation of gcdrem(rem(y x) x) terminates. However , we know that rem( y x) � 0
by Pioperty (ci), that x 2 0 by the input specification, and that x~ 0 by our case assum ption .
Furthermore, we know that the computation of gcdrem(r vm(.y x) x) terminates, because It is part
of the computation of gcdrem(x y) , which has been assumed to terminate. Our Induction
hy pothesis therefore allows us to conclude that

4S 

~~~~~~~.- ~~~~~-- . -- - -~~~~~~- - -


- - -

Manna & Waidinger The Log ic of Compute r Programming

gcdrem(rem(y r) r) mar {u : ulrem(y x) and u~x } .

But , by Property (a),

max{u : ulrern (y x) and uIx) - maxfu : uj x and ut,J.

and therefore

gcd rem (x y) = max {u : uIr and ut,},

as desired This concludes the proof of the partial correctness of Program C.

In t u e above computational-induction proof we were forced to assume that the computation
tetmiriates. However , if we choose an appropriate well—founded ordering independent of the
coi r i pt itation . we can employ structural induction to prove termination as well as correctness.
For ‘~\amp le. SU~~~OSC we want to prove the termination of Program C for all inputs satisfying
the input specification; in other words ,

For ever y input x and y such that
x ? 0 and ‘9? 0 and (r~ Oar yw 0)

the computation of gcd re rn (x y) terminates.

The well—founded set which will serve as the basis for the structural induction is the set W of
all pai rs (w 1 w 2) of nonnegative integers , under the ordering > defined by

(w ru 2) > (w 1112) if w >

(Yes , the second component is ignored completely.)

T o prove the termination property, we consider arbitrar y nonnegative integers x and y and
attem pt to prove that the property holds for these integers , assuming as our induction
hypothesis that the property holds for any nonnegative Integers ~~~

‘ and y ’ such that
(x y) > (x ’ y ’) , i.e., x > r ’.

Thus, we suppose that

x �0 and y ? 0 and (x ø0 o ry— 0) .

Following the definition of gcdrem , we again distinguish between two cases. If x — 0, the
computation terminates immediately. On the other hand, if x — 0, the program returns as its
oiit l)ut the value of the recurs ive call gcdrem(rem (.y x) x). Because x > rem(y x), by Property (d),
we have

44

Manna & Waldinger The Logic of Computer Programming

(x y) > (rem(~ ~) x).

and the refore we would like to apply the induction hypothesis , takin g x ’ to be rem(y x) and y ’
to be x For this purpose . we prove the antecedent of the Induction hypot hesis, that

rem(y
~

) 2 0 arid c 0 and (rein(y x) .‘O or x — 0),

using Property (d), the input specification , and the case assumption, respectivel y. The
conse quent of the induction hypothesis tells us that the computation of gcd rem (rem(y x) x), and
the, ef ore of gcdre?n(x si). terminates This concludes the proof of the termination of Program C.

o f course, we could have used structural induction , with the same well-founded ordering, to
prove the total correctness of Program C For this purpose we would prove the property that

For every input x and y such that
x ? O a n d ’ 9 ? O a n d (r Oor ~ — 0),

t he computation of gcd re~n(x y) terminates and
g cd reez(x ~ — ‘fl i7x~U - ulx ~nd i4~ i~

The proof would be similar to the above termination proof.

Euclid , himself , presented a uproot ” of the propert ies of his gcd al gorithm. His
terminat ion proof was an informal version of a well-founded ordering proof ,
but his correctness proof considered only two specia l cases , in which the
recursiv e call is ex ec uted precisely one or three times during the
oniputation. The princip le of mathematical induction, which would have been

necessar y to handle the general case , was unknown at the time.

The reader may have noticed that the proofs of correctness and termination for the recursive
piogi am presented here did not require the invention of the intermediate assertions or lemmas
t hat our proofs for iterative programs demanded. He may have been led to conclude that
proofs of recursiv e programs are always simpler than proofs of the corresponding iterative
programs; in general , this is not the case. Often , in proving a property by the well—founded
induction princip le, it is necessar y to establish a more general property in order to have the
advantag e of a stronger induction hypothesis. For example, suppose we wanted to prove that
rrogran~ C satisfies the property that

g drem (x y)lr

If we tried to apply an inductive proof directly, the induction hypothesis would yield merely
hat

gcdr em (rem (y r) r)lrem(y x);

45

- ---4

Manna & Waldinger The Logic of Computer Programm Ing

t his assumption is not strong enough to imply the desired property. To prove the property we
must instead prove a more general property, such as that

gc drem (x y) lx and gcd rern(x y) t,.

The induction hypothesis woo d then yield that

g c d rem(iem(~ x) x)~re rn (y x) and gcdrem(rem(y r) r)Ix,

which is enough to imply the more general result. It may requIre considerable ingenuity to find
the appropriate stronger property that will enable the inductive proof to go through.

We have used structural induction to show the termination of a program, and we have
indicated how it can be used to show the total correctness of a program. We will now show
how structural induction can be used to prove an entirely different property: the equivalence

~f two programs

We say that two programs are equivalent with respect to some input specification if they
ter minate for precisel y the same legal inputs, and if they produce the same outputs when they
do terminate We will write fir) ~ g (x) if , either the computations of fix) and g(x) both
terminate and yield the same output, or if they both fall to terminate. Then we can say t h a t f

is equivalent to g with respect to a given input specification if , for all x satisfying the Input
specificaton , fix) • g(r).
Let us see how structural Induction can be applied to prove the equivalence of the subtractIve
gcd algorithm (Program A) and the Euclidean gcd algorithm (Program C) we have introduced
in this section. Recall that the Euclidean algorithm is

gcdrem(x y) <- if x - 0
then y
else gcdrem(r em(y x) x) ,

and the subtractive algorithm Is

gcdminus(r y) c- if x - 0
th eny
els e i f y ? x

then gcdrui nus(x y.-x)
else gcdminus(y x) .

The remainder function rem can be defined by the recursive program

46

_ _ _ - - — -~~~~~~~~~~~~~~ —~~~~~~~ - .
~~~~~~~~~~~~~~

- --. -.



Manna & Wald inger The Logic of Com put er Programming

re m(u v) <— if u < v
then u
else rem(u—v v),

where v is assumed not to be zero.

To establish the equivalence of the two gcd programs, we need to prove that

if x � 0  and y 2 0  and (x~ 0or y~ 0)
then gcdrem( x y) • gcdmtnus(x y).

The proof of this property is a straightforward application of structural induction, in which the
well-founded set is the set of pairs of nonnegative integers ordered by the lexicogra phic
orderin g >. We consider arbitrary nonnegative integers x and y and attempt to prove that the
equivalence property holds for these integers, assuming as our induction hypothesis that the
pro perty holds for any nonnegative integers x ’ and y ’ such that (x y) ) ‘ (x ’ y ’).

Thus, we suppose that

r�  0 and y ?  0 and (x - 0or  y -O)

and attempt to prove that

g cdre m(r y)  gcd minus (x y) .

The proof distinguishes between several cases. If x — 0, both programs terminate and yield y as
their output. On the other hand, if x — 0 and y < x , the Euclidean algorithm executes a
recursive call

gcd rem(rem( y r) x),

or (by the definition of rem)

gcdrem(y r).

In this case , the subtractive algorithm executes a recursive call

gcd minus (y r).

Recall that x > y, and therefore that (x y) )‘ (y x). Thus , because y and x satisfy the Input
spec if icaton

y a 0 and x 2 0 and (y ~~0 or

4 ,7



Manna & Waldinger The Logic of Computer Programming

our induction hypothesis yields that

gcdrem(y r)  • gcdminus (y x),

i.e., (in this case )

gcd rem (x y)  • gcd minus (x y) .

Finally, if x~ 0 but y a x , the Euclidean algorithm executes a recursive call

gcd rem (rem (y x) r),

or (b y the definition of rem)

gc drem (r em (y—r x)  x) ,

or (by the definition of gcdrem)

g cdr emn(r y —r) .

In this case , the subtractive algorithm execute s a recursive call

gcd mnzn us(r y ...x)

Note th at x > 0, and therefore that (x y) > (x y—r). Thus, because here x and y—x satIsfy the
input specification

x 2 0 and y—r � 0 and (r~ 0 or y—x 0),

the induction hypothesis yields that

gcd rem(x y—x ) • gcdminus(x y—x) ,

i e . (in this case)

gcdre m(r y) ~ gcdminus(x y).

This concludes the proof of the equivalence of the two gcd algorithms.

The two gcd programs we have shown to be equivalent both happen to terminate for all legal
inputs. However , the same proof technique could be applied as well to show the equivalence of
two programs that do not alwa ys terminate, provided that they each fall to terminate for the
same inputs.

48



- .  - --- -
~~~~~~~~~~~~~— ~~~~~~~~~~~~~ 

- . - - - —,. ---- .- - . —-
~~~~~

- --

Manna & Waid inger The Logic of Comp uter Programming

In gener al , to solve a programming problem can require not one but a system of recursive
f~~~~i:~ t c . each of which m a y  call any of the others. Even our simple recursive Euclidean
a lgo r i thm can he regarded as a system of programs , because gcdrem calls the recursive
rema inder prog ram r’ n  Everything we have done in this section can be extended naturally to
treat suc h systems of programs

Various forms of computational induction were applied to recursive programs
by deBakker and Scott [ i969J , Manna and Pnueli [1970), and Morris [1971].
The structural induc tion method was first presented as a technique for
pr oving properties of recursive pograms by Burstall [1969]. A verification
sys tem emp loy ing this method was imp lemented by Boyer and Moore [1975].

49

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—- —-- - - . ..--—.. - —-,-——— .---- -—--- - --~~~
, - -

—-----. -.- --~ - --.-- - - - - . - -. ,

Manna & Waldinge r The Logic of Computer Programming

VII . Program Transf ormation

Up to now we have been discussing wa ys of proving the correctness and termination of a given
program. We are about to consider logical techniques to transform and improve the given
program These transformations may change the computation performed by the program
drastically, but they are guaranteed to produce a program equivalent to the original; we
ther efore call them equivalence— p reservin g transfo rmations. Usually, a sequence of such
transformations is applied to optimize the program, i.e., to make it more economical in its use of
time or space.

Perhaps the simp lest way of ex pressing a transformation Is as a rule that states that a program
segment of a certain form can be replaced by a program segment of another form.

For exa mp le, an assignment statement of form

rs- J(c~c~ . . . ci),

w hich contains several occurrences of a subexpression a, may be replaced by the program
segment

where ~ is a new variable. This transformation often optimizes the program, because the
subexpress ion a will only be computed once by the latter segment. For instance, the a.ssignment

r (a ”)3 + 2(a”)2 + 3(ab)

may be rep laced by the segment

y ~-

r .~ y
3

+ 2y2 + 3y .

Such eliminati on of common .cubexp r essi ons is performed routinely by optimizin g compilers.

Another transformation: in a program segment of form

ifp
then a

else if~
then 13
else ‘V

50

- - . - . - . . -—~~~~~~-- . ~~~~~~~ - --— — - . .— -~~~~~~--~~- -~~~~

Manna & Waldin ger The Logic of Comput er Programming

the second test of p, if executed , will always yield false; the expression 13 will never be
evaluated . Therefore, this segment can always be replaced by the equivalent segment of form

if~~
t hen a

else Y

Another exam ple: a while loop of form

while p (x) and q(x y) do y ~ f(y),

where y does not occur in p(x), may be replaced by the equivalent statement of form

If p(r) then while q(r y) doy .- fiy).

The for mer segment will test both p(x) and q(x y) and execute the assignment y ~- f ly)
repeatedl y, even though the outcome of the test p (x) cannot be affected by the assignment
statement. The latter segment will test p (x) only once, and execute the while loop only if the
outcome is true. Therefore , this transformation optimizes the program to which it Is applied.

An important class of program transformations are those that effect the removal of recursIve
calls from the given program. Recursion can be an expensive convenience , because its
implementation generally requires much time and space. If we can rep lace a recursive call by
an equivalent iterative loop, we may have achieved a great savings.

One transformation for recursion removal states that a recursive program of form a:

F (u) <~~ if p (u)
then g(u)
else F (lz (u)) -

can be replaced by an equivalent iterative program of form 13:

input(u)
more: If p (u) then output (g(u))

u .- h(u)
goto more

To see that the two progams are equivalent , suppose we apply each program
to an input a. First , if p(a) is true , each program produces output g(a).
Otherwise , if p (a) is false , the iterative program will replace u by Fz (a) and go
to more: thus, its output will be the same as if its input had been h(a). In this

5’

-~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ . ~~~~~~~~ - ~~

Manna & Wald inger The Log ic of Computer Progr amming

case , the recursive program will return F(h (a)) , thus, its output, too, is the
same as If its input had been h(a).

For example, this transformation will enable us to replace our recursive Euclldean algorIthm
(Program C)

gcdr em (x y) <~ if r - 0
then y
else gcdrem(rem(y x) x)

by the equivalent iterative program -

input(x y)
more: if x - 0 then output(y)

(x y) ~- (rem (y x) a~)
goto more

For some forms of recursive programs, the corresponding iterative equivalent is more complex.
For instance , a recursive program of form

F (u) <= if p (u)
then g(u)
else k(u) + F(h(u))

can be transformed into the iterative program of form

input(u)
z~~~0

more: if p(u)
-

then output (z+g(u))
else (u z) .- (h(u) z +k(u))

goto more.

However , the iterative program requires the use of an additional variable z to maintain a
running subtotal. A more complex recursive program, such as one of form

F(u) <= if p (u)
then g(u)

else k(F(h i (u)) F(h 2(u))) ,

cannot be transformed into an equivalent iterative program at all without Introducing
considerable intricac y.

52

~

- - -.-

-- --- ~~~~~~~~~~~~~~~~ - -~~~~~~~~~~ -~~~~~~~~~~~ - - ~~~~-—-

Manna & Waldinger The LogIc of Computer Programming

Althoug h not every recursive program can be transformed readily into an equivalent iterative
program , an iterative program can always be transformed Into an equivalent system of
recursive programs in a straightforward way. This transformation involves introducing a
recur sive program corresponding to each label of the given iterative program. For example , if
the i te ra t ive program contains a segment of form

LI : if p (r)
then output (g(x))
else x ~- h(r)

goto L2,

the cor r esponding recursive program will be

LI(r) <~ if p (r)
then g(x)

else L2(h(x)) .

The idea behind this transformation is that Ll(a) denotes the ultimate outout of the given
iterat ive program if control passes through label LI with x - a. By this transformation we can
rep lace our symmetric gcd algorithm (Program B) by an equivalent system of recursive
programs The original program may be written as

input(x y)
start :
more: if r - y then output (y)

reducer: if r > y then x ~- x—y
goto reduce r

red ucey : if y > x then y 4- y—x
goto reducey

goto more.

The equivalent system of recursive programs is

st a rt (x y) <— more(r y)
mor e (r y) ~ - if x - y then y else reducex (r y)
red ucer (r y) <- if r > y then red ucex(x— y y) else reduc ey (x y)
reduce y (x y) <- If y > r then reducey (x y—x) else more(r y).

The output of the system for inputs x and y is the value of s tar t(x y). This transformation
dues not improve the efficiency of the program, but the simplicity of transforming an iterative

_ _ _ - .—- --


~~~~~ - --- .- .~~~~~~~~~.. - - - - . ~~~ —~~~~~~-- - ,-

Manna & Wald ing er The Log ic of Computer Programming

program into an equivalent recursive program, and the complexity of performing the opposite
transformation , substantiates the folklore that recursion is a more powerful programming
feat ure than iteration.

Paterson and l4ewitt [1970) have studied the theoretical basis for the
difficul ty of t ransforming recursive programs into equivalent iterative
programs. The reverse transformatio n, from iterative to recursive programs ,
is due to McCarthy [1962].

Equivalence- preserving transformations have been studied extensively, and
some of these have been incorporated into optimizing compilers. The text of
Aho and Ullman [1973] on comp ilers contains a chapter on optimization.

Some more ambi tious examples of equivalence-preserving program
transformations are discussed by Standish et .1. [1976). An experimental
system for performing such transformatio ns was implemented by Dariington
and Burstall [1973J. . 

-

The above tansformation s are all equivalence preserving: for a given input , the transformed
program will always produce the same output as the original program. However , we may be
satisfied to produce a program that computes a different output from the original, so long as it
still terminates and satisfies the same input—output assertio ns. For example , if we are
optimiz ing a program to compute the square-root of a given real number within a tolerance , we

will be satisfied if the transformed program produces any output within that range. In the
remai iicler of this section , we will discuss the correctness —p reservin g trans formations; such a
transformation yields a program that is guaranteed to be correct , but that is not necessarily
equivalent to the original program.

Correctn ess- preserving transformations are applied to programs t hat have already been proved
to be correct; they use information gathered in constructing the proof as an aid in the
transformation process. In particular , suppose we have a partial—correctness proof that emptoys
an invariant assertion inva r iant(x y) at some label L, and a well—founded—ordering termination
proof that employs a well-founded set W and an ex pression E(x y) at L. Then we can Insert
after L any program segment F with the following characteristics:

(I) If in var iant(x y) holds, then the execution of F terminates and invar ian t(x y) Is
still true afterwards . (Thus, the altered program wIll still satisfy the original
input-output assertions )

(2) II inva riant (r y) holds, then the value of E(x y) in the well—founded set Is
reduced or held constant by the execution of F. (Therefore, the altered
program will still terminate .)

54

L - -  -~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — --- ~~- -. --— .  

Manna & Waldinger The Logic of Com puter Programming

For example , suppose that we have proved the partial correctness of a program by means of the
invariant assertion

L: ~r 2 0 a n d y 2 0 a n d x .y - k }

and th,ir we have proved its termination by means of the expression

F(r v) - x

over the nonnegative integers. Then we may insert the statement

if eve n(x) then (r y) ~ (x 12 2.y)

alte r L. without destroying the correctness of the program or its termination.

Note that the above transformation does not dictate what segment F is to be inserted , nor does
i t guarantee that the altered program will be more efficient than the original. Furthermore,
even though it. preserves the correctness of the transformed program, It may cause It to produce
a different output from the original program.

Let us now app ly these techniques to transform our subtractive gcd algorithm (Program A) into
the so-called binary gcd algorithm. We reproduce Program A below , introducing a new
invariant assertion in the middle of the loop body:

input (x 0 Yo)
{ x 0 ? 0 a n d y0~~0 and (x0~ ’ 0 o r yo ø 0))
(x y) .- (x0 Yo)

more: { r � 0 and y � 0 and (x.” 0 or y— 0)
and gcd (x y) - gcd (x 0 yo)}

if r - 0 then goto enough
r > Oand y � 0 and gcd(r y) = gcd(x0y0)

if y 2 x then y ~ y— x else (x y) .- (y x)
goto more

enou g h. { y - gcd(x 0 Yo) I
output(~)

The new assertion

> 0 and y 20 and gcd(x y) - gcd(x0yo)

ic equiva lent to our original loop assertion at more , and is included because we want to insert
new statements at this point. In formulating the invariant assertions for this program, we have
used the abbreviated notation gcd(x y) in place of the expression max{u : ulx and u~y) .

55

~~
- .

~~~~~
-.- - -~~~~~~--- - - - -~~~ - . —.- - .~~~



-~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Manna & Weldinger ~h. Logic of Computer Programming

Recall that to prove the termination of this program by the well-founded ordering method, we
used the ex pression E(x y) - (x y) over the set of all pairs of nonnegative integers, with the
lexicogra phic ordering.

Now, suppose that we know three additional properties c~ the gcd:

(a) gcd (x y) - gcd(r 12 y) if x is even and y is odd
(b) gcd(r y) - gcd(r y 12) if x is odd and y is even
(c) gcd(r y) - 2. gcd(x12 y 12) if x and y are both even.

Then we can use these properties and the above correctness—preservin g transformation
rt’chnique to introduce three new statements into the body of the program loop.

Pioperty (a) will allow us to divide x by 2 when x is even and y is odd, without changing the
value of gcd (x y) and , hence, without affecting the truth of the new invariant

x > 0 and y �  0 and gcd(x y) - gc d(r 0 y0).

Furthermore , the value of the expression (x y ) used to prove termination is reduced In the
Ie~ ico~ rap hrc ordering ii ~ is divided by 2. Similarly, Property (b) will allow us to do the same
for y if y is even and x is odd. Consequently, we can apply the correctness-preserving
transformation to introduce the two new statements

if even(x) and odd(y) then x ~ r12
if odd(x)  and even(y) then y .- y12

after the new invariant.

Property ~~ on t he other hand , cannot be applied so readily, because dividing both ~ and y by
2 will divide gcd (x y)  by 2 and disturb the invariant. To restore the balance, let us generalize
all the invariant assertions , replacing

gcd (r y) - gcd(r 0 yo)

by

z. gcd (r y) - gcd(x 0 Yo)’

whrr v ’ z is a new program variable. We can then preserve the truth of the invariant by
ninltip lying z by 2 when we divide both x and y by 2. Thus, we introduce the new statement

if even(x) and even(y ) then (r y z) .- (r12 y12 2. z).

56

---

~

--.- . . - .-  - -



-~~~~~~~~~~~ - --~~~~~~~~~ . - -,.~~~~

Manna & Waldinger The Logic of Computer Program ming

The  altered program will still terminate, because if x and y are even , the ex pression (r y ) used
to prove termination will then be reduced in the lexicographic ordering.

To int rodtice the new va riable z into the intermediate assertions , we must also adjust the initial
and fina l paths of our program. To ensure that the generalized assertion will hold when
control first enters the ioop, z must be initialized to I. Furthermore, when control ultimately
leaves the loop with x = 0, the out put returned by the program must be z’y rather than y ,
I’ri. a r i c ~’ then z .y z.gcd(0 y) = z.gcd(x y) gcd(xo yo) Therefore, we Introduce the
assi giririent ~ z’ ~ into the final path of the program.

Our gener alized program is then

input(x 0 Yo)
� 0 and Yo �0  and (x 0 ~ Gor y0 0))

(r y z)  ‘- (x0 ~o I)
movf: { x ? 0 a n d v ? 0 a r 1 d ( x � 0 o r ~t v 0)

and z • gcd(x y)  gcd(x 0 yo)
if x = 0 then goto enoug h

x > 0 and y > 0  and z .gcd (r y)  = gcd(x0 y0)
if ev c n (x)  and odd ( ’~) then x ~- x/2 (I)
if odd(x) and eu~’n (y) then y ~ yl2 (2)
if ev en (x) and eve n (y) then (x y z) ~- (x12 y 12 2.z) (3)
x > 0 and y 2 0 and z.gcd(x y) - gcd(x0 y0) )

if y ~ x then y .- y—r else (x y) ~ (y x)
goto more

enoug h y ‘- z .y
{ y  - gcd(r 0y 0 ) I
output (y).

(The enumeration on the right is added for future reference.) The correctness—preserving
tr an sfo rmation does not ensure that this program will run faster than the original program, but
only that it satisfies the same input—out put assertions and that it still terminates.

T o  improve our program further , we introduce another correctness-preserving transformation.
If ~ is even and y is odd, the assignment statement x ~- x12 preserves the truth of the invariant
assertion

x > 0 and y >  0 and gcd(x y) - gcd( r 0 yo)

and , so long as x > 0, reduces the value of the ex pression (x y) used to prove termination.
Therefore , if we replace the conditional statement

57

-

~

. 
~~~~~~~~~~~~~

.. . .
~~~~~~~~~~~~~~~~~~~~~~ 

.
~~~~~~~~~~ 

. . .

Manna & Wald inger The Logic of Compu ter Programming

if even(x) and odd(y) then x . x12 (I)

by the while statement

wh ile even (x) and odd(y) and r > 0 do r .- x/2 , (I’)

we have maintained the correctness and termination of the program. The assignment statement
will then be applied repeatedly until x Is odd.

Similarly, if x is odd, y is even, and y > 0, the assignment y ~- y/2 will pres.~rv e the Invariant
assert ion arid reduce the termination ex pression; therefore, the conditional statement

if odd(r) and even (y) then y .- y 12 (2)

can be rep laced by the whiie statement

while c ’dd(x) and e’ en(y) and y > 0 doy ~- y 12. (2’)

In the same way, the condition al statement

if even(r) and even(y) then (x y z) .- (r12 y12 2. z) (3)

can be rep laced by t ’ie while statement

while even(r) and even(y) and (x > 0 or y > 0) do (x y z) ~- (x 12 y12 2. z) . (3’)

The condition “r > 0 or y > 0” guarantees that the assignment (x y z) ~- (x 12 y12 2. a) reduces
the value of the expression (x y) in the lexicographic ordering.

In the while statement

while even(x) and odd(y) and r> 0 do x ~- x 12, (I ’)

the truth of the test “odd (y) and x > 0” cannot be affected by the assignment statement x ~- x/ 2;
therefore , using an equivalence-preservIng transformation we mentioned earlier, we can replace
the while statement by

if odd(y) and x > 0 then while even(r) do x ~ x12. (I “)

The same transformation can be used to transform

while odd(x) and even(y) and , > 0 do, ~- y12 (2’)

into

58

--. -
~~

.


~~~-~~~~~~ - - . -. --- ~~~~~~~~
, ---- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Manna & Waldin ger The Logi c of Computer Prog ramming

If odd(x) and y > 0 then while even(y) do , .-y12, (2 ”)

and the statement

while even(r) and even(y) and (r> 0 or y > 0) do (r, a) ~- (r12 y12 2. a) (3’)

into

if (r>0 or y>0) then wh ile sven(x) and even(y) do (x y a) ~- (x12 y12 2. a). (3”)

Because all of these statements preserve the truth of the Invariant x > 0, the test x > 0 can be
dropped from (I’’) . and the test (x 0 or , >0) can be dropped from (3”).

The final resulting program is then

Program 0 (th e binary algorithm)
input(x0 Yo)
(ry a) ~- (x0y0 I)

more: If r - 0 then goto enough
If odd(y) then while even(r) do x ~- x12
if odd(x) and y > 0 then while even(y) do y .- y12
while even(r) and even(y) do (x y a) ~- (x12 y12 2. a)
if y � r thin y ~ y— x else (x y) .- (y r)
goto more

enough : y ~- a.,
outpu t(y) .

Although the transformations we applied ire not all guaranteed to produce opti mlzatl ons , this
algorithm turns out to be significantly faster than the given subtractive algorithm it
Implemented on a binary machine, where divisIon and multiplication by 2 can be performed
quite quickly by shifting words to the right or left .

The binary gcd •igorithm is based on one discovered by Silver and Terzian
(see Knuth [1969)). An analysis of the running time of this algorithm has
been performed by Knuth arid refined by Brent [1976].

The correct ness-preserving transformati ons we used to produce the bin ary
gcd algorithm are in the spirit of Gerhart [1975) and Dij kstra [1976).

We have presented program transformations as a means of Improving the efficiency of a given
program. In fact , the existence of such transformations may aid in ensuring the correctness of
programs as well. A programmer can safely ignore efficienc y considerations for a while , and

59

_ _ _ _ _ _ _ _

Manna & Waidinger The Logic of Computer Programming

produce the simplest and clearest program possible for a given task , the program so produced is
more likely to be correct , and can be tran sformed to a more efficient , if iess readable , program
at a later sta ge.

Program transformation as a method for achieving more reliable programming
has been advocated by Knuth [1974] and Burstall and Darlington [1977) . The
latter authors imp lemented an interactive system for the transformatio n of
recursive programs. Wegbreit [1975] illustrates how a transformation system
can be guided by an analysis of the efficiency of the program being
transformed , thus ensuring that the program Is Improved and not merely
transformed.

One area for which the app lica t ion of program transformati ons has been
particularl y well exp lored is the rep resentation of data stru c tures : programs
wri t ten in terms of abstract data structures , such as se ts or graphs , are
transformed to emp loy more concre te representations , such as arrays or bit
stri ngs , instead. By delay ing the choice of representation for the abstract
data s tructure until after the program is written , one can analyze the program
to ensure that an efficient representation is chosen. This process is
examined , for example , in Earley [1971] arid Hoare [1972). Experimental
implementa tions have been constructed by Low [1974], Schwartz [1974], and
Guttag et al . [1977).

60

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Manna & Wald inger The Logic of Computer Programm ing

VII . Program Development

In the previous section we discussed logical techniques for transforming one program into
another that satisfies the same specifications. In this section we will go one step further and
introduce techniques for developing a program from the specifications themselves. These
techniques involve generaliiing the notion of transformation to apply to specifications as well as
to programs. The programs produced in this way will be guaranteed to satisfy the given
specifications, and thus will require no separate verification phase.

To illustrate this process we will present the systematic development of a recursive and an
iter a t i v e program to compute the gcd function . From each derivation we will extract some of
the pi iriciples frequently used in program development. We will then show how these
pi incip les can be app lied to extend a given program to achieve an additional task . In
part icular , we wi ll extend one of our gcd programs to compute the ‘~least common multiple” (1cm)
of two Integers as well as their gcd

Let us first develop a recursive program for computing the gcd. We require that the desired
pr ogram gcdgoa l (x y) satisf y the output specification

gc d goa l (r y) - rn ax {u : uIx and u~y} ,

w he r e r and y are integers satisfying the input specification

x~~O and y �0 a n d (x . 0 o r y ø 0) .

The set constructor {u : . . . } is admitted to our specification language but is not a primitive of
our programming language. We must find a sequence of transformations to produce an
equivalent descri ption of the output that does not use the set constructor or any other
nonpriniitive construct. This description will be the desired primitive program. In what
follows we will exhibit a successful sequence of transformat ions , without indicating how the
next tnansformatio n at a given stage is selected.

The tr ansformat ions we employ for this exam ple embody no knowledge of the gcd function
itself , but some sophisticated knowledge about functions simpler than the gcd , such as the
following:

For any integers u , v , and w ,

61

-.- -.~~-

- .-~ -. - -~ -- .~ . — -~~. . - -~~ -~~~~~~~~~ -~~~~~~~ -~~~~~-~~~~~~~~~~~~~~

Manna & Wald lnger The Logic of Computer Programming

(a) ulv t> true if v — 3
(any Integer divides zero),

(b) ulv and ulw e> u~v and u w—v
(the common divisors of v and w are the same as those of v and w—v) ,

(c) mar (u : uiv~ v if v > 0
(any positive integer is its own greatest divisor).

In app lying these transformations , we will produce a sequence of goals; the first will be derived
directly from the output specification, and the last will be the desired program itself. Our
initia l goat is

Goal 1. Compute mar {u : u~x and u~y) ,

for any r and y satisfyi ng the input specification. The transformation (b) above,

u iv and u~w i> u~v and ufr v—v

applies directly to a subexpress ion of Goal I, yielding

Goal 2. Compute rnar (u : u~x and u~ —x} .

Note that Goal 2 is an instance of our output specification, Goal I, but with x and y.-x in place
of the arguments x and y. This suggests achieving Goal 2 wIth a recursive call to gcdgoal(x y—
x), because the gcdgoal program is intended to satisfy its output specification for any
arguments satisfying its input specification.

To see that the input specification is indeed satisfied for the arguments x and y—x of the
proposed recursive call , we establish a subgoal to prove the inpu t condition

Goal 3. Prover ? O and y—x � O and (x — Oor y—x - 0).

This input condition is formed from the original input specificatIon by substituting the
arguments r and y—r for the given arguments x and y .

Furthermore , we must ensure that the proposed recursive call will terminate. For this purpose,
we will use the well-founded ordering method of Section IV ; we establish a subgoal to achieve
the following termination condition

62 ‘

L ~~ ~~~~~~~~~~~~~~ . ~~~~~~~~ -,.--- -~~-

-- . ._~~~~~~- . ~~ .

Manna & Waldin ger The Logic of Computer Programming

Goal 4. Find a well-founded set W with ordering > such that
(x y) € W and (x y —x) c W
and (x y) > (x y—x).

Let us consider the input condition (Goal 3) first. Because x has been assum ed nonnegative by
our original input specification , Goal 3 can be reduced to the two subgoals,

Goal 5. Prove , � x ,

and

Goal S. Prove (x • Oor y e x).

W e cannot prove or disprove Goal 5 —- it will be true for some inputs and false for others ——

so we will consider separatel y the case for which this condition is false, i.e., y < x . This case
anal ysis will yield a conditional expression, testing if y x, in the final program.

Case y <x :

We cannot achieve Goal 5 in this case. In fact , the proposed recursive call does not satisfy iLS

input condition; therefore, we try to find some other way of achieving one of our higher goals.

Using the logical identity -

P and Q, <-> Qand P.

we see that Goal I is an instance of itself , with r replaced by y and y by x. This suggests
achieving Goal I with the recursive call gcdgoal(y ~). For this purpose we must establish the
input condition

Goal 7 a 0 and x a 0 and (y eO or r .0)

and the termination condition

Goat 8, , Find a well-founded set W with ordering) such that
(x y) c W and (y x) W
and (x y) > (y x).

Goal 7 is achieved at once; it is a simple reordering of our original Input specification. We can
achieve Goal 8 by taking W to be the set of pairs of nonnegative Integers, because x and y are

known to be nonnegative by our Input specification. In this case y < x , so we take our well-
founded ordering > to be the usual > ordering app lied to the fi rst components of the pairs. (In

63

- -~~~~~~~~~~~~---~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . -.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Manna & Waldin ger The Logic of Com puter Programming

ot her words , (U i u2) > (v 1 02) if u~ U i . )  Having established the Input condition and the
termination condition, we are j ustified in returning the recursive call gcdgoal(y x). Thus, the
partial program completed at thIs stage Is

gcdgoal(x y) <. if y < x
then gcdgoal(y x)
else

It remains to consider the alternate branch of the case ana’ysis , in which y a x. This case
corres ponds to the else branch of the final program.

C a s e y ? x :

Here , we have establIshed Goal 5, a subgoal of the Input condition for the proposed recursive
ca ll gcil goal (x y—x).  It remains to prove the other subgoal of the input condition, Goal 6, that
~ - 0 or y — r. Again , we cannot prove or disprove either disjunct of this goal because they
wr It  be true for some Inputs and false for others. Thus, we can make either x • (1 or y e x a

~‘ .icis for a case analysis; we choose the former disjunct and consider the case in which x — 0 is
ta lse

Case x 0:

We cannot ac hieve Goal 6 here, so we are prevented from introducing the recursive call

~~iigoa/(x y —x) .  We therefore again attempt to apply alternate transformations to the higher—
level goals. Because in this case x — 0, Transformation (a),

u~ii t rue if v 0

app lies to rhe subexpression uix of Goal I, yielding

Goal 9. Compute max{u : (rue and u~y} .

A pp lying the logical transformation

true and P - >  P

pr odrices

Goal 10. Compute max (u : u~ } .

Because y a 0 and (x • 0 or y • 0), by our original input specification , and x • 0, by our case
condition , we know t hat y > 0 at this point; therefore, we can apply Transformation (c)

- 64

_ _  -~~~~ - -- --~~~~ -—--- ~~ 
.
~~~~~~~~~~

.-- -- ---
~

~

Manna & Waid lnger The Logic of Com puter Progr amming

mar{u : ulv} •> V if V > 0

yielding

Goal 11. Com putey.

We have thus reduced the goal in this case to the task of computing y, which involves no
nonprimit ive constructs. The desired program may simply output y. The partial program we

have constructed so far is

gcdgoal(x y) <- if y < r
then gcdgoal (y x)
else if x - 0

then y
else

hnally. we consider the remaining branch in our case analysis.

Case x - 0:

1-lere , the input condition (Goal 3) for our proposed recursive call gcdgoal(x y—x) is satisfied; it
remains, therefore, to consider the termination condition (Goal 4):

Find a wel l-founded set W with ordering > such that
Cx y) € W and (x y — x) € W
and (x y) > (x y — x) .

For the previous recursive call , gcdgoal(y x), we have taken W to be the Set of’ pairs of
nonne gative integers , and > to be the usual > relation on the first components of the pairs. To
ensure the termination of the final program, it is necessary that W and > be the same for both
recursive calls. Unfortunately, the first argument of the proposed recursive call gcdgoal(x y—x)
is x itself , and it is not so that (x y) > (x y—x) in the ordering > we have employed. We
the refore attempt to alter > to establish the termination conditions of both recursive calls
g cd g oa/ (y x) and gcdgoal(r y —r) .

Because in this case It is known that x > 0 (i.e., x - 0 and x ~ 0), we have that y > y—x. We

therefor e extend the ordering to examine the second components if it happens that the first
components are equal; in other words , we revise > to be the lexicographic ordering on the pairs
of nonnegative integers. With the new ordering >, both recursive calls can be shown to
terminate. We have thereb y established Goal 4, and the program can output gcdgoa!(x y—x) in
this case.

o u r final program is

65

~~~~~~~~~~~~ - -~~~~~---~~~~- .- -- . -.. -- ---- ---- - ~~~~~- . 



-
~

-- .- . .  - . ----
~~~
- - - —. -

~~~~
. - --

~~
- .

~~~~~~~~~
-

Manna & Wald lnger The Logic of Computer Programming

gcdgoal(r y) <- if y < x
then gcdgoal(y x)
else I f r - 0

then y
else gcd goa l(x y—x) .

This pi-ogram is similar to our subtractive gcd algorithm (Program A), but its tests are
perfor med in the reverse order.

Note that in performing the above derivation , we have ensured that the derived program
termin ates and satisfies the given specificatio ns; thus, we have proved the total correctness of
the program in the course of its construction.

From the above exam ple. we may extract some of the basic principles that are frequently used
in program develo pment.

• t~ans forrna t ion rules . The program is developed by applying successive
transformation rules to the given specifications. The rules preserve the
meaning of the specifications , but tr y to replace the nonprimitive
contructs of the specification language by primitive constructs of the
programming language.

• conditional introduction - Some transformation rules require that certain
conditions be true before the rules can be applied. When a
transformation requires a condition that we cannot prove or disprove,
we introduce a case analysis based on that condition, yielding a
conditional expression in the ultimate program.

• recursion introduction. When a subgoal is an instance of the top goal
(or any higher—level subgoal), a recursive call can be introduced,
provided that the input specification of the desired program Is satisfied
by the new arguments, and the termination of the recursion can be
guarante ed.

The above example illustrated the construction of a recursive program from given
speci f ications If we wish to contruct an iterative program instead , alternate techniques are
necessary. In our next example we will illustrate some of these techniques.

In constructin g the recursive program we did not allow ourselves to use any of the properties
we know about the gcd function it3elf , but only the properties of subsidiary functions such as

66

~

.— - .

~

-- —--- . . . ~~~~~~
. . . -- --. .

~~~~~~~~~~
—- -— .



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~- - .

Manna & Wald inger The Logic of Computer Programming

division and subtraction. In constructing the iterative program, however , we faci litate the
process by admitting the use of several properties of the gcd function itself:

For any integers u and u

(a) gcd(u v) — v i f u — O a n d v > 0

(b) gcd (u u) — gcd (rem(v u) u) if u > 0 and v � 0,

where rcrn(v u) is the remainder of dividing v by u. We further simplify the task by assuming
the stronger input assertion

x0 > 0 and Yo > 0.

We write our goal directl y in terms of the gcd function

Goal 1. lnput(r0 y0)
{ x o > O and yo > 0 }
achieve z = gcd(xo Yo)
z gcd(x0y 0 }

output (z)

Here , to achieve a relation means to construct a program segment assigning values to the
program variables so that the relation holds. Note that we have annotated the goal with the
plogram ’s input and output assertions .

It is understood that “gcd ” is part of the assertion language but not a primitive construct of our
programming language, so it does not suffice merely to set a to be gcd(x0 yo) ; we are forced to
rep hrase our goal in terms of more primitive constructs.

Because r0 and Yo are input values , whic h we will want to refer to later , we introduce new
program variables x and y whose values can be manipulated . Consequently, the above goal is
replaced by the equivalent subgoal

Goal 2. Input(x0 y~)

{x 0 > O a n d y0 > 0 J
achieve a .‘gcd(x y) and gcd(r y) . gcd(x0 yo)

a - gcd(r0 yo)
output (z)

Using Property (a), that

_ _ _ _ _
I -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _

_
- -~~~~ --. - ~~~~ .

Manna & Waldinger The LogIc of Computer Programming

gcd(u v)~. v i f u = O a n d v > 0 ,

we can reduce Goal 2 to the following goal,

Goal 3. input(x 0 yo)
{ r0 > 0 and Yo >. 0 J
achieve z - y and gcd(x y) gcd (x0 yo) and x = 0 and y > 0

{ z gcd(x~ Yo) I -

outpu t (z).

We can now achieve a ~ y by setting a to be y before exiting from the program. We choose to
achieve the remaining conjunction by introducing a loop whose exit test Is x = 0, and whose
i,ivar rant assertion is gcd (x y) gcd(x 0 ye,) and y > 0. (To be certain that gcd(x y) is defined, we
must add t he invariant x � 0, as well.) On exiting from such a loop, we can be sure that all the
con juncts are satisfied. The desired program will be of the form

Goal 4. Input (x 0 yo)
> 0 and Yo > 0 }

achieve gcd (x y) = gcd (r o yo) and x a 0 and y > 0
more: gcd(x y) - gcd(x 0 yo) and x � 0 and y > 0)

if x 0 then goto enough

achieve gcd(r y) - gcd (x0 y~) and x a 0 and y > 0
while guaranteeing termination

goto more

enough: a
~
- y
z = gcd(x 0 y o) I

out put(z).

The variables x and y can be initiallied to satisfy the invariant assertion easily enough by
setting x to x0 and y to Yo In construct ing the loop body, we must ensure not only that the
invari int is maintained , but also that the values of the program variables x and y are altered so
that the program will ultimately terminate, i.e., so that eventually x = 0. For this purpose, we
require that x be strictly reduced with each Iteration.

To reduce r while maintaining the invariant assertion, we use the above Property (b) of the gcd
function , ‘

gcd(u v) - gc d (rem(v u) u) if u ‘ 0 and v a 0 ,

and the additional property of the remainder function, that

0� re m(v u) < u i f u > O a n d v � 0 .

68

Manna & Waldt ngsr The Logic of Computer Prog ramming

Recause we know that x and y are positive (by the exit test and the invariant assertion), we can
achieve the requirements for the loop body by updating x and y to be rern(.y x) and x ,
respectively. The final program, complete with its annotations, is

input(x0 Yo)
{ x 0 >O and y0 > O }
(x y) ~

- (x o y0)
rnor~: ‘{ gcd(x y) — gcd(x 0 yo) and x a 0 andy> 0)

if x - 0 then goto enough
(x y) ~- (rem(,y x) x)
goto more

enou gh: a - y
{ a = gcd(xç, yo) I
output(z).

This is an iterat ive version of the Euclidean gcd algorithm (Program C).

The above examp le allows us to extract some additional principles of program development:

• variable introduction . Introduce program variables that can be
mantpulated in p’ace of input values, and rewrite the goal in terms of the
program variables.

• iteration in eroduaion. If a goal is expressed as a conjunction of several
conditions, attempt to introduce an iterative loop whose exit test Is one of
the conditions and whose invariant assertion is the conjunction of the
others.

There are many other program development technIques besides those encountered In the two
exam ples above. Some of these are listed here:

• generalization . We have observed earlier that in proving a theorem by mathematical
induction, it is sometimes necessary to strengthen the theorem, so that a stronger induction
hypothesis can be used in the proof. By the same token, in deriving a recursive program it is
sometimes necessary to generahze the program ’s specifications, so that a recursive call to the
program will satisf y a desired subgoal. Thus, In constructIng a program to sort an array with
elements A 0, A A~, we may be led to construct a more general program to sort an arbitrary
segment A~

, A 1~ I Aj . Similarly, In constructing an iterative program we may need to
generalize a proposed invariant assertion, much as we were forced to generalIze the Invariant

69

_ _ _ _

Manna & Wald inger The Logic of Computer Programming

assertion gcd (x y) — gcd (r 0 y o) to be z. gcd(x y) — gcd(xo yo) in developing the binary gcd
algorithm (Program D) in Section VII.

• simultaneous goals . Often we need to construct a program whose specificatIons involve
achieving a conjunction of two or more interdependent conditions at the same time. The
difficu lty is that in the course of achieving the second condition we may undo the effects of
achieving the first , and so on. One approach to this problem is to construct a program to
achieve the first condition, and then extend that program to achieve the second condition as
well; in modifying the program we must protect the first condition so that it will still be
achieved by the altered program. For instance , a program to sort the values of three variables
x , ‘~~. and a must permute their values to achieve the output specification ‘x

~ y and y ~ a . ”

To construct such a program, we may first construct a program to achieve x � y and then

extend that program to achieve y ~ a as well, while protecting x � y.

• effluency To ensure that the program we contruct will be efficient , we must be able to
decide between alternate means of achieving a given subgoal. We must consider the effects of
the c hosen transformation s on the time and space requirements of the ultimate program. For
examp le, in constr ucting a gcd program, if we were given a variety of transformations based on
different properties of the gcd function, we might need to decide between achieving the subgoal
“com pute mar(u : ufr.~ and u~y— rJ ” and the subgoal “compute maxju : u~x and uKy/2)) ” .

A discussion of generalization in program synthesis is found in Sikiossy
[1974). An approach to the simultaneous goal problem appears in Waldinger
[19 77J.

The systema tic development of programs has been regarded from two points
of view: as a discipline to be adhered to by human programmers in order to
construct correct and transparen t programs , and as a method by which
programs can be generated automatical ly by computer systems. The first
aspect , referred to as structured programming (see , for example , DahI,
Dij kstr a , and l4oare [1972], Wirth [1974], and Dij lcst ra [1976)), has been
advocate d as a practical method for achieving reliability in large computer
programs. The second aspec t of program development , ca lled program
synthesis , is curren tly being pursued as a research activity (e.g., see

Buchanan and Luckham [1974], Manna and Waldinger [1975], and Darlingtorr
[1975]).

Althoug h the techniques of structured programming are sufficiently we ll-
specified to serve as a guide to the human programmer , much needs to be
done before his performance can be imitated by an automatic system . For
instance , at each point in the development of a program, a synthesis system
must decide what portion of the specifications will be the next to be

70

_

Manna & Waldinger The Log ic of Computer Programming

transform ed end select an appropriate transformation from many plausible
candidates. In inti oducing • ioop or recursive call it may riced to find a
suitabte generalization of the goal or the proposed invariant assertion.
Furthermore , a synthesis system must have access to knowledge of the
properties of the operations Involved in the program being constructed end
be able to use this knowledge to reason about the program. To some extent
these problems are shared by verification systems, but the synthesis task is
more difficult than verification , because it receives less help from the human
programmer and demands more from the computer system. Consequently,
automatic program synthesis is still in an experimental stage of development ,
and does not seem likely to be applied to practical programming problems in
the near future.

In the exam ples of program development we have seen so far , we have used the given
specif ication as a basis for constructing a completely new program. We have Introduced no
mechanisnas for taking advanta ge of work we may have done previously in solving some
related problem. This situation conflicts sharply with ordinary programming practice , where
we are often altering or extending old programs to suit new purposes. In our next example we
will assume that we are given a program with Its original specifications plus some additional
specifications; we will extend the program to satisfy the new specifications as well as the original
ones Thus, although we may add new statements or change old ones in the existIng program
to achieve the new goal, we will always be careful that the program still achieves the purpose
for which it was originally intended.

We suppose we are given a program to compute the gcd of two positive integers, and we want
to extend it to compute their least common multiple as well. The least common multiple of x
and y, or lcm(x y), is defined to be the smallest positive integer that is a multiple of both r
and y; for example, Ic,n(l 2 18) - 56. Now, of course we could construct a completely separate
program to com pute lcm(x y) . but in fact the gcd and the 1cm are closel y related by the Identity

(a) gcd(r y) . lcm(x y) - x ’y.

(For examp le, gcd (12 18) ./c m(i2 18) - 6. 36 - 216 . — 12. 18.) We would like to take advantage
of the work being done in the gcd program by adding new statements that will enable it to
compute the 1cm at the same time.

Suppose the given gcd program, annotated with its assertions, is as follows:

71

-~~~~~~~~~~

-~~~~~~ .—~~~~~- - -
~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~~~~~~~~~~

- . - _ _ _ _ _ _

-f

I

Manna & Wald inger The Logic of Computer Programming

tnpu t (x 0 y~
)

(x 0 > 0 and y
~

> 0)
(x y) .- (x0 Yo)

more: (gcd(x y) - gcd(x0y0) and x � 0 and ,> 0)
if x - 0 then goto enough
If y > x th sny .- y— r slier .- r—y
goto more

enough: (y - gcd(x0 yrj)
output (y).

This is a version of our subtractive algorithm (Program A) for computing the gcd of positi ve
integers only.

The extension task is to achieve~the additional output assertion

lc,n(x~ y o) -

as well as the original output assertion

y - g c d(xo,o) .

In the light of the Identity (a) relating the gcd and the 1cm , the most straightforward way to
achieve this new assertion is to assign

.- (r 0-y 0) Iy

at the end of Program A. However, Program A itself computes the gcd without using
multiplication or division; let us see if we can extend the program to compute the 1cm using
only addition and subtraction.

One approach to program extension reflects a technique we already used In developing a new
program: we try to find an additional intermediate assertIon for the program, usually Involving
new variables , that will Imply the new output assertion when the program halts. We then alter
the program by initializing the new variables so that the additional intermediate assertion will
be satisfied the first tIme we enter the loop, and by updating these variables In the loop body so
that the assertion will be maintained as an invariant evety time we travel around the loop. As
in proving the correctness of a program, the choice of suitable intermediate assertion may
require some Ingenuity.

For instance, it would suffice If we could extend the program by introducing the relation

-

72

-~~ ~~~~~~~~~~~~~~~~~~~ - .,

Manna & Waldinger The Logic of Computer Programming

as a new intermediate assertion in addition to our original assertion

gcd(x y) - gcd(xo yo) and r � 0 andy>0 .

This relation Implies the new output assertion, because when the program halts, y will be
gcd(x0 yo). and therefore x ’ will be tcm(x0 yo)• If we initialize x ’ to be x0, t his relation will be
satisfied the first time we enter the loop, because y is initialized to y

~
. However, we still need

to update the value of x ’ as we travel around the loop so that the relation is maintained; this
turns out to be a very difficult task.

A successful new intermediate assertion is the much less obvious choice

(b) x ’.y + x .y ’ -

where x ’ and y ’ are both new variables. This relation does Imply the output assertion, becausex - 0 and y - gcd(xo yo) when the program halts. Furthermore, because y Is initialized to yo.
we can ensure that the relation will be true the first time we enter the loop by initially assigning

(x ’ y ’) .- (x0 0).

Finally, we can maintain the relation when control passes around the loop: Considering the
case in which y > r, let us rewrite the relation (b) as

x ’. ((y—x)+x) + x.y ’ - xo.yo .

A fter y is reset to y—x , a new relation holds :

x ’.(y +x) + r .y ’ -
i.e.,

r ’.y + x.(, ’+x ’). r0.,0.

Hence, to restore our intended invariant asserton, it is only necessary to assign

in this branch of the loop body.

In considering the other branch, for which y ~ X , we merely reverse the roles of’ r and y, and
of x ’ and y’; thus, we can restore our intended invariant by assigning

in this case.

‘S

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 



-- -
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. - .. ---
~

~~~~~~~~~~~~ --

Manna & Waldinger The Logic of Computer Programming

It is clear that the changes we have introduced do not affect the truth of the program’s original
assertions , because we have only altered the values of the new variables x ’ and y’, w hich do
not appear in those assertions. The complete program, which computes both the gcd and the
1cm at the same time, is

Program E (the extended algorithm ):
input(x0 yo)
{ x0 > 0 and Yo > 0
( x y x ’y ’) 4 - ( x 0y 0 x0 0)

more: { gcd(x y) - gcd(x 0 yo) and x �  0 and y >  0
and x ’ .y .1. x .y ’ - x0.,0

If r 0 then goto enough
if y x then (y y ’) i.~ (y—x y ’+x ’) else (x x ’) ~ (x—y x ’+y ’)
goto more

e~iou g h: y - gcd(x 0 yo) and x ’ - lcm(r 0 yo) } -

outp ut (y x ’).

This program computes the (cm as a byproduct of computing the gcd , using only the addition
operation Given the intermediate assertion (b), it is purely mechanical to extend Program A to
Progtam i.e., Choosing a successful Intermediate assertion , however , is still a mysterious process.

In the above example , we were careful that the program being extended still achieved Its
original purpose, computing the gcd of Its arguments. It sometimes happens that we need to
adapt a program to perform a new but analogous task. For example, a program that computes
the square root of a number by the method of “successive approximations” might be adapted to
compute the quotient of two numbers by the same method. In adapting a program we want to
niaintain as much as possible of its original structure , but we change as much as necessary of its
detai ls to ensure that the altered program will satisfy the new specifications. If we have proved
the correctness of the original program, it is possible that we may also be able to adapt the
proof in the same way to show the correctness of the new program. Program debugging may be
considered as a special case of adaptation, in which we alter an incorrect program to conform
with its intended specifications.

Program adaptation has been studied by MoIi~ Soloway, and Ulrich [1977], and
an experimental program adaptation system has been produced by Dershowitz
and Manna [1977]. Automatic debugging has been discussed by von Henke
and Luckhem [1975] and by Katz and Manna [1976].

In this section , we have discussed logical techniques for program development
from given input-output specifications. Other approaches to the construction
of programs , under the general rubric of automatic programming, have used

74 

~~- .--~~~~~~~~~~ _ --.- -~~~~ -~~~~~~~~~~~~~~~~~~~~ - .-- -- —. —... - -~~~~~~~~~~~~~~~~~~~~



- -  - - —~~~~~~~~~~~~~~~ --- -. ------ ---.-- - - - .- -.- .- -

Manna & Weldinger The Logic of Computer Progr amming

more informal methods of program specification and less systematic
techniques f or program development; a survey of the entire field of automatic
programming is provided by Biermann [1976]. Alternate approaches to
automatic programming include

• giving typical pairs of inputs and outp uts i e.g., (A (B C) D) —, CD (B C) A)
suggests a program to revsr s e a l ist. A system that accepts such
specifications must be able to generalize from examples (e.g., see Hardy
[1975) and Summers (1976)). Sample input -output pairs are natural and easy
to formulate , but they may yield ambiguities , even If several pairs are given.

• giving typical traces of the execution of the algorithm to be encoded; e.g.,
the trace (12 18) -. (6 12) -. (0 6) -. 6 suggests that the Eucl idean gcd
al gorithm is to be constructed (see Biermann and Krishnaswamy [1976]). To
formulate such a specification , we must have a particular algorithm in mind,

• engaging in a natural-language dialogue with the system. For instance , in
specifying an operating system or airline reservation system, we are unlikely
to formulate a complete and correct description all at once. In the course of
an extended dialogue, we may resolve inconsistencies and clarify details (see
Balzer [1972), Green [1976)). The use of natural language avoids the
necessity to communicate through an artificial forma lism, but requires the
existence of a system capable of understanding such dialogue.

• constructing a program that “almost” achieves the specifications , but is not
completely correct , and then debugging it (see Sussman [1975]). This
technique is similar to the way human programmers proceed and is
par ticularly appropriate in conlunction with the natural-dialogue approach, in
which the specifications themselves are likely to be incorrect .t first ,

Acknowledgement s:

We would like to thank Jan Derksen, Nachum Dershowltz, Clarence Ellis, John Guttag, James
King. Donald Knuth, Derek Oppen, and Am Er Pnueli for discussions helpful in preparing this
paper. We are also grateful to the following members of the Theory of Computing Panel of
the NSF Computer Science and Engineering Research Study (COSERS) -- Richard Karp,
A lbert Meyer, John Reynolds, Robert Ritchie, Jeffrey Uflman, and Shmuel Winograd —— for
their critical comments on parts of the manuscript.

In our writing we have drawn on the wealth of material about the greatest common divisor and



- ,-.--- .~ .~ — 

Manna & Waldinger Th e Logic of Computer Progr amming

the algorithms that compute it included in Knuth [1969). Information about catastrophic bugs
in spacecraft guIdance systems was provided by members of’ the staff of the Jet Propulsion
Laboratory, Pasadena, California.

References:

Many recent introductory programming texts touch upon the topics we have
discussed here; furthermore , there are several textbooks that are devoted
exclusivel y to these issues. Manna [1974], Greibech [19751, end Bird [19761
all give a fairl y theoretical treatm ent of the correctness and termination of
programs. Dijkstra [1976] emphasizes the development and optimizatIon of
programs , in his own inimitable style.

Aho, A. B. and J. D. h u m a n  [1973], The theory of parsing, translation, and comp iling, Vol.
2; Compilin g, Prentice—Hall, Englewood Cliffs, NJ.

Ashcroft , E. A . (Feb. 1975], Provin.g assertions about parallel programs , JCSS, Vol. 10, No.

“ pp. 110—135 .

Ashcrott , E. A,, M. Clint , and C. A, A . Hoar. (1976], Remarks on ‘Program proving: jumps
and functions by M . Clint and C. A. R. Hoar.’, Acta Informat ica , Vol. 6, pp. 317-
318. -

A shcroft , E. A , and W. Wadg e (July 1977], LucId , a non procedural language with
iteration , CACM , Vol. 20, No. 7, pp. 519—526.

Baizer , A. M. (Sept. 1 972], Automatic programming, technIcal report, Information Science
Institute, University of Southern California, Marina del Rey, CA.

Biermann, A. W. (1975), Approaches to automatic programming, in Advances in compu ters ,
Vol . 15, Academic Press, New York, NY , pp. i-~3.

Blerm.nn, A. W. and A. Krlshnaswamy (Sept. 1976], Constructing programs from example
computatio ns , IEEE Transactions on Software Engineering, Vol. 2, No. 3, pp. 141-153.

Bird, A. (1976], Programs and machines — An introduction to the theory of computation , John
Wi ley and Sons, London.

76



Manna & Wald inger The Logic of Comput er Progra mming

Boyer , A . S., B. Elspas , and K. N. Levitt [Apr. 1976], SELECT — A formal system for
testin g and debugging programs by symbolic execution, Proceedings of the International
Conference on Reliable Software , Los An geles , CA , pp. 231-245.

Boyer , R. S. and J S. Moore (Jan. 19763, Provin g theorems about L I S P  functions , JACM ,
Vol. 22, No. I, pp. 129-144.

Brent , A. P. [1976], Analysis of the binary euclidean algorithm , in New directions and recent
results in algorithms and complexity (J.F. Traub, ed.), Academic Press, New York , NY.

Buchanan , J. R. and D. C. Luckha m [May 1974], On automating the construction of
pro grams , technical report, Artificial Intelligence Laboratory, Stanford University,
Stanford , CA.

Burstail, A. M, (Feb. 19093, Proving properties of programs by structural induction,
Computing J., Vol. 12, No. I, pp. 4 1-48.

Burstall, H. M. [Aug. 1974], Program proving as hand simulation with a little induction ,
Information Processing 1974, North-Holland, Amsterdam, pp. 308-3 12.

Burstali , H. M. and J. Dariington (Jan. 1977], A tranformation system for developing
recursive programs , JACM , Vol. 21. No. 1, pp. 44-67.

Chandra , A. K. and Z. Manna [Sept. 1975], On the power of programming features ,
Computer Languages. Vol. I, No. 3, pp. 219-232.

Clarke , C. M., Jr. (Jan. 1917], Programming language constructs for which it is impossible to
obtain good Hoare-.l ike axiom systems , Proceedings of the Fourth Symposium on
Principles of Programming Languages. Los Angeles, CA , pp. 10-20.

Clint , M. and C. A. A . Hoare (1972], Program proving: Jumps and functions, Ac t a
Info rmatic a, Vo l. I, pp. 214-224.

Cook , S. A. (Jun. 1976], Soundness and completeness of an axiom system for program
verification, technica l report, University of Toronto, Toronto, Canada.

Dahl, 0. J., 1. W. Dij kstra , and C. A. K, Hoar• (19723, Structured programming, Academic
Press, New York , NY.

Darlington, J. (July 1975], A pplications of program transformation to program synthesis,
Colloques IRIA on Proving and Improving Programs, Arc-et-Senans, France, pp.
133 —1 44.

7,



Manna & Wald inger The Logic of Computer Programming

Darli ngt on , J . and A . M. Bur sta l i [Aug. 1973], A system which automatically improves
programs , Proceedings of the Third International Joint Conference on Artificial
Intelligence , Stanford , CA , pp. 179—485.

DeBakker , J . W. and 0. Scott (Aug. 1969], A theory of p rograms , IBM Seminar , Vienna ,
Austria , unpublished notes.

DeMillo , A. A., A. J. Lipton, and A. J. Perils (Jan. 1977], Social processes and proo fs of
theorems and p ro grams . Proceedings of the Fourth Symposium on Principles of
Programming Languages, Los Angeles, CA , pp. 206-214.

Dershowitz , N. and Z. Manna (Jan. 1977], The evolution of programs: A system for
iutornatic pro gram modification , Conference record of the Fourth ACM Symposium
on Principles of Programming Languages, Los Angeles, CA , pp. 144- 154.

Deutach , 1. p. [May 1973], An interacti ve program verifier , Ph.D. thesis , University of
California , Berkeley, CA.

DlJkstra , C. W. (Aug. 1975 ], Guarded commands , nondeterminacy and formal ierivation ,
CA CM, Vo l. 18, No. 8, pp. 453-457.

Dijkstra , E. W. (19702, A disci pline of programming, Prentice-Hall, Englewood Cliffs, NJ.

Oijk stra , E.W. (1977], Pro grammIng: From Craft to Scientific Discipline , International
Computing Symposium (E. Morlet and D. Ribbens, Eds.), North-Holland,
Amsterdam , pp. 23-30.

Earley J. (Oct. 1971], Toward an understanding - of data structures , CACM , Vol. 14 , No. 10,
pp. 617-627.

Cis pas , B., K . N. Lsv itt , and H. J. Waldinger (Sept. 1973], An interactive system for the
verification of compu ter programs, technical report , Stanford Researc h Institute , M~n1o
Park , CA.

Floyd, A. W. (1967], Assigning meanings to programs, Proceedings of Symposium in A pplied
Mathematics , Vol. 19 (J.T. Schwartz , ed ), American MathematIcal Society,
Providence, RI , pp. 19- 32.

Francez , N. and A. Pnuell (Nov. 1975], A proof method for cyclic prog rams, technical report ,
Computer Science Dept., Tel-Aviv University, Tel-Aviv , Israel.

Gerhart , S. 1. (Jan. 1975], ~Correctness—p reserv t ng program transformations, ProceedIngs of

78

L ~~. . .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-.

Manna & Waldin ger The Logic of Computer Programming

the Second Symposium on Principles of Programming Languages, Palo Alto, CA , pp.
54-66.

Gerhart , S. 1. and 1. Ve low ltz [Sept. 1976], Observations of fallibility in applications of
modern pro gramming methodologies , IEEE Transactions on Software Engineering, Vol.
2, No. 3, pp. 195-207.

German , S. M. and B. Wegbre it (Mar, 1975), Proving loop programs , IEEE Transactions
on Software Engineering, Vol. I, No. I, pp. 68-75.

Good , 0. i., A . 1. London ~nd W. W . Bledsoe (Mar. 1975] , An Interactive pro gram
verif icat ion system , IEEE Transactions on Software Engineering, Vol. I, No. I, pp.
59-67,

Green , C. [Oct . 1976 ), The desi gn of PSI program synthesis system , ProceedIngs of Second
International Conference on Software Engineering, San Francisco , CA , pp. 4-18.

Greibach, S. A, [1975], Theory of p ro gram structures: schemes , semantics , verification,
Springer—Verla g. Berlin , Germany.

Guttag, J. V. , C. Horowitz, and 0. H. Musser (Aug. 1977], Abstract data types and
s oftri ’a re validation , techn ical report , Information Sciences Inst itute , Marina del Rey,
CA -

Hardy, S. (Sept. 1975], Synt hesis of LISP pro grams from example s , Proceedings of the
Fourth Internationa l Joint t .”nference on Artificial Intelligence , Tbilisi, Georgia,
USSR , i- i’ 240-245.

Hoare , C. A. A. [Oct. 1969), An axiomatic basis of computer pro gramming, CACM , Vol 12,
No. 10 , pp. 576-580, 583.

Hoare, C. A. A. (1972). Proof of correctness of data representations , Acta Informatica, Vol. I,
No. 4. pp. 271-28 1.

Hoare, C. A. H. (June 1975], Parallel pro gramming: an axiomatic approach , Computer
Languages, Vo l. I, No. 2, pp. 151- 160.

H u l l . 1. C.,  W. H. Enright , and A. E. Sedgwick (Jan. 1972], The correctness of numerical
z ’~ ”, thms ,  Proceedings of the Conference on Proving Assertions about Programs,
Las Cruces . NM . pp 66- 73. 

-

- hs . c A 1. London , and 0. C. Luvkham [1975], Automat Ic pro gram verification I:
4 ‘(U ~~- ‘i~1 i ts implementation , Acta Informatica , Vol. 4 , No 2, pp. 145—182 .

79



- - - - - -
- -

Manna & Waldinger The Logic of Com puter Programming

Katz , S. M. and Z. Manna [Apr . 1978], Logical analysis of prog rams , CACM , Vo l. 19, No. 4 ,

pp. 188-206.

King, J. C. [1969], A pro gram verifier , Ph.D. the sis , Carnegie— Mellon University, Pittsburg h,

PA.

King, J. C. (July 1976], Symbolic execution and prog ram testing, CAC M, Vol. 19, No. 7, pp.
385-391.

Knuth, D.C. [1968], The Art of Computer Pro gramming, Volume I, Addison-Wesley,
Reading. MA , p. 19.

Knuth, 0. I.e., (1969), The Art of Computer Prog ramming, Volume 2, Addison-Wesley.
Reading, MA , pp. 293-338.

Knuth, 0. E. [Dec. 1974), Structured p ro gramming with go to statements , Computing

Surv ey s, Vo l. 6, No. 4, pp. 261-301.

Lampson, B. W. , J. J. HornIng, A. 1. London, J. G. Mitchell, and G. .1. Popek (Peb.
1976), Report on the p rogramming language EUCLID , SIGPLA N Notices, Vol. 12,

No 2.

Liskov , B. H. (1978 ], ,4n Introductio n o CLV, in New Di rections In Algorithmic Languages (S.
A. Schuman , ed ), Institut de Recherche D’Informatlque et D’Automatlque. pp. 139-
l56.

Low , J. H. (1 974], Automatic codi ng: choice of data structures, technical report, University of
Rochester , Rochester , NY.

Luckham , 0. C. and N. Suzuki (1977], Proof of termination within a weak logic of programs ,
Act a Inlormatka , Vol. 8, No. I, pp. 21-36.

Manna , Z. (Juns 1971], MathematIcal theory of partial correctness , JCSS, Vol. 5, No. 3, pp.
239-253. -

Manna, Z. [1974], Mathematical theory of computation , McGraw-Hill , New York , NY.

Manna , Z. and A. PnueII (Ju ly 1970], Formalization of p roperties of functional prog rams,

JACM , Vol. 1 ’?, No. 3, pp. 555- 569.

Manna , Z. and A. Wald inger (Summer 1975], Knowledg e and reasoning in program
synthesis , Art ificial Intelligence. Vol. 6, No. 2, pp. 175—208.

80

_  .~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

Manna & Wald ingsr Ths Logic of Com puter Programming

Manna , Z. and H. Waldlnger (Oct. 1978], Is “sometime ” sometimes better than “always ”?
Intermittent assertions in provi ng prog ram correctness , Proceedings of the Second
1r~ernational Conference on Software Engineering, San Francisco, CA , pp. 32-39.

Mccarthy, J . (1902], Towards a mathematical science of computatio n, In information
processin g, Proceedi ngs of IFIP Congress 1962 (CM. Popplewell, ed), North-
Holland, pp. 2 1-28.

Moll, H., E. Soloway, and J . Uirlch (Aug. 1977], Analogy in program synthesis , Proceedings
of the SIGART-SIGPLAN Conference on Artif ic ial Intelligen ce and Programming
Languages, Rochester , NY. -

Morris, J. H, (May 1971], Anot her recursion induction principle , CACM , Vol. 14, No. 5, pp.
35 1— 354.

-

Morris , J. H. and B. Wegbre lt (Apr. 1976], Subgoal lnductio” CACM , Vol. 20, No. 4 , Pp.
209-222.

Oppen , 0. C. and S. A, Cook (May 1975], ProvIng assertions about programs that
manipulat e data structures , Proceedings of the Seventh Annual Symposium on
Theory of Computing, Albuquerque, NM, pp. 107-116.

Owick l , S. and D. Gries (May 1976], Verifying properties of parallel pro grams: an axiomatic
approach , CACM , Vol. 19, No. 5, pp. 279-285.

Parnas , D. 1. [May 1972], A techni que for software module spettficatton with examples ,
CACM , Vol. IS, No. 5, pp. 330-336.

Paterson, M. S. and C. C. Hewitt (Dec. 1970], Comparative sc hematology, In Record of
Project MAC Conference on Concurrent Sys tems and Parallel Computation , Association
for Computing Machinery, NY , pp. 119-228.

Pratt , V. (Oct. 1976], Semantical considerations on Floy d— Hoare Logic , Proceedings of the
17th Annual Symposium on Foundations of Computer Scienc e. Houston , TX , pp.
109- 121.

Robinson, 1., K. N. Levitt , P. G. Neuma nn, and A, A. Sax.na (Apr. 1975], On attaining
reliable so ftware for a secure operatin g system, Proceedings of the International
Conference on Reliable Software , Los Angeles . CA , pp. 267-284.

Schwartz , J, T. (Mar. 1974], Automatic and semiautomatic optimization of SETL ,

81

Manna & Wald inger The Logic of Computer Programming

Proceedings of the Symposium on Very High Level Languages, Santa Monica, CA ,
pp. 43-49.

Schwarz , J. (July 1976], Event—based reasoning — a system for proving correct termination of
programs , Proceedings of the Third International Colloquium on Automata ,
Languages and Programming, Edinburgh, Scotland, pp. 13 1-146.

Sik iossy, L. (1974], The synthesis of programs from thei r prope rties , and the Insane heuristic ,
Proceedings of the Third Texas Conference on Computing Systems, Austin, TX.

Sites , A. L. [May 1974], ProvIng char computer programs terminate cleanly, Ph.D. thesis ,
Stanford University, Stanford , CA.

Standish , 1. A., 0. C, Harriman, D. F. Kibler , and J. M. Neighbors (Feb. 1976],
Improving and re fining prog rams by program manipulation , technical report ,
University of California, Irvine, CA.

Summers , p.
~~~. (Jan. 1976], A methodology for LISP progra m construction from examples ,

Proceedings of the Third ACM Symposium on Principles of Programming
Languages, Atlanta , GA , pp. 68-76.

Sussman , G. J. (19753, A computer model of skill acquisition , American Elsevier , New York.
NY.

SuzukI, N. (Apr. 1975], VerifyIng prog rams by algebraic and logical reduction, ProceedIngs of
the International Conference on Reliable Software, Los Angeles, CA , pp. 473—48 1.

von Henke , F. W. and D. C, Luckham (Apr. 1975], A methodology for verifying programs ,
ProceedIngs of the International Conference tin Reliable Software, Los Angeles, CA,
pp. 156-164.

Waldlnger , A. J. (1977], AchieveIng several goals simultaneously, In Machine IntellIgence 8:
Machine Representat ions of K nowledge, (E. W. Elcock and D. Michie, ed.), Ellis
Horwood, Chinchester, England.

Weldlnger, H. J. and K. N. Levitt (Fall 1974], ReasonIng about programs, Artificial
Intelligence. Vol. 5, No. 3, pp. 235—316. -

Wang, A. [1970], An axiomatic basis for provi ng total correctness of goto—progra ms , BIT . Vol.
16 , pp. 88-102.

Wegbreit , B. (Sept. 1975], Coal—dIrected program transformation, research report . X erox

Research Center , Palo A lto, CA.

82

—--— ---- 



~ .- - -- - - . - . - - -. - ,-~~~~ - - .~~~~~~~~~~~~-—--- ~~~~~~~ ~~~~~~~~~~~~~~~

Manna & Wald inger The Logic of Computer Programming

Wlrth, N. (Dec. 1974], On the composItIon of well—structured prog rams, Computing Surveys,
Vol. 6, No. 4, pp. 247-259.

Wuif , W. A., H, L. London , and M, Shaw (D.c. 1976], An Introduction to (li e construction
and verification of AL PHARD programs , IEEE Transactions on Software
Engineering, Vol. 2, No. 4, pp. 253-265.

83 

-~~~~~~~-~~~~~~~~~~~~~ - - - - -~~~~~~~~~~~~~.-~~~~


