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MOLECULAR BEAM STUDIES OF MODEL
CATALYTIC CHEMICAL REACTIONS

Of the many areas of interest to chemists and physicists, the field of
heterogeneous catalysis has proven to be one of the most intractable to both
experimental and theoretical investigation. In recent years the field has
tended to become more multidisciplinary and most basic heterogeneous catalysis
research is now considered a subset of the new field of '"surface science."
Whereas, much of our present understanding of the interactions of atoms, mole-
cules and ions is the result of beam-type experiments in the gas phase, it is
only recently that molecular beam studies of chemical interactions with surfaces
have been undertaken with any degree of success. The technique is a powerful
but specialized one that requires stringent experimental control of the surface
as well as of the reacting species. This requires the use of clean, well defined,
single crystal surfaces as the catalytic substrate.

The essence of a molecular beam experiment involves generating a well defined
flux of atoms or molecules which, in catalysis studies, is directed onto a test
surface. Reactions between two species can be studied by mixing two reactants
in the beam, or by introducing a second reactant as an uncollimated gas at low
pressures (below 10'4 torr) over the surface.

Many beam experiments are performed using simple Knudsen cell or effusive
beam sources, but modern '"supersonic nozzle'" sources offer many advantages.

The supersonic nozzle source operates by expanding a high pressure gas adiabatically

through a tiny orifice, thereby obtaining a nearly monoenergetic beam. By '"seeding"




heavier gases in a lighter, faster moving gas like He, the nozzle source is
capable of generating kinetic energies up to about 10 eV. Additional benefits
of the supersonic nozzle are increased beam flux and a degree of control over
the internal energies (vibrational and rotational) of the beam, independent of
its translational energy. Early nozzle source systems required tremendously
large vacuum pumps to handle the large gas loads they produced, but today's
well designed system can be adequately pumped by a 6" or smaller diffusion pump.
Surfaces suitable for beam studies can be obtained by starting with bulk
single crystals that are mechanically and chemically polished, then placed in
ultra-high vacuum where they are cleaned by sputter etching, usually with argon
ions at energies of a few kilovolts. Single crystal surfaces for beam studies
can also be produced in situ by the epitaxial growth of vacuum evaporated films
on crystalline substrates such as cleaved mica or alkali halides. After prep-
aration, crystal surfaces are usually analyzed for chemical composition using
Auger electron spectroscopy (AES) and/or X-ray or ultraviolet photoelectron
spectroscopy (XPS, UPS) and the surface lattice geometry studied using low
energy electron diffraction (LEED). These surface-sensitive probes are now
part of the standard repertoire of surface science and their off-the-shelf
commercial availability has given great impetus to this field in recent years.
While LEED provides a means of determining the repeated geometrical arrange-
ments of atoms (including adsorbates) on the surface, random topological features
such as steps, kinks and other faults and defects that vary from the ideal regular
surface array can be investigated more readily by means of thermal energy atom
scattering (TEAS). By comparing the scattering intensities of atoms such as helium,
a measure of the atomic scale smoothness of the surface can be obtained. Like
x-rays, the wavelength of thermal energy helium atoms is less than one angstrom,
so that diffraction of He atoms from surfaces can also sometimes be observed.
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Such diffraction was first observed as intense peaks in the scattering of He and
H2 from cleaved LiF surfaces by Estermann and Stern in Germany only shortly after
Davisson and Germer first observed particle/wave effects in the scattering of
electrons. On metal crystal surfaces the interaction potential energy variation
across the surface is typically much less than on ionic crystals like LiF, so
that these surfaces look much smoother to the incident atoms. However, it has
been possible to observe helium and hydrogen diffraction from tungsten, tungsten
carbide, and, very recently, from Ag(lll)(l) surfaces. Since thermal energy atoms

do not penetrate the surface they are an ideal surface probe and (TEAS) promises
to become an increasingly important quantitative technique for probing surfaces.
Surface structure, phonon spectra, and adsorbate coverages are currently being
studied in several laboratories using this techniques.

In our laboratory we are using molecular beam techniques to study simple,
surface catalyzed chemical reactions with the hope of understanding more completely
the various steps involved in the reaction path, i.e., chemisorption, surface
diffusion, recombination and desorption. Most of this work has been done on
epitaxially grown single crystal films produced in situ. We have been able to

prepare a variety of single crystal metal surfaces, including Pt, Ag, Au, Ni, Co,

Fe, Pd, Al, Mg and Cu, by vacuum evaporation onto cleaved micé substrates. These

films can be routinely prepared once the proper '"recipe'" has been determined,

i.e., deposition rate, and substrate temperature. Epitaxial films are usually
limited to one, or possibly two, crystal faces because the thermodynamics of
crystal growth favor the minimum free energy surface. For example, face centered
cubic (FCC) metals like Pt, etc., grow with the (111) surface exposed. However,
minimum energy surfaces also predominate on polycrystalline materials, so they
are often the most relevant in terms of characterizing the catalytic activity of
the material. By varying the crystal growth parameters, polycrystalline or even
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amorphous films can also be obtained. This ability to vary the surface structure
is important since some catalytic reactions have been found to be structure
sensitive. For example, the dissociative chemisorption of oxygen and hydrogen

on platinum has been studied extensively by molecular beams and other modern
techniques. Somorjai and co-workers at Berkeley have shown, for example, that

the surface '"steps' provide sites that are more active for both oxygen and

(2)

hydrogen chemisorption. The theoretical explanation of this observation has
focused on the degree of coordination of the surface atoms, i.e., the number of
nearest neighbors, and the resulting changes in the electronic structure of the

(3)

more exposed atoms at step sites. Although the idea of localized active
sites is an old one in catalysis, modern experimental surface techniques now
allow investigators to begin to identify the nature of these sites and the
particular role they play in the reaction path.

The question of the relevance of molecular beam and other experiments carried
out at very low pressures, 10-10-10-5 torr, to the ''real" world of high pressure
commercial processes, is often raised. In reply to this question there are
several important facts that can be cited in support of work at low pressures.
First, with surface reactions the relevant parameter is the surface coverage which
usually has a very mild dependence on pressure. Second, when the kinetics of the
reaction are optimized, the rapid removal of reactants keeps surface coverages

quite low, sometimes less than a monolayer at high pressures. Last, and most

convincing, the kinetics of fundamental catalytic reaction steps measured on

clean, single crystal surfaces described, in a number of cases, the behavior |
observed at pressures above one atmosphere.

One important feature of molecular beam studies of surface reactions is the

sensitivity limit of the technique. Although sensitivity varies with the !
particular geometry employed, the lower limits of detection usually fall in a

range corresponding to a reaction probability per incident beam molecule of
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about 10’4. Althought this may sound quite low, this reaction probability is

actually enormous when compared with the activities of typical industrial catalysis.

reactions

introduced
surface atom-sec’

In terms of the more familiar ''turnover number," N =
by Boudart for comparison of specific catalytic activities, values of N for
industrial type catalysts are often less than unity, while a reaction probability
per collision of 10'4 corresponds to values of N at atmospheric pressure in the
range of 104-105.

Fortunately, we have found that many reactions involving the small, simple
molecules preferred for molecular beam studies of model catalytic reactions
proceed at readily detectable rates on single crystal transition metal surfaces.
Molecular beam studies of simple catalytic reactions have been used to obtain
important information on the interaction of species such as Hz, 02, co, COZ’ CH4,
Csz, H,

iron, cobalt and silver, and survey investigations indicate that many other gas-

0 and their isotopes with single crystal surfaces of platinum, nickel,

surface systems are also amenable to study using beams.

Our molecular beam studies have produced several surprises which have forced
us to re-evaluate some of the traditional assumptions of catalysis. One such
surprise was the discovery that molecules produced in surface reactions often
desorb with energies that are quite unrelated to the surface femperature. One
striking example of this phenomenon is the desorption of CO2 from platinum surfaces
where the molecule has been observed to desorb with a kinetic energy excess of

(4)

about 7 kcal/mole. This is roughly equivalent to a gas temperature of 3500°K,

although, since the energy distribution is not Maxwellian, the term 'temperature"

is used rather loosely. A similar behavior has also been observed when hydrogen

(5)

Internal energies can also

(6)

desorbs from platinum, nickel and copper surfaces.
be similarly non-equilibrium following desorption of molecules from surfaces.

Now that the reasons for this behavior are beginning to be understood it appears

S




that '"non-equilibrium'" desorption of reacted species is actually a fairly common
phenomenon. For further theoretical and experimental details the reader should
peruse the articles cited above. One consequence of these findings is that we
must now reexamine the various chemical rate theories which generally assume that
reactions proceed through a series of isothermal steps. It now seems possible
that many chemical steps proceed very nearly adiabatically just like the chemical
transitions that occur during desorption and chemisorption of gases on surfaces.
Significant changes in chemical rate theory will inevitably occur if this indeed
proves to be the case.

Another important result of beam studies of the kinetics of surface reactions
concerns the relationship of the mechanism to the kinetics of these processes.
Traditionally, chemists have considered essentially just two basic mechanisms for
the chemical interaction of molecules on a surface. The first or Langmuir mech-
anism assumes that both interacting species adsorb onto the surface and then interact
chemically as one or both species migrate across the surface. Rideal proposed an
alternate reaction mechanism in which just one species is adsorbed and interacts
more directly via impact with another species from the gas phase. The kinetics
of these two cases have been discussed for many years in various papers and texts
on the subject. However, in doing careful kinetic experiments on model catalytic
reactions, it has become clear that it is often not possible to distinguish these
two mechanisms from the kinetics alone. For example, in the much studied case
of CO oxidation on platinum there are temperature/pressure regimes where the
reaction is best described by Rideal kinetics even though more direct beam
evidence indicates that the reaction proceeds via the interaction of rapidly
diffusing surface CO with tightly chemisorbed oxygen atoms; i.e., the classic
Langmuir mechanism. Actually, this is but one example of a rather general
problem in chemical kinetics. Indeed, by choosing the appropriate rate limiting
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steps almost any reaction model can be made to yield the observed kinetics.
This underlines the need for the kind of direct experimental evidence regarding
chemical reaction paths that molecular beam experiments provide.

Our most recent experiments with molecular beams have been studies related
to methanation synthesis from HZ/CO mixtures over nickel, cobalt and iron
catalysts.(7) During the course of this work it was found that the activities
of nickel and cobalt could be enhanced dramatically by the introduction of small
amounts of subsurface oxygen to the catalyst. This can be accomplished by heating
the catalyst in oxygen followed by mild reduction in hydrogen below 600°K. This
procedure products subsurface oxygen which is stable in H2/C0 mixtures up to
~v600°K. For nickel, the increase in methanation activity, compared with the
clean surface, is more than an order of magnitude while, with cobalt, the
activity increases more than two orders of magnitude. The activity of iron, on
the other hand, decreases when oxygen is introduced into the surface lattice.
Other workers have noted an increase in the methanation activity of rhodium with

(8)

oxygen treatment and surface oxygen is suspected of playing an important role
in the catalytic activity of platinum as well.(g) By noting subtle changes in
the electronic properties of these surfaces that result from the introduction of
oxygen into the surface lattice using, for example, photoelectron spectroscopy,
it may be possible to identify the physical interaction that is responsible for
the high catalytic activities of these surfaces.

In addition to the oxygen enhancement effect, the molecular beam experiments
give strong, albeit indirect, evidence that the methanation proceeds via a labile
surface carbon intermediate, at least on the active, oxygen treated surfaces.
Several other workers have also reached similar conclusions in recently published
work.(lo) Thus, it appears that the old '"carbide" theory that lost favor as the

mechanism in Fischer-Tropsch synthesis may experience a revival as the dominant
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mechanism in methanation synthesis. However, this issue is far from resolved
and alternate mechanisms involving intermediates such as CHO and CHOH are not
without their proponents. Ultimately, this and other problems in catalysis will
be resolved, not by deductions based on the kinetics of “he overall reaction,
but by direct observation of surface chemical intermediates using the various
spectroscopies now available for this purpose.

Those of us working in the field of surface science are particularly aware
of the development during the last decade of an unprecedented number of new
tools for surface investigation. The full utilization of these techniques has
been a slow process requiring the collective efforts of many researchers, each
contributing to the various technical and theoretical problems associated with
each technique. The collective expertise that now exists with the various
complementary surface investigative techniques such as LEED, AES, UPS, XPS (or ESCA)
and, of course, molecular beams is now beginning to be applied in earnest to
significant problems in catalysis and other surface related areas. The indications
from this vantage point are that the fieldis just beginning a period of unprecedent-
ed productivity. The implications for catalysis and other surface related tech-
nologies are enormous.
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