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SYMBCLS

Aij~ Bij Unknown coefficient of assumed
deflection functions

AR1, AR2, AR Aspect ratios of plate element 1,
element 2, and combined elements,
respectively
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Eh 3/12 (1—u2)
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tion ; time dependent
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SECTION I

INTRODUCTION

At the present time, a great deal of attention is being directed to

turbine engine structural durability. Emphasis is now placed on either

extending or extracting the maximum useful life f rom engine hardware .

With major advances being made in fracture mechanics , the day may soon

arrive when an engine ’s structural components will be designed to

satisfy a damage tolerance criteria similar to that employed on air-

frames today. Therefore , total understanding of the effect of dis-

crepancies, I.e., flaws and cracks on engine hardware, is necessary

before such an approach to design can be feasible .

One area which may be especially sensitive to these discrepancies

is turbine engine blades (i.e., fan, compressor , and turbine). Engines

are designed to meet certain requirements which are determined by blade

response (I.e., flutter boundaries , engine order blade excitations,

etc.). Both blade flutter and frequency response are dependent upon

material and mechanical damping characteristics , blade mode shapes,

and natural frequencies of excitation. This paper will explore the

effects of cracks on the mode shapes and frequencies of blades. For

the purpose of portraying the relative effects of cracks, a flat plate

with an aspect ratio of two will serve Es the blade model for this

investigaUon .

Much work has been directed to the solution of the flat plate

vibration problem. Extensive documentation (Reference 1) of upper and

1



I
lover bounds of solutions for various plate geometrics has meticulously

defined what the exact value of solution would be, provided it could

be obtained. Various techniques to solution have been employed yield-

ing reasonable accuracy , however, no exact solution is available for the

nonuniform (cracked) boundary value problem. Probably one of the most

powerful tools for the solution of a problem of this nature is that of

the finite element theory. The utility of such an approach to solution

is questionable whon a more direct, simplified , and economical means

of solution is available; namely, the energy solution. It is unfortu-

nate that some energy approaches to solutions (i.e., Rayleigh, Galerkin)

have masked the power of this type of approach. The major drawback of

these approaches has been the need of selecting “appropriate” shape

functions which satisfy the geometrical constraints and approximate

the modes of vibration . The accuracy of the solutions are primarily

dependent on these assumed functions . Ritz (Reference 2) demonstrated

that through the use of a truncated series, properly employed, an upper

bound on the true solution to deformable body problems could be obtained .

The benefits of using an approach to solution as eluded to by Ritz can

best be summarized as follows (Reference 3). “Advantages of the Ritz

method lie in the relative ease with which complex boundary conditions

can be handled. It is a powerful tool yielding high accuracy in the

deflection analysis . . . The Ritz method can be considered as one

of the most usable methods of higher analysis for solving complex

boundary value problems in the mathematical physics.” The relative

ease and accuracy of this approach combined with the concepts2
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associated with Hamilton’s Law of Varying Action provides an analytical

means of solution for a wide range of applications (i.e., conservative,

nonconservative, stationary, and nonstationary motion of particles,

beams, plates and shells (References 14 through 8).

This paper will concentrate on the stationary motion of the simple

harmonic vibration of thin flat plates. Since no in-plane vibrations

(membrane) will be considered, the out—of—plane deflection w can be

written as a function of the in—plane coordinates x, y , and time, t.

As will be shown, the assumptions associated with linear, plane stress

solutions ma~r no longer be valid to solve a highly nonuniform vibration

problem such as in the crack plate response.

3
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SECTION II

ThEORY

It is often difficult to determine which equation will yield the

best results when solving a particular problem using an energy approach .

Therefore, it is best to start with the most fundamental equation which

encompasses all other energy approaches to solution . Such an equation

was postulated by Sir William Rowan Hamilton and was called by him the

“Law of Varying Action” (Reference 9). It can be mathematically stated

as,

+ W) dt — ~ ~5q~ 1 1  = 0 (1)

where T represents the total kinetic energy of the system and W is the

total work of the forces acting on or within the system .

1. STRAIN-DISPLACEMENT RELATIONSHIPS

For the purpose of this analysis , the plate is considered to be

composed of an isotropic continuum which obeys the elastic stress—

strain relationships . In addition , the assumptions underlying thin

plate theory (plane stress) are assumed valid for the vibrational

analysis. From this assumption we have,

t yz — t zx — a z = O

4
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which reduces the stress—strain relationships to ,

= E (c~~+ v c )x ( l — v 2 )

= E (c + v c ) (2)
~“ (1 — v a) 

y x

T xy = xy

Membrane stresses have not been considered for this analysis (inexten—

sional plate theory) since there are no externally applied (thermal or

mechanical) In—plane loads. From the assumption of small deflections

during vibration , the corresponding strain—displacement equations

reduce to a set of linear equations of the form ,

=x

C (3)
~“ 3y

av 
+1xy ax 3y

With the two assumptions, plane stress and small deflect ions, the

in—plane displacements, u, v, can be expressed as functions of the

out—of—plane deflection , w.

5
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(4)

V =

Substituting Equations 4 Into Equations 3 and combining with

Equations 2 yields ,

2_ 2E / 3 w  3 w
— —

X 
(l_ v 2)\ 3x2

Y ( v z 2)

2...E / 3w
r I —2z _

~~
‘ 2(l + v) \ 3x3y

2. WORK

For the conservative , stationary problem of the free vibration

where there are no external forces , the work of the internal stresses

may be expressed as the volume integral of the strain energy density

function ,

w - - 

~ 
f f f  (a,1 c + °y ~~ + y,~,

) dx dy dz (6)

3. KINETIC ENERGY

The contribution of rotary inertia to the total kinetic energy

has been found to be insignificant for small vibrations of a thin

6
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plate. Therefore , the kinetic energy can be expressed as ,

T .
~ff f  p~

2 dx dy dz (7)

As a result of p, w , ~‘ satisfying natural continuity conditions

within the region occupied by the plate material ,

~qi ‘:: =fff~sc.i dxdydz 
1:: 

(8)

Taking the variation of Equation 7 and combining with Equation 8,

as in Hamilton ’ a Law,

fl 6T dt — — Sq~ 
J

~~~
1 

f
t l I Jj _f . .  dx dy dz ]. dt —

(9)

f JJ dx dy dz 
i::

Integrating the f irst  term of Equation 9 by parts with respect to

time and carrying out the necessary algebraic operations yields,

—f ~[ffJ~ dx dy dz].dt (10)

4. HAMILTON’S ENERGY EQUATION

Substituting Equations 6 and 10 into Equation 1, Hamilton ’s

Law, results In the time integral of the principle of virtual work

,7



f _fff~~~~~~1~ 1z ....ffpax6c x + Oy~S€y + ~~~~~~~ dxdYdz]

(11)

dt — 0

The resulting equation within the time integral in terms of the dis-

placements of the system under consideration is well known,

2 2 2 2 2 2 2 2-

~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(12)

~~~ ~~~ -i
2(1 — ‘v) — — dxdy — ~ Jj~6ii dxdy dt = 0

3x3y 3x3y
A

Assuming simple harmonic motion of the vibrating plat e (free vibra-

tion), the displacement, w, can be expressed as,

~ (x,y,t) = w(x,y) sin ut (13)

Substituting this expression into Equation 12 and collecting terms

yields ,

32w 32w 32w 32w

[
~

2 
ff1~w6wdxdydz - 

ffD ~ ---i 6 + 6 +

3
2
w 3~~ ~2 32w 3

2
v 3

2w 1
v —j 6 — + v —i 6 —i + 2(1 — v) — 6 — ~ dxdy 

~~ 
(14)

3y 3x2 3x 3y 3x3 y 3x3y~ J

— 0 
8
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Recognizing that the integral

2sin wtdt
J t o

cannot vanish for any time, t1, larger than 
~~~~

, implies that the

following condition must exist.

~2 32w 3 w 32w 32w 3 w
w2 
ff~w6wdxdy - ff D ~ 6 — + —i 6 + v +

32w 32w 32w ~2

v — 6 — ~~ + 2(1 — v) — 6 — 
~
. dxdy — 0 (15)

3x3y 9x3y I

Equation 15, as derived is applicable to only simple harmonic motion

of the system .

5. PLATE COORDINATE CONFIGURATION

To aid in satisfying the necessary boundary conditions , the plate

has been modeled as two discrete elements , one of which embodies the

free surface of the crack. The coordinate system used for the

analysis of the combined plate elements is shown in Figure 1.

Dimensional characteristics of the elements served to model the root

crack configuration for a series of crack depths ( %  chord). The

nondimensionalization performed consisted of the following :

9
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— = y/a 
~l 

= x1/b1 ~2 = x2 /b 2

dy1 dy2 = adri dx1 — b1d~1 dx2 — b2d~2

— a/b1 AR2 — a/b 2
AR1 . AR2

Combined Plate AR — __________

AR1 + AR2

6. DISPLACEMENT FUNCTION S

Based on the concepts as defined by Ritz (Reference 2) and knowledge

gained from References 4 through 8, a set of admissable functions in the

form of a simple truncated power series served as the deflection function

for this analysis. The functions used for solving the crack plate

problem are expressed in the nondimensional form,

N M
= g~ ~~~ 

r~) Z E A .~ fl

j=Oi=O

(16)

W ‘ n ) = g~ ~~2’ 
n) Z Z B1~ n

1
~~

J=Oi=O

where the term g(F , n) forces satisfaction of the prescribed

geometrical boundary conditions. The most general form of this func-

tion for the coordinate system, Figure 1, chosen is, Fig 1

— ~~1(1 — ~)
+2fl O1 (1 — ~)O2 (17)

10
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The specific values of the •s and Os in Equation 17 for the two

element solution are,

Element 1: 0
1 

— 2 +1 
— •2 

— 02 
— 0

(18)
Element 2: $1 +2 0l 02 0

For the line of commonality between the two elements the following

continuity conditions are required ,

Displacement: W1 
(1, n) — w2 (0, ii)

Chordwise Slope: W1 (1, r~) — W2 (0, r1) (19)

Spanwise Slope: WL (1, n )  — W2 (0, ii)
y y

The author’s experience (Reference 8) In performing these types of

calculations for the case of beams with discontinuities has shown that

satisfying only the slope and displacement conditions along the con-

necting boundary has provided excellent convergence on the higher order

derivatives corresponding to the moments , shears , and forces.

Satisfying the three continuity requirements , Equations 19, and sub-

stituting the appropriate “g” functions , Equation 18, into Equations

16 yields,

~~~ n) = Z A .~ n
1 + 2

r i

11
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w2 ~~2’ ~~ = Z L A.~ 
j  + 2 

+ ~~ A i~~( j ) n i + 2~ +

j=Oi=O j Oi=O
(20)

N M
Z Z B .
j=2i=O “~

Replacing the deflection functions in Equations 18 with Equations 20

and performing the necessary operation with the operator, 6, where

6w1 = z  ~~ k + 2 ~~

.t=Ok=O

= k + 2
6A ~ ~ 

+ 2~ A
k~ 

+ ~~
.&=Ok=O l Ok=O 

~ =2k=O

results in the set of equations of the form,

E E A1~ {( Kl j j kj  - X M 1 iJ k ~
) + B.~ (K2.3~~ - x 2~~j~k~)] 0 (21)

j=Oi=O

for k = 0 , 1, 2 . . . M

Q = O , l , 2 .  . . N

j = 2 , 3  . . . N

12
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~~
01
~
0
[A 1~ (K2Ti jkI - A 2MT2.~~~ ) + B i j ( K3 .

~~k~ - x2M3 .
3k~)] 

(22)

for k — 0, 1, 2 . . . M
T = 2 , 3 . . .N

. .. N

The recursion formulas for the matrix elements are presented in the

Appendix . Equations 21 and 22 can be expressed in matrix form

as,

[Kl] [KZ] 1 N]J l~42] A

I = 0  (23)
~~]

T [ic) j ~~~~T 
~13] B

1K IM

The 1K and IM are square symmetric matrices of order M (2N — 2).

For a nontrivial solution to this set of homogeneous equations , the

determinant of the coefficient matrix must vanish.

Iti.’ci — x2 t114]l — 0 (24)

13
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SECTION III

RESULTS

Before attempting the solution to the nonuniform cantilever plate

problem using the method of Ritz, a study of the rate and type of

convergence possible was performed . The uniform cantilever plate

vibration problem served to demonstrate the convergence possible

using this approach. A great deal of data, both experimental and

analytical, was available for comparison. Table 1 summarIzes the

eigenvalue comparisons for the various solution schemes .

A convergence study was conducted for the uncracked configuration

on the effects of varying the aspect ratios of the two separate elements

while maintaining the same combined aspect ratio of 2. Table 2

summarizes the results of this study for four different element

combinat ions. As depicted , little variation was noted for the cases

considered . In addition, Table 3 shows the results of a study con-

ducted on the rate of eigenvalue convergence as a function of the

number of terms used in the truncated power series. A study of this

type was not performed on the effect of the number of elements in

the finite element solution due to cost restraints. The average cost

of extracting approxImately 84 eigenvalues and their corresponding

eigenvectors using the direct approach was $15.00. However, the cost

of extracting the first 10 eigenvalues and mode shapes using the finite

element program , NASTRAN , was $150.00. A study was performed and docu—

.inentad (Reference 10) which showed a suf f ic ient  lower bound convergence

for a rectangular cantilever plate with an aspect ratio of 2 using the

14



----- -,~~ ---- 
~~~

-- ---

~~~
---- —--

~~~~ 
•1

same number and type of finite elements. In all cases, good agreement

was obtained for the uniform cantilever plate solution schemes , Ritz,

and finite element when compared to experimental and other analytical

solutions.

With the good correlation between the experimental, direct , and

finite element solutions for the uniform plate , the problem of the

mixed boundary condition plate response was addressed . The crack

• was introduced into the analytical solutions as a free boundary

with no surface interactions . For the experimental test, a narrow cut

was made along the root of the plate attachment. The plate was not

removed from its support throughout the entire testing sequence. An

acoustical siren served as the excitation source. Resonant conditions

were defined by two sepa rate methods .

One approach employed the use of a laser interferometry technique

to visually detect the resonant mode through the laser light inter-

ference patterns . The second method involved the use of an oscilloscope

and a piezo—electric accelerometer. Resonant conditions were determined

by plotting the input forcing function (sinusoidal) agains t the output

signal as relayed by the accelerometer. The plate used for obtaining

the experimental data consisted of an aluminum flat plate 1/8” x 3” x 6”

rigidly constrained at one edge by two solid steel blocks . These

blocks were attached to an air—damped (floating) table. Poisson ’s

ratio (v) of 0.3, mass density of 0.100 lb/in3, and elastic modules (E)
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of 1.0 x l0~ lbf fin
2 were assumed for the analytical portion of the

study.

Figures 2 through 9 portray the eigenvalue results for the first

eight out—of—plane vibration modes. The data depicts the response as

a function of root crack length for the three solution schemes. All

eigenvalues have been normalized to the uniform (uncracked) configuration

corresponding to each solution. In all cases, the experimental frequen-

cies fall below the two analytical solutions. Reasonably good agreement

can be seen in most instances betweer. the finite element and energy

solutions. In addition , Figures 10 through 16 show the variation in mode

shapes as a function of crack length . The experimental mode shapes con-

sist of the holograms taken from the laser setup previously mentioned.

The finite element mode shape plots are contour surface diagrams, whereas

the energy solution generated plots represent positive and negative

out—of—plane displacements.
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SECTION IV

CONCLUSIONS

The results of this work have demonstrated that a direct and

economical solution to the nonuniform plate vibration can be obtained .

Excellent agreement was shown for the uniform plate vibration solution

when compared to those obtained from literature. Comparison of the

results for the nonuniform vibration problem has indicated some

• differences between the theoretical and experimental solutions.

Similar results were obtained for both the finite element and energy

solutions. Figure 17 portrays the relative comparison between the

uniform and nonuniform deviations from the experimental solution.

As shown, a marked increase in the percent difference occurs for the

cracked plate solution. This difference may possibly be explained by

either a breakdown in the assumptions associated with thin plate

vibration theory or the approach used in obtaining the experimental

results. Both results indicate the same type of frequency decay with

increasing crack length, but differ slightly in the absolute value of

this decay. Additional experImental, testing and analysis are necessary

to resolve the problem of the noted difference.

This paper has presented an essential step towards the under-

standing of the effect of cracks on quasi—blade response. It is

apparent from the results that further work in the area of nonuniform

blad e response is warranted before consideration is given to extending

the damage tolerance criteria to gas turbine engine airfoils.
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APPENDIX

MATRIX ELEMENTS

(I + 2)(i + l) (k + 2)(k + 1)
= ________________________

(I + k + l)(j + J, + 1)

(j ) (j — - )( 1 — 1)
= ____________________

(I + k ÷ 5)( j  + .1. — 3)

(i + 2)(i + l) (1) (1 - 1) + (j ) (j - l ) (k  + 2 ) (k  + 1)
13ijk~ 

= —____________________________________________

(i + k + 3 ) ( j + 1 — 1 . )

(j)(1, + 2)(1)(k + 2)
14ijk1 = ___________________

(i + k + 3)( j  + 1 — 1)

(i + 2)(i + l)(k + 2)(k  + 1)
t5ijkl = __________________________

(i + k + 1)

— (i + 2)( i  + 1)(k ) (k + 2)(k  + 1)
+

(2 ) (i + k + 1)

(j)(i + 2 ) ( i  + 1)(k + 2 ) ( k  + 1)

(2)( i + k + 1)

17ijkl — (j ) ( i + 2) (i + l) (~ )(k  + 2 ) (k  + 1)

( i + k +l )  (3)

( j ) (i  + 2) U) (k + 2)
18ijk L - 

(i + k + 3) 
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APPEND IX (CONTINUED)

(1 + 2) ( i  + 1) (k + 2) (k + 1)

19i~kk — __________________________
.1 ( i + k + 1 ) ( L + 1 )

(j)(i + 2)(i + 1)(k + 2)(k + 1)
— ____________________________

(i+k+1)(A+2)

• t11iJ kl — (i + 2)(i  + 1)(I )

( i + k + 3 )

(j ) (i + 2)( i  + 1)(A - 1)
— _______________________

(i + k + 3)

(j)(i + 2)(k  + 2)
113 • — _________________

ijk.’. (i+k+1) (j + l)

(i + 2)( i + l)(k + 2) (k + 1)
k~Q — _________________________

( 1+  k +  1)(j + 1 +  1)

(j)(j — l) (~ )( .~ — 1)

k.i = ____________________

(I + k + 5)(j + J. — 3)

(i + 2)(i + 1)(.t)(.i — 1) + (j ) (j — 1)(k + 2)(k ÷ 1)
116i~k1 = __________________________________________________

(i + k + 3 ) ( j + i. — 1 )

(i + 2)(j)(k + 2)(i)
Ill 

~ 
— ______________________

ijk.,~ (i + k + 3)(j + I - 1)
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APPENDIX (CONTINUED)

1
— ____________________

J (j + k + 5) ( j + .1 + 1)

1
— _ _ _ _ _ _ _ _ _

(i + k + 5)

• 
~
3i4kI-‘ ( j + k + 5 ) ( 2 )

~
4 ijk i (I ÷ k + 5) (3)

1

~
5i’k.t = _ _ _ _ _ _ _ _ _ _ _ _ _ _

(i + k + 5 ) ( L + l )

i
J6 a

ijk (i+k+5)(i+2)

1
‘.17 =

ijk ( i + k + 5 ) ( J + i + 1 )

~~‘ijkI - 

~~ijkI 
+ AR~ •I21jkI + vA4.I3ijkJ 

+ 2AR~(1 - v)I4
~Jk1

+

a I S ijk 9 + a •  161jk1 + a .17i3k1 +

2ci2.AR 1AR2(1 —
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APPENDIX (CONTINUED)

~~iJk~ 
= 019ijk.t + a2 

~
10ijkI + 1AR2~~hhijk~ +

a’AR1~~2
)
~~~

2ijk9 + 2a-AR1AR2(1 — 

~~~~
3ijk~

~
‘3ij kI = 

~~~~
4ij k2 + AR1AR~ •I15ijk~ + ‘~AR1A1~2 116ijk ~ 

+

2(1 — v )AR1AR2-Il7jjkj

• 
~~‘ijk1 ‘~~ijk + a.J2ijk~ 

+ ci 
~

3ijk~ 
+

~~ ijk ~ 
— ciJS

iJId 
+

M3ijkI — cs•J?ijkI
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