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SYMBOLS

Aij’ Bij Unknown coefficient of assumed
deflection functions

AR,, ARZ, AR Aspect ratios of plate element 1,
element 2, and combined elements, {
respectively

a Spanwise length of cantilever
plate

: by, bjy Width of plate elements 1 and 2,

respectively

D Bending stiff :ss parameter

Eh3/12(1-v2)

E Young's Modulus

h Plate thickness

15 3. k% Subscripts indicating element
indicies

m Mass per unit area

M, N Integers which relate to the
number of terms in the truncated
power series

IK, M Plate stiffness and mass matrices

q4 Generalized coordinate $
t Independent variable time

T Kinetic energy

u, v, w Displacements of plate in the

X, ¥, z directions, respectively,
independent of time

W Work

Displacement of plate in x direc-
tion; time dependent

£l
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SYMBOLS
w Differentiation with respect to
time
X, ¥V, 2 Orthogonal cartesian coordinates;

when used as subscripts, they denc:e
partial differentiation

a Plate element's width ratio
by/by

[ Variational operator

x> Cy» Yyy ‘Strains in body: bending and
shearing

Ny & Nondimensional coordinates for

y and x directions; when used as
subscripts, they represent partial

differentiation
A Frequency parameter: plate eigen-
value
v Poisson's Ratio
P Mass density
z Summation 4
Oxs Oys Txy Stresses in body: bending and i
shearing
¢, © Geometric boundary constraint
parameters
w Natural frequency of vibrating
system
9 Partial differential operator
i
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SECTION I

INTRODUCTION

At the present time, a great deal of attention is being directed to
turbine engine structural durability. Emphasis is now placed on either
extending or extracting the maximum useful life from engine hardware.
With major advances being made in fracture mechanics, the day may soon
arrive when an engine's structural components will be designed to
satisfy a damage tcierance criteria similar to that employed on air-
frames today. Therefore, total understanding of the effect of dis-
crepancies, i.e., flaws and cracks on engine hardware, is necessary

before such an approach to design can be feasible.

One area which may be especially sensitive to these discrepancies
is turbine engine blades (i.e., fan, compressor, and turbine). Engines
are designed to meet certain requirements which are determined by blade
response (i.e., flutter boundaries, engine order blade excitations,
etc.). Both blade flutter and frequency response are dependent upon
material and mechanical damping characteristics, blade mode shapes,
and natural frequencies of excitation. This paper will explore the
effects of cracks on the mode shapes and frequencies of blades. For
the purpose of portraying the relative effects of cracks, a flat plate
with an aspect ratio of two will serve as the blade model for this

investigation.

Much work has been directed to the solution of the flat plate

vibration problem. Extensive documentation (Reference 1) of upper and

1




lower bounds of solutions for various plate geometrics has meticulously
defined what the exact value of solution would be, provided it could

be obtained. Various techniques to solution have been employed yield-
ing reasonable accuracy, however, no exact solution is available for the
nonuniform (cracked) boundary value problem. Probably one of the most
powerful tools for the solution of a problem of this nature is that of
the finite element theory. The utility of such an approach to solution
is questionable whea a more direct, simplified, and economical means

of solution is available; namely, the energy solution. It is unfortu-
nate that some energy approaches to solutions (i.e., Rayleigh, Galerkin)
have masked the power of this type of approach. The major drawback of
these approaches has been the need of selecting "appropriate" shape
functions which satisfy the geometrical constraints and approximate

the modes of vibration. The accuracy of the solutions are primarily
dependent on these assumed functions. Ritz (Reference 2) demonstrated
that through the use of a truncated series, properly employed, an upper
bound on the true solution to deformable body problems could be cobtained.
The benefits of using an approach to solution as eluded to by Ritz can
best be summarized as follows (Reference 3). "Advantages of the Ritz
method lie in the relative ease with which complex boundary conditions
can be handled. It is a powerful tool yielding high accuracy in the
deflection analysis . . . The Ritz method can be considered as one

of the most usable methods of higher analysis for solving complex
boundary value problems in the mathematical physics." The relative

ease and accuracy of this approach combined with the concepts

— . v— ——————— S




associated with Hamilton's Law of Varying Action provides an analytical
means of solution for a wide range of applications (i.e., conservative,
nonconservative, stationary, and nonstationary motion of particles,

beams, plates and shells (References U4 through 8).

This paper will concentrate on the stationary motion of the simple
harmonic vibration of thin flat plates. Since no in-plane vibrations
(membrane) will be considered, the out-of-plane deflection w can be
written as a function of the in-plane coordinates x, y, and time, t.

As will be shown, the assumptions associated with linear, plane stress
solutions may no longer be valid to solve a highly nonuniform vibration

problem such as in the crack plate response.




SECTION II

THEORY

It is often difficult to determine which equation will yield the
best results when solving a particular problem using an energy approach.
Therefore, it is best to start with the most fundamental equation which
encompasses all other energy approaches to solution. Such an equation
was postulated by Sir William Rowan Hamilton and was called by him the
"Law of Varying Action" (Reference 9). It can be mathematically stated

as,

tl tl
cEf(T+W)dt-?_T 84, =0 (1)
0 39y o

where T represents the total kinetic energy of the system and W is the

total work of the forces acting on or within the system.

1. STRAIN-DISPLACEMENT RELATIONSHIPS

For the purpose of this analysis, the plate is considered to be
composed of an isotropic continuum which obeys the elastic stress-
strain relationships. In addition, the assumptions underlying thin
plate theory (plane stress) are assumed valid for the vibrational

analysis. From this assumption we have,

yz = Tzx = 0z =0




which reduces the stress-strain relationships to,

g B (e, + ve_ )
o=y - 7
E
gome o ek ve) (2)
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x 2(1 + v) =

Membrane stresses have not been considered for this analysis (inexten-
sional plate theory) since there are no externally applied (thermal or
mechanical) in-plane loads. From the assumption of small deflections
during vibration, the corresponding strain-displacement equations

reduce to a set of linear equations of the form,

= dou
€ Ll
. 9x
e = 9V 3)
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ny Ix y

With the two assumptions, plane stress and small deflections, the
in-plane displacements, u, v, can be expressed as functions of the

out-of-plane deflection, w.




(4)

ow
V= =2 —
ay

Substituting Equations 4 into Equations 3 and combining with

Equations 2 yields,

E o 3%
B e &

E 3
T B - el i -2Z —
o204+ axdy

2. WORK

For the conservative, stationary problem of the free vibration
where there are no external forces, the work of the internal stresses

may be expressed as the volume integral of the strain energy density

function,
& 1 + + T Y dx dy dz (6
W _2 ﬂ (OX ex OY ey Xy XY) ¥y )

3. KINETIC ENERGY
The contribution of rotary inertia to the total kinetic energy

has been found to be insignificant for small vibrations of a thin
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Integrating the first term of Equation 9 by parts with respect to

time and carrying out the necessary algebraic operations yields,

t 5
-f [[[l;)ﬁdﬁ dx dy dz]-dt (10)
o

4, HAMILTON'S ENERGY EQUATION
Substituting Equations 6 and 10 into Equation 1, Hamilton's

Law, results in the time integral of the principle of virtual work,

plate. Therefore, the kinetic energy can be expressed as,
T-—;-fffpézdxdydz (7)
As a result of p, w, w satisfying natural continuity conditions ‘
within the region occupied by the plate material,
3T t . t
— 6q ‘ 1 = ffpﬁdv‘l dxdydz A (8)
3¢ A t
q; 0 0
Taking the variation of Equation 7 and combining with Equation 8,
as in Hamilton's Law,
t oT t t
1 1 . .
f 6T dt - —  sq, I -fl[ffﬁwadxdydz].dc -




f [ fffpﬁéﬁdxdydz -fff(o de, + o 6(»: + Txstxy) dxdydz]

(11)
dt = 0

The resulting equation within the time integral in terms of the dis-

placements of the system under consideration is well known,

2 2 2 -
jﬁ 2% 3w e % @ oW e oa
= D;—6—+—6—+v—- -—2+v—6-—2+
€ [ ff ax?  ax® ay- oy x* 3y ay?  ax
A
12)
2% % i 1
2:(1 -v)—m@/ 6 — dxdy—ﬁffﬂéwdxdy dt = 0
9xdy  9xX3dy
A
Assuming simple harmonic motion of the vibrating plate (free vibra-
tion), the displacement, w, can be expressed as,
w(x,y,t) = w(x,y) sin wt (13)
Substituting this expression into Equation 12 and collecting terms
yields,
azw 32w 82w
[ [fﬁwéwdxdydz-ff{-—s—+—-26—+
ay?  ay?
32w 32w 32w 32w azw Bzw
v—26—+v-—26——2+2(1—v)—-6— dxdy]- (14)
ay”  ax? X~ oy axdy  9Ixdy

fsinzmtdt =0




Recognizing that the integral

t1
f sinzwtdt

to
cannot vanish for any time, t1, larger than ty» implies that the

following condition must exist.

2 32 32w

3 w w 82w 3w w
Swdxdy - =@ —— - ——— i g =
ffm”v Hime o anowinse—

azw 82w 32w 32w

v =3 § bE. & 2L - v) — § — ‘ dxdy = 0 (15)
ay X x93y Ixdy

Equation 15, as derived is applicable to only simple harmenic motion

of the system.

5. PLATE COORDINATE CONFIGURATION

To aid in satisfying the necessary boundary conditions, the plate
has been modeled as two discrete elements, one of which embodies the
free surface of the crack. The coordinate system used for the
analysis of the combined plate elements is shown in Figure 1.
Dimensional characteristics of the elements served to model the root
crack configuration for a series of crack depths (% chord). The

nondimensionalization performed consisted of the following:




Hy = n2 =y/a El = xl/bl Ez - xz/bz
dyl - dy2 = adn dxl - bldEI de — bszZ
Anl = a/bl ARZ = a/bz

AR] - ARy

Combined Plate AR =

A.R1+AR2

6. DISPLACEMENT FUNCTIONS

Based on the concepts as defined by Ritz (Reference 2) and knowledge
gained from References 4 through 8, a set of admissable functions in the
form of a simple truncated power series served as the deflection function

for this analysis. The functions used for solving the crack plate

problem are expressed in the nondimensional form,

¥ oA el
3=0i=0

(16)

N M 13
g, (52, ny s 3 Bij nEy ’
3=0i=0

1]

w2 (gea n)

where the term g(£, n) forces satisfaction of the prescribed
geometrical boundary conditions. The most general form of this func-

tion for the coordinate system, Figure 1, chosen is, Fig 1

g(&,n) = eP11 - £)%2,01(; - )02 17)

10




The specific values of the ¢s and 6s in Equation 17 for the two

element solution are,

Element 1: 61 = 2 ¢1 = ¢2 = 02 =0

(18)
Element 2: ¢1 Ll 62 =0

For the line of commonality between the two elements the following

continuity conditions are required,

Displacement: W, (1, n) = L (0, n)

Chordwise Slope: W; (1, n) = W, (0, n) (19)
x x

Spanwise Slope: le 1, n) =W, (0, n)
y

The author's experience (Reference 8) in performing these types of
calculations for the case of beams with discontinuities has shown that
satisfying only the slope and displacement conditions along the con-
necting boundary has provided excellent convergence on the higher order
derivatives corresponding to the moments, shears, and forces.
Satisfying the three continuity requirements, Equations 19, and sub-
stituting the appropriate "g'" functions, Equation 18, into Equations

16 yields,

11




N M . N M
Wy (Epam) = I I A, At P e zAiJ(J)ni+2€2+

3=0i=0 3=0i=0

(20)
N M g
i

Z I B..nE
j=2i=0 1 72

Replacing the deflection functions in Equations 18 with Equations 20

and performing the necessary operation with the operator, §, where

awl=>: znk+2§£6 "
R=0k=0
N M N M
§W_ = k+2 k + 2 I M
212 In SAk’faZ I n 52 Ak’+z znkE;GBkg
=0k=0 £=0 =0 &=2 =0
results in the set of equations of the form,
N M
2 &
1 1A, [(Klim 3% )+ By (K2yg g - 2 MQijka)] =0 (1)
J=0i=0
for k= 0y 1, 2 . M
%0,1,2.. .18

12




N M
E L la R = . . 2 (22)
22 [ 19 25 - M M2 p5) ¢ Bi 3 (313 - A M358 ] =8
j=0i=0
for k=0, 1,2 .. .4
i SR
1:2,3 o e N

The recursion formulas for the matrix elements are presented in the

Appendix. Equations 21 and 22 can be expressed in matrix form

as,

(k1] k2 M1) M2] A

- a2 =0 (23)
k)T 3 T g B
R e

The IK and IM are square symmetric matrices of order M * (2N - 2).
For a nontrivial solution to this set of homogeneous equations, the

determinant of the coefficient matrix must vanish.

g - M| =o (24)

13




SECTION III

RESULTS

Before attempting the solution to the nonuniform cantilever plate
problem using the method of Ritz, a study of the rate and type of
convergence possible was performed. The uniform cantilever plate
vibration problem served to demonstrate the convergence possible
using this approach. A great deal of data, both experimental and
analytical, was available for comparison. Table 1 summarizes the

eigenvalue comparisons for the various solution schemes.

A convergence study was conducted for the uncracked configuration
on the effects of varying the aspect ratios of the two separate elements
while maintaining the same combined aspect ratio of 2. Table 2
summarizes the results of this study for four different element
combinations. As depicted, little variation was noted for the cases
considered. In addition, Table 3 shows the results of a study con-
ducted on the rate of eigenvalue convergence as a function of the
number of terms used in the truncated power series. A study of this
type was not performed on the effect of the number of elements in
the finite element solution due to cost restraints. The average cost
of extracting approximately 84 eigenvalues and their corresponding
eigenvectors using the direct approach was $15.00. However, the cost
of extracting the first 10 eigenvalues and mode shapes using the finite
element program, NASTRAN, was $150.00. A study was performed and docu-
manted (Reference 10) which showed a sufficient lower bound convergence

for a rectangular cantilever plate with an aspect ratio of 2 using the

14




same number and type of finite elements. In all cases, good agreement
was obtained for the uniform cantilever plate solution schemes, Ritz,
and finite element when compared to experimental and other analytical

solutions.

With the good correlation between the experimental, direct, and
finite element solutions for the uniform plate, the problem of the
mixed boundary condition plate response was addressed. The crack
was introduced into the analytical solutions as a free boundary
with no surface interactions. For the experimental test, a narrow cut
was made along the root of the plate attachment. The plate was not
removed from its support throughout the entire testing sequence. An
acoustical siren served as the excitation source. Resonant conditions

were defined by two separate methods.

One approach employed the use of a laser interferometry technique
to visually detect the resonant mode through the laser light inter-
ference patterns. The second method involved the use of an oscilloscope
and a piezo-electric accelerometer. Resonant conditions were determined
by plotting the input forcing function (sinusoidal) against the output
signal as relayed by the accelerometer. The plate used for obtaining
the experimental data consisted of an aluminum flat plate 1/8" x 3" x 6"
rigidly constrained at one edge by two solid steel blocks. These
blocks were attached to an air-damped (floating) table. Poisson's

ratio (v) of 0.3, mass density of 0.100 1b/in3, and elastic modules (E)




of 1.0 x 107 lbf/in2 were assumed for the analytical portion of the

study.

Figures 2 through 9 portray the eigenvalue results for the first
eight out-of-plane vibration modes. The data depicts the response as
a function of root crack length for the three solution schemes. All
eigenvalues have been normalized to the uniform (uncracked) configuration
corresponding to each solution. In all cases, the experimental frequen-
cies fall below the two analytical solutions. Reasonably good agreement
can be seen in most instances between the finite element and energy
solutions. In addition, Figures 10 through 16 show the variation in mode
shapes as a function of crack length. The experimental mode shapes con-
sist of the holograms taken from the laser setup previously mentioned.
The finite element mode shape plots are contour surface diagrams, whereas
the energy solution generated plots represent positive and negative

out-of-plane displacements.

16
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SECTION IV

CONCLUSIONS

The results of this work have demonstrated that a direct and
economical solution to the nonuniform plate vibration can be obtained.
Excellent agreement was shown for the uniform plate vibration solution
when compared to those obtained from literature. Comparison of the
results for the nonuniform vibration problem has indicated some
differences between the theoretical and experimental solutions.
Similar results were obtained for both the finite element and energy
solutions. Figure 17 portrays the relative comparison between the
uniform and nonuniform deviations from the experimental solutionm.

As shown, a marked increase in the percent difference occurs for the
cracked plate solution. This difference may possibly be explained by
either a breakdown in the assumptions associated with thin plate
vibration theory or the approach used in obtaining the experimental
results. Both results indicate the same type of frequency decay with
increasing crack length, but differ slightly in the absolute value of
this decay. Additional experimental testing and analysis are necessary

to resolve the problem of the noted difference.

This paper has presented an essential step towards the under-
standing of the effect of cracks on quasi-blade response. It is
apparent from the results that further work in the area of nonuniform
blade response is warranted before consideration is given to extending

the damage tolerance criteria to gas turbine engine airfoils.

17




O\«?%C& =

2

860 THTE 062°099¢ £0€ ' L9SE 6927 °€£29¢ GE£9°619¢€ S
%99°ZLET 99€ " GHTT 0T9°€T€T 196°€922 LT €TET TZE°ZTET f1
766°99% LLT TEY 068°0LY T16°6SY L76°65Y £69°65Y ¢
606°22C 820°€0¢ 0SZ°01C 85y %1C €87°61C 807°61C VA
6G60°Z1 960" 1T 06271 908" 11 9%8°TT GER'TI I
[T °3°4] essto1 330 [T°3294] eSsTa1 NVIISVN 830 830
waTd 09T °UuToS JuawaTy Z JusuweTy |
*uros T[,1adxg| *uros 1,12dxy | ‘uros T,1adxy |JuswATy IITUTH *ulos 1319911d *uros 3I9211Q
*ON
FAOK

SANTVANIOIHT IIVId YIATITIINVD WJOAINN

g =

0°C =¥V

‘T d714VL

18

e




000°0298 810°0£98 %90°0L98 STIT°0L98 /
685°0L58 019°0L58 %99°0.68 $98°0.S8 9
TLZ°€29¢€ €LT°€T9¢ 087°€29¢ 687" €79¢ q
8LT"€2ET €8T €2€T 16T°€2€2 9TZ°€2€T ]
0£6°6SY 0£6°6SY 0£6°6SY 0£6°6SY ¢
€8T 612 €82°61C %82 61C 987°61C A
9%8° 11 9%8° 11 9%8° 11 9%8° 11 I
00'% nwﬁ R 4 o usk 0Z°€ uwﬁ el 99°¢ uwﬁ 87°C nwﬁ [

="qv GE*G ="gV 008 ="uV |z==== B0 9T ="V Lo o i d ‘OR

O\«? /Q W= /A IAOK

) 2
Cav+luy
< 07 = Zyqy. Ty =WV
WIOJAINN INTWATE Z :HONIOWAANOD INTVANIOIZ °Z dT4VL

19

B s e . e




-

6666998 I1°0 L66°6.98 06°1 60%° 0588 4
685°0LG8 €0°0 GL0°€LS8 06°T G87°T€L8 9
TLT°€79¢€ %0°0 6TL°%79¢ 00°S OTT°608¢€ q
8LT°€TET Z0°0 G89°€Z€T di o) €L%°92€T i
626°6SY 90°0 96T1°09% 80°0 08S°09% g
€8Z°61C £€0°0 65€°61C S0°0 SLY 612 VA
9%8° 11 60°0 LS8°TT 07°0 188° 11 I
(%8) L=W=N () v (09) 9=K=N %) v (0%) S=RW=N
*ON
o\‘? axccr < /A AAOK
2 n 2
0=1Z=f 0=T0=f
(GRS R ST e R A SATYES ¥YIMOd CILVONNYL A0 SWYEL 40 YAGWAN
K N W N

WIOJAINN INIWATE T

*dONIO¥IANOD FATVANIOIA

‘¢ T4Vl

20

T oy ——
f




A
4 -a b
v @ AR2 b 2
/] . e
2> %, )
n2, ¥2
@ AR = E b
1
1 b,
Eli xl .
Ve
a nlv Y1
y
AR; AR, np =N, =n=—
BB W comassiammstes a
AR1 + AR2
=
n *—
1
by
Ny = x2
, = —
4 £ % by
b4
a
FIGURE 1. CANTILEVER CRACKED PLATE COORDINATE SYSTEM

21




SANTVANIOIHE 7 FAOW € TINOId

00:0. 0008 00708 00OV X %03 o0t 093
-
Fo*°0
N8 143400 - ¥
(M373 081)INIOS NUUIOUN - @
(L=H=NIN08 A0¥MI -- O
-08°0
v
e R
—_—
| | Los'o
PP RIatAy = meesnE |
» |
BT
Oy =a xovid wod roL’o

4

tos o

Fot-t

S3NTYAN3OI3 03Z1TUNION

SANTVANIOIA T AdOW °T J¥NO9IL
- ] (O¥OHD Z)HION3T %Ju¥) ..
00'0L 0008 0008 0COY 006 00OOZ 000 LT }

FO*O

W08 © ¥k -
(4313 081N08 MoNiSwN - ©
TLzu=N)N08 ioum3 — @

toso X

]

=

>

=

~

S

o~
- o~

=z

<

T

=

c

™

o

s — . = e Sy




CRACK LENGTH (X CHORD)

bo

.10

1.004
0.904

e :
SINTHANIOLI 0321 THNNON

ROOT CRACK ve (A/3gy)?
woot 3
O -~ CNERDY BOLN N=h=T

- T - { —
e 2 2
e

0.4
ooy

hgyee’9 927
CRACK LENGTH(Z CHORD)

© -~ MASTRAN SOLN( 180 ELEW)
4 - CXPER'L SN
20.00

AR=2.0
10.00

i
o
S3INWA

-+

[ 2 8
< e L
N3013 03Z1T6NNON

23

FIGURE 5. MODE 4 EIGENVALUES

MODE 3 EIGENVALUES

FIGURE 4.




SANTVANIOIE 9 FIAOW °L FENOIA

(O¥0H] %) HION3T ¥%Iu¥]
‘08 [N 0008 00’02 0001

W08 1. W33 - w
14313 081)NIOS WONISUN -~ ©
[L=u=N M08 AQUNI - Q@

Y

(%94/v) e wovad wou

poY0

T
2
o

SINTHANIOII 037 T IHUNON

+09°0

Fot-t

SANTVANAOIE S IAOW °9 HANODIJ

00°0c 00-09 00:08 ( ax‘czom ZIHION3T XIU¥3

Gojos  cojes oojor o3

s
oY 0
e V.00 - v
(N33 081 NN98 WAL - ©
(L= W08 A0NDD — O
Los"o m
=
o 2
2
-
~
697°(295=50+ o080 ]
™
L 30w m
~?,:; . XVED Loow oo
=<
c
-
@

8
<

o080

poo-t

Fot-t

24




SINTVANIOIA 8 HAOW °6 IYNOId

(O¥OHID %) HION3T ¥Iu¥)
08 00°0¥ 00°06 00702 00°bt

i

Fr

gw.w,....

Fov'0
NS 1.¥34X3 -- »
1M313 081INWS WAULISN -- ©
(L=U=NIN0S A0WN3 -- @
F0s°0
| S ] U Ieuy
T Vi 1
e Fos°0
ey osoni=fle | | |
S|
¥ odu,
LT s xoveD Loow to'o

rot-t

ON

S3NTUANIOI3 03Z1THWY

SANTVANADIA [ FAOW

(Q¥0KJ %) HION3T NJu¥2
;08 000Y 0006 0002

A

‘8 FANOIA

L B

N_.a:: -0V 1008

i
)

Fov'0

g
&

S3INTYAN3IOI3I 0321THNYON

F0s°0

T
o

080

ﬁa—.-

25




T JAON :EAVHS IGOX AOVID 100¥ “OT F¥NSId

\ i e

—

O'ON ce v 0.00 LI Y o.om LIS OoOQ CRCECNY c.om s s e onON LRI °o°H eo e c.o

( QICHD % ) HIONIT AIWVID 100¥

(RV¥907IGH)

‘NI0S 1,¥3aX3

(NOILOA1J33A F )

26

*NTIOS XO¥IN!

{IOVIINS ENOINOD)

‘NTOS NYVILSVN

—




— 1
\\\J\\A\\ w ﬂm-h = J‘~ o 4
\c\\\o\\\\\\ p—" - - '
f—" o - o e I
et L e O e T I
e O [ Lo = {
- O S i

B s e R ks
e o, R v e

OoON seae o.oo CRCEE o.om oo o O-oq ve e OQCW CICECIRY C-ON

( QUOHD % ) HIHNIT MOWVD 100¥

? FAOW *AJVHS ACOW NIVED IOd¥ °TT 3¥NOId

cest 00Tttt

0°0

beventocens

(RV¥90710H)

*NTOS T, ¥ddXT

(NOTLOE'13EA F )

*NI0S ASWUNH

(40VI¥NS ¥NCINOD)

*NTIOS NVYISVN

w




1

€ JOOK :dJdVHS TAOW MOVED 100¥ °Z1 3Ynoid

(WV¥D0710H)

‘NT0S T,d93d%3

(NOI10313d3a F )

-]
*NTI0S X9¥3aNg o

(FIOVIUNS ¥YNOINOD)

*NTIOS NVIISVN

O-ON LECIIY ano e e e o-om CRCRCI Y o.oq LR o.om LAY O-ON ve e O.OH ev e o.c

( @IOHD 7% ) HIHNAT AOVID IOOY




WI j
% 4GOW :¥dVHS HAOK YOV¥O I0O¥ ‘€T T¥19Id

(WVa9010H)

‘NT0S T1,¥83dX3

(NOILD3I1EEA F )

‘ "NI0S AO¥ANT &
I E RN v
S e (20VNNS WNOINOD) |
3 N 1
] T g » aw "
A NT0S NVHLSVN
NS\ e

O-ON ave C.OO se e o'om. s e OuOQ CECR A Ooom LR O-ON DRI O-OH ss e o.o

( QYOHD % ) HIONEAT MOVYO0 L0O¥




0°0

L

S 4aow

DAY

\\T/

LI o.oo s e o.om LU O.OQ CRCIEIEY

se e O-Qm

LI O-ON O-Oﬂ

cete 000

( @E0HD % ) HIONAT JOV¥D 10O

*5S4dVHS Had

WOAOWVHD I00¥ T JWADIdA

(WV¥9010H) |

‘NT0S 7T,¥3d¥a

(NOIID3T53C F )

‘NIOS AD¥ENS Q

e o g

(d4oVIA¥nS YNOINGD)

PUPESBEPS |

v *NT10S NVHLSYN




9 AOW :SIJIVHS

Emmmu L

¥
|
|
400K ¥DVED 100¥ °ST AUNOLA
(RV¥90710R)
"N10S 1,¥3dX1
. (NOIIOZ743A F )
v
wios xowma B
£

|

,?M \\N/,M

=
/
NS W (ZOV4¥NS ¥NOINOD)

il
\\\.))/., w *N'I0S NVMISVK

e e

OQON LRCRC o.oc cs s o-om "o o.ov LACRUNY o.om LR °o°N ee e OoOﬂ co e cnc

( @IOHD % ) HIONAT MOWVMD I00Y




9°

0

L

L 44OV

EORPRR DS, | i, SRy
Tt e — o R i !
= I = < |
= " -
ﬁ RS el . ﬁ > - - [}
= ~ e - e 4
‘
R RS » ¢
P ﬂ\xlo —— P |

LRI o-oo e s e Oo°ﬂ es o O.OQ DRI o.cm CECRC OoON

( QYOHD % ) HIONAT MOVYD 100d

seve 0°0T

$SIJVHS FAOK NMIOVYD 10O0¥ ‘9T FUNOTA

(WV¥90T10H)

*NTI0S T,¥3dX3

(NOI1D3743d F )

*NI0S XOWANH

E—— t

T ¢ (30VANAS NOINOD)
FUTITL T “N10S NVHLSVN
breee e |

e v e ono

o~
Laa ]

e e o s g o0 o - =




NOILNTOS TVINAWIYIdXd WO¥A SNOILVIAZQ OILVY ANTVANIOIZ °*/T FdNdId

SOILVY INTVANIOIA SOIIVY ANTVANAOIZ

Ty Ty Ty Ty Ty Ty Ty Ty Ty Ty
9% Sy 7y Ey Zy 0 9y Sy A £y 2y 0
N \ ol |
N ) \ )
/ / [ H -+ .H
N P .
N & o 1z 1z
\ b 5
N N o
/
N N /L g 5
% N b 1y 2 Ly 2
N N 17
N \ > ) _
N N H - £
N N ) 8
N N +6 % 2 e
U} n
PR |
N ‘NT0S INTWATE FLINIZ & ? “N10S INZRATH FLINIZ 55 9
R ‘N10S XO¥ANZ [ T
l T N - N
/
N cHomax mxwﬁx aHomH< mnwa«
N
- G hY + 8 - = *A3(Q % +8
00T X |T axu: utosy, az 00T X |T axw? ufosy,
4+ 6 + 6

ADVID 100¥ 7%0S IADVIONN




Ilijkn

I245k8

D345k

Tai5kR

5jika

T65 ke

1715k

I8k

APPENDIX

MATRIX ELEMENTS

A+2)@+D&+2)(k +1)

A+k+1)EG +4+1)

G)Gg - R -1)
A+k+5)F +A2 - 3)

G+2)E+1DWA-1)+ @) - 1)(k+ 2)(k + 1)

A+k+3)G+r-1)

G)E+2)(W)(k +2)
A@+k+3)G+42-1)

A+2)@E+1)(k+2)(k+1)

1 +k+1)

A+2)A+1)@)(k + 2)(k + 1)

)@ +k +1)

G)E+2)A +1)(k+2)(k+1)

2)d +k+1)

@A +2)E@+ 1)@ (Kk+2)(k +1)

A+k+1) 3)

Ga+2)W(k + 2)

1+ k+3) L —




I945ka

I104419

n‘lij kA

1245k

13,000

T1444 4

I155ka

T1645k

1745ka

APPENDIX  (CONTINUED)

A+2)A+1)(k+2)(k+1)

1L+k+1)(x+1)

A +2)A+1)(k+2)(k+ 1)

L+k+1)(x+2)

A@+2)@d+1))

(1+k+3)

GMHEA+2)@ +1)(r-1)

1+ k+ 3)

G)a + 2)(k + 2)

A+k+1)G +1)

A+2)HE+1)(k+ 2)(k+1)

A+k+1)G +8+1)

MG -vMWa@E-1)
@+k®3Q +X=«3)

G+2)EA+DMWE-1) + GG - Dk+2)(k +1)

L+k+3)G+x -1)

d+2)G)&k+ 2)0)
A+k+3)@G +2-1)

36




| sm

I3k

I245ka

I35k

Jbiqka

I515ka

645k

I7 458

Kliska

APPENDIX  (CONTINUED)

1

A+k+5G+2+1)

1

(1 +k+5)

L +3

A+ k+ 5)(2)

X

(1 +k+5)(@3)

1

A+k+5A+1)

3
L+ k+5(2+2)

1

A+k+5)L+]7+1)

4 2 Bt

2 3

20% ARJ AR, (L = V) T84y g

37




K255Ka

K3451a

MLiika

M245k8

M3k

APPENDIX (CONTINUED)
2
G.Iqijk’. + a ~1101jk’ + vARlARZ.Illijkﬁ +
G-ARIAsz'Ilzijk! + ZO'ARlARZ(l - V)Il31jkl

3 .
arTl4y4pq + ARJARS T15, 4y o + VARJAR)-T16,, 0 +

2(1 - V)ARIAR2'117ijk!

2 3
Jlijk + u-JZijkl + a 'J31jkl + a 'Jaijkn

a-J5 + a2-36

1jKk3 15k 4

G‘J7ijk1

38




LIST OF REFERENCES

1. Leissa, A. W., Vibration of Plates, NASA SP-160, N67-62660, 1969.

2. Ritz, W., Gesommelte Werke, Societe Soisse de Physique, Paris, 1911.

3. Szilard, R., Theory and Analysis of Plates, Prentice Hall Pub, Inc.,
Englewood Cliffs, New Jersey.

4, Bailey, C. D., "Application of Hamilton's Law of Varying Action,"
AIAA Journal, Vol 13, pp. 1154-1157, September 1975.

5. Bailey, C. D., "A New Look at Hamilton's Principle," Foundation of
Physics, Vol 5, No. 3, pp. 433~451, September 1975.

6. Beres, D. P., "Vibration Analysis of a Completely Free Elliptical
Plate," Journal of Sound and Vibrationm, Vol 34, No. 3, pp. 441~443,
June 8, 1974.

7. Bailey, C. D., "Hamilton, Ritz and Elastodynamics,'" ASME Journal of
Applied Mechanics, Vol 43, No. 4, pp. 684-688, December 1976.

8. Bailey, C. D., "Exact and Direct Analytical Solutions to Vibrating
Systems with Discontinuities," Journal of Sound and Vibration, Vol 44,
pp. 15-25, January 1976.

9. Hamilton, W. R., "On a General Method in Dynamics," Philosophical

Transactions of the Royal Society of London, Vol 124, pp. 247-308, 1834.

10. Anderson, D. A., '"Modeling of Gas Turbine Engine Compressor Blades
For Vibration Analysis," AIAA Journal of Aircraft, Vol 12, No. 4,
pp. 357-359, April 1975.

39

“U.5.Government Printing Office: 1977 — 757-080/165




