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Abstract

The purpose of this research was to develop numerical simulations

of boundary laver transition. One of the essential aspects of the work

was to investigate carefully the appropriate boundary conditions and

mathematical models that should be employed in the study of transition

processes. The effects of three dimensionality, spanwise wavelength

selection, and streamline curvature were also considered.
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e Introduction

In this report, we summarize the results obtained under Office of
Naval Research Contract No. N00014-76-C-0263, Task No. NR 061-233, ARPA
Order No. 2924. The purpose of this research was to develop numerical
simulations of boundary layer transition. One of the essential aspects
of the work was to investigate carefully the appropriate boundary
conditions and mathematical models that should be employed in the study
of transition processes. The effects of three dimensionality, spanwise
wavelength selection, and streamline curvature were also considered.

The direct solution of the Navier-Stokes equations for the study of
transition involves much computation because three-dimensional effects
are important (see section 3), and high resolution is required in the
downstream and boundary layer directions. To economize in the solution
of transition problems, we have developed a nonlinear stability theory
that seems to account for the principal effects observed in our direct
numerical simulations. This Galerkin approximation is discussed in
section 4.

In this report we briefly summarize our results. Detaileu exposi-

tions of our results are given in the publications cited in the references.
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2 Boundary Conditions

The basic flow geometry of the numerical simulations of transition
reported in section 3 is shown in figure 1. The flow enters the com-
putational domain at x = 0 and exits at x = L (normally L = 50 cm ).
The free stream is at z = » , while the rigid wall is at z =0 . 1In
the spanwise-y direction, the unperturbed boundary layer flow is assumed
uniform while the perturbed (transitional) flow is assumed to satisfy
paeriodic boundary conditions. A typical calculation reported in section
3 involves the use of 257 grid planes to resolve the downstream x direction,
8 Fourier modes to resolve the spanwise-y direction, and 33 Chebyshev
polynomials to resolve the boundary-layer z direction. We discuss the
boundary conditions applied in each of the coordinate directions in more

detail below.

Spanwise Direction - Periodicity

The assumption of periodicity in the spanwise direction is con-
sistent with the Navier-Stokes equations in the sense that if the
perturbed boundary layer flow is initially periodic in y at t =10,
then the flow stays periodic in y with the same period for all later
times. This periodicity does not prevent the formation of localized
vortex structures in the flow during the process of transition--localized
vortex structures that do appear during time evolution must, however,
appear periodically in the y direction. The assumption of spanwise
periodicity does not seem to cause any serious difficulty or physical
inconsistency in comparing our computations with laboratory experiments

like those of Klebanoff, Tidstrom, and Sargent (1962).

Boundary Layer Direction - Mapping

We have discovered that an algebraic mapping of the semi-infinite
domain above the flat plate located at 2z = 0 into the finite interval
(-1,1) gives remarkably efficient and accurate numerical computations.

The algebraic mapping is

A g - 5
=
s+ H ° (2.1)
where H 1is a scale paramete nally chosen to be twice the height at
which the unperturbed velocity is one-half the free-stream value (for
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the Blasius boundary layer this height is approximated well by twice
the displacement thickness of the boundary layer).
The mapping (2.1) transforms the interval O < z < « into the

finite interval -1 < z < 1 . A nice feature of the mapping (2.1) is

that the rule for transformation of derivatives is simply

-5 @.2)
3z 2H 3z i~

Basically, the mapping (2.1) is just an analytical device to introduce
nonuniform resolution in the z direction. If a numerical scheme with
uniform resolution in 2z 1is used, too much information is wasted in

the free stream, where the solution changes slowlv. This puts undue
burdens on the numerical resolution closer to the wall, where the action
lies.

Grosch and Orszag (19775 have given a detailed account of our
analysis of mapping in this coordinate direction. Thev give a large
variety of examples and explain in detail why the z direction is ripe
for mapping techniques. Here we give just two examples that illustrate
how well mapping works in the z direction. The two examples are the
Orr-Sommerfeld equation for the linear eigenmodes of Blasius boundary
layer flow and the Falkner-Skan equation for the stream function of
boundary layer flow on wedges (with a pressure gradient).

In table I, we list the most unstable eigenvalue of Blasius flow
at a Reynolds number R = Ux/v = 580 , where x is the distance
from the leading edge of the flat plate, with a (dimensionless) wave number
of 0.179. Two numerical schemes are compared: a Chebyshev polvnomial
solution (Orszag, 1971) of the Orr-Sommerfeld equation truncated to the
domain 0 < z < H for various values of H with the boundary condition
£' + 0.179f = 0 applied to each of the eigenfunctions at z = H ; and a
Chebyshev polynomial solution of the same prcblem with the mapping (2.1)
with scale factor H =1 . Note that, according to the discussion following
(2.1), the optimal choice for H 1is about 3.4, so we could anticipate
even greater accuracy by such a choice. (Here and in the rest of our

work we non-dimensionalize 2z byv the length scale vx/U , where U
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is the free-stream velocity, so the displacement thickness of the
Blasius layer is 1.7.) Also note that it is not necessary to apply any
boundary conditions at all at Zz = 1 when using the mapping since eq.
(2.2) ensures that all nonsingular derivatives vanish at 2z = 1 after .

mapping.

Table I  Eigenvalues of the Orr-Sommerfeld Equation For Blasius Flow

Mappin H N (¢
Number of

Scale Chebyshev Eigenvalue

Factor Polynomials
Restricted Domain 20 44 0.360213 + i0.006671
0<z<H 30 44 0.364041 + 10.008113
Algebraic Mapping 1 26 0.364147 + i10.008007
z = (z~H)/(z+H) 1 34 0.364121 + 10.007958

Exact Eigenvalue c¢ = 0.364123 + i0.007960

In Table II we list some errors in the value of u(l) , which is

the non-dimensionalized x component of the velocity at a non-dimensionalized

height of 1 above the rigid wall, as determined by numerical solution of
the Falkner-Skan equation with only 11 grid points. Three different
pressure gradients are listed in the table. For each case, the alge-
braic mapping achieves much better accuracy than that achieved by
simply restricting the integration domain to O < z < H . 1In table II,
the points labelled * indicate that no acceptable (monotonic) solution
to the discretized Falkner-Skan equation exists (with only 11 grid points)
Unfortunately, the technique of mapping works well only for problems
where the solution is "simple" at infinity (see Grosch and Orszag (1977)
for a variety of examples). Thus, boundary layer flows are "simple" at
infinity because perturbations that are large near the wall die away
exponentially fast as 2z dincreases. For example, if the amplitude of

; : iox
a linear mode of the Orr-Sommerfeld equation oscillates as e - , then

its amplitude decreases like e ™ for large 2z . On the other hand,

the downstream x direction is not one in which the flow becomes "simple';
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rather, we expect that sufficiently far downstream the flow will become
turbulent. Mapping the semi-infinite x domain into a finite interval

without considering the outflow boundary conditions will not work.

Table ITI Errors in Solution of the Falkner-Skan Equation

Mappin H 8 Exror in F'(1)
Restricted Domain 1055(0] (0] 0.54

2.5 0 0.052

5.0 0 0.00013

745 0 ®
Algebraic Mapping 1.0 0 0.0000058

2.5 0 -0.00000047

S5+8 0 -0.0000028

oD 0 -0.0000040
Restricted Domain 5.0 -0.1 0.00042

7 -0.1 *
Algebraic Mapping 5.0 =@ -0.0000046

ks -0.1 -0.0000064
Restricted Domain 255 0.1 0.032

5180 0 0.00014

Ted =l *
Algebraic Mapping 2.5 0.1 -0.0000055

5.0 e -0.000011

Tk 0.1 -0.000016

. Solutions of the Falkner-Skan equation obtained by using 11 equally
spaced grid points in the appropriate coordinate system. Here *
indicates that no acceptable (monotonic) solution was found. Also,
£'(1) = u(l)/U , the relative x velocity at a non-dimensional height
of 1; 7wB 1is the included angle of the analogous wedge flow.

Inflow-Outflow Boundary Conditions

Orszag (1974) has shown that the viscous Navier-Stokes equations are
well posed if all three velocity components are specified at inflow and

outflow boundaries. Orszag also showed that the inviscid Navier-Stokes

equations are well posed if all three velocity components are specified

at inflow points and if either the normal component of the velocity or

the pressure is specified at an outflow point. We have investigated in

IR RN~
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detail the effects of various boundary conditions on solutions of the
Navier-Stokes equations and have developed new boundary conditions that
minimize the effect of arbitrarily specified outflow boundary conditions
on the flow in the interior of the domain of interest. A detailed
report on our studies is being prepared (Orszag and Israeli, 1977); a
preliminary outline of our results was published by Orszag (1976).

A simple model of viscous effects is given by the linearized

Burgers' equation:

Ju du _ 37u

3¢ (2. 3)

8

where U 1is a constant advecting velocity and Vv 1is the kinematic
viscosity. Suppose we wish to solve eq. (2.3) on the semi-finite
domain 0 < x < © , and suppose that U > 0 so that x =0 1is an
inflow point. Let us see what happens if the domain is truncated to

the finite interval 0 < x <1 . If Vv is very small, the Laplace 1

transform solution of the initial~value problem for eq. (2.3) is composed

of modes of the form

Ax+ot ;
u(x,t) = e y C2.4)

where the dispersion relation

determines A as a function of o . Thus, if V<< 1 , there are two

possible modes given approximatelyv by

Ay~ B/v (2.6)

The first mode Xl is a viscous mode that decays as =~x 1increases. The
second mode kz is a mode that describes propagation from x = 0 to

X =4,
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The general solution to eq. (2.3) is of the form

X Nose

t = 2
Al(c)e + AZ(G)e - 2.8)

u(x,t) = dceo

When the semi-infinite domain 0 < x < @ 1is truncated to the
finite interval 0 < x < 1 , it is necessary to impose boundary conditions
at both x =0 and x =1 , say u(0,t) = f(t) and u(l,t) = 0 . Since
‘l is large and positive, it follows from eq. (2.8) that the effect
of this mode at x = 0 1is exponentially smaller than its effect at
x = 1 . Therefore, neglecting the mode X, , we find from eq. (2.8)

1
that the boundary condition u(0,t) = £(t) determines A,(g) . On

the other hand, the boundary condition u(l,t) = 0 determines Al(f)

in terms of A, (0) :

A] = -A, exp(r, - LR (2.9)
Now we can compare the finite and semi-infinite problems. In the

semi-infinite problem the mode X, does not appear at all, but the

1

solution is otherwise the same as for the finite problem. Therefore,
according to eqgs. (2.8) and (2.9) the effect of the boundary condition
imposed at x =1 1is confined to a boundary layer of width of order
v/U near x =1

The boundarv condition wu(l,t) = 0 affects the solution only in
the thin boundary layer with width of order Vv/U . It is possible to
decrease the effect of the artificial boundary at x = 1 still further
by imposing a boundary conditicn of the form

K
;_§ u(l,t) =0 (2.10)

~

ox

at x =1 . 1In this case, the solution for Al that corresponds to

eq. (2.9) is

R . . ;
A, = -(\Z/Al) A, exp(}, - tl) ‘ (2.11)

2 a " k ¥ .
so the amplitude of mode 1 is a factor (V/U) times smaller than with
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straightforward application of wu(l,t) = 0 . The only danger in applying

higher order conditions like eq. (2.10) with k large is that numerical

instability may be induced by high order extrapolations near the outflow

boundary. With numerically stable schemes, however, higher order boundary

conditions should be more accurate than lower order boundary conditions.
We can make a similar analysis of a model problem that bears much

closer relation to incompressible fluid mechanics than does eq. (2.3).

The model includes the effect of pressure, which is essential for under-

standing the nature of the Navier-Stokes equations. The model consists

of the two-dimensional linearized Navier-Stokes equations with a solution

assumed to be of the special form

u = u(x,t)eiky s V= v(x,t)eiky (2:12)
The model equations are given by
u, + qu + ikVu = - P + \)(uxx - kzu) 3 (2.13)
¥t va + ikVv = - ikp + v(vxx ~ kzv) 3 (2:14)
u, + ikv = 0 (2.15)

where we assume that U > 0 so x =0 1is an inflow boundary and V
is arbitrary. We want to study the effect of truncating the semi-
infinite domain 0 < x < @ into the finite domain 0 < x <1 . To do
this, we analyze the Laplace transform solution of the initial value
problem for eqs. (2.13)-(2.15).

The Laplace transform solution of eqs. (2.13)-(2.15) is composed of

modes of the form

Ax+0t
ue

u(x,t) 3 (2.16)

Ax+ot
ve

v(x,t) , (2.17)
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where the dispersion relation
2 2 2 2
(A" = k")(o + AU + 1ikV - VAT + vk") =0 (2.18)

determines A as a function of O . The four roots of eq. (2.18) for

given 0 , k , U, and V are
A, = +k, Aoy 2=k , (2.19)

and A \4 are the solutions of the quadratic equation

3 ’

a

) 2
VAT = AU - (0 - ikV - Vk7) =0 .

When V<<l , the asymptotic behaviors of A, and \6 are given by

A o+i
by ~ TN K, ~_L_ijk_v ) 2.20)

The general solution of eqs. (2.13)-(2.15) is of the form

st A x A AL X AL X A, x
u(x,t) = A e = A.(g)e = + As(o)e s & ABfT)e S A, (O)e & SR TS
L - -+

In the semi-infinite domain only modes 2 and 4 survive if the

solution is bounded at = , so eq. (2.21) reduces to

o5 A X A
u(x,t) = doe  A,(g)e = + A, (0)e . (

ro
ro
[§5]
~

In the finite domain O < x < 1 , all four modes are present to some
extent and are determined by the boundary conditions. The contribution

of mode 3 decays in a viscous boundary laver around the cutflow boundary
at x =1 (as for the linearized Burgers' equation), so if Vv is

small, this mode causes negligible error throughout the interior of the
interval 0 < x < 1 . On the other hand, the mode ll = +k 1is a pressure
mode that decays appreciably only over the distance 1/k . so if k is

not large, its effect may be large over the whole computational domain.

It is mode 1 that is the origin of the principal differences between the

semi-infinite flow case and the finite-domain simulation.
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There are several ways to minimize the effect of mode 1. One way is to
assume that the computational domain has a large aspect ratio L/H >> 1 ,
where L 1is the length of the computational region and H is its
height. 1In this case the smallest allowable transverse wavenumber
k satisfies k + 2m/H >> 1/L , so that mode 1 does in fact "boundary
layer" (in a distance of order H ) about the outflow boundary x = L .
Thus, so long as L - x > H , the effect of arbitrarily specified
outflow boundary conditions at x = L 1is negligible.

Another way to limit the effect of the outflow boundary conditions
is to modify the equations of motion in the neighborhood of the outflow
boundary so that the "bad" mode 1 boundary layers in a thin boundary
layer near x = 1 . We therefore make the wavenumber of mode 1 become
Al >> 1 . Three ways to modify the Navier-Stokes equations to accomplish
this wavenumber are:

(1) " +Rep1ace the incompressibility condition u + Vy = 10\ by o
+ vy = U ven , where u>>1 , and n 1is the outward normal.

(ii) Modify the pressure term in the Navier-Stokes equations to be
—§p =t ugp .

(iii) Introduce pseudo-compressibility terms in the Navier-Stokes
equations near the outflow boundary.

For example, if we replace eq. (2.15) by
u, + ikv = uu o, (2.23)

modes 3 and 4 of eqs. (2.13), (2.14), and (2.23) are unchanged from eq.
(2.20), while modes 1 and 2 are replaced by
2

Ay ~ | 4 XZ N (2.24})

when u >> 1 . Thus, the size of Al is increased, and mode 1 boundary
layers near x = 1 . To minimize the effect of the outflow boundary at
x =1, we choose u(x) such that the effects of mode 1 are iocalized

near x = 1 .
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This technique has been tested on the problem of low Reynolds
number flow past a cylinder with mixed success. At a Reynolds number
of four, when a truncation of the computational domain to 1 < r < r_

is used, the results for the drag coefficient CD are as follows. Using
the Imai asymptotic behavior of the vorticity and stream function as
" ™ 4,435 A or =215

CD = 4,441 4if r_=35.0, and C, = 4.442 if r_ = 59.1 . Using
e e el

boundary conditions at r_, we obtain C

D
free-stream boundary conditions instead, we obtain CD = 5.13 if
E =t dkaa CD = 4.66 if r_ = 59.1 , showing the very large errors

that can result from use of free-stream boundary conditions. On the
other hand, the use of a modified Navier-Stokes equation of the form (i)
with derivative boundary conditons applied at r ~and a quartic power
law for u(r) beyond 0.8r_ , we obtain CD =4.465 4E r = 21.5
However, if we use non-differentiated boundary conditions on the outer

radius r_ , then the best choice of u(r) gives C, = 4.73 at r_= 21.

D 0
Thus, with differentiated boundary conditions, the new methods appear to

give superb results, while with non-differentiated boundary conditions,
the results are less spectacular. A full discussion of these results

and methods is given by Orszag and Israeli (1977).

5
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3 Numerical Simulations of Boundary Layer Transition

In this section we describe some numerical results for boundary
layer transition. In our earlier work on transition (Orszag, 1974),
we solved a set of 'parabolized" Navier-Stokes equations in which the
x derivatives of the viscous dissipation terms were dropped on the basis
that they were expected to be roughly 100 times smaller than the
z-derivative contribution to the viscous terms in linear Tollmien-
Schlicting waves. The advantage of the parabolized Navier-Stokes
equations is that they allow the use of inviscid boundary conditions at
the outflow boundary and prevent the occurrence of thin boundary layers
near the outflow boundary. In the present work, we have compared the
results of the parabolized Navier-Stokes equations with numerical solutions
of the full Navier-Stokes equations and have found good agreement out-
side a thin boundary layer near the outflow boundarv. The results
presented below were all obtained by solution of the full Navier-Stokes

equations.

Numerical Methods

The Navier-Stokes equations were solved by using 257 staggered
grid planes in x with a compact mesh fourth-order difference operator
(Orszag and Israeli, 1974). Inflow boundary conditions at x = 0 were
that all three velocity components be specified (see below) and that
outflow boundary conditions of various kinds be emploved, including
specification of v = 0 , specification of L 0 , and specification
of Yow * 0 . Most of the results reported below were obtained by
using ™ 0

The y direction was resolved by using eight Fourier modes in
a spectral representation (Gottlieb and Orszag, 1977). This repre-
sentation ensures periodicity and gives an adequate representation of
the initial stages of nonlinear growth before bursts actually appear.
The bursts cannot be resolved by using only eight Fourier modes because
they are very localized in y , so our calculations must be considered
inadequate after the calculations predict bursts to occur. Neverthe-

less, our predictions of the location of transition should be good.

L e e
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We resolve the boundary layer z direction by using an algebraic
mapping together with a 33-mode Chebyshev polynominal expansion (Gottlieb
and Orszag, 1977). Rigid boundary conditions are applied at z = 0 ,

but no boundary conditions (other than boundedness) are applied at

3]

= @ , The advantages of Chebyshev polynominal solution of the

z direction are that it is highly accurate, relatively easy to implement,
and gives excellent resolution of any thin boundary layers that may
appear.

Time stepping is done by a combination of methods. A semi-implicit
algorithm is used in x to avoid stringent time-step restrictions
imposed by outflow boundary layers (Gottlieb and Orszag, 1977, Haidvogel
and Orszag, 1977). The semi-implicit scheme is combined with Adams-
Bashforth explicit second-order time differencing on the advective
terms and Crank-Nicolson implicit time differencing on the viscous
terms. The overall time-stepping restrictions are not too severe and
are of the form At < Ax/u' , where Ax 1is the spatial resolution in
the interior of the computational domain and u' is the magnitude of
a typical fluctuation velocity. In practice, accurate numerical results
(as opposed to just stable ones) are obtained by taking the time step
nearly 100 times smaller than this stability bound. To resolve accurately
the advection effects of the unperturbed mean flow, we must take time
steps that are comparable to the advection time of the mean velocitv over
one effective grid interval.

The pressure is solved by fast Fourier transform methods in
X and y and a matrix inversion method in 2z . The matrix multipli-
cation that is required is fast and accurate; the pressure computation
requires about 257 of the overall time step.

The initial conditions we have used are those described by Orszag
(1974). They consist of a superposition of a two-dimensional Tollmien-
Schlicting wave and a three-dimensional Tollmien-Schlicting wave super-
posed on a Blasius profile, as suggested by the laboratorv experiments of
Klebanoff, Tidstrom and Sargent (1962) and the theory of Benney and
Lin (Benney, 1964).
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Transition on a Flat Plate

We have performed a series of numerical experiments on transition
on a flat plate. The inlet of the computational domain is placed 1 m
beyond the edge of a flat plate on which there is a zero-pressure gradient
free-stream flow incident with U = 1500 cm/s . The kinematic viscosity
is assumed to be 0.15 cmz/s, the boundary layer thickness at the inlet
is 8§ = vx/U = 0.099 cm, the Reynolds number at the inlet is
R = U8/v = 1000 . The length of the computational domain is chosen to
be 50 cm, and the scale height in the algebraic transformation (2.1) is
chosen to be H = 0.3 cm .

The imposed primary Tollmien-Schlicting wave is chosen typically
to be the unstable eigenmode of the Orr-Sommerfeld equation with wave-
length 3.81 cm and has an imposed maximum u' fluctuation of (0.01)U .
Various three-dimensional perturbations on this primary two-dimensional
mode are investigated below; they typically consist of a (0.0015)U
((15%)u') perturbation in the form of a three-dimensional Tollmien-
Schlicting wave with the same x wavelength as the primary mode, but
with various spanwise (y) wavelengths.

In a typical calculation, the time step is chosen to be (0.002)s,
which is small compared with the primary Tollmien-Schlicting wave period
of (0.007)s. The calculations proceed until a statistically steady
state develops, normally after several hundred time steps.

In figure 2 we plot the results of a two-dimensional flow simulation
with only the two-dimensional Tollmien-Schlicting wave applied. Observe
that there is no explosive growth of the amplitude with increasing
X , which indicates absence of transition.

In figure 3 we plot the results of a three-dimensional simulation
in which the spanwise wavelength of the three-dimensional perturbation
is 2.5 em. 1In figure 4 we plot the results of a similar experiment in
which the outflow boundary conditions B SN W, " 0 are replaced
by wr 0, and v=w=20.

In figures 5-7 we compare the mean velocity profiles at three
locations in the flow whose perturbation amplitudes are plotted in

figure 3. Observe that as the downstream distance increases, the flow
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becomes highly inflectional at the spanwise location of the maximum

r
T

velocity fluctuation. Beyond the point at which these highly inflec-
tional profiles appear, we expect the rapid occurrence of bursts.

In figure 8 we show the effect of varving the spanwise wavelength
on the location of transition. Observe the relatively broad minimum
at a spanwise wavelength of 2 cm. Also, observe that for a spanwise
wavelength of 7 cm, no transition was observed within the computational
box.

More details on these numerical experiments are being prepared for
publication (Orszag, 1977). Preliminary results have been published in

Orszag (1976).

Ef fect of Surface Curvature

We have investigated the effect of surface curvature on the
transition process by solving a modified set of Navier-Stokes equations
that include the primary effects of such a curvature. Thus, in cylin-
drical coordinates, with the approximation that the radius r is
constant throughout the boundary laver (which is justified if r >> &

the thickness of the boundary laver), we obtain

Q2

u 2

+ uu + vu + wu + uw/R = - + W7o 3
3t % y z i Py i ( )
v =2
=~ tuv. +vw_ +wv =-~p + VWv ¢32)
3t X y z 3

-
Sw % Ui 22 %
— + uw_ + VW + Ww_ - — = =p + Wy 33
3t X v g R g el ( )

where 7~ also includes some terms that depend on R , and R is the
constant radius r . The advantage of eqs. (3.1)-(3.4) is that they may
be solved in the same planar geometry used for the flat plat transition

experiments reported above. The boundary conditions are still u=v =w =20

at the flat plate, and the same numerical techniques apply to the solution

of the problem. The only difference is that the mean inflow generates

longitudinal vorticity because of the curvature terms, and this longitudi-
nal vorticity must be included in the numerical calculations. Thus, we
ran the code for about 200 time steps to allow the longitudinal vorticity

to develop, and then we applied the Tollmien-Schlicting waves (two- and

three-dimensional) as perturbations.
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In figure 9 we show the results of a numerical experiment that is
otherwise identical to the experiment plotted in figure 3, except that

it includes the effects of concave surface curvature with R = 15 cm .
i Observe that the location of transition has been profoundly affected even

though R 1is very large compared with the boundary layer thickness of

0.1 cm. Additional results of this kind are given by Orszag (1977).
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Galerkin Approximation

The idea of the Galerkin approximation method discussed here is
similar to that of nonlinear stability theory. The nonlinear stability
theory of boundary layer flows was worked out by Benney (1964) and
subjected to numerical test by Antar and Collins (1975). Here we use a
slightly different approach.

The basic idea is that the fundamental nonlinear dynamics are not
grossly affected by the inflow-outflow boundary conditions imposed on
the full simulations discussed in section 3. Therefore, we apply the
much simpler periodic boundary conditions in x and y while retaining
the rigid boundary conditions imposed in the z direction. In this case,
we can seek the solution of the Navier-Stokes equations as a Fourier
series in x and v as follows:

;(x,y.z,t) = G(k,p,z,t)eikx+ipy ‘ (4.1)
|k<k |p|<p

Next, the Fourier representation (4.1) is substituted into the
Navier-Stokes equations, and equations for the Fourier components are
obtained by equating coefficients of the various Fourier modes. Finally,
a low-order Galerkin approximation is obtained by retaining only the
lowest order modes and their harmonics, so the truncation K =P = 2 is
applied to (4.1).

The resulting Galerkin approximation equations are solved numerically
as differential equations in time, and the results are transformed back
to a spatial representation by using a phase velocity transformation
(even though the group velocity transformation is more justifiable).

The results of a comparision with the three-dimensional simulation of
figure 3 are given in figure 10. Although the details of the explosive
growth of perturbation amplitude are not given accurately by the Galerkin
approximation, the qualitative agreement is impressive. In particular,
it appears that the Galerkin approximation can predict the location of
transition to within approximately 207 even though the Galerkin approxi-
mation requires about two orders of magnitude less computer time than the

direct solution of the Navier-Stokes equations.




e —

1103 243 pue

04

/

£ wuzwvu uyp paijjold aseo Yl J40j uoljenwis [eorasunu

¢ =d =3 YITA UOTIBINO[ED uljIa[ey v jo .v.:cwu...—_f:L 241 jo uostiedwoo y

0f 1 (ua) % 0c

01 2an31y

r

[

uryaaey @

voryepnurg (-f X

4 cu o

= v0°0
-1 Y90°0
8070

=1 0I°0

| g

4 910




Flow Research Report No. 80
May, 1977

=28

The apparent success of the Galerkin approximation employed here
is a very hopeful development. In particular, the full numerical simu-
lations of transition are probably too complicated and costly to perform
on any realistic three-dimensional body. The Galerkin results, however,
suggest that the boundary conditions are not too important in detail, so
complicated geometries can be studied by isolating small regions and
piecing the results together.

A more detailed development of the Galerkin approximations is being

prepared for publication.
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