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Numerical Simulation of Boundary Layer Transition*

by

Steven A. Orszag

Consultant, Flow Research Company , Kent , Washington 98031

Abstract

The purpose of this research was to develop numerical simulations

of boundary layer transition. One of the essential aspects of the work

was to investigate carefully the appropriate boundary conditions and

mathematical models tha t should be employed in the study of transition

processes. The effects of three dimensionality, spanwise wavelength

selection , and streamline curvature were also considered.
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1. Introduction

In this report , we summarize the results obtained under Office of

Naval Research Contract No. N00014—76—C—0263, Task No. NR 061—233, ARPA
Order No. 2924. The purpose of this research was to develop numerical

simulations of boundary layer transition . One of the essential aspects

of the work was to investigate carefully the appropriate boundary

conditions and mathematical models that should be employed in the study

of transition processes. The effects of three dimensionality, spanwise

wavelength selection, and streamline curvature were also considered .

The direct solution of the Navier—Stokes equations for the study of

transition Involves much computation because three—dimensional effects

are important (see section 3), and high resolution is required in the

downstream and boundary layer directions. To economize in the solution

of transition problems, we have developed a nonlinear stability theory

that seems to account for the principal effects observed in our direct

numerical simulations . This Galerkin approximation is discussed in

section 4.

In this report we briefly summarize our results. DetaileL exposi-

tions of our results are given in the publications cited in the references .
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2. Boundary Conditions

The basic flow geometry of the numerical simulations of transition

repor ted in section 3 is shown in figure 1. The flow enters the com-

putational domain at x = 0 and exits at x = L (normally L = 50 cm ).
The free stream is at z = ~‘ , while the rigid wall is at z = 0 . In

the spanwlse—y direction , the unperturbed boundary layer flow is assumed

uniform while the perturbed (transitional) flow is assumed tc satisfy

periodic boundary conditions . A typical calculation reported in section

3 involves the use of 257 grid planes to resolve the downstream x direction ,

8 Fourier modes to resolve the spanwise—y direction , and 33 Cheby shev

polynomials to resolve the boundary—layer z direction. We discuss the

boundary conditions applied in each of the coordinate directions in more

detail below.

!panwise Direction — Periodicij~
The assumption of periodicity in the spanwise direction is con-

sistent with the Navier—Stokes equations in the sense tha t if the

perturbed boundary layer flow is initially periodic in 
~ 

at t = 0

then the flow stays periodic in y with the same period for all later

times. This periodicity does not prevent the formation of localized

vortex structures in the flow during the process of t ransition——localized

vortex structures that do appear during time evolution must , however ,

appear per iodically in the y direction. The assumption of spanwise

period icity does not seem to cause any serious difficulty or physical

inconsistency in comparing our computations with laboratory experiments

like those of Klebanoff , Tidstrom , and Sargent (1962).

Boundary Layer Direction — Mapp ing

We have discovered that an algebraic mapping of the semi—Infinite

donai~ above the flat plate located at z = 0 into the finite interval

( — 1 , 1) gives remarkab ly  e f f i c i e n t  and accurate numerical computations.

The algebraic mapping is

(2 . 1)

~ h t r ~ 1! i .~ e par~ir~~t e .~~t I ~v choFen to he tw~ ce the hei~ ht at

vii :~ ~~~~~ ~r~- t d ‘:1 ~~ t’. is ‘nt~—hi1 f the  f r c e — s t r e a m  va lue  ( f o r

—.4
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the Blasius boundary layer this height is approximated well by twice

the displacement thickness of the boundary l a y e r ) .

The mapp ing (2 .1 )  t r a n s f o r m s  the  interval 0 < z < into the

f i n i t e  in terval  — l z < 1 . A n ice  f e a t u r e  of the napping ( 2 . 1 )  is

tha t  the rule fo r  t r ans fo rma t ion  of der ivat ives is s imply

= 
(1 ~) 2 

~~ ( 2 . 2 )

Bas ica l ly ,  the mapping (2 .1)  is j u s t  an anal y t i c a l  device  to in t roduce

nonun i fo rm resolut ion in the  z d i r e c t i o n .  If  a numer ica l  scheme w i t h

uniform resolution in z is used , too much i nf o rr ~at i c n  is wasted in

the  f r ee  stream , where the so lu t ion  changes s l o w ly .  This puts undue

burdens on the numerical resolution closer to the wall , where the action

l ies.

Grosch and Orszag ( ] 9 7 7 )  have given a d e t a i l e d  accoun t  of our

ana lys i s  of mapping in th is  coord ina te  d i r e c t i or ~. They g ive a la rge

v a r i e t y  of examples and expla in  in d e t a i l  why the  d i r e c t i o n  is ripe

f o r  napping  t e c h n i q u e s .  Here we ~zive j u s t  tvr. examples  t ha t  i l l u s t r a t e

how well mapping  works in the  z d i r e ct i o n .  •ft ~ two examp les are the

Or r — Somm er f e l d  e q u a t i o n  f o r  the  l inear  eigenn~odes of Blas ius  boundary

laye r  f l ow and the Fa lkner—Skan  e q u a t i o n  fo r  the  s t r eam f u n c t i o n  of

boundary  layer f low on wedges ( w i t h  a p r e s s u r e  ~r a i i en t ) .

In t ab le  I , we l ist  the most u n s t a b l e  ei~~e nv a lu e  of Blas ius  f low

at a Reynolds  number R = C x / ’  580 , wh e r e x is t he di s ta n ce

f rom the leading ed ge of the f l a t  p l a t e , wi th  a (d imensionless)  wave number

of 0.179. Two numerical schemes are compared : a Chehyshev polynomial

solution (Orszag, 1971) of the Orr—Sommerfeld equation truncated tc the

domain 0 < z < I-i for various values of H with the boundary condition

f ’  + 0. 179f  = 0 app lied to each of the  c i g e mfu n c t i e n s  at  H ; and a

Chebyshev pol ynomial  so lu t i on  of the same p r ob l e m  w i t h  the  mapp ing  ( . . l )

w i t h  scale factor H = 1 . Note that , according to the discussion foliowin

( 2 . 1 ) ,  the optima l choice for H is about  3. .~ , so we could a n t i c i pa t e

even g r ea t e r  a c c u r a c y  by such a cho ice .  (Here  and in the  rest  of o’ir

work  we non—dimensionalize z by the length scale x ’U , where 1’
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is the free—stream velocity , so the displacement thickness of the

Blasius layer is 1.7.) Also note that i t  is not necessary to apply any

boundary condit ions at  all at  = 1 when using the mapping since eq.

( 2 .2 )  ensures that  all  nonsingular  dor ivat ives  vanish at  ~ 1 a f t e r

mapping .

Table I Eigenvalues of the Orr-Sommerfeld Equation For Blasius Flow

Mapping H N C
Number of

Scale Chebyshev Eigenvalue
Factor Polynomials 

____________________

Restricted Domain 20 44 0.360213 + iO.00667l

0 < z < H 30 44 0.364041 + iO.008113

Al gebraic Mapp ing 1 26 0 .364147 + iO.008007

= ( z — H ) / ( z + H ) 1 34 0.364121 + iO .00 7958

Exact Eigenvalue c = 0.364123 + iO.007960

In Table II we list some errors in the value of u (l) , vhich is

the non—dimensionalized x component of the velocity at a non—dimensionalized

height of 1 above the rigid wall , as determined by numerical solution of I
the Falkner—Skari equation with only 11 grid points. Three different

pressure gradients are listed in the table. For each case , the alge-

braic mapp ing achieves much better accuracy than that achieved by

simply restricting the integration domain to 0 < z < H . In table II ,

the points labelled * indicate that no acceptable (monotonic) solution

to the discretized Falkner—Skan equation exists (with only 11 grid points).

Unfortunately, the technique of mapping works well only for problems

where the solution is “simple ” at infinity (see Grosch and Orszag (1977)

for a variety of examples). Thus , boundary layer flows are “simple ” at

infinity because perturbations that are large near the wall die away

exponentiall y fast as z increases. For example , if the amplitude cf

a linear mode of the Orr—Somnierfeld equation oscillates as e1
~~ , then

its amplitude decreases like e~~~ for large z . On the other hand ,

the downstream x direction is not one in which the flow becomes ‘sinnie ”;

- - - .- . . . .  -~~~~
,.. 

.

~~ — 
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rather , we expect that sufficiently far downstream the flow will become

turbulent. Mapping the semi—infinite x domain into a finite interval

without considering the outflow boundary conditions will not work.

Tabl~ II Errors in Solution of the Falkner—Skan ~quation

Mapping H 3 Error in f’(l)

Restricted Domain 1.0 0 0.54
2.5 0 0.052
5.0 0 0.00013
7.5 0 *

Algebraic Mapp ing 1.0 0 0.0000058
2.5 0 —0.00000047
5.0 0 —0.0000028
7.5 0 —0.0000040

Restricted Domain 5.0 —0.1 0.00042
7.5 —0.1 *

Algebraic Mapping 5.0 —0.1 —0.0000046
7.5 —0 .1 —0.0000064

Restricted Domain 2.5 0.1 0.032
5.0 0.1 0.000 14
7.5 0.1

Algebraic Mapping 2.5 0.1 —0 .0000055
5.0 0.1 —0.000011
7.5 0.1 —0 .000016

1 
Solutions of the Falkner-Skan equation obtained by using 11 equall y

spaced grid points in the appropriate coordinate system . Here *

indicates that no acceptable (monotonic) solution was found . Also ,
f ’ ( l)  u (1)/U , the relative x velocity at a non—dimensional height
of 1; ~r3 is the included angle of the analogous wedge flow.

Inflow—Outflow Boundary Conditions

Orszag (1974) has shown that the viscous Navier—Stokes equations are

well posed if all three velocity components are specified at inflow and

outflow boundaries. Orszag also showed that the inviscid Navier—Stokes

equations are well posed if all three velocity comp onents are specified

at inflow points :~‘id if either the normal component of the velocity or

the pressure is specified at an outflow point. ~e have investigated in

- -- -- . .

~

-

~

-

- . - . -~~~~~~ - , . —~~~~~~~~~~~-
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detail the effects of various boundary conditions on solut ions of the

Navier—Stokes equations and have developed new boundary conditions that

minimize the effect of arbitrarily specified outflow boundary conditions

on the flow in the interior of the domain of interest. A detailed

repor t on our s tudies is being prepared (Orszag and Israeli, 1977); a
preliminary outline of our results was published by Orszag (1976).

A simple model of viscous e f f e c t s  is given by the linearized

Burgers ’ equation:

(2 . 3 )

where U is a constant advecting velocity and v is the kinematic

viscosity . Suppose we wish to solve eq. (2.3) on the semi—finite

domain 0 < x < ~ , and suppose that U > 0 so that x 0 is an

inflow point. Let us see what happens if the domain is truncated to

the finite interval 0 < x < 1 . If ~ is very small , the Laplace

transform solution of the initial—value problem for eq. (2.3) is composed

of modes of the farm

u(x ,t) e
+
~~ , ( 2 . 4 )

~her~ th e  ~ispersian rei~~tion

— ‘ U — c = O  (2.5)

, 1 e t c r m~~: te c  “ as a ~un~.tiun of . Thus, i f  \ < <  1 , the re are  two

p o s s i b l e  meuc s  ~~i ’ . o n  a r p r o x i m a t e L v  by

Uf’  (2.6)

2 
— 

~~~/ U  . (2 .7 )

The first mode is a viscous mode that decays as —x increases. The

second mode is a mode tha t describes p r o p a g a t i o n  from x = 0 to

= + ~
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The general solution to ccl . ;2.3) is of the form

1 2
u(x ,t) = dce A

1
(c) e + A ) (c )e  . ( 2 . 8 )

When the semi—infinit e domain 0 < x is t r u n c a t e d  to the

finite interval 0 x < 1 , it is necessary to impose boundary conditions

at both x = 0 and x = 1 , say u(0,t) = f(t) and u(1,t) = 0 . Since

I is large  and p o s i t i ve , it follows from eq. (2.8) that the effect

of this mode at x = 0 is exponentiall y smaller than its effcct at

x = 1 . Therefor~~, neglecting the mode , , we find from eq. (2.8)

that the boundary condition u(0,t) = f i t )  determines Aj~ ) . On

the other hand , the boundary condi t i .~n u(1 ,t) = 0 Jttern ine s

in terms of

A
1 

= —A , exp (~ — . (2.91

New we can compare  the  finite anl ~er. i—i :if ini te ~rcbieris . In the

s~ i ci — in ti nite problem the mode ‘
1 

does not .ip~~~ an  at  i ll, but t h e

solut ion is othe~~ ise th~ s u~’ e is f o r  th e I m i  te ~r ole— Therefore ,

a c c o r d i n c  to eqs. (2. ~) in~i ( 2 . 9 ;  t h e  . f f e  a t  t a o  b e n n d ar v  conditco n

imposed at x = I is confined t o  a b o u n d a ry  1 a c er of  w i d t h  of  order

~U n ear  x = 1

The boundary condition u (l.tl = 0 affects the solution onl y in

the thin bound ary layer with width of order c/U . it is possible to

decrease the effect of the artificial boundar y at x = 1 still further

by impo sing a boundary conditio n of the form

u ( 1 ,t )  = 0 (2.10)
‘V

it  x = 1 . In t h i s  case , the  s o l u t i o n  f o r  A 1 t ha t  c o r r e s p o n d s  to

eq. 2 . 9 )  is

_ (~, / ~~~ k~\ e x p ( ’\2 - 

~~ 
(2.11)

so t h e  amo1 it~ de of mode 1 is a factor (~ /U)k i r c~ s smaller than with

L _ _ _ _  _ __  _ _ _ _  _ _ _ _ _ _ _ _ _ _ _
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straightforward application of u ( l , t )  = 0 . The only danger in applying

higher order conditions lik~ eq. (2.10) with k large is that numerical

instability may be induced by high order extrapolations near the outflow

boundary. with numerically stable schemes , however , higher order boundary

conditions should be more accurate than lower order boundary conditions .

We can make a similar ;rnalysis of a model problem that bears much

closer relation to incompressible fluid mechanics than does eq. (2.3).

The model includes the effect of pressure , which is essential for under-

standing the nature of the Navier—Stokes equations . The model consists

of the two—dimensional linearized Navier—Stokes equations with a solution

assumed to be of the special form

u = u(x,t)e~~
y 

, v = v (x ,t)e~~~
’ 

. (2.12)

The model equations are given by

U
t 
+ Uu + ikVu = — p + V ( u  - k2u) , (2.13)

V
t 

+ Uv + ikVv = — ikp + (v - kv ) , (.14)

u + ihv 0 , (2 . 1 5 )

where we assume tha t U > 0 so x = 0 is an inflow boundary and V

is arbitrary. We want to stud y the effec t of truncating the semi—

infinite domain 0 < x < into the finite domain C) < x < 1 . To do

this, we analyze the Laplace transform solution of the initial value

problem for eqs. (2.13)—(2.15).

The Laplace transform solution of eqs. (2.13)—(2.lS) is composed ~f

modes of the form

u ( x , t )  = ue ,

Xx+otv (x ,t )  = ye , (..li) 

.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where the dispersion relation

“ 2
— k )(a + .(U + ikV - vX ÷ v k) = 0 (2.18)

determines X as a function of o . The four roots of eq. (2.18) for

given 0 , k , Id , and V are

= +k , X 2 = —k , (2.19)

and , \ , are the solutions of the quadratic equation

7
— \U - (~

y — ikV — v k) = 0

When c’~<i , the asYmptotic behaviors of A
3 

and ~~~, are  ~ivcn by

~+ikVU/v , . . -. — . ( . .  20)
3 U

The genera l  s o l u t i o n  of eqs. (2.l3)—(2.15) is of the form

u~ x ,t) = e A , (~ le 1 + A ) L ) O  — + A . ie ° ± A , (~ )~ . (2.21)
L -

In the semi—infinite domain only nodes 2 and 4 survive if the

solution is bounded at , so eq. (2.21) r educes  to

Ct
u(x,t) = d~; e A 2 (C)e + A4 (~~)e . ( 2 .  2 2)

In the finite domain 0 x < 1 , all four modes are present to some

extent and are determined by the boundary conditions . The contributi ca

of mode 3 decays in a viscous boundary layer around the cutf low boundary

at y• 1 (as for the linearized Burgers ’ equation), so if V is

small , this mode causes negligible error throughout the interior of the

interval 0 < x < 1 . On the other hand , the mode 1 
= ~~ is a pressure

mode that decays appreciably only over the distance 1/k . so if k is

not large , its effect may be large over the whole computational domain.

It is mode 1 that is the origin of the principal differences ho wet t b

semi—infinite flow case and the finite—domain simulation.

-~~~~~~~~
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There are several ways to minimize the effect of mode 1. One way is to

assume that the computational domain has a large aspect ratio L/H >> 1

where L is the length of the computational reg ion and H is its

height. In this case the smallest allowable transverse wavenumber

k satisfies k + 2ir/H >> l/L , so that mode 1 does in fact “boundary

layer ” (in a distance of order H ) about the outflow boundary x = L

Thus , so long as L — x >> H , the effect of arbitrarily specified

outflow boundary conditions at x = L is negligible.

Another way to limit the effect of the outflow boundary conditions

is to mod if y the equations of motion in the neighborhood of the outflow

boundary so tha t the “bad ” mode 1 boundary layers in a thin boundary

layer near x = 1 . We therefore make the wavenumber of mode 1 become
A
1 

>> 1 . Three ways to modif y the Navier—Stokes equations to accomplish
this wavenumber are :

(i) Replace the incompressibility condition U + V
y 

= 0 by u

÷ V
y 

= 1.1 v n  where ~ ‘>l • and n is the outward normal.

(ii) Modify the pressure term in the Navier—Stokes equations to be

—
~
p + ]lnp

(iii) Introduce pseudo—compressibility terms in the Navier—Stokes

equations near the outflow boundary.

For example , if we replace eq. (2.15) by

u + ikv = nu , (2. 23)

modes 3 and 4 of eqs. (2.13), (2.14), and (2.23) are unchanged from eq.

(2.20), wh ile modes i and 2 are rep laced by

- k4/u , (2.24)

when ‘.i >> 1 . Thus , the size of A
1 

is increased , and mode 1 bour.dar”

layers near x = 1 . To minimize the effect of the outflow boundary at

x = 1. , we choose ‘j(x) such tha t the effects of node 1 are ocalized

near x = 1

L ~~~~~~—--~~~~~~~~~~
. -.——. ~~~~~

. .- --
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This technique has been tested on the problem of low Reynolds

number flow past a cylinder with mixed success. At a Reynolds number

of four , when a truncation of the computational domain to 1 < r r~
is used , the results for the drag coefficient C

D 
are as follows . Using

the Lmai asymptotic behavior of the vorticity and stream function as

boundary conditions at r , we obtain C = 4.335 if r = 21.5D
C = 4.431 if r = 35.0 , and C = 3 .34 2  if r = 5 9 . 1  . U s i n gD D
free—stream boundary conditions instead , we obtain C

D 
= 5.13 if

r~ = 21.5 C
D 

= 4.66 if r~ = 59. 1 , showing the very large errors

that can result from use of free—stream boundary conditions . On the

other hand , the use of a modified Navier—Stokes equation of the form (i)

with derivative boundary conditons applied at r and a quartic power

law for 0(r) beyond O.8r~ , we obtain C
D 

= 4.465 if r = 21.5

However , if we use non—differentiated boundary conditions on the outer

radius r , then the best choice of ii (r) gives C
D 

= 4.73 at r~ = 21.5

Thus , with differentiated boundary conditions , the new methods appear to

give superb results , while with non—differentiated boundary conditions ,

the results are less spectacular. A full discussion of these results

and methods is given by Orszag and Israeli (1977).

I
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3. Numerical Simulations of Boundary Layer Transition

In this section we describe some numerical results for boundary

layer transition. In our earlier work on transition (Orszag, 1974) ,

we solved a set of “parabollzed” Navier—Stokes equations in which the

x derivatives of the viscous dissipation terms were dropped on the basis

that they were expected to be roughly 100 times smaller than the

z—derivative contribution to the viscous terms in linear Toilmien—

Schlicting waves. The advantage of the parabolized Navier—Stokes

equations is that they allow the use of inviscid boundary conditions at

the outflow boundary and prevent the occurrence of thin boundary layers

near the outflow boundary. In the present work , we have compared the
results of the parabolized Navier—Stokes equations with numerical solutions

of the full Navier—Stokes equations and have found good agreement out-

side a thin boundary layer near the outflow boundary . The results

presented below were all obtained by solution of the full Navier—Stokes

equations.

Numerical Methods

The Navier—Stokes equations were solved by using 257 staggered

grid planes in x with a compact mesh fourth—order difference operator

(Orszag and Israeli, 1974). Inflow boundary conditions at x = 0 were

that all three velocity components be specified (see below) and that

outflow boundary conditions of various kinds be employed , including

specification of v = 0 , specification of v = 0 , and s p e c i f i c a t i o n

of v = 0 . Most of the results reported below were obtained byxx
using v 0

x
The y d i r ec t i on  was resolved by using eight Fourier modes in

a spec t ra l  representa t ion  (Gott l ieb and Orszag ,  1977) .  This repre —

sentat ion ensures per iodic i ty  and gives an adequate  r epresen ta t ion  of

the in i t ia l  stages of nonlinear growth be fo re  bu r s t s  ac tua l ly appear .

The bu r s t s  cannot be resolved b y using only eig ht Fourier  modes because

they are very localized in y , so our c a l cu l a t i ons  must be considered

inadequate  a f t e r  the ca lcula t ions  p r e d i c t  burs t s  to o c cu r . N ev er th e—

less , our p r ed i c t i ons  of the locat ion  of t r a n s i t i o n  should be good .
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We resolve the boundary Layer z direction by using an algebraic

mapping together with a 33—mode Chebvshev polynominal expansion (Gottlieb

and Orszag, 1977). Rigid boundary conditions are applied at z = 0

but no boundary conditions (other than boundedness are applied at

= . The advantages of Chebvshev polynotninal solution of the

z direction are that it is highly accurate , relatively easy to implement ,

and gives excellent resolution of any thin boundary layers that may

a p p e a r .

Time s t e p p i n g  is done by a combination of methods. A semi—imp licit

al g o r i t h m  is used in x to avoid s t r i nee n t  t i m e— s t e p  r e s t r i c t i o n s

imposed by outflow boundary layers (Gottlieb and Ors:ag. 1977 . Haidvoge l

and Orszag, 1977). The semi—implicit scheme is combined wi th Adams—

Bashforth explicit second—order time differencing on the advective

terms and Crank—Nicolson implicit time dif feren cin c on ~he viscous

terms . The overall time—sterp in ,c restricti ons are nor too severe and

are of the form It ~ Ax / u ’ , where Ax is the spatial resolution in

the interior of the computational d o m a in  and u is the ma~~n i t u d e  of

a typical fluctuation velocity. Ic. prac tice, accurat~’ numerical results

(as opposed to just stable ones) are obtained h~’ raking the tine step

nearly 100 times smaller than this stabi lity hound. To resolve accuratel y

the advection effects of the unperturbed mean fiov , ~ e ac is t  t a k e  tine

steps that are comparable t~ the advect ion tine of the mean  velocit’c over

one effective grid interval.

The pressure is solved by fast Fourier transform methods in

x and y and a matrix inversion method in z . The ma trix mu l ti pli-

cation that is required is fast and accurate; the pressure computation

requires about 25~/ of the overall time step.

The initial conditions we have used are those described ~~ Orszag

(1973). They consist of a superposition of a two—dimensional Tollmien—

Schlicting wave and a three—dimensiona l Tollm ien—Sch lictinc wave super-

posed on a Blasius profile , as suggested by the laboratory experiments of

K l eh an o f f , T ids t rom and Sargen t  (1962) and the theory of Bennev and

Lin (Benney , 1963).

I
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Transition on a Flat Plate

We have performed a series of numerical experiments on transition

on a flat plate. The inlet of the computational domain is placed 1 m

beyond the edge of a flat plate on which there is a zero—pressure gradient

free—stream flow incident with U [500 cm/s . The kinematic viscosity

is assumed to be 0. 15 ctn /s, the boundary layer thickness at the inlet

is 3 = vx/ IJ 0.099 cm , the Reynolds number at the inlet is

R = 13/ .  = 1000 . The length of the computational domain is chosen to

be 50 cm , and the scale height ic. the algebraic transformation (2.1) is

chosen to be H 0.3 cm

The imposed primary Tollmien—Schlicting wave is chosen typically

to be the unst able eiazenriode of the Orr—Sommerfeld equation with wave-

length 3.81 cm and has an imposed maximum u ’ fluctuation of (0.01)1

Various three-dimensional perturbations on this primary two—dimensional

mode are investi gated below; they typically consist of a (0.0015)U

((15’~)u’) perturbation in the form of a three—dimensional Tollmien—

Schlicting wave with the same x wavelength as the primary mode , but

with various spanwise (y) wavelengths .

In a typ ica l calculation , the time step is chosen to be (0.002)s ,

which is small compared with the pri:narv Tol lmieri—Schlicting wave period

of (0.007)s. The calculations proceed until a statistically steady

state develops , normally after several hundred time steps.

In figure 2 we plot the results of a two—dimensional f low simulation

with only the two—dimensional Tollnien—Schlicting wave applied. Observe

that t here is no explosive growth of the amplitude with increasing

x , which indicates absence of transition.

In f igu re 3 we p lot the results of a three—dimensional simulation

in which the spanwise wavelength of the three—dimensional perturbation

is 2.5 cm . In figure 4 we plot the results of a similar experiment in

which the outflow boundary conditions u = v = = 0 are replaced
x x x

by u O , and v = w 0 .
x
In figures 5—7 we compare the mean velocity profiles at three

locations in the flow whose perturbation amplitudes are p lotted in

ficure 3. Observe t o n t  as the downstream distance increases , the flow
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becomes highL~’ inflectional at the spanwise location of the maximum

velocity fluctuation. Beyond the point at which these highly inflec-

tional profiles appear , we expect the rapid occurrence of bursts.

In f i g u r e  8 we show the effect of varying the spanwise wavelength

on the location of transition . Observe the relatively broad minimum

at  a spanwise  w a v e l e n g t h  of 2 cm . Also , observe that for a spanwise

wavelength of 7 cm , no transition was observed w i t h i n  the computational

box.

More  d e t a i l s  on these n u m e r i c a l  exper imen t s  are  be ing  p r e p a r e d  f o r

p u b l i c a t i o n  ( O rsz ag , 1977). P r e l i m i n a r y  r e s u l t s  have been pub l i shed  in

Orszag (1976).

Effect of Surface Curvature

We have investigated the effect of s u r f a c e  c u r v a t u r e  on the

transition process by solving a modified set of Navier—Stokes equations

that include the primarY effects of such a curvature. Thus , in cylin-

drical coordinates, with t h e  a p p r o x i m a t i o n  t h a t  t h e  radius  r is

coris tint throughout the boundary lover (which is justified if r ~~~‘

t h e  t h i c k n e s s  of the boundary layer), we obtain

+ uu + v u  vu = —p + )
~~~~ U , (3.1)

+ cv + v y  ± ~~~~ = -~~ + ~T 2
v , (3 .2)

x Y z v

-‘-~—- +uw +vw - w’c — --—- =-p + ‘ . . , (~~.3)x ‘-‘ ~ R z

where  a lso  i n c l u d e s  some terms tha t depend on R , and R is the

c o n s t a n t  r a d iu s  r . The advintace of eqs. (3.1)—( 3. -.) is that they may

he solved in t h e  same p l a n a r  ueom etrv used for the flat p lat transition

ex p e r i m e n t s  r e p or t e d  above.  The b o u n d a ry  c o n d i t i o n s  a re  s t i l l  u = v = w 0

a t  the  f l a t  p l a t o , and the  same n ume r i c a l  t e c h n iq u e s  appl y to the  s o l u t i o n

of the problem . The only difference is that the 0C ifl i n f l o w  g e n e r a t e s

longitudi nal vorticitv because of the curvature term s, and this longitudi-

nal vor t i c i t v must be included in the numerical calculations. Thus, we

ran the code for about 200 time ste~ s to allow the longitudinal vorticitv

to develop, and then we a p p l i e d  the Tollrnien—Sch licting waves (two- and

three—dimensional) as perturbatior .s.
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In figure 9 we show the results of a numerical experiment that is

o t h e rwi s e  i den t i c a l  to the  e x p e r i m e n t  p l o t t e d  in f i g u r e  3, except that

it includes the effects of concave surface curvature with R = 15 cm

Observe that the location of transition has been profoundly affected even

tho ugh R is very la rge  compared w i t h  t h e  bounda ry  layer  thickness of

0.1 cm. Additional results of this kind are given by Orszag (1977).

_ _
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~~~. Galerkin Approximation

The idea of the Galerkin approximation method discussed here is

similar to that of nonlinear stability theory . The nonlinear stability

theory of boundary layer flows was worked out by Benney (1964) and

subjected to numerical test by Antar and Collins (1975). Here we use a

sl ightly different approach.

The basic idea is that the fundamental nonlinear dynamics are not

grossly affected by the inflow—outflow boundary conditions imposed on

the full simulations discussed in section 3. Therefore , we apply the

much simpler per iodic  boundary condit ions  in x and y whi le  r e t a in ing  4

the ri g id boundary  c o n d i t i o n s  imposed in the a d i r ec t ion .  In th is  case ,

we can seek the solution of the Navier—Stokes equations as a Fourier

series in x and ‘.‘ as follows :

- -
~~ ikx+ipvv ( x ,v ,z,t ) = u(k ,p , z , t ) e  . (-. .l)

k< K  p~~P

Next , the Fourier representation (-~*.1) is s u b s t i t u t e d  into the

Navier—Stokes equations , and equations for the Fourier components are

o b t a i n e d  by equati !laz coefficients of the  var ious  F o ur i e r  nodes.  F i n a l ly ,

.i Low— order (
~.ilo rkin approximation is obtained by r e t a in ing  only the

lowest order modes and t h e i r  harmonics , so the truncation K = P = 2 is

applied to  ~.. 1).

The r e s u l t i n g  G a l e r k i n  a p p r o x i m a t i o n  equa t ions  are solved numer ica l ly

as differential equations in time , and the results are transformed back

to a s p a t i a l r e p r e s e n t a t i o n  b y u s i n a~ a p hase v e l o c i t y  transformation

(even though the group velocity transformation is more justifiable).

The results of a comparision with the three—dimensional simulation of

fi gure 3 are given in figure 10. Althoug h the details of the explosive

g r o w t h  of p e r t u r b a t i o n  amp l i t u d e  are not  g iven a c c u r a t e l y  by the Galerk in

approximation , the qualitative agreement is impressive. In particular ,

it appears that the Galerkin approximation can predict the location of

transition to w i t h i n  approx ima te ly  20 % even though the Galerkin approxi-

mation requires about two orders of magnitude less computer tine than the

direct solution of the Navier—Stokes equations.
4
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The apparent success of the Calerkin approximation employed here

is a very hopeful development. In particular , the full numerical simu— I

lations of transition are probably too complicated and costly to perform

on any realistic three—dimensional body . The Galerkin results , however ,

suggest that the boundary conditions are not too important in detail , so

complicated geometries can be studied by isola ting small regions and I
piecing the results together.

A more detailed development of the Galerkin approximations is being

prepared for publication.
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