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ON SOME GOODNESS OF FIT TESTS FOR THE WEIBULL
DISTRIBUTION WITH ESTIMATED PARAMETERS

by

Mahesh Chandra
Nozer D. Singpurwalla

In this note we consider some test statistics based on the sample
distribution function for testing the null hypothesis that a random sample
belongs to a Weibull distribution with unknown scale and shape parameters.
A foundation for testing such a hypothesis is provided by the fact that
the logarithm of a Weibull random variable has an extreme value distribu-
tion with a location and a scale parameter, and by some recent results of
Durbin (1973) and of Serfling and Wood (1976). These results pertain to
the weak convergence of an associated "empirical" stochastic process, under
the null hypothesis. The asymptotic distribution of the empirical process
serves as a basis for Monte Carlo studies for determining the appropriate
critical points of the test statistics. We shall give some results on

comparing the power of our tests and a test due to Mann, Scheuer, and
Fertig (1973).
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DISTRIBUTION WITH ESTIMATED PARAMETERS

by
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Nozer D. Singpurwalla

1. Introduction

The two-parameter Weibull distribution has found many applications
in the engineering and in the biological sciences. For instance, it has
been used by Cook, Doll and Fellingham (1969) and by Doll (1971), to des-
cribe the observed age distribution of many human cancers. Its use for
describing failures of electrical and mechanical components is well docu-

mented in the reliability literature.

In this note we address ourselves to a fundamental problem involving
any application of the Weibull distribution. We wish to test the null hy-
pothesis that a given random sample belongs to a Weibull distribution with
unknown parameters. Of the several methods for testing ''goodness of fit,"
those based on the sample distribution function happen to be the most
popular. We shall present tables of critical values for testing the null
hypothesis in question, and also give some results comparing the power of

our tests and a test due to Mann, Scheuer and Fertig (1973).

A foundation for developing our tables of critical values is the
recently given theory by Durbin (1973), and by Serfling and Wood (1976)

on the weak convergence of an "empirical" stochastic process. This
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stochastic process is based on the sample distribution function and
estimates of the unknown parameters. The statistics that we discuss

can be represented as well-behaved functionals of this empirical process.
Thus, the asymptotic distributions of the relevant test statistics can be
obtained as the distributions of the corresponding functionals of the lim-

iting process. The above ideas will be made clear in the following text.

2. Preliminaries

The two-parameter Weibull distribution is given by

A exp[— (%)B], t >0

=0 5 otherwise;

F(t)

(2.1)

the scale parameter § and the shape parameter B are both assumed to

be positive.

If we make the transformation X = -n T , where T has a two-
parameter Weibull distribution, then the distribution of X 1is called

the extreme value distribution. It is given by

F(x) = exp(—exp - (Eié)) s (2.2)

where a =-n§ and b = - . We note that a and b are. respectively,

8

the location and the scale parameters of the extreme value distribution.

The tests that we discuss in this paper are based on the extreme
value distribution. To make a test of fit to the Weibull distribution we
shall first take the negative of the natural logarithms of the supposed
Weibull data. Thus, we wish to consider the case of testing whether the

distribution of a random sample xl,xz,...,xn is an extreme value distri-

bution with unknown location parameter a and unknown scale parameter b .

Specifically, we wish to test the '"null hypothesis"

exp[-exp - (%2)]

n

H, : F(x)
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for all x and for some (a,b) .

When a and b are specified, then H. is "simple," and our

0

test reduces to testing the hypothesis that the independent random

[Xi— ] X,-a
G b = exp|-exp - b s IS <ini,

have a common uniform (0,1) distribution. The Kolmogorov-Smirnov test

variables

is based on the statistic

nl/2 sup IG (t) - t| . (2.3)
S
where
1 n X.-a
¢ (e) == 3 1\¢|-—|<¢), gxt <, (2.4)
noL b - 7 =

where I(E) denotes the indicator of the event E . Under the null hy-

pothesis, the "empirical" stochastic process

W(t) = nl/2 (6 (o) - t] , 0<t<1 (2.5)

satisfies
¢ b
wn —> W in D[o,1] , (2.6)
g 0
where —> denotes convergence in distribution and W  denotes the
Gaussian process determined by
0
E[w(t)] =0, 0 e <l

and )
0 0
E[W (s)W (t)] = min(s,t) - st , e, Bl

D[0,1] denotes the space of functions on [0,1] which are right-continuous

and have left-hand limits.

In the following section we present some results on an analogous test

statistic for the case HO composite. These results will serve as a basis

for developing the tables of critical values.

- 3 -
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3. The Convergence Theorem and the Test Statistic

When a and b are not specified, that is, when H is compos-

0

ite, we consider an analogous approach based on (ﬁn,ﬁn) , the maximum

likelihood estimators of (a,b) . We set

= i <
Y S ek tctcnm,

and analogous to Gn and wn we define

IA
r
IA
-

1
a0 =5

he~—mp

' I[G(Yn’i) = Ell e 0
i=1
and

1/
n

v, () : (H (&) - €], SR AR I A A

Our theorem pertains to the "empirical" stochastic process V (t) ,
P n

and is analogous to the result given by Equation (2.6). However, before
stating the convergence theorem, we will have to introduce the following
notation given in Durbin (1973), and verify that his assumptions (condi-
tions) are satisfied.

Let us denote by 6 the vector [a,b]' , and let 80 be any con-
veniently chosen value of 6 . We state below a verification of the re-

quired conditions.

Condition A: The distribution G(x,eo) has a density f(x,eo) such
that, for almost all x , the vector alogf(x,eo)/aeo exists, and satisfies

dlogf(x,6,)  dlogf(x,0,)
E( 0 0>=Jo

’ '
890 890

where J is finite and positive definite.
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Condition B: Let @n be the maximum likelihood estimator of 8 ; that

is, Gn = [ﬁn,ﬁn]' . Then, it is well known (cf. Cramer (1946)] that

dlogf(x,,6.)
7 R O R [ 20’
n (0,-8) = 173 7 ) e L

n i=1 0

where En + 0 , in probability.

Condition C: Let N be the closure of a neighborhood of 60 . Let

g(t,0) = 5G(x,0)/90 when this is expressed as a function of t by means

of the transformation t = G(x,0) ; let g(t) = g(t,eo) . The vector func-

tion g(t,0) 1is continuous in (8,t) for all ©6eN , and (B} el

Theorem 3.1: By virtue of Conditions A, B, and C, the "empirical" process

-a
Vn determined by the extreme value distribution G[ B

“] , with (a ,b )
A n n

the maximum likelihood estimators, is such that
Y. —=V in BHOS I

e ; :
whiere V is a Gaussian process determined by

ev’(e)] =0, 0<t

| A
=

and

BV ()V0(0)] = min(s,t) - st - g(s)' T g(e) , 0 <s, t<l. (3.1)
Proof: Follows from Durbin (1973). //

If we choose 90 = [0,1]' , then it can be verified that g(t) =

[tlogt, -tlogt log(-logt)] , and that

1.10867 0.257
| e

0.257 0.60793
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[cf. Johnson and Kotz (1970), p. 282]. Substituting the above into (3.1)

we have the covariance of our Gaussian process

Ev0(s)v0(e)]

]

min(s,t) - st - 1.108(slogs) (tlogt)

+

0.257(slogs) (tlogt log(-logt))
(3.2)

+

0.257(slogs log(-logs) (tlogt))

- 0.60793(slogs log(-logs) tlogt log(—logt)) » Ui, <1 .
3
The statistics of interest in connection with H0 are:
(i) the one-sided Kolmogorov statistic
+
Dn = sup V (t) , (3.3)
0<t<1
D = -inf V (t) (3.4)
5 geeay B
(ii) the Kolmogorov-Smirnov statistic
D = max(D,D) (3.5
n i R TR -5)
(iii) the Kupier statistic
+ =
Vn = Dn + Dn 3 (3.6)
(iv) the Cramer-Von Mises statistic
1
2
W= I Yeshae , (3.7)
n n
0
(v) the Watson statistic
9 1 ) 1 2
U= = J vo(r)dt = Ff vV (t)de] , (3.8)
n n n
0 0
and
(vi) the Anderson-Darling statistic
2
» 1 Vn(t)
An = (J; t(l-gi dt < (3-9)
- B
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Using the fact that if h(Vn(t)) is a function of Vn(t) that

is continuous with respect to the Skorkhod metric on D[0,1] , the limit

laws of D+ ~ D 5 B L N w2 3 U2 , and A2 under H are given,
n n n n n n n 0
respectively, by the laws of the random variables
e SR (3.10)
0<t<1
- 3 O
D = =inf VYV (t) . (3..13)
0<t<1
+ -
D= max(D (D), (3.12)
+ -
V¥V = DB +D , (3.13)
> oo 3
W = (V (t)) dt , (3.14)
0
16 1 2
)
0> = J (Vo(t)dt)z-[f Vo(t)dt] : (3.15)
0 0
and
1-¢ 0 2
Bom T g\t’—(—%%— de . (3.16)
>0 O+¢

The above results follow as a consequence of the continuous mapping
theorem of Billingsley (1968). They provide a basis for Monte Carlo stud-
ies of the null hypothesis asymptotic distributions of the statistics dis-

cussed above.

4. Sampling Distributions of the Approximate
Test Statistics

Monte Carlo methods were used to simulate the distribution of the

limiting random variables given in Equations (3.10) through (3.16). Fol-

lowing Serfling and Wood (1976) we approximate the Gaussian process V0
by its finite-dimensional distributions, corresponding to an evaluation

of the process at 29, 99, and 119 equally-spaced points in the unit
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interval. One thousand muitivariate normal random vectors with the co-
variance given by Equation (3.2) were generated using a program from the
International Mathematical and Statistical Library. The empirical distri-
butions of the supremum, the infimum, and the difference between the su-

premum and the infimum of the resulting multivariate normal vectors were

+ -
then tabulated, thus approximating the limit laws of Dn - Dn . Dn , and

Vn . Since the differences in the observed quantiles corresponding to

the finite-dimensional distributions of VO at 29, 99, and 119 equally-
spaced points diminished, the approximating procedure was terminated at

2 2

119 equally-spaced points. The asymptotic distributions of W~ , U” ,

2
and A" were obtained by using numerical integration techniques. For
this we used Subroutine QSF from the IBM Scientific Subroutine Package.
The various sample quantiles for the generated frequency distributions

are shown in Table 4.1.

5. The Mann-Scheuer-Fertig (MSF) Test

The only other known procedure for testing goodness of fit for the
Weibull that is not based on the empirical distribution function is a test

proposed by Mann, Scheuer,and Fertig (1973).

The MSF test is based on a statistic S , and can be used for cen-
sored as well as uncensored samples. However, the percentage points of
S and certain quantities that are used in calculating S are available
only for sample sizes of up to 25. However, along with a modification
4+ en by Stephens (1977), the test statistics we discuss can be used for

any sample size.

For a sample of size n , censored at m , the statistic S 1is

defined as

m-1

o - izln/2]+1 Vg T 8 0 Wl = B

: m-1 -
121 (R = %)/ [E(Y,) - E(Y)]

=g =

D o
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X .=

where Yi = b

Mann, Scheuer, and Fertig give percentage points of S and the values of

and [r] denotes the greatest integer contained in r .
the quantities IE(Y1+1) - E(Yi)] for samples of size 3 to 25.

6. Power Comparisons

In order to evaluate the effectiveness of the tests discussed be-
fore, we evaluate their power, against the lognormal distribution as an
alternative. The lognormal distribution is chosen because it appears to
be a natural competitor to a Weibull distribution. The power comparisons
were made numerically. For this random samples of size 20, 25, and 30,
respectively, were generated from a lognormal (normal) distribution with

parameters =~0.5 (mean) and 1.00 (variance), respectively.

Maximum likelihood estimators of the parameters a and b of
the extreme value distribution were obtained by numerically solving the

following equations simultaneously:

-1
b = z Xj/n - [2 )(j cxp(-Xj/b)] [z exp(—Xj/b)] (6.1)
J J )
and
A = -blog [2 exp(-xj/t?)/n] : (6.2)
3

The results of our power comparisons are shown in Tables 6.1,
6.2, and 6.3, and these are based on 1000 replicates. Based on this
limited experiment, it appears that for samples of sizes 20 and 25, the
MSF test has better power. For samples of size 30, the MSF test could

not be used, and the Anderson-Darling test appears to have better power.

7. Concluding Remarks

After finishing the work on this report we were informed that

Stephens (1977) has also obtained asymptotic percentage points for the
4 4

2
statistics W , U2 , and A" . Stephens also gives a necessary modifi-

cation so as to use these statistics for a finite sample sizes. Even though

_10_
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our approach is different, it is encouraging to note that our results
seem to be in good agreement with those of Stephens. A comparison of
the asymptotic points we obtained with those of Stephens is given in

Table 7.1. Stephens has made no power comparisons, and since our re-

sults agree quite well with his, we conclude that our power comparisons

remain valid.
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Prof W. G. Cochran
Prof Arthur Schieifer, Jr.

New York University
Prof O. Morgenstern

Princeton University
Prof A. W. Ticker
Prof J. W. Tukey
Prof Geoffrey S. Watson




Fr

Purdue University
Prof S. S. Gupta
Prof H. Rubin
Prof Andrew Whinston

Stanford
Prof T. W. Anderson
Prof G. B. Dantzig
Prof F. S. Hillier
Prof D. L. Iglehart
Prof Samuel Karlin
Prof G. J. Lieberman
Prof Herbert Solomon
Prof A. F. Veinott, Jr.
University of California, Berkeley
Prof R. E. Barlow
Prof D. Gale
Prof Rosedith Sitgreaves
Prof L. M. Tichvinsky

University of California, Los Angeles
Prof J. R. Jackson
Prof Jacob Marschak
Prof R. R. O’Neill
Numerical Analysis Res Librarian

University of North Carolina
Prof W. L. Smith
Prof M. R. Leadbetter

University of Pennsylvania
Prof Russell Ackoff
Prof Thomas L. Saaty

University of Texas
Prof A. Charnes
Yale University
Prof F. J. Anscombe
Prof I. R. Savage
Prof M. J. Sobel
Dept of Admin Sciences

Prof Z. W. Birnbaum
University of Washington

Prof B. H. Bissinger

The Pennsylvania State University
Prof Seth Bonder

University of Michigan

Prof G. E. P. Box

University of Wisconsin

Dr. Jerome Bracken

Institute for Defense Analyses
Prof H. Chernoff

MIT

Prof Arthur Cohen
Rutgers — The State University
Mr Wallace M. Cohen

US General Accounting Office
Prof C. Derman

Columbia University

Prof Paul S. Dwyer

Mackinaw City, Michigan

Prof Saul I. Gass

University of Maryland

Dr Donald P. Gaver
Carmel, California

Dr Murray A, Geisler
Logistics Mgmt Institute

Prof J. F. Hannan
Michigan State University

Prof H. O. Hartley

Texas A & M Foundation

Mr Gerald F. Hein

NASA, Lewis Research Center

Prof W. M. Hirsch
Courant Institute

Dr Alan J. Hoffman

I1BM, Yorktown Heights

Dr Rudolf Husser

University of Bern, Switzerland
Prof J. H. K. Kao

Polytech Institute of New York
Prof W. Kruskal

University of Chicago

Prof C. E. Lemke

Rensselaer Polytech Institute
Prof Loynes

University of Sheffield, England
Prof Steven Nahmias

University of Pittsburgh

Prof D. B. Owen
Southern Methodist University

Prof E. Parzen
State University New York, Buffalo

Prof H. O. Posten
University of Connecticut

Prof R. Remage, Jr.

University of Delaware

Dr Fred Rigby

Texas Tech College

Mr David Rosenblatt

Washington, D. C.

Prof M. Rosenblatt

University of California, San Diego
Prof Alan J. Rowe

University of Southern California

Prof A. H. Rubenstein
Northwestern University

Dr M. E. Salveson
West Los Angeles

Prof Edward A. Silver
University of Waterloo, Canads
Prof R. M. Thrall

Rice University

Dr S. Vajda

University of Sussex, England
Prof T. M. Whitin

Wesleyan University

Prof Jacob Wolfowitz
University of lllinois

Mr Marshall K. Wood
National Planning Association

Prof Max A. Woodbury
Duke University
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fo cope with the expanding technology, our society must

be assured ot a continuing supply of rigorously trained
and educated engineers. The School ot Engineering and
Applied Science s completely committed to this ob-
jective.
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