
ARPA ORDER NO.: 189-1

7P10 Information PrQCessing Techni"1ues

R-1808-ARPA

September 1~77

RITA Reference Manual
R. H. Anderson, Margaret Gallegos,

J. J. Gillogly, R. Greenberg, R. Villanueva

A report prepared for

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONICA, CA. q()406

The research described in this report was sponsored by the Defense Advanced

Research Projects Agency under Contract No. DAHClS-73-C-0181.

Reports of The Rand Corporation do not necessarily reflect the opinions or

policies of the sponsors of Rand research.

Published by The Rand Corporation

ARPA ORDER NO.: 189-1

7Pl 0 Information Processing Techniques

R-1808-ARPA
September 1977

RITA Reference Manual
R. H. Anderson, Margaret Gallegos,

j. J. Gillogly, R. Greenberg, R. Villanueva

A report prepared for

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONICA, CA. 90406

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PREFACE

Members of Rand's computer science research program are currently imple­
menting a set of intelligent terminal agent computer programs called RITA. This
effort is part of a larger research program on advanced intelligent terminals being
funded and coordinated by the Information Processing Techniques Office (IPTO) of
the Defense Advanced Research Projects Agency (ARPA) under the program man­
agement of Stephen Walker.

This report-one of a series documenting the RITA system-provides a de­
tailed reference manual for RITA users, including a description of the RITA lan­
guage and operating environment. It is intended primarily as a tool for users who
will be developing applications using RITA, not as a discussion of implementation
issues or design philosophy or as a tutorial document for beginning users.

The RITA system is designed to be widely applicable as a front end to remote
computing systems and networks, and as a limit-ed heuristic modeling tool. Thus,
this reference manual should be of interest to persons involved with the design of
interfaces to computer networks for logistics, maintenance scheduling and control,
and command and control systems; for intelligence collection and dissemination;
and for remote accessing of large data bases. It should also be useful to designers
of minicomputer software systems supporting administrative and command func­
tions.

This report should be read in conjunction with a companion Rand report in the
series, Rand Intelligent Terminal Agent (RITA): Design Philosophy, R-1809-
ARPA, February 1976, which presents the rationale for intelligent terminal agent
programs and for the use of production system techniques to implement such
agents.

iii

SUMMARY

The RITA system is a set of computer programs written in the C programming
language that can run under the UNIX operating system on minicomputers such
as the PDP 11/45 and PDP 11/70. With RITA, the user can rapidly develop !!user
agents" to perform such tasks as providing a simple interface to remote data
systems; the system also provides some heuristic modeling capability.

RITA makes available a language for writing rules and an operating environ­
ment in which those rules are interpreted; this allows the user to construct a set
of IF-THEN rules which can operate both on a local data base consisting of object­
attribute-value triples and on data received over communication links to external
systems. The major portion of this reference manual is an alphabetical listing of
RITA concepts, keywords, and commands. A complete syntax chart for the system,
with tables of reserved words and built-in functions, is included in a pocket on the
inside back cover.

v

CONTENTS

PREFACE . iii

SUMMARY ·....................................... v

Section
I. INTRODUCTION . 1

II. OVERVIEW . 2
Operating Environment.. 4
External Systems . 7

III. RITA CONCEPTS, COMMANDS, AND KEYWORDS.............. 13

Appendix
A. SUMMARY OF RITA COMMANDS AND SYNTAX............. 57
B. A RITA RULE SET FOR FILING MAIL 58

vii

I. INTRODUCTION

The RITA system is a set of computer programs designed to allow the efficient
development of t~user agents" that can reside in an intelligent terminal. Minicom­
puters such as the PDP 11/45 and PDP 11/70 are currently being used as a surro­
gate for the computing power and memory which will soon reside physically within
a user's terminal.

The RITA programs are written in the C language and run under the UNIX
operating system. All user agents written using the RITA system consist of a set
of pattern-replacement rules expressed in a simple English-like language.

The design philosophy underlying RITA is discussed in a companion report,
Rand Intelligent Terminal Agent (RITA): Design Philosophy, R-1809-ARPA, Feb­
ruary 1976; we strongly recommend that the user read this companion report
before undertaking a serious development effort involving RITA.

This reference manual is a concise digest of technical information sufficient to
allow the user to create RITA rule sets. A RITA rule set is the RITA equivalent of
a program and is sometimes referred to herein as a user agent. This manual is not
written as a tutorial document, but rather as an encyclopedia of necessary facts.
The major portion of the manual consists of an alphabetical listing of concepts,
keywords, and commands available in the RITA system. In addition, concise tabu­
lar summaries of RITA rule syntax and lists of reserved words and built-in func­
tions are provided in App. A, which is located in a pocket on the inside back cover.

1

II. OVERVIEW

The RITA system can be thought of as providing a basic starter set of com­
mands and options for the creation of rule sets. Also included are various extensions
in such specialized areas as sending and receiving streams of characters to and
from external information systems. Table 1 shows the commands that can be issued
to the RITA system and the keywords used to construct goals and rules. The
commands and keywords are organized into logical groups to aid the beginning
user in accessing concepts within the alphabetical listing in Sec. III.

We suggest that the beginning user start by reading the following entries in
Sec. III:

• rita

• monitor

• object

• attribute

• data type

• value

• rule

He should then access the entries for the commands and keywords for Hbasic" RITA
listed in Table 1 and gradually add subsets of commands and keywords as needed.

A RITA program is a set of commands or directives which the RITA system can
perform, together with a set of rules which can be tested and whose actions may
be performed if the premises tested are true. RITA's udata" are kept in the form
of objects that can be created either through directives or through the actions of
rules. A RITA program is sometimes called a RITA rule set; it may be referred to
as a user agent when it is used to perform an interactive task with another user
or with a computer system.

We envision RITA as a tool that will allow non-computer specialists to modify
and even create simple user agents to help handle routine interaction with local and
remote information systems. RITA can also be used to develop heuristic models to
assist in decisionmaking and analysis" (J:his capability is not discussed in detail in
this manual but will be more thoroughly described in forthcoming reports.) Heuris­
tic models are most often deductive in nature, so we have provided an example of
a deductive rule set in the wall chart (App. A).

The version of RITA described herein might well be the first of several design
iterations. We have intentionally kept both the language 'and the data structures
very simple, in order to give RITA an English-like readability, and we have tried
to avoid recursiveness and generality. Before proceeding with the next level of
extensions and refinements to this evolving prototype, we wanted to give new users
the opportunity to provide feedback. This manual is being released to provide such

' an opportunity and to encourage user participation in identifying areas for further
design enhancement.

The remainder of this overview will describe the context in which RITA is used
and in which user agents are developed and used. Appendix B contains an example

2

3

Table 1

RITA Commands and Keywords

Category Commands Keyword sa

LOAD RULE
RUN OBJECT
EXIT IF, THEN

THERE IS ... WHOSE
SET ... TO
IS [NOT] KNOWN

"Basic" RITA IS [NOT]
IS [NOT] [GREATER THAN]
IS [GREATER THAN]
IS [NOT] [LESS THAN]
RETURN [SUCCESS][F AlLURE]
CREATE
DELETE
DELAY

SEND ... TO
CONTAINS

Input/output DOES NOT CONTAIN
extensions RECEIVE ... FROM

RECEIVE NEXT pattern
specification

IS [NOT] IN
PUT ... INTO List manipulation
FIRST, LAST, AFTER MEMBER extensions
REMOVE ... FROM
SIZE OF

TRACE, UNTRACE TRACE,UNTRACE
Tracing and STOP AT STOP AT

debugging UNSTOP UNSTOP
DISPLAY DISPLAY ... [TO FILE]

ALL .THAT

Goal-directed GOAL
operation DEDUCE

Explanation WHY
subsystem WHAT

<CTRL FS>
SHELL

Misc. utility EDIT
commands QUIET, VERBOSE

NEWS
SCRATCH

aBrackets indicate optional variations.

4

of a complete agent, as well as some discussion of the interactive task being per­
formed by the agent and the system with which it interacts.

OPERATING ENVIRONMENT

RITA runs under the UNIX operating system and makes use of many capabili­
ties provided by that system. These will be referred to occasionally to allow the
reader to differentiate between RITA and its environment. RITA, when installed
on a UNIX system, can be accessed via the command rita.

RITA is normally used in an interactive mode during the creation of a rule set,
or agent. That is, the user normally invokes RITA from an on-line terminal connect·
ed to the UNIX system and then proceeds to enter rules and create objects. During
this phase, RITA checks for syntax errors and stores named rules (and goals, which
are special kinds of rules used in deductions), rather than acting on them or testing
them. The user may also use directives or commands during this initial develop­
ment phase to request RITA to do such things as display the currently stored rules
or objects for review. Immediate rules (rules which are not named and therefore
not stored) may also be tested and their actions executed if appropriate. Through­
out this interaction, RITA prompts the user for more input by sending an asterisk
(*)to the terminal. The user terminates each input to RITA with a semicolon(;) to
indicate that RITA can begin to process that input.

To test entered rules and goals, the user types the run command, which causes
the selected or default monitor to begin testing and executing rules whose premises
are true. At any time during a session with RITA, all the goals and rules may be
stored in a UNIX file (by using the display command). Rules and goals so displayed
are then available for loading by RITA either in the same session (perhaps after
a scratch command) or in a later session.

Following UNIX convention, RITA can either take input from and interact with
an on-line user at a terminal or take all of its input directly from a file. In the initial
creation of a user agent, the user generally interacts with RITA via a terminal;
while some agents will be designed to interact with the user as part of their
function, others will be set free to work independently, taking their input and their
rules from files and perhaps reporting to the user via messages or through files.
Such agents will use the UNIX facility for redirecting input and output. For exam­
ple, the command rita simply invokes RITA modules which take input from the
user terminal on which they were called and presents responses (or output) onto
the same terminal. The command rita < inputfile takes input from the file called
inputfile and prints its responses on the terminal from which RITA was invoked.
Similarly, the command rita< inputfile > outputfile takes input from the file called
inputfile and sends output to the file called outputfile. The latter type of agent may
be run in a Hbackground" mode and need not tie up the user's terminal. In UNIX
this is done simply by appending an ampersand (&) to the end of the command
string as given above. Without the ampersand, UNIX will normally wait for the
called process to be completed before returning the user to UNIX command level.
The effect of this command is to return control immediately after RITA has been
started.

When the command rita is given to UNIX at a terminal (UNIX command level
is called the shell), RITA is invoked and prints a line telling the user how many

5

other RITA processes are currently running; this line is followed by three lines
giving the dates and names ofthe three major RITA processes. (The dates identify
the version that is in use.) These three lines are followed by an asterisk. RITA is
now at command level and awaits input from the user. Example 1 shows the use
of the create command. The session starts with the UNIX prompt, %, followed by
the rita command and a short interaction between the user and RITA. Note that
RITA prompts for input with an asterisk and the user terminates input with a
semicolon followed by a carriage return.

Example 1

% rita

There are 56 processes in use (65% loadinq) and no other ritas

runnin'l

Uff::: 1 Sep 76

PARSER: 2 Sep 76

MON: 1 ::iep 76

* create a system whose name is "Unix":

* if there is a system whose name is not "Tenex"

then send "8ureka!" to the user:

Eureka!

J:<ULE :

IF: THERE IS a system<!> WHOSE name IS NOT "Tenex"

THEN: SEND "Eureka!" '1'0 user::

Success!

The create command creates a named data object within the RITA system. It
is followed by an immediate rule. RITA tests the premise of the rule, finds it true,
and executes the action. Since the quiet option was not used, RITA decompiles and
prints the rule. It prints Success! to indicate the successful firing of an immediate
rule and then prompts for more input.

6

This example was created at a terminal; therefore, the record of the interaction
between RITA and the user is interleaved. The same user input is shown in Exam­
ple 2, but this time it is provided in the form of a file. The file is called example and
looks like this:

Example 2

create a system whose name is "Unix":

it there is a system whose name is not "'l'enex"

then send "Eureka!" to the user~

Example 3 shows RITA output redirected to a file called results. The UNIX
command used is rita < example > results &, which causes RITA to take all input
from the file called example and send all output to the results file. Results then looks
like this:

Example 3

There are 54 processes in use (63% loading) and no other ritas

running

UFE: 1 Sep 76

PAkSER: 2 Sep 76

MON: 1 Sep 76

example:

Eureka!

RULE. :

IF: THEkE IS a system<!> WHOSE name· IS NOT "Tenex"

THEN: SEND "Eureka!" TO user~

Success!

* exiting.

7

Notice that in the results file the input file name example has been added as the
first line after the standard RITA header. This is followed by RITA responses to the
input file commands; an asterisk appears to show that the system returned to
command level after firing the rule successfully. At this point, RITA gets an end-of­
file from its input (the example file) and prints the response exiting .. It is also
possible to have RITA accept input from a file and then return to command level
and accept input from the controlling terminal. In the above example, this would
be done by giving the UNIX command rita example. The result of this command
would be identical to that above, with two exceptions:

1. The output seen in the results file would be seen at the terminal.
2. Instead of the response exiting. after the last prompt, RITA would con~

tinue to take input from the primary input stream-in this case the termi­
nal-until it received the command exit; or until it got an end-of-file from
the terminal.

The load command would cause RITA to begin taking input from the named file
until an end-of-file was reached and then to resume taking input from the primary
input stream.

EXTERNAL SYSTEMS

The UNIX Operating System provides a pipe facility which RITA uses to open
communications channels (ports) with the UNIX command level. The current ver­
sion of RITA provides up to three ports to UNIX. These ports are each two-way
communications paths and can be thought of as providing a RITA program with
the ability to interact with UNIX in much the same way that a user would at a
terminal. That is, the command level of UNIX is made available to RITA simply
by sending a command string through a named port. Responses from the UNIX
system will be waiting in a buffer associated with each port and may be read by
receiving from that port. Since three such ports are available, three such concur~
rent interactions may be ongoing at once.

In order to make use of this feature directly, RITA qsers will have to know what
is available on UNIX and how to use it. This information is given in the UNIX
Programmer's Manual and the Documents for Use with the UNIX Time-Sharing
System, which are available to UNIX facilities through Western Electric. RITA
users who are familiar with remote systems that are available on the ARPAnet
might use the port facility to open one or more connections to a more familiar
environment and then use the RITA send and receive action clauses in conjunction
with rules and goals to interact automatically with systems and subsystems whose
expected range of responses they know. In the latter case, the RITA user needs to
know only the proper protocol on UNIX for connection to a remote host via telnet
in order to write agents to interact with such hosts or their subsystems.

For users who are unfamiliar with the ARPAnet and its log-in procedures, a
successful script is shown in Example 4. (Comments are included in brackets.) .

8

Example 4

.% telnet rand-rcc [local host (unix) promptl

& user call to telnet

giving host.

Connections established. [telnet response

[one or more garbage or

[blank lines

[remote-host herald

[line(s):

RAND COMPUTATION CENT~R LINE 155 03/03/77 1:11:23 P.M.

THE SYSTEM WILL BE DOWN PROM 18~0-2000, TONIGHT.

USE:R? x0000 [prompts for user name,

ACCOUN'f? 20402 [account and keyword

KEYWORD? ritar

COMMAND ? [remote host (rand rcc)

[prompt

Example 5 shows a file that contains rules and objects capable of making such
a connection with a specific host. If the file's name were telnet-agent, the command
rita telnet-agent would cause RITA to take input from the file and to store objects
and rules as they are encountered in the input stream. Upon reading the run

command, RITA cycles through the rules, testing and executing true rules. The
comments given in the example are intended to clarify the rule set and point to
entries in Sec. III that might provide pertinent information.

9

Example 5

object remote-system: [remote-system is an object

[host-name is an attribute

[of an object.

host-name is "rand-rcc",

loqin~prompt is "USER?",

prompt is "COMMAND ?M,

exit-command is "logoff":

[Objects can be created

[simoly by declaring their

[existence.

object user:

user-name is "x0000",

user-account is "20402",

user-pass~d is "ritar":

object agent:

state is "start":

object unixportl:

[Attributes of objects

[need not be declared.

[they can be created on

(first use

rule telnet:

IF the state ot the agent is "start"

'l'Ht::l\1 send concat("telnet ", nost-name of the remote-system)

to unixportl

[concat is built-in tunction

& receive next {"Connections established"} for 15 seconds

from unixportl as response of unixrortl

[receives fro~ port for

(time limit, auittinq sooner

[if {pattern} matches

& set state of aoent to "check-telnet":

10

rule host:

IF

THEN

the state of the agent is "check-telnet"

& response of unixportl is known

[if no match in rule telnet

[then response is not known

receive next {login-prompt of remote-system}

tor 60 seconds

from unixportl as response of unixportl

& set state of agent to "check remote-host":

rule commands:

IF

THEN

run:

the state of the agent is "check remote-host"

& response of unixportl is known

send user-name of user to unixportl

& send user-account of user to unixportl

& send user-passwd of user to unixportl

& receive next {prompt of the remote-system}

for 15 seconds from unixportl

& return success: [if this rule fires, then

[RITA monitor returns to

[command level and outputs

[Success! to terminal/file

[cycle throuqh rules, testing]

[and firing as appropriate

[see monitor

[If all rules are false on any cycle, monitor outputs failure

and returns to command level

11

The record of the interaction resulting from the above command is shown in
Example 6 as it would appear on the terminal. Notice that when the user is given
the asterisk prompt at the end of the transcript, log-in has been successfully accom­
plished. This means that all further sends and receives using unixportl will go
directly to and from the remote system. If the attempt to make the connection or
to log in to the remote system should fail, RITA would return Failure instead of
Success! just before prompting the user for input.

Example 6

There are 70 processes in use (70% loading) and no other

UFE: 14 Jan 77

PARSER: 16 Feb 77

MON: 16 Feb 77

telnet-agent:

[Object remote-system<l> added]

[Object user<l> addedl

[Object aqent<l> added!

[Object unixPortl<l> added]

[Rule telnet added]

(Rule host added)

[Hule commands added]

Success!

*

ritas running.

The agent in Example 6 could be expanded by the user to include rules which
would be tested and executed only after successful log-in. In order to write such
rules, the user should be familiar with the range of responses that the remote
system might return. That is, the task that is being automated should be one that
is familiar to the user creating the agent. The rules in this example conform to the
syntax for rules shown in App. A, which provides an overview of the options
available in RITA and serves as a concise graphic index to the concepts and features
described in this report.

12

The simple example given above, showing rules for using telnet to log into a
specific host, is not intended to represent a typical agent. For example, rules for
handling failure at each juncture where failure is possible have not been included.

Appendix B contains a more detailed example of a useful agent-one that files
incoming mail received through an on-line message system. In order to understand
the rule set, it is necessary to understand the system with which the agent interacts.
Appendix B therefore includes a brief synopsis ofthe message system's cap~bilities
which are being exercised as well as a flow chart of the logic used to create the
agent.

III. RITA CONCEPTS, COMMANDS, AND KEYWORDS

This section presents entries in a dictionary-like format defining RITA con­
structs and other vocabulary used with RITA. A complete entry has the following
format:

entry name (a descriptor in parentheses on the same line indicating whether or
not the entry is a part of the RITA syntax, commands, actions, built-in func­
tions, data, values, preinitialized ports, or a UNIX command). The description
or definition of the entry.

Form: A canonical form, if appropriate.

Examples: Illustrative examples.

See also: Suggested cross references.

Many entries do not require all of these items; for example, a definition or a cross
reference provides sufficient explanation for some of the terms in this manual.

A (syntax). This is one of several optional words which may be used to improve
the readability of rules. It is thrown away and/or ignored whenever it is
encountered by the system.

See also: article, colon.

abs (built-in function). If the argument evaluates to a string which is a RITA
number, abs returns Lhe absolute value of the number; otherwise, abs gives
an error message.

Form: ABS(value)

See also: value, number, arithmetic.

action. A RITA action is any clause in the THEN part of a rule. Actions can effect
some change in the data base of objects (CREATE, DELETE, SET, PUT,
REMOVE, RECEIVE); interact with an external system (SEND, RECEIVE);
invoke the goal-directed monitor (DEDUCE); interact with the user or with
a file (SEND, RECEIVE, DISPLAY); set and remove debugging flags (TRACE,
UNTRACE, STOP AT, UNSTOP); cause RITA to sleep for a given number of
seconds (e.g., DELAY 10 seconds); insert commands, rules, etc., into the com­
mand stream (SEND to self); or stop the operation of a pattern-directed moni­
tor (RETURN).

See also: · RULE, SET, RETURN, CREATE, DEDUCE, function call,
SEND, RECEIVE, DISPLAY, PUT, REMOVE, TRACE, UN­
TRACE, STOP AT, UNSTOP, DELETE, DELAY.

addition. See arithmetic.

13

14

agent. A RITA agent is considered to be a RITA rule set, a set of RITA data
objects, and the invocation of a particular monitor to execute them. The agent
normally performs some rather circumscribed task, such as getting mail from
a remote site, or invokes a number of other agents to perform tasks.

AN (syntax). This is one of several optional words which may be used to improve
the readability of rules" It is thrown away and/or ignored whenever it is
encountered by the system.

See also: article.

arithmetic. Any string that evaluates to a RITA number (i.e., a sequence of digits
optionally including a decimal point, optionally preceded by a plus or minus
sign, and with optional leading and trailing blanks) may be used in an arithme­
tic expression. There are four arithmetic operators, namely + - * I, which
represent addition, subtraction, multiplication, and division, respectively.
Multiplication and division take precedence over addition and subtraction, as
in normal mathematical usage. To override this precedence, the user may
group terms with angle brackets <>. Note that expressions may not be
grouped with parentheses, as these are used only to denote local labels, lists,
and argument lists to built-in functions. An arithmetic operator must be
preceded and followed by a space.

Form: value + value
value - value
value * value
value I value

Examples: display 2 + 2;
set the length of the arm to 23 + the diameter of the ball;
display nsubstr(3,2 * <5 + length(response of system)>,

text of msg);
units of prodn I <<end of oper - start of oper> *

<basecosr. of oper·hour + extra-cost of oper-hour>

See also: number, isnum, built-in function.

article (syntax). The articles A, AN, and-THE may be used to improve the reada­
.. . bility of rules. Each is thrown away and/or ignored whenever it is encoun­

tered by the system. Articles are stripped from rules upon entry to RITA and
inserted by an automatic algorithm when rules are decompiled.

Example: IF THERE IS A ball WHOSE color IS Hgi-een"
AND THERE IS AN egg WHOSE shape IS Hovoid"

THEN SET THE SHAPE OF THE BALL TO Hblue";

is equivalent to

IF THERE IS ball WHOSE color IS ~~green"
AND THERE IS egg WHOSE shape IS Hovoid"

THEN SET SHAPE OF BALL TO ''blue";

15

ASCII. See conversion.

assignment. See SET, PUT, object, CREATE.

attribute. A fairly arbitrary string of characters (see name for the complete list
of legal characters) that serve to define or describe an object. An object can
have any number of attributes, but reserved words may not be used for them.
An attribute can take on a value (i.e., a string, of which a number is a special
case, or a list, see value) and can be changed using the SET, PUT, and
REMOVE actions. All data in RITA (excluding rules and goals) are stored as
object-attribute-value triples. All attributes associated with a particular object
must have mutually distinct names. An attribute is defined by setting its
value.

Example: Create a conductor whose left-hand is ttbusy"
& whose right-hand is Hfree";

Create a ticket-seller whose right-hand is ttbusy"
& whose left-hand is ~tfree";

See also: name (for restrictions on attribute names), object, value, re­
served word, data type.

binding. The object names specified in premises and actions are actually the
names of object classes. Before a clause may be evaluated or executed, these
object-class tokens must be bound to specific objects of that class by the RITA
monitor.

Automatic Binding. Objects are automatically bound by RITA in three
different ways: unique binding, existential binding, and deductive binding.

1. Unique binding: If there is only one member of the object class, that
member is bound to the object in the rule.

Example: The clause is the name of the desired-file is rrfoo.baz" and there
is only o~e desired-file currently in the system's data base. The
class name (desired-file) in the rule is bound to the specific object
(desired-file< 1>), and all of its attributes and values are carried
over and may be referenced throughout the rule.

2. Existential binding: If an existential clause is used (e.g., there is a file
whose location is not known) and the monitor finds an object that
makes the rule true, the first such object found is bound in this clause
and in any other clause in the rule (premise or action) that references
the same object.

Example: If there is an item whose stock-level is ftlow" & whose cost is less
than 500 & name of the item contains rcopper"l then put the
id-number of the item in the orderlist of the company;

Assuming there is only one company in the data base and assum­
ing there are many items, then the first item that satisfies all
three clauses in the premise will be bound in the premise and in
the action. If no such item exists, the rule will fail to fire.

16

SPECIAL CASE. If a single rule contains two or more existential clauses that
reference the same object class, all subsequent clauses in the premise that
reference that object class will be bound to the object in the existential clause
of their class most immediately preceding them. In this case, no automatic
binding can be done in the action(s) of the rule (unless of course there is only
one such object). Therefore, if the object class is referred to in the action(s),
it must be bound by the user via the specified form of binding described below
under explicit binding.

Example: Rule 1:
If: there is a ball(thatball) whose color is not known

& there is a ball(thisball)
whose radius is greater than 3

& the color of the ball (thisball) contains l(~gr"l
Then: set the shape of ball(thisball)

to the shape of ball(thatball);

The explicit binding through the use of local labels provides a way to
distinguish between the first and second balls found in this example.

3. Deductive binding: A goal rule is selected by the deductive monitor
because it has an action that may set an attribute of an object needed
either in a DEDUCE clause or. in the premise of another goal rule. The
object class in that action clause is bound to the same object that is
being considered in the calling DEDUCE or premise. In addition, other
occurrences of the same object are bound throughout the goal. The
object may be unbound and rebound as the deductive search backs up
and tries different paths.

Explicit Binding. The user should clarify the desired binding with local
labels when automatic binding fails due to ambiguity (see the special case
under item 2 above). An example of this type of clarification is given under
local label. Angle brackets (< >) may be used to refer to a specific object in an
immediate action.

Example: Display the name of ball<4>;

This results in the display of the name of the fourth ball created.

ExcEPTION: This form of explicit binding is not available in the immediate
action CREATE, but the local label option can be used there.

See also: local label, THERE IS, DEDUCE, deduction, object, attribute,
immediate action.

bug. A user bug is an error made by the user in a RITA rule set. A system bug
is an error in one ofthe RITA modules (Front End, Parser, or Monitor) which
process the rule set. RITA debugging aids can assist in locating user bugs;
these aids include error messages and the ability to trace the evaluation and
execution of a rule set at varying levels of detail. If a system bug is encoun­
tered or suspected, it should be reported to the RITA system programmer. If
possible, such reports should be accompanied by a minimal sequence of com-

17

mands that cause the problem and a record of the protocol using the UNIX
command proto. This feedback to the system's implementers would be very
useful in making further refinements and improvements to the system.

See also: help, error message, TRACE, SET TRACE, DISPLAY, STOP AT,
proto, edit, exit.

built-in function. A number of built-in functions are supplied with RITA to
perform arithmetic and string operations on values. Arithmetic operations, or
built-in functions that require numerical arguments, are valid only for string
values that evaluate to RITA numbers. The function isnum is available to the
user to determine whether a value is or is not a RITA number. String func­
tions are valid for any string values. The function islist allows the user to test
whether a particular v·alue is a string or list. The current built-in functions are
abs, clock, concat, eval, floor, index, islist, isnum, lc, length, lindex, max, min,
mod, nsubstr, sused, and uc. (Each of these functions is described separately
in this section.) Built-in functions are relatively easy to add to RITA. If you
need another one urgently, talk to a RITA system programmer. One of the
extensions to RITA which is currently under consideration is the addition of
a capability that would allow users to define their own functions.

Form:

See also:

function-name(arg 1, ••• ,argn)

data type, number, arithmetic.

clock (built-in function). The clock function returns the current date and time as
a string.

Form: CLOCK()

Example: * display clock();
HTue Apr 6 18:33:16 1976
((

*
Note the newline character at the end of the returned

date/time string.

colon. A device (like the articles A, AN, and THE) which may be used freely to
increase the readability of RITA rule sets; colons are ignored when read by
the system.

See also: article.

command level (of RITA system). When the RITA system is initiated (see rita
command), the system is in command mode. This is indicated by an asterisk
prompt character. In command mode, any RITA command may be issued,
including run, load, and immediate rules or immediate actions. Note that all
RITA commands are terminated by a semicolon(;). A carriage return is used
to transmit the command(s) on any line to RITA. The system leaves command
mode when the command run is encountered in the command stream. An
automatic return to command mode will occur under any of the following
conditions:

18

• When all the rules are found to be false.
• When the action of a rule that is fired contains the return statement.
• When a STOP AT condition is encountered by the Monitor.
• When a run-time error is encountered (see error message).

See also: immediate rule, immediate action, command, continue, run, exit,
failure, trace, monitor.

command. Commands are available for use at command level of the RITA system,
but they may not be used as actions in rules or immediate rules. They are
sometimes referred to as directives. The RITA commands are:

See also:

run
load
exit save
set ordered
set trace
scratch
shell
run rule
flo ad
quiet

set unordered
set not file (same as nofiles)
delete (goals, rules, objects)
continue
exit
verbose
edit
news
what

immediate action, SEND to self, why.

comment (syntax). Comments in RITA rule sets may be included in square brack­
ets anywhere except within identifiers or keywords. Note, however, that the
comments are not kept in the internal form of the rules and will not be shown
when a rule or object is decompiled.

See also: decompile.

concat (built-in function). Concat evaluates each of the arguments and returns the
concatenation of all ofthem. Non-string arguments result in a run-time error.

Example: * create a foo;
* set color of foo to nblue";
* set hue of foo to (~light";
* set shade of foo to concat(hue of foo, ~~ " , color of foo);
* display object foo;
OBJECT foo<l>:

*

color IS ~~blue",

hue IS (~light",

shade IS Hlight blue";

A concat that contains an unknown value will cause an error when the
monitor attempts to perform the co"ncatenation ..

Form: CONCAT(value,value, ... ,value)

19

CONTAINS (syntax). The word CONTAINS is used in a pattern-matching prem­
ise. The premise ~~value CONTAINS pattern specification" is true if the scalar
value contains a substring that matches the specification (see pattern). nvalue
DOES NOT CONTAIN pattern specification" is the negation. The existential
forms with THERE IS are also available. (See THERE IS).

Form:

See also:

value CONTAINS pattern specification
value DOES NOT CONTAIN pattern specification
THERE IS [A] [AN] object WHOSE attribute CONTAINS

pattern specification
THERE IS [A] [AN] object WHOSE attribute DOES NOT

CONTAIN pattern specification

pattern.

CONTINUE (command). The continue command is used to restart the monitor.
At present, the only difference between this and the run command is that
when the monitor suspends execution at a rule that has been stopped (via
STOP AT), continue will continue at that rule (firing it if it is still true), while
run will restart the scan at the top of the rule list.

See also: RUN, STOP AT, UNSTOP, comma.nd level, monitor, return.

control character. RITA responds to three control characters: <CTRL/D>,
<CTRL/FS>, and . These are defined as follows:

<CTRL/D> (command). Same as EXIT; NoTE: The notation <CTRL/x>
denotes pushing the x keyboard button while depressing the CTRL shift but­
ton.

<CTRL/FS> (command). When all else fails, the <CTRL/FS> quit signal
is pretty much guaranteed to cause an immediate crash of the RITA system
and all related processes. RITA responds QUITTING when it receives the
<CTRL/FS> and then waits for about 5 seconds before it dies. After it dies,
three large files usually remain in the current directory; these files-called
core, core. parser, and core. man-should normally be deleted.

NoTE: If RITA is not connected to the terminal or if it is connected to it
through proto (a UNIX program for recording an interactive session with a
program such as RITA), then even <CTRL/FS> may not cause RITA to quit
and the process may have to be killed from another terminal. See your UNIX
systems team.

 (and <ESC>) (command). The interrupt signal is the stan­
dard restart for the front end. Unless the parser is running, RITA signals its
readiness by immediately reprompting (if the parser is active, the will
be ignored). Any partially typed command is flushed. Several s will
force the termination of a load command. A while the monitor is
running will cause execution to be suspended at the next clean point (between
rules); continue will continue from such a suspension. A will not cause
termination of an action such as a long display or deduce or receive from the
user. As a partial alternative to , the user may strike the <ESC> key

20

followed by a <CR> at any time he is entering a command to cause the
partially typed command to be aborted. The front end reprompts when it
encounters the <ESC>.

See also: EXIT, help.

conversion (special SEND characters and functions). Two types of conversion are
performed in RITA. The first type, called t-conversion, is done in order to send
ASCII codes (usually non-printing) to remote systems. The second type, called
~-conversion, is done in order to cause RITA to take special port-related
actions or to send special signals.

t-conversions. Communication with many systems often requires the use
of odd ASCII characters. RITA provides access to all ASCII codes except NUL
(0). When the parser encounters the character ~~t " (up-arrow, ASCII code
0136), it converts the next character into a special ASCII character according
to these rules:

1. tx (or t X) converts to the code CONTROL-X for X some alphabetic
character (in either upper or lower case). ASCII codes 1 through 32
(octal) can be obtained this way. Most importantly, a newline (012) is
represented as tj. (A newline can also be inserted by typing a newline
in the string.)

2. ASCII codes 033 through 037 are known as ESC, FS, GS, RS, and US,
respectively. These names are printed on the upper-left corner of the
appropriate keys of Ann Arbor terminal keyboards. To obtain these
codes, the user needs only to use tx, where x is the upper-right or
lower-middle name printed on that key. For example, one key has the
following names printed on it:

To obtain code 035, also known as GS, the user simply types tl or t],
as either will be converted toGS code. ExcEPTION: The codes RS and
US can be obtained only by using the upper-right printable character,
since and tt have other meanings.

3. Codes 040 through 0176 are all printable; t must be escaped using rr
and n (inside a string) using t.

4. Code 0177 () is obtained using r +.
5. The ASCII NUL character cannot be part of a RITA string. However,

there is a special escape mechanism, described below.

The r-conversions are reversed when the data are decompiled, so that the
values may be checked more easily.

~-conversions. These conversions are used to send control functions to th~.
process running on a port, such as killing or interrupting it. The conversions
are not done until the string is actually used in a SEND command. If the string

21

contains any text other than ~-conversion (~ is ASCII code 0176) characters,
the converted characters are always sent first. This means that the remaining
text will probably be going to a closed pipe or a killed process, and such mixing
is therefore not recommended. The first two entries below represent charac­
ters which are not easily translatable at parse time. All the others are not
characters at all; they are control codes indicating very special actions.

If the string is being sent to a file, the only conversions that are meaningful
are ----, --0, and -$.All other control codes are copied without the corre­
sponding (meaningless) action taking place.

1. --- translates to -. This conversion is used when the tilde is not
intended to signify the first of a two-character conversion code.

2. ~ 0 translates to a NUL (0 byte). This conversion is used because a
RITA string cannot itself contain a NUL. NoTE: The inverse conver­
sion is also performed; that is, when a NUL is received, it is translated
to --0.

3. -$(no translation). Normally, the SEND action adds a newline to the
end of the string being sent. If the code-$ appears anywhere in the
string, however, the code will not be sent, nor will a newline be added
at the end. NoTE: If the string consists wholly of --conversions, the
newline suppression is automatic and no -$ is needed.

4. ~i, ~q, -I, -Q (no translation). These codes cause RITA to send the
specified external system an interrupt () or quit (<FS>) signal
just as if it had been typed at the terminal.

5. --e, -E translates to an EOF. This code causes RITA to send a single
end-of-file mark to the specified external system just as if the user had
typed <CTRL-D>.

6.k, --K (no translation). This code causes RITA to close the input to
the external system and immediately kill it. Next, RITA frees up its
table entry for that system. After reading a - k code, the SEND action
aborts; thus, nothing should ever follow this code in a string. After an
external system is killed, its name is ~~forgotten." Any further use of
the name in an 110 action will cause a new shell to be created.

See also: SEND, port, NUL.

core dump. See help.

CREATE (action). This action creates a new object in the data base. The object
is of type object, and all its attributes are considered unknown except for those
explicitly initialized. There is no default definition of attributes by object type.
Rather, each object in an object class will have an attribute defined for it only
when the attribute is set or tested for that particular object or when it is
mentioned in a CREATE or in an object description.

Form: CREATE object
CREATE object WHOSE attribute IS value
CREATE object WHOSE attribute IS value AND WHOSE

attribute IS value [etc.]

22

Example: * create a dog;

See also:

* display object dog;
OBJECT dog<l>:;
* if the color of the dog is ~tred" then set the tag of the dog to

RULE:
·IF: the color OF dog<l> IS ured" .
THEN: SET the tag OF dog< 1> TO ~(R";

Failure.
* display object dog;
OBJECT dog<1>:

color IS NOT KNOWN;

object description, SET ... TO (for defining new attributes).

data type. Attributes of objects can take on two kinds of value: string and list. A
string is a sequence of characters, and a list is an ordered sequence of values
(strings or lists). On input, the list values must be separated by commas and
enclosed in parentheses. The RITA number is a special kind of string. On
input, character strings must be enclosed within quotation marks; numbers
need not be. The maximum magnitude of a RITA number is 1030

.

Examples: uthis is a string value"
ttabc"
Ctabc",3, u17a")
Ctanother string",(ufirst member of sub list", (t2n"), ttend")

See also: value, built-in function, number, arithmetic.

debugging. See bug, TRACE, SET TRACE, DISPLAY, STOP AT.

decompile. When the RITA system interprets statements2 it converts them to· an
internal form. In order to display the stored statements (rules, go&l rules, and
objects) to the user, RITA 'must make the reverse transformation. This may
cause the displayed items to be slightly different in form from the original
input. In particular, comments will be missing, binding of objects will be
indicated, and the format may va:r:y.

DEDUCE (action). The DEDUCE action invokes the goal monitor in order to find
the value of the specified attribute of a particular object. If the specified
attribute is already known, the deduction termina~es. Otherwise, the goal
rules in the system are scanned for relevant information and applied if possi­
ble (see deduction). If no goal rules can help, the monitor will prompt the user
for the correct value unless the keyword QUIETLY was specified. The user
can then enter the correct value or, if he does not know the value, a carriage
return or question mark. In this case, or if the deduction is being done QUIET­
LY, the value of the attribute remains NOT KNOWN.

NoTE: Whenever a deduction has been completed and an attribute of a
particular object has been deduced or found to be NOT KNOWN, any later
deduce command for the same attribute of the same object will fail to have any

23

effect unless it is preceded by an explicit command setting the attribute of the
object to NOT KNOWN. Failure to have any effect means that RITA will not
attempt to perform the deduction.

Form:

See also:

DEDUCE attribute OF object [QUIETLY].

GOAL, monitor, deduction, App. A (for an example of a deductive
rule set), binding.

deduction. The goal-directed monitor may be invoked to deduce the value of any
attribute of an object (see DEDUCE). The actions of all goal rules are scanned
to see if any of them sets the correct attribute of an object. If one does, it binds
the goal rule (see binding) and attempts to evaluate the premises. If the
predicate of the goal rule is true, the relevant action clause (and only that
clause) is fired, setting the desired attribute of the object. If the rule is false,
the monitor looks for other applicable goal rules. If the truth or falsity of the
goal rule cannot be determined immediately because various attributes of
objects referred to in the premises are unknown, the monitor sets up deductive
subgoals to determine those values recursively. If there are no relevant goal
rules, the user is asked for the value. He can respond with the value of the
desired string, or with a question mark or carriage return if he doesn't know
the value (it remains NOT KNOWN), or with the string (~why" if he wants to
know why the question is being asked (see WHY). This questioning of the user
by RITA can be suppressed by use of the QUIETLY clause.

If the value of a string is being deduced, the monitor stops after finding the
first true goal rule. If the value is a list, it will attempt to fire (only once) all
goals that PUT or REMOVE members of the list.

See also: DEDUCE, GOAL, SET, PUT, REMOVE, binding, QUIETLY.

DELAY (action). The delay action evaluates value (which must evaluate to a
positive integer less than 32768) and puts the program to sleep for that many
seconds. It is sometimes useful (but dangerous) for writing timing-dependent
system interface rules. The danger arises from the fact that the user can never
really know how long to wait, so that a RITA agent could fail if a remote
system is slightly slower than usual. The singular, form SECOND may be used
in place of SECONDS.

Form: DELAY value SECONDS

See also: RECEIVE FOR value SECONDS.

DELETE (action). The DELETE action is normally used directly at the command
level to remove objects from the data base or to get rid of rules or goals. It may
be used as the action of a rule, but this use is considered bad programming
style, since it can lead to obscure control structures. When a rule, goal rule,
or object is deleted, its space is recycled for other uses.

Form: DELETE ALL RULES
DELETE ALL GOALS
DELETE ALL RULES THAT SET attribute OF object
DELETE ALL RULES THAT TEST attribute OF object

24

DELETE ALL GOALS THAT SET attribute OF object
DELETE ALL GOALS THAT TEST attribute OF object
DELETE RULE rulename
DELETE GOAL goalname
DELETE ALL OBJECTS
DELETE OBJECT object

DISPLAY (action). The display action provides a convenient way to emit informa­
tion regarding the data base and RITA program to the user's terminal or to
a file. The selected rules, goals, and objects are decompiled and printed in such
a way that when read back in, the new structures will be identical to what they
were. However, the exact wording of the decompiled forms will not necessari­
ly be the same as when the items were first typed in; in particular, all the
comments will be stripped.

The user may add TO FILE file-name to cause the display output to be sent
to a file. If no such file exists, one is created; otherwise, the output is added
to the end of the file. To save the partial results of an interrupted RITA
session, the user may type the command display all objects to file save and
display all rules to file save and display all goals to file save.

Form:

See also:

DISPLAY ALL RULES
DISPLAY ALL RULES THAT SET attribute OF object
DISPLAY ALL RULES THAT TEST attribute OF object
DISPLAY ALL GOALS [THAT ...]
DISPLAY RULE rule-name
DISPLAY GOAL rule-name
DISPLAY NAMES OF ALL RULES
DISPLAY NAMES OF ALL GOALS
DISPLAY ALL OBJECTS
DISPLAY OBJECT object
DISPLAY value
DISPLAY ... [TO FILE file-name]

decompile.

division. See arithmetic.

EDIT (command). During a RITA session, a UNIX file is kept containing all the
RITA output. This file, called ufe.output, contains any syntax error messages
incurred by the user's input. The edit command is available only when RITA
receives input from a terminal (not from a file through redirected input as
described in Sec. II). It provides the user with a convenient way to edit and/ or
save program output and to correct syntax errors in rules. This command calls
on an ever-present program which is a version of NED, the new text editor
on UNIX.*

After the edit command is issued, the editor goes through some machina­
tions and ends with the screen showing the end of file ufe.output. This file

*See Walter Bilofsky, The NED Manual: A Guide to the CRT Text Editor NED, The Rand Corpora·
tion, R·2176·ARPA (to be published).

25

contains a record of all ofthe output that has been generated by RITA during
the session. It may be scrolled and scanned for syntax error messages or any
other information that the user would like to refresh. If the user wishes to
create a new file or modify an old file (say, the original input file), the full
power of the text editor is available for doing so. An alternate file, ufe.input,
has also been created. Anything put into the ufe.input file will automatically
be loaded when the user hits the key to return to RITA. Thus, a
convenient way to use the edit command is as follows: If you load a file and
RITA reports syntax errors, issue the edit command, scan file ufe.output to get
the names of the items that had syntax errors, switch (an editor function) to
the source file to make corrections, and pick and put the corrected rules from
the source file into file ufe.input so they (and only they) will be reloaded. NoTE:
The files used by the edit command are always deleted by RITA when exiting
(ufe.input is deleted immediately after being loaded).

Form: EDIT;

See also: nofiles, LOAD.

EQUAL TO (syntax). See predicate.

error message. Error messages can be generated by the user front end (UFE), the
parser, or the monitor (at run time).

UFE errors. The UNIX operating system has upper limits on the number
of files that can be open for individual users and for all users on the system.
The UFE will give an appropriate error message and exit if there are no file
descriptors available when it tries to create communication pipes to the parser
and monitor. Similarly, if the UNIX limit on processes is reached so that the
RITA processes cannot be created, the UFE will exit with the error message
can't fork. A number of other error conditions (e.g., monitor or parser pro·
grams unavailable, or unable to create temporary files) are reported witli
appropriate messages.

Parser errors. The parser gives appropriate error messages when invalid
rules, objects, or commands are input. Normally, the location of the error is
indicated by echoing the input and putting the string [* * *] at the offending
location. A common parsing error is caused by the use of a RITA reserved
word (see reserved word) as the name of a rule, object, or attribute.

Monitor errors. The monitor recognizes a number of error conditions, many
of which should never occur. The most common error is attempting to use a
rule whose objects are not defined (resulting in the error message UN­
BOUND). A list of illustrative user-caused error messages follows:

NE~DSCALAR: A list was used where a scalar was expected.

NOTKNOWN: Inappropriate use of unknown value.

NE:EOIN'f: A non-numeric str inq was used where a "lUmber was expected.

STRLIST: List in RECEIVE NEXT or pattern may not have sublists.

26

DIVZERO: Zero used as second argument of a division or mod function.

ZSTRING: Strings are (now) !-indexed ONLY. You used a 0-index.

BADARGS: A built-in function was called with wrong number of arquments.

LARGENO: You specified a nu~ber whose maqnitude is too larqe.

BADZERO: A zero was used where a positive number was expected.

NEGNUM: Inappropriate use of negative number.

UNIMPLEMENTED: a particular RITA feature is not yet implemented.

See a systems programmer if you need it soon.

UNBOUND: There is no way to establish a bindinq for some object.

(see binding)

OVERBOUND: Trying to create an object previously bound (see binding)

PORTS: Only three external systems may be controlled

simultaneously (see port).

SCALSS: Trying to do a list selection on something that is not a list

TOOBIGVAL: Trying to access a list member that does not exist.

UNKVAL: Unknown value in a function: must be able to evaluate it

NOMEMB: There IS no such member of that list

MEMBF: IF value IS IN list reauires a scalar and a list

SMLABEL: You tried to enter a specific object, and we already

know about more of them.

NORES: Out of system resources: UNIX has run out of open files,

pipes, or some other commodity

BADDEL: rules and qoals may be deleted only at·command level

SYMTAB: Too many symbols used (the maximum number allowed is 1024)

BADFILE: Cannot send to the specified file

If the RITA system is greatly confused, it will give the error message system
bug and will print some information that will be useful to the RITA system
programmer.

See also: bug.

eval (built-in function), The two argument values are evaluated. If the second
argument evaluates to a string that ,s a legal object name, and if there is only
one object of that class, and if the first argument evaluates to an attribute of
that object which has been set and which is not a list, then eval returns the
value of the attribute of that object. If the object exists, is unique, and the

27

attribute name is a valid one but is not known, eval returns NOT KNOWN.
If the second argument evaluates to a legal object which is not unique, then
eval returns NOT KNOWN. If the first argument is a list, eval returns an
error.

Form: EVAL(value,value)

See also: name, value.

EXIT. One of the most important things to know about the RITA system is how
to get out of it! The exit command is the usual way. Typing an end-of-file
(<CTRL~D> from the terminal) to the front end will also work.

When the front end is about to exit, it says ((exiting." NOTE: the front end
performs a lot of cleanup functions when exiting; if RITA should ever exit
without the exiting message, something is wrong and the user should contact
a RITA system programmer.

After normal exiting, no additional files should be present in the user's
directory. When running, RITA produces a ufe.output file for editing and a
rita.history file for the explanation systems. It is occasionally useful to pre­
serve these files after a RITA session, and this may be done by issuing the exit
save; command. Also, RITA sometimes encounters system errors that cause
it to die (generally with a message such as Monitor death or Symbol table
overflow); when this happens, the user is prompted with a Save files?, to which
he should respond t(y<cr>" to preserve or (~n<cr>" to delete these files.

Form: EXIT [SAVE];

explanation subsystem. See WHY, DEDUCE, WHAT.

external system. One of RITA's strongest points is its ability to control external
systems. Ports are available for communicating simultaneously with up to
three such processes. A port is initialized by executing a SEND or RECEIVE
action specifying that port name. A new port is connected to a standard UNIX
shell (see SHELL (I) in the UNIX Programmer's Manual), and the value
specified in the SEND is written directly to the shell. The value should be a
UNIX command (typically Telnet, Lisp, or anot,her RITA). Combinations of
RECEIVEs and SENDs are used to control and follow the progress of the
external process.

See also: SEND, RECEIVE, SELF.

failure. See monitor (rule-directed), RETURN (Success/Failure).

uFALSE" (value). Some built-in functions such as isnum and islist return the
value ttFALSE" if the condition being tested is not satisfied. Note that
•tFALSE" is a literal string and is in upper-case letters.

See also: built-in function, ttTRUE".

FLOAD (command). The fload command is similar to the load command but runs
a bit faster. The speed increase is achieved by bypassing all of the front-end
error-handling/buffering code. Thus, files to be {loaded must already be

28

known to be error-free (i.e., they must be loadable). Furthermore, the file may
contain only rules, goals, objects, and the command(s) set (un)ordered. All
other commands will be ignored (e.g., trace, run) or will cause errors (e.g., load,
fload, scratch). Any errors in an attempt to fload a file will cause immediate
suspension of the attempt, and an error in file message will be displayed (but
no explanation). Because of this, fload should be used only for already de­
bugged rule sets.

A file may not be floaded by mentioning it as an argument after the rita
command; these files are always loaded. However, a load file may be created
that simply contains a fload command.

Fload is not significantly faster than load in the current version; it may
eventually be dropped, so it is unwise to rely on it.

Form:

See also:

FLOAD file-name

LOAD.

floor (built-in function). If the argument evaluates to a string which is a RITA
number, floor returns the largest integer less than or equal to the number.
Otherwise, floor gives an error message.

Form: FLOOR(value)

See also: value, number, arithmetic.

front end. See rita.

function call (action). An action or a premise may include a function call. For
example, a .premise might use the returned value of the function call as the
value to be tested in a predicate, as in

length(name of person) is greater than 12

In an action, function calls can be meaningfully combined with the SET ...
TO and DISPLAY actions, as in

set name of officer to concat(rank of officer,lastname of officer)

Value(s) returned by function calls are described in detail under the entry
for each built-in function. If a function call results in an error, execution is
suspended and RITA returns to command level. See built-in function for a
complete list of these functions.

Form:

See also:

function(arguments)

built-in function.

GOAL (command). The GOAL command enters a rule into RITA that will be
accessed only by the goal-directed monitor during a deduction. Almost all
premises available to a RULE are allowed (see exception below), but only SET
and PUT actions are allow~d in a GOAL. When a GOAL is executed, only the
one relevant action clause through which it was chained irito the current
deduction is fired; i.e., there are no side effects in the actions ·of GOALs.

29

Because the object class for which an attribute is being deduced is bound
to a particular object at the time of the DEDUCE, a THERE IS clause for the
object class being deduced should not be used in the premise of a GOAL that
might be used in that deduction, as this will cause automatic binding which
conflicts with previous binding.

For example, the following rule and goal pair would cause such a conflict:

Rule one: IF there is a dog whose pedigree is not known
THEN deduce the stable of the dog;
goal A: IF there is a dog whose breed is uDalmatian"
THEN set the stable of the dog to HSunset Kennels";

In this example, the first dog found whose pedigree is not known is bound
in the deduction. Goal A is then perceived to be a goal which might set the
stable of the dog. In testing the premise of the goal, the first dog whose breed
is Dalmatian is found and bound. Since this may not be the same dog that was
bound in the deduction originally, there is a conflict which, if allowed, could
lead to inappropriate results. Therefore, if such a situation is encountered
during a deduction, an error condition will occur.

Form:

See also:

GOAL goalname IF premises THEN actions;

name, premise, action, DEDUCE, deduction, RULE, SET, SET,
PUT.

GREATER THAN (syntax). See predicate.

help (what to do in various emergencies). Procedures are available in RITA for
dealing with such user problems as the following:

Problem:
Solution:

Problem:

Solution:

Problem:

Solution:

Problem:
Solution:

Problem:
Solution:

Everything is messed up or hung and you can't get out of RITA.
Hit <CTRL/FS>. It will almost always get you out. (See the entry
control character for exceptions and further help.)

You just typed in a long rule with a syntax error in it and you
don't want to type it in again.
Use the EDIT command; it will display the echoed rule with the
syntax error in it so that you may correct it.
Your program is looping and you want to stop it without exiting
from RITA.
Hit the DEL key. RITA will stop after the next attempted rule.
(It sometimes needs more than one DEL.)

RITA exited strangely and gave core dumps.
Try to isolate the problem, then contact a system programmer,
preferably with a record of the interaction (use UNIX program
proto to create one).

RITA gave an error message that it admits is a system bug.
Save the input files and output files and give them all to a system
programmer.

Problem:

Solution:

See also:

30

RITA is asking a question that you did not put in, and you don't
know why RITA would want to know the answer.
It's doing a deduction (see deduce, deduction) and needs that
question answered to satisfy a subgoal. Answer it with the string
~~why" to find out which subgoal it is trying to satisfy (see WHY).

what, why, error message.

IF (syntax). The keyword IF is used to introduce the premises of a rule or goal.

See also: rule, goal, premise, immediate rule.

immediate action (command). Any legal RITA action may be given at the RITA
command level for immediate execution. Such immediate actions are not
contingent on the premise in a rule. They include the delete action and those
listed under the entry tracing and debugging. Actions are legal commands
even when they are taken from an input file (redirected input, see Sec. II) or
from a LOAD file.

Example: A user wishes to preinitialize I/0 channels by the use of immedi­
ate actions in a separate LOAD file to facilitate switching be­
tween, say, a simulated port and the real thing; this LOAD file

· could consist of
send ~(net" to net;
send ~~cat nyt" to nyt [simulate nyt];
send ~(initialized" to user;

Multiple actions may be connected by the word and, but they do not need
to be, as they are executed one after another anyway. Immediate actions must
end with a semicolon, just as commands do.

When actions are used as commands-and only in this case-the user is
allowed to specify bindings on objects. Bindings are specified by an integer
surrounded with angl~ br~ckets (< >) following the <;>bject name. (and local
label, if any); for example, delete. ball<3> and set the color of box<2> to
concat(rvery",color of box< 1>);. The way to determine the binding number of
a specific object is either by decompiling a rule that ha·s its bindings intact (see
binding), or by displaying all objec;ts, or, better, displaying object objname;
ball<n> refers to the nth ball to have been cr~ated in the data base. NoTE: If
bindings are encountered anywhere but in an immediate action, they are
simply ignored and no error messages are produced.

See also: SET, RETURN, CREATE, DEDUCE, function call, binding,
SEND, RECEIVE, DISPLAY, PUT, REMOVE, TRACE, UN­
TRACE, STOP AT, UNSTOP, DELETE.

immediate rule (command). Occasionally, a user either does not know a binding
or would like to know if some predicate is trueofthe data base. In each case,
he would use an immediate rule. An immediate rule has no name and no
~(rule" header; it starts with the keyword if. The entire rul~ syntax is avail­
able. It is especially important to note that either the left-hand side of a rule
or the right-hand side or both may be left empty. Thus, if the user wants to

31

test premises but not actually do anything, he can say ttif pi and p2 ... and
pn then;". An immediate rule with a null left-hand side is like an immediate
action, except that no bindings may be specified.

An immediate rule is immediately evaluated, and if it is true, its actions are
executed. In any event, the rule is then decompiled with bindings displayed
and either Success or Failure is printed to indicate whether or not the rule
fired (was true). For example, th~ decompiled. immediate rule trule: if there
is a ball<2> whose color is t~red" and whose size is Hsmall" then;' inqicates that
such a ball does indeed exist and that it is the second ball in the data base.

See also: premise, predicate, binding.

index (built-in function). Both values should evaluate to strings. If the first string
is a substring of the second, the function returns the location of the first match.
The string is one-indexed, i.e., it starts with character position 1. Index returns
the string ttF ALSE" if there is no match.

Form: INDEX(value,value)

Examples: * display indexCtbaz", t~foobaz");
4

See also:

* object ball color is ublue-green ";
[Object ball<!> added]
* display indexCtgr",color of ball);
6
*
lindex, nsubstr, length, pattern, CONTAINS, RECEIVE.

integer. An integer is a whole number, that is, a number without a fractional part.
Some features of RITA, such as some of the built-in functions, require inte­
gers. A RITA integer is defined to be a RITA number not containing a decimal
point, with absolute value not greater than 32767. If a non-integer number is
supplied where RITA requires an integer, it will be rounded to the nearest
integer.

See also: number, arithmetic, built-in function.

IS [NOT] IN (syntax). See predicate.

islist (built-in function). The argument is evaluated. If it is a list, the function
returns the string nTRUE"; otherwise, it returns HFALSE".

Form: ISLIST(value)

Examples: * display islist(3);
((FALSE"
* display isliste'foo");
uFALSE"
* display islist(Cfoo"));
HTRUE"
* display islist((ufoo ", nbaz "));
ttTRUE"

32

* display islist(()); [empty list]
HTRUE"
*

See also: lindex.

isnum (built·in function). This function returns ttTRUE" if the value is a RITA
number; otherwise, it returns HF A.LSE".

Form:

See also:

ISNUM(value)

number, data type.

1/0. See RECEIVE, SEND, DISPLAY, external system, port.

keyword. A keyword is a word having special meaning to RITA. No special care
need be exercised by the user with regard to keywords. However, a subset of
these words are reserved and may not be used as names of objects, attributes,
rules, or goals. These are listed under reserved word.

KNOWN (syntax). See predicate.

label. See local label.

lc (lower case) (built-in function). The argument should evaluate to a string. If so,
the returned value is the same string with all upperwcase letters shifted to
lower case. If not, a run-time error message is given.

Form: LC(value)

Left-hand side. This term refers to the left-hand-side monitor, which is either of
the pattern-matching monitors also known as rule-directed monitors, ordered
and unordered. (The right-hand-side monitor is known as the goal-directed
monitor.) Left-hand side may also refer to the side of a rule that consists of
the rule's premises. (This terminology is derived from language used to de­
scribe grammar rules, which are related to production systems.)

See also: monitor.

length (built-in function). The argument should evaluate to a string. If so, the
returned value is the number of characters in the string.

Form: LENGTH(value)

LESS THAN (syntax). See predicate.

LHS. See left-hand side.

lindex (built-in function). The function lindex finds the location of a member of a
list. The second argument should evaluate to a list; the topmost level of this
list is searched for the first occurrence of the evaluated first argument, and
the (1-indexed) position of the member is returned. If the first argument is not
a member of the list, the string ''FALSE" is returned.

33

Form: LINDEX(value,value)

Examples: * display lindexCtfoo ", (nstring 1 ", !!baz" ;! foo ", !! arf '));
3

See also:

* display lindex((l,2),(3,4,(5,(6,7)),8,(1,2),9));
5
* display lindex((6,7),(3,4,(5,(6,7)),8,(1,2),9));
ttFALSE"
*

index.

list. See value, PUT, REMOVE, islist, size, lindex.

literal. A literal is a quoted character string or a number. Rather than allowing
a value that will evaluate to a string or number, RITA syntax sometimes
requires use of the literal itself. A literal list is a list of literals.

LOAD (command). The load command is followed by the name of a UNIX file and
causes the RITA front end to treat the contents of the file exactly as if it were
just being typed in on the terminal. The file is read in until its end-of-file (it
continues reading the file even after syntax errors).

All the commands described in this reference manual may also occur in a
file to be loaded. In particular, a run command may be issued within the file
being loaded, so that the user need not issue it directly. However, there is one
restriction: load commands can be nested four times, but no more; that is,
within reasonable limits files can contain commands that load other files.
Nothing can appear on the same line after '1: load command when the com­
mand is typed in from a terminal or in a send-to-self(normally, more than one
command can be typed on a line).

Load commands can be nested, which provides a great convenience, as the
files loaded may contain any legal commands. For example, a typical file to be
loaded may consist of

quiet;
load foo.rules;
load foo.objects;
trace all rules;
verbose;
send nReady" to the user;

Files may be loaded automatically at the start of a RITA session by listing
their names as arguments after the RITA command.

At present, text cannot be put in a load file that is intended to answer
questions asked by a program after a run command is issued (i.e., the user
must still type in the responses asked for). This includes answering the re­
placement confirmation message.

Form:

See also:

LOAD file-name

FLOAD, rita.

34

local label (syntax). In a rule or goal, the name of an object may be followed by
another name in parentheses. This name is a local label which may be used
within this rule to identify multiple references to the same object. It is particu­
larly useful for referring to an object found by a THERE IS clause.

Form: attribute OF object (string)

Example: * display rule 1;
RULE 1:

IF: THERE IS A ball(thisball) WHOSE radius IS greater
THAN3

& THE color OF THE ball (thisball) CONTAINS l~tgr"l

& THERE IS A ball(thatball) WHOSE color IS NOT
KNOWN

*

THEN: SET THE shape OF ball(thisball)
TO THE shape OF ball(thatball);

The local label provides a way to distinguish between the first and second
balls found in this example.

See also: binding.

lower case. See lc.

max (built-in function). If all the arguments evaluate to RITA numbers, max
returns the maximum value.

Form: MAX(value 1,. •• , value")

min (built-in function). If all the arguments evaluate to RITA numbers, min
returns the minimum value.

Form:

mod (built-in function). If the arguments evaluate to valid RITA numbers· and
value2 is not zero, mod returns the remainder· of valuel divided by value2.

Form: MOD(value 1, value2)

monitor. Three monitors of two types are currently implemented in RITA:

* deductive (or goal-directed). The deductive monitor is invoked by an
explicit DEDUCE action in a rule executed by one of.the other monitors. (See
DEDUCE and deduction for a complete description of its operation.) It is also
called the goal-directed or right-hand-side (RHS) monitor.

*pattern-matching (rule~directed). There are currently two rule-directed,
or left-hand-side, monitors (ordered and cyclic). The cyclic monitor is the
default monitor when the run command is given in the absence of a previous
set ordered command. When either of these monhors is invoked, it will test
rule premises and execute the actions of true rules until it makes one complete
pass through all the rules and finds them all false. At this time it will print

35

"Failure" and return to command mode. (See STOP AT and RETURN for
additional ways to return to command mode.)

In the ordered monitor, the rules are considered to be ordered. This monitor
starts at the top of the list of rules, testing the IF part of each. When it finds
a true rule, it executes all the actions of that rule and begins again at the top
of the rule set. This process continues until either an action terminates it
(RETURN), a user~defined break occurs (STOP AT), or no rule is true. At that
point, control is returned to the user. To use this monitor, the set ordered
command must be issued before a run command.

The cyclic, or unordered, monitor also considers its rules to be ordered,
despite its name. Its operation is the same as that of the ordered monitor,
except that when a true rule is found, the next rule to be considered is the next
one on the list, rather than the first rule on the list. The ord~red and cyclic
monitors are also called pattern-action monitors, forward-driven monitors, or
left-hand-side (LHS) monitors. The cyclic monitor is the default monitor, and
it will be invoked on a run command unless the set ordered command has
previously been given. To change back to the cyclic monitor, the set unordered
command may be used.

Many other monitor strategies could be implemented. We do not rule out
any of them in the future development of RITA, but we have found these three
to be adequate for most purposes.

The deductive monitor is used when a particular datum is needed. It is most
useful in a static situation, where the data, once deduced, will keep the same
values. The LHS monitors are particularly useful for dynamic situations such
as interactions with external systems, where the program receives data and
takes actions depending on those changing data. The cyclic monitor has the
advantage that its rules are more independent than those of the ordered
monitor, but these independent rules normally require more premises.

See also: SET ORDERED, SET UNORDERED, deduction, DEDUCE, rita,
GOAL, RULE, explanation subsystem.

multiplication. See arithmetic.

name. There are two kinds ofnames in RITA. The first kind, which includes rule
names, goal names, file names, port names, pattern labels, and local labels,
may be either quoted strings or unquoted strings. If they are quoted strings,
they may contain any arbitrary characters, including blanks. If they are unq­
uoted strings, they may not include a blank or any of the following characters:
< > [J I l () & : ' ; , ~· ?

Examples: 1
Hselect fastest"
printfile
3A

The second type, which includes function names, object names, and attrib­
ute names, must be unquoted non-numerical character strings not containing ·
blanks and not containing any of the following characters: < > [] 1 I () & : '
. .. ?
' ' ~

Examples: ship
arrival-time
A3

36

See also: pattern labels (for special use of single quotes).

NEWS (command). The news command displays the RITA news file using the
UNIX program la. A short list of instructions for running Za appears at the
beginning of the news file. This file lists in inverse chronological order all the
changes and additions to RITA that affect the user.

Form: NEWS;

NEXT (syntax). See RECEIVE.

NOFILES (command). As mentioned under the exit command, RITA normally
produces two files (ufe.output and rita.history) while running. These files tend
to grow large over time. To avoid paying the cost of writing these files, the user
may issue the nofiles command, which deletes these files and prevents further
output to them. After a no files command, the edit and what commands are also
disabled, since they need the deleted files to operate. Also, any Save files?
prompts are automatically answered in the negat~ve, since there are no files
to save. The commands nofiles and set not file are equivalent.

Form: NO FILES
SET NOT FILE

See also: EXIT.

NOT. See predicate.

NOT IN. See predicate.

NOT KNOWN. See predicate.

nsubstr (built-in function) .. This function extracts a specified substring from a
target string. The first argument should evaluate to a positive integer, and the
second argument should evaluate to a non-negative integer. If either of them
evaluates to a number other than an integer, it is rounded to the nearest
integer. The first argument indicates the starting location of the substring
(!-indexed) in the target string; the second argument gives the length of the
substring; the third argument evaluates to the target string. If (argl + arg2

1) exceeds the length of the string, then the returned value is the rightmost
portion of the target string, starting at the argl th character. If argl exceeds
the length of the string, then the returned value is the null or empty string
Cm).

Form: NSUBSTR(value,value,value)

Examples: * create a ball whose color is Hblue-green";
* create a person whose height is 5;
* display nsubstr(6,height of person,color of ball);

See also:

37

''green"
* display nsubstr(4,3, Hfoobaz");
nbaz"
* display nsubstr(4,3, Hfoob'');

*

index, pattern, CONTAINS, receive.

NUL. A NUL is a zero byte. A RITA string is not allowed to contain a NUL,
because RITA uses a NUL to mark the end of a string. (However, the user
need not be concerned with this fact.) A NUL can be sent in a SEND action
by representing it as n -0". Similarly, when a NUL is received in a RECEIVE
action, it is converted to u -0" and treated as two characters~

See also: conversion, RECEIVE.

number. A RITA number is a string consisting of one or more digits, optionally
including a decimal point, optionally preceded by a plus or minus sign, and
having optional leading and trailing blanks. Its magnitude must be less than
1030

• Note the problem ofrourid-offerror and loss of significance: An arithme­
tic operation involving numbers with many digits may not yield an exactly
correct answer, but the answer will always be correct to within a very small
percentage.

See also: data type, integer, arithmetic, value.

object (data). All data in RITA are stored in objects. The data base consists of a
collection of object~attribute-value triples. Each object has a type (i.e., a class
name) and an arbitrary number of attributes. The object type is a fairly
arbitrary string of characters (e.g., bait external-system) but cannot be a
reserved word. Objects are entered into RITA using the CREATE or object
description syntax and are deleted with the DELETE command. There may
be several (or many) objects with the same type, and they may be accessed
associatively by testing their values in a THERE IS clause:

Rule 1: If there is an external-system (S) whose operating-system is
HTENEX", then set the name of the current-system to the name ·of
external-system (S);

Objects of the same type need not all have the same attributes; and the order
of attributes (transparent to RITA) need not be the same in objects ofthe same
type.

There are no predefined objects in RITA.

See also: name (for limitation on object names), attribute, CREATE, object
description, DELETE, THERE IS, value (for restrictions on OB­
JECT syntax).

object description (comm·and). Objects may be entered into RITA by typing them
in, using the object description syntax. The new objects are always added to

38

any others-replacement does not occur. An equivalent method of entering
objects is to use the CREATE syntax, which is more readable. For example,

object person id is ~t37",
name is (~H. Q. Bovick",
telephone is ~t810-3876",
location is tthome";

could also be created in the following way:

Form:

See also:

create a person whose id is tt37"
and whose name is uH. Q. Bovick"
and whose telephone is tt810-3876"
and whose location is (thorne";

OBJECT objectname
OBJECT objectname attribute IS literal
OBJECT objectname attribute IS literal,

attribute IS literal,
attribute IS literal

OBJECT objectname attribute IS (literal-~, ... literal-n)

CREATE, SET ... TO, name, value (for restrictions on OBJECT
syntax).

OR (syntax). See premise.

parser. See rita.

pattern label. A pattern label may follow any pattern in a pattern specification.
It is used to store, for temporary use, the string that matches the pattern. A
pattern label is set only after a successful match of the pattern specification
and can then be accessed only within the clauses in the rule subsequent to its
setting. A pattern label is considered not known in any other circumstance.

Pattern labels must be enclosed in single quotes .. (See name.)

See also: pattern.

pattern. A pattern specification may be used in a premise with the phrases CON·
TAINS or DOES NOT CONTAIN to test for the existence of that pattern
specification in a (scalar) value, known as the target string. A pattern specifica­
tion may also be used in a RECEIVE action. The foliowing discussion applies
specifically to nvalue CONTAINS pattern", though RECEIVE behaves in a
similar manner.

A RITA pattern specification describes the characteristics of a string. It is
composed of a sequence of one or more patterns (described below). RITA
attempts to match each successive pattern to some substring of the target
string. A pattern specification may be general enough to describe a large class
of strings or it may be so specific as to describe a unique string.

A pattern specification is always enclosed in curly braces. It may begin with
the phrase nsTART FOLLOWED BY" and may end with the phrase HFOL­
LOWED BY END". The meaning of these phrases is explained below.

39

Patterns in a pattern specification are separated by the phrase HFOL­
LOWED BY". Each pattern may be followed by a pattern label in single
quotes. The pattern label is used to store temporarily the substring that
matched the preceding pattern. For example,

IF the name ofthe employee contains !ANYTHING (firstname' FOL­
LOWED BY ((Smith"!

THEN put (firstname' into given~names of smiths;

In this example, if the name of the employee is HJohn Smith," then
(firstname' is set to ((John" upon successful match of the pattern specification
to the value. Pattern labels have the value HNOT KNOWN" outside the rule
in which they are set, and they are known within that rule only in premises
or actions that follow the successful match in which they are set.

A pattern specification contains a target string if each pattern matches
some substring of the target string, the substrings occur in the same order as
the patterns, and there are no gaps between the substrings. The first pattern
in a pattern specification need not match an initial substring of the target
string. Similarly, the last pattern need not match a terminal substring. For
example, th~ pattern specification

!ANYTHING FOLLOWED BY ttMovement Reports" FOLLOWED BY
ANYTHING!

is equivalent to the pattern specification

lttMovement Reports"!

Some patterns may be matched by strings of different lengths. For example,
in the pattern specification

lHDate" FOLLO'WED BY ANYTHING FOLLOWED BY tt1976"1

the substring that matches ANYTHING may be of any length (including 0)
and all of the following strings contain this pattern:

ttDate: August 11, 1976"
t(••• On the Date of May 3rd 1976, the first"
HDate 1976"

RITA will always find a match if there is one. In cases where more than one
match is possible, RITA will report the first one that it finds. To predict which
match will be found in ambiguous cases, it is necessary to understand the
order in which RITA proceeds. Variable-length patterns will initially be
matched either to the longest or the shortest possible substring (shortest for
ANYTHING, longest for SOME or ANY), and if subsequent patterns fail to
match, RITA will retry by either shortening or lengthening this substring,
continuing if necessary until all possibilities have been examined. For exam­
ple, if the string HMy Dear Henrietta," is compared with the pattern specifica-
tioo ·

l'tDear" FOLLOWED BY ANYTHING FOLLOWED BY n,"l

40

the pattern matching proceeds as follows. The first pattern in the pattern
specification CDear") is tested against the first position in the target string,
and the match fails. The search position is advanced to the second position in
the target string, and the match is retried. Upon the fourth try (starting at the
fourth character in the target string), the match succeeds CDear" in the
pattern matches ~~Dear" in the target string). Now the second pattern (ANY­
THING) is tried, starting at position 8. This succeeds immediately, matching
the null substring. The search position is still 8. Next the third pattern C\")
is tried. It fails, since there is no comma in position 8. RITA then retries by
going back to its last specified variable-length pattern (ANYTHING) and
lengthening the corresponding substring, matching the ~~ANYTHING" to the
comma in position 8. The search position is advanced to position 9 and the
third pattern is tried again, etc. This continues until the substring matching
ANYTHING is long enough so that the third pattern matches the comma in
the target string, terminating the pattern search successfully. Had there been
no comma in the target string, RITA would have kept lengthening the sub­
string corresponding to HANYTHING" until the target string was exhausted.
This would have concluded the search unsuccessfully, since in this example
there are no other variable-length patterns to lengthen or shorten. The search
·procedure is completely exhaustive: When a pattern fails to match the target
string at the current position and there are one or more variable-length pat­
terns before it, RITA will always retry until all possibilities have been exam­
ined. For example

!SOME IN ~~0123456789" ~prefix' FOLLOWED BY n395"1

would be successfully matched by either of the following strings, and ~prefix'
would be set as shown after the match:

u3923950" ~prefix' = 392
H0395" ~prefix' = 0

The types of patterns are listed below.

value: Value may evaluate to any legal RITA value except a nested list; i.e.,
a RITA number, a quoted string, or a (1-level) list of RITA scalars (RITA
numbers and/or quoted strings). When a pattern is a scalar value, it is
matched if the next substring in the target string is the scalar value. When
the pattern is a list of values, it is treated as a list of acceptable alternative
scalar values, any one of which would be considered a match of the pattern.
For example,

HABC" contains rAB"l
(~A" contains IC~B","A")l

integer CHARS, integer LINES: This pattern is matched by the occurrence
of exactly integer contiguous occurrences of any characters (including non­
printing characters such as newline or utj", see conversions) or the occurrence
of exactly integer sequential lines. If the substring being tested against the
pattern has fewer than integer characters (or lines), the match fails. Note that
blank, newline, and other non-printing characters are considered to match in

41

the integer CHARS specification, and blank lines are considered to match in
the integer LINES specification. Integer must evaluate to a non~negative
RITA integer. (If it evaluates to a non~integer number, it will be rounded to
the nearest integer. This is also true of the other patterns that call for an
integer.) ~~Line" or ~'lines" and ''char" or nchars" when not preceded by an
integer have the default value of 1 line or 1 character, respectively.

ANYTHING: ANYTHING is matched by the null string (empty string)
and/or any and all characters up to the substring matching the next pattern
specified. For example,

r~Employee name:" FOLLOWED BY ANYTHING FOLLOWED BY
HSocial Security Number:")

would be matched by any of the following strings:

~~Employee name: Tom Jones Social Security Number:"
~'Employee name:Social Security Number:"
HEmployee name: Marvin Gardens Age: 102 Social Security Number:"

SOME [NOT] IN string: This pattern is matched by at least one and possibly
more contiguous occurrences of any character [not] in a string. Note that the
occurrences need not be in the same order as they appear in the string; e.g.,

H2001" contains !SOME IN tf0123456789''1

and

Habcde" contains !SOME NOT IN .. 0123456789"1

The string in this pattern need not be a literal string but must evaluate to a
string.

ANY [NOT] IN string: This pattern description is exactly the same as
.. SOME [NOT] IN string" except that it is considered to be matched by zero
or more contiguous occurrences of the characters [not] in string.

integer CHARS [NOT] IN string: Integer must evaluate. to a non~negative
RITA integer; string evaluates to a string. This pattern is matched by an
occurrence of exactly integer CHARS [not] in the string. For example, if digits
of system is H0123456789",

5 CHARS NOT IN digits of system

is matched by the next five consecutive characters if they are non·numeric.
Note that the match fails if there are less than five characters left in the
substring of the target string. When this pattern is specified without the
integer preceding it, the default is 1 char [not] in string, regardless of whether
the keyword char or chars is used.

POSITION integer: Integer must evaluate to a non-negative RITA integer.
This pattern is used to specify the 1-indexed position relative to the start of
the target string. This pattern will succeed only ifthe pattern search is at the

42

position specified by the integer. (For the meaning of search position, see the
general description above.)

For example, the pattern specification

r!A" FOLLOWED BY POSITION 71

will be matched by any string that contains an !!A" in position 7. The pattern
specification

!POSITION 7 FOLLOWED BY nB"(

will be matched by any string that contains a !!B" in position 8. The pattern
specification

!SOME IN DIGITS OF SYSTEM FOLLOWED BY POSITION 7
FOLLOWED BY 1 CHAR NOT IN DIGITS OF SYSTEM!

would be matched by many strings, for example,

H0001234A"
tt0000001B12"

35 (thousands)"

Note that a pattern specification that contains a POSITION integer pattern
can be successfully matched only by a string whose length is at least integer.
!!Position 0" is a synonym for uSTART".

Form: ![START FOLLOWED BY] pattern [pattern-label] FOLLOWED
BY pattern [pattern-label] ... [FOLLOWED BY END]!

Examples: 1. The following pattern specification finds the first integer in a
string and stores it in a pattern label called !first~number':

!SOME IN !!0123456789" !first-number'!

•
To find the last integer in a string, we write

!SOME IN tt0123456789" tnum' FOLLOWED BY ANY NOT
IN H0123456789~: FOLLOWED BY END!

2. To retrieve the first floating-point number (that is, a number
with a decimal point, such as 3.14) between the 21st character
and the 40th character of a target string, we use the pattern
specification

!POSITION 20 FOLLOWED BY ANYTHING FOLLOWED BY
SOME IN n.Ol23456789" tnum' FOLLOWED BY ANYTHING
FOLLOWED BY POSITION 401

3. To find the first word in a text that ends with ed, ly, or ing,
set alphabet of system to t!AaBbCc ... Zz" and use

See also:

43

ISO ME IN alphabet of system ~root' FOLLOWED BY
Ced", ~tly", t~ing") !suffix' FOLLOWED BY SOME
IN H • , ; : () rj " l

where the last pattern includes whatever punctuation characters
are to be allowed. To capture the first word thus found, set some
attribute to concat Croot', tsuffix').

conversions (for meaning of ((rj"), receive, integer, list.

Pausing.... This is a message that is emitted by RITA during the output of
TRACE data to the terminal. It helps the user to control the rapid flow of trace
output to the terminal, as he must enter a carriage return before another
screen~size chunk of trace information will be printed to the screen.

pipe. See external system, port.

port. RITA's interactions with external systems take place on communication
paths called ports. A port is set up and given a name by using that name in
a SEND or RECEIVE action, e.g., send ~ftelnet" to unix-port would set up a
port named unix-port. The first use of a port generates a UNIX shell process;
if the action is a SEND, the value is sent to the new shell. In the example
above, the UNIX ~ubsystem telnet would be started in the shell connected to
unix-port. Subsequent SENDs and RECEIVEs using that same port name will
talk and listen to the same shell.

A maximum of three ports (not including the user and self ports) may be
active at the same time. This means that RITA may be talking simultaneously
to three distinct external systems (e.g., a data base system on the ARPAnet,
the New York Times Information Bank, and a desk calculator system under
UNIX). When an interaction with one system is completed, the port may be
released and used for another system (see conversion).

See also: external system, SEND, RECEIVE, SELF, conversion, USER.

predicate (syntax). The most common kind of premise is a simple predicate,
where two expressions are evaluated and th~ resulting strings or lists are
compared. The IS predicate is true if and only if the strings or lists are defined
and identical, except for the following special case: If the two values are
numbers, they are compared as numbers, not as strings. Thus, 5, 005, 5.0, and
n 5 " are all considered to be equal.

The inequality predicates require numeric values for comparison (as al­
ways, valid RITA numbers are required).

The IS [NOT] KNOWN predicate tests whether some value has been set or
can be evaluated. The IS [NOT] IN predicate tests whether a specific scalar
value is a member of a list or a member of any sublist of the list (to any level
of nesting).

See CONTAINS for an explanation of predicates involving a pattern specifi­
cation.

Form:

See also:

44

value IS [NOT] value
value IS [NOT] KNOWN
value IS [NOT] LESS THAN [OR EQUAL TO] value
value IS [NOT] GREATER THAN [OR EQUAL TO] value
value IS [NOT] IN value
value [CONTAINS] [DOES NOT CONTAIN] pattern

specification

premise, value.

premise (syntax). A premise is any clause in the IF part of a rule or goal. Premises
may be connected by ANDs or by ORs. AND is the primary connective (i.e.,
has lower precedence), so the left-hand-side,

color OF ball IS ublue" AND
shape OF block IS ~(square" OR
name OF external-system IS HTENEX"

would be true if the first clause were true and one or both of the second and
third clauses were true. The OR may not be used to connect a THERE IS
premise with another premise, since the special definition of the THERE IS
would make it meaningless in that context.

See also: predicate, THERE IS.

proto (UNIX command). This command can be given to UNIX before giving the
rita command. It creates a file that will contain a record of all input and all
output on the terminal after the command is given and before a <CTRL/D>
is hit. This can be useful for activities such as debugging. The sequence is to
give the proto command, wait for the next UNIX prompt Ct% n), then give the
rita command. After exiting RITA, hit the <CTRL/D> key (depress the CTRL
key and hold it down while hitting the D key). The file created by proto is called
protocol. (See UNIX file /doc/proto for documentation.) Yif ARNING: Delete and
<CTRL/FS> are not operative inside a proto.

Form: PROTO

See also: EXIT, bug, control character.

PUT (action). HPut ... into" is a predicate clause for use with lists. A value may
be ((put" only into an attribute (of an object) which is a list. That is, the
attribute must not already have a scalar value assigned to it; it must either
be a list (which may be empty) or be undefined (not known). lfit is a list, value I
is inserted into the list as the last member unless otherwise specified. v alue2
must evaluate to a positive integer. (If value2 evaluates to a non-integer
number, it is rounded to an integer.) If attribute of object is not known, it is
treated as an empty list into which valuel is inserted.

Form: PUT value-! INTO attribute OF object ...
PUT valuel INTO attribute OF object AS LAST MEMBER .. .
PUT valuel INTO attribute OF object AS FIRST MEMBER .. .

See also:

45

PUT valuel INTO attribute OF object AFTER MEMBER
value2 ...

REMOVE, value.

QUIET (command). The quiet and verbose commands set and unset quiet mode.
The default setting is verbose. While in quiet mode, the front end does not
issue confirmation messages when loading rules, goals, and objects; does not
decompile immediate rules; and does not type the success or failure message
when returning to command level. The [replace rule/ goal name?] message is
suppressed and the replacement always takes place.

NOTE: Files will load (or fload) slightly faster when quiet mode is set; these,
like most commands, cannot be in files to be floaded.

See also: VERBOSE.

QUIETLY (syntax). See DEDUCE.

RECEIVE (action). This action is used to receive information from an external
system. The port name must match the port name used by the corresponding
sends. User is a valid port name in this context, but self is not. If the port name
has not been seen before (or has been killed),. a new external system is created
with the only initially receivable input being the H%" prompt of the UNIX
shell. As with the send action, if the port name is the specially recognized word
user, no external process is created. Instead, RITA waits for the user to type
a complete line on the terminal.

The receive action may be used to receive with or without a test for a
matching string (see pattern), with or without a time·out (maximum number
of seconds to wait for more input to arrive in the buffer), and with or without
storing the result as attribute of object.

When RITA is performing a receive wjthout a test for patterns and without
a time-out, it sets attribute of object (if any) to a string consisting of the entire
input that has arrived from the port. (If the input port is empty, the string will
be the null string.)

The receive action without the pattern test and with the time-out (RE­
CEIVE FOR value SECONDS FROM charstr ...) is performed exactly like-the
same action without the time-out, except that RITA delays for value seconds
before the action is performed. Value must evaluate to a positive number,
which will be rounded to an integer.

The action ~tRECEIVE NEXT pattern specification FROM port name" re­
ceives from the port until the specification has been matched, or until the
search has definitely failed. Failure can occur under only three conditions:

• An end-of-file is encountered.
• The pattern specification begins with ~tSTART FOLLOWED BY pat­

tern", and there is no match for the pattern starting at the first input
character.

• A time-out occurs (it can occur only when the nFOR value SECONDS"
phrase is used).

46

When there is a failure, the value of attribute of object (if any) will be set to
NOT KNOWN. Any input that has arrived but has not been stored in attribute
of object will remain in the input buffer for that port and may be accessed
through subsequent receives. When a RECEIVE NEXT pattern is used with
a time limit (FOR value SECONDS), the buffer must be found empty value
times before the time-out will occur. Each time the buffer is found empty, a
lasecond delay will occur before it is checked again.

A RECEIVE from the user port will be received by the RITA agent one line
at a time. If a NUL character is received, it will be converted to H -...0", since
a NUL cannot be part of a RITA string.

Form: RECEIVE FROM port name [AS attribute OF object]
RECEIVE FOR value SECONDS FROM port name [AS

attribute OF object]
RECEIVE NEXT pattern specification FROM port name

[AS attribute OF object]
RECEIVE NEXT pattern specification FOR value SECONDS

FROM charstr [AS attribute OF object]

See also: SEND, port, NUL.

REMOVE (action). REMOVE is a predicate provided to allow members to be
removed from a list. REMOVE does the opposite ofthe PUT action: It modifies
the value of a specified attribute, which must be a list. A member or members
may be removed from a list according to their position or according to their
value.

Remove first member and remove last member, together with remove mem­
ber value, remove members according to their position. In this case, value
must evaluate to a positive integer no greater than. the number of members
in the list. If it evaluates to a non-integer number, it will be rounded to the
nearest integer. (The phrase SIZE OF can be used to determine the number
of members in the list.) ·

Remove value and remove first value remove a member according to its
value. They both remove the first member whose yalue evaluates to value. For
example, remove first '"alert" from status-flags of sys'tem will check the list
status-flags of the system and remov~ the first member whose value is nalert"
from that list. Remove every value from attribute of object performs a similar
function but does so for every member of the list that has the given value.

Form: REMOVE FIRST MEMBER FROM attribute OF object
REMOVE LAST MEMBER FROM attribute OF object
REMOVE MEMBER value FROM attribute OF object
REMOVE value FROM attribute OF object
REMOVE EVERY value FROM attribute OF object
REMOVE FIRST value FROM attribute OF object

Example: remove ~tjones" from access-list of remote-file;

See also: PUT.

47

reserved word. A reserved word is a RITA keyword that may not be used as the
name of an attribute, object, rule, or goal. The following are currently the
reserved words:

A
AN
AND
CHAR
CHARS
FROM

IF
IS
LINE
LINES
MEMBER
NAMES

OF
SIZE
THE
THEN
WHOSE

RETURN (action). These actions force the left-hand-side (LHS) monitor to sus­
pend execution and return to command level. The message Success! or Failure
is printed to indicate the type of return, but the difference between the returns
has no other effect; the return code is mainly for documentation. The message
may be suppressed with the QUIET command. A RETURN FAILURE is
automatically provided when all rules have been tried and found to be false.

Form:

See also:

RETURN SUCCESS
RETURN FAILURE

QUIET.

RHS (right-hand side}. See monitor (goal-directed).

rita (UNIX command). The rita command is given to UNIX to invoke the RITA
processor. Files of rules and objects may be specified in the command line.
These files will be loaded when the RITA processes have been initialized,
before control is given to the user (see command level). As the three major
processes (UFE, PARSER, MON) are created, their version dates are printed.
The version dates may be suppressed by using the qrita (for quiet) command.
If the user wants a special parser or monitor, (e.g., for testing rule sets de­
signed to run on an 11/ 40), these may be specified as the first two arguments
to the command, preceded by minus signs. When a new version of RITA is
being tested, it can be accessed by the trita command.

RITA is divided into these three processes tin order to overcome UNIX
limitations on the size of programs. The separation is usually transparent to
the user.

Form: RITA
RITA filename
RITA [<parser> [<monitor>]] [<filename> ...

<filename>]
QRITA [-<parser> [<monitor>]] [<filename> ...

<filename>]
TRITA [-<parser> [-<monitor>]] [<filename> ...

<filename>]

rita.history (file). See WHAT, EXIT, NOFILES.

48

RULE (command). The basic element of a RITA rule set is the rule. Rules have
a name, which may be a fairly arbitrary string of characters (but may not be
a reserved word), a set of premises, and a set of actions. A rule may have the
same name as a goal, since they are stored separately. The rules are consid~
ered to be independent of one another. Although there is an implied overall
ordering of them, no rule can explicitly transfer control to another rule. The
IF part of a rule consists of a number of premises; all the premises must be
true for the rule to be true. If the IF part is true, then the actions are executed
sequentially. The premises test various attributes of the data base (see object),
and the actions can change the data base. In addition, actions can be taken
that test and affect the state of external systems, e.g., processes accessing the
ARPAnet or dealing with a UNIX data base.

The rule command is one way to enter a rule into the RITA system. When
the rule is typed in, it is checked for syntactic correctness and then entered
into the rule set in RITA. If another rule with the same name already exists,
the user is asked whether the old rule should be replaced. Rules may also be
read into RITA from UNIX files with the LOAD and FLOAD commands, or
as part of the rita command to U:NIX.

Form:

See also:

RULE rule-name IF premises THEN actions;

premise, action, monitor, GOAL, object, attribute, value, external
system, LOAD, FLOAD, name.

RUN (command). The run command is used to start the RITA monitor (specified
by a previously issued SET ORDERED or SET UNORDERED). Run may be
issued more than once. Each time it is issued, the left-hand-side (LHS) monitor
starts its scan at the top of the rule list.

See also: command level, SET ORDERED, SET· UNORDERED, monitor,
CONTINUE, RUN RULE, TRACE, RETURN, STOP AT, FAIL­
URE.

RUN RULE (command). This is another form of the immediate rule command,
the difference being that the user is referring to a named rule (but not goal)
that is already in the system. The same operation applies to the named rule
as to the unnamed (immediate) variety. (Like other commands, run rule may
not be used as the action of a rule.)

Form:

See also:

RUN RULE rule-name;

immediate rule, RUN.

scalar. A scalar is also known as a string.

See also: data type, string.

SCRATCH (command). The scratch command is identical to the command delete
all rules and delete all goals and delete all objects.

See also: DELETE.

49

SELF (pre-initialized port). New rules and objects may be added to a rule set by
constructing them through the actions of rules and sending them to the cur­
rent RITA using the SELF pipe. This pipe is read just before RITA reenters
command mode, and the actions specified (e.g., adding rules, setting traces,
etc.) are taken then. The SELF pipe may also be used for explicitly deleting
rules, deciding which file to load next, exiting conditionally, and so on.

Unfortunately, there are many restrictions on the use of the send-to-self
feature: Reading the self strings operates like loading a file and is therefore
subject to the quadruple-nesting limit (see LOAD); like typed input, nothing
should be put into the self channel after a load command; RITA must return
to command level before it can start reading the self strings; and an attempt
to send more than 4098 characters to self without such a return will cause the
system to go into an infinite wait.

See also: external system, SEND, LOAD, command level, RUN, RETURN,
CONTINUE.

SEND (action). The value must evaluate to a string or a list (NOT KNOWN values
cause an error). It is transmitted to the named port; if the port name has not
been seen before in a send or receive, a new external system by that name is
created, if there are enough resources to support another external system.
(Currently, up to three such systems may run simultaneously.) This system is
initialized to be a UNIX shell, and this shell will receive the string being sent.
Thus, the first string sent to a new external system is generally the shell
command to run the appropriate program.

Two external system names are treated very specially: user and self.
Neither of these is really an external system, and neither causes the creation
of a shell or any other processes. Sending something to the user causes it to
be printed on the standard output (the user's terminal). The self pipe is dis­
cussed under SELF.

The value is sent in its literal form, followed by a newline, except that
characters preceded by an up-arrow (r) are converted into special ASCII codes
at parse time, and characters preceded by a tilde (~) are converted into
special control functions which are performed on this port. The specific conver­
sions are covered under conversions.

The name chosen for an external system cannot be changed after it has been
assigned. For documentation purposes, it should probably be the name of the
system that will be most heavily talked to along that I/0 channel; for example,
send Hnet" to ARPAnet and send Hwho" to shell;

A special case of the send action concerns the SEND ... TO FILE option. In
this case, no external (or self or user) system is involved. Instead, the string
is appended to the specified file (which is created if it does not already exist).
Many of the H- ~~ codes have no meaning in this case and are just copied into
the string without any special control functions being executed.

Form: SEND value TO [FILE] port-name

See also: port, RECEIVE, SELF, conversion, DISPLAY [ro FILE], NUL.

50

SET ORDERED (command). This command specifies that the ordered left~hand­
side (LHS) monitor is to be used instead of the default unordered monitor (see
monitor). The setting may be changed any time a command may be issued (i.e.,
after an asterisk prompt).

See also: SET UNORDERED, monitor.

SET ... TO (action). In the form SET attribute OF object TO value, the old value
of the attribute of object is replaced with the one specified by the value. If
there was no such attribute previously, one is created.

In the second form of the set action shown below, the value of the attribute
of object being set is replaced by a list which contains the values of the named
attribute of all objects that have an attribute which satisfies the predicate, For
example,_ Set the active~sites of network to the name of every remote-site whose
status is fractive" will put the name of every remote-site whose status is
Hactive" into a list called active-sites, which is an attribute of network. If there
are no remote-sites that satisfy the predicate, the list will be empty.

Form:

See also:

SET attribute OF object TO value
SET attribute OF object TO attribute

OF EVERY object WHOSE attribute predicate

predicate.

SET TO NOT KNOWN (action). Any value of a specified attribute of the object
is forgotten and is treated subsequently as if it had never been known before.
If the attribute was not mentioned prior to execution of this action (and thus
was unknown anyway), this action will cause the fact that the object has such
an attribute (even though still unknown) to be displayed when decompiled.
This action is not legal in a goal rule.

Form:

See also:

SET attribute OF object TO NOT KNOWN

deduce.

SET TRACE (command). This debugging command cau.ses RITA to report its
actions in more detail. The higher the integer, the more detail is printed.
Currently, 4 is the maximum meaniBgful integer; 0 specifies the normal mode
of operation. If n is greater than 0, output will be produced by immediate
actions and rules as well as by the monitor.

The messages currently produced include the following: trace level 1 prints
all the rules and goals being tested; trace level 4 includes, among other things,
announcements of each rule that fires and a list of its actions as they are about
to be executed.

Form:

See also:

SET TRACE integer;

TRACE.

SET UNORDERED (command.). This command specifies that the cyclic LHS
monitor (see monitor) is to be used. Since it is the default, this command need
only be given at some point after the RUN ORDERED command has been

51

given. The setting may be changed any time a command may be issued (i.e.,
after an asterisk prompt).

See also: SET ORDERED, monitor.

SHELL (command). The shell command temporarily puts the user into a UNIX
shell (e.g., for checking directories or for sending a message). RITA is left
suspended unless the user makes the tragic mistake of typing <CTRL/FS>,
in which case it goes away with three core dumps (one for each process). To
return to the RITA system-and the user must not forget to do so-he needs
only type a <CTRL/D> to the (sub)shell. Typing more than one <CTRLID>
will get him out of RITA as well.

Form: SHELL;

SIZE (syntax). The SIZE operator returns the number of elements in the specified
list. It can be used in a premise, e.g.,

IF SIZE OF foo OF baz IS LESS THAN 5 THEN ...

or in an action, e.g.,

... THEN SET count OF prompts TO SIZE OF prompts OF system ...

and is legal wherever a value may be used. If the value whose size it is taking
is not a list, a run-time error is displayed.

Form: SIZE OF list

See also: length (of a string), sused (amount of memory used).

STOP AT. See TRACE.

string. A string consists of zero or more characters between quotation marks.
Note that upper and lower case are distinguished in quoted strings. A string
is also known as a scalar.

See also: value, conversion, data type, name.

subtraction. See arithmetic.

sused (built-in function). The function sused returns the amount of memory (inK
words) used so far. The maximum memory available to a process under UNIX
is 28K (K = 1024). The PDP 11/45 (or 11170) version of RITA currently
returns 6 in an empty RITA (leaving room for 22K expansion of the user
program), and the PDP 11/40 version returns 22 (room for 6K expansion).
After reaching the 28K point, RITA attempts to keep the user in business by
swapping rules dynamically to disk and reclaiming space occupied by unused
strings. The difference between the 11/40 and the 11/45 is that on the 11/45,
instructions and data may be addressed separately, so that in the best case the
11/45 provides twice as much address space.

Form: SUSED()

52

syntax. See App. A for a complete syntax chart showing legal RITA rule descrip­
tions, object descriptions, and command syntax.

THE (syntax). This is one of several optional words which may be used to improve
the readability of rules. It is thrown away/or and ignored whenever it is
encountered by the system.

·See also: article.

THEN (syntax). The keyword THEN is used to introduce the actions of a rule or
goal.

See also: rule, goal, action, immediate action, immediate rule, IF.

THERE IS (syntax). THERE IS is a premise used for selecting a single object from
a group of objects of the same type. For example, if the data base contains a
number of records, one could be selected with the clause, THERE IS A record
WHOSE id-{ield IS f'vacant". The monitor goes to considerable effort to find
out whether there is such an object. It will try each object of type ••record" in
turn; if it finds one with a matching id-field, it will then test the remaining
premises in the IF part of the rule. If all premises are true, then the rule is
true. If any premise is false, the monitor comes back to the THERE IS clause
and tries the next record until it either finds a record that makes all subse­
quent premises true or runs out of records (in which case, the rule is false).
If there are a number of THERE IS clauses in the rule, a good deal of testing
can take place. For example, three THERE IS clauses each binding an object
••foo" could generate 125 binding attempts if there were 5 objects of type ••foo"
in the data base.

Form:

See also:

THERE IS [NOT] objectname
THERE IS [NOT] [A][AN] objectname WHOSE attribute IS

value [AND WHOSE ...]
THERE IS [NOT] objectname WHOSE attribute IS LESS

THAN [OR EQUAL TO] value [AND WHOSE ...]
THERE IS [NOT] objectname WHOSE attribute IS GREATER

THAN [OR EQUAL TO] value [AND WHOSE ...]
THERE IS [NOT] objectname WHOSE attribute IS IN value

[AND WHOSE ...] .
THERE IS [NOT] objectname WHOSE attribute [CONTAINS]

[DOES NOT CONTAIN] pattern specification

premise, object, CONTAINS.

TRACE (action). The four trace commands-TRACE, UNTRACE, STOP, UN­
STOP-set and unset flags associated with various RITA items (rules, goals,
objects, and attributes). The syntax to select the desired items is as follows:
ALL RULES, ALL GOALS, ALL OBJECTS, RULE rulename, and GOAL
goal name are all self-explanatory (all by itself refers to the combination of the
first three groups, i.e., everything); OBJECT objectname refers to all objects
of class objectname, but if a local label or explicit binding (the < > feature) is
used, it refers only to that particular object; ALL RULES THAT test/set

53

attribute OF object refers to a subset of rules or goals that tests an attribute
of object ifthe attribute/object pair is mentioned anywhere in its premise, and
sets it if it is mentioned in a SET, CREATE, RECEIVE, PUT, or REMOVE
clause in any of its actions; and attribute OF object refers to the attribute of
one or every object of type object, depending on whether or not the object
reference can be bound.

In any event, every rule, goal, object, and attribute has two flags: a trace
flag and a stop flag. For rules and goals, being traced means that announce­
ment is made every time the rule/ goal is fired; being stopped means that every
time the rule/ goal is about to fire (i.e., is found true but before any of its
actions are executed), execution is suspended and control is returned to com­
mand level. If a continue command is issued, the rule will then fire ifit is still
true and will then continue. (The run command, however, will stop at the rule
again unless it has been unstopped or is no longer true. The rule may be false
if the user has changed a value before continuing.) For objects and attributes,
tracing means that the specified item's name and value are announced every
time the value changes (in the case of an object, they are announced any time
any of its attribute's values change); stopping produces similar results, except
that execution is suspended before the change of value takes place. A continue
command will perform the assignment and finish executing any other actions
in the current rule.

Thus, these commands give the user a powerful set of options for observing
and intervening in the operation of his RITA programs.

Form:

See also:

TRACE RULE rulename
TRACE GOAL goalname
TRACE ALL RULES
TRACE ALL RULES THAT SET attribute OF object
TRACE ALL RULES THAT TEST attribute OF object
TRACE all objects
TRACE OBJECT objectname
TRACE attribute of object
UNTRACE ...
STOP AT ...
UNSTOP .o.

SET TRACE.

HTRUE" (value). Some built-in functions such as isnum and islist return the literal
string !!TRUE" if their conditions are satisfied. Note that the string is in
upper-case letters.

See also:

uc (upper case) (built-in function). The argument should evaluate to a string. If so,
the returned value is the same string with all lower-case letters shifted to
upper case. If not., a run-time error message is given.

Form: UC(value)

ufe (user front end). See rita.

54

ufe.input. See edit.

ufe.output. See edit.

UNTRACE. See TRACE.

UNSTOP. See TRACE.

upper case. See uc.

USER (port). This is the name of a pre-initialized port that may be used to send
data to the controlling terminal of a process or to receive data from it. If the
user is at a terminal, information sent to the user port with the SEND com~
mand will appear on the user's terminal, and characters typed at the terminal
can be read with a RECEIVE specifying the user port. DISPLAY also sends
information to the USER port.

See also: port, SELF, SEND, RECEIVE, conversion.

value (syntax). A RITA value can be either a string of characters, an ordered list
of values, or unknown ..

A string is a sequence of characters or a RITA number. (See data type.) To
enter a string value, the user surrounds the characters by double quotes(");
to include a double quote within the string, he precedes it with an up-arrow
(as in ~~quote i ""). Values obtained through a receive action may contain
all ASCII characters except NUL; strings typed in as part of a rule or object
may contain non-printing characters by making use of the t-conversions de­
scribed under conversion.

A list is entered as a left parenthesis, a possibly null number of values
(strings or lists) separated by commas, and a right parenthesis. Lists used as
values (i.e., in rules) may contain any legal values within them (for example,
c~roo", (),color ofball, 1," + 2.' size ofb ofx)), but literal lists (used in.the object
description syntax) may contain only strings and other literal lists (for exam­
ple, the last three members in the above example would be illegal in a literal
list). That is, no value that needs to be evaluated is· allowed in the object
description syntax. (See object description.) If an object is to be created with
evaluated attributes, the CREATE syntax, whic,h is also more readable, should
be used. Note that a list may include sublists as elements and that duplicate
entries are allowed in a list.

Unknown values are identical to values that do not exist (e.g., a ball with
no color attribute and a ball with a color attribute whose value is NOT
KNOWN are treated identically). An unknown value is entered by using the
phrase not known.

Valid means of specifying a value within a RITA rule set are shown on the
wall chart in App, A within the box labeled ~~a VALUE can be."

. t"
VERBOSE (command). The quiet and verbose commands set and unset quiet

mode. The default setting is verbose. While in quiet mode, the front end does
not issue confirmation messages when loading rules, goals, and objects; does

55

not decompile immediate rules; and does not type the Success or Failure
message when returning to command level. The [replace rule/ goal name?]
message is suppressed and the replacement always takes place.

Files will load (or fload) slightly faster when quiet mode is set: these, like
most commands, cannot be in files to be floaded, but they may be in files that
were compiled.

See also: QUIET.

WHAT (command). RITA keeps a running record of all the major events that take
place as it operates unless the nofiles command is issued. The explanation
system utilizes this record to explain RITA's behavior to the user. (The file,
called rita.history, is useful for postmortem analysis). For user convenience,
this record is broken down into epochs delimited by issuances of the run
command and broken down further into events. Event 0 includes everything
before the first run command (generally a series of loaded rules and objects);
every time a rule or goal fires, the event counter is incremented. A range of
events may be referred to as follows (n and m are unsigned integers): (n-m'
refers to events n through m inclusive; tn' refers to event n; tn-' refers to events
n to the present (last event); t-n' refers to events from the last run command
to event n inclusive; \'refers to the events since the last run command; and
no range specification is equivalent to the range t-'. There is currently no way
to refer to the last event; using a number too large will result in a harmless
out of range message.

The what command simply displays a readable version of what went on.
The level of detail will eventually be selectable; currently, the command dis­
plays the details of all additions and changes to the data base (though not
deletions), announces any I/0 that took place (though not the actual messages
communicated), and lists the rules and goals that fired and the (deductive)
questions that were asked the user.

At present, the printout from a what command will roll off the screen as fast
as it is typed; the printout may be halted by typing a .

Form: WHAT range?

WHY (response to deduction question). Responding twhy' to a question asked by
the deductive monitor results in a listing of the immediate subgoal and rule
that were responsible for the question. Repeated whys follow the chain oflogic
created by the backward-chaining process, up to the initial goal. When the top
of the decision tree is reached (i.e., the reason for needing a datum is the action
DEDUCE attribute OF object), RITA replies •tThat's what I was supposed to
deduce." The why response may be used only during a deduction. It is not
available at the command level or within rules or goals.

See also: DEDUCE, deduction.

Appendix A

SUMMARY OF RITA COMMANDS AND SYNTAX

Appendix A is a wall chart illustrating the commands and syntax within the
RITA system. This chart is contained in the pocket on the inside back cover of this
report.

Additional copies of this chart may be obtained from the Publications Depart­
ment, The Rand Corporation, 1700 Main Street, Santa Monica, Calif. 90406.

57

Appendix B

A RITA RULE SET FOR FILING MAIL

This appendix describes the creation and operation of an illustrative user agent
whose function is to file electronic computer network mail. It is assumed that the
user has some knowledge of the format of network mail, but this is not essential.

The agent is designed to go through an ~~in box" file of network mail and file
the messages in various data sets. Incoming messages are filed according to sender;

outgoing messages are filed according to recipient(s). The agent has in its data base
a set of known persons with whom the user corresponds. (In some cases, the
nperson" is actually a group, e.g., the MSGGROUP on the ARPAnet; these groups
can be treated as individual persons.) Each such person will have a formal network
account name and an associated file name into which messages to or from him
should be filed. (Messages from different persons can thus all be routed to one
common file, if desired.) The agent should look at each message in turn within a
given mailbox (ignoring deleted messages that have not yet been expunged). For
each message, it should look within the To: and From: fields (but not the Cc: field)
for names of known persons; messages for each known person found should be filed
in the file designated for that person. The user should be informed of all such
actions, and the original mailbox should not be destroyed in the process. (In order
to keep the discussion of this agent brief, we ignore such potential proplems as that
of placing multiple copies of a message in the same file (i.e., once for each correspon­
dent).)

Figure B-1 illustrates sample interactions with MS, * a newly-developed UNIX­
based message system that is available at Rand and can be used by RITA. Annota­
tions to the transcript in Fig. B-1 are shown in braces.

Figure B-2 presents a diagram of the logic underlying this user agent. The
capabilities of the MS system which can be applied to the task are taken into
account. The flow chart boxes have been labeled with phrases which ultimately can.
be used to represent Hstates" of the RITA agent. Such agents can be thought of as
being in one of a number of states, where certain production rules apply in each
state.

From the logic flow in Fig. B-2, it is straightforward to encode the behavior of
an agent as a set of RITA production rules. First, a set of known-person objects with
associated attributes and a similar object called me will be created. Note that each
known-person has a corresponding file name into which messages should be stored;
the file name associated with me is the one into which miscellaneous messages will
be filed. The data objects, expressed in RITA syntax, are shown in Fig. B-3.

In addition to the data objects in Fig. B-3, a few others are useful in expressing
the logic of a mail-filer agent: an ((agent" which has an associated state; an (~ms"
object representing the MS system, its prompt character(s), its responses, etc.; a
nmessage" object recording information about the to- and from-fields of the current

*See David Crocker, User-Level Functions in MS: A Network-Oriented Message System for Personal
Computing, The Rand Corportion, R-2134-ARPA (to be published).

58

% ms newmail

MS: 22-Dec-76

59

{"ms" is the unix command to invoke the

mail system~ the optional argument "newmail"

tells the system which mailbox to use}

13 messages in mailbox.

-> scan all {"->" is the MS prompt1 look at all the

message headers. The symbols at the left

margin by message #3 indicate that message

has been deleted, but not expunged.}

1<= (1243)

2 (1169) 29 Oct 76 jsz

*[- 3 (805) 29 Oct 76 anderson

4 (2224) 29 OCT 76 NELC3030

5 (9 29) 30 OCT 76 MSGGROUP

6 (521) 29 Oct 76 VI1'TA.L

7 (1076) 29 Oct 76 VIT1'AL

8 (1374) 31 OC'r 76 FARBER

9 (1149) 1 NOV 76 WALKER

10 (319) 1 Nov 76 MYER

11 (1792) 1 Nov 76 greep

12 (683) 1 Nov 76 greep

13 (29~) 1 Nov 76 grm

-> show 2

(Message 2, 1169 bytes)

Date: 29 Oct 1976 at 1317-PDT

From: jsz

Subject: Virtual Terminal UNIX

'ro: jim

cc: rha, weiner, jsz

Figure B-1

Virtual Terminal UNIX

Re: [vit·tua1 terminals]]

RITA Agents

MSGGROUP# 429 Add RCT@CCA

How to get the draft RFC

Draft of RFC on new mail

Your draft on message sys

UNIX Meeting 3 Nov

Inadvertent Messages

Re: [FILES CREATED IN MS

Re: [FILES CREA'rED IN MS

ACCA'r R & D

60

Jim,

UNIX

In response to your inquiry concerning virtual terminal

I would estimate that this work will be started in

about a month, and might take a month or two.

-> show 2 -c to from

(Message 2, 1169 bytes)

To: jim

From: jsz

-> copy 2 > -f rn.jim

-> show 3 -c to from

Message 3 is discarded.

-> show 14 -c to from

Message 14 does not exist!

Steve

{the "-c" flag tells the show command

to only display the named components

of the message(s)}

{places a copy of message #2 in file

"m.jim"~ the "-f" flag indicates that

the next argument is a file name}

{from this, we learn what MS says

when we access a discarded (but not

expunged) messaqe}

{this is what MS says when we access

a ~essaoe beyond the end of the

list of messages: by testino tor

this statement, we can tell when

all messages have been seouentially

processed}

-> quit

9; {we have returned to the U~IX shell}

Figure B-1--continued

61

i nitia I ize agent:

1) index- 0

2) get name of mailbox from user,
then send 11 ms 11 to UNIX with that
file name to start up the MS system,
and receive back the MS welcoming
message

get a message:

1) index .._index + 1

2) send " show <index> -c to from " to MS
and get the response from MS

check response
to "show 11

:

check response
to 11 show 11

(cont.):

check response

is response:

No

is response:
11 (Message< i> •.•)

To: •••
From: ••• "

?

No

Yes

Yes

to 11 show 11 is
(cont.):

discarded. 11

?

No

(assume message
has a non­
standard format)

Figure B-2

wrapup:

1) 'send 11 All messages
have been filed. 11

to the user

2) return

file the message:

1)

1)

concatenate the
to-field and the
from-field 1 and
copy message into
data set associated
with each known
person named in
that string

file the
message in my
"miscellaneous 11

data set

object me:

62

name is "Robert AndersonM,

address is "anderson",

msg-file is ~m.misc":

object known-person: name is "Steve walker",

address is "walker~,

msg-file is "m.walker":

object known-person: name is "Cmdr. Floyd Hollister",

address is "fhollister",

msq-file is "m.hollister";

object known-person: name is "Cmdr. Cliff Rose",

address is "rose",

msg-file is "m.nelc":

object known-person: name is "NELC people",

address is "nelc3030",

msq-file is "m.nelc";

object known-person: name is "Dave Farber",

address is "farber",

msq-tile is "m.farber":

object known-person: name is "CAHCOM committee",

address is "cahcom",

msq-file is "m.cahcom":

object known-person: name is "MSGGROUP",

address is "msqgroup",

msq-file is "m.msqqtoup":

object known-oerson: name is "Gary :-tar tins",

address is "qrm",

msq-tile is "m.nelc":

Figure B-3

63

message; and an object called Hprocessed-persons'' which keeps as an attribute a list
of the names of known persons already used in filing a message, as a means of
bookkeeping during iteration through all known persons. These additional data
objects are shown in Fig. B-4.

object aqent: state is "initialize agent":

object ms: r e s po n s e i s " ''

name is "ms", [UNIX command to invoke MS]

prompt is "%j-> ": ["%j" is carr. ret.]

object message: address-field is "",

status is "unfiled":

object processed-persons:

list is (); [used for bookkeeping, to

remember which persons a

message has already been

filed under]

Figure B-4

Most of the initialization- of attribute values shown in Fig. B-4 is unnecessary
for operation of the RITA agent; if an ·attribute is not declared as part of the
definition of a data object, it will be dynamically created when it is first used. The
initialization is shown in Fig. B-4 to provide documentation of the various attrib-

.. utes used in the agent's rules.
The agent's logic can now be described in nine RI'r A rules, using the vocabulary

defined in the data objects of Figs. B-3 and B-4. The rules are shown in Fig. B-5.
The rules in Fig. B-5 are self-explanatory; however, the following additional

details may be helpful:

1. The string t(tj" represents the special control character, carriage return
(see conversion in Sec. III).

2. Text within braces describes a pattern to be matched by a string. Several
options are available within a pattern description; see pattern specifica­
tion in Sec. III.

3. The built-in functions used within the rules are:

• concat(sl, s2, ... , sn): returns strings sl, ... ,sn concatenated together.
• lc(s): returns lower-case version of string s.

set ordered:

quiet:

64

[tell RITA to treat this as an ordered rule set]

[the RITA system should be terse in informing

the user re. various details]

RULE 1: [HOW TO INI'l'IALIZE 'l'HE AGENT]

IF: the state of the aqent is "initialize agent"

THEN: set the index of the message to 0

and send concat(

"Please type file name containing messages to be filed%j",

" (or hit RETURN for default ~·:tilbox) ••• ")

to user

and receive next {anything ~file-name' followed by "%j"}

from user

and send conpat(name of ms, " " 'file-name') to ms-port

and receive next {prompt of ms} from ms-port

and set the state of the aqent to "get a message":

RULE 2: [HOW TO GET A NEW MESSAGE FROM 'MS']

IF: the state of the agent is "get a message"

THEN: set the index of the message to index of message + 1

and send concat("show ", index of message, " -c to from")

to ms-port

and receive next {oromot of ms}

trom ms-port as the response ot ms

and set the status of the message to "unfiled"

and set the list of processed-persons to ()

and set the state of the agent to

"check resoonse to 'show'":

Figure B-5

65

kULE 3: [HOW ~0 TELL IF ALL MESSAGES HAVE BEEN PROC8SSEDl

If: the state of the agent is ucheck response to 'show'"

and the response of ms contains {"l'iessaqe " followed by

so!Tle in "\1Jl23456789" follo·N'ed bv h does not exist"}

TH~N: send "All messaqes nave been tiled." to the user

and return success:

RULE 4: [HOW ~0 EXTRACT THE NEEDED !~FORMATION FROM A MESSAGE!

IF: the state of the aqent is ucheck response to 'show'"

and the response of ms contains {"(Message" followed by

anything followed by "%jTo: u followed by

anything 'to-string' followed by "%jFrom: "

followed by anything 'trom-strinq' followed by

"%ju followed by anything followed by prompt of ms}

THEN: set the address-field of the message to

lc(concat('to-strinq', " " 'from-string'))

and set the state of the agent to "file the message":

RULE 5: [WHAT TO DO IF THE CURkENT MBSSAGE HAS BEEN DISCARDEDl

IF: the state of the aqent is "check response to 'show'"

and the response ot ms contains {"Messaqe " followed by

anything followed oy " is discarded." followed by

anything followed by pro~~t of ms}

·rHEl~: set the state of the agent to "qet a messaqe":

Figure B-5-continued

66

RULE 6: [WHAT TO DO IF THE CURRENT MSG HAS A NON-STANDARD HEADER]

IF: the state of the agent is "check response to 'show'"

[and since above rules didn't fire, assume that message

is non-standard format, so file as if no known-person

were mentioned]

THEN: set the address-field of the message to ""

and set the state of the agent to "file the messaqe":

RULE 7: [HOW TO FILE A MESSAGE TO/FROM A KNOwN PERSON]

IF: the state of the agent is "file the messaqe"

and there is a known-person whose address is not in the

list of processed-persons

and the address-field of the message contains

{address of known-person}

THEN: send concat("copy ", index of message, " > -f ",

msq-file of known-person) to ms-port

and receive next {prompt of ms} ftom ms-port

and send concat("Message 1 " index of message,

" placed in file " msq-file of known-Person)

to user

and put the address of tne known-petson into

the list of processed-persons

and set tne status at ~ne messa0e to "filed":

RULE 8: [WHAT TO 00 IF NO EXPLICIT FILING INSTRUCTION HAS BEEN

SUCCESSFUL: FILE UNDER MY MISCELLANEOUS]

IF: the staie of the agent is "file the message"

and the status of the message is not "filed"

Figure B-5-continued

67

THEN: send concat("copy ", index of message, " > -f "

msq-file of me) to ms-port

and receive next {prompt of ms} from ms-port

and send concat("Message # ", index of message,

" placed in file " msg-file of me) to user

and set the status of ~he message to "filed":

RULE 9: (WHAT TO DO AFTER THE CURRENT MESSAG~ HAS BEEN FILED}

IF: the state of the aqent is "file the messaqe"

and the status of the message is "filed"

THEN: set the state of the agent to "qet a message":

run: [after loadinq in the rules, RITA should beqin

execution of this aqent]

Figure B-6 records a session at which the agent is invoked. Again, annotations
are shown in braces.

% rita mail-filer (invoke RITA, loading mail~filer]

There are 52 processes in use (61% loading) and no other ritai

UFE: 11 Nov 76

PARSER: 9 Dec 76

MON: 11 Dec 76

mail-filer:

running.

[RITA consists of three processes:

user Front End (UFE), a Parser,

and a Monitor (MON); this

indicates which versions are

in use]

[RITA provides feedback while

loading data and rules]

Figure B-6

68

Please type file name containing messages to be filed

(or hit RETURN for default mailbox) •••

newmail [this is the user's response to

the agent's question]

11.essage * 1 placed in tile m.misc

~tessage # 2 placed in file m.misc [feedback to the user

Message
* 4 placed in file m.nelc programmed into the

Nessage # 5 placed in file m.msggroup agent's behavior in

Message # 6 placed in file m.cahcom rules ~ 7-8]

1-tessage II: 7 placed in file m.cahcom

Message # 8 placed in file rn • .tarber

Message # 9 placed in file m.walket·

Message # 9 placed in file m.farber

Message # 10 placed in file m.msggroup

Message # 11 placed in file m.misc

Message # 12 placed in file m.misc

Message # 13 placed in file m.nelc

All messages have ·been filed.

* exit; [user exits Kl'l'A, returninq to

Ut'liX command levell

exiting.

Figure B-6-continued

We have shown this illustrative agent as an interactive one, which requests a

file name from the user and displays feedback during its operation. It is also

possible, with minor modifications, to make this agent operate autonomously, wak­

ing up periodically to process messages, etc., without requiring user interaction.

Such an agent can leave messages for the user, reporting on what has been done.

RAND/'R-1808-ARPA

