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Abstract

An efficient system to perform garbage collection in parailei with list operations is proposed and
its correctness is proven.

The system consists of two independent processes sharing a common memory. One process is
performed by the list processor (LP) for list processing and the other by the garbage collector (GC)
for marking active nodes and collecting garbage nodes. The system is derived by using both the
correctness and efficiency arguments. Assuming that memory references are indivisible the system
satisfies the following properties:

- No critical sections are needed in the entire system.

- The time to perform the marking phase by the GC is independent of the size of memory, but
depends only on the number of active nodes.

- Nodes on the free list need not be marked during the marking phase by the GC.
= Minimum overheads are introduced to the LP.
- Only two extra bits for encoding four colors are needed for each node.

Efficiency results show that the parallel system is usually significantly more efficient in terms of
storage and time than the sequential stack algorithm,
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1. Introduction

In this paper we propose an efficient system to perform garbage collection in parallel with list
operations, and prove the correctness of the system.

The system consists of two independent processes sharing a common memory. One process is
performed by the list processor (LP) for list processing and the other by the garbage collector (GC)
for marking active nodes and collecting garbage nodes. The system is derived by using both the
correctness and efficiency arguments (see Appendix I). Assuming that memory references are
indivisible (see Section 4.1), the system satisfies the following properties:

P1. No critical sections are needed in the entire system.

P2. The time to perform the marking phase by the GC is independent of the size of memory, but
depends only on the number of active nodes.

P3. Nodes on the free list need not be marked during the marking phase by the GC.
P4. Minimum overheads are introduced to the LP.
P5. Only two extra bits for encoding four colors are needed for each node.

Properties P1, P2, P3 and P4 are important to the performance of the system. But none of the
previous systems satisfy all the four properties. (The system of Steele[1975] does not satisfy Pl
and the system proposed by Dijkstra[1976] does not satisfy P2 and P3.)

We have analyzed the performance of the parallel garbage collection system proposed in this
paper. The results show that the parallel system is usually significantly more efficient in terms of
storage and time than the sequential stack algorithm (see Appendix II). The complete performance
results are reported in another paper (Kung and Song[1977]). In this paper we shall be mainly
concerned with the correctness of the system. We must be sure that a system is correct before
studying its performance.

The correctness proof in this paper is not intended to be formal or completely rigorous. Given
the complexity of the system, we feel that it is more important to have a proof which is readable
and convincing.

)




W " - ) . »
Introduction

We give a summary of this paper. In Section 2, we define the data structure shared by the LP
and the GC. In Section 3, the garbage collector’s algorithm and the list processor’s operations of
the parallel system are defined. Basic assumptions and correctness criteria are given in Section 4.
The main theorem for proving the correctness of the system is also stated there. In Section 5, an
upper bound on the execution time of a marking phase is derived. Section 6 contains the proof of
the main theorem for an auxiliary parallel system. In Section 7, by transforming the proof and
results for the auxiliary system we establish the main theorem for the parallsl system defined in
Section 3. Some concluding remarks appear in Section 8. In Appendix I, we show how the parallel
system is derived, by using correctness and efficiency arguments. A summary of results on the
performance of the parallel system is given in Appendix IL

For the reader’s convenience, a page describing both the parallel system and the auxiliary
system is attached at the end of the paper. The reader is advised to cut off the page from the
paper so that he (or she) can refer to the definitions of the systems easily while reading the paper.




2. The Data Structure

The data structure shared by the two processes consists of a directed graph and an output-
restricted deque.

2.1 The Directed Graph

Let the nodes of the graph be labeled by integers 1,.,M, and the node labeled by n be in
memory location n for all n=1,.,M. Node n (or simply n) is used to refer to either the node labeled
by n or the pointer to it depending upon the context. For the purpose of this paper, we assume
that each node contains three fields: a left pointer fieid, a right pointer field and a color field. A
pointer field contains the pointer to a node, which is one of the integers 1,.,M, or the null pointer
"A"; but a left pointer field may sometimes contain a special value "f" which is not A or any of the
integers 1,..,M. The color field contains one of the following four colors: white, off-white, gray and
black.

The pointer contained in the left or right pointer field of node n is called the left or right pointer
of n and is denoted by n.left or n.right, respectively. The color contained in the color field of node
n is called the color of n and is denoted by n.color.

The topology of the graph is determined by the pointers of the nodes in the graph. Let m and n
be any two nodes. If m.left (or m.right) = n, we say that there exists a left (or right) outgoing edge
from m to n, and n is the left (or right) son of m. An existing edge from m to n is often denoted by
(m,n), if there is no need to indicate explicitly whether it is a left or right outgoing edge from m to
n. In this case, we may also simply say that n is pointed to by m. If m.left (or m.right) = A, then
we say that there does not exist a left (or right) outgoing edge from m to any node and m does not
have a left (or right) son.

The graph is changed as the pointers of its nodes are altered by the processes. We assume that
the left (or right) outgoing edge from m to n is created at the instant of completion of writing n on
the left (or right) pointer field of m. Hence at any moment an edge either exists or does not exist,
though writing on a pointer field takes a finite amount of time.

The first R nodes, 1,., R, are called roots. Node R+l is called FREE. FREE.left is the pointer to
the first node of a list, called the free list (cf. Fig. 1), which is a sequence of nodes, ny, np,., Ny,
satisfying the following properties:

FREE
g -

—{ [ F—~{fTa ]

ny ny Nk-1 Ny
Fig. 1
Fl. FREE.left = Ny, Ny-right = A,
F2. for 1 si <Kk, njright =n,.
F3. for 1 <i sk, n;left = f and n,.color = off-white.
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Data Structure

F4. FREE.right is the pointer to the last node or the node before the last node of the free list.
(The latter case occurs temporarily each time when a node has just been appended to the free list,
but FREE.right yet remains to be updated.)

Based on the graph, we give the following definitions:

Definitions
Node n is said to be reachable from node m, if m=n or if there exists a path on the directed h
graph from m to n. (In this paper, a path always refers to a directed path with distinct nodes.)

A node is said to be free if it is reachable from FREE.

A node is said.to be active if it is reachable from a root.

A node is said to be a garbage node if it is neither active nor free.

The root node R is also called NEW. In the parallel system to be described in Section 3, the first
node of the free list can be made into an active node by having it pointed to by the left outgoing
edge of NEW.

2.2 An Output-Restricted Deque

Both the GC and the LP use an output-restricted deque which is implemented outside the
memory space containing the directed graph. The deque contains pointers to nodes in the directed
graph. The GC inserts and removes pointers to nodes from one end of the deque, called the GC-
end of the deque, and the LP only inserts pointers to nodes at the other end, called the LP-end of
the deque.

Before removing a pointer from the deque, the GC tests the emptiness of the deque. If the
deque is empty and the LP is inserting a painter into the deque but has not concluded the insertion,
then the test result for emptiness will be true. The pointer will be removed from the deque only if
the GC finds that the deque is nonempty.
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3. The Parallel Garbage Collection System

In this section we give a parallel garbage collection system, which consists of two concurrent
processes sharing the data structure defined in Section 2. One process is executed by the LP and
the other one by the GC. The reader is recommended to read Appendix I for a better
understanding of the parallel system.

We shall assume that the following initiai conditions hoid before any of the two processes starts:

I1. All the roots are black and have no sons.

12. The color of FREE is off-white.

I38. Nodes on the free list are nodes R+2, R+3, .., M.

I4. The free list satisfies properties F1, ..., F4 of Section 2.1 with FREE.right being the pointer to
the last node of the ¢ree list.

Note that I3 and 14 imply that at the beginning of the computation, free nodes consist of nodes
on the free list and the node FREE.

3.1 Garbage Collector's Algorithm

The GC executes repeatedly the following cycle, which is composed of three phases, the root
insertion phase, the marking phase, -and the collecting phase. In the algorithm, MARKING is a
Boolean variable initialized to false. We say that a marking phase starts at the time when MARKING
is set to true, and ends at the time when MARKING is set to false.

GCl. (Root insertion phase)
for i « 1 until R-1
do insert node i into the GC-end of the deque od;

GC2. (Marking phase)
MARKING « true;
s « NEW.lett;
it s # A then
if sleft # f and s nonblack then
blacker s;
insert s into the GC-end of the deque

fi
fi;
while the deque is not empty
do
n « the node at the GC-end of the deque;
blacken n;
remove n from the deque;
s « n,left;
if s # A and s is nonblack then
blacken s;

insert s into the.GC-end of the deque

fi;
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s « nright;
if s # A and s is nonblack then
blacken s;
insert s into the GC-end of the deque

MARK]

=z

G « false;

GC3. (Collecting phase)
for i « R+2 until M
do
if node i is white
then APPENDXi)
se

if ileft # f then color node i white fi
fi

od

e

|-..|

The procedure APPENDXn) is defined as follows:

n.color « off-white;
n.left « f;

nright « A;
[FREE.right].right « n;
FREE.right « n

3.2 List Processor's Operations

The LP may perform operations only on active nodes and may perform the operation LPg defined
below.

The LP can perform many kinds of operations, such as traversing a certain list structure through
its pointers, testing if the left or right pointer of a node is A, etc. But for the purpose of this
paper it suffices to consider only those operations which change the data structure. The process
executed by the LP is controlled by any program in which operations of the latter kind are defined
as follows:

Operation LPa: Add a left (or right) outgoing edge from an active node m to an active node n.
1. set the left (or right) pointer of m to n;
2. if MARKING and n is white or off-white then
gray n;
insert n into the LP-end of the deque
fi
Operation LP,: Delete a left (or right) outgoing edge from an active node m.

set the left (or right) pointer of m to A.

Operation LPg: Make a free node active and pointed to by NEW.
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1. CREATE;
2. n « NEW.left;
if MARKING then
blackan n;
insert n into the LP-end of the deque
fi

The procedure CREATE is defined as follows:

while FREE.left = FREE.right
do nothing od;
NEW.left « FREE.left;
FREE.left « [FREE.leftlright;
[NEW.left]right « A;
[NEW.leftlleft « A

To simplify the correctness proof, we assume that the right pointer field of NEW always contains
A, and the left pointer field of NEW can be altered only through an operation LPg or LPA. (Note
that this assumption is not a restriction for a list processing system.)

3.3 Remarks on the Parallel System

1. The parallel system is evolved from the well known sequential garbage collection system which
uses a stack for marking nodes. In Appendix I of this paper, we show how both the correctness
and efficiency arguments were used to guide the derivation of the parallel system, starting from
the sequential system. In particular, we will show why it is necessary to color nodes with four
colors, and argue that the proposed system is essentially the only parallei system which satisfies all
the five properties stated in Section 1 of this paper. It is instructive to note that the ordering of
the operations appearing in the parallel system is in general crucial to the correctness and
efficiency of the system. For example, if the ordering of step 1 and step 2 in LPp, or the graying
and insertion operations in step 2 of LPA, is interchanged, then examples can be found to show that
the resulting system will be incorrect.

2. In the sequential system, the stack is accessed only by the GC. In the parallel system, a deque
is used instead of the stack to avoid possible access conflicts of the stack, since both the GC and
the LP may manipulate it at the same time.

3. Step 2 of operation LPg is included only for efficiency reasons, which we explain as follows. It
is usually the case that after performing an operation LPC, the LP will perform an operation LPA to
make some node point to the newly created node. Thus, during the marking phase, it is better to
blacken the newly created node (and insert it into the deque) once for all, so that there is little
chance that the node will be colored and inserted into the deque by baoth the LP and the GC. For
similar efficiency reasons, in GC2 node s is blackened before it is inserted into the deque; this
blackening would not be necessary if only the correctness of the system were concerned.




4. The Correctness of the Parallel Garbage Collection System

4.1 Assumptions

Al. The LP and the GC can read and write on individual fields of a node, and the following
operations are indivisible:

"Read or write a field of a node" by the LP or the GC.
"Gray or blacken a node" by the LP.
"Blacken, whiten or off-whiten a node"” by the GC.

A2. The initial conditions I1, 12, I3 and 14 stated in Section 3 are satisfied at the beginning of
the computation.

A3. ("The procedures operated on the free list are correct:”) If the free list, i.e., the list pointed
to by the left outgoing edge of FREE, is updated only by the procedures APPEND and CREATE, then
the properties F1, F2, F3 and F4 of Section 2.1 are preserved all the time. (We choose to assume
A3 rather than to prove it, for it is similar to the traditional producer/consumer problem.)

A4. ("The deque will not overflow and operations on it are correct:") There is always some
extra space available for storing the deque and the GC does not tind the deque empty until all the
nodes which were inserted into the deque have been removed from it. (An upper bound on the
number of elements the deque may have is derived in Section 5.)

4.2 Definition of Correctness

We say that the parallel garbage collection system is correct, if the following conditions are all
satisfied:

Cl. Only garbage nodes are appended to the free list by the GC.
C2. The GC never changes pointers of active nodes.

C3. A garbage node will always be appended to the free list within a certain time, which can be
estimated a priori.

Conditions C1 and C2 guarantee that the GC does not interfere with the LP operations. Condition
C3 ensures that the GC indeed collects garbage etfectively.

By C1 and the fact tHat no active nodes are on the free list at the beginning of the computation,
we see that the free list can be modified only by the procedures APPEND and CREATE. Hence by

assumption A3, we know that the free list is manipulated “correctly”, i.e., the free list always
satisfies all the properties F1 to F4, .

4.3 The Corractness Proof and Statement of the Main Theorem
In Sections 6 and 7, we shall prove the following theorem:

8




Correctness

Main Theorem:

For the parallel system defined in Section 3, the fallowing properties hold:
(i) During a marking phase at each time when the GC checks the emptiness of the deque, every
white active node is reachable from some node in the deque.

(i) A free node is always off-white.

Hence during a marking phase, If the GC finds the deque to be empty, then by (i) there is no white
active node. This implies that when a collecting phase starts all white nodes are not active and by
(ii) they are garbage. Note that the LP never colors a node white and, during a collecting phase,
the GC examines each node only once. Hence we have shown that the system satisfies condition
Cl.

Because the algorithm satisfies condition Cl, it also satisfies condition C2, since the GC only:

changes pointers of free nodes or garbage nodes (through procedure APPEND).

It is not difficult to see that a garbage node can always be appended to the free list within time
2T, where T is an upper bound on the time taken by one garbage collection cycle. It is clear that
the execution times of the root insertion phase and collecting phase can be estimated a priori. In
the next section, we shall give an upper bound on the time taken by the marking phase of any
garbage collection cycle. These imply that the system satisfies condition C3.




S. An Upper Bound on the Marking Phase Time
Consider the marking phase of any garbage collection cycle. Let
A = number of active nodes, besides the roats, at the beginning of the marking phase,
1/k = time to insert a node intc or remove a node from the deque,

r = rate that new active nodes are created (i.e., removed from the free list) in the sequential
system, when the LP is running,

Tpp = time taken by the marking nhase.

With respect to a given computer, we assume that quantities A, k and r can be estimated from a
given list processing program. In the following we derive an upper bound on Ty, under the
reasonable assumption that k > r. e

During the marking phase, the GC is busy inserting nodes into and deleting nodes from the
deque, and also doing some minor operations (such as blackening a node or testing the color of a
node). Assuming that these minor operations are incorporated in the insertion and deletion
operations, we can write the following:

TM - TI + TD
where
Ty = total time in the marking phase during which the GC is making insertions, and
Tp = total time in the marking phase during which the GC is making deletions.

Note that nodes inserted into the deque by the GC are among those nodes which are active at
the beginning of the marking phase. We have the following inequality:

TI < A/k

Let D be the total number of nodes deleted from the deque during the marking phase. Then
TD = D/k

Note that nodes inserted into the deque must be either free or active at the beginning of the
marking phase. Nodes in the first category, after being removed from the free list, are blackened
and inserted into the deque once for all by the LP. The number of such nodes is < ripp Since r
certainly is an upper bound on the rate that new active nodes are created in the parallel system
(for which there are overheads for the LP). Consider now those nodes which are active at the
beginning of the marking phase. Each of them, except the roots, can be inserted into the deque at
most three times (twice by the GC and once by the LP), since the black color of a node may be
overwritten by the gray color at most once and the gray color by the black color at most once (cf.
the counter-example given in Section 7.1). But a root can be inserted into the deque at most once.

Since the number of nodes deleted from the deque is no greater than that inserted into the deque,
we have therefore shown that

D s Ty, +3A+R

10




Marking Phase Time

Note that the above inequality might be inexact to a small number of nodes owing to the fact
that no synchronizatior is assumed in the manipulation of the Boolean variable MARKING. (For
instance, there could be a large gap between the time when the LP finds MARKING to be true and
the time when the LP inserts the corresponding node into the deque.) Here we ignore this possible
unimportant discrepancy. Thus,

Tp S (T +3A+R)/k
and we have established the following theorem:
Theorem 1: T $ (BAR)/ (k=r)

The theorem gives upper bound on Ty which is proportional to A and independent of the sice M
of the memory space. This property turns out to be extremely crucial to the performance cf a
parallel garbage collection system, but is not satisfied by any previous system which does not use
critical sections. Note that the time for the GC to execute a root insertion phase or a collecting
phase is more or less a constant. Hence to minimize the time to execute each garbage collection
cycle, it is necessary to minimize the time to execute each marking phase. This is an intuitive
explanation on why one should minimize Ty,

An Bound on the Deque Size:

Let Q be the maximal number of nodes the deyue might have during a marking phase. Clearly, Q
< D and thus Q s rTy, + 3A + R. This bound can be improved as follows: Let Qi be the number of
nodes in the deque at time t. Let Ly and Gi be the number of nodes having been inserted into the
deque (except the roots) by the LP and by the GC, respectively, through time t. Let Xt be the
number of nodes having been removed from the deque by the GC through time t. Then

Qt-Lt*Gt*R“xt.

Since each node has at most two sons, for every two nodes inserted into the deque by the GC
there is at least one node removed from the deque by the GC. Hence X; 2 Gy/2. By the fact that
Ly srTy + Aand Gy s 2A, we have

QsrTy+2A +R

for all t. This together with Theorem 1 implies that
QSE—{T(4A+R)+2A+R

-z_H_A+o(1).
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6. The Proof of the Main Theorem for an Auxiliary Parallel System

In this section we introduce an auxiliary parallel garbage collection system and prove a stronger
version of the main theorem for this auxiliary system. In the next section, with a small effort we
will be able to prove the main theorem for the parallel system in Section 3 by transforming the
proofs and the results obtained for the auxiliary system in this section. We now define the
auxiliary system. The garbage collector’s algorithm is defined as follows:

GCl. (Root insertion phase)
for i « 1 untif R-1

do insert node i into the GC-end of the deque od;

insert NEW into the GC-end of the deque;

GC2. (Marking phase)
MARKING « true;
s « NEW.left;
if s # A then
if s.left # f and s nonblack then
insert s into the GC-end of the deque;
blacken s
fi
fi;
remove NEW from the deque;
while the deque is not empty
do
n « the node at the GC-end of the deque;
blacken n;
5 « nlefl;
if s # A and s is nonblack then
insert s into the GC-end of the deque;
blacken s
fi;
s « n.right;
if s # A and s is nonblack then
insert s into the GC-end of the deque;
blacken s
ti;
remove n from the deque
od;
MARKING « false;

GC3. (Collecting phase)
for i « R+2 until M
do
if node i is white
then APPENDXi)

3 |

it ileft # f then color node i white fi
fi

od

12




Proof for the Auxiliary System

The list processor operations used in the auxiliary system are the same as those used in the
original parallel system in Section 3, except that the "gray n" operation in LPp is now replaced by
"shade n". The operation “shade" makes a white or off-white node into gray and leaves a black or
gray node unchanged, and is assumed to be indivisible. (As a matter of fact, in the auxiliary system
it turns out that the operation "shade" will never have to be performed on a gray node.) Under the
assumptions stated in Section 4.1, with "gray" replaced by "shade” in Al, the following theorem can
be proven:

Theorem 2:
For the auxiliary parallel system defined in this section, the following properties hold:

(i) During a marking phase, every white active node is always reachable from some node in the
deque.

(i) The left pointer field of a free node (except FREE) always contains the value f, and a node whose
left pointer field contains the value f is always off-white.

We shall prove the theorem by induction on successive garbage collection cycles. Note that if (i)
and (ii) hold through the end of the marking phase of the ith garbage collection cycle then (ii) holds
through the end of the marking phase of the (i+l)st cycle. This follows from the following
argument: Since, at the beginning, the free list contains no active nodes and since only garbage
nodes have been appended to the free list (cf. the proof of Cl in Section 4.3), free nodes have
been accessed only by the procedures APPEND and CREATE and, consequently, by assumption A3
the properties in (ii) are preserved through the end of the marking phase of the (i+1)st cycle.

Since there are no white nodes during the marking phase of the first garbage collection cycle, (i)
holds automatically for the first cycle. This together with the fact that the free list contains no
active nodes at the beginning of the computation imply that free nodes can only be accessed by
the procedures APPEND and CREATE during the first cycle. Hence by assumption A3 (ii) also holds
for the first cycle. In the rest of Section 6 we assume that Theorem 2 holds for the ith cycle and want
to prove that it holds for the (i+1)st cycle. As noted in last paragraph, in the proof we may use the
fact that (ii) holds through the end of the marking phase of the (i+1)st cycle.

6.1 Notation

In order to present our correctness proof for the auxiliary parallel system more easily, we
introduce some "ghost operations™ in the list processor operations LPp and LPo. The new
definitions of LP5 and LPs are given in the following, where ghost operations are indicated
between square brackets in steps G1 and G2. Note that these ghost operations are not intended to
be part of the real algorithm, but serve merely for proot purposes. We assume that step G1 or G2
is executed at the instant of completion of step 1 or 2 of LPp, respectively (or of step 2 or 6 of
LPg, respectively), and the execution takes no time. ;

Operation LP5: Add a left (or right) outgoing edge from an active node m to an active node n.

1. set the left (or right) pointer of m to n;

Gl. [mark the edge (m,n) created at step 1;)

2. if MARKING and n is white or off-white then
shade n;
insert n into the LP-end of the deque

13
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fi;
G2. [unmark the edge (m,n) marked at step G1)

Operation LPc: Make a free node active and pointed to by NEW. (Steps 1 through 5 constitute the
procedure CREATE.)

1. while FREE.left = FREE.right
do nothing od;
2. NEW.left « FREE.left;
Gl. [mark the left outgoing edge from NEW;]
3. FREE.left « [FREE.leftlright;
4. [NEW.leftlright « A;
5. [NEW.leftlleft « A;
6. n « NEW.left;
if MARKING then
blacken n;
insert n into the LP-end of the deque
fis

G2. [unmark the edge marked at step G1]

We say an edge is marked if it has been marked by the LP at step GI, but step G2 which
unmarks the edge has not been executed by the LP. Hence an edge is marked if and only if i) the
operation LP5 which created the edge has finished its step 1 but not step 2 or ii) the operation
LPc which created the edge has finished its step 2 but not step 6. Since there is only one list

processor, at any time there is at most one marked edge. If an edge is marked at time t, it is called
the marked edge at time t.

A path is calied a marked path, if the marked edge is on the path. A path is called an unmarked
path, if no edge on the path is marked.

We now assume that we are at some time t during the marking pnase of the (iel)st garbage
collection cycle, and that ty, is the starting time ot the marking phase. As noted earlier, statement (ii)
of Theorem 2 holds through the end of the marking phase of the (i+1)st cycle, and hence through
time t.

6.2 Preliminary Lemmas
Lemma 1:

If at time t a black node m has a son, then m vsas in the deque at some time in [iM.t].
Prootf:

If mis a root then the lemma is obvious, since roots are all in the deque at time tM: Suppose
that m is not a root. We first show that m was white or off-white at some time during the
collecting phase of the previous cycle. During thal phase tne color of m was tested by the GC.
The test outcome was either white or nonwhite. In the latter case, if mleft = f then m was off-

white and on the other hand, if m.left # f then m was colored white afterwards by the GC.

Since m is black at time t, it was blackened at some time t' after the marking phase of the
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previous cycle either by the GC or by the LP through an operation LPg. If m was blackened by the
GC, then at the time when m was blackened m was in the deque (the GC only blackens a node which
is already in the deque). If m was blackened by an operation LPg, then since m has a son at time t
the operation LPc must have been completed and consequently, m was inserted into the deque
before time t. Since no nodes were removed from the deque during the time interval [tk we
conclude that m was in the deque at some time in (taptl

Lemma 2:

At time t, if edge (m,n) is unmarked with m black and n nonblack, then at least one of the two nodes
m and n is in the deque.

Proof:

Note first that n must be nonblack throughout the interval {tppt], since a black node remains
black during the marking phase.

Let t p be the time instant when edge (mn) was created, with tip s t. (tp is the instant of
completion of step 1 of LPp or step 2 of LPe)

a) tLp € ty: Edge (m,n) has been existing since time t\pe By Lemma 1, m was in the deque at
some time in [t\,t]. Suppose that m is not in the deque at time t. If m # NEW, then before m
was removed from the deque, n would have been blackened. This is a contradiction. If m =
NEW, then before NEW was removed from the deque, the GC examined the left pointer field of
n. If it did not contain f, then n would be blackened, which is a contradiction. If it contained f,
then at the time when the GC was examining n.left, step 6 of the operation LP¢ which created
(myn) had not started yet. Clearly from that time through time t, the Boolean variable
MARKING was true. Since (m,n) is unmarked at time t, the operation LPg has been completed
by time t, and thus n would have been blackened by the LP. This again is a contradiction.

b) tyy <ty pt Since ty; <t p < t, edge (m,n) was created during the interval(t\4t]. Suppose that
the operation which created (m,n) was an operation LPc. Since (m,n) is unmarked at time t, the
operation LPo has been completed by time t and thus n would have been blackened. This
contradiction shows that the operation which created (m,n) must be an operation LPp. Since
(m,n) is unmarked at time t, the operation LPp has been completed by time t. During the time
interval [t pt], the LP tested the color of n. The outcome of the test must have been white,
off-white or gray.

i) The test outcome was white or off-white. Then n was inserted into the deque by the LP
at some time in (t p,t].

ii) The test outcome was gray. Note that as shown in the proof of Lemma 1, node n was
white or off-white at some time t* during the collecting phase of the previous garbage
collection cycle. The operation LPp which colored n gray must have inserted n into the
deque at some time in [t,t). This implies that n was in the deque at some time in (et
since no nodes were removed from the deque during ("t}

Both cases imply that n is in the deque at time t, because if n were removed from the deque,
it would have been blackened by the GC.
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6.3 Proof of Theorem 2

Suppose that w is a white active node at time t. We shall prove that w is reachable from some
node in the deque. Since w is white and active, w is not a root and is reachable from some root
through at least one path. There are two cases.

Case 1: w is reachable from some root through an unmarked path.

Let m be the first black node that is encountered on the path by traversing backwards from w to
the root. Clearly such a black node exists, since the root is black. By Lemma 2, m or its son on the
path is in the deque at time t.

Case 2: The marked edge at time t is on every path from a root to w.

Let the marked edge be (m,n). Since it is assumed in Section 2.1 that nodes on a path are all
distinct, we must have m # n.. Without loss of generality, we assume that (m,n) is the left outgoing
edge from m to n. Consider any one of the paths from roots to w, and call it path P. Let b be the
first black node that is encountered on path P by traversing backwards from w to the
corresponding root. Suppose that b is a descendant or ancestor of m with respect to path P (see
Fig. 2 and Fig. 3). Then the outgoing edge from b on path P is unmarked. By Lemma 2, we
conclude that b or its son on path P is in the deque.

path P path P
b
m m
n n
b
w w
Fig. 2 Fig. 3

In the following we assume that b = m. By Lemma 1, m was in the deque at some time in [twt]
Suppose that m is not in the deque at time t. We shall show that w is reachable from some node in
the deque through a path, called the "m*-w path” below. Let tge be the time instant when the GC
started reading the left pointer field of m before m was removed from the deque for the last time.
Let t| p be the time instant when edge (m,n) was created. We have the following two cases:

A) tp S tae If (m,n) was created by an operation LPp, then m # NEW and consequently node n
would have been blackened by the GC before m was removed from the deque. This is a
contradiction. Suppose that (m,n) was created by an operation LPc. Then m = NEW.
Moreover, since (m,n) is marked at time t, the descendants of n are all off-white and,
consequently, n = w. Before NEW was removed from the deque, the GC examined the left
pointer field of w. If it did not contain f, then w would be blackened, which is a contradiction.
If it contained f, then at that time w was off-white. This implies that w would not be white at
time t, since the white color is set cnly during a collecting phase. Again we have a
contradiction.
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B) tge <t p. (See Fig. 4). Since tge <t p < t, edge (m, n) was created during the interval (ty,t1
Suppose that the operation which created (m,n) is an operation LPc. Then, as in A) above, m =
NEW, n = w, and hence at time tLP w was off-white. This is a contradiction since w is white at
time t. Therefore the operation which created (m,n) is an operation LPA. Choose t* so that
tGC <t¥< tLP and that step 1 of the operation LPA started before time t*. (Recall that tLP is
the time instant of completion of step 1.) Clearly at time t* there was no marked edge.

path P pathP* pathP pathP
m m m m
n n n
w %w w w
mige © ip T Twige T tp
Fig. 4 Fig. 5

Node w was active at time t¥, since it is active at time t and no new active nodes were created
during the interval [t*t] Let path P* be any one of the paths from roots to w at time t*.
(See Fig. 5.) Let m* be the son of m on path P* at time t*. (Note that the left outgoing edge
of m is the only edge that was changed in the entire interval [t*,t]. Thus m* must be the left
son of m at time t* because otherwise path P¥ would be an unmarked path at time t, which
contradicts to the hypothesis of case 2.) Consider the path from m* to w on path P* at time
t*, and call it the "m*-w path". Note that the m*-w path was not affected by the change of
the left pointer of m at time tLP and remains unchanged throughout the time interval [t‘,t].
Also note that the m*-w path at time t is unmarked. Hence by Lemma 2 we have the following
result:

If there is & black node on the m*=w path at time t, then some node on the m¥-w peth is in the
deque at time t.

Thus if m* is black at time t, then our proof is compiete. In the following we assume that m*
is nonblack throughout the time interval [ty4t] Note that m was black at time tge and hence
at time t*. By Lemma 2, at least one of the two nodes m and m® is in the deque at time t¥.

a) m* was in the deque at time t*. Then m* is in the deque at time t, for otherwise m*

would have been blackened by the GC before it was removed from the deque.

b) m was in the deque at time t* but m* was not. Let tLP‘ be the time instant when edge
(m,m*) was created. Then from the proof of Lemma 2, it is easy to see that we must have
the case t p* < t\; Hence the GC found m.left to be m* at time tge: This implies that m*
was blackened by the GC at some time in (tGo.t) before m was removed from the deque.
This is a contradiction.

We have shown that statement (i) of Theorem 2 holds for the (i+1)st garbage collection cycle. This
together with the fact that statement (ii) holds through the end of the marking phase of the (i+1)st
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cycle imply that only garbage nodes have been appended to the free list through the end of the
(i+1)st cycle. Therefore, through the end of the (i+1)st cycle, free nodes can be accessed only by
the procedures APPEND and CREATE and, consequently, by assumption A3 statement (il) holds. The
proof of Theorem 2 by induction is complete.
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7. The Proof of the Main Theorem for the Parallel System

In this section, the auxiliary system introduced in the preceding section is transformed to the
parallel system proposed in Section 3. We will examine how the transformation will affect the
proofs and results in the preceding section. The transformation is done in two stages.

7.1 Transformation 1

This transformation replaces the "shade n" operation in LPp by the simpler indivisible operation
"gray n".

After this transformation, Lemma 2 is no longer valid, as the following counter-example shows:
Assume that (m,n) is an edge such that m is a black node at the GC-end of the deque and n is white.
Consider the while loop of GC2 in which m is removed from the deque. Suppose that after the GC
finds the color of n to be white and before the GC inserts n into the deque, the LP performs an
operation LPy to make some node (¥ m) point to n and also finds node n to be white, and then the
LP pauses for a while. Now the GC inserts node n into the deque and blackens n. Suppose that
after m and n are both removed from the deque by the GC, the LP resumes its previous operation
LPp and grays n. We have an unmarked edge (m,n) with m black and n gray, and neither of them is
in the deque!

However, the results in the preceding section are still valid with respect to the following
interpretation. We say that a node is once-black at time t during a marking phase if it is black at
some time in the interval [ty,t], where t), is the starting time of the marking phase. Then one can
see that the lemmas, Thecrem 2 and their proofs are still correct if we substitute all the
occurrences of the word "black™ by “once-black™ and “"nonblack” by "non-once-black™. (The
substitution should be done only in the statements and proofs of the lemmas and Theorem 2. The
substitution does not affect the parallel system and is used only for proof purposes.) Therefore,
Theorem 2 still holds for the auxiliary system after Transformation 1.

7.2 Transformation 2

The second transformation optimizes the garbage collector’s algorithm. The root insertion and
marking phases of the garbage collector’s algorithm are redefined as follows (where operations
inside square brackets are ghost operations used merely for proof purposes).

GC1. (Root insertion phase)
for i « 1 until R-1
do
[insert node i into the GC-end of the ghost-deque;]
insert node i into the GC-end of the deque
od;
[insert NEW.into the GC-end of the ghost-deque;]

GC2. (Marking phase)
MARKING « true;
s « NEW.left;
if s # A then
if s.left ¥ f and s nonblack then
[insert s into the GC-end of the ghost-deque;]
blacken s;
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insert s into the GC-end of the-deque
fi
fi;
[remove NEW from the ghost-deque;]
while the deque is not empty
do
n « the node at the aC-end of the deque;
blacken n;
remove n from the deque;
s « n.left;
if s # A and s is nonblack then
(insert s into the GC-end of the ghost-deque)
blacken s;
insert s into the GC-end of the deque
fi;
s « n.right;
if s # A and s is nonblack then
[insert s into the GC-end of the ghost-deque;]
blacken s;
insert s into the GC-end of the deque
fi;
[remove n from the ghost-deque]
od;
MARKING « false;

We also redefine the operations LPp and LPg by adding the ghost operation
[insert n into the LP-end of the ghost-deque;]

before the insertion of node n into the deque. Observe that the updates of the ghost-deque in the
transformed system occur in the same positions as those of the deque in the auxiliary system.
Hence our proofs in Section 6 apply to the ghost-deque in the transformed system. Therefore
Theorem 2 holds for the transformed system with deque replaced by ghost-deque. Observe now
that at each time when the GC checks the emptiness of the deque, the deque and the ghost-deque
contain the same set of elements. Hence statement (i) of Theorem 2 holds for the transformed
system at each time when the GC checks the emptiness of the deque.

Since after the two transformations the auxiliary system becomes the parallel system defined in
Section 3, we have shown that the Main Theorem holds for the parallel system,
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8. Concluding Remarks

The idea of performing garbage collection in parallel with list operations has been around for
some time. (Knuth[1968, exercise 2.3.5-12] credits this idea to M. Minsky.) Though it is an
appealing idea for real time list processing applications, no papers on parallel systems were
published until two years ago. Steele[1975] is probably the first one who investigated such a
system. Because of the necessity of performing semaphore-type operations so frequently, his
system is not efficient on standard, general purpose computers. Both our system and the one
proposed by Dijkstra, et al.,, called system D below, do not use any semaphore-type operations.
However, there are some essential differences between system D and our system:

(i) During a marking phase in system D, free nodes are marked by the GC; this is not required in
our system.

(ii) During a marking phase, system D may step through the whole memory, i.e. M nodes, as many
as N times, where N is the number of nodes to be marked. Our system uses a deque and the
system is so designed that the marking phase has the execution time proportional to the
number of active nodes and independent of the size of the memory. On the other hand,
because marking is dorie by repeatedly scanning the memory, system D requires smaller list
processor overheads (for example, its only overhead in the operation LPp is the "shading" of
the target node). Also, system D does not require any extra space, as required in our system
for storing the deque.

(iii) System D assumes an indivisible "shade" operation. No special indivisible operations are
assumed in our system,

It is easy to see that because of the excessive time taken by each marking phase, system D is
likely to be inefficient. We understand that Dijkstra [1976], Gries [1976] and Lamport[1976] (the
latter two papers also consider system D or similar ones) deal mainly with the correctness issue
and regard efficiency as a separate issue. But it is precisely for efficiency reason that we wanted
to consider parallel garbage collection systems in the first place. The point of this research was to
handle these two important issues at the same time.

For efficiency reasons, we propose using a deque for the marking phase. The inclusion of the
deque in our system has significantly increased the complexity of proving the correctness of the
system. (For example, step 2 of operation LPy would be an indivisible action in system D.) In spite
of this, we believe that we have given a correctness proof of our system which is still relatively
short and readable. We achieve this mainly by making the "right™ assertions for the system
through the use of so-called "ghost variables". Our "stepwise refinement" proof technique is also
crucial. We first introduce an auxiliary system and prove its correctness. The proof and results
are then transformed step by step as the auxiliary system is transformed to the parailel system for
which we want to prove the correctness. If one does not use this stepwise refinement technique
and attempts to prove directly the correctness of the final system, one would almost surely end up
with an unreadable and complicated proof. (It is unlikely that one would come up with, say,
assertions involving concepts such as "once-black" directly from the final system.) Note that we
are not proposing a methodology for the correctness proof of general parallel systems. Our main
concern was to make the proof of the particular system proposed in this paper clear and
convincing. It seems, however, that our derivation of the system, using both the correctness and
efficiency arguments (Appendix 1) and some of our correctness techniques are of interest in their
own rights and deserve further investigation.
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l Concluding Remarks

The really restrictive assumption made in Section 4 is A4 in which it is assumed that there is
always some extra space available for storing the deque. Although there are methods in sequential
systems which use reversed pointers in the nodes themselves as a stack, these methods are not
h suitable for a parallel system since in these methods the garbage collector changes pointers of
active nodes.

There are a number of possible extensions which can be made based on the system described in

this paper. Our intention here was to describe the basic ideas of the system rather than explore
several variations.

Acknowledgement

The authors wish to thank G. Baudet, P. Lehman and B. Weide for their comments on the paper.




Appendix I

The Derivation of the
Parallel Garbage Collection System

The parallel system proposed in this paper is evolved from the well known sequential garbage
collection system which uses a stack for marking nodes, assuming that extra space is available for
storing the stack. In this Appendix we show informally how both the correctness and efficiency
arguments were used to guide the derivation of the parallel system, starting from the sequential
system. For briefness in the examples below, we write "insert n" and "remove n" for "insert n into
the stack (or deque)" and "remove n from the stack (or deque)”, respectively.

In the following we first present the sequential system and then transform it into the parallel
system in four major steps, A, B, C and D. The garbage collector’s algorithm in the sequential
system blackens all active nodes by using a stack, and then appends all white nodes to the free list
and turns all black nodes into white ones. It is assumed that all the R roots are initially black and
have no sons, and that all other nodes are initially white and on the free list (see Fig. 6). Node R is
called NEW and node R+1 is called FREE.

iy
e

Fig. 6

The garbage collector’s algorithm of the sequential system is given as follows:

GC1. (Root insertion phase)
for i « 1 until R
do push node i onto the stack od;

GC2. (Marking phase)
while the stack is not empty
do
n « the node at the top of the stack;
remove n from the stack;
s « n.left;
if s # A and s is white then
blacken s;
push s onto the stack

fi;

s « n.right;

if s # A and s is white then
blacken s;
push s onto the stack

od;
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GC3. (Collecting phase)
for i « R + 2 until M
do
if node i is white then
APPENIXi)
else

color node i white
fi
od
The procedure APPEND(n) is defined as:

[FREE.right]right « n;
FREE.right € n

The list processor's operations which change pointer fields of nodes are given as follows:
Operation LP4: Add a left (or right) outgoing edge from an active node m to an active node n.
set the left (or right) pointer of m to n.
Operation LP,: Delete a left (or right) outgoing edge from an active node m.
set the left (or right) pointer of-m to A.
Operation LP: Make a free node active and pointed to by NEW.
if FREE.left = FREE.right then
perform garbage collection {i;
NEW.left « FREE.left;
FREE.left « [FREE.left]right

A. The sequential system must be modified.

Suppose that the sequential system is not modified. Consider Example 1.

ac e

1. remove m

2. read m.left

3. read m.right

4, create(m,n)

5. delete all edges to n but (m,n)

Example 1

Assume that the following initial conditions hold before step 1: m is a black active node on the
stack and has no sons; n is a white active node not on the stack. Then after step 5 is executed, n
is a white active node and will not be blackened by the GC before the next collecting phase starts
since m, the only immediate predecessor of n, is black and not on the stack. The system is
therefore incorrect.
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Example 1 suggests that n should be pushed onto the stack by the LP before step 5. To avoid
access conflicts, we use a deque instead of a stack, so that the GC can access one end of the deque
and the LP the other end. An example similar to Example 1 was first given by Dijkstra[1976] for
illustrating that "no overhead for the LP" is unattainable in a parallel system.

B. The operation LP4 must be modified.

Suppose that before an edge is deleted the LP always inserts the target node into the deque if it
is white. Then the correctness problem illustrated by Example 1 seems to be solved. But with this
solution, every garbage node will be blackened and inserted into the deque. This is clearly
undesirable from the efficiency point of view. A better solution is that when an edge is created
the LP always inserts the target node into the deque if it is white. That is, the operation LPa
should be modified. In the following, we assume that the edge created during the operation LPp is
(m,n) and n is white.

B.1 The LP should insert n into the deque after (m,n) is created.

Suppose that n is inserted into the deque before (m,n) is created. Consider Example 2.

GC P
1. insert n
2. remove n
Cycle |
3. remove m
4. read m.left
5. read m.right
Cycle i+l
6. create(m,n)
7 delete all edges to n but (m,n)
Example 2

We see that the insertion at step 1 is cancelled by the removal at step 2. Consequently, the
same correctness problem illustrated in Example 1 occurs in cycle i+l. This shows that the system
is incorrect.

B.2 The LP should color n.
Suppose that the LP does not color (or mark) n. Consider Example 3.

LP
create (mq,n)
insert n
create(mop,n)
insert n

Example 3
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This example shows that the same node n can be inserted into the deque arbitrary number of
times. Consequently, the deque is unbounded and hence the marking phase time is also unbounded.
The solution to this problem is to color n when it is inserted into the deque so that the LP will
know that n need not be inserted again by first testing the color of n.

| B.3 The LP should color n before n is insarted into the deque.

Suppose that the LP colors n after n is inserted into the deque. Consider Example 4.

GC LP
1. create(r,n)
2. insert n
Cycle i
3. remove n
r‘ e
4. remove m
5. read m.left
6. read m.right
Cycle i+1 <
7. color n
8. create (m,n)
L 9. delete all edges to n but (m,n)
Example 4

Notice that after step 8 the LP does not insert n into the deque since n has already been colored
by the LP at step 7 (cf. B.2). By the argument used in Example 1, any white active node which is
reachable from a root only via n at that time will not be blackened by the GC during cycle i+l.
This shows that the system is incorrect.

B.4 The LP should color n gray (or any color different from white or black),

Suppose that the LP colors n black. Consider the case in which at the very beginning of a
marking phase, n is not in the deque, and the LP blackens n and then stops for the rest of the
phase. Then those white active nodes which are reachable from roots only via node n will not be
blackened by the GC during the marking phase since n is black at the beginning of the phase. The
system is therefore incorrect.

B.5 The LP should color n gray and insert n into the deque only during a marking phase.

Note that the collecting phase time is proportional to M. Hence if the LP inserts nodes during a
collecting phase then the number of nodes inserted to the deque will be proportional to M and,
consequently, so will the marking phase time. This violates our requirement that the marking phase
time be O(A). It can also be observed that as a matter of fact there is no need for the LP to gray n
or insert n during the root insertion and collecting phases for solving the correctness problems
illustrated by all the previous examples.

C. Free list and operations on it should be modified.
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C.1 The color of a free node should be off-white (or any color different from white, gray or black).

A newly created node must be nonwhite, for otherwise it can be regarded as a garbage node
and appended to the free list incorrectly by the GC. Let n be such a newly created node. Suppose
that n is gray. Note first that during a collecting phase nodes should not be inserted into the
deque (cf. B.S). Consider Example 5, which uses the same principle as Example 4.

GC LP
1. APPENDXn)
Cycle i <
2. create n
3. create (n,s)
4, whiten s
s
5. remove m
6. read m.left
7. read m.right
Cycle i+l :
8. create (m,n)
9 delete all edges to n but (m,n)

Example 5

After step 8 n is not inserted into the deque by the LP for n has been gray since step 2. We
see that the white active node s will not be blackened in cycle i+1. This shows that the system is
incorrect. Similarly, one can see that n cannot be black.

It turns out that the best way to ensure that a newly created node is off-white is by letting all
the free nodes be always off-white. This can be achieved by assuming that the procedure
APPEND(n) off-whitens n and the procedure CREATE does not change the color of the node being
created. In the operation LPp an off-white node is treated in the same way as a white node.

C.2 Nodes on the free list should be readily identifiable to the GC.

During a collecting phase the GC should turn an off-white node into a white node. If the GC
does not do so, then a released off-white node which does not happen to have an ancestor in the
deque will never be appended to the free list. But the GC does not want to whiten nodes on the
free list, which are supposed to be always off-white (cf. C.1). Hence, it is necessary to put a value
"t on the left pointer field of nodes on the free list so that they are identifiable to the GC. (Note
that left pointer fields of nodes on the free list are originally not used anyway.) The procedures
APPEND and CREATE should, of course, be modified accordingly for inserting and deleting f.

D. The garbage collector’s algorithm must be modified. .
Modifications to the collecting phase algorithm are essentially discussed in C.2. Appropriate
modifications should also be done to the marking phase algorithm. Since the left son of NEW can
temporarily lead to the free list during the middle of the execution of CREATE, caution must be
taken to avoid the possibility that nodes on the free list are blackened by the GC. Hence the left
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son of NEW should be treated as a special case during the marking phase. Furthermore, minor
changes on the marking phase algorithm can be made to improve the performance of the whole

parallel system. This has been addressed in remark 3 of Section 3.3.

We see that after all the modifications indicated above have been made the sequential system
has been transformed into the parallel system described in this paper.
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Appendix II
The Performance of the Parallel System

In Appendix II, we briefly summarize part of the results in Kung and Song[1977], where the
performance of the parallel system proposed in the present paper is analyzed. The analytic model
we use takes account of the overheads introduced to the LP and the GC for the parallel system.
We believe that the results derived from the model can be used successtully to predict the actual
performance of the system.
Notation

M = Memory size.

A = Number of active nodes.

<L =M/A

r = rate nodes are released (that is, become garbage) in the sequential system, when the LP is
running.

u = rate nodes are used (that is, removed from the free list) in the sequential system, when the
LP is running,

a = rate operations LPy which may have a white target node are perfarmed.

A =a/u.

m = rate nodes are marked by the GC during the marking phase in the sequential system.

s = rate nodes are scanned during the collecting phase, if no nodes are appended to tha free list.

r’ = rate nodes are released during the marking phase of the parallel system.

u’ = rate nodes are used during the marking phase of the parallel system.

m’ = rate nodes are marked by the GC during the marking phase of the parallel system.
Anqmptions

1. The system (sequential or parallel) is in equilibrium, that is, the number of active nodes A is
constant.

2. B and the release and use rates are constant. Thus from assumption 1 we must have r=u and
r’=u’, We will use r or r* for both use and release rates.

3. Quantities A, m/r, s/m and 8 are known,
4. When the LP makes a node point to some other node, it is equally likely that any active node

can be the target node.
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5. Active nodes are released by the LP and become garbage at random. Thus the probability that
an active node is released is independent of its color.

6. The GC marks all nodes which are active at the beginning of a marking phase. Clearly with this
assumption we overestimate the marking phase time, the number of “floating nodes" (see
Wadler[1976]), etc. in our analysis. Our results thus are likely to give lower bounds on the actual
performance of the system.

7. We ignore the cost of minor operations such as coloring a node or testing its color; but we do
include in the analysis the cost of any deque or free list access.

8. Two physical processors are always available for the parailel system, one for the LP and the
other for the GC.

Results

We first consider the sequential system. Suppose that during the entire computation of a list
processing program, a total amount of N nodes are to be removed from the free list. Before the LP
starts M - A = A («¢-1) nodes are available. The LP runs until it uses up all the available nodes and
then the garbage collector takes over. Lst the length of the time period when the LP runs be T

and let the length of the garbage collection time be T If Ty is the total time taken by the
computation, then

Tn = (NAFTD ) (TU+Tg).
Therefore the average time to use a node in the sequential system is
(TN/N)SEQ - l/l’ (1 + TG/TL).

Clearly, we are interested in minimizing Tn/No It can be minimized by increasing «, that is, by
increasing M and thus TL. Note that there is a trade-off between time and space.

-~

We now consider the parallel system. Qur goai is to derive formulas for computing the foiiowing
quantities:

QL. The minimum « such that the LP will not run out of space if M is chosen to be «A.
Q2. The average time to use a node in the parallel system, (TN/N)par'
The following useful result is first proved:
m'/e' = m/r,
by which we are able to compute m’ and r' in terms of m, r and 8. (Note that for the parallel
system in general r' < r due to the overheads introduced to the LP and m’ < m because a node may
be inseried into the deque more than once.) The following result is obtained:

Theorem A:

If o«=M/A 2 (@m/r+3-r/m)/(2m/r -1 - 2m/s)
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then the LP never runs out of space.

Values of o for which the LP will not run out of space when M is chosen to be «A are plotted in
Fig. 7.

o<

16
as/m=10

144

tig. 7. The minimum o such that the
1.2 LP will not run out of space if M is
chosen to be «A.

1'0 1] Ll T 5 L] L) L) L3 L 4
2 4 6 8 10 12 14 16 18 20
m/r

After M is so chosen that the LP will not run out of space, we are still interested in knowing
whether or not the parallel system actually executes the program faster than the sequential
system, and if so, how much faster. (It is nontrivial to answer these questions, since for the
parallel system overheads have been introduced to the LP and thus the LP has been slowed down.)
For this purpose, we have to know the average time to use a node. It is obvious that in any
sequential or parallel system, the average time to use a node is 2 (TN/N)opt = 1/r. A closed
formula for computing (TN/N)par in terms of m/r, s/m, 8 and « has been obtained. In Fig. 8, we
compare the values of TN/N in the sequential and parallel systems to the optimal value of 1/r,
assuming that r=1 and that the value of « is given by Fig. 7. Fig. 8 shows that the "non-stop™ LP
in the parallel system executes the program considerably faster than the LP in the sequential
system,

1.8+

Tn/N o sequential system, s/m=10

+ parallel system, s/m=10, B=6

164 M x parallel system, s/m=10, =4
o parallel system, s/m=10, 8=2

& optimal time

144

Fig. 8 The average time to use a
e 4 oy node, assuming that r=1 and that the

value of o is given by fig. /7.

‘8 = T W T T 3 T T

2 4 6 8 10 12 14 16 18 2
m/r
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Speed-up
15- MQ_H

14] WM

o s/m=10, optimal speed-up
+ s/m=10Q, A=2
x s/m=10, B=4
0 s/m=10, B=6

Fig. 9. Comparing the speed-up of

12] the parallel system with the optimal
speed-up, assuming that r=1 and
that the value of « is given by fig.

Lo T T W T i Li il i g Y 7.
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m/r

A useful measure for studying the performance of a parallel system is its speed-up, which is
defined as

Speed-up = (TN/N)seq / (TN/N)par.

Clearly, speed-up is always s 2, since two processes are used in the parallel system. Another
more useful upper bound can be derived as follows. Since (TN/N)par 2 1/r,

Spesd-up £ 1+ Tg/T_

for any parallel system. Corresponding to Fig. 8, the speed-up of the parallel system is compared
to the optimal speed-up 1 + Tg/T| in Fig. 9. We see that the parallel system performs nearly
optimally for large m/r.

The analytic results sketched above are mainly obtained by solving differential equations
describing various transitions in the parallel system. It is assumed implicitly that all the solutions
are differentiable. It is also assumed that the system is in the perfect equilibrium state, i.e., A, &, r
and u are all constant in time. These restrictions might lead one to question the validity of the
model. Because of this consideration, we have tested the model by simulation in which the time
intervals between consecutive removals from the free list and consecutive releasing of active nodes
are exponentially distributed independent random variables with the same mean. The simulation
results are found to be nearly the same as the results obtained from the analytic model.
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THE AUX]LIARY SYSTEM
(With ghost operations indicaled between sgquare brackels.)

THE PARALLEL SYSTEM
THE PARALLEL SYSTEM T

ARBA TOR'S ALGOR]

CTOR'S ALGORITHM

GC1. (Root insertion phase)
for i « 1 uniif R-1
do insert node i info the GC-end of the deque od;

GC2. (Marking phase)
MARKING « true;

8 « NEW.left;
ifsd A then
if sleft ¢ f and s norblack then
blacken s;
insert 8 info the GC-end of the deque
ti
fi;
while the doque is not empty
do
n « the node at the GC-end of the deque;
blacken n;
remove n from the deque;
8 « nlef;
if s 4 A and s is nonblack then
blacken s;
insert s info the GC-end of the deque
fi;
8 « nright;
if 84 A and a is norblack then
blacken s;
insert 8 into the GC-end of the deque
fi;
od;

MARKING « false;

GC3. (Colwcting phase)
for i « Re2 until M

if node i is while
then APPENO()
else
it Ut 4 § then color node i whils fi

od

LIST PROCESSOR'S OPERATIONS

Operation LP,: Add a left (or right) outgoing edge from
an aclive n m to an active node n

1. set the lett (or right) pointer of m to n;
2. if MARKING and n is whils or off-while then
gray n;
_insert n into the LP-end of the deque
ti
Operation LP 4 : Delete a left (or right) outgoing edge from
an active n m

set the left (or right) poinler of m to A.
Opsration LP: Make » free node active and pointed to by NEW.

1. CREATE;
2. n « NEW.ofl;
if MARKING {hen
blacken n;
insert n into {he LP-end of the deque

The procedure CREATE is defined as follows:

white FREE left « FREE right
do nothing od;

NEW left « FREE lofl;

FREE Joft « (FREE laft]right;

[NEW loft)right « A;

NEW left]left « A

GCl. (Root insertion phase)
for i « 1 yniil R-1
do inp2rt node i into the GC-end of the deque od;
insert NEW into the GC-end of the deque;
GC2. (Marking phass)
MARKING « {rus;
8 « NEW left;
i s ¢ A then
if sleft 4 f and » nonblack then
insert » into the GC-end of the deque;
blacken »
i
fi;
remove NEW from the deque; -
while the deque is not empty

deo
n « the node st the GC-end of the deque;
blacken n;
s + nleft;
if s 4 A and s is norblack then
inseri 8 into the GC-end of the doque;
blacken 8
ti;
8 « nright;
if 84 A and s is nonblack then
insert ¢ inta the GC-end of the doque;
blacken 8
£i;
remove n from the deque
od;
MARKING « falpe;
GC3. (Collecting phase)
for i « Re2 until M

if node i is while

then APPEND(i)
tive

if iLleft # f then color node i white fi
ti

od

LIST PROCESSOR'S OPERATIONS

Operation LP,: Add s left (or right) oulgoing edge from
an active nmﬂ m to an active node n

1. set the left (or right) pointer of m to n;
G1. [mark the edge (mn) created at step 1;]
2. if MARKING and n is while or off-white {hen
shade n;
insert n into the LP-end of the deque
[
G2. [unmark the edge (mn) marked st step G1)

Operation LP,: Deleis a left (or right) outgoing edge from
an active n m

set the left (or right) poinfer of m to A.

Operation LPC: Make a free node sclive and pointed to by NEW.
(Steps | through 5 constitute the procedure CREATE)

1. while FREEleft « FREE.right
do nothing od;
2. NEW.eft « FREEJoft;
G1. [mark the lett outgoing edge from NEW;]
3. FREEleft « [FREE loft]right;
4. [NEW)eft])right « A;
5. [NEW left]ieft « A;
6. n « NEW left;
if MARKING {hen
blacken n;
insert n into the LP-end of the deque
fi;
G2. [unmark the edge marked st slep G1)
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