
A0 A046 626 CARNCGIE’MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER —ETC F~ G 9~2
AN EFFICIENT PARALLEL GARBAGE C04.LECTION SYSTEM AND ITS COØRECT—ETC(U)
SEP 77 H T sCUM. S W SONG N00014—76—C—0370

UNCLASSIFIED P1.
J~~ I
AD~O4~ €Z(

a

END
DATE

DIUED

12-77
00

I

I’O 2 8
2 5

—— 3 15 ~2 2

:: j~
2.O

•
~1llI125

~~~~
NATIONAL BUREAU OF STANDARDS
IrncROCOPY R(SOLU ION T E ST CHART



AN EFFICIENT PARALLEL QARØAGE cOLLECTION SYSTEM
AND rrs CORRECTNESS PROOF

H. 1. Kung and S. W. Song

DEP ARTME NT
of
COMPUTER SCIENCE

D D C

~~ Carnegie-Mellon _Universit y



—~~~

(‘v) ..
~

~.—--‘7 AN EFFICIENT PARALLEL GARBAGE COLLECTION SYST~~~~ \/ ~ AND ITS CORRECTNESS PROOF~

‘

~~~~~~ ~ ~~~~~~ ±I
~~~~ ~±~
: ~:

Department of Computer Science
Carnegie-Mellon University

Pitt sburgh , Pa. 15213

(/ ~ 
;~~~~/

/ 

I

/ N~
This research Is supported In part by the National Science Foundation under Grant MCS 75—222-55 and
th. Office of Naval Research under Contract N000l4-76-C-037O~ NR 044-42 2. Th. second author is
supported in part by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo under Grant 76/ 517 and
th. Institut, of Mathematics and Statistics of th. University of Sao Paulo , Brazil.

D D C
U NOV 22 ~91T

~~ / U ~ L~J
[DI~~~~~F I~ N~S~1 ~:~~~~~~A L)

Approved fc~ pU~~k~~ r :~ —

~ Dtatribut:~ 
T)~~~~ ’~~ /



~~~~~___.

Abstract

An efficient system to perform garbage collection in para~lei with list operations is proposed andits correctness is proven.

The system consists of two independent processes sharing a common memory. One process isperformed by the list process or (LP) for list processing and the other by the garbage collector (GC)for marking active nodes and collecting garbage nodes. The system is derived by using
~ ih thecorrectness and effic iency arguments. Assuming that memory references are Indivisible the systemsa tisfies the following properties:

- No critical sections are needed in the entire system.

— The time to perform the marking phase by the GC is independent of the size of memory, butdepends Only on the number of active nodes.

- Nodes on the free list need not be marked during the marking phase by the GC.
- Minimum overheads are introduced to the LP.

- Only two extra bits for encoding four colors are needed for each node.

Efficiency results show that the parallel system is usually signif icantly more efficien t in terms ofstorage and time than the sequential stack algorithm. ,

IS

tsv
~~~~~~~~ 

•
~~

- ;
~ ~~



1. Introduction

In this paper we propose an eff icient system to perform garbage collection in parallel with list
operations, and prove the correctness of the system.

The system consists of two Independent processes sharing a common memory. One process Is
perf ormed by the list processor (LP) for list processing and the other by the garbage collector (GC)
for marking active nodes and collecting garbage nodes. The system is det ived by using 

~~~ 
the

correctness and efficiency arguments (see A ppendix I). Assuming that memory references are
indivisible (see Section 4.1), the system sat isfies the following properties:

P1. No critical sections are needed in the entire system.

P2. The time to perform the marking phase by the GC is independent of the size of memory, but
depends only on the number of active nodes.

P3. Nodes on the free list need not be marked during the marking phase by the GC.

P4. Minimum overheads are introduced to the LP.

P5. Only two extra bits for encoding four colors are needed for each node.

Properties P1, P2, P3 and P4 are important to the performance of the system. But none of the
previous systems satisfy all the four proper ties. (The system of Steele(1975) does not satisfy P1
and the system proposed by Dijk stra(1976) does not satisfy P2 and P3.)

We have analyzed the performance of the parallel garbage collection system proposed in this
paper. The results show that the parallel system is usually significantly more efficient in terms of
storage and time than the sequential stack algorithm (see Appendix II). The complete performance
results are reported in another paper (Kung and Song(1977)). In this paper we shall be mainly
concerned with the correc tness of the system. We must be sure that a system is correct before
studying its performance.

The correctness proof In this paper Is not intended to be formal or completely rigorous. Given
the complexity of the system, we feel that it is more important to have a proof which is readable
and convincing.

______ - - - -
Introduction

We give a summary of this paper. In Secti on 2, we define the data structure shared by the LP
and the GC. In Section 3, the garbage collector ’s algorithm and the list processor ’s operations of
the parallel system are defined. Basic assumptions and correctness criteria are given in Section 4.
The main theorem for proving the correctness of the system is also stated there. In Section 5, an
upper bound on the execution time of a marking phase is derived. Section 6 contains the proof of
the main theorem for an auxiliary parallel system. In Section 7, by transforming th& proof and
results for the auxiliary system we establish the main theorem for the parallel system defined in
Section 3. Some concluding remarks appear in Section 8. In Appendix I, we show how the parallel
sys tem is derived, by using correc tness and efficiency arguments. A summary of results on the
perf ormance o-~ the parallel system is given in Appendix IL

For the reader ’s convenience, a page describ ing both the parallel system and the auxiliary
system is attached at the end of the paper. The reader is advised to cut of f the page from the
paper so that he (or she) can refer to the definitions of the systems easily while reading the paper.

2

_ _

2. The Data Structure

The data structure shared by the two processes consists of a directed graph and an output—
restricted deque.

2.1 The Directed Graph

Let the nodes of the graph be labeled by integers Ir..,M, and the node labeled by n be in
memory location n for all n— 1~..,M. Node n (or simply n) is used to refer to either the node labeled
by n or the pointer to it depending upon the context. For the purpose of this paper, we assume
that each node contains three fields: a left pointer field, a right pointer field and a color field. A
pointer field contains the pointer to a node, w hich is one of the integers 1,...,M, or the null pointer
NA ”; but a left pointer field may sometimes contain a special value “f which is not A or any of the
integers lr..,M. The color field contains one of the following four colors: white, off—whi te, gray and
black.

The pointer con•ained in the left or right pointer field of node n is called the L~1j
or

~
jg

~
j pointer

~j ~~. and is denoted by n.left or n.right, respect ively. The color contained in the color field of node
n is called the ç~Q]~~ of a and is denoted by n.color.

The topology of the graph is determined by the pointers of the nodes in the graph. Let m and n
be any two nodes. If m.left (or m.right) — n, we say that there exists a ~~

(or
~
jg

~
j) out~oin~ ç~g~

rn to ~, and n is the left (or ~g~~
) son ~ ~ An existing edge from m to ri is often denoted by

(m,n), if there is no need to indicate exp licitly whether it is a lef t or right outgoing edge from m to
n. In this case , we may als o simply say that a j~

pointed
~ ~ If m.left (or rn.right) A, then

we say that there does riot exist a left (or right) outgoing edge from m to any node and m does not
have a left (or right) son.

The graph is changed as the pointers of its nodes are altered by the processes. We assume that
the left (or right) outgoing edge from m to n is created at the instant of completion of writing n on
the left (Or right) pointer field of m. Hence at any moment an edge either exists or does not exist ,
though writing on a pointer field takes a finite amount of time.

The first P nodes, 1,..., R, are called roots. Node R+1 is called FREE. FREEJeft is the pointer to
the first node of a list, called the free ~

j
~
j (cf. Fig. 1), which is a sequence of nodes, n1, n2,..., n~,

satisfy ing the following properties:

FREE
I I !

I f I —1--~ f I ~~~~~ —‘1Ji~~-~lf IA 1
n1 n2 ~k-1 ~k

Fig. 1

Fl. FREE.left — n1, nk.right — A.

F2. for 1 � I <k , n~.right —

F3. for 1 s i ~ Ic, n~.lef t — f arid n1.color — off-white.

3

Data Structure

F4. FREE.right is the pointer to the last node or the node before the last node of the free list.
(The latter case occurs temporaril y each time when a node has just been appended to the free list ,
but FREE.right yet remains to be updated.)

Based on the graph, we give the following definitions:

Definitions

Node n is said to be reachable from node m, if rn—n or if there exists a path on the directed
graph from m to ri. (In this paper , a path always refers to a directed path with distinct nodes.)

A node is said to be f.~~. if it is reachable from FREE.

A node is said to be active if it is reachable from a root.

A node is said to be a garbage node If it is neither active nor free.

The root node R is also called NEW. In the parallel system to be described in Section 3, the first
node of the free list can be made into an active node by having it pointed to by the left outgoing
edge of NEW.

2.2 An Output-Restricted Deque

Both the GC and the LP use an output-restricted deque which is implemented outside the
memory space containing the directed graph. The deque contains pointers to nodes in the directed
graph. The GC inserts and removes pointers to nodes from one end of the deque, called the GC-
end of the deque, and the LP only inserts pointers to nodes at the other end, called the LP-end of
the deque.

Before removing a pointer from the deque, t he GC tests the emptiness of the deque. If the
deque is empty and the LP is inserting a pointer into the deque but has not concluded the insertion,
then the test resul t for er’iptiness will be true. The pointer will be removed from the deque only if
the GC finds that the deque is nonempty.

4

—— - —-— =-~~~~~~~~ ~~ - -~~~ .~

3. The Parallel Garbage Collection System

In this section we give a parallel garbage collection system, which consists O~ two concurrent
processes sharing the data structure defined in Section 2. One process is executed by the LP and
the other One by the GC. The reader is recommended to read Appendix I for a better
understanding of the parallel system.

We shall assume that the following initial conditions hold before any of the two processes starts:

Ii. All the roots are black and have no son;.

12. The color of FREE is off-wh ite.

13. Nodes on the free list are nodes R+2, R+3, ..., M.

14. The free list satisfies properties Fl, ..., P4 of Section 2.1 with FREE.right being the pointer to
the last node of the ‘ree list.

Note that 13 and 14 imply that at the beginning of the computation, free nodes consist of nodes
on the free list and the node FRE.E.

3.1 Garbage Collector ’s Algorithm

The GC executes repeatedly the following cycle, which is composed of three phases, the root
insertion phase, the marking phase, -and the collecting phase. In the algorithm, MARKING is a
Boolean variable initialized to false. We say that a marking phase starts at the time when MARKING
is set to ~~~ and ends at the time when MARKING is set to

~~~~~~~~~

CCI. (Root insertion phase)
for ~ 1 until P-i

do inser t node i into the GC-end of the deque Q~
GC2. (Marking phase)
MA RKING 4-
S 4- NEW.left;

~j .  
s ,~ A then
if s.left ~ f and s nonblack then

blacken s;
inser t $ into the GC-end of the deque

fi
Lb
while the deque is not empty

n 4- the node at the CC-end of the deque;
blacken n;
remove n fr om the deque;
a 4- n.left;
!i S ~ A ~~~ s Is nonblack then

blacken s;
inser t s into the OC-end of the deque

Lb

5

_ _ _ _ _ _ _ _ _ _  



~~~~~~~~~~~~~~~~
---- --

-~ -

Parallel Sys tem

s 4- n.right;
if $,~ A and s is nonblack then

blacken s;
insert s into the GC-end of the deque

Lb

MARKING

GC3. (Collecting phase)
for I ~- R+2 until M

do
if node i is white

th~.a APPEND(i)
else

if i.lef t ,‘ f then color node i white fj .
f i

od

The procedure APPEND(n) is defined as follows:

n.color ~- off—white;
n.left -~ f;
ri.right ~ A;
(FREE.right].right 4- n;
FREE.right 4- n

3.2 List Processor ’s Operations

The LP may perform operations only on active nodes and may perform the operation LPC defined
below.

The LP can perform many kinds of operations, such as traversing a certain list structure throughits pointers , tes ting if the left or right pointer of a node is A , etc. But for the purpose of thispaper it suffices to consider only those Operations which change the data struc ture. The processexecuted by the LP is controlled by any program irs w hich operations of the latter kind are definedas follows:

Operation LPA: Add a left (or right) outgoing edge from an active node m to an active node n.

1. set the left (or right) pointer of m to n;
2. LL MARKING ~~~ n is white or off-white then

gray n;
insert rs into the LP-end of the deque

fi

Operation LPA : Delete a left (or right) outgoing edge from an active node m.

set the left (or right) pointer of m to A.

Operation LP
~: Make a free node active and pointed to by NEW.

—

Parallel System

1. CREATE;
2. n 4- NEW.left ;

if MARKING then
bla ckan n;
inser t n into the LP-end of the deque

The procedure CREATE is defined as follows:

while FREEJeit — FREE.right
do nothing ~~

NEW.Ieft 4- FREEJeft;
FREEJett ~- jFREEiett).r~ght;
[NEW.left].right ~~ A;
[NEWJeft]Jeft 4- A

To simplify the correctness proof , we assume that the right pointer field of NEW always contains
A, and the left pointer field of NEW can be altered only through an operation LPc or LPA. (Note
that this assumption is not a restriction for a list processing system,)

3.3 Remarks on the Parallel System

1. The parallel system is evolved from the well known sequential garbage collection system which
uses a stack for marking nodes. In Appendix I of this paper, we show how both the correctness
and efficiency arguments were used to guide the derivation of the parallel system, starting from
the sequential system. In particular , we will show why it is necessary to color nodes with four
colors, and argue that the proposed system is essentially the only parallel system which satisfies all
the five proper ties stated in Section 1 of this paper. It is instructive to note that the ordering of
the operations appearing in the parallel system is in general crucial to the correctness and
efficiency of the system. For examp le, if the ordering of step 1 and step 2 in LPA, or the graying
and insertion operations in step 2 of LPA, is interchanged, then examples can be found to show that
the resulting system will be incorrect.

2. In the sequential system, the stack is accessed only by the GC. In the parallel system, a deque
is used instead of the stack to avoid possible access conflicts of the stack, since both the GC and
the LP may manipulate it at the same time.

~~~. Step 2 of operation LPc is included only for efficiency reasons , w hich we explain as follows. It
is usually the case that after performing an operation LP

~
, the LP will perform an operation LPA to

make some node point to the newly created node. Thus, during the marking phase, it is better to
blacken the newly created node (and insert it into the deque) once for all, so that there is little
chance that the node will be colored and inserted into the deque by ~~~ the LP and the GC. For
similar efficiency reasons, in GC2 node s is blackened before it is inserted into the deque; this
blackening would not be necessary if only the correctness of the system were concerned.

. 7



4. The Correctness of the Parallel Garbage Collection System

4.1 Assumptions

A l. The LP and the CC can read and write on individual ‘ields of a node, end the following
operations are indivisible:

“Read or write a field of a node” by the LP or the GC.

“Gray or blacken a node” by the LP.

“Blacken, whiten or off-whiten a node ” by the CC,

A2. The initial conditions 11, 12, 13 and 14 stated in Section 3 are satisfied at the beginning ofthe computation.

A3. (“The procedures ~perated on the free lis t are correc t:”) If the free list , i.e., the list pointedto by the left outgoing edge of FREE, is updated 2~~ by the procedures APPEND and CREATE, thenthe properties Fl, P2, F3 and F4 of Section 2.1 are preserved all the time. (We choose to assumeA3 rather than to prove it , for it is similar to the traditional producer/consumer problem.)

A4. (“The deque will not overflow and operations on it are correct:”) There is always someextra space available for storing the deque and the GC does not find the deque empty until all thenodes which were inser ted into the deque have been removed from it. (An upper bound on thenumber of elements the deque may have is derived in Section 5.)

4.2 Definition of Correctness

We say that the parallel garbage collection system is correct , if the following conditions are allsatisfied:

Cl. Only garbage nodes are appended to the free list by the CC.

= C2. The CC never changes pointers of active nodes.

C3. A garbage node will always be appended to the free list within a certain time, whic h can beestimated a priori.

Conditions Cl and C2 guarantee that the GC does not interfere with the LP operations. Condition
C3 ensures that the CC indeed collects garbage elfect ively.

By Cl and the fact that no active nodes are on the free list at the beginning of the computation,we see that the free list can be modified only by the procedures APPEND and CREATE. Hence byassumption A3, we know that the free list Is manipulated “correct ly”, i.e., the free list always
satisfies all the properties Fl to P4. -

4,3 The Correc tness Proof and Statement of the Main Theorem

In Sections 6 and 7, we shall prove the following theorem:

8



Correctness

Main Theorem:

For the parallel system defined in Section 3, the following properties hold:

(I) During a marking phase at each time when the CC check; the emptiness of the deque, every
whit. active node is reachabl. from some nod. in the d.qu..

(ii) A fre. node is always ott-white.

Hence during a marking phase, If the CC finds the deque to be empty, then by (I) there Is no white
active node. This implies that when a collecting phase starts all white nodes are not active and by
(ii) they are garbage. Note that the LP never colors a node white and, during a collecting phase,
the GC examines each node only once. Hence we have shown that the system satisfies condition
Cl.

Because the algorithm satisfies condition Cl, it also satisfies condition C2, since the CC only
changes pointers of free nodes or garbage nodes (through procedure APPEND).

It is not difficult to see that a garbage node cars always be appended to the free list within time
2T, where T is an upper bound on the time taken by one garbage collection cycle. It is clear that
the execution times of the root insertion phase and collecting phase can be estima ted a priori. In
the next secti on, we shall give an upper bound on the time taken by the marking phase of any
garbage collection cycle. These imply that the system satisfies condition ~

3.9



5. An Upper Bound on the Marking Phase Time

Consider the markIng phase of any garbage collection cycle. Let

A — number of active nodes, besides the roots , at the beg inning of the marking phase ,

1/k — time to insert a node into or remove a node from the deque,

r — rate that new active nodes are created (i.e., removed from the free list) in the sequential
system, when the LP is running,

TM — time taken by the marking ‘ hase.

With respect to a given computer , we assume that quantities A, k and r c~n be es timated from a
given lis t processing program. In the following we derive an upper bound on TM’ under the
reasonable assump tion that k > r.

During the marking phase, the GC is busy inserting nodes into and deleting nodes from the
deque, and also doing some minor operations (such as blackening a node or testing the color of a
node). Assuming that these minor operations are incorporated in the insertion and deletion
opera tions, we can write the following:

TM — Tl + T D

w here

T1 total time in the markir~ phase during which the GC is making insertions, and

T0 — total time in the marking phase during which the CC is making deletions.

Note ~~~ nodes inserted into the deque by the GC are among those nodes which are active at
the beginning of the marking phase. We have the following inequality:

� A / k .

Let 0 be the total number of nodes deleted from the deque during the marking phase. Then
- 0 / k.

Note that nodes inserted into the deque must be either free or active at the beg inning of the
~arking phase. Nodes in the firs t category, after being removed from the free list , are blackened

and inserted into the deque once for all by the LP. The number of such nodes is S rT~~ since r
certainl y is an upper bound on the rate that new active nodes are created in the parallel system
(f or w~.ic h there are overheads for the LP). Consider now those nodes which are active at the
beginning of the marking phase. Each of them, except the roo ts, can be inserted into the deque at
most three times (twice by the GC and once by the LP), since the black color of a node may be
overwritten by the gray cnlor at most once and the gray color by the black color at most once (Cf.
the counter-ex amp le given irs Section 7.1). But a root cars be inserted into the deque at most once.
Since the number of nodes deleted from the deque is no greater than that inserted into the deque,
we have therefore shown that

C s rTM + 3A + R~

L 
10 

-



Marking Phase Time

Note that the above inequality might be Inexact to a small number of nodes owIng to the fact
that no synchronization is assumed in the manipulation of the Boolean variable MARKING. (For
instance, there could be a large gap between the time when the LP finds MARKING to be true and
the time when the LP inserts the corresponding node into the deque.) Here we ignore this possible
unimportant discrepancy. Thus,

TD S (rTM +3A + R )/ k

and we have established the following theorbm:

Theorem 1: TM � (4A • R) I (K - r).

The theorem gives upper bound on Tu which is proportional to A and independent of the sire M
of the memory space. This property turns out to be extremely crucial to the perf ormance cf a
parallel garbage collec tion system, but is not satisfied by any previous system which does not use
cri tical sections. Note that the time for the CC to execute a root insertion phase or a collecting
phase is more or less a constant. Hence to minimize the time to execute eech garbage collection
cycle, it is necessary to minimize the time to execute each marking phase. This is an intuitive
explanation on why one should minimize TM.

An Bound on the Deque Size:

Let Q be the maximal number of nodes the de4ue might have during a marking phase. Clearly, Q
5 0 and thus 0 5 rTM + 3A + R. This bound can be improved as follows: Let Q

~ 
be the number of

nodes in the deque at time t. Let Lt and Ct be the number of nodes having been inserted into the
deque (except the roots) by the LP and by the CC, respectively, through time t. Let X~ be the
number of nodes having been removed fr om the deque by the CC through time t. Then

Qt — Lt + Gt + R -. X
~
.

Since each no.ie has at most two sons, for every two nodes inser ted intO t he deque by the GC
there is at leas t one node removed fr om the deque by the CC. Hence Xt � Gt/2. By the fact that
Lt ~ 

rT M + A and 
~t � 2A, we have

Qt �rT M + 2 A + R

for all t. This together with Theorem 1 implies that

(4A + R) + 2A + R

— 2 A + O ( 1).

11



6. The Proof of the Main Theorem for an Auxil iary Parallel System
In this section we introduce an auxiliary parallel garbage collection system and prove a strongerversion of the main theorem for this auxil iary system. In the next section, wit h a small effort wewill be able to prove the main theorem for the parallel system in Section 3 by transforming theproofs and the results obtained for the auxiliary system in this section. We now define theauxiliary sys tem. The garbage collector ’s algorithm is defined as follows:
CCI. (Root insertion phase)
for i ~- 1 until R-l

do inser t node i into the GC-end of the deque ~~inser t NEW into the CC-end of the deque;

GC2. (Marking phase)
MARKING 4- true
s 4- NEW.left;

s ~‘A  then
if s.left ~ f and s nonbiack then

inser t s into the CC-end of the deque;
blacken s

fi
th
remove NEW from the deque;
w hije the deque is riot empty

do
n ~- the node at the CC-end of the deque;
blacken n;
5 ~ — n.left;
i f $ 

~ A and s is nonblack then
insert s into the CC-end of the deque;
blacken s

S I— n.right;
if s ~ A and s is nonblaclç then

insert s into the CC-end of the deque;
blacken s

remove n from the deque

MARKING 
~~

-

GC3. (Collecting phase)
for i ~ R+ 2 until M

do
if node i is white

then APPEND(I)
els e

if i.left ~ f ~~~ color node I white ft
Ii

12



Proof for the Auxiliary System

The list processor operati ons used in the auxiliary system are the same as those used in the
ori gtnal parallel system in Section 3, except that the “gray n” operation in LPA is now replaced by
“shade n”. The operation “shade” makes a white or off-white node into gray and leaves a black or
gray node unchanged, and is assumed to be indivisible. (As a mat ter of fact , in the auxiliary sys tem
it turns out that the operation “shade” will never have to be performed on a gray node.) Under the
assumpti ons stated in Section 4.1, with “gray” replaced by “shade” in A l, the following theorem can
be proven:

Theorem 2:

For the auxiliary parallel system defined irs this section, the following prop.rti.s hold:

(i) During a marking phase, every whit. active nod. is always reachable from some nod. in the
dequ..

(ii) The left pointer field of a tree node (except FREE) always contains the value f , and a node whose
left point.r field contains the value f is always off-white.

We shall prove the theorem by induction on successive garbage collection cycles. Note that if (I)
and (ii) hold through the end of the marking phase of the ith garbage collection cycle then (ii) holds
through the end of the marking phase of the (i+1)s t cycle. This follows from the following
argument: Since, at the beginning, the free list contains no active nodes and since only garbage
nodes have been appended to the free list (of. the proof of Cl in Section 4.3), free nodes have
been accessed only by the procedures APPEND and CREATE and, consequently, by assumption A3
the properties in (ii) are preserved through the end of the marking phase of the (i+1)s t cycle.

Since there are no white nodes during the marking phase of the Lj~~t garbage collection cycle, (i)
holds automatically for the first cycle. This together with the fact that the free list contains no
ac tive nodes at the beginning of the computation imply that free nodes can only be acces~ed by
the procedures APPEND and CREATE during the first cycle. Hence by assumption A3 (ii) also holds
for the first cycle. In the rest of Section 6 we assume that Theorem 2 holds for the ith cycle and want
to prove that it holds for the (i .I)st cycle. As noted in last paragraph, in the proof we may use the
fac t that (ii) holds through the end of the marking phase of the (i+1)s t cycle.

6.1 Notation

In order to present our correct ness proof for the auxiliary parallel system more easil y, we
introduce some “ghost operations ” in the list processor opcrations LPA and LPc. The new
definitions of LPA and LPC are given in the following, where ghost operations are indicated
between square brackets in steps Cl and G2. Note that these ghost operations are not intended to
be part of the real algorithm, but serve merely for proof purposes. We assume that step Cl or G2
is executed at the instant of completion of step 1 or 2 of LPA, respec tively (or of step 2 or 6 of
LP

~
, respec tively), and the execu tion takes no time.

Operation IPA: Add a left (or right) outgoing edge from an active node m to an active node n.

1. set the left (or right) pointer of m to n;
Gi. (mark the edge (m,n) created at step 1;)
2. j~ MARKING ~~~ n is white or off-white then

shade n;
insert n into the LP-end of the deque

13

_ _ _



— - ------ - — ---~~~~~~~~~~~~~ - - —
~
-

~~~~~~~ : -
-

Proof for the Auxiliary System

G2. [unmark the edge (m,n) marked at step Cl)

Operation LP
~
: Make a free node active and pointed to by NEW. (Steps 1 through 5 constitute the

procedure CREATE.)

1. while FREE.left — FREE.right
do nothing ~~j

2. NEW.ieft ~- FREE.left;
Gi. (mark the left outgoing edge from NEWS]
3. FREE.left .- [FREE.left].right;
4. (NEW.left].right 4- A; -

5. [NEW.left~ left 4- A ;
6. n ‘- NEW.left;

if MARKING then
blacken n;
insert n into the LP-end of the deque

Li
G2. (unmark the edge marked at step Gl)

We say an edge is marked if it has been marked by the LP at step Gi, but step G2 which
unmarks the edge has not been executed by the LP. Hence an edge is marked if and only if i) the
operation LPA which created the edge has finished its step 1 but not step 2 or ii) the operation
LPc which created the edge has finished Its step 2 but not step 6. Since there is only one list
processor , at any time there is at mos t one marked edge. If an edge is marked at time t , it is called
the marked ~~~~ at time t.

A path is called a marked Q~j.b. if the marked edge is on the path. A path is called an unmarked
~~~~ if no edge on the path is marked.

We now assume that we are at some time t during the marking phas. of the (i.1 )st garbage
collection cycle , and that tM I; th. starting time of the marking phase. As noted earlier , statement (ii)
of Theorem 2 holds through the end of the marking phase of the (i+1)s t cycle, and hence through
time t.

6.2 Preliminary Lemmas

Lemma I:

If at time t a black node m has a son, then m was in the deque at some time in (t M,t).

Proof:

If m is a root then the lemma is obvious, since roots are all in the deque at time tM. Suppose
that m is not a root. We first show that m was white or off-white at some time during the
collecting phase of the previous cycle. During that phase trs e color of m was tested by the CC.
The test outcome was either white or nonwhite. In the latter case , if m.lef t — f then m was off-
white and on the other hand, if m.left ,‘ f then m was colored white afterwards by the CC.

Since m is black at time t, it was blackened at some time t’ after the marking phase of the

14



Proof for the Auxiliary System

previous cycle either by the GC or by the LP through an operation LPc. If ni was blackened by the
GC, then at the time when m was blackened m was in the deque (the GC only blackens a node which
is alread y in the deque). If m was blackened by an operation LPc, then since m has a son at time t
the operation LP

~ 
must have been completed and consequently, m was inser ted into the deque

before time t. Since no nodes were removed from the deque during the time intervel (t’,tM), we
conclude that m w~is in the deque at some time in [t M,t).

Lemma 2:

At t ime t , if edge (m,n) is unmarked with m black and n nonb lack , then at least one of th. two nodes
m and n is in the deque.

Proof:

Note first that n must be nonbiack throughout the interval (t~~t), since a black node remains
black during the marking phase.

Let tLp be the time instant when edge (m,n) was created, with tLp S t. (tLp is the instant of
completion of step 1 of LPA or step 2 of LPc.)

a) tLp � t f,4: Edge (m,n) has been exis ting since time tM. By Lemma 1, m was in the deque at
some time in [t~~t). Suppose that m is not in the deque at time t. If m ~ NEW, then before m
was removed from the deque, n would have been blackened. This is a contradic tion. If m —
NEW, then before NEW was remOved from the deque, the CC examined the left pointer field of
n. If it did not contain t , then n would be blackened, which is a contradiction. If it contained f,
then at the time when the GC was examining n.left , step 6 of the operation LPC which created
(m,n) had not started yet. Clearly from that time through time t, the Boolean variable
MARKING was true. Since (m,n) is unmarked at time t, the operation LPc has been comp leted
by time t, and thus n would have been blackened by the IP. This again is a contradiction.

b) tM < tLp: Since tM < t Lp S t, edge (m,n) was created during the interval(t M,t). Suppose that
the operati on which created (m,n) was an operation LP

~
. Since (rn,n) is unmarked at time t, the

operation LPc has been completed by time t and thus n w ould have been blackened. This
contradiction shows that the opera tion which created (m,n) must be an opera tion LPA. Since
(m,n) is unmarked at time t, the operation LPA has been completed by time t. During the time
interval (t Lp,t], the LP tested the color of ,,. The outcome of the test must have been white,
off-whi te or gray.

I) The test outcome was white or oft-white. Then n was inserted into the deque by the LP
at some time in (tLp,t].

ii) The test outcome was gray. Note that as shown in the proof of Lemma 1, node n was
white or off-white at some time t’ during the collecting phase of the previous garbage
coll ection cycle. The operation LPA which colored n gray must have inserted n into the
deque at some time in (t’,t). This implIes that n was in the deque at some time in [t~~t),
s ince no nodes were removed from the deque during (t’,tMJ.

Both cases imply that n is in the deque at time t, because it n were removed from the deque,
it would have been blackened by the CC.

15



Proof for the Auxiliary System

6.3 Proof of Theorem 2

Suppose that w is a white active node at time t. We shall prove that w is reachable from some
node in the deque. Since w is white and active, w is not a root and is reachable from some root
through at least one path. There are two cases.

Case 1: w is reachable from some roo t through an unmarked path.

Let m be the fj~~t black node that is encountered on the path by traversing backwards from w to
the root. Clearly such a black node exists , since the root is black. By Lemma 2, m or its son on the
path is in the deque at time t.

Case 2: The mark ed edge at time t is on every path fr om a root to w.

Let the marked edge be (m,n). Since it is assumed in Section 2.1 that nodes on a path are all
distinct , we must have m ~ n.• Without loss of generality, we assume that (m,n) is the lef t outgoing
edge from m to n. Consider any one of the paths from roots to w, and call it path P. Let b be the
!ir. ~.t. black node that is encountered on path P by traversing backwards from w to the
corresponding root. Suppose that b is a descendant or ancestor of m with respec t to path P (see
Fig. 2 and Fig. 3). Then the outgoing edge from b on path P is unmarked. By Lemma 2, we
conclude that b or its son on path P is in the deque.

path P path P

Fig. 2 Fig. 3

In the following we assume that b — m. By Lemma 1, m was in the deque at some time in (t~~t).Suppose that rn is not in the ~~~ at time t. We shal l show that w is reachable from some node in
the deque through a path, called the m*_w path ” below . Let t Gc be the time instant when the CC
started reading the left pointer field of m before m was removed from the deque for the last time.
Let t LP be the time instant when edge (m,n) was created. We have the following two cases:

A) tLP ~ 
tGC. If (m,n) was created by an operation LPA, then m p~ NEW and consequentl y node n

w ould have been blackened by the CC before m was removed from the deque. This is a
contradiction. Suppose that (m,n) was created by an operation LPc. Then m — NEW.
Moreover , since (m,n) is marked at time t, the descendants of ri are all off-white and,
consequentl y, n — w. Before NEW was removed from the deque, the CC examined the lef t
pointer field of w. If it did not contain f , then w would be blackened, which is a contradic tion.
if it contained f , then at that time w was oft-whi te. This implies that w would not be white at
time t, since the white color is set only during a collecting phase. Again we have a
contradiction.

16



-~~ --

Proof for the Aux iliary System

B) tGc < t~p. (See Fig. 4). Since t GC < t~p ~ t, edge (m, n) was created during the interval (t~~t].
Suppose that the operation which created (m,n) is an operation LP~. Then, as in A) above , m —

NEW, n — w, and hence at time tLp w was off-white. This is a contradiction since w is white at
time t. Therefore the operation which created (m,n) is an operation LPft. Choose t~ so that

< t~ < t~p and that step 1 of the operation LPA started before time t .  (Recall that tLp is
the time instant of completion of step 1.) Clearly at time tt there was no marked edge.

( path P path Pt path P path P

m m m m

_ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~ 
:~~~ :~tM tGC t tLp t tM t~~ t t LP t

Fig. 4 Fig. 5

Node w was active at time t~, since it is active at time t and no new active nodes were created
during the interval [t *,t]. Let path Pt be any one of the paths from roots to w at time tt.
(See Fig. 5.) Let mt be the son of m on path Pt at time t t. (Note that the left outgoing edge
of m is the only edge that was changed in the entire interval (t~,t). Thus mt must be the left
son of m at time tt, because otherwise path Pt would be an unmarked path at time t, whic h
contradicts to the hypothesis of case 2.) Consider the path from mt to w on path P~ at time
t~, and call it the “mt-w path”. Note that the mt -w path was not affected by the change of
the left pointer of m at time tLp and remains unchanged throughout the time interval (tt ,t].
Als o note that the mt

~w path at time t is unmarked. Hence by Lemma 2 we have the following
result:

If ther. is a black node on th. m~-w path at time t , then some node on the m~ -w path I; In the
deque at time t.

Thus if mt is black at time t , then our proof is complete. In the following we assume that mt
is nonbiack throughout the time interval [t h~t]. Note that m was black at time t~~ and hence
at time tt. By Lemma 2, at least one of the two nodes m and mt is in the deque at time t~.

a) mt was in the deque at time tt. Then mt is in the deque at time t, for otherwise mt
would have been blackened by the GC before it was removed from the deque.

b) m was in the deque at time t~ but mt was not. Let tLp
t be the time instant when edge

(m,mt) was created. Then from the proof of Lemma 2, it is easy to see that we must have
the case t Lp

t
~

tM. Hence the CC found m.left to be mt at time t~~ . This implies that mt
was blackened by the CC at some time in (t c~ t) before m was removed from the deque.
This is a contradiction.

We have shown that statement (i) of Theorem 2 holds for the (i+l)st garbage collection cycle. This
together with the fact that statement (ii) holds through the end of the marking phase of the (i+1)st

17

L ~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _

Proof for the Auxiliary System

cycle imply that only garbage nodes have been appended to the free list through the end of the
(i+1)s t cycle. Therefore , thr ough the end of the (i+1)s t cycle, free nodes can be accessed only by
the procedures APPEND and CREATE and, consequently, by assumption A3 statement (ii) holds. The
proof of Theorem 2 by induction is complete.

18

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

7. The Proof of the Main Theorem for the Parallel System

In this section , the auxiliary system introduced in the preceding section is transformed to the
parallel system proposed in Section 3. We will examine how the transformation will affect the
proofs and results in the preceding section. The transformation is done in two stages.

7.1 Transformation 1

This transformation replaces the “shade n” operation in LPA by the simpler indivisible operation
“gray n”.

After this transformati on, Lemma 2 is no longer valid, as the following counter-example shows:
Assume that (m,n) is an edge such that m is a black node at the CC-end of the deque and n is white.
Consider the while loop of GC2 in which m is removed from the deque. Suppose that after the CC
finds the color of n to be white and before the CC inserts n into the deque, the LP performs an
operation LPA to make some node (~I m) point to n and also finds node n to be white, and then the
LP pauses for a while. Now the GC inserts node n into the deque and blackens ri. Suppose that
af ter m and n are both removed from the deque by the CC, the LP resumes its previous operation
LPA and grays n. We have an unmarked edge (m,n) with m black and n gray, and neither of them is
in the deque!

However , the results in the preceding section are still valid with respect to the following
interpretation. We say that a node is once-black at time t during a marking phase if it is black at
some time in the interval Et M,t), where tM is the s tarting time of the marking phase. Then one can
see that the lemmas , Theorem 2 and their proofs are still correct if we subst itute all the
occurrences of the word “black” by “once-black” and “nonblack” by “non—once-black ”. (The
substitution should be done only in the statements and proofs of the lemmas and Theorem 2. The
substitution does not affec t the parallel system and is used only for proof purposes.) Therefore,
Theorem 2 still holds for the auxiliary system after Transform ation 1.

7.2 Transformation 2

The second transformation optimizes the garbage collector ’s algorithm. The root insertion and
marking phases of the garbage collector ’s algorithm are redefined as follows (where operations
inside square brackets are ghost operations used merely for proof purposes).

CCI. (Root insertion phase)
for I ~ 1 until P— i

do
(insert node i into the CC-end of the ghost-deque;]
insert node i into the CC-end of the deque

[insert NEW into the GC-end of the ghost-deque;)

GC2. (Marking phase)
MARKING ~
S 4- NEW.left;
if s i’ A then

if s.left j~ f and $ nonbiack then
[insert s into the GC-end of the ghost-deque~]

*

blacken s;

19

- —-

Proof for the Parallel System

insert s into the GC-end of the-deque
f i

Li;
[remove NEW from the ghost-deque;)
while the deque is not empty

do
n 4- the node at the ..C-end of the deque;
blacken n;
remove n fr om the deque;
S 4— n.left;
if s ~ A and s is nonb iack then

[insert s into the CC-end of the ghost-deque~)blacken 5;
insert s into the GC-end of the deque

th
s ~- n.right;
iL $ # A ~~~ s is nonblack then

[insert s into the CC-end of the ghost-deque;]
blacken s;
inser t s into the GC-end of the deque

Li;
[remove n from the ghost-dequeJ

Q-~;MARKING
~

We also redefine the operations LPA and LPc by adding the ghost operation

[insert n into the LP-end of the ghost-deque;]

before the insertion of node n into t ,’ie deque. Observe that the updates of the ghost-deque in the
transformed system occur in the same positions as those of the deque in the auxiliary sys tem.
Hence our proofs in Section 6 apply to the ghost-cfeque in the transformed system. Therefore
Theorem 2 holds for the transformed system with deque rep laced by ghost-deque. Observe now
that at each time when the CC checks the emptiness of the deque, the deque and the ghost-deque
contain the same set of elements. Hence s tatement (i) of Theorem 2 holds for the transformed
system at each time when the GC checks the emptiness of the deque.

Since after the two transforma tions the auxiliary system becomes the parallel system defined in
Section 3, we have shown that the Main Theorem holds for the parallel system.

20

--- —.. . - --~-~-~.- —~~~~ - - - - --~ ~.— -~~---—
~~1~~

8. Concluding Remarks

The idea of performing garbage collection in parallel with list operations has been around for
some time. (Knuth(1968, exercise 2.3.5-12] credits this idea to M. Minsky.) Though it is an
appealing idea for real time list processing app lications , no papers on parallel systems were
published until two years ago. Steele[1975) is probably the first one who investi gated such a
system. Because of the necessity of performing semaphore—type operations so frequently, his
system is not efficient on standard, general purpose computers. Both our system and the one
proposed by Dijkstra , et al., called sys tem D below, do not use any semaphore- type operations.
However , there are some essential differences between system 0 and our system:

(I) During a marking phase in system 0, free nodes are marked by the GC; this is not required in
our system.

(ii) During a marking phase, system 0 may step through the whole memory, i.e. M nodes, as many
as N times, where N is the number of nodes to be marked. Our system uses a deque and the
system is so designed that the marking phase has the execution time proportional to the
number of active nodes and independent of the size of the memory. On the other hand,
because marking is dorre by repeatedl y scanning the memory, system D requires smaller list
processor overheads (for example, its only overhead in the operation LPA is the “shading” of
the target node). Also, system 0 does not require any extra space, as required in our system
for storing the deque.

(iii) System D assumes an indivisible “shade ” operation. No special indivisible operations are
assumed in our system.

It is easy to see that because of the excessive time taken by each marking phase, system D is
likely to be inefficient. We understan~d that Dijkstra [19761 Gries [1976) and Lamport(1976] (the
fatter two papers also consider system 0 or similar ones) deal mainly with the correctness issue
and regard efficiency as a separa te issue. But it is precisely for efficiency reason that we wanted
to consider parallel garbage collection systems in the first p ace. The point of this research was to
handle these two important issues at the same time.

For efficiency reasons , we propose using a deque for the marking phase. The inclusion of the
deque in our system has significantl y increased the complexity of proving the correctness of the
system. (For example , step 2 of operation LPA would be an indivisible ac tion in system D.) In spite
of this, we believe that we have given a correctness proof of our system which is still relatively
shor t and readable. We achieve this mainly by making the “right” assertions for the system
through the use of so-called “ghost variables ”. Our “stepwise refinement” proof techni que is also
crucial. We firs t introduce an auxiliary system and prove Its correctness. The proof and results
are then transformed step by step as the auxiliary sys tem is transformed to the parallel system for
which we want t o prove the correctness. If one does not use this stepwise refinement technique
and attempts to prove directly the correctness of the final system , one would almost surely end up
with an unreadable and comp lica ted proof . (It is unlikely that one would come up with, say,
assertions involving concepts such as “once-black ” directly from the final system.) Note that we
are not proposing a me thodology for the correctness proof of general parallel systems. Our main
concern was to make the proof of the particular system proposed in this paper clear and
convincing. It seems , however , that our deriva tion of the system, using both the correctness and
efficiency arguments (Appendix I) and some of our correctness techniques are of Interest in their
own rights and deserve further investigation.

21

-~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -________________________

Concluding Remarks

The really restr ictive assumption made in Section 4 is A4 in which it is assumed that there is
always some ext ra space available for storing the deque. Although there are methods in sequential
systems wh ich use reversed pointers in the nodes themselves as a stack , these methods are not
suitable for a parallel system since in these methods the garbage collector c hanges pointers of
active nodes.

There are a number of possible extensions which can be made based on the system described in
this paper. Our intention here was to descr ibe the basic ideas of the system rather than explore
several variat ions.

Acknow’edgement

The authors wish to thank C. Baudet , P. Lehman and B. Weide for their comme nts on the paper.

22



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix I

The Derivation of the
Parallel Garbage Collection System

The parallel system proposed in this paper is evolved fr om the well known sequential garbage
collection system which uses a stack for marking nodes, assuming that extra space is available for
storing the stack. In this Appendix we show informally how both

~~
correctness ~~~ efficiency

arguments were used to guide the derivation of the parallel system, starting from the sequential
system. For briefness in the examples below, we write “insert n” and “remove n” for “insert n into
the stack (or deque)” and “remove n from the stack (or dequeY, respectivel y.

In the following we fir st present the sequential system and then transform it into the paral!el
system in four major steps , A, B, C and D. The garbage collector ’s algorithm in the sequential
sys tem blackens all active nodes by using a stack , and then appends all white nodes to the free list
and turns all black nodes into white ones. It is assumed that all the P roots are initially black and
have no sons, and that all other nodes are initially white and on the free lis t (see Fig. 6). Node R is
called NEW and node R+1 is called FREE.

FREE

I -1--—1 1 1 — ... “I I —+H_ _ _

Fig. 6

The garbage collector ’s algorithm of the sequential system is given as follows:

CCI. (Root insertion phase)
for i ~— 1 until R

do push node i onto the stack ~~

GC2. (Marking phase)
while the stack is not empty

do
n ~- the node at the top of the stack;
remove n from the stack;
s ~— n.left;
if s ,~ A and s is white then

blacken s;
push s onto the stack -

5 4- n.right;
if s # A and s is white then

blacken s;
push s onto the stack

fi

23 -

S

_ _

~

i

~

- - - — - - - . .~~~- — --- — - -~~ _ _ _ _ _

/~ pendix I

GC3. (Collecting phase)
for i ~ R + 2 until lvi

do
if node i is white then

APPEND(i)
else

color node i whi te
fi

od

The procedure APPEND(n) is defined as:

[FREE.right).right ~
-

FREE.right 4- n

The list processor ’s opera tions which change pointer fields of nodes are given as f ollows:

Operation LPA: Add a left (or right) outgoing edge from an active node m to an active node n.

set the left (or right) pointer of m to n.

Operation LPA : Delete a left (or right) outgoing edge from an active node m.

set the left (or right) pointer of -m to A.

Operation LP0: Make a free node active and pointed to by NEW.

if FREE.left = FREE.right fj~~perform garbage collection ~
NEWieft ~- FREE.left;
FREEJef 1 4- [FREE.left].right

A. The sequential system must be modified.

Suppose that the sequential system is not modified. Consider Examp le 1.

LE

1. remove m
2. read m.lef I
3. read m.right
4. create(m ,n)
5. delete all edges to n but (m,n)

Examp le 1

Assume that the following initial conditions hold before step 1: m is a black active node on the
stack and has no sons; n is a white active node not on the stack. Then after step 5 is executed , n
is a white act ive node and wi ll not be blackened by the GC before the next collecting phase star ts
since m, the onl y immed iate predecessor of n, is black and not on the stack. The system is
therefore incorrect.

24

~~~- . ~~~~~- --:-- ~~~~~~~- - - - -  
~~~~~

-
~~~~~~~~

-
~~~~~~~

- - - . -

Appendix I

Example 1 suggests that n should be pushed onto the stack by the LP before step 5. To avoid
access conflicts , we use a deque instead of a stack , so that the CC can access one end of the deque
and the LP the other end. An example similar to Example 1 was first given by Dijkstra[1976] for
Illustrating that “no overhead for the LP” is unattainable in a parallel system.

9. The operation LPA must be modified.

Suppose that before an edge is deleted the LP always inserts the target node into the deque if it
is white. Then the correctness problem illustrated by Example 1 seems to be solved. But with this
solution, every garbage node will be blackened and inserted into the deque. This is clearly
undesirable from the efficiency point of view. A better solution is that when an edge is created
the LP always inserts the target node into the deque if it is white, That is, the operation LPA
should be modified. In the following, we assume that the edge created during the operation LPA ~(m,n) and n is white.

9.1 The LP should insert n into the deque
~~~ (m,n) is created.

Suppose that n is inserted into the deque before (m,n) is created. Consider Example 2.
CC LPIi. — 

insert n
2. remove n

Cycle I

13. rem ove m
4. read m.left

j 5. read m.right
Cycle i+l . <~,

6. crea te(m,n)
delete all edges to n but (m,n)

Example 2

We see that the insertion at step 1 is cancelled by the removal at step 2. Consequently, the
same correctness problem illustrated in Example 1 occurs in cycle i+1. This shows that the system
is incorrect.

9.2 The LP should color n.

Suppose that the LP does not color (or mark) n. Consider Examp le 3.

LP
create (m1,n)
Inser t n

create(m2,n)
inser t n

Example 3

25 

- - - _ _ _  _ _ _ _ _ _ _ _



Appendix I

This example shows that the same node n can be inserted into the deque arbitrary number oftimes. Consequently, the deque is unbounded and hence the marking phase time is also unbounded.The solution to this problem is to color n when It Is inserted Into the deque so that the LP willknow that n need not be inserted again by first testing the color of n.

8.3 The LP should color n before n is inserted into the deque.

Suppose that the LP colors n after n is inserted into the deque. Consider Example 4.
GC LP

1 1. create(r ,n)
2. insert n

Cycle i
3. remove n

4. remove m
5. read m.left
6. read m.right

Cycle 1+1
7. color n
8. create (m,n)
9. delete all edges to n but (m,n)

Examp le 4

Notice that after step 8 the LP does not insert n into the deque since n has already been coloredby the LP at step 7 (cf. 8.2). By the argument used in Examp le 1, any whi te active node which isreachable from a root ~~~ via n at that time will not be blackened by the GC during cycle i+1.This shows that the system is incorrect.

8.4 The LP should color n gray (or any color different from white or black).

Suppose that the LP colors n black. Consider the case in which at the very beginning of amarking phase , n is not in the deque, and the LP blackens n and then stops for the rest of thephase. Then those white active nodes which are reachabl e from roots 
~nJi via node n will not beblackened by the CC during the marking phase since n is black at the beginning of the phase. Thesystem is therefore incorrect.

8.5 The LP should color n gray and insert n into the deque only during a marking phase.

Note that the collecting phase time is proport ional to lvi. Hence if the LP inserts nodes during acollecting phase then the number of nodes inserted to the deque will be proportional to lvi and,consequentl y, so will the marking phase time. This violates our requirement that the marking phasetime be 0(A). It can also be observed that as a matter of fa ct there is no need for t he LP to gray nor insert n during the root insertion and collecting phases for solving the correctn ess problemsillustrated by all the previous examp les.

C. Free list and operations or, it should be modified.

26

L 
- -~~~~~~~~ - -~~~~~~~~~



- -~~~~~~~~~

Appendix I

C.! Th. co lor of a fr i. nod. should be off-whit . (or any color different from whit. , gray or black ).

A newly created node must be nonwhite, for otherwise it can be regarded as a garbage node
and appended to the free list incorrectl y by the GC. Let n be such a newly created node. Suppose
that n is gray. Note firs t that during a collecting phase nodes should not be inserted into the
deque (cf. 8.5). Consider Example 5, w hich uses the same principle as Example 4.

r 1. APPEND(n)

Cycle i

1 2. create n
I 3. crea t e (n,s)

4. whiten $

5. remove m
6. read m.Ieft
7. read m.r i ght

Cycle i+1 ç
8. create (m,n)
9. del ete all edges to n bu t (m,n)

Example 5

After step 8 n is not inserted into the deque by the LP for n has been gray since step 2. We
see that the white active node s will not be blackened in cycle 1+1. This shows that the system is
incorrec t. Similarly, one can see that n cannot be black.

It turns out that the best way to ensure that a newly created node is off-white is by letting all
the free nodes be always off-white. This can be achieved by assuming that the procedure
APPEND(n) off-whitens n and the procedure CREATE does not change the color of the node being
create d. In the operation LPA an off-white node is treated in the same way as a white node.

C.2 Nodes on the free list should be readily identifiable to the GC.

During a collecting phase the CC should turn an off-white node into a white node. If the CC
does not do so, then a released off-white node which does not happen to have an ancestor in the
deque will never be appended to the free list. But the GC does not want to whiten nodes on the
free list , which are supposed to be always off-white (cf. C.1). Hence, it is necessary to put a value
“t” on the left pointer field of nodes on the free list so that they are identifiable to the CC. (Note
that left pointer fields of nodes on the free list are originally not used anyway.) The procedures
APPEND and CREATE should, of course, be modified accordingly for inserting and deleting 1.

D. The garbage collector ’; algorithm must be modified.

Modifications to the collecting phase algorithm are essentially discussed in C.2. Appropriate
modifications should als o be done to the marking phase algorithm. Since the left son of NEW can
temporarily lead to the free list during the middle of the execution of CREATE, caution must be
taken to avoid the possibility that nodes on the free list are blackened by the GC. Hence the left

27

-

~

- - - .

~

-

~ -



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
son of NEW should be treated as a special case during the marking phase. Furthermore , minor
changes on the marking phase algori thm can be made to improve the performance of the whole
parallel system. This has been addressed in remark 3 of Section 3.3.

We see that after all the modifications indicated above have been made the sequential system
has been transformed into the parallel system described in this paper .

28

Appendix II

The P.rforman c. of the Paralle l Syst.m

In Appendix 11, we briefly summarize par t of the results in Kung and Song(19773, where the
performance of the parallel system proposed in the present paper is analyzed. The analytic model
we use takes account of the overheads introduced to the LP and the GC for the parallel system.
We believe that the results derived from the model can be used successfully to predict the actual
performance of the system.

Notation

U — Memory size.

A — Number of active nodes.

o~~~M/ A .

r — rate nodes are released (that is, become garbage) in the sequential system, when the LP is
running.

u — rate nodes are used (that is, removed from the free list) in the sequential system, when the
LP is running.

a — rate operations LPA which may have a white target node are performed.

/ 3 — a / u .

m — rate nodes are marked by the CC during the marking phase in the sequential system.

$ — rate nodes are scanned during the collecting phase, if no nodes are appended to tha free list.

r’ — rate nodes are released during the marking phase of the parallel system.

u’ — rate nodes are used during the marking phase of the parallel system.

m’ — rate nodes are marked by the CC during the marking phase of the parallel system.

Assumptions

1. The system (sequential or parallel) is in equilibrium, that is, the number of ac tive nodes A is
constant.

• 2. 4 and the release and use rates are constant. Thus from assumption 1 we must have r— u and
r’—u’. We will use r or r’ for both use and release rates.

3. Quantities A, m/r, s/rn and /3 are known.

4. When the LP makes a node point to some other node, it is equally likely that any active node
can be the target node.

29

A ppendix II

5. Active nodes are released by the LP and become garbage at random. Thus the probability that
an active node is released is independent of its color.

6. The CC marks all nodes which are ac tive at the beginning of a marking phase. Clearly with this
assumpti on we overestimate the marking phase time, the number of ~f loating nodes (see
Wad ler [1976)), e tc. in our anal ysis. Our results thus are likely to give lower bounds on the actual
performance of the system.

7. We ignore the cost of minor Operations such as coloring a node or testing its color; but we do
include in the analysis the cost of any deque or free list access.

8. Two physical processors are always available for the parallel system, one for the LP and the
other for the CC.

Results

We first consider the sequential system. Suppose that during the entire computation of a list
processing program, a total amount of N nodes are to be removed from the free list. Before the LP
starts U — A — A (c~-1) nodes are available. The LP runs until it uses up all the available nodes and
then the garbage collector takes over. Let the length of the time period when the LP runs be TLand let the length of the garbage collection time be TG. If TN is the total time taken by the
computation , then

TN — (N/(rT L)) (TL+TG).

Therefore the average time to use a node in the sequential system is

(TN/N)seq — h r (1 + TG/T L).

Clearl y, we are interested in minimizing TN/K It can be minimized by increasing ~~~., that is, by
increasing U and thus TL Note that there is a tra de-off between time and space.

We now consider the parallel system. Our goal is to derive formulas for computing the fo ilowing
quantities:

Qi. The minir ~~j rn ~ such that the LP will not run out of space if U is chosen to be ~A

Q2. The avera ge time to use a node in the parallel system, (TN/N)par.

The following useful result is first proved:

m’/r’ — mf r ,

by which we are able to compu te m’ and r’ in terms of m, r and 4. (Note that for the parallel
system in general r’ < r due to the Overheads introduced to the LP and m’ < m because a node may
be inserted into the deque more than once.) The following result is obtained:

Theorem A:

If ~~ — U/A ~
(2m/r + 3 - r/m) / (2m/r - 1 - 2m/s)

30

-

Appendix !!
-

then the LP never runs out of space.

Values of ~ for which the LP will not run out of space when U is chosen to be ~ A are plotted In
Fig. 7.

1.6
o s/m — 10

1.4

fig. 7. The minimum c~ such that ths
LP will not run out of space if U is
chosen to be o~A.

1.0 u i

2 4 6 8 10 12 14 16 18 20
m/t

After U is so chosen that the LP will not run out of space, we are still interested in knowing
whether or not the parallel system actually executes the program faster than the sequential
system, and if so, how much faster. (It is nontrivial to answer these questions, since for the
parallel system overheads have been introduced to the LP and thus the LP has been slowed down.)
For this purpose, we have to know the average time to use a node. It is obvious that in any

sequential or parallel system, the average time to use a node is
~

(TN/N)opt — h r . A closed
formula for computing (TN/N)par in terms of m/r, s/ rn, /3 and ~ has been obtained. In Fig. 8, we
compare the values of TN/N in the sequential and parallel systems to the optimal value of 1/r,
assuming that r—1 and that the value of ~ is given by Fig. 7. Fig. 8 shows that the anon-stop LP
in the parallel system executes the program considerably faster than the LP in the sequential
system.

TN/N a sequential system, s/ rn— hO
+ parallel system, s/ rn—iC, /3—6

1.6 x parallel system, s/m— 10, /3.4
o parallel system, s/ rn— hO, /3—2
A optimal time

144

~~~~~~~~~~~~~~~~~~~~~

__________________________________ 

Fig. 8. The average time to use a
1.0 £ ~ a. a. a a. a. a a. a. a. J a A ~ a. ~ node, assuming that r—1 and that the

value of o~ is given by fig. I.

.8 . ,

2 4 6 8 10 12 14 16 18 20
m/t

31

• •-• - • •

~

• •-• •--- . • - • -~~~--•~~~~~~~~~ - .-~~~~ - - -  — ——• --—*-• -——••—- ~~~~~—~~~~~



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• • • • - • • • •

~

• •

Appendix II

~~ Speed-up
a s/m.1O, optimal speed-up
+ s/ rn— hO /3—2

16 
~ ~ : :~:~g~ ;~

1.4

Fig. 9. Comparing the speed-up of
the parallel system with the optimal
speed-up, assuming that r—1 and
that the value of ~ is given by fig.

1.0 I 7.
2 4 6 8 10 12 14 16 18 20

m/r

A useful measure for s tudying the performance of a parallel system is its speed-up, which is
defined as

Speed-up — (TN/t’J)seq I (1N/t~
J)par.

Clearly, speed-up is always ~ 2, since two processes are used in the parallel system. Another
more useful upper bound can be derived as follows. Since (TN/N)pa,. ~ 1/r ,

Speed-up ~ 1 + TG/T L

for any parallel system. Corresponding to Fig. 8, the speed-up of the parallel system is compared
to the optimal speed-up 1 + TG/TL in Fig. 9. We see that the parallel system performs nearly
optimally for large m/r.

The anal ytic results sketched above are mainly obtained by solving differential equations
describing various transitions in the parallel system. It is assumed implicitly that all the solutions
are differentiable. It is also assumed that the system is in the perfect equilibrium state , i.e., A, /3, r
and u are all constant in time. These restrictions might lead one to question the validity of the
model. Because of this consideration , we have tes ted the model by simulation in which the time
intervals between consecutive removals from the free list and consecutive releasing of active nodes
are exponentially distributed independent random variables with the same mean. The simulation
results are found to be nearly the same as the results obtained from the analytic model.

32



- —  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • • .• _ :—__ _

~
7 _

J ~~ — -,,ulII~

References

Dij kstra(1976] Dijkstra , E. W., Lamport , 1., Martin, A. J., Scholten, C. S. and Steffens , E. F. U., “On—
the—fly Garbage Collection: An Exercise in Cooperation”, in Language Hierarchies ~~~ Interfac e~s,
edited by F. L Bauer and K. Samalso n, Springer-Verlag, New York, 43-56.

Gries [1976] Gries, D., “An Exercise in Proving Parallel Programs Correc t”, in Language Hierarchies
~~~ Interfaces, edited by F. L Bauer and K. Samalson, Springer-Verlag, New York, 57-81.

Kung and Song(1977] Kung, H T. and Song, S. W., “Performance Analysis of a Parallel Garbage
Collect ion System”, Department of Computer Science Report, Carnegie-Mellon University, October
1977.

Knuth[1968] Knuth, D. E., The &J. ~j  Computer Programming, 
~~~ LL Fundamental Algorithms.

Addison-Wesley, Reading, Mass..

Lamport(1976) Lamport , L., Garbage Collection with Multiple Processes: an Exercise in Parallelism
In 1976 International Conference on Par Processing, edited by P. 14. Enslow Jr., IEEE
Computer Society, Long Beach, California , 50-54.

Steele(1975) Steele, G. L Jr., “Multiprocessing Compactif ying Garbage Collection”, Comm. ~~~~ 18,
495-508.

Wadler [1976) Wadler , P. L., “Analysis of an Algorithm for Real Time Garbage Collection”, Comm.
~~QM

19, 491-500.

33

- • -

~

-

- - - - • - • • - - • •• - • • •~~~~~~~- ~~~~~~~~ •--• ~~~•-~~ - • • • -•

-v ~~ -- -~~~~ .- -

THE~ AUXIL IARY SYSTE M

(Wi th gho,t operation. ind~caIed b.tw.eri eq~are br.ck.ja.)
THE PARALLEL SVST ~M

GARBAG E COLLECTOR S ALGORITHM
GARBAGE COLLECTOR ’S ALGORITHM

CCI . (Root in,ertion plies.)
C CI. (Root ina. rti on ph.ee) L9L ~ 1 ILflhL! P-i
f.2L ~ ~~~ q..~ ~~ in~~r t node i into 1Pm CC-end of the deque 2~i

~~ insert nod. i int o lb. CC-sod of lb. dequ. ~~, inse rt NEW into the CC—end of the deque;
GC2. (Marking phese)

GC2. (Marki ng phaso) MARKING .. th~ti

MARKING .. a - NEW.lef t ;
• .. NEW J.ft, ti • ,‘ A tht~id.s.l.f t~~ f p~~ .norö1sch j~~~

jj c lef t ~ ~ ~~~. ~~~~~~~~
in ert a into lb. CC—end of lb. dequs;

blacken ~ b lacken a
insert . into lb. CC-end of lb. d.qu ii

- remove NEW from lb. doqu.;

~~~ 
lb. doqu. a not emp t y ~~~~~ 

the dog’.’. is not empty

n .- the nod, at the GC—.nd of the ~~~ n .. the node it the CC-end of ihi deque;
blacken n b lacke n n;

remove n from the dequ.~ ~ nie f t;
• .- n.l .ft ; i f s , ’ A  g~~ si. riothlack j~g~
if • ,~ A arid p is nothleck lb insert a into the CC-end of the d.qv.;

blacken blacken 5

insert s info the CC—end of the deque
p s- ,tright;

• ~- itright; it a , ’ A g~~ a i. riothlack j~~
jj • ,S A g.~~ s is noröiack lb ineert c into Itie CC-sod of the deque;

blacken I; blacken s
inser t • into lb. CC—end of lb. d.que remove ri f ro m the deque

MARK ING ~~ MARKING ..
GC3. (Collectir , phase)

CC3. (Collactir,g pha..) f.~i i ~ R~2 ~~iii 
M

~g~~i..R.2~~~j~j M j nodeii. whi te
jj nod. i s  white ~~~ 

APPEND(i)
th~~ APPENO(,)

else jj ilef I ,‘ f ~~~ color node i white fj
it tl eft ,‘ I color node i white f,j

LIST PROCESSOR S OPERATION S
LIST PROCESSOR’S OPERATIONS

Operation 1
~ A Add a left (or right) outgoing edge fr au

Operation IP Add a let I (or right) outgoi ng edg. from en act iv e ncids in to an active nod. ?‘.
a,, ac tive no~~ in to an ac ti v e nod, ,~ 1. eel the left (or right) pointer of in to n;
1. se t lb. .41 (or rigtit> pointpr of in to ij ; Cl .  (merk th e edg e Im,,,) crea t ed it s t op IJ
2. ~j  MARKING g~~ n a whit, or of f -whi t e !~ n 2. jj MARKING g~~ ri ii white or of f -w hi t. ~~~

g ray i~ 
abed. ri;

neert n into the LP-end of lb. d.qu. in sert n into lb. LP-.nd of the dequs
Ii ii;

62. (unm ark the edge (m.n) marked at s lop Ci)
Operation LP Osla t e a lef t (or right) outgoing edg. froie
an act ive ,,‘. Operation LP A 0.1st. a lef t (or ri ght ) ou tgoing .d5. f rom

an activ e ri ocfe i~
set lb. 1.11 (or ni ght) pointer of in to A. se t th. left (or ri g ht ) pointer •~ m to A.

Operation LPc Make a free node active and pointed to by NEW. Operation IPC: Mak, a free node ac t ive arid po int ed to by NEW .
1 CREATE ; (Stepe I through 5 con s ti tute the procedure CREATE.)
2. n.- NEW.Ief I;
ii MARKING j

~g~ 
I. ~~~ FREE-left - FREEj ight

black en ,; ~2 nothing ~~ ;
ineert ri into t he 1.9-end of the deque 2. NEW laf I .- FREE. lef t;

fj CI. (mark lb. left outgo ing edge from NEW,)
3. FPEE. ieft fFR EE. lef t j  right;

Tb. procedu re CREATE is defined ii followS? 4. tN~W le f t~ r;ght .- A ,
5. INEW 1.fl).~et t  ~- A;

~~~~ FREE left FREE.sight 6. n .- NEW left;
~~ nothing ~~~ , ‘1. MARKING th!!i

NEW ,left .. FREE 1sf I; blacken n;
FRE~.i.f I .. (FREE.lef t~ right; insert ri into the LP-evid of tl”e deque
[NEW 1sf tl.,ight .. A ,
(NEW lefIjI.tt .. A 62. (unm .rk lii. edge marked .1 cl ap Cl)

—
— . - -- —-- - -— - - - - — - .--

_ 1JNCL~~~ IFIED
SE CURITY C L A S S I F I C A T I O N OF TH IS PAGE (iii .on 0.t. Efltered)

REA O INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1 . R E P O R T NUMBER ~~~. GOVT ACCESSIO N NO. 3 R EC i P I E N T ~s C A T A L O G N U M B E R

4 T i T L E (an d Subtit i,) 5. TYPE OF REPORT & PERIOD COVERED

AN EFFICIENT PARALLE L GARBAGE COLLECTION interim

SYSTEM AND ITS CORRE CTNESS PROO F 6. PERFORMING ORG. REPORT NUMB ER

7. AUT I.IOR(a) S CONTRACT OR GRANT NUMBER(S)
MCS 7 5 — 2 2 2 — 5 5

11. T. Kung and S. W. Song N00014-76-C-0370;
NR 044-422

9 PERFORMING O R G A N I Z A T I O N NAME AND ADDRESS 10. PROGRAM ELEMENT , PROJ ECT . T A S K
A R E A & WORK UNIT NUMBERS

Carnegie-Mellon University
Computer Science Dept.
Pittsburgh, PA 15213

II . C O N T R O L L I N G OFFICE NAME AND ADDRESS 12. REPORT D A T E
September 1977

O f f i c e of Naval Research 13. N U M B E R OF PAGES
Arl ington , VA 22217 38

i 4 . MONIT ORING AGENCY NAME & ADD R ESS(II differen t from ControltinB 0(11cc) 15 SECURITY CLASS. (of this report)

UNCLASS IFIED
ISa . DECLASSIF ICAT ION DOWNGRADING

SCHE DULE

16. DISTRIBUTION S T A T E M E NT (of thi, Report~

Approved for public release; distribution unlimited.

17. D ISTRIBUTION S T A T E M E N ’ nI the .b.iracl entered in Block 20 , If dIfferent from Report)

IS. S U P P L E M E N T A R Y NOTES

19. KEY WORDS (Continue on rever Se aide if nece..as-y end identify by block numbe r)

20 A B S T R A C T (Continue on ,ecer.e Side If n.C...a’y wit Identify by block numb. ,)

An eff icient system to perform garbage collection in parallel with list operations is proposed am
its Correctness is proven.

The system consIsts of two independent processes sharing a common memory. One process is
performed by the list processor (LP) f or list processing and the other by the garbage collector (GC)
for mar k ri b active nodes and collecting garbag o nodes. The system is derived by using ~Qj~ the
corroctness and of f l c ie rt cy arguments. Assuming that memory references are indivisible the system
satisfies the following properties:

RH •DD
~~~~ ~, 

t4~ ,s EDITION OF i Nov aS IS OB SOLETE UNCLASSIFIED
S N ‘~ I 0 2 - O I 4  6601

SE CURITY CLASSIFICA TION OF THIS PAG E (17,an Data tnler.d)

_ 
.
~~~~ -- ---—~~~~~~~~~~~~~~~~~ 


U~4CT..ASSj FIED

~j R I T Y C L A S S I F I C A T I O N OF THIS PAGE(When D.l. Entered)

20. abstract continued

— No critical sections are needed in the entire system.

- The time to perform the marking phase by the CC is independent of the size of memory, but
depends only on the number of active nodes.

- Nodes on the free list need not be marked during the marking phase by the CC.

— Minimum overheads are introduced to the LP.

- Only two extra bits for encoding four cotors are needed for each node.

Efficiency results show that the paralle l sys ’ .~m is usually sigr.~ficant ly more efficient in terms of
storage and time than the sequential stack algorithm.

UNCLASSIFIED
SECURITY CLASSIFICATION OF TMI$ PAGEIW?ieii Dale Entered)

