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ABSTRACT

Block tridiagonal systems of linear equations occur frequently in

scientific computations , often forming the core of more complicated prob-

leme . Numerical methods for solution of such systems are studied with

emphasis on efficient methods for a vector computer . A convergence theory

f or direct methods under conditions of block diagonal dominance is developed ,

demonstrating stability , convergence and approximation properties of direct

methods . Block elimination (LU factorization) is linear , cyclic odd-even

reduction is quadratic , and highe r-order me thods exist.  The odd-even

methods are variations of the quadratic Newton iteration for the inverse

mat rix , and are the onl y quadratic me thods within a certain reasonable

class of algorithms. Semi-direc t methods based on the quadratic conver-

gence of odd-even reduction prove useful in combination with linear itera-

tions for an approximate solution . An execution time analysis for a pipe-

line computer is given, with attention to storage requirements and the

effect of machine constraints on vector operations .
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1. INTRODUCTION

Block tridiagonal matrices are a special class of matrices which arise

in a variety of scientific and engineering computations , typically in the

numerical solution of differential equations. For now it is suffic ient to

say that the matrix looks like

c 1

/ a2 b2
a3 b3 c3

a
N l  

b~~~1 ‘~N - l

\ aN 
b
N

where b . is an n~ x n . matrix and a~ , c are dimensioned conformally. Thus
1. :1. 1 

—N’~ 
~ N

the full matrix A has dimension (, n .) x (

In this thesis we study numerical methods for solution of a block tn-

diagonal linear system Ax v, with emphasis on efficient methods for a

vector-oriented parallel computer (e.g., CX STAR-l00, Illiac LV). Our

analysis primarily concerns numerical properties of the algorithms , with

discussion of their inherent parallelism and areas of application. For

this reason many of our results also apply to standard sequential algo-

rithms. A unifying analytic theme is that a wide variety of direct and

iterative methods can be viewed as special cases of a general matrix itera-

tion, and we make considerable use of a convergence theory for direc t

methods. Algorithms are compared using execution time estimates for a

simplified model of the CX STAR-lOG and recossnendations are made on this

L.
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There are two important subclasses of block tnidiagonal matrices ,

depending on whether the blocks are small and dense or large and sparse.

A computational method to solve the linear system Ax v should take

into account the internal structure of the blocks in order to obtain

storage economy and a low operation count. Moreover, there are impor-

tant applications in which an approximate solution is satisfactory.

Such considerations often motivate iterative methods for large sparse

systems, especially when a direct method would be far more expensive.

Since 1965, however, there has been an increased interest in the

direct solution of special systems derived from two-dimensional elliptic

partial differential equations. With a standard five-point finite differ-

ence approximation on a rectangular grid, the a., c . blocks are diagonal

and the b . blocks are tridiagonal, so A possesses a very regular sparse

structure. By further specializing the differential equation more struc-

ture will be available. Indeed, the seminal paper for many of the impor-

tant developments dealt with the simplest possible elliptic equation. This

was Hockney’s work [H5], based on an original suggestion by Golub , on the

use of Fourier transforms and the cyclic reduction algorithm for the solu-

tion of Poisson’s equation on a rectangle. For an n x n square grid Hockney

was able to solve Ax — v in 0(n
3) arithmetic operations, while ordinary band-

matrix methods required 0(n4) operations. Other 0(n
3) methods for Poisson ’s

equation then extant had considerably larger asymptotic constants , and the

new method proved to be significantly less time-consuming in practice. Sub-

sequent discovery of the Fast Fourier Transform and Buneman’s stable version

of cyclic reduction created fast (O(n2 log ii) operations) and accurate

methods that attracted much attention from applications programmers and 

.~,-.- — .~. . ~~~~~~~~~~~~~~~~~~~~~ 



numerical analysts [B20], [D2], [H6). The Buneman algorithm has since

*been extended to Poisson’s equation on certain nonrectangular regions

and to general separable elliptic equations on a rectangle [S6], and well-

tested Fortran subroutine packages are available (e.g., [S8]). Other

recent work on these problems includes the Fourier-Toeplitz methods 1F2],

and Bank’s generalized marching algorithms [B5]. The latter methods work

by controlling a fast unstable method , and great care must be taken to

maintain stability .

Despite the success of fast direct methods for specialized problems

there is still no completely satisfactory direct method that applies to a

general nonseparable elliptic equation . The best direct method available

for this problem is George ’s nested dissection [Gi], which is theoreti-

call y attractive but apparently hard to implement. Some interesting tech-

niques to improve this situation are discussed by Eisenstat , Schultz and

Sherman [El] and Rose and Whitten [R5 ] among others. Nevertheless , in

present practice the nonseparable case is still frequently solved by an

iteration, and excellent methods based on direct solution of the separable

case have appeared (e.g., [C4J, [C5J). The multi-level adaptive techniques

recently analyzed and considerably developed by Brandt [813 ] are a rather

different approach , successfully combining iteration and a sequence of dis-

cretization grids. Brandt discusses several methods suitable for parallel

computation and although his work has not been considered here, it will

undoubtedly play an important role in future studies. The state-of- the-art

for solution of partial differential equations on vector computers is sum-

marized by Ortega and Voigt [01].

*
References include [Bl9], [Dl], [S5], [S7], [S9]. 
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With the application area of partial differential equations in mind ,

the major research goal of this thesis is a general analysis of direct

block elimination methods, regardless of the sparsity of the blocks . As

a practical measure, however , the direct methods are best restricted to

cases where the blocks are small enough to be stored explicitly as full

matrices, or special enough to be handled by some storage-efficient im-

plicit representation. Proposed iterative methods for nonseparable ellip-

tic equations will be based on the ability to solve such systems efficiently .

Our investigation of direct methods includes the block LU factoriza-

tion, the cyclic reduction algorithm (called odd-even reduction here) and

Sweet’s generalized cyclic reduction algorithms [Sb ], along with varia-

tions on these basic themes. The methods are most easily described as a

sequence of matrix transformations applied to A in order to reduce it to

block diagonal form. We show that , under conditions of block diagonal

dominance , matr ix  norms describing the off-diagonal  blocks relative to

the diagonal blocks will  not increase, decrease quadratically, or decrease

at higher rates , f or each basic algor ithm , respectively. Thus the algo-

rithms are naturally classified by their convergence properties . For the

cyclic reduction algorithms , quadratic convergence leads to the defini-

tion of useful semi-direct methods to approximate the solution of Ax ~ v.

Some of our results in the area have previously appeared in [H2].

All of the algorithms discussed here can be run, with varying degrees

of efficiency, on a parallel computer that supports vector operations . By

this we mean an array processor , such as Illiac IV, or a pipeline processor,

such as the CX STAR-lOG or the Texas Instruments ASC . These machines

fall within the single instruction stream-multiple data stream classifica-

tion of parallel computers, and have sufficiently many co on features to
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make a general comparison of algorithms p~~sible. However, there are

also many special restrictions or capabilities that must be considered

when designing programs for a particular mach ine . Our comparisons for

a simplified model of STAR indicate how similar comparisons should be

made for other machines . For a general survey of parallel  methods in

linear algebra plus background material , [H3 ] is recommended.

In almost every case, a solution method tailored to a particular

problem on a particular computer can be expected to be superior to a

general method naively applied to that problem and machine. However,

the costs of tailoring can be quite high. Observations about the behav-

ior of the general method can be used to guide the tailoring for a later

solution, and we believe that the results presented here will allow us

to move in that direction.

l.A. Summary of Main Results

Direct methods for solution of block tridiagonal linear systems are

discussed in Sections 3-6, semidirect methods in Section 7, and iterative

methods in Section 3. Preliminaries (analytic tools and models f paral-

lel computation) are in Section 2 and remarks on certain applications are

in Section 9. Implementation of algorithms on a parallel computer is

discussed in Section 10.

We consider direct methods as a sequence of transformations applied

to the linear system Ax v with the intention of simplifying its struc-

ture. The matrix B [A] = I * (D[A])
1
A , where D[A] is the block diagonal

part of A , is shown to be important for stability analysis , error propaga-

tion in back substitutions , and approximation errors in seinidirect and

iterative methods . We appear to be the first to systematically exploit

- - -- - -- .-- ~~~~~~~~~~~~ —~~~ -~~~~~- -  --



B[A] in the analysis of direct and semidirect methods , though it has long

been used to analyze iterative methods.

Under the assumption B [A ]~~ < 1, when a direc t method generates a

sequence of matrices with B[M.
+1]II ~ 

B[M.]~ , we classify the method

as linear, and if B [M .÷i ]~~~1 
� BtM .]

2
~J or B[M.]jj

2 we say that it is

quadratic . The ~-norm is used throughout; extension to other norms would

be desirable but proves quite difficult.

The block LU factorization and block Gauss-Jordan elimination are

shown to be linear methods , and their properties are investigated in Sec-

tion 3. Sample results are stability of the block factorizatiori when

< 1, bounds on the condit ion numbers of the p ivotal blocks , and

convergence to zero of portions of the matrix in the Gauss-Jordan algorithm .

The methods of odd-even elimination and odd-even reduction , wh ich are

inherently pa ra l l e l  algorithms closely related to the fast  Poisson solvers ,

are shown to be quadratic , and are discussed in Section 4. Odd-even elim-

ination is seen to be a variation of the quadratic Newton iteration for

A 1, and odd-even reduction can be considered as a special case of Hageman

and Varga’s general cyclic reduction technique [Hi ] ,  as equi valent to

block elimination on a permuted system, and as a compact fo rm of odd-even

elimination. We also discuss certain aspects of the fast Poisson solvers

as variations of the odd-even methods .

In Section 5 we show that the odd-even methods are the only quadratic

methods within a certain reasonable class of algorithms . This class in-

cludes all the previous methods as particular cases of a general matrix

iteration. The relationship between block fill— in and quadratic conver-

gence is also discussed.
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In Section 6 the quadratic meth ods are shown to be spec ial cases o f

families of higher-order methods , characterized by B [M. +1] j I  � BrM . ] J j ~~.

We note that the p— fold reduction (Sweet’s generalized reduction [SlO]) is

equivalent to a 2-fold reduction (odd-even) using a coarser partitioning

of A.

Semidirec t methods based on the quadratic properties of the odd-even

algorithms are discussed in Section 7. Briefly , a seinidirect method is a

di rect method that is stopped before completion , producing an approximate

solution . We anal y ze the approximation error and its propagation vis-a-vis

round ing error in the back subst i tu t ion of odd-even reduction. Practical

limitations of the semidirect methods are also considered.

In Section 8 we consider some iterative methods for systems arising

from differential equations, emphasizing their utility for parallel com-

puters. Fast Poisson solvers and general algorithms for systems with

small blocks form the basis for iterations using the natural, multi- line

ar~ bpi ral orderings of a rec tangular grid. We also remark on the use of

elimination and the applicabil i ty of the Parallel Gauss iteration [T2 ] ,

[H4] .

A brief section on app lications deals with two situations in which

the assumption ~ja[A]J~< 1 is not met , namel y curve fitting and finite ele-

ments, and in the latter case we describe a modification to the system

Ax v that will obtain II~ A ]J I < 1.

Methods for solution of block tridiagonal systems are compared in Sec-

tion 10 using a simplified model of a pipeline (vector) computer. We con-

clude that a combination of odd-even reduction and LU factorization is a

powerful direct method , and that a combination of semidirect and iterative

methods may provide limited savings if an approximate solution is desired. 

~~~~~~ --~~~~~~~~~~~ -~~~~~ - -  — - - -- —~~~~ 
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A general discussion of storage requirements and the effect of machine

constraints on vector operations is included ; these are essential con-

siderations for practical use of the algorithms.

l .B.  Not ation

Let the block tridiagonal matrix

7b1
(a 2 

b
2 

c2

a3 b
3 c3

A = . . . 

= (a ., b ..,

aN l  bN l  c
N l

\ bN

Here b . is an n. x n~ matrix and a = 0 , c = 0. The subscript N in the
1. 1 1 1 N

triplex notation will often be omitted for simplicity. Define

L [A] (a ., 0 , 0) ,

D [A] = (0 , b ., 0 ) ,

U[ A]  (0 , 0 , c .) ,

B[A ] = I - (D [A))  
1A = (-b .

1 a~ , 0 , -b~
1 c .) ,

C[A] = I - A(D [A]) 1 
= (-a j b~~ 1~ 0 , -c .b~~ 1) .

Use of these notations for general partitioned matrices should be evident;

nonsingularity of D[A] is assumed in the definitions of B and C. B[A] is

the matrix associated with the block Jacobi linear iteration for the solu-

tion of Ax v. It also assumes an important role in the study of certain

semidirect methods and will be central to our analysis of direct methods. 

~--~~~~~~~~~~ -~~~~~~~~~~ -~~~~~~~~~~.-—-.- ~~~~~~~~~~~~~~~ -- - ~-- - -- - --~~
_ _ _ _ _
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We further define E . = diag(0,...,0, I, O ,...,0), where the I is

X n~ and occurs in the j t h  block diagonal posi t ion . Pre- (post- ) mu l-

tiplication by E. selects the jth block row (column) of a matrix, so that ,
N N

for example , D[A ] = E .A E . ,  D [A ]E . E .b A ] ,  and E . L [A ]  E 4 = 0.

~ i=l 
~• ~ 3 3 ‘_ _••j =i  1.

For an nXn matrix N and an n-vector v , let

=

M~ = max . ~~(M)~ the ~-nortn ,

M~~1
max . ‘~‘ . (M) Ii M~’1~,

V ~~~~~~~~~1 1

H v 11 1

~ M I  (Im ..I), and

o (M) = the spectral  radius of N .

The reader s’~ould take care not to confuse row sums (p~~
(M

~
) wi th  the spec-

t raL radius ( o ( M ) ) .  When A = (a., b ., c .), let X(A) = max .(4~~~~ a~ M 
~j-l 

c • 1 ~~ .

The condition X(A) � 1 w il l  be used as an alternative to B {A] fI< ~ 

-.--~~~~ -- - -~~~~~~~~~ -~~~~~~ --— ~~~~~~~~~ ~~~~~~~~ --~~~~~--~~~-
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2.  SOME IN ITIAL REMARKS

2.A.  Analytic Tools

Much of the analysis presented in later sections involves the matrix

B[A]. Why should we consider this matr ix  at all?

First , it is a reasonably invariant quantity which measures the diag-

onal dominance of A. That is , if E is any nonsingular block diagonal matrix

conforming with the partitioning of A , let A* EA , so B* = B[A*] I_ D*
1
A*

I - (ED) 1
(EA) I - D

1
~A = B. Thus B[A] is invariant under block scal-

jugs of the equations Ax = v. On the other hand , B is not invariant under

a change of variables y = Ex, which induces A’ = AE
1
. We have

B’ = B[A’] EBE 1
, and for general A and E only the spectral radius p (B)

is invariant. Similarly, C[A] measures the diagonal dominance of A by

columns, and is invariant under block diagonal change of variables but not

under block scaling of the equations.

Secondly, one simple class of parallel semidirect methods (Section 7)

can be created by transforming Ax v into A*x = v*, A* = MA , ~* = Mv for

some matrix N, where B[A*]~ I << BiA ]~ . This transformation typically

represents the initial stages of some direc t method . An approximate solu-

tion y = D[A*] 
1
v~ is then computed with error x - y = B[A*]x, so

measures the relative error. Thus we study the behavior of B [A] under

various matrix transformations.

Thi rdly ,  B [A] is the matrix which determines the rate of convergence

of the block Jacobi iteration for Ax v. This is a natural parallel itera-

tion, as are the faster semi-iterative methods based on it when A is posi-

tive definite . It is known that various matrix transformations can affect

the convergence rates of an iteration , so we study this property .

_ _ _ _ _ _ _ _ _ _ _ _  ------ - -~~~~~~~~~~ - — -_ —-----~~~.-~~--- 



Finally, B [A] and C[A] arise naturally in the analysis of block elim-

ination methods to solve Ax = v. C represents multip liers used in elimina-

tion, and B represents similar quantities used in back substitution. In

order to place upper bounds on the size of these quantities we cons ider

the effects of elimination on BrA ]Ij .

Since we will make frequent use of the condition B[A~~ < 1 we now

discuss some conditions on A which will guarantee that it holds.

Lemma 2.1. Let J = J1 + J~ be order n, Ji  = J1~ + 1J 2 1 , and suppose K

satisfies K = J1K + J2. Then II J i l  < 1 implies ~~(K) 
� o.(J) for 1 � L � n ,

and so K~ � J J j .

Proof. From IJ 1~ + J2~ 
= J~ we have p. (J1) + p.(J2

) p. (J) for I � i � n.

From K = J1K + J2 
we have .(K) � o~ (J 1) K~ + o.(J9). Suppose K~j � 1.

Then 3
~
(K) � c.(J1) 1 K~ + 

~~~~~ 
K~ = o.(J) 1 1(11 � ( I J I~ Il K~ , which implies

KjJ � J JJ J j K JJ and 1. � J~j, a contradiction . Thus 1 Ku < 1 and

� j.(J~) + c.(J2) = p.(J). QED.

We note that if 0 then we actually have c .(K) < p. (J) and

~~~ = 0 then p. (K) = o.(J
2
) = p.(J). It follows that if each row of

contains a nonzero element then II K~ < J~. These conditions are rem-

iniscent of the Stein-Rosenberg Theorem ([V3], [H8]) which states that if

J is irreducible , J1 and J2 
nonnegative , J2 ~ 

0 and o(J1
) < I then o(J) < I

implies ~(K) < p (J) and ~(J) = 1 implies p (K) = o(J). There are also cor-

respondences to the theory of regular splittings [V3].

Lemma 2.2. Suppose J = (I - S)K + T is order n, J~ (I - S)Ku + TI ,

� z~~(T), I � i � n. Then J~ < I implies p. (K) 
� p .( J ) , I � i �

and so ~ K II � II~ Ii. 
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Proof. For I � i � n, p.(T) � o .(T) + Q .( (I  — S)K) o .(J) � JtI < 1,

so p.(T)  < 1. Now , 1 > o.(J) P~ ((I — S) K) + P
~~

(T) � p~~(K) — p. (S) Ii K i t

+ ~~ (T) � Q (K) + o.(T) (1 — K~ ) . Suppose Ki t  = p. (K) > 1. Then

1 > p.(K) + p.(T)(l - p .(K ) ) ,  and we have I < p.(T), a contradiction.

Thus ii Kit � I and ~.(J) � p.(K). QED.

If S = T in Lemma 2.2 then K = SK+ (J - S), ~i = j ( I  - S)Ki + 1 S t

= IJ - Sj ÷ S i , so by Lemma 2.1 we again conclude K it � Ii i ii .
Similar results hold for the I-norm .

Lemma 2.3. Let J J1 + ~~ 
I~T I I~1t + iJ 2 i , and suppose K satis fies

K KJ1 + J2. Then J < 1 implies II KU1 
� ii

Proof. Since J
T 

= + 4, i~~i 41 ± i4 i ~~~ 
K
T 

= J
T
K
T 

+ 4 and
li M i t

1 U MT II we have U JTU H 1 , and by Lemma 2.1 , H K~ 1 I t
ii ~~~ = 

~ J ti ~. QED.

Lemma 2.4. Suppose J = K(I - S) + T, ~t IK(I  - S) + i T t , ~ .(S) 
�

I � i � ii. Then it J t i 1 < I imp l ies it K~~ � II JU
1
.

Proof. We have v~(M) = Q~~(MT), J~ (I - ST)K
T 

+ T
T
, so by Lemma 2.2

K~II � J
1’ 

~
. and the result follows . QED .

To investigate the condition B [A]~ < 1, we first note that if A is

strictly diagonally dominant by rows then 8[A 11 < 1 under any partition-

ing of A. Indeed , if we take J to be the point Jacobi linear iteration

matrix for A , J I - diag (A) 1
~A , J1 

= D [J ] ,  J
2 

J - J 1, then

II J~t i Ii J tI < 1, 1J I 13 11 + 1J 2 1 and B[A] (I - J1) 
1
J2, so

B [A]~ � II j il < 1 by use of Lemma 2.1.
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Now, if we denote the partitioning of A by the vector II (n1,n2,.. . ,n~)

then the above remark may be generalized . Suppose 1’ = (ml,m7,...,mM) rep-

resents another partitioning of A which refines . That is, there are inte-
p .-1

gers 1 p0 < p1 < ... < p~ M+l such that n~ 
1 to .. If B[A] and

j=p i_l ~
B’ [A] are defined by the two partitions and B’ [A] iI < 1 then BEA] II

it B’[A]~ . This is an instance of the more general rule for iterative

methods that “more implicitness means faster convergence” (cf. [H8, p. 107])

and will be useful in Section 6. Briefly, it shows that one simple way to

decrease Ii B [A] IJ is to use a coarser partition .
Let us consider a simple example to illustrate these ideas. Using

finite differences , the differential equation -u — u + Xu = f on [0 ,1~xx yy -

X > 0 , with Dirichiet boundary conditions , gives rise to the matrix

A = (~ I, N, -I), N = (-I , 4-i4h , -I). By Lemma 2.1 , B[A]II � II J[A]~ =

4 (4+Xh2) < 1. Actually, since B [A] is easily determined we can give the

better estimate II B[A ] M 2 11 M 1
t1 < 2 (2÷Xh 2 ) .

Indeed , many finite difference approximations to elliptic boundary

value problems will produce matrices A such that B [A]ti < I [V3]; ii B [A]~

will frequently be quite close to 1. This condition need not hold for

certain finite element approximations , so a different analysis will be

needed in those cases. Varah [VI], [V2 ] has examples of this type of

analysis which are closely related to the original continuous problem. In

Section 9.B we consider another approach based on a change of variable.

it B[A]H < 1 is a weaker condition than strict block diagonal dominance

relative to the ~-nortn, which for block trid iagonal matrices is the condi-

tion ([Fl], [Vl]) ~~~~ (ii a~I i + II c~ ~ < 1, 1 ~ j � N. The general

definition of block diagonal dominance allows the use of different norms,

so for completeness we should also consider theorems based on this

_ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _
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assumption. However, in order to keep the discussion reasonably concise

this will not always be done. It is sometimes stated that block diag-

onal dominance is the right assumption to use when analyzing block elimi-

nation, but we have found it more convenient and often more general to

deal with the assumption B [A] t < l.

Other concepts related to diagonal dominance are G- and H-matrices .

If 3 = I - diag (A) 
1A L + U , where L (U) is strictly lower (upper) trian-

gular, then A is strictly diagonally dominant if ii J l i < I, a G-tnatrix if

11 (1 - iL l ) 
1t u 1 j <  I, and an H-matrix if P (i J t

~ 
< I. Ostrowski [02 ]

shows that A is an H-matrix if f there exists a nons ingular diag onal matr ix

E such that AE is str ictly diagonally dominant. Varga [V4] summarizes

recent results on H-matrices. Robert [R3 ] generalizes these definitions

to block diagonally dominant , block G- and block H-matrices using vector-

ial and matricial norms, and proves convergence of the classical itera tive

methods for Ax = v. Again, for simplicity we will not be comp letely gen-

eral and will only consider some representative results .

2.B. Models of Parallel Computation

In order to read Sections 3-9 only a very loose conception of a vector-

oriented parallel computer is necessary . A more detailed description is

needed for the execution time comparison of methods in Section 10. This

subsection contains sufficient information for the initial part of the

text, while additional details may be found in Appendix A , [H3], [S3], and

the references given below.

Parallel computers fall into several genera l classes , of which we con-

sider the vector computers , namely those op~r.acing in a synchronous manner

and capable of performing efficient floating point vector operations. 



-~~~~

is

Examples are the array processor Illiac IV , with 64 parallel process ing

elements [B6], [Bl2]; the Cray- I, with eight 64-word vector registers [C8];

and the pipeline processors CDC STAR-lOG [C2 ] and Texas Instruments ASC

[Wl], which can handle vectors of (essentially) arbitrary length . These

machines have become important tools for large scientific computations ,

and there is much interest in algorithms able to make good use of special

machine capabilities . Details of operation vary widely, but there are suf-

fic ien tly many common features to make a general comparison of algorithms

possible.

An important parallel computer not being cons idered here is the asyn-

chronous Carnegie-Mellon University C. mmp ~~~~~ with up to 16 minicomputer

processors. Baudet [B7 ] discusses the theory of asynchronous iterations

for linear and nonlinear systems of equations , plus results of tests on

C . omip .

Instructions for our model of a vector computer consist of the usual

scalar operations and a special set of vector operations, some of which

will be described shortly. We shall consider a conceptual vector to be

simply an ordered set of storage locations , with no particular regard to

the details of storage. A machine vector is a more specialized set of

locations valid for use in a vector instruction , usually consisting of

locations in arithmetic progression. The CX STAR restricts the progres-

sion to have increment 1, which often forces programs to perform extra

data manipulation in order to organize conceptual vectors into machine

vectors .

We denote vector operations by a parenthesized list of indices. Thus

the vector sum w = x+y is 

_ .~ -----~--—-——— —.-~-_ -~~- _ .~- - - _ _ - -  -~- 
_



w . = x . + y~ , (1 � i � N)

if the vectors are in R
N
, the coinponentwise product would be

= x . X y
~~
, (1 � i � N ) ,

and a matrix multiplication C AB would be

-N
c. . a.k b ., (l � i � N ;  l � j �N) .

13 1. kj

Execution time for a vector operation depends on the length of the vector

and the internal mechanism of the vector computer , but can usually be

written in the form T N + c~ if the vector length is N. On a pipelineop op

computer , 1, T is the asymptotic re~u1t rate and is the vector instruc-

tion startup cost. On a k-parallel computer (one with either k paralleL

processors or k-word vector registers) the basic time would be t
op 

for k

operations in parallel and the vector instruction cost t N k~ + overhead.op

In eitaer case the TN + ~ mode l is adequate for vector operations ; scalar

operation times are given as t .  Simplified instruction execution times

fo r the CDC STAR-lOO are given below , in terms of the 40 nanosecond cycle

time . Usually ‘r << t << ~op op op

operation scalar time vector time

add , subtract 13 ~N + 71

multiply 17 N + 159

divide 46 2N + 167

square root 74 2N + 155

transmit 11 ~N + 91

maximum - 6N + 95

summation - 6.5N + 122

inner product - 6N + 130

- -  - .
~~~~~
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The use 01. Long vectors is essential for effective use of a vector

computer , in order to take full advantage of increased result rates in

the vector operations . The rather large vector startup costs create a

severe penalty for operations on short vectors , and one must be careful

to design algorithms which keep startup costs to a minimum. Scalar opera-

tions can also be a source of ineffic iency even when most of the code con-

sists of vector operations . Data manipulation is often an essential con-

sideration , especially when there are strong restrictions on machine vec-

tors . These issues and others are illustrated in our comparison of algo-

rithms in Section 10, which is based on information for the CDC STAR-l00.



8

3. L INEAR METHODS

The simplest approach to direct solution of a block tridiagonal linear

system Ax = v is block elimination , which effectively computes an LU factor-

ization of A. We discuss the process in terms of block elimination on a

general partitioned matrix under the assumption ii B[A]~ < 1; the process is

shown to be linear and stable. Various properties of block elimination are

considered , such as pivoting requirements , bounds on the condition numbers

of the pivotal blocks , error propagation in the back substitution , and

special techniques for special systems. Gauss-jordan elimination is studied

for its numerical properties , which foreshadow our analysis of the more impor-

tant odd-even elimination and reduction algorithms .

3.A. The LU Factorization

3.A.1. Block Elimination

The block tr idiagonal LU factor ization

A = (a.,b .,c )N 
= (L .,I,O)

N
(O ,d.,c.)N

is computed by

= b
1

d . b . - a.d~~1 c .1 , j = 2,... ,N,

L . = a.d~~1, j = 2,...

where the existence of d~~1 
is assumed and will be demonstrated when B [A]ji < ].~

For the moment we are not concerned with the particular methods used to compute

or avoid computing either or d~
’
1 ~~~~
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Let A 1 
= A and consider the matrix A

2 
which is obtained after the first

block elimination step . We have A
2 ~~~~~~~~~~ ~l 

= d
1 

= b
1
, 

~2 
= 0,

d
2
, ~ = a . and 3 . = b . for 3 j ~ N. Let B

1 BF A 1], B2 
= B[A9].

Note that B
1 
and B

2 differ only in the second block row; more specifically,

in the (2,1) and (2,3) positions.

Theorem 3.1. If it B1 t1 < 1 then It B~~ � ii

Proof. Let T = B1
E1 and let S = TB

1
. We have d

2 
= b

2
(I - b7

1
a
2
b
1
1
c
1
) ,

it b
2
1a~b~~c1~ 

= II s~ � II 51 11 ii E 1~ II B1~ = it B~~~ < I , so d2
1 exists and

is wel l -def ined . Also , B 1 
= (I — S)B

2 + T , B I t = (1 - S)B2 1 + T I by con—

scruction , and Z .(S) � ~ . (T) ii B1~ � R (T) . Thus Lemma 2.2 applies , yielding

H Bl i t .

Now , fo r any parti t ioned matrix the N s tages of b lock el iminat ion (no

block pivoting) can be described by the process

A
1 

= A

for i 1,... ,N—l

= (I — L[A.]E.D [A.] 1)A .

= (I + LIC [A .]]E.)A ..
L 1 1. 1

We transform A . into A .+1 by eliminating all the blocks of col umn i below the

diagonal; when A is block tridiagonal A
N is the upper block triangular matrix

(O
~
d
J~
c
J
)
N
. The same effect can be had by eliminating the blocks individually

by the process



A
1 

= A

for i = 1,. ..,N—l

- Ai+1 i

for j = i+l,...,N

A~~~ = I - E A~~~
1
~ E D ~~~~~~ ~~~~~~~~~~ i i+l ~ i+1 ~ / i+1

L = (I + E.C[A~~~
1
~ ]E .)A~~~~~

A
L.. i+l i+l~

Each minor stage affects  only block row j of the matrix. It is seen that

block row j of A~~1
1
~ block row j of A .,

block row i of ~~~~~ block row i of A .,i+l 1

f rom which it fol lows that

~~~~~~~~~~~~~~~~ ]
_ 1 

= E .A .E.D[A .
3 1+1 ]. i+1 3 ] . ]. 1

so the major stages indeed generate the same sequence of matrices A
~
. Let

B. B[A.].
1 1.

Corollary 3.1. If A is block tridiagonal and t i B 1 ti < 1 then B.
+1 t 1 � It B .J~,

1 � i � N-l.

The proof of Corollary 3.1 requires a bit more care than the proof of Theorem

3.1 would seem to indicate ; this difficulty will be resolved in Theorem 3.2.

We shou ld also note the trivial “error relations”

f~ ~~~~ - AN t I � A~ -

II B j +l 
- BN IJ � B~ - 3

N iI .



These follow from the fact that, for block tridiagonal matrices ,

i N
A . = E.AN + E.A
~ -

~=i ~ ~ 
I

,which holds regardless of the value of tt B l it
Wilkinson [W3] has given a result for Gaussian elimination that is similar

to Corollary 3.1, namely that if A is strictly diagonally dominant by columns

then the same is true for all reduced matrices and A .+l (reduced) (t 1 ~
A . (reduced) This actually applies to arbitrary matrices and not just

the block tridiagonal case. Brenner [B14 ] antic ipated the result but in

a different context.

Our next two theorems, generalizing Corollary 3.1 and Wilkinson ’s observa-

tion, lead to the characterization of block elimination as a norm-non-increasing
*projection method , and pr oves by bounding the growth factors that block

elimination is stable -when UB [A ]  it < 1. In addition , many special scheme s for

block tridiagonal matrices are equivalent to block elimination on a permuted

matrix, so the result will be useful in some immediate app lJcations .

Theorem 3.2. If tt B 1~j < 1 then B
~+i !t � it B~J~ and II A~+1 II ~ t i A~JJ for

I � i ~ N-I.

Proof. Suppose Ii B~~J~ < 1. We have

(I - L[A .]E .D [A .] 1
)A.

= A. - L[A.]E . + L[A. 1E .B .,
1 1 1 1~~~~ 1] .

o~~(A.1 )� ~~~~~ — L[A~ ]E1) + Q~~(L[A .]E~B .)

� ~~~~ — L[A~~E .) + 3~~(L[A .]E~) U B . II

*
The projections are onto spaces of matrices with zeros in appropriate positions. 

_— .  ~~~~~~~~~~~ 
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� p .  (A~ — L[A~]E.) + p . (L[A~ ]E~)

~° HA . H � II A .iI . Now leti+l i.

Q = D[A .]~~ L[A .]E .DiA .f
4
A .,

so A .÷l 
= A . - D[A .]Q, D[A .+i ] D[A .](I - D[Q]).

Let S = D [Q] .  Since

Q = (-L[B.]E.)(I - B.) _L[B~ ] + L[B . J E . B .,

S = D[L[B .]E .B.] and ii Sjj � LCB .]t I it Ej ~ ~~ � it ~~ 
2 
< 1. Thus

D[A .+11
1 
exists and B .÷1 

is well-defined . It may be ver ified that

(I - S)B.  = B. - S + Q. Let T = B . - S + Q, 3 = S + T = B. + Q. Since]. 1 1.

D[B~ ] = D[Q - SJ = 0 , we have D[T ] = 0 and 
~ 

= 1 s t  + TI . Thus, by Lemma 2.1,

J i i < 1 implies B~÷~Jj 
� II j i l  . But we have, after some algebraic manipula-

tion,

J = B. + Q

> E S .L~ k ik l

+ ) E B .( I  - E.  + E.B .),
1 11

and it follows from this expression that 
~J t � B

J JI . QED

Although expressed in terms of the N-l major stages of block elimination,

it is clear that we also have, for = B[A ~~~~] ,  ii ~~~~~ and

H ~4J) II � H ~~~~~ H . Moreover, as long as blocks below the diagonal are

eliminated such inequalities will hold regardless of the order of elimination.
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We shall adopt the name “linear method” for any process which generates

a sequence of matrices N. such that B[M.+i] H B[M.] ,
~ 

given that

ii B [M~~~I i < 1. Thus block elimination is a linear method.

A result  that is dual to Theorem 3.2 is the fol lowing .

Defi n i t ion .  Le ts  be the reduced matrix consisting of the last N-i+l block

rows and columns of A. . (€2~ = =

Theorem 3.3 .  If C[A~~~1 < 1 then C[a
~÷1] t t 1 � II Cr~~j 1 ii 1. I~~~1 U 1 ~

and LCC .]E~~H 1 
� C [ A ] j ~1, C~ = C P A . ] .

Remark. It is not true in general that 
~

. l ii i 
� C .j~1 

if C
1 1 t 1 < l.

Proof. Let the blocks of C. be c , 1 ~
. m , ~ 

� N. Then C[O~] ~~~~~~~~~~~

Let K (c + c  .c . ) .
mp ml ip l+l~ n,p~~I

k . .\/ ~÷l , i \
= (Cmp

)i+I~~~p~~ 
+ 

~~~Ni 
)(ci i+1 ... c~Q.

Us ing Lemma 2.4, ii C i&.~~1] I t 1 ~ ii K i t  1 if K it 1 
< ]

~

But N
(K) 

~~ i( E
k

C
~~~
.])q 

~~~~~~~~~~~~~~~ 
1

(c ~.+ i,

+ t~ ) ~~ ~~ (E .  C[Q.])

\cNj /

v (“ Ek C[~~~])
q 

~k—i+ 1

.4- Ii C[~~] I I 1 Vq (E jC[Oj ])

~ 
Yq
( 

Ek C[~~i~)



-

~~~~~

+ Vq (Ej C~~~ ])

= Vq(~~Zj
])
~

Thus K it 1 ~
. C[a~ ] i I 1< 1 and Cra.+1]t t 1 

� It C[(L]tt1 . By construction

this imp lies H L[C~~]E1 t i 1 � I t C [A]~~1 for 1 � i ~ N. Now , le t the blocks of A .

be a , 1 � m , p � N. Thena. = (a + c •a~ ). , and
nip i+l nip ml. ip L+l�m,p~~1

N

~ ~~~~~~ 
� v ( E .C4)

~ ~~ ---~~=~~~1 ‘

~+ 1,

+ Ii ( ) t I l\~q (E iQj)
\
~N i /

- N
q

= Vq (C4),
a. � h a . iti+l 1 1 1 QED

We note that if A is sytmnetric then C[A ]  = B[A ]
T 
and Theorems 3.2 and 3.3

become nearly identical. Of course , B and C are always similar since C a DBD 1
.

When A is positive de f in i te , C line [C3] has shown that the eigenvalues of ~~~

interlace those 
~~~~~~~ 

Actually, the proof depends on use of the Cholesky

factorization , but the reduced matrices are the same in both methods. In

consequence of Cline ’s result we have Il&i+1 11 2 ~ 
1
~~i

11 2
The statements of Theorems 3.2 and 3.3 depend heavily on the particular

norms that were used. It is not true in general , for example , that if

fl B[A 1] j~1~ < I then J~ B{A
2 ]JJ 1 

� i~ B[A 1] Il l or even B{
~~ ]ii 1 

� it Bi&~] 11. This

makes the extension to other norms quite difficult to determine.
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3.A.2 .  Further Properties of Block Elimination

It is well-known that the block factorization A = LAU is given by

N
= I - L L[C .]E .,

j=1 ~ -~

= D[&~], N
U I _ B

N
I _

L E. UEB~~].
jal

We have therefore shown in Theorems 3.2 and 3.3 that if ii C1 ~~ I then

II L i t 1 I + C1 H 1 < 2 , II ~~ � 1 -~ N n!t c1 1 t 1, n = max~ ~~ and U B
1 f < 1

then H u l t � 1 + L B 1 ~< 2, U11 1 
� 1 + Nn~ B1 1t . (For block tridiagonal

matrices the factor N can be removed , so Ii L II � 1 + ni t C1 1 t 1, ii U~~1 � 1 + ~tt B1 1t .)

Moreover , the factor izat ion can be completed without permuting the block rows

of A. The purpose of block par tial p ivoting for arbitrary matrices is to

force the inequality L[C .]E . � 1. Broyden [Bl5 ] contains a number of

interesting results related to pivoting in Gaussian elimination . In particular

it is shown that partial pivoting has the effect of bounding the condition

number of L, though the bound and condition number can actually be quite

large in the general case. We will have some more cousnents on pivoting after

looking at some matrix properties that are invariant under block elimination

(cf. [511]).

Corollary 3.2. Block elimination preserves strict diagonal dominance.

Proof. It fol lows from Theorem 3.2 that Gaussian elimination preserves strict

diagonal dominance: simply partition A into lxl blocks . Now suppose we have

and are about to generate A
j+l

. This can be done either by one stage of

block elimination or by n~ stages of Gaussian elimination, for both processes

produce the same result when using exact arithmetic [H8, p. 130]. Thus if A~

is strictly diagonally dominant, then so is Ai+1
. QED
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it is shown in [54] that Gaussian elimination maps C—matrices into

C-matrices . This can be extended in an obvious f ashion to the case of block

elimination. We also have

Corollary 3.3. Block elimination maps H-matrices into H-matrices .

Proof. Recall that A is an H-matrix if and only if there exists a nonsingular

diagonal matrix E such that A’ = AE is strictly diagonally dominant. Con-

sider the sequence

A~ A’ ,

= (I  - L[A~ )E. Dr A~ J
1)A~ .

Clearly A~ = A 1E; suppose that A~ A.E is strictly diagonally dominant. We

then have

A
~+l 

= (I - L[A .~ E E .E
1D[A .]

1)A~E

(I - L~A H E . D[A.3

=

so A . ÷i 
is an H-matrix s ince A’.+1 is strictly diagonally dominant by Corollary

3.2. QED

We have chosen to give this more concrete proof of Corollary 3.3 because

it allows us to estimate another norm of B [AJ when A is an H-matrix. Define

~j MII E ~ 
E ’~€II. Then since A’ = AE implies B[A’ ] = E 15[A]E it fol lows

that if A is an H— matrix then B [A i +l ] 1I E 
� j ( BEA i]II E

. Since the matrix B

will generally remain unknown this is in the nature of an existential proof.

The proof of Corollary 3.2 brings out an important interpretation of

Theorem 3.2. If block elimination is actually performed then our result 

-~~ - -~ “ ,.
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gives direct information about properties of the reduced matrices. If not,

and ordinary Gaussian elimination is used instead , then Theorem 3.2 pro-

vides information about the process after each n . steps. While we are not

assured that pivoting will not be necessary, we do know that pivot selec-

tions for these n. steps will be limited to elements within the d. block
1 1

for the block tridiagonal LU factorization. When A has been partitioned to

deal with mass storage hierarchies this will be important knowledge (see

Section lO.A) .

One more consequence of Theorem 3.2 is

Corollary 3.4. In the block tridiagonal LU factorization, if 
~ 
B1 tt < 1 then

cond(d .) ii dj~ d
~
1

it < 2 cond (b .) / (I - 
~1 tI 2 )•

Proof. Letting C . = b 1
a.d~~ c . , we have d . = b .(I - c .), ~~~ �3 3 j j—l j— l

B
i tt U BN t I � U B1 IF < 1 , so that ii djj � ii bj~ (1 + ~~~ < 2 t t  b .tt , and

tI d~~~h l � Ii b~
1

it ii (I - C~)
1

ii � II b~~~h l / (1 - C~h I ) � ii b~
1

tI / (1- ii B1 tl ~~ .
QED

It is important to have bounds on cond(d .) since systems involving d~

must be solved during the factorization. Of course , a posteriori bounds on

H d .’ii may be computed at a moderate cost. We note also that

cond(A) � max
3 
2 cond(b~) / (1 - ) when B1J1 < 1, and it is entirely

possible for the individual blocks b . and d~ to be better-conditioned than A.

The inequalities in Theorem 3.2 are the best possible under the condition

II ~1H < 1. This is because , for example, the first block rows of B1 
and

are identical. However, it is possible to derive stronger results by using

different assumptions about 3
~
.

- - -
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Theorem 3.4. [H4] For A a (a~ 7b .~c .)~ let X(A) = max .(4I1 b~~a . Ji it b~~1
c
~_ 1 H ) ,

e. = b .’d~ . If X(A) � 1 then 
~ 
I - ej~ � (1 - ~Ji~~)/2 and e~

1Ii � 2/(1 +

Some useful consequences of this theorem include better estimates for

~N
ti and a smaller upper bound on the condition numbers of the d .’S- For we

have B
N 

(0,0,-d .
1
c.) (0,0,-e)~b .

1
c .), which implies that

~ 
3N tI � 2~J TJ[B1] I i  / (1 + ~7i~~ ). As an example, if A = (1,3,1) then Theorem

3.2 predicts only II B~~J1 � )~ B1Jj = 2/3 , while by Theorem 3.4 we obtain

B.~jj � 2(1/3) / (1 + ~/l—4/9) 0.382. Also , it d~~~( ~ ii d~~bj~ Ii b ’ii =

I~~ti t~~ i I ‘2I~~~~jt, and I~~ dj~ + I~~iI i~~~(I - e~ +

it b .ll II ’ - ejil + it b~ i t ~ 311 b
~~!V2. It follows that cond(d~) hi d~

1
~! i~ it �

3 cond(b~). More precisely, cond(dj
) ~~(l + 2~~(~ ) )  cond (b~)~ u = (l- .9~~ )/(1+.7i~~).

This is further proof of the stability of the block LU factorization .

Theorem 3.4 has been used in the analysis of an iteration to compute the

block diagonal matrix (O
~
d
j~
O)
N [114]. Such methods are potentially useful

in the treatment of time-dependent problems , where good initial approximations

are available. This particular iteration is designed for use on a parallel

computer and has several remarkable properties ; for details , see [H4] and

Section B.E.

Two results on the block LU factorization for block tridiagonal matrices

were previously obtained by Varah.

Theorem 3.5. [Vl ] If A is block diagonally dominant (Ii b~
1

j~(J~. .j~+ I~~II) � 1)

and ii c~~ ~ 0, then Ii d~~ ii � II c~tr
1. II ~~II ~ II a~H / ii c~~~1 t i~ and

~f d~ Ii f~ 
b~ ~ 

+ a
j ii. 
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In comparison to Theorem 3.2 , the bound on H d~~~i ! corresponds to the

bound ii d ~
1c~ H< 1, which follows from t I B N II< 1, and the bound on ii d ~ h I

corresponds to the bound II A N H � h I A t t .  In contrast to Theorem 3.2 , B1t 1 <  1

only allows us to conclude H djjl � b .~~ / (1 - it B1~ 
2
), and we can only

estimate £ .~~ in the weak form L.c . 1 1h � it ajj d .
1
1
c .1 t 1 � i~ a.~~.

Varah’s second result is

Theorem 3.6. [Vi]  Let 
~~~

. = ( hi  b .
1
aj( b .

1
1
c .1 1 i )

l 2
, 2 � j � N, and sup-

pose ~y . 0. Then the block LU factorization of A is numerically stable

(i.e., there exists a constant K(A) such that max(ij £~It ,
~~ 
dj~ ) � K ( A ) )  if

is positive setnidefinite .

We note that 
~~j’

1’~ j— 1~ 
is a s3rmmetrization of (ii b~~

a
~ it, l~ LI b~

1c~~i~ 
)

and that X(A) � I implies that it is positive def ini te . The actual bounds

II 2~tt , d .j~ given by Varah [VI] for this case will not be important for

this discussion .

Since many block tridiagonal systems arise from the discretization of

differential equations , a number of results  have been obtained under assump -

tions closely related to the original continuous problem . Rosser [R7 ] shows

that if the system Ax = v, A = ~~~~~~~~~~ satisfies a certain maximum

principle then A is nonsingular, the LU factorization exists (each d . is non-

s ingular) , BN is non-negative and l E N t1 � 1. Improved bounds on B
N 
are

obtained when A is defined by the nine-point difference approximation to

Poisson’s equation. In particular there is the remarkable observation that

the spectral condition number of d . is less than 17 ’3. Such results depend

strongly on the particular matrix under cons ideration. For examp les of

related work , see [318], [Cl ] ,  [D2 ] .

_ _



3.A.3. Back Substitution

So far we have only cons idered the elimination phase of the solution of

Ax v. For block tridiagonal matrices A = (a
J
)b .

~
c
~
)N 

this consists of

the process

d1 
= b

1
, f1 

=

— 1 —l
d . = b . - a.d . c . , f . = v . - a .d . f .
3 j  3 j — 1  j — 1  3 3 3 j— 1 j—l

j = 2,.. .,N.

The back substitution phase consists of the process

— lx
N

d
N ~N

’

= d .1( f .  - c .x .~ 1
), j = N-l,...,i.

In matrix terms these are the processes

A
1 

A , f
(l) 

=

Aj÷i 
(I ÷ L[C .]E .) A ., ~ = 1,.. .,N—l ,

f
(L+1)

=(I + L[C~ ]E~ ) f ~~~, i =

g = = D[A
N]
’f
~~~

,

a g + EiBN 
(i+l) 

~ 
a N—i ,...,l,

(1)
X = X  .

An alternate form of back substitution is

~
(N) 

a

a (I + BNEj+l)x~~
+
~~, ~ 

a N—i ,...,l,

x (1)

414
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In either case it is seen that 5N p
lays an essential role in studying the

back-substitution process.

For those situations where a band elimination method for Ax = v might be

preferred , the matrix BN 
maintains its importance for back substitution . We

have A = ~~~~~~~~~ ~~~~~~~~~~~~~~~~~ d~ = ~~~~~~~ a~ 
a a

~
u
~_ l

) a~ = 

~~

where 2.(a.) is lower (upper) triangular. The elimination phase generates

vectors f~ 
= .Z.f ., and the back substitution computes x.~ 

= 
c

1

~N 
=

x. = ~~.
1( f .  - £.x . ) d.

1
(f. - c.x . ). Except for the specific form of

3 3 3 3 j-~-l 3 j  3 j+l

roundoff errors the band and block back substitutions must behave identically.

Let us briefly consider the effect of rounding errors in back substitu-

tion ; the computed solution will be y. x . + 
~~~

. and we require bounds on

* (1) *Suppose the computed forward elimination yields d. = d . + ~~~. , f . = f. +Z .V ..
3 3 .3 3 3 3

Let ‘
. represent the errors introduced in forming f~

” - c .y.÷1. so that y.

* (2) *satisfies (d~ + 5~ )Y~ = f~ - c~Y~~1 ÷ if ordinary Gaussian elimination

is used to solve for y. in d . y. = f . - c .y. + It follows that
3 3 3  3 3 3+1 .3

= d~~ (f ~ — c~~~÷1
) + where = d 1(m~ + — ( Ô ~~~~ + 5~

2)
)y

1
), which

imp lies — ~~~~~~~~~ Thus ii B~ il ii ~÷1 It + it ~~ 
and the

previous errors tend to be damped out in later computations if ii B N h t < 1. If

we have a uniform upper bound for the ~~‘s, ii ~ t l � € , and ii BN h t < 1, then

we obtain J~ ~~ ~ (N - J ÷ l) s~ ~ ~ 
(1 - II BN ir-

~
÷
~~

/ (1 - 
‘~ N ’~ 

<

3.A.4. Special Techniques

in some cases the matrix A a (a
1
,b .,c

1
) possesses special properties

that may be important to preserve in order to satisfy a strong stability

criterion. For example , we might have b
1 

= t
1 

- a
1 

- c
1 

where II t~il is small
or zero; this requires that all blocks be n x n. Scalar tridiagonal systems
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with this property arise from the discretization of second order ODE boundary

value problems . Babuska [31-3] has discussed a combined LU - UL factoriza-

tion for such a matrix which allows a very effective backward error analysis

to the ODE and a stable numerical solution of a difficult singular pertur-

bation problem posed by Dorr [D3]. (See [H7 ] for a symbolic approach to

this problem.)

There are two essential features to Babuska ’s method. The first is

to express b . and d . indirectly by starting with t~ and computing the se-

quence s = t , s . = t . - a .d~~ s . - By this we have d . = s . - c .. The1 1 3 j j j— l j— 1 j 3 3

second feature is to augment the forward elimination with a backward elim-

ination and dispense with the back substitution by combining the results

of elimination. Specifically , suppose A = (-p.,t . ÷ p. +

p.,q.,t . ~ 0 , = 0, A nonsingular . The algorithm for Ax = v is

s1 
= t1, f1 

a v1, s,~7 
= t

N~ 
f * = v,~,

S
i 

= t . + ~~(s.1 + q~_ 1)~~s~_ 1 ~

—1 j  =

= v , + p.(s1 1  
± q

1~ 1) ~~-1 
)

* * — 1 *t
1 

+ q.(s,~ , + p
1~~1
) 5

j+1 ~

* * —1 * ~ i = N— l ,...,1,
f = v + q.(s . + p . ‘ f .

3 ~ 
j j+I j+l j+l

* -l *x
1 

= (s~ + S
j 

— t
1
) (f . + f

1 
— v .), j =

In matrix terms , we factor A 
~~~~ 

A D 
-
~~ 

A~ 
a (I + L) (D + A,~) a (I -i- U )  (D* + ~~)

and solve (I + L)f v, (I + U )f ~ v. Adding (D + A)x = f,(D + A.t)x a

and _A
D
x _A

D
x we obtain (D + D - A

D
)x a f + f - Ax = £ + f - v.
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Babuska’s a~~orithm has some unusual round-off properties (cf. [M3])

and underf low is a problem though correctable by scaling . It handles small

row sums by taking account of dependent error distributions in the data,

and thus fits into Kahan’s notion that “conserving confluence curbs ill-

condition” rKl] .

To see how the method fits in with our results , we note that , for n = 1,

since p .,q .,t . � 0 we have s
1 

� 0, s~ = t~ + p .d 1
s~~~1 

� t~~. Thus the row

sums can only increase during the factorization . On the other hand , they

will not increase much since s~ t~ + 
~~~~~~~ 

+ q. 1)
1
s . 1 ~ ~~ + p~~.

These are analogues of the results in Theorem 3.2.

3.B. Gauss-Jordan Elimination

An algorithm closely related to block elimination is the block Gauss-

Jordan elimination

A
1 

= A ,

A~÷1 
= (I + C[A~ 1E~ )A ., ~ a I ,. - .,N.

This avoids back substitution in the solution of Ax = v since A
~÷i 

is block

diagonal. The rest of the Gauss-Jordan process is

~(i+1) (I + C[A~~]E~ )~~~~~, ~ a l , .. ., N ,

a c.~ 
~ (N+l)

Theorem 3.7. Let B . a B 1A .~~. If a1~i < I then A .+1 11 ~ II ~ l t and

for i 1,.. .,N.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Sketch of Proof. The proof parallels that of Theorem 3.2. Note = B
1;

suppose ii Bj~ < 1. Let F . = L [A .]  + IJ [A .] ,  so that A .41 
= (I - F.E .D[A .]

1)A .

= A. - F .E . ÷ F .E .B.. This will show the first part. Now define

Q D[~~.i
1
F.E .D[A .]

1
A., so that A.41 

= A . - D[A.]Q, DCA .+I] = D[A .](I - S),

S = D[Q]. We have Q (- B.E .) ( I  - B .) = - B .E . + B .E .B ., so s = D[B.E .B .]
1]. 1 1 1  1 11  1 1 1

and it s ii  � Ii Bjj2 < 1. Also , (I - S) B .
÷1 B. - S + Q. Let T = B. - S + Q,

J = S ÷ T, so that t~! si + T i , and Lenzna2.1 applies if II J i I< 1. But

J = B . ( I  - E. + E.B.), so i t ~~ � Ii s~ji. From Lenuna 2.1 we conclude

ii ~i+i ti � it JU - QED

When app lied to block tridiagonal matrices the block Gauss-Jordan algo-

rithm requires many more arithmetic operations than the block LU factoriza-

tiorl, and cannot be recoimnended on this basis. However, it has some numer-

ical properties that foreshadow our analysis of the more important odd-even

reduction algorithm .

The Gauss-Jordan elimination on block tridiagonals may’ be expressed in

the following way :

d
1 

b
1

for j = 1,... ,N-l

—1u = -d . c.
1 3 3

d b + a u
j+1 1+1 j+1 1

for k = 1,... ,j— I

uL k,j+l kj
e
11+ 1 

= c
1

In this form the matrix A is

L ‘ - - - -“~~~~~~~---~~~~~~ ~~~ _ _ _
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j— 1 3— 1 ,3
0 d . c .

3

a . b . c .j+1 j+I j+1

a
N 

b
N

with A..
~Hl 

= diag (d
1
,d2 , .  .. ,dN) 

= DEA N ], BN+l 
= 0.

We observe that, f or 1 � 
~ 
<j +k � N, _d

~
1
e
~ j+k 

= u
~
u
~+1

. - .Uj+k.. l~
which is the (j,j + k) block of B~ . Thus we are able to refine Theorem 3.7

by giving closer bounds on the first i-i block rows of B..

Corollary 3.5. If IIB 1II < 1 and (point) row 2 is contained in block row
j with 1 � j � i-i , then

-d~~e .j( ~ 
B~~

3

If (point) row 2 is contained in block row j with i � j � N, then

= P2
(B~) � it B~JI -

This is our first result on the convergence to zero of portions of a

matrix during the reduction to a block diagonal matrix. It also provides

a rather different situation from Gauss-Jordan elimination with partial

pivoting applied to an arbitrary matrix [P1]. In that case the multipliers

above the main diagonal can be quite large , while we have seen for block
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tridiagonal matrices wi th H B
1 t1 < 1 that the multipliers actually decrease

in size.

3.C. Parallel Computation

We close this section with some remarks on the applications and inher-

ent parallelism of the methods ; see also [113]. When a small number of

parallel processors are available the block and band LU factorizations

are natural approaches . This is because the solution (or reduction to tri-

angular form) of the block system d .u . = -c . is naturally expressed in

terms of vector operations on rows of the augmented matrix (d .i- c .), and

these vector operations can be executed efficiently in parallel. However,

we often cannot make efficient use of a pipeline processor since the vec-

tor lengths might not be long enough to overcome the vector startup costs .

Our comparison of algorithms for a pipeline processor (Section lO.C) will

therefore consider the LU factorization executed in scalar mode . We also

note that the final stage of Babuska’s LU-UL factorization is the solution

of a block diagonal system , which is entirely parallel.

On the other hand , the storage problems created by fill- in with these

methods when the blocks are originally sparse are well-known. For large

systems derived from elliptic equations this is often enough to disqualify

general elimination methods as competitive algorithms . The block elimina-

tion methods will be useful when the block sizes are small enough so that

they can be represented directly as full matrices, or when a stable implicit

representation can be used instead.
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4 - QUADRAT IC METHODS

In Section 3 we have outlined some properties of the block LU factor-

ization and block Gauss-Jordan elimination. The properties are character-

ized by the generation of a sequence of matrices >1. such that

ii B[M.÷1]~j � B[M~]~~. From this inequality we adopted the name “linear

methods”. Now we consider some quadratic methods , which are characterized

by the inequality H BIM . +1 ] i I  � B [M~ ]~~jt .

There are two basic quadratic methods , odd-even elimination and odd-

even reduction. The latter usually goes under the name cyclic reduction ,

and can be regarded as a compact version of the former. We will show that

odd-even elimination is a variation of the quadratic Newton iteration for

A
1
, while odd-even reduction is a special case of the more general cyclic

reduction technique of Rageman and \iarga [Hi] and is equivalent to block

elimination on a permuted system. Both methods are ideally suited for use

on a parallel computer, as many of the quantities involved may be computed

independently of the others [1-13]. Semid irect methods based on the quadratic

properties are discussed in Section 7.

4.A. Odd-Even Elimination

We f i r s t  consider odd-even elimination. Pick three consecutive block

equations from the system Ax v, A (a1,b . ,c1
):

ak l
X

k_ 2  
-‘ b

k ~~~ i 
+ Ck lX k = vk l

(4 ~1) akXk l  
+ b

k
x.K + 

a Vk

+ bk 1X K+1 + Ck+lXk+2 
= Vk+ 1

If we mult ip ly equat ion k-I  by _a,Kb~~ l, equation k+1 by _ c
kbk÷l, and add , the

resul t  is
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— l
(_akbk_ lak l)x k_ 2

+ (bk - akbk~lck_ l  - ck
b
k÷l

a
k+l
)
~~

(4 .2)  -1
+ (

~
ck

b
k÷l

ck+l)xk+2

= (vk - 
ak

b
k~ l

vk_ l 
- c

k
bk+lvk l ).

For k = I or N there are only two equations involved , and the necessary

modifications should be obvious . The name odd-even comes from the fact

that if k is even then the new equation has eliminated the odd unknowns

and left the even ones. This is not the only possible row operation to

achieve this effect, but others differ only by scaling and possible use of

a matrix commutativity condition .

By collec ting the new equations into the block pentadiagonal system

H2x = 
~~~~~~~~~ it is seen that the row eliminations have preserved the fact

that the matrix has only three non-zero diagonals , but they now are far ther

apart. A similar set of operations may again be applied , combining equa-

tions k-2 , k and k+2 of H2 to p roduce a new equation involving the unknowns

X
k 4 ~ 

Xk and ~~~~~ These new equations t ’rm the system H3x = v~~~.

The transformations from one system to the next may be succ inct ly  ex-

pressed in the following way . Let H
1 A , = v, m log., N~~, and define

H . = (I + C [H . ‘) H . ,
1. - L

a (I + C[H
i
))v

~~~
, i = l ,2,...,m.

B lock diagrams of the H sequence for N = 15 are shown in Figure 4 . la . The

di s tance between the three non-zero diagonals doubles at each stage until

the block diagonal matrix H~~ 1 is obtained ; the solution x is then obtained
- 1 (n*l)by x R ~~ 1v

- _________4 



Figure 4.la. H., ial ,. ..,m4-l; N a ~5

Figu re 4 . lb . H . ,  i 1 , . .  . ,m9.l; N a 16
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We note tha t the same elimination princ ip le may be app lied to matrices

of the per iodic tridiagonal f orm

1 
a
1

a2 b2 c2

* 
a3 b3 c3

A . . 
-
.

~~~ l bN ;  c
N l

c
N 

a
N 

b
N

It is only necessary to include row operations that “wrap around” the matrix ,

such as

— l — lrow(N) - aN
b

N 1 row (N-l) - cNb l row(l).

An H sequence for N a 16 is diagramme d in F igure 4 . lb , and is constructed by

the same general rule as before , though there are serious and interesting

complications if N is not a power of 2.

Clearly,  we can define an H sequence for any partitioned matrix A , and

only have to establish conditions under which the sequence may be continued.

In fac t , the sequence iIB [H
~ ]l t is quad ratic when H B[A]ll < 1.

Theorem 4.1.  If B [A] < 1 then B{H~41)Jl � ii B {H . ] 2 
and ii H~÷1 it � II HjI .

If II C[A] 
~~ 

� 1 then H CEH~÷1] ll~ � II C{H~ ]
2 

~~ 
and H~÷1 ~~ 

� H~ li~ -

Proof. We have H 1 A , Hj +i = (I + CtH~ DH1 
a (2 1 - HiD[H i] 

1
)H.

2H~ - H~~D[H~~~] 
1

H~~ 
a H~ (2I — D [H j ] ’Hi) H~ (I + B[H~ ]). Suppose ii B[H~ ]tt < l~

II C[H~ ] ~~ < 1. These assumptions are independent of one another and will

be kept separate in the proof .  Since H~ D [H~ ] (I  - B [H ~~~]) (1 - C [H~~~1) D [H ~~~],

we have D[R~ ] ( I  - BtH~ ]2 ) — (I — CtH~ ]
2
)Dt H~ ]. Setting S
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T a D{C [ H. ] ], we obtain D[H .+11 = D{H.](I - S) ( I  - T) D [H~ ]. Since

it s it � it B[H~
]2 Il < 1~ T t 1 1 ~ it CEH~ ]2 tI i

< I, and D[H~ ] is invertible ,

it fo l lows  that D{H.+1 1 is invertible. We have B[}1.1 ] = I - DIH .+i ]
l
H.+i

I - (I - S) 1D [ H . ] 1D[H.)( 1 - B [ H . ]
2), so B[H . 1 2 

a (I - S ) B [ H . +i ] + S;

similarly CEH~ ]
2 

= C[H.÷1] ( I  - T) + T. Now , S is block diagonal and the

block diagonal part of B[H.+i] is 
null , so B[H.]

2
1 = (I - S)BEH .+1 ]t + J s f .

Lemma 2 .2  now app lies , and we conclude if B[H.÷1]t l � f t B [H.1~~f f . Leunna 2.4

implies that U C [H~~ 1] fi~ ~ C[H~~]
2 f f 1. To show H~~~ U U H~ H

U B [H. JII < 1, write H.41 
a D[H .}(I - D{H~~ ] 

1(D [H . ]  - F L ) 3 1 H . J )  = DIlL )

N
+ (H. - D [H.~~) B [ H . ) .  We then have , for 1 ~ 2 �

1 i. 1 
~~j l  -~

(H .1 ) � ~~(D1H ) + ;~ (H. - D [H~~~ II B [H.~~J j

� 
~z~~

1HiP + ~2(H. — D [H~~])

a o
2 ( H . )

To show H H~~ 1 JJ ~ ~
. H.j f 1 if c

~ H.)i !1 
< 1, write H.~~1 

= (I — C[H.](D[H.) — H~
) x

D [H~~] 1) D 1 H . ] a D[H.] + C[H.](H~ - D i l L ] ) .  We have

� v 2 (D [H .])  + I~ C[H.] ~i2
(H . — D [H .~~~)

� ~v 2 (D f H . i )  + Y ,z
(H . - DEH~ 1)

= v (H.). QED
L i

For a block tridiagonal matrix A we have 3[H
~~1

] = 0 since H~~1 
is

block diagonal; thus the process stops at this point. The proof of Theorem

4.1 implicitly uses the convexity- like formulae

= H. BEH~ ] + D [H~ ](1 - B[H~ ])

= C [}1
~~ 

H
1

+ (I  - C E H ~~ 1) D I H ~~~]. 

-
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As with Theorems 3.2 and 3.3 , it is not d i f f i cu l t  to find counterexamples

to show that Theorem 4.1 does not hold for arbitrary matrix norms. In

pa rticular , it is not true that j B[A ] 11 2 < 1 implies f ( BCH2]f~~ � H B[H1]
2

or even that H B[H
2]1t 2 

< 1.

The conclus ions of Theorem 4.1 are that the matrix elements , considered

as a whole rather than individually, do not increase in size , and that the

off-diagonal blocks decrease in size relative to the diagonal blocks if

It B[A]~ < 1. Th e ra te of dec rease is quadratic , though if f B [ A ) t t  is very

close to 1 the actual decreases may be quite small init ial ly. The relative

measure quantifies the diagonal dominance of ~~ and shows that the diagonal

elements will always be reiativcdy larger than the off-diagonals. One con-

clusion that is not reached is that they will  be large on an absolute scale.

Indeed, consider the matrix A = (-I ,2+e,-l), for wh ich the non-zero diagonals

of H. are

(_l
~2+e~~

_l) I

= ~~ 5k+l 
= 4

~ k + €k -

For small e the off-diagonal  elements wi l l  be about 2 1-i and the main diagonal

elements about 2 2
~~ in magnitude. While  not a seriou s decrease in s ize ,

periodic rescaling of the main diagonal to 1 would perhaps be desirable.

As already hinted in the above remarks , a more refined estimate of

II B E H~+I ] II  may be made when dealing with tridiagonal matrices with constant

diagonals [S2] .  Let A (a ,b ,a) ,  so that



_ _ _ _  -_- - ~~~~~
__- ~~~~~~~~~ -~~~~~- --~~~~‘

a 

b
~2:

2 1b 

~
:

2a 2
~~~. . 

~~2 

b 2
2

b O  ~~~~~~~~~~~~~~

.

-a2 b 0 b
2-a2 , ’b I

It follows that when 2t a I < f b f , i~ B[H21 11 = 2fa
2

”b f ” ~b—2a
2/b f = f t

1( 2  - B[H1]
2

11 ) , and thus ~f f BrH 1~~~f i < B[H
2]j~ < If B[H1]~~I - Note that

H2 does not have cons tant diagonals , nor will any of the other H matrices ,

but most of the rows of H., are essentially identical , and it is these rows

which determine II B[H~ ]~ J . This property will be important for the odd-even

reduction algorithms.

When A = (a ., b ., c
1
) is block diagonally dominant, we can write

H. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ = it (b ) 1Ikt ~ii ÷
a max . Without proving it here , we can show that if < 1 then

(i+l) (i)2 . - . . . - (1)� 3 - An irreducibility condition plus S � 1 yields the same

conclusion .

We also note that if A is symmetric then so is T-i~~, i � 1, and thus

B[H~ ] fi C[H~] U1.

Theorem 4.2. If A is block tridiagonal and positive definite then so is H.,

j 1, and ~ (B [H~ ]) < 1.

Proof. First  we observe that  each H~ is a 2-cyclic matrix [V3 ] since it can

be permuted into block tridiagonal form . Suppose that Hi is positive def in i te .

Since D~ D [H~ ] is also positive def in i te , there exists a positive defini te

matrix E~ such that D~ — 4. Let H i 
a E~

1
HjE~

1
, SO ~~~~~ E~

1H~~ 1E~ ’a 
~~~ - ~~ ; 

~~~~~~~ - - -~~~~~~~~~~
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and H~41 are positive definite iff H. and Hi+l are positive definite .

Since H. is a positive definite 2-cyc l ic matrix , we know from Corollary 2

of Theorem 3.6 and Corollary 1 of Theorem 4.3 of {V3 ] that P(B.)< 1, 
~~~

. I - ii

Since B . = I - D .
1

H~~ E. B .E.,  it follows that p (B.) < 1 also,. Let X be

an eigenvalue of HL. Then — l < l-X < 1 since P ( B
~~~

) < 1, and so we have

0 < X < 2 and 0 < 2X - � 1. But 2X — is an eigenvalue of H
i+1 

= 2H~~_ 4,

which is therefore positive definite . QED

Any quadratic convergence result such as Theorem 4.1 calls to mind the

Newton iteration. If ~(Y ,Z) a Y(2 1 - ZY) = (21 - YZ)Y , is any matrix

with I - ZY~~
°

~ ~~~~~~ I for some norm J~- ~~ and ~l(Y (1) 
,Z ) ,  then

converges to Z 1 if it exists and (I - zy~~~~~ ) a (I - ZY~~~ ) 2 [H8] .

It may be obse rved that H. 41 
a 

~(H. ,D[IL ] 1) ,  so wh ile the H sequence is not

a Newton sequence there is a close relation between the two. Nor is it

ent i re ly unexpected that Newton ’ s method should appear , c f .  Thn [Yl]  and

Kung [1(2] for other occurrences of Newton’s method in algebraic computations .

Kung and Traub [1(3 ] give a powerful unification of such techniques .

The Newton iteration ~~~~~~ ~~Y~~~,z) is effective because, in a

certain sense, it takes aim on the matrix Z~~ and always proceeds towards it.

We have seen that odd-even elimination applied to a block tridiagonal matrix

eventually yields a block diagonal matrix. The general iteration

H i÷i 
a 

~t(H~~D {H~ ] 1) incorporates this idea by aiming the i-~~ s tep towards

the b lock diagonal matrix D {H~ ]. Changing the goal of the iteration at each

step might be thoug ht  to destroy quad ratic convergence , but we have seen

that it s t i l l  holds in the sequence I I B [H~]IJ .

_ _ _ _   -
~~~~~~

- ---
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4 .B .  Variants of Odd- Even Elimination

There are a number of variations of odd-even elimination , mostly dis-

cussed originally in terms of the odd-even reduction. For constant block

diagonals A = (a,b ,a) with ab = ba , Hockney [H5 ] multiplies equation k-l

by -a , equation k by b , equation k+l by -a , and adds to obtain

2 2 2
(
~
a)x

~K 2  + (b 
- 2a )xk + (-a )xk+2 

= (bvk 
- avk l  - avk l ) .

This formulation is prone to numerical instability when app lied to the dis-

crete form of the Poisson equation, and a stabilization has been given by

Buneman (see [B20]  and the discussion below).

With Hockney ’s use of Fourier analysis the block tridiagonal system

v is transformed into a collection of tridiagonal systems of the form

(_1
~ X._l) (s~) (t .), where X � 2 and often X >> 2. It was Hockney ’ s obser-

vation that the reduction , which generates a sequence of Toeplitz tridiagonal

(i) / (i)matrices (-l,X ,-l), could be stopped when 1, X fell below the machine pre-

cision . ~nen the tridiagonal system was essentially diagonal and could be

solved as ‘~iuch without damage to the solution of the Poisson equation.

Stone [S2], in recommending a variation of cyclic reduction for the

parallel solution of general tridiagonal systems, proved quadratic conver-

gence of the ratios l/X ~
1) and thus of the B matrices for the constant

diagonal case. Jordan [Jl ],  independently of our own work [1-12], also extend-

ed Stone’s result to general tridiagonals and the odd-even elimination algo-

rithm. The results given here apply to general block systems , and are not

restricted solely to the block tridiagonal case, though this will be the

major application .



46

We now show that quadratic convergence results hold for other formu-

lations of the odd-even elimination; we will see later how these results

carry over to odd-even reduction . In order to subsume several algorithms

in to one , consider the sequences = A , v ,

F~ (2D[H.] -

— (i+1) 
= F~ (2D[H~ ] — H

~
)G
1
V(’

~

where F. . , G . are nonsingular block diagonal matrices. The sequence H. cor-

responds to the choices F . I, G. D[H.] 1.

In the Hockney-Buneman algorithm for Poisson’s equation with Dirichlet

boundary conditions on a rectangle we have

T TA (a ,b ,a ) ,  ab = ba , a = a , b = b ,

F . diag (b~~~), G. = D [H .J
1
,

~~~ = b , ~~~~~ ~~~~ — 2a~~~
2
,

( 1) ( i+l) ( i)2
a = a , a

Sweet [Sli)  also uses these choices to develop an odd-even reduction algo-

rithm. We again note that the H
~ 

matrices lose the cons tant diagona l prop-

erty for i � 2, but symmetry is preserved. Each block of H . may be repre-

sen ted as a bivar iate ra tional function of a and b; the scaling by Fi en-

sures that the blocks of block rows j2 i of H i+j  are actually polynomials in

a and b . In fac t , the diagonal blocks of these rows wi l l  be b~~~
1
~’ and the

(i+ 1)non-zero of f - d iagonal blocks wil l  be a

Swarztrauber [S6] describes a Buneman-style algorithm for separable

el l ipt ic equations on a rectangle. This leads to A — ~~~~~~~~~~ where the

blocks are all  n x n , and aj  ~-i~I~~ b~ T + 
~j

In~ 
C
j 

Vj~~~ In this

case the blocks comute with each other and may be expressed as polynomials

:fl

~

r V

~

r

~

F -
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in the tridiagonal matrix T. Swarztrauber’s odd-even elimination essenti-

ally uses F . = diag(I (bc1~~..l, b~~~j.l))
*, bc~~ 

= I for j � 0 or

j � N + 1, C . = D[H.]
1
. Stone [S2] considers a similar algorithm for tn -

diagonal matrices (n 1) but with F~ diag (b~~~~..1 bc~~~ .1) , G. D[IL)

Note that symmetry is not preserved.

In all three cases it may be shown by induc tion tha t a F
~
. . .F

1
H .

41

— (i-i-I) (1.4-1) . . .and v = F. ...F1
v - These expressions s ignal the ins tabil i ty  of

the basic method when F. ~ I [B20). However, in Section 2.A we showed that

the B matrices are invariant under premult ip licat ion by block diagonal

matrices , so that B [lL ] B [H . ] .

The Buneman modifications for stability represent the ~~
‘ ‘

~~~~ sequence by

sequences ~~~~~~~~ q
(~~ with = D[H1.]p~~ + q~~

),. Defining D . =

= - 

~~L ’ ~~ 
= D [Q .G~Q .] and assuming D.C .Q. = 

~~~~~~ we have

(1) (1) —(1)
p O , q  v a v ,

~(i÷l) (i) 
+ B~~(~~~

(i) 
+

q(~+l) 
~~~~~~~~~~ + ~~~

(i+l)
)

Theorem 4 .3 .  Let P 1 
= I, P. = B[ H . 1]. - .B [F11], i � 2. Then = (I -

= (D
1.
P~ -

Remark. Although not expressed in this form, Buzbee et al. [B20J prove spe-

cial cases of these formulae for the odd-even reduction app lied to Poisson’s

equation .

Proof. To begin the induction , a 0 (I - P 1
)x , q~~~ v H1x

a (D1P1 
- ~ 1

) x .  Suppose ~ (i) (I - ~P~)x , q (i) 
~~~~ 

- ~~~~~ Then

*LCM leas t coum~on multip le of the matrices cons idered as polynomials in T.

— 
- - ~~fl rn-ni -Thi;~~~~~~r t~~~~i ~~ -r -- -
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(i+l) 
= — P1) x +  b~~ (~~~(I - i’. ) x  + (B~P~ -

a - 

~~~ 
+ 

~~~~~~~~~~~ 

- BT 1
~~~~~. ÷ B:

1
B.~~1. 

-

= (I - B{H~
)P i)x

= (I -

(i+1) - (i+1) - (i+1)and q v

= - D .
41

(I - ~ . 1 )x

= (D .  - Q . - D. + D. P. )x
i+l i+1 i+l i-i-i i+l

= 

~~i+l~
’i+1 

- QED

We note that when C. D [ñ . ]~~ and ~ = B[A]~ < 1 then f~.f j a < ~

and 
~k~~ i

1’
i 

- 
~ ~~~~~~~~ ~i ii” ÷ ~~~~~ ~ ~~~~~ 

+ °k~
Q
~~ 

= Pk
(H
i
) ,  ~~

it - ~~ � U ~L H .  It also follows that l ix  - p~~~ H It l x i i  and

q + Q . x t j  � f~ 
D .P~~ ,c i~ - Thus p will be an approximation to x ;

Bu zbee [ 517 ] has taken advantage of this fact in a semidirect method for

Poisson ’ s equation .

4.C. Odd-Even Reduction

4.C.1.  The Bas ic Algorithm

The groundwork for the odd-even reduction algorithms has now been laid.

Returning to the original derivation of odd-even elimination in (4.1) and

(4.2) , suppose we collec t the even-numbered equations of (4.2) into a
(2) (2) (2)linear system A x = w , where

A~
2
~ ~~~~~~~~~~~~~~~~~~~~ a2~ b~~~ 1c2~ _ 1 -

(x2 j
)
N 

. - ~~~~- -~~~~~~~~~~~~~~~ -—~~~~ 
.— - -
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(2) — l — l (2)w = (v2. - a2 .b2 .  1v2 ,  1 
- c2.b2.+1

v2.+l
)N 

= (v2~ ~N2
N
2 

LN/2J .

This is the reduction step, and it is clearly a reduction since A~
2
~ is half

( 1) (2) (2) (2) (2)
the size of A A. Once A x w has been solved fo r x we can

compute the remaining components of a 
~ by the back substitution

x2~~1 b 
1(v2 .1  - a2. 1x2 .2 

- c2 . 1 x2 . ) ,  j  = ~~~~~~~~~~~~

Since A~
2
~ is block tridiagonal we can apply this procedure recursively

to obtain a sequence of systems A~~~x~~ ~~
( 1 )

, where A~
1
~ = A , ~~~ = v,

= (xj2il )N , N
1 
= N, N i

+l ..,N. ’2 .  We write ~~~ 
= (ac ,bc

~~~
,cc

~~
) N

xc~ a x~2~ _ i . The reduction stops with A (m)X(m) = ~
(m) m = ~log2 ~~~

(note the change in notat ion) s ince A (m) cons ists of ~ single block. At

this poin t the back substi tut ion begins , culminating in x~~~ a x.
Before proceeding , we note that if N = 2m_ 1 then N~ = 2~~

4i 
- ]• The

odd-even reduction algorithms have usually been restricted to this particular

choice of N , but in the general case this is not necessary . However , for

A (a,b ,a)
N 

there are a number of important simplifications that can be

made if N = 2”-l [520]. Typically these i-wolve the special scalings men-

tioned earlier, which effectively avoid the inversion of the diagonal blocks

during the reduction.

It is also not necessary to continue the reduction recursively if

(k) (k) (k)A x = w can be solved more e f f ic ient ly  by some o ther method . This

leads to various polyalgorithms and the semidirect methods of Section 7.

By the way in wh ich A~
1.
~ has been constructed , it is clear that it

consists of blocks taken from H~ . For examp le , in Figure 4 .la , A~
4
~ is

_ _ _  - --- ---— - - 
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the (8,8) block of H
4
. It follows immediately that ii A~~~ II H H~ II

B [A
~

1.
~ ] I I  � B [H . ]~~, and C[A~~~ ] I J 1 � ii C [H~~~] f I 1 . As a corollary

of Theorem 4.1 we actually have

Corollary 4.1.  If B [A ] l I < 1 then B [A~~~~~~] i l  � II B[A(~~ ]2~ j and

j~ ~~~~~~ H ii ~~~ ~f .  If H C[A ] 11 1 < 1 then ~ C[A~~~
1
~ ] i~ � C[A~~~ ]

2 
~

and ~~~~~~ ~ 
� 

~~~ f i~
Recalling the definition of Theorem 3.4, let X(A) = max .(4l

1a . Iitl b ~~1c .1 ii ).

Theorem 4.4. If X(A ) � 1 then , with = X(A~~~ ) ,  we have

x
(i
~~
) � (X~~~/(2 - x (i)))2

Proof. It will suffice to consider i = 1. We have

= b ( 1- c )j 2j 2j

c a b a  b c - a -b c b a2j  2 j  2j  2 j — l  2j— 1 2 j  2 j  2j+l 2j+ 1

(2) — la a _ a  b aj  2j 2j—1 2j—1’

a -c b ’ c
j  2j 2j+1 2j+1’

b;~~ 2 . li ft b~~ 1c2~ _ 1~ 
+ ii b2~41a2 .~~1 b~~ c2 .  � 2 (X/4) = ~~ 2,

� (1 - V 2 )
1 

= 2’ (2 -

(2) 
b~

2
~~
’ (2)4 

.,~ 

aj  j - l  Cj_j

� 4 ff(1 - a
2J
)
’i t tI ( l - c2 J 2

) 1 i1 (ii b2~
a2 . I i  lI b ~~~1

c2j1 tl )

- (Ii b2 . 1a2 j  l it It b2~ 2
C2. 2 11 )

�4 ( 2 ~ 2 - \))
2
p 4 )

2 
- ~~

‘ (2 -

Thus � (X~
1
~/(2 — X~

’
~)Y QED



This may be compared to earlier results for constant diagonal matrices,

which gives an equality of the form ~(2) a B
2/ ( 2  - $2)~ See also Theorem

4.8 of [‘/3].

4.C.2. Relation to Block Elimination

By regarding odd-even reduction as a compac t form of odd-even elimina-

tion we are able to relate it to the Newton iteration for A 1
. It is also

possible to express the reduction al gorithm as block elimina’ion on a per-

muted system (PA P
T) (?x ) = (Pv~ (cf. ~Bl1], [E3

1 , [W2~ ) . In Section 5 we

show how this formulation also yields quadratic convergence theorems .

Sp ec i f i cal l y ,  let P be the permu tation matrix which reorders the vector

(1 ,2,3 ,.. .  , N ) T so that the odd multiples of 20 come first , followed oy the

odd mu ltiDles of 2 1
, the odd multiples of 2 , etc . For N = 7 ,

P(l ,2 ,...,7~
T _ (~~,3 ,5,7 ,2 ,6,4) T, and

b
1 c1

PAPT a 

(a2 ~ 

b
5 

b
7 

::
a4 :: ~6 b

6

The block factorization of PAPT a LU is

--
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/
1

/ I

I I

L a  
I

a2b~~ c2b 1 
I

a6b~~ c6b;
1

= 

b
3 

a
4
b~~ e

4b;
l 

:: 

~~~~~~~~~~~~ c~
2
~~(b~

2
~ ) 1 

:
1

b~
2
~ c(2)1 1

(2) (2)b3 a3

b 
(3)
1

If we let b c 1.)  
~~~~~~~ be an LU factorization with L(u) lower (upper)

triangular then the ordinary LU factorizat ion of PAPT L ’U ’ is

_______________________
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/
/

1 

L3

/ £
5

L’~~~ £7
-l -1 (2)a u  c u  £

2 1  2 3  1

\ -l -l (2)a6u 5 c6u 7 23

a4u;’ c4u~~ 

-l 

a~
2
~~(u~

2
~ ) 1 c~

2
~~(u

2
~ )~~ 4~

u 1 £1 C
1

-l -l
u3 

£
3
a3 

£
3 c3

—1 —1 -
~

U’ = 
U

5 
£
5
c
5 

2~ a5

u7 27 a7

~~
2) (2~

2))1c~
2’) I

(Z ~
2
~ ) 1a (2) 1

(3)
U
I

This factorization gives rise to a related method , first solving L’z = Pv,

then U’ (Px ) a z. It is easily seen that ~~~ — (Lc ) 1
~~~ -

We may now apply any of the theorems abou t Gaussian or block elimina-

tion to PAPT and obtain corresponding results about odd-even reduction and

the above modi f icat ion . In particular , Theorem 3.2 app lies though its

conclusions are weaker than those of Corollary 4.1. It fol lows from the

PAPT a factorizat ion as wel l  as Theorem 4.2 that ~~~~ wil l  be positive

definite if A is; Theorem 4 .2  also allows the conc lusion that p( B [A ~~~ ]) < 1.
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The odd-even reduction is also a special case of the more general

cyclic reduction de f ined by Hageman and Varga [Hi]  for the iterative solu-

tion of large sparse systems . Since PAPT is in the 2-cyc l ic form

PAPT = (D1

\.
\
A 21 D

2 ,J
and D

2 
block diagonal , we can premultip ly by

( I _A
19
D
;~~~~

’

\

~.<
A21D

i

1 
I

to obtain

(D1 - A 12 D
2

1
A 21 0

0 D
2 

- A21D 1
1
A
12)

It is clear that A~
2
~ = D

2 
- A21D 1

1
A 12 and (D1 - A 12D2

1
A21 , 0) are the rows

of H2 that have not been computed as part of the reduction . In consequence

of this formulation , if A is an M-matnix then so A (i) and

]) < p (B[A~~~]) < 1 [Hi].

The block LU factorization PAP
T 

= L&J , where ~ is block diagonal and

L(U ) is unit  lower (upper) triangular , dete rmines the reduction and back

subst i tut ion phases . Norm bounds on L and U were given in Section 3 .A .2

for  general matrices with B [A J II < 1. For bloc k tridiagona l matrices in

the natu ral ordering we have II L it 1 
� 1 + ii C {A ]1I 1 , L II � n i l C [A ]i~~ ~~

I t C [A) 
~~~ ., 

< 1, u ( f � 1 + 3 [A] i~, II uH 1 � 1 + n ( ~ B[ A]  ii H B [A] < 1,

n = max . n . . For the permuted block tridiagona l system only the bounds on

II L II and u li 1 wil l  grow, and then only logarithmically. By the construc-

tion of L and U ,

- 
-
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Lit 1 
� 1 + max C[A~’~ ] ff

1 �i ~~

II Lf~ � 1 ÷ 
~~~~~~ 

if CEA~~~ ] ii ,

II u~~1 � i + 
~ H B [A~~~~]t i 1,
1=1

f l u  � 1+ max f~ B[A~~~ ]!i.
l�i~ n

Since C[A
(L)
) is block tridiagonal , P z(C[A~~~

]) � 2ni! C[A

it C[A~~ ]i t � 2n tt C[A~~ ]lI ~ ; similar ly II B [A~~~ fl 
~ 

� 2n hi B[A~~~ I f -

H B [A ]Jf < 1, J~ CrA] I1 
~ 
< 1, we then have

it L tt ~ 
� 1 + f C [A ]t1 1

II L it � 1 + 2mm ~ C rA ]ii 1
,

H u j j
1 

� I + 2nm Ij  B [A ]ft ,

� 1 + f t N [ A ] f I .

Much like the proof of Corollary 3.4 we also have , if B [A ]fJ < 1 ,

~~~~~~ b~~~~(l -

ltc~~ Ii ii B [A~~~ ]
2 
H~

so i ib ~~
t
~~~

) Ii f f b~~~ 11 (1 + si) ’ $
~ 

= ii B [A~~~ ]
2 
~

(i+ 1)(b~ )
~

l
lI � ii (b~~)

1 l! - ‘ (I  -

and cond(b~
t4-
~~) ~ cortd(b~~~) ( l  + S~) / (1 -
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Since our interest is in bounding cond (b c~~~’~ ) in terms of cond(b
k
), we

must s impl i fy  the above expression. Let K
1. ~~~~~~ + S.)/(1 - B.), so

that

cond(bY4-1
~ ) � [max~ cond(bk)JK .

by induction. Us ing � 
~~~~ 

we obtain

� 

~~=i (
~ 
+ S.)/(l —

= (1 + $. ) / [ ( l  - 9
1~~~~j= 1~~~ 

-

< (1 ÷ ~~)/(1 - 
~~~~~~~~~~

This is a rather unattractive upper bound since it may be quite large if

is close to 1. Actual ly ,  the situation is not so bad , since

(i) 1 (i) “ 1ii < ~il B[A ] = 
L ’ and

~~ + B
cond(b ci4-U) < [max.~ cond(bk) ]  

~=i ~ -

If X(A) � 1 then II � X~~~~2 \
( i)  

= X(A~~~) , and

COfld (bci÷~~) � [max~ cond(bk
) ]  

~~=i 
+

� 3 max,~ cond (bk
).

When A is positive definite it follows from various eigenvalue- interlacing

theorems that cond(b~
t
~) < cond (A~~~) < cond(A).

4.C.3. Back Substitution

Now let us consider error propagation in the back substitution. Suppose

(~~ 1) 
~~~~~~~~ + ~1~~~

1) , I � k � N~÷1~ defines the computed solution to
( i+ 1.) (1+1) (i+1)

A x — w , and we compute

_ _ _ _ _ _ _ _ _ _  

_ 
-~~~~~~ -----~~--~~~~~~~~~~~~- —-—~~~-
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(i) 
(b~~~ )~~1 (i) 

— ~~~ 
(i+ 1) 

— c (i) ( 1.4-1))2 j — 1  (w 2~ _ 1 2j— 1 ~j — l  2 j — 1  ‘j

2j—1 ’

(i) 
= 

(i+l)
~2j ~j -

Then 
~~~~~ 

-

a (b~~~ )~~1 a (i) _ ( i+ 1) 
— (b~~~~ )

~~~1 c (t ) ç(i+l)
2j—l 2j—i ~j—l 2j—1 2j— 1 ~

j
+ 5

(i)
2j—l’

= ~( i+l)
~2j j -

Now define the vectors

z1 
= (~~ (i)  0 , ~

(i) 
~~, )T

z = (0 ~(i+l) 
~ ~(i+l) )T

We have z
2 U = f t by construction, and 

~(i) = 
~~~~~ + z1 + z2 ,  B(i) B [A~~~~].

But in consequence of the cons truction we actually have

H 
( i )  

� max ( B
~~~

Z2 + z i II , II Z 2

If ~f BE A ] ii <1 then ff s~~~ z2 Ii II ~(1.) li ft Z2 ~i ~f z2 1
Suppose e and e ’1

~~j i � e for all i a 1,. .., m — l .  Then

~ 
(i)  

� max ( t~ 
~(i) li ii Z 2 it + it z1I f , H Z2 It )

Ii z2 H +  It
a f~ 

(i+l) 
+ ~~( i)  J f

� (m - (i+l) + 1)e + e (by induction on i)

a (m — i + 1)c,

_ _  _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -- -~
_ _ _
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and ~~1) j~, the error in the computed solution of Ax v , is bounded by

me , in = riog
2 

N + ii. This is certainly a satisfactory growth rate for

error propagation in the back substitution. In fact, it is a somewhat

pessimistic upper bound, and we can more practically expect that errors in

(i+l) (i+l) (i+1) .the solution of A x = w will be damped out quickly owing to

the quadratic decreases in H

4.C.4. Storage Requirements

On the matter of fill-in and storage requirements , we note that block

elimination in the natural ordering of A , as discussed in Section 3.A , re-

quires no additional block storage since there is no block fill-in . However ,

it has already been seen that odd-even reduction does generate fill- in. The

amount of fill-in is the number of off-diagonal blocks of A
(2)

,...,A
(m)

,

whi ch is 2(N . - 1) < 2N. S ince the matrix A requires 3N - 2 storage
i 2

blocks , this is not an excessive increase. Of course , we have not cons~c~ ~ed

the internal st ructure of the blocks , as thi s is highly depe ndent on the

specific system , nor have we considered temporary s torage f or intermediate

computations.

We do note , however , that if the factorization need not be saved , then

some economies may be achieved. For example , in the transition from A~
’
~

to ~~~~ the first equation of A~
2
~x~

2
~ 

= ~~~ is generated from the firs t

(1) (1) (1) . .three equations of A x w . The f i r s t  and third of these must be

saved for the back substitution , but there is no reason to save the second

once A~
2
~x~

2
~ — w~

2
~ is formed. Thus the first equation of A~

2
~x~

2
~ ~~~

(1) (1) (1)
may overwrite the second equation of A x a w - Similar considera-

tions hold throughout the reduction , but some modifications are needed on

the CDC STAR-lOO due to its restrictions on vector addressing (see Section 1.0.S).
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The special scalings of odd-even reduction for systems derived from

separable elliptic PDE’s allow implicit representation of the blocks of

A
(i) 

as polynomials or rational functions of a single matrix variable .

Since the blocks of A are quite sparse this is necessary in order to limit

intermediate storage to a small multiple of the original storage . Unfor-

tunately, there does not seem to be a similar procedure that can be applied

to nonseparable PDE’s. The only recourse is to store the blocks as dense

matrices , and on current computing systems this will limit them to small

sizes.

4.C.5. Special Techniques

Now suppose that A = ~~~~~~~ + p~ + q
3
, -q.), p .,q.,t . � 0, p

1 q~~ 0;

we would like to apply Babuska’s tricks for the LU factorization (Section

3.A.4) to the factorization indi.ced by odd-even reduction. This only par-

tially succeeds . First , we can represent A~
2
~ = (—pc2~~,t~

2
~ + ~ç2) 

+

where

(2) 
= b

1

~‘2j  2j-1 ~2j-.l~

a + p2~ b~~~ 1 t2~~ 1 
+ q~~. b~~~ 1 

t
2~~~1

,

(2) —1
= q

2~ 
b2.4-1 

q2.4-1,

b
k 

t~~+ p ~~+ q ~~. -

Note that t2~ ~ ~~~~ � b2 . .  On the other hand , the techniqu e o f avoiding

the back substitution by comb ining the LU and IlL factorizations of PAPT

wil l  not work. Let A ’ PAPT = (I + L) (D + U) = (I + U*) (D* 
+ L), (I + L~ = Pv ,

* * * * *(D + U) (Px ) f , ( I  + U ) f  Pv , (D + L ) (Px ) f , so that

* * *(D + D - D [A’ 1) (Px) = f + f - (L + D [A’ ] + U) (Px).

_ _  _ _  -- --~~--~~~~-~~~~~ -“ -~~- - -  -- -~~~ --— --~~~-- -~~~- --—— -~~-- - --- 
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*The only way to have A’ a L ÷ D [A’ ] + U is if no fill-in occurs in

*
either factorization , in which case L = L [A’], U = U[A]. In particular

f i l l - in occurs in odd-even reduction , so the method does not work in its

entirety . However , it wil l still be advantageous to do the reductions by

developing the sequences . (See [Si] for some examp les.)

Schr~der and Trottenberg [Si] also consider a me thod of “total  reduc-

tion” for matrices drawn from PDE’s and finite difference approximations

on a rectangular grid. Numerical s tabi l i ty  and further developments are

discussed in [Sla]. The total reduction is similar to odd-even reduction

(which is derived in [Si]  by a “partial reduction”), but just different

enough to preven t the application of our techniques. Part of the problem

seems to be that total reduction is more closely related to the PDE than

to the matrix , though the algorithm is expressible in matrix form. Various

convergence results are undoub tedly obtainable , but we have not yet deter-

mined the proper setting for their analysis.

4.D. Parallel Computation

Finally,  the u t i l i ty  of the odd-even methods for parallel or p ipeline

computation has been demonstrated in severa l studies [H33. Stone [S2],

Lambiotte and Voigt [L2] ,  and Madsen and Rodrigue [Ml] discuss odd-even
*

reduction for tridiagonal systems , and conclude that it is the best method

to use when N is large (~, 256). Jordan [Jl] considers odd-even elimination,

which is shown in [Ml]  to be most useful  for middle ranges of N (64 < N < 256)

on a par t icular pipe l ine computer , the CDC STAR-100 . For small values of

N the sequential LU factorization is best, owing to the effect of lower order

terms engendered by the pi peline mechanism.

*The basic method given here is a bloc k analogue of the me thod examined in [L2) .
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The inherent paral lel ism of the odd-even me thods is in formation of
(i+l) (i+l) (i-1-l) (i-1-l)the equations of A x = w or H. x a v and in the back

i+i

substitution for odd-even reduction. It is readily seen from (4.2) that

H2 and may be computed from H1 and v~
1
~ by

compute LU fac tors of b
k~ 

(l � k � N)

solve bk [~~ 
C
k 

V
k] 

= [ak Ck vk ], (1 � k � N)

b~
2
~ - b

k 
- akck 1 

- C
k
a
k÷l, (1 

� k � N)

(2 )
V

k 
— Vk - 

~~
V
k l  

- c
k
vk+l , (1 

� k ~ N)

(2)
a
k 

— a.R
ak l ,  (3 � k � N)

(2)
— _ C

k
C
k+l, (1 � k � N - 2)

(Special end co ndition s are handled by storing zeros strategically or by

(2~ (2)shortening vector length s s l i g h t l y .  A and w are computed by only gen-

erating new equations for even k; the back subs titut ion is then ra ther
(2)st raightforward once x is computed .

The algorithm for odd-even reduction , N = 2
m_ 1 , all blocks n X n ,

m+i— iN = 2 — 1, is as follows : for i = 1, .. .  ,m—1i

compute LU factors of ~~~~~~ (0 � k � N )
i+ 1

(1.) (i) (i)solve b 
~l[a2k+l C2k+1 w2k÷ 1] = [a 2k+l C2k÷ l w2k+l ], (0 � k � N.

~~~~~~ 
(i) (i) ~ (i) ~

k 
a b2k - a2k C2k_ l 

- C2k a2k÷ l , (1. � k � N )i+ 1
(i+1) (i) (i) (i)

w
k 

a W 2k 
- a2k w2 k l  - C2k W2k+ 1~ (1 � k � N )

i+ 1

(i+1) (i)a _a
2k a2k l, (2 � k � Nj+i)

(i+l) (i)
C

k 
a _ C

2k C2k+ 1~ 
(1 � k � N . - 1)i+l

—- ~~~~~~~ -- -~~~~- --- --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(m) (m) (m)solve b x w

for i a

(i) (i) (1.) (i) (i+1) (i) (i-i-i)solve b x = t w - a  - c ‘
~ ‘0 � k ~~~N2k+l 2k+1 “ 2k-i-i 2 k-i-i Xk 2k+1 X

k÷l ~~ i+l

The ith reduction and corresponding back substitution uses

(14 n
3 
+ O(n

2
))N.

+1 
- 12n3 arithmetic operations , and the total operation

count for the algorithm is (l4N - i2tn)n
3 
+ O(n2N + n3) .  This may be com-

pared to L4Nn
3 
+ O(n

2
N + n

3
) operations for solution of Ax = v by the LU

fac torizat ion.

*
For a crude estimate of execution tr~e on a pipeline computer , we

take TN + 0’, T << C’, as the execution time for operations on vectors of

length N, ard t, T << t << a’, as the execution time for scalar operations

[H3]. The total execution time for odd-even reduction would then be

roughly (124n
3 
+ O(n

2))(TN ÷ am) + O(n 3t) ver sus (4 n
3N + O(n2N + n

3))t

for the LU factorization done comp letely in scalar mode . A qualitative

comparison shows results similar to the more precise analysis given to

tridiagonal systems: for a fixed value of n, odd-even reduction will be-

come increasingly more effective than the LU factorization as N increases.

Odd-even elimination should maintain its utility for moderate values of N;

the factor TN + am is replaced by (TN + a’)m, but data manipulation is often

much simpler than in odd-even reduction. The actual crossover points be-

tween algorithms are implementation dependent and will be considered to

a limited extent in Section b .C.

A critical observation on the execution time of odd-even reduction is

that roughly 50~ of the total time is spent in the first reduction from

*A more detailed timing analysis is in Section b. C and Appendix B.

_ _ __
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~~~~ 
a A to ~~~~ Special efforts to optimize the algorithm by solving

the reduced systems dif ferent ly must take this fact into account. Further-

more, in timing each reduction it is seen that roughly 60~ of the high-

order term n3N comes from the matrix multiplications used to compute

and 30~ from solving the 2n+1 l inear systems for a2k+I~ etc. Relative ly

l i t t le  e f for t  is used to factor the ~~~~~~ or to make back substi tutions
.1

hav ing saved the factorizations .

The use of a synchronous parallel  computer creates some cons traints

on implementation which are not so important on a sequential computer.

The first restriction in the interests of efficiency is that the blocks of

A should all be the same size.  This al lows simultaneous matrix operations

( facto ring , ecc . )  to be p rogrammed withou t resorting to numerous spec ial

cases due to varying block sizes. In addition , p ivoting causes ineffi-

c ienc ies when the pivot selections differ between the diagonal blocks .

As with the LU factorization , the assumption it B [A ]ff< I only guarantees

that no block pivoting is needed. If A is strictly diagonally dominant

or positive definite , then no pivoting within the blocks will be required .

Third ly, the choice of data structures to represent the n~atrices and

vectors must conform to the machine ’ s r equiremen ts f or the parallel or

vec tor operations . This is an important problem on the CDC Star owing

to its limitations on vector addressing and allocation [Li]. When A is

restricted to having small blocks this is not as serious as it would be

otherwise. In the case of the Illiac IV, the problem of data communica-

tion between processing elements must also be cons idered .

_
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4 .E .  Summa ry

We now summarize the results of this section. The odd-even elimina-

tion and reduction algor ithms may be safely appl ied to the solution of

certain block tridiagonal linear systems , and in some cases various impor-

tant quantities invo lved in the solution decrease quadratically to zero.

The quadratic convergence may be explained by expressing the methods as

Newton- b ike iterations to compute a block diagonal matrix . Variations of

the basic methods, which have important applications to POE’s, also dis-

play quadratic convergence. Parallel computation is a natural format for

these methods , al though practicalities place some restr ictions on the

type of system that can be solved e f f ic ient ly .  

~~-- ——--—-——-~~--~--- - -
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5. UNI:FICATION : ITERATION AND FILL- IN

Having presented several linear and quadratic methods , we now treat

them in a unified manner as particular instances of a general nonstationary

i teration. We are also lead to an interpretation of quadratic convergence

in terms of matrix f i l l - in, and conclude that the odd-even methods are the

only ins tances of the general itera tion wh ich disp lay quadratic convergence.

These results apply to arbitrary matrices satisfying ff B [ A ] J J < 1 and not

only  to the block tridiagonal case.

Let uc fi rst collect the formulae for the block LU factorization ,

block Gauss-Jordan , and odd-even elimination .

LU: A
~÷i 

(I - L[A1.]E~D[A~~~
’)A., A 1 A.

GJ: 
~i+l = (I - (L [A .] + U [A . ~)E.D [~~.] 

1
)A., 

~~ 
= A.

OE : H
1.~ 1 

= (I - (L[H
1.
] + U1H .])t [H.]~~~)H., H1 

A.

Now consider the function F(X ,Y,Z) = (21 - XY) Z , and observe that

A .+i 
= F(D[A . ] + LrA ,]E. , D[A . 1 1

, A.)

= F(D[A . ]  + (L[A .] + U [ A . ] ) E . ,  D [A . ] 1, ~~
= F (H~~ D [H~ ]

1
~ H~)

Thus it is necessary to ana lyze sequences based on repeated applications

of F.

For fixed nonsingu lar I’ we can define the residual matrices

r(M) a - MY , 5 (M) a - YM , so F(X,Y,Z) = (1 + r ( X ) ) Z  and

r (F (X ,Y ,Z ) )  = r (Z)  — r ( X )  + r (X) r (Z) ,

s(F (X ,Y ,Z) )  a s(Z)  — s(X) + s (X)s( Z ) .
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By taking x a z and assuming that r(Z 1) < I or H s(Z 1) H < 1, the s ta-

tionary iteration = F (Z 1.,Y,Z1.
) converges quadratically to Y 1

. This

is , of course , the Newton it eration .

The related operator G(X ,Y ,Z) = Z + X ( I  - YZ) Z + Xs(Z )  has pre-

viously been s tudied as a means of solving linear systems [118]. When

11 
= X , 

a G(X ,Y ,~~ )~ Bauer [B8 ] observes that  r (~~.~~1
) = r(X)r(~~.),

a s ( X ) s ( Z .) , Z. = (I - r (X)5Y 1 
= Y

1(I - s (X )
1.) ,  Z j+k — G(Z k, Y ,Z .) ,

and in par ticular = ~~~~~~~~~~~ This last formula also leads to the

Newton iteration , for G(Z ,Y ,Z) F ( Z ,Y ,Z ) ,  5 ( ~~9 .~ =

In this section we s tudy the nonstationary iteration = A ,

Z , F(X .,Y.,Z . ) ,  where Y. = D[Z ] l 
and X . consists of blocks takent+i i i i i 1.

from Z ., , including the diagonal. The selection of blocks for X~, is al-

lowed to change from step to s tep , but we shall assume that the selection

seq uence is predetermined and wi l l  not be altered adaptively. (The cost

of such an adaptive procedure , even on a h ighly pa rallel  computer , would

be prohibitive.)

For the solution of a linear system Ax v we take (Z 1,v 1) = (A , v ) ,

(z i÷1~ 
v .÷i

) = (2 1 - X .Y~
) ( Z j ,v .) ,  w ith the sequence ending in or approach-

* * * *_l *ing (Z ,v ), where Z is block diagonal. Then x Z v • One necessary

condition for co nsis tency is that 2 1 - X~~Y1 I + r .(X ~ ) be nonsingular ,

which holds if and only if p(r
1.

(X
1.

) )  < 1. Since r . (X 1.) and s 1.(X~
) = I - Y~~X~

are similar we could also assume p( s 1(X . ) )  < 1. Us ing earlier notation ,

r- .(X1.) C [X ~ ], s
~~(X 1.

) = B[X~ ]; the no tation has been changed to provide

greater generality . In the context of an iteration converging to a block

diagona l matrix , the condition ii B t A ] I j  < I (implying s 1(X 1) 1 � ~ 1
(Z

1
) H < 1)

states that A is suff icient ly close to a particular block diagonal matrix ,

‘unely D[A] .  

-
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We f i r s t  generalize earlier results on linear methods ( I t s . ( Z . )  ii < 1 ~

Il 
~~+1(~ 1.÷~~ 

s1.(Z 1.) ~j ) and then determine conditions under which we

obtain a quadratic method ( j J  s.(Z
1)JI < 1 

~ 
si+1(2 i÷l)II � ii s. (z.)ii~).

Theorem 5.1 In the sequence = F( X .,Y ,Z .) ,  suppose tha t

[(p,p) ii � p � N) c T. c r(p,q) Ii � p,q � N ) = u,

x. = E Z .E , Y. = D [Z .] 1
,

i. ‘l p i. q i

s , (M)  = I — Y ,M.
1 1

Then s
1
(Z

1) j< 1 implies

H s~+1(Z~+1
) Ii si(Zi+l

) ii s .(Z.\

Proof. Suppose s.(Z.) < 1. Define Q by Z
~ i-1 

Z . - D[Z.]Q, so

Q = -Y .Z . + y.X.y.Z . = -s .(X.) + s .(X.)s.(Z,). Since D[s.(X.)] = 0,

S = D[Q] D[s~~(X~ )s~~(Z~ )J. Since s
1.

(X~) ~~~Ep
s
1.
(zj)E

q~ t s 1(x~ ) Ii � 

~~~ 
Ii

and II s it H s .(Z.) (
2
< 1. Thus D[Z.+i] D[Z.] (I - S), Y~÷1 

= (1 - S)~~~~.,

and s.(Z.
÷i

) = (I - S)s .÷i
(Z .

+i) + S. Lemma 2.2 applies , so that 
~
.(Z.

÷i
) 1< 1

implies s
~+i (Z .+i

) II (I s~~(Z .÷1) ~
. Bu t s

1.
(Z~~ 1

) = S
~

(Z
1.
) + Q =

s~~(Z~ ) - s 1.(X~) + s~~(X 1.
)s~~(Z~) = ~~~

Ep5i
(Z

i
)E

q + Z~~
Ep

5
i

(Z
i

)E
q
S
i

(Z
i
)
~

T~ 
= U - T , so

1 i

� Pj
(~~~~Ep

S j (Z j)Eq
)

+ O
j(~~~

E
p
S
i

(Z
i

)E
q
) i s1.(Z 1.

) II
�

3 1 1 .

Thus s .( Z ~~ 1
) 

~ ~ 
s . (Z ~ ) H < I. QED .
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To see when the method is actually quadratic , we first estab l ish that

at least some blocks of sj+i
(Z
1.+i
) are bounded in norm by s . ( Z ~ ) 11 2

Corollary 5.1. With the hypotheses of Theorem 5.1 ,

~~jEp
sj~1

(Z j~ 1)E
q II � H s1.(Z~

) 1
2

Proof. From

( 5.1) (I — S) s
~+1(Z 1.+1) + S = s .(Z .) — s .( X .)  + s 1.(X 1.)s . (Z 1.) ,

S = D[s j (X 1.) s . ( Z
~

) ] ,

and E (1 - S) = (I - S)E , we obtain

(I — S) ~~~~~ 
~i+l~~~i+l~~~q 

+ S

E... E s .(Z.)E - Z... E s .(X.)El i p i i q l
i

p i i q

+ Z... E s (X .) s . ( Z . ) E  -i i. i i. q

But L E s .( Z . ) E  = s .( X . )  = Z... E s ( X . ) E
i i q 1 1 l

i
p i 1 q

so (I - S) 
~r

E
p 
5
i+i

(Z
i+i

)E
q 

a Z~~E~ s1.(X~ ) Sj(Z j) E
q 

- S. By Lemma 2.1 ,

Z~~E~ 5 j41(Z j~1)E q II � Z~~5~ 5
~ 1.)s~ i)E q H � ii s1.(X~

)s 1.(Z
~

) ~~ (Z~
) i t 2 .

QED

In certain cases Corollary 5.1 provides no useful  information , s ince

we could have Z~~E~ s j +i (Z j+i)E q 
— 0. Block elimination is one example

where this occurs . However , it is seen that if we are to have l~~1.+i(Z~+i
)

s~~(Z~ ) 11
2 then we must have

(5.2) Z
T
,E Sj~ 1

(Z j~ 1
)E

q H � II s j (Z i) 11 2.

This is certainly true if T , ia the null set , in which case we are generating

_ _ _ _ _ _ _  ~~-—-~~~

- 

~~~~- -- - -
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the H~ sequence , so we shall assume that T~ is non- empty and show that

(5.2) w i l l  not hold in general.

We set one f ina l  condit ion on T . for notat ional  purposes , though it

turns out to have practical consequences : if it is true that E Z .E a 0p i q
for any starting matrix Z 1, then (p ,q )  must be in T.. For examp le , we

now write the Gauss-Jordan algorithm as

F(D[A~ ] + (L~A~~ + U~ A 1.
]) (~~~ .1E .), DIA~ ] 1, A . ) .

Inclusion in X. o f all blocks in Z.  known to be zero clearly will not
1 1

affect the sequence z~ a F(X .,Y .,Z .~~. With the additional conditioni+l i i. 1.

on T .,  it fo l lows that if (p ,q )  ~ then E pZ iE q can be zero only by

accident , and not by design .

Corollary 5.2. W ith the hypotheses of Theorem 5.1 , only the choice T’ = a

yields a quadratic me thod for arbitrary starting matrices Z
1
.

Proof. Suppose that T’. ~ 6. Following the proof of Corollary 5.1, we

obtain

(I — S) .rEp ~ i+ l i+l~~ q
= ~ ,E s.(Z.)E + ~

‘ ,E s.(X.)s .(Z.)E
~r . p  i q “T~~~ 1 1 i i q

which implies , by Leimna 2.1,

~~~~~ 5 j +j (Z i+i )E q il
Z E s.(Z.)E + S + Z... E s . (X .) s .( Z . ) E  HT~~ p 1. i q l~~ p i i i i p

The presence of nonzero 1st order terms (~~ ,E s1.
(Z

1.
)E ) in general dominatesq

the 2nd order terms (S + Zr~
E p S j (X 1.) S j (Z 1.)Eq )~ and we cannot conclude that

(5.2)  wi l l  hold for arbitrary Z 1 sa t is fying 
~ 

s 1(Z 1) 1< 1. QED
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Now let us consider what happens when bloc k f i l l - i n  occurs , as it

will during the odd-even algorithms for block tridiagonals. For the o f f -

diagonal @,q)  block, p ~ q, we have EpZ j E q 
= 0 bu t E

p
Zi+iEq ~ 0. Since

Z. = 2Z. - X .Y.Z., E Z . E = E X .(-Y.Z.)E = E X S ( Z . ) E  , andi i i i  p i+l q P 1  i i q  p i  i i  q

ii E~Z~÷1E~ 1I � II E~,X~JI II Sj(Z
1.

)E
q il From (5.1) and E

p
SE

q 
= 0, we have

(I — S) E~ 5j+1
(Z
j+1

)E
q 

= E~ s~~(X 1.
) S

1.
(Z j)E

q~ 
which implies H E si+i (Z .+1

)E II
fi S + E~, s~~(X 1

) 5 j (Z j )E
q Ii � II s

~~
(Z
~
) 1

2
. (We cannot conclude that

E~ Si+i (Z
i+i

) E
q tl � s .~~1(Z .~~1) j 2 , however . )

As shown by these inequalities , f i l l - in produces small off-diagonal

b locks of when s . ( Z . )  ii < 1, and the corresponding blocks of
are quadra tica lly small with respec t to s

~~(Z~
) .  Thus one source of quad ra-

tic convergence is from block fill-in during the process = F ( X . , Y ., Z .) .

In summary , we now have two explanations for quadratic convergence in

the odd-even methods when appl ied to block tridiagonal matrices . The first

is that the method is a variation of the quadratic Newton iteration f or

A 1. The second is that , in going from H.  to H .41, all  the non-zero off-

diagonal blocks of H. are eliminated and all the non-zero off-diagonal

bl ocks of H . i  arise from block fill-in . Each block of B[H.
13 is there-

fore either zero or quadratic in B[H.].

_ _ _ _ _ _ _ _ _ _ _ _ _
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6. HIG}~~R-ORDER ~~ThODS

For Poisson’s equation , where A a ~~~~~ b , -I), the choice N = 2
m 

-

leads to considerable simplification in the Bunetnan odd-even reduction

algori thm . The mos t impor tant  properties are A (1) 
a (-1 , b

(1) 
-I)

(constant block diagonals) and the expression of b(1) as a polynomial in

b. However , in some app lications other choices of N are much more natural.

Sweet [SlO]  therefore described a generalization of odd-even reduc tion

which could handle these cases and still preserve constant block diagonals

an d a pol ynomial representation. Bank’s generalized marching algorithm

1B 5] for  Poisson ’ s eq uation uses one step of (very nearly the same) gen-

eralized reduction in order to control the stability of a fast marching

algorithm . This technique is analagous to multiple shooting methods for

ordinary differential equations .

In this  section we anal yze Sweet ’ s method as yet another variation

of odd-even reduction , and show that it possesses higher-order convergence

properties . The algorithm actually considered here yields Sweet’s method

through a suitable block diagonal scaling , and hence our results carry

through much as before . It must be emphasized , though , that the methods

of this section are not intended as practical methods for general block

tridiagonal systems . Rather , our purpose is to elaborate on the quadra-

tic properties of odd-even reduction by showing that they are special

cases of convergence properties for a famil y of methods .

6.A. p-Fo ld Reduction

The idea behind the generalization of odd-even reduction is to take

a block tridiagonal linear system involving the un1n~owns x1
,x2,. - . ,  and
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to produ ce a new , smaller block tridiagortal system involving only the

unknowns x ,x Once this system is solved , the known s x ,...p 2p p

are back-substituted into the original equation s to compute the remaining

unknowns. The entire process will be called p-fold reduction ; odd-even

reduction is the case p = 2.

Let p � 2 be a given integer , and define N2 
= 

~~/pJ . Starting with

Ax v we generate the reduced system A~
2
~ x~

2
~ = ~~

(2)
, where

A~
2
~ = (ac2~ , ~~~~ cc2

~L~ , 
= (x .)

N 
, and the diagonal block bç2~

has dimension n .. For 1 � k � N + I , define

c::: 

~~~~~~~~~~~~~

- •::j: b~~~~~~~~~~~~~~~~~~~

When kp- 1 > N , either extend Ax = v with tr ivia l equations or let be

redefined as a smaller matrix using the ava i lable blocks of A. Next , re-

parti t ion A to have diagonal blocks

A
1
, b , .:. ,, b2 ,  ..., bN , 

~~~2
+l

and call the new system K5~ = ~~~. Three adjacent block rows of K are thus 



- 

I

(0 ... 0 ak ) ( b
k 

(c
k

O . . . O )

~~+l 

)C
kL)~~~~

The a-fold reduction is obtained by performing a 2-fold reduction on K ,

and the back substitution is obtained by solving the system

/ 
Xkp~~~l 7vkp~~~l\ ,~

a
kP_P÷l 

Xkp_~~

/ \~~ 
0

)
\Xkp 1 / ~~~kp- 1 

/ \ckp_ 1 
Xkp /

By taking

/~~ p-~~~l ~kp-~~~l kp-~~~~~ ~~~~~~ 
0 V

k p~~~~~~~~

( 
~) . _ l (  

1~

\~kp- l 
Vkp_ l ~kp- l / 

0 Ck l  Vkp_ l

the reduction step simplies to

(2)ak 
= ak ~kp-l

b~ a b  - a  y - c
(6.1) k kp kp kp- l kp ~kp+l

c =-ck kp Tkp+l

wk 
a v

kP 
- a

kP ~kp- 1 - C
k p ~kp÷1’

and the back substitution becomes

_ _ _ _ _ _ _  _ _  A
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XkP i 
= 

~~~~ 
j  - ~~~p- j  ~~~p- p 

- 

~kp- j 
Xkp~

1 � j 
~ p-i .

Rather than computing the entire -
~ and ‘~‘ vectors , a more efficient

technique is to use LU and UL processes on the ~ blocks :

for each k 1,2 , . . .  ,N2 + 1,

(LU process on

~k , l 
= a

kp~~,+I; ~k , l 
= bkP..~ .,.l ;

z~ v
K ,l kp-p+1
for j  = 2 , . . .  ,p— l

solve S. . [A . C - F .K , 3 — l k ,j — l  k , j — l  k , j — 1
= 

~‘k , j — l  ckP..~,+J_ l ~k ,j— l~
= - ak~-~+~ 

Ak ,j _ l

~k J  
= b

kp..~+j 
- 
~~~~~~ 

C
k,jl

- a
kP_P.4.J 

F
k,j_ l

solve 
~k,p-l~~kp-1 ~“kp- 1 ~kp-l~

= 

~~~,p— l 
C
kp .l ~k ,p- 1~

_ _ _  ~~---- ---——— - -
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~~~~~~~~~~~~~ ~~~~

- - 

‘1
for  each k a 1,2 ,.. ., N2 ,

(UI. process on

~k+1,-l 
= b

k~~~~l
; 
~k+l ,-1 

= C
k l

;

~k+l,-l 
a Vk~~.p_l

for j =

solve 
~~+l-j+1 

t
~~+l ,-j+l Ck+l , j+l Fk+l, j+lJ

~~~~~~~ 
‘
~k+l,-j+l 

Wk÷1,~ j÷lJ

~k+1,-j 
= b

k!,+p..j 
- c

k~~P_J 
A
k+l, j+l

= - c kp+p- j  k+l ,-j +l
- c

kP÷P..J 
F
k÷l j+l

so lve ak+l , P÷l ~~kp+ l Vkp+1 ~°kp+l~

~akp~-i ~
‘k+1,-p1- l mk+l ,_ P +l l

The block tridiagonal system A~
2
~x~

2
~ = is now generated by (6.1) and

solved by some procedure , and we take advantage of the earlier LU process

f or A.1~ 
in the back substitution :

for each k 1,2,.. .,N2 + 1,

X•kp_ 1 = ~
‘kp-l 

- 

~~p-l ‘~kp-p - “kp-l ‘~kp

fo r j  =

a Fk j  
- 

~~~~~~ 

- C
k , j  ~~p-~~j+1~

6.B.  Convergence Rates

As obse rved in Section 2 , if 
~ 

B[A]Il < 1 then , under the K partition-

ing for p-fold  reduction , we have 
~
j B[K]II � J j B[A J H  . By Corollary 4 .1

it follows that p — f o l d  reduction will  y ield II A~2~ H � H K It — II A lt  and

~ 
B[A~~~~~j j � H B[K]

2 11 � fi B [A 1II
2 
. In fact , we can p rovide pth order
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convergence , although our first result is somewhat weaker than might be

expected in couwarison to earlier resul ts .

We will actually consider a natural generalization of odd-even elim-

ination. Let M be a nonsingular block (2p-l)-diagonal matrix,

M~ = ~~~~~~~~~~~~~~~~~~~~~~

We want to p ick M such that
p

M A  cr ., 0, ..., 0, s~~ O , ...,0,

p—l p— i

M A  is a block (2p.i-l)-diagonal matrix ; A~
2
~ is constructed by selecting

the intersections of the block row s p , 2 p , . . . ,  and block column s p , 2p

Thus we have

(2) (2)a . = r . , b . s .
3 Jp 3 Jp

~~~
ç2

~~ 
= 

~~ , 
(2) (N v)

3 .Jp 3 p jp

Now , the jth block row of M~A is

p- 1v m 
k[~~~

0
~~ 

row (j+k) of A ] ,

so that

a m~,_~~1 a~_~~1~

s a m  c + m . b . + t n . a
3 j, 1 j l  j,0 3 j,+l j+l

t m C
j  j,p— l j+p— l

We require that

m
~~k..l 

C j+k..l + m
J k  b j+k + m1 k+i a

J+k÷ l 
a 0 ,

Iki = l ,2,...,p— l ,

L ~~~~~~~~~~~~~~~~~~~~ - -- - -
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where we take m . = 0, m . a 0.
3,—p .J ,p

— 1  — lThe specIal case p a 2, N ~~~~~~~~~~~~~~~~~~ has been considered

in Section 4.A. For p ~ 2, define

d~ ,_~~~1 
= b

~ _~~~i
— 1.dj , _ k  = b

i k  
- a

~..k 
d
j, k..l cJ_k..l~

k =

— la
~..k 

d j , ..k_ l,

k = p— 2 ,.. -

d~~,~ _ 1 = b~÷~_ 1
— ld . b . - c . d . a . ,

j,k j+k j+k ,j,k±l J±K+~

k = p—2 ,.. . ,l ,
— l

‘j ,k 
= _ C

j+k 
d
J k+l.

k =

Then we m ay take

m
J,_k 

= 

~i,0 ~j ,-1 ~j ,-k+l

:~~

° 
:~ . ~~ ... ~~~ . ,

j,0 j,l j,k—l

k = 1,2 ,. .. ,p—l.

The d . k 5 are derived by an LU factorization process , and the d . 
k

’ S3, — 3,4
by a UI. process. It follows from earlier results that if H C [A]11 1

< 1

then LI mn~ +k tt l ~ i t C [A ]II’~ , so the diagonals of N decrease in size as onep

~ioves away from the main diagonal .

‘~ir first theorem partially generalizes Theorem 4.1.
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Theorem 6.1. Let J = (-s .’r ., 0, ..., 0, _s~
1
t~)~ 5 = (-b~~a ., 0,

B = L + U , J = + 
~u ’ j j L~ � 

~~ II U (~ � z~, B it � 2~i = 8, with ‘y �

Then (I J it ~ ~~~~~
, 

~~~~~ 2~~~’ ~~~~~ 
-

Proof. Let R
0 

a 0 , R.R L(I - R,~~1)
1
U, T

0 
= 0, T

k 
= U ( I  -

k = 1,... ,p- l, s = R
1 

+ T 1, so that

(I - S)J
L 

= L ( I  - R 
2
)

1L( I  - R
3
)

1
L .. L (I - R

Ø
)

1
L,

(I  - S)J
U 

U ( I  - T 2~~~
1U ( I  - T

3~~~
1U . . .  U ( I  - T

0
)

1U .

2 —lDefine ‘ir
~ 

= 0~ = ~ (I  - 
~k-l~ 

SO

i t Rk (I 
~k’ 

T
k II

I t 
~L U’ II ~ i i ~? [(1 - 2;~~~~)~~~~~ (1 -

I t ~~ ~P / r 2 P l(1 - 2;
l
.
~~~~~

(l -

Define = 0, = 1, = - ~~~ so 
~k ~~~~~~~~~~~~~~~~~~~~~~ 

0,

= 

~~~k~~~k+l’ 
1 -  

k ~k+2 k+l ’ (1 -  2-
~~~ i
)
~~~~~

(l_ 
~~~

(1 — 2~~0 1
) = 

~p-m- l 
— 
~ ~~~~~~~~ 

Define = 
k~ l 

- 

~ ~k —l ’  
so 

1 
= 1,

2 2 . . 1 —k+1
2 

= - 2~ , T
k 

T
k l  

- 
~ k-V 

By induction , 2

dT
k
d
~~ 

_ 2
~

kó k l  ~ 0. But then , for ‘~ 
~~~~ 

—
~~~~(~~~) � 

k~2~~’ 
so 2~~~

1
T (-~ � l.

Thus Ii J IL � and 1
~~L

11 II ~‘~It �~~~~~~~. QED.

Corollary 6.1. If B [A ]tI < 1 , L [B [A]IH, II U [B [AflU �~ ij BrA ~~I J ,  then

it B[A~~~~]ji � B{A]j( ~~.

In generalization of Theorem 4.4, there is the very surprising

Theorem 6.2. With ~(j) a \(A~~
t
~~) ,  X~~~~ 

� 1 , = (1- - ~I-X~~~~) / (1+.k- X~~~),

we have

- - ~~ -~~~ --- ~~~~ -~~~~~- 
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� ~~~~~~ 
+~~~~~~

2P

( + 
(i)~~~~

Proof. It suffices to consider i = 1, so we will drop the superscripts .

Define 
~~j ,-k 

= bj.~
’
k 

d
j,_k~ ~j,k 

= b
~~~ k 

d
jk~ 

k = O ,...,p- l , so that

= (-a. ~~ )(-b .
1 a~ ) ... (-bj a . c~~ )

j  j  j,— l  j—l j—l j,—2 j—p+2 j—p+2 j ,— p+l

X (b .
1 a~ ) ,

,j— p+l 3—p-1- l

(2) a r •a .

—l ...—l — l
t . = (-c . ~. )(—b . c - ) ... (-b . c . . )j j,1 j+l j+l j,2 j±p— 2 j+p—2 3, D— l

X (bJ a~ ) ,
j+p- l ,j+p— l

= ~~.3 Jp

b~~
2
~ = s .

3 Jp
— l  — l  — l —ls . b . - a . ~~~ . b . c , - c . . b . a~3 3 3 j,— l  j— l j— 1 3 j,l j+1 j+l

= b .(I —

Now , IL ~~~~ = 1~ 
~~~k

t1 � (1 - \(; 
~,k÷l

H 4)
_ l
~ By defining E1 

= 1,

Ek 
= (1 - 

~~k-l
4
~~~ ’ 

we have j,p_k i! ~ Ek. Similarly, ii ~~~~~~~~~~~~ 
� Ek

.

This yields � 

~~~~~~~~ 
(I - ~~)

_ l
Ii 2 (2 - 

~~p-l~~ 
To bound

obse rve that

4 b~~~~~
1a~

2
~ b~

2
~~~

1c~
2
~j I j—l j—l

— 1  — l  — l  — 1

~.4  (I - c . ) b a . e b . a.
jp jp jp,— l jp— i jp— l

— 1  — l  — 1x 
~~~
... b a Hjp,—2 j p,-p+ l jp —p+ l jp — p + l

x 11 (1 - ~~~~~ b~~~~~~ c~~~~t I II ~~~p,l It ii ~~~~~~~~~~ c~~~~~ t I
x 1 II . . .  ~ -l li ii b~~~ c .jp—p, 2 Jp-p ,p- l jP’ l 3 P 1

~~~4(2 - 

2 ) 2  (.~)
P 
tç1~ E~~.

_ _



80

Thus \
(2) is bounded by the above quantity . Suppose first that X a

which imp lies that ~ a 
~ Then E a 2n in±l), the bound simplifies to

and we are done with this case. Now suppose that \ 1. It may be

shown by induction that E (1 + j.~(l 
- u.’~)/(1 - ~n+l) yielding

(2!(2 — = (1 — \) ((1 — -~~~~~)i(1 -~- ~L~
’)Y, and with a little effort

the bound simplifies to the desirei result. QED

Note that we have not actuaLly shown that ~ i impijos X
(j+l) 

~

This point is now to be reso1vc~d .

(i) ,(i±l) (i)~ - .
Corollary 6.2. If \ � I then � \ with stric t ineauality if

(i)  (i+l) (i~o‘~ < 1 , and~~

Proof. The case 1 was considered in Theorem 6.2. Suppose that

0 � \ < 1, again considering only the case i i. It is not hard to show

-l 
,p 2 J

that ((1 + ~) 
2~ P(2:(1 + P)) = ( (~)) , where (\) 

- 
(~~.)(l -p

Now , (l) = 1, T’ ( X) < 0 for 0 \ < I, so (\) ~ 1 for 0 � \ < 1 and

\
(2) 

< for this case. Assuming only \ � 1, and since \(l + ~~
2
4 a

we have \ (2) ~P (2 ’ (1 ± ~Y) Y,  which implies ~~(2) 
~ .Y. QED

6 .C .  Back S u b s t i t u t i o n

Error propagation in the back substitution for p-fold reduc tion de-

pends on the particular imp lementation . In the s implest  form

Xkp .j  ~kp- j  
- 

~kp-j 
Xkp_p 

- ‘
~
‘
kp-j 

Xkp~

errors in depend on newly generated round ing errors and propagated

errors from x. and x . We can wri te  the computed solution as
gp-p kp

y . x. . +~~~ to find
kp- j kp- j  kp - j

- —~~~~- -~ - ~~~ . Drl~.
:Vy . Th . : . .~~ 
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~kp-j 
= 

~~t~p-j ~kp-p 
- 

~kp-j ~kp 
+ ekp_j .

It follows from the analysis of the Gauss-Jordan algorithm (Corollary 3.5)

and from explicit formulae for cAkcp...y ~kp-j’ 
that 

~~~ 
� BFA ](~~~~

3
,

it ~~~~~ � ~ B [A ]ft~ 
if H B [A] tt < 1, which leads to

~kp-j
t1 ~ it B[A]tP ii 

~kp~ p h t~~ II B [A] tP 1I 
~kp~ 

+

Errors in a newly computed component therefore depend most strongly on

errors in its closest back-substituted component , and the “influence”

decreases as the distance between components increases. Moreover , we

have

t i t~ B[~~] H max( 
~~

p p tt’ 
~~p 

IL ) ± ii 5
kp-j

if c is a bound on errors introduced at each stage , it follows that errors

in the final, computed result will be bounded by ~ log N.

Slightly different results prevail in the back substitution

Xkp_ 1 
= 

~kp- 1 
- ‘

~kp-l 
Xk1_ p 

- ‘kp- i

for j

x, . a F  . - A  . x - C  . x.ip— 3 k,p-j k,p— j kp—p k,p— j kp- j+1

Errors in the comp uted solution 
~kp’..j  X•kp_i + 

~kp-j 
obey the rule

~kp- i = ~~kp-l ~kp-p 
- Vkp..p kp + Ckp_ l

for j a 2,... ,p— l

~kp-j 
a 

~~ ,p-j ~kp-p 
- C

k, p j  ~kp-j÷l 
+ £

kp_j~

so the errors in X
k j  depe nd on propagation from X

K 
and Xkp 1+ 1 rather

than x~ and x, .  This implies a l inear growth as in the LU factorization

- — — — - -— .,~ -- . S. . T . ±1 -r ..t-~ -t . r~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
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in conjunction wi th  logari thmic growth as in odd-even reduct ion . If we

again suppose that 
~ ~kp_j l t � €~ with 

~kp—p ’t’ 
~kp t ’ 

~ 

‘
~ it follows

that

~kp— l ” ~ it B[K]II ~ + e
~

~kp-j ” 
� ii B{X]It max~~, ~kp~~+l ii ~ + C

which leads to ,
~~~ ~

‘ + (p-l)€. The end result is that errors in

the final computed result will be bounded by Cp log N.
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7. SENIDIRECT METhODS

Briefly, a semidirect method is a direct method that is stopped be-

fore completion . In coimnon usage , a direct method for the solution of

Ax = v computes x exactly in a finite number of steps if exact arithmetic

is used , whi le  an iterative method computes a sequence of approximations

(i) *
x converging to x. The setuidirect methods are intermediate on this

scale , produc ing an approximation to x in a finite number of steps ,

while an addit ional finite number of steps could produce x exac tly. During

the computation , intermediate results are generated which approximate the

solution . If the error is small enough then the algorithm is terminated

prematurely and an approximate solution is returned .

The method of conjugate gradients is an examp le of a semid irect

method since it can produce a good approximat ion long before its usual

termina tion [R2]. The accelerated Parallel Gauss iteration ([1-14 ] and

Section 8.E)  is another example , as is Malcolm and Palmer’s convergent LU

— lfactorization [M2 ] of A = (a ,b ,.a) ,  a and b positive definite with o(b a) <~~~.

Here we consider semidirect methods based on the quadratic conver-

ger’ce properties of the odd-even methods . This will generalize various

results obtained by Hockney [H5], Stone [S2 ] and Jordan [Jl]. Buzbee [B17]

discusses a similar techn ique based on the Buneman algor ithm f or Poi sson ’ s

equation (cf. Theorem 4.3).

*
The name semi-iterative has a lready been appropriated for other purposes
[V3 ]. Sto ne [S2] initiated the name semidirect.

_ _  _ _
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7.A. Incomplete Elimination

Let us first consider odd-even elimination for Ax = v , which is the

pr ocess H 1 
a A , 

(1) 
= v , = (I  + C [H . ) ) H .,  ~~~~~~~~ (1 + C [ H . ] ) v ~~~~.

In Theorem 4.1 we proved that if B r A ]  j
~ 
< 1 then B[H.÷1J t t � it B [H,1 ’

~~,

so that the off-diagonal blocks decrease quadratically in magnitude rela-

tive to the diagonal blocks . This motivates the approximate so lu t ion

a D[H.]
1
v~~

’. Because we halt the process before completion , we

call this technique incomp le te odd-even elimination.

Theorem 7.1. li x - z~
’
~ I t / t i x~j � II BrH .]!I.

Proof. Since = H . x D [H. ~~(I - B[H.])x, we have a D [H~~]
1
v~~~

x - B[H~ 1x. QED

Thus the B matrix determines the relative error in the simple approx i-

mation z~~~. If = ii B [A]j~ < 1, 0 < C < 1, m a log
2 

N’, then

r (log,, C
’\]

(7.l’~ k = 1 + mnax (0, m in (m , 1log2 
hog; 

~
guarantees Ii B H , ~ ]~ ~ . For example , if = ~~, € = 2~~~ io

_ 6
, then

k = 6 and we should have N > 32 for incomplete odd-even elimination to be

2~ —32
applied. In f act , B[H,K ])i ~ 2 10 , so the results of the

incomplete elimination would be much better than required .

In the case n a 1 , a . = c . = a, b . a b , we have B[H.÷1]!1 =

1 BEH.~~~II / (2 - H B [Hi ]2 11 ). Since x2 2 < x ” ’ (2 - x4) < x2 for 0 < x < 1,

k must  be la rger than

log 2 (c 12 )\
( 7 . 2 )  1 + log

2(
\

1 (3 2>)
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in order to have H B[~~~~]~~J ~ € . (By induction , ~(k) > 2(8/2)2 , and if

2(~~/2 ) 2 > C then 8~
1
~ > c.) A more refined lower bound is obtained

by defining T~ = ~~~, ‘r~~~ = -‘~~~~(2 - ¶
2) ,  and computing the largest k such

that

(7 .3) 
k 

> ~

Since B[H.] is the matrix associated with the block Jacob i iteration for

H.x = , when j~ B[Hk] is small we can use this iteration to improve

the estimate ~~~~~~ In fac t , the choice = DIH. ~~
l 

is the iterate

following the initial choice z~~~ = o. If (k,0) is an approximation to

x and (k ,i+l) a B[~~~]z~~~’~~ + D[~~~]
1
v~~~ then x - 

(k ,2)

£ (k , 0)II B [H,~J It x - z . k and £ may now be chosen to minimize computa-

tion time subject to the constraint 3 � C. Any of the other standard

it erative methods may be used in p lac e of the Jacobi iteration ; for related

results using the theory of non-negative matrices and regular splittings ,

see [HI ] .

We have remarked earlier that if the tridiagonal matrix A = (a., b ,, c .)

is irreducibly diagonally dominant and BrH .]~ then � I and

~ 
~ (i)2 This is a case of practical importance in differential

equations. However , the examp le A = (-1 , 2 , -1) , for which = 1,

I � i. � rn-i, S
(m) a 0, shows that stric t inequality is necessary for incom-

plete  elimination to be ef fect ive .

Indeed , when is very close to 1, as will be the case for most

second-order boundary value problems , the fac t that we have s t r ic t  in-

equality does not imp ly that E~’~’~ wil l  be small  for i < m. Wi th  regard

(i) — l  (i) (i)to the par t icular  approximation z = DIH i ] v , z
1 

depends onl y on

v ,~, j — (2~~~~ — 1) ~ ~ � ~ + (2~
.
~~

’ + 1). Thus for N = 2
m 

— 1, i < m ,

L 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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the center point z~~~1 wil l  be independent of the boundary data.* Al-

though this is not the only possible approximation , complete odd-even

elimination will be necessary to ensure convergence to the continuous

solution .

7.5. Incomplete Reduction

The incomplete odd-even reduction algorithm is analagous to incomp le te

odd-even elimination . Complete reduction generates a sequence of block

tridiagonal systems A x ~~~ 
a 

~~~~~~ ~ l,...,m , m = log
2 

N + 1 , solves

A
(m)

X
(m) 

= exactly for ~
(m) 

, and back subs titutes to f inally cb tain

x a ~~~~~~ Incomplete reduction stor s with ~~~~~~~~ = ~~~ for some k be-

tween 1 and m , solves this system approximately for ~
(k) 

~ ,~
(k) and back

substitutes (k) to obtain y = ~ (l) ~ 
(1)

We remind the reader of observation s made in section 4.D, especiall y

that roughly half the actual work is performed in the firs t reduction , one

quarter in the second , and so forth . Thus the savings in incomp lete reduc-

tion would be much less than those in incomp lete elimination , where the

work per step is roughly constant. For more details , see Section 10_C.

In contrast to incomp lete elimina tion , the incomp le te reduction must

deal with error propagation in the back substitution . We have already

shown that roundoff errors in comp lete reduction are well-behaved , and

can only grow at most logarithmically. But since the approximation errors

quite possibly might be larger than the roundoff errors , a different analy-

sis is needed. We will see that a number of interesting properties result ,

Including no growth of errors under cer ta in assumptions about roundoff ,

* observation is due to an anonymous referee of [1-12 ’]. 
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and a superconvergence- l ike e f fec t  due to damping of errors.

An initial approximation ~ (l
~ may be computed from A(k) and w~~ ac-

cording to our analysis of incomplete elimination. The choice

~~(k) 
a D[A (k) 

1
_ l

~~
(k) 

is a simple one , and we have ~~-y~~~ IV Ik ~
’
~ Ii � B[A~~

The parameter k should be determined both for computational economy and

for a suitable approximation . Here the quadratic decreases of B1A~~~] are

important and useful in some (but certainly not all) situations .

Regardless of the source of the approximation y~~~ , let us suppose

(k) (k) (k) .
that y. = x .  + . - In the back substitution , y - is computed from

(i+ I)
y by

(i) (i-i-I)y
2j ~~

(i) 
— b~~

1.) — l  (i) 
— 

(i) (i±l) (i) (i+1) (i)
~Zj ~~l ~ 2~~-l~ 

(w2~~1 
a
2~..1 

y
~_ 1 

- c
2~~ 1 

~~ 
) +

with representing rounding errors. We then have

~ (i) ~ (i+l)
2 j  ~j

5~~) 
a ~(~) — (b ~~~~ )

_1
(a
(1) ~~~~~~~~~~~~~ + ~~~~ 

~(i+l))
2j—l 2j—l 2j—l 2j— l j— l 2j—l j

Theorem 7.2. If 5
(i) H � (1 - ii B[A~~ ] i t ) ii then 

~~~~~ H = Ii~~~ It.

Proof. By construction ,

0

5
(j) 

= 5 (i+ 1) 
± B[A ’

~~ ] 5
(i+l) )

0

~(i+ l~
J 

~(i+
1)) 

~

. .
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As in the analysis of roundoff error propagation for complete odd-even

reduction , we have

Li 5~~~ i~ max~ J J ~(i±l) 
~ 

~(i) + ii B [A~~~ it ~(i+l) i i ) .
(i) (i+l)From this expression and the hypothesis we have I t ii - II

But , also by cons truc tion , I! II . QED

This theorem requires some explanation . First suppose that no round-

ing errors are coimnitted , so that = 0 and al l  the error in is

derived from the approximation error in ~
(l< ) , it now follows from

ii B [A~~~< 1 that this error will riot grow during the back substitution .

From x~~~ Ii x~ , we conclude that ~-y~ -
/ kit � 

(k) (k) H ~ (k)

In fact, it is easy to see that while H x — = ~(k) — ~~(k) 
~ many

vector components of x-y will be much smaller in size than x - y
~

In Figure 7 .1 we illus trate the errors by component for the tr idiagonal

system (-1, 4, -l)x = v, N = 31, k = m-l a !~- , v chosen so tha t x . = 1,

and ~ (k) 
= ~~~~~~~~~~~ In the absence of round ing errors , the back sub-

stitution quickly damps out approximation errors , creating ~ very p leasing

superconvergence- like effect.

Now suppose that rounding errors are cotmnitted and we have the upper

bound � C . If ~(k) 
~ ~~~~ for some moderate constant v then we

have essentially solved the system A
(k)

x
(k) 

~
(k) exactly, and the error

propagation analysis is the same as for comp lete reduction. That is , we

have ~(i) � (k — i + ‘v)e , 1 � i !~. k.

The remaining case is when ,(k) 
~~> C . Here the semidirect method

must be considered in competition with an iterative method . The hypoth-

esis of Theorem 7.2, 5
(k) 

(1 - B[A~~~ )II ) � C , should be viewed as

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . . .
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an attempt to formalize the condition >> e. As long as the hypoth-

esis remains true, the difference (in norm) between and can en-

tirely be attributed to the original approximation error. As soon as the

hypothesis is violated it is possible for the errors to grow , but we will

still be able to say that x - ~H = it ~
(k)

IL + O(ke). Although the super-

convergence effect would be moderated somewhat by roundoff , its qualitative

effects will still be felt and we can expect this bound on accumulated er-

ror to be an overestimate .

7.C. Applicability of the >lethods

We close with some remarks on the prac tical app lication of the qua-

dratic semidirect methods . In Buzbee ’s analysis [B17] of the Buneman alg o-

ri thm f or the d if feren tial equa tion (-
~~ 
± d)u = f on a rectangle with

sides 
~l 

and c’,, d a nonnegative constant , it is shown that if

1

—~~[dc~~± ” ]
2 >>1

-

then a truncated Buneman algorithm will be useful. Geometrically this re-

quires that the rectangle be long and thi’ if d is small , and hence the

block tridiagonal matrix will have small blocks when properly ordered.

By directly considering the finite difference approximati-’n to Poisson’s

-
~ tion on a rectangle with equal mesh spacing in both directions it is

possibk to reach a similar conclusion ; this also serves as a simple model

fo r more general e l l i p t i c  equations . With  M nodes in one direction and N

in the other , ~‘! < N , the matrix A is (—I.~, ~M’ 
IN
)
N, ~N 

a (—1 , ~~,

It is readily verif ied that B [A ]ij = 2 1 j QM i t 
~M 

=
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D +D1 rn rn-i
- 

D 
n 2rn,

= 
2D

- n = 2nH-l,

D0 
= 1, = 4, D1~ 

= 4 Dn i  
-

The following table gives B [A]j~ for M = 1(1)6, along with estimates

(i) -8
on the number of odd-even reductions needed to obtain B[A ] < 10

k such that BrA~~ ] < io~~

N BEA J~ 
lower bounds upper bound

— _______ 
(7.2) (7.3) (7.1)

I ~~~= .5 5 5 6

2 ~~~~~~~ 6 6 7

3 ~~~~~~~ 6 7 8

4 .L~~91 6 7 9

5 ~~~~~~~ 6 8 10

6 ~~~~~~~ 6 8 11

These figures again lead to the conclusion that the best use of the semi-

direct methods for elliptic equations will be with long thin regions . In

the next section we consider some iterative methods which use matrix split-

tings and orderings to take advantage of this property .
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8. ITERATIVE ME THODS

In this section we cons ider the iterative solution of a finite dif-

ference approximation to a general nonseparable elliptic equation. Of

particular interest will be methods which emp loy, as part of each itera-

tive step , the direct or semi-direct solution of a block tridiagonal

linear system. Continuing our emphasis on methods for a parallel computer ,

we want this system to be such that the method already considered can be

used effic iently.

8.A. Use of Elimination

Let us first note that several of our theorems about block elimination

have applications to iterative methods . Consider the system Ax = v and

the block Jacobi iteration = B [A1x~~~ + DIA] 1v. Suppose that

B[A]II < 1, so the iteration converges ; this condition is satisfied for

many el l ipt ic equations with suitable partitioning ~V3). If the structure

of A can be s imp l i f ied by an elimination step , fo rming A ’ x = v ’ , then

subsequent computations wi l l  be handled more effic iently, and since

B [A ’ ] j~ � II B [ A ] I ~ the iteration wil l no t converge any slower.

Indeed , convergence of the block Jacob i iteration wil l of ten be quite

slow . When A is also positive def in i te  the Jacobi semi-iterative method

(J - SI or Chebychev acceleration) [V3 ]

= V
~+1

(B[A]x (
~~ 

+ DIA l 
1v - x~~~~ ) + 

(i-I)

= 1, v2 
= 2 ( 2  - p2 )

(1 — o

will converge at a much faster rate and is a natural candidate for parallel
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computation . If we use ~ = B[A]~ as an upper bound on p and use the

sequence of parameters

* * 2
“1 

= 1, ‘2 
= 2 ” (2 —

* 2* -1
= (1 — ~~ v .’4)

then the J-SI iteration for A ’ will not be slower than that for A. By

“preprocessing” Ax v we can expect that the actual computation time will

be smaller ; unfortunately a complete proof of this claim is not at hand .

Juncosa and Mullikin [J2 ] discuss the effect of elimination on itera-

tive methods when A = I - N, N � 0, rn 0, and m � 1 with strictrr — rs
5

inequality for at least one value of r. Their particular interest for el-

liptic boundary value problems is to order the boundary nodes followed by

the interior nodes , and then to eliminate the boundary nodes . This would

be useful for domains with curved or irregular boundaries. It is shown

that, with A’ = I - N’ representing the system after eliminating one point ,

p(N ’ ) � o(M). Thus the point Jacobi iteration will not be slower. Also ,

if G = (I - L[N])1 
h EM] is the matrix describ ing the Gauss-Seidel itera-

tion, then o(G’) � p (G). Similar results follow from work on G-matrices

[34]. As in the proof of Corollary 3.2 we obtain corresponding results

for block elimination , though not under the more general assumption

II B[A]~ < 1.

8.3. Splittings

The block Jacobi iteration is created by “sp l i t t ing o f f”  the block

diagonal portion of A , and using the iteration D[A]x~~~
1
~ = (D{A]-A)x~~ + v.

Many other iterative methods are also defined by a splitting A = M
1 

- M2,

+ v. When is a block tridiagonal matrix, various direct

(i~i~I)and semidirect methods can be used to solve the system for x
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A particularly effective procedure discussed by Concus and Golub

[C4 ] is readily adapted to parallel computation . The equation

- V (a(x,y)vu) = f

on a rectangle R, a(x,y) > p and sufficiently smooth ,1undergoes a change
of variable w(x,y) = a(x,y)2 u(x,y) and scaling by a 2 to yield the equiv-

alent equation

-i~w + p (x ,y)w = q
1 1 1
2 2 2on R , p(x ,y) = a ~(a ) ,  q a f .  The sh i f t ed  i teration (- ta + k)wn+1

(k - p)w~ ÷ q,  k a cons tant , is solved in the discrete form

(_
~~h + KI)W~’~~~ (RI - P)w~~~ + Q, where P is a diagonal matrix . Since

the system ( _ A h + KI )b  c may be solved by the fas t Poisson methods and

Chebychev acceleration is app licable , the overall method is h ighly paral-

lel and rapidly convergent.

8.C. Multi- line Orderings

There are a number of more classical iterative schemes which involve

solution of block tridiagonal systems . We begin with the multi- line itera-

tions for a rectangular grid; the ordering of unknowns and partitioning

for 2- line iteration on a 6x6 grid is shown in Figure 8.1. A diagram of

the resulting matrix is shown in Figure 8.2.

The underlying technique of the multi-l ine methods is to divide a

square or long and broad rectangle into a set of long and thin rectangles .

A discrete form of the elliptic equation is then solved over each subrec-

tangle as part of the iteration . By partitioning the grid into groups of

a few lines we obtain systems that can be solved well by general block

• 
- 

• •  -
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methods , particularly the setnidirect methods of Section 7.

The multi- line block Jacobi iteration with Chebychev acceleration

is probably the simplest method to implement on a parallel or pipeline

computer and should be considered as a benchmark for other methods . With

an nxn grid and a k-line iteration , n = ku’ , the splitting A = N1 
- M2 

is

such that consists of n’ decoupled block tridiagonal matrices , each of

which has kxk blocks with N n. By storing zeros in strategic locations

N1 
may be regarded for computational purposes as one block tridiagonal

matrix with kxk blocks and N nn ’ = n2’k. Lambiotte [Li] points out

that only log n odd-even reductions are needed because of this construc-

tion, rather than log N reductions as for the general case. When incom-

plete odd-even reduction is used , the number of lines may be chosen ac-

cording to the guidelines given in Section 7.c for Po isson’s equation .

8.D. Spiral Orderings

Another useful ordering of unknowns for parallel computation is the

single spiral order diagrammed in Figures 8.3 and 8.4. The spiral order

essentially produces a very long and thin rectangular region, which is

represented by the tridiagonal matrix forming the central portion of the

matrix in Figure 8.4. In the splitting A = M1 
- H., we take M1 to be the

tridiagonal center of A. For an nxn grid H1 is n
2xn2 and has B [M 1111

about ~~; thus incomp lete odd-even reduction can be used quite e f f i c i en t ly

to solve systems involving N1.

We note that the single spiral order has been used with another split-

ting to yield the block peripheral method [B9], [E2]. Here the blocks are

of the periodic tridiagonal form, and the convergence rate of the periph-

eral block SOR method is shown experimentally to be similar to the 2-line

block SOR method [310].

L ~~~~~~~~~~~~~~~~~~~~~~~~ •-  - •~~~• •• • -
~~
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The double spiral ordering (Figure 8.5, 8.6) is an attempt to com-

b ine features of the single spiral order with advantages of a 2-cyc lic

ordering . For an nXn grid , n odd , one spiral contains ~(n
2 

+ 2n - 1)

points and the other contains ~ (n
2 

- 2n + 1) points . Multi-spiral or

-peripheral orders can also be defined.

For the single and double spiral orders , when n is even the trailing

submatrix of A looks like

The •‘d elements of A should be included in the imp l icit part of the itera-

tion , M1. This can be done at little extra cost , and ensures that each

row and column of N
2 
has at most two non-zero elements. When n is odd a

similar modification should be made.

The mapping from the natura l ordering to the peripheral or single

spiral ordering is defined by a permutation of the vector T = (1,2 ,. . . ,n2 ’

into a new vector S = (S(l),S(2),...,S(n
2)). With an nxn grid , point (i,j)

is unknown number (i-l)n + j in the natural ordering . Given T, two vec-

tors forming the coordinates (i,j) of each unknown are computed by taking

quotient and remainder:

q(k) L(k- l)!’nJ, (1 � k � n2 )

i (k) = 1 + q(k ) , (1 � k � n2)

j(k) k - nq (k) , (1 � k � n2 ) .

For simplicity let n = 2m-l. Define

p(i,j) min(i,j, 2m— i, 2m—j), (1 � i , j � n).

The point (i,j) is part of peripheral number p(i,j), 1 � p(i,j) ~ m.
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Peripheral p has 8(m-p) points in it, except for peripheral m which con-

tains the single point (m ,m).

The peripheral ordering is per. 1, per.2 , ..., per. in, where each

peripheral is takin in clockwise order : top , rhs , bottom , lhs . Define

p- 1
f(i,j) = 8(m—k) 4(2m—p )(p—l ) ,

the number of elements contained in peripherals 1,2,.. .,p(i,j) - I, and

g(i,j) = f(i,j) + (i—p) + (j—p) + 1 if i �

8(m—p) — (i—p) — (j—p) + 1 if i > j

4p (2m—p )+l -8m + (if i � j )  (2p+i+j).

- (if i>j)

The vector S(k) = g(i,j) defines the necessary permutation , and can be

easily evaluated on a parallel or pipeline computer. The actual reordering

of a vector may be performed on the CDC STAR by using the built- in vector

permute instructions , though these should be used sparingly since they are

quite expensive . Once the vector S is generated , the elements of A and v

may be generated directly.

Of course, the implementation of an iterative method based on an

“unnatural” ordering involves much more developmental attention than is pre-

sented here. We only mean to show the potential for parallel computation .

A more complete comparison based on actual machine capabilities has not

been performed . For such a discussion of some other methods , see Lambiotte

[Li].
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8.E. Parallel Gauss

We close our section on iterative methods for block tridiagonal sys-

tems with some brief remarks on the Parallel Gauss iteration due to Traub

[T2 ] with extensions by Heller, Stevenson and Traub [H4J. For simplicity

we consider the normalized form A (aj~ I c
i
).

In the block LU factorization A (L., I, 0)(0, d ., c .), let

D diag(d1,...,dQ. Since D = I - L[A]D~~U [A] ,  a natural parallel itera-

tion is D(1) = I — L [ A ] ( D~~~
1
~~) ~T J [A ] ,  where D~°~ is some initial estimate

of D. This forms the first of three iterations making up the Parallel

Gauss method; the other two parts are Jacobi iterations for the L and U

block bidiagona l systems. it is shown in [H4 ] that, with X(A) � 1,

~(A) = (1- ~~~~)/(l + ~]i~~ ) ,  we have D - D~~~ I~ 
� L L H D - D~~~~~~(I

Techniques for reducing the constant j. are given in [H4]. As Stone [S2 ]

points out, this linear convergence is much less attractive than the qua-

dratic convergence of odd-even reduction . However , in certain situations

(parabolic equations or the multi- line iterations discussed here) it is

necessary to solve a sequence of related problems , and this would hope-

fully provide suitable initial estimates.

Let A’ (a’ , I, c ’.) and suppose that 0’ has already been computed .

Since d~ - d~ = a
j d~

1
1 
c~~1 

- a~ (d~ 
~ 

~~~~~ by Theorem 3.4

- d . JI � (~
) (
~ + ~~~~ + 

~
4
~~~~l +

= 1 -  ~~ •7i~~ + ~~~~~

Thus D’ - DII rnax~ II d~ - dI II � 1 - ~ (~7i~~ + ~~~, and we may take D’

as an initial approximation to D. Now , the Parallel Gauss iteration is
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most useful when X and X’ are not too close to 1, and in this case good

initial approximations will be available by the above bound on D’ - DIf .

When X and X’ are close to 1 the bound will be large , but in this case

the iteration should probably not be used due to slow convergence.

For tridiagonal matrices we have

- d
1 

= 0,

d~ - d . = a .(d~ )~~~(d~ - d . )d~~ c .j j  j  j— 1 j— l j — l  j — l  j — l
—l I+ (d~~~1) (a . c .~~ - a’.

so that

d’. - d . I  ~ I - 

~~~~~~~~~ 
- d . + 

2 a .c . - a~c~3 3 1 + 1— A ’ ~— l j—l 1 + 1— ~~‘ 
j  3 —1 j

Let ~~~ maxja .c . - a’.c ’. � (X+ X’)/4, ô . = d~ - d . J ,3 j j—l j j— l 3 3 3
a = (1 — ~ l - V / ( l  + •. l- \’), b 2 ’(l + ~~~~~~~~ Then 0, ~~~. 

� a + b ,

so by induction ~~~. � (1 + a + ... + a~~
2)b < b (1-a) , or ~ .� 2~ !

’(~~~~ +

By the intermediate value theorem (~T~ + TT~), 2 = for some X~ be-

tween X and X’ , so that 
~~
. � ~ l-X . Again we have the situation where ,

if \
‘ is close to 1, a large upper bound results , but here the iteration

should not be used. When X is not so close to 1 the bound may give more

complete information than the one derived for block tridiag onal systems .

Let us now consider the utility of the Parallel Gauss iteration for

the parabolic equation u~ = (au), a a(t,x) > 0, u = u(t,x), with

0 � x � 1, 0 � t, and u(0,x), u(t,0), u(t,1) specified. Let u~ ~ u(ik,jh),

k = ~.t, h ~~ , p k/h
2
. The Crank-Nicolson method for advancing to the

next time step must solve the tridiagonal system

P i+i i+l Q i i( I + ~~~ P )u

= (- a~~ 1 1~ a~~ 1 ,2 + a~~1/2, - a~~12 ).

-~
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We therefore have

A = (— Oa~~ 112~ 1 + P(a~~~ ,
2 + a.~ 1/2 )/2, —

let us now drop the superscript i+1 for convenience.

A will always be strictly diagonally dominant because a(t,x) > 0,

and we would like to know when we also have X(A) � I. Using the mean value

theorem, define 
~~~~

. and 
~~~~

. by

a .1 12 + a .+l/2 
= 2a . 1 2  + h 

~~~~

.,

b . = a ((i+l)k, i.),

a . 3/2 + a .1/ 2 = 2a .1/ 2 
- h &.,

S. = a ((i-4-l)k, L).

After some algebraic manipulation it is seen that

X(A) max .(l ÷ (1 + 
0 hj  ~~~~~~~ 3

x (1 + 
1 (1 - h

oa . 1/2 
2 j

In order to guarantee X(A) � 1 it is sufficient to assume th~ t h and k satis-

fy ~ hi
a (t,x) I < 1. If m

1 
= tnaxj a (t,x) I this becomes the condition

m1
k � 2h.

Suppose we want the more stringent condition X(A) � (I + c) 2
, c � 0.

This may be satisfied if we choose h and k such that, f or each j,

cpa . / � I + ~hB . 2 ,j—l 2 3

cPa~_1,i 2 
� 1 — Ph8’~~2.

With m
0 

= max a(t,x), a sufficient condition is ccm0 ~ I - ~hm
1

2 , or

I
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(8.1) k � 2h2 ’ (2cm0 + hni
1
) .

For c 0, (8.1) reduces to the previous rondition on h and k, while for

c h we have k � 2h (2m
0 + m1

) = O(h’.

Now , one of the best features of the Crank-Nicolson method is that

k may be chosen to be 0(h). We have seen that a small value of c still

allows this choice. Conversely, if k = rh satisfies (8.1) and rm
1 
< 2,

then c � h(l - rm 1/ 2)/  (rm 0
) = 0(h). When we try to pick h and k so that

the Parallel Gauss method will be effective (c >~~ h) we are necessarily

restricted to small time steps . When h and k are chosen in the usual way

(k = 0(h)), Parallel Gauss cannot be expected to be very effective since

X(A) will be close to 1. Thus the method appears to be less attractive

for this particular application than originally believed , and odd-even

reduction would be preferred. Once several reductions have been performed,

\ and ~ may be suffic iently small to warrant use of Parallel Gauss and its

variations.
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9. APPLICATIONS

• In this section we discuss two applications of practical importance

in which the assumption B [ A ] I I  < 1 is not met; in the second case It is

shown how to get around this problem.

• 9.A. Curve Fitting

Cubic spline interpolation of the data (x
1
,f.), 1 � i � N + 1, gives

rise to the tridiagona l system [C6 , p. 238]

h .s . + 2(h . + h. )s. + h. s.
i. i—l i. i.— l t L—l L+l

= 3 ( f [ x .  1,x .]h . +

• 2 � i � N ,

h . = x~~1 
- x . .

We have A = (h .,  2(h 1 + h .1 ), h.1 ) and B [A ]lf = ~~, which is quite satis-

factory. However, more general problems need not behave so nicely even

though they might give rise to block tridiagonal matrices .

Cox [C7] presents an algorithm for least-squares curve fitting with

piecewise polynomials which must solve the system

‘H
1 

c
1
T \

(C
l 

C2
T
: C3

T b
2

C2 3  C2 2  0

c
2~~ 2

T 
H V b /

The v vectors contain coefficients of the Chebychev polynomial expansion

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • . .•• •~~~• . ~~~•• • • —------- - -
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of the piecewise polynomial, and the X vectors contain Lagrange multipli-

ers derived through a constrained linear least-squares problem. The C
i
’s

always have full rank, and if there are suffic iently many data points

between adjacent pairs of knots then the H
i
’s will all be positive defi-

nite. In this case a straightforward band elimination may be used well

when the number of knots and data points is large. When insufficient data

is available the FL’s will not have full rank and pivoting is needed in

the band elimination. It seems that the condition B [A]~ < I will not

hold for any reasonable partitioning or data. Indeed , B[A] is not even

defined for the most obvious partition .

9.B. Finite Elements

In Section 2.A we noted that matrices constructed from finite element

approximations to differential equations often do not satisfy assumptions

such as ~E A ] 1 I  < 1. Thus some other technique must be used to establish

numerical stability in a direct method or convergence in an iterative

method. Usually it is shown that A is positive definite. The following

examp le , admittedly a simple one, shows how an easily implemented change

of variables can yield a new system A’ x’ = v’ such that B [A’ ] l I  < I.

Even if the change of variables is not actually made , this will show that

I I B[A] IL < I for some norm II . and also serves to establish numerical

stability .

Let us begin with the equation -u’’ = 1 on the unit interval. Using

Herinite cubics , Strang and Fix [S4, p. 59] derive the 4th order accurate

finite element equations
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u — 2u ÷ u u’ — u’
• —6 , j-I-l j j—I~ 1, j+l j—l~ —

h
2 ‘ + 

5~ 2h

(9.1)

l j+1 ~~~~ + u ’. - 

~~
(u’.÷l 

- 2u ’~ ÷ U .l ) = 0

~~king the natural choice x . = (u ., 0~)
T
, we obtain the block equation

ax .~~1 + bx~ + cx.~~1 (1 0)
T

/-L

a (

\

51
~ 

iOh

) 

..0T

l0h 30/

~~l2 N( 5h2 0

b =K  4~~~~

The matrix A (a, b , c) is positive definite , but B [A]II = + 3 ’ (4h) .

The problem is simply that the unknowns are out of scale.

A second set of unknowns , which are in scale , is

x~ 
= (u. - ~ u’., u . + ~ u

,.)
T 
~ (u. 1,2 , u .÷l/2

). Since the Hermite cubi.cs

can be derived from B-sp lines by coalescing adjacent nodes , these unknowns

are actually a more natural choice than the original. We now have

= (:~ :1 ~) 
= C h~~~~

and , multiplying the first equation of (9.1) by h
2 and the second by h,

ax j _ 1 + bx j ± cx
j+I 

= (h2 . 1, h

_  _ 
j
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f-i -7/5’\
a = 

2
~~ i

/
ô 1 /

30),

l2~ 5
(9.2) b = —j

2
\8/15 8~5

~ 
,“— 7/5 — I

c = ~~~— 

\ l/30 — 1 , 6

The blocks are independent of h and we have B[A ] I I  = I, with ok(B[A]) < 1

for the first and last block rows . (Actually, this assumes Dirichiet

boundary conditions ; Neumann conditions give 
~k
(B[A]) 1.)

For the more general equation -u ” + Qu = f, Q a constant , the follow-

ing equations are derived [S4, p. 59]:

-_L (..36 u -3h u’. +72 u . -36 u . + 3hu ’. )30h • j—l j—l j  j -i-l j+ l

+ ~~~ (54 u .1  + 13 h u~~ 1 + 312 U . ± 54 u~~1 - l3h

= F.,
3

u .1  -h u ~~1 
+ 8h u~ - 3 u~~1 

_ h u
~+i
)

+ ~~~(13 u . 1  - 3h u~~ 1 + 8h u~ + 13 u~~1 
- 3 h

F~ .

Again taking x~ (u. - ~ u~ , u~ + ~ u~)
T and suitably scaling the equa-

tions, they become

ax . 1  + bx
1 

+ cx. +i (hF~~,F~ ) T

where now the blocks are 0(h 2 ) perturbation s of the blocks in (9 .2 ) . Omit-

ting details , for h sufficiently small this gives II B [A JIJ 1. - ~~~ Qh 2 
+ 0(h

4).



Since rescaling and change of variables in the linear system is equiv-

alent to a change of basis in the original function subspace , the process

should be app licable to more general differential equations solved by

finite element methods . The underlying technique is to prove something

for sp line approximations , and show that the property carries over in the

collapse of nodal points yielding the Hermite cubic approximations.

Strictly in terms of modifying linear systems by a block diagonal

scaling , it is natural to ask if either of the following problems are

solvable in general:

1. Given an arbitrary block tridiagonal matrix A , find a block

diagonal matrix E such that B [AE] Jj < 1.

2. In 1., if BIA ]jI < 1, find E such that BrAE ]II < B [A]~ .

These prob lems are closely related to the optimal diagonal scaling of

matrices to minimize condition numbers , and as such are outside the scope

of this thesis .
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10. IM PLEMENTATION OF ALGORITHMS

This section conta ins some general remarks on the choice of algorithm

for particular app lications , and a more detailed comparison of algorithms

for use on a vector computer . In the comparison we assume uniform nxn

block sizes , later specialized to n 2. All algorithms will use the same

data layout, assumed to be core-contained , and the execution time compari-

son will be in two parts: first for a very simplified and idealized model

in which the machine vecr~ rs are def ined as s torage loca tions in arithmetic

progression , a-id second for a model in which the machine vectors are defined

as contiguous storage locations (arithmetic progression with increment = I).

The firs t model uses information for the COG STAR-130 ignoring , among other

things , the fac t that machine vectors on STAR must satisfy the conditions

for the second model. This double comoarison allow s us to pinooint the

effect of data manipulation required by the stringent requirement on vec-

tor operands. For a description of STAR facilities necessary for this dis-

cussion , see Section 2.B and Appendix A. Implementation of algorithms for

tridiagorial linear systems , n = I, is adequately discussed elsewhere ([H4],

[J l ] , [L 2 ] , 1~ 11], [S2~~ and these references may be considered as back-

ground material for this section .

lO.A. Choice of Algorithm (Generalities)

The salient point of our analysis has been that a number of algorithms

may be applied to block tridiagonal. l inear systems that are likely to arise

in practice. Sometimes it may be possible to take advantage of special

features in order to reduce computing costs or estimate error . When the

computing costs are high (such as one enormous problem or a large problem

solved repeatedly) an extra effort must be made to choose the most
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efficient algorithm. This choice will be difficult to make in general ,

but we feel that it is not at all difficult to choose good algorithms

in many cases.

Regardless of the computer involved , algorithms for three special

problems should be implemented before proceeding to algorithms for more

general problems. The first should deal with general block tridiagonal

matrices restricted to blocks of a small uniform size, say no more than

8x8. On a standard sequential computer , band or profile methods are ap-

propriate; on a k-parallel computer some form of block LU factorization

should be used , and on a vector computer a combination of odd-even reduc-

tion and LU factorization should be used. Storage allocation and access ,

vector operations on a parallel or vector computer and implementation

issues in general can be greatly simp lified under the block size restric-

tion. Options include implementation as a set of subroutines for specific

block sizes , insertion of tests for use as a semidirec t method , and spe-

cial scalings or pivoting strategies for effic iency or stability . This

restric ted class of algorithms may be applied directl y to small-block

problems or used as a module in the iterative solution of large sparse

problems as indicated in Section 8. The experience gained may or may not

be useful for implementation of methods for moderate-sized blocks, which ,

in our opinion, should be treated in a different manner.

The best choice of a parallel algorithm for moderate-sized blocks is

not clear at this time. These cases represent a cross-over between effi-

cient vector implementations of band/profile methods and the odd-even

methods . Either one is likely to be satisfactory. In Lambiotte ’s opinion

~Ll ] the band methods are better  for the CX STAR , but this choice is

heavily influenced by vector addressing restrictions on the STAR (cf. our
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remarks in Section lO.B). Other parallel or vector computers may not

present such problems , arid a more complete analysis is needed.

The third basic class of algorithms are the fast Poisson solvers ,

inc luding generalizations . Recent studies have shown that many finite dif-

ference approximations to elliptic eq.iations can be computed very effi-

ciently by iterative or modification methods based on the Poisson solvers.

There are several kinds of algorithms to choose f rom , and all have consid-

erable inherent parallelism. Other al gori thms are available f or el l iptic

equations , but flexibility and ease of imolementation suggest that Poisso~~

based algorithms should be among the first to be considered. Brandt ’ s

multi-leve l adaptive methods rBl3l must also be seriously considered.

Finally, we note that matrix partitioning and block elimination is a

useful technique for dealing with matr ices so large that secondary storage

must be used rR4I . Known as the hypermatrix scheme in other contexts , it

has been ex tensivel y exp loi ted b~ the ASKA system , a structural analys is

package developed at the Univers i ty  of Stuttgart F3~~. Noor and Voigt IN1]

discuss imp lementation of hypermatrix schemes on the COG STAR-l0O. The

method works as follows : suppose a partition ‘~~ is given (see Section 2.A~~,

and let A be the matrix A partitioned according ly. Block sizes in ASKA

are chosen to optimize transfers between storage levels , while  the choice

on STAR must also try to maximize vector lengths and hence minimize start-

up costs. The usual situation is that a few blocks of A will be in main

memory, while the bulk of A will be in secondary memory . For example , if

is another partition such that -r refines - ‘ , we would perform block

elimination on A ,x ,, v~ . When A~ is block tridiagonal so is A ,,.

Since the data requirements for the LU or Cholesky factorization are then

highly localized , this is a natural procedure CE3]. Mor’~over, the diagona l
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blocks of A,1, will themselves be block tridiagonal , though possibly of low

order . As noted in Sections 2.A and 3.A.2, if B[A ]I~ 
< I then B[A..1, ]II

~~~~~~ and pivoting will be restricted to those blocks of A , resi-

dent in main memory. This, of course , is precisely what is desired.

l0.B. Storage Requirements

Data layout is an essential part of planning an algorithm ’s imple-

mentation on any parallel computer , since computational speed can be

severely decreased if data cannot be accessed conveniently. On a vector

computer this means that conceptual vectors must conform to the machine’s

definition of a vector operand . We consider some consequences of this

requirement for implementation on the CX STAR-lOU , assuming that the prob-

lem is core-contained.

Storage available on the STAR , for 64-bit words , consists of 256 reg-

isters and either 512K or lM words of main memory. A sizable secondary

disc storage is also available but will not be considered here. A vector

on STAR consists of 5 consecutive storage locations , I � s � o4K.

Our data arrangement f or block tridiagonal linear systems with uniform

nxn blocks is illustrated in fig. 10.1 for the case n = 2, N = 7. Define

m tlog
2N , N* 2

m
, and if N < N~ then extend Ax = v with N* - N trivial

equations x1 0. The matrix A and vector v can then be held in three

storage vectors of length n2N* and one of length nN*. Taking the subdiag-

onal blocks as an examp le , the n2 components of a.K are a~J k, I � i � n,

1 � j � n, 1 � k ~ N* , and the storage vector a is defined by

- l)N*n + (i - 1)N* + k) 
~ a~ J k . Thus a total of (3n 2 

+ n)N* loca-

tions are needed to store the original system. We do not consider the

cost of setting up the storage vectors since each of our algorithms will
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Fig . 10.1. Data layout f or n = 2, N = 7, N* = 8.
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use the same arrangement and since the details can very widely between

systems . This particular data layout has been chosen because it makes the

odd-even reduction algorithm more efficient for the true STAR model , while

the other competitive algorithms (LU factorization , odd-even elimination)

are mostly unaffected by the choice of data layou t, and can do wi thou t

extra storage for trivial equations .

Since the STAR forces vector lengths to be � 64K , we must have

7
n N* � 64K = 65,536. For a given value of n , this restricts the system

size as follows :

n 2 3 4 5 6 7 8
7

64K n 16384 7281 4096 2621 1826 1337 1324

max N* 16334 4096 4096 2048 I 1024 1024 1024

These will probably not be serious restrictions in most cases.

A more important restriction on system size is our assumption that the

problem and solution will remain core-contained. Assuming a 512K main

store , and supposing that temporary storage p lus the program amounts toT

times the original storage , we obtain the following restrictions on N:

n 2 3 4 5 6 7 8

512K T 1 18724 8738 5041 3276 2279 1702 1310

(T + l)(3n
2 + n) T= 2 12483 5825 3360 2134 1533 1134 873

T= 3 9362 4369 2520 1638 1149 851 655

max N* T I 16384 8192 4096 2048 2048 1024 ( 1024
T = 2 8192 4096 204 8 204 8 1024 1024 512

r =  3 8192 4096 2048 j 1024 1024 512 512 

~~~~~~~~~~~~~~~~~~~~ •--~~~ - -~~~~~~~~~~~~~~~~~~~~~ •- - 
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The amount of temporary storage used depends on the algorithm and the

extent to which A and v are overwritten. It can range from practically no

7

temporary storage (other than O(n ) registers) for the LU factorization to

T in for an inefficient imp lementation of odd-even elimination . Odd-even

reduction would typically have T � 2.

We now consider the costs of data manipulation for the basic algorithms.

Major considera tions are the speed of the load store unit on STAR , for reg-

ister-memory transfer of scalars , and the requirement that vectors be stored

as contiguous memory locations .

The LU factorization, executed mostly in scalar mode : The only data manip-

ulation is to load 1store between memory and the register file . To a con-

siderable extent this may be overlapped with arithmetic operations. A

comp lete analysis requires cycle counting in an assembly language Prozram

and timings from actual runs . Our estimate of execution time (based on an

untes ted C~~CiC count) is that the algorithm will probably be 10 bound .

With this in mind , we suggest four possible implementations : (Times given

are for n 2, and represent min imal run times assuming cotn~ le te overlap

between scalar arithmetic and load stores . Actual run time will certainly

be greater. For details , see Appendices A , B.)

Vers ion 1, a one- time solution , all scalar mode

time � 533N - 362

Version 2, factor + solve , partial vector mode

factor , version a, time � 324N ÷ 3421 (use for N > — 38)

version b, time � 374N ÷ 1769

version c, tim e � 420N - 280 (use for N < — 33)

solve , time � 303N ÷ 1039
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The three versions of factorization use increasingly fewer vector opera-

tions aiti increasing ly more scalar operations . If more than one system

must be solved with the same matrix A , it is best to use Version 2. Our

execution time comparison in Section b . C  will use Version 1.

Odd-even elimination, executed in vector mode : An important feature of

this algorithm and any data layout like ours based on component vectors

is that the conceptual vectors all correspond to the strictest require-

ments for machine vectors , and hence no addit ional data manipulation is

needed. (cf. [Ml] for the tridiagonal case.)

Odd-even reduction, executed in vector mode : If the vector computer model

allows vectors to be storage loca tions in general ari thmet ic progres s ion ,

then no additional data manipulation is needed. In ~ true model of the

STAR , however , we need to perform two basic operations : (I) separate a

vector into its even and odd corn~ionents, and (2) rejoin the even and odd

parts of a separated vector . The first is accomplished with two STAR

compress instructions , the second with a STAR merge instruction . The odd-

even separation is needed before each reduction step can be performed , and

must be applied to vectors a, b , c , and v. We illustrate the separation

for 1 in f ig . 10.2. Having set up a control vector z consisting of n2N~ 2

copies of the bits 10 (a single vector operation on STAR) , we execute

compress b -. bl(1) per z

b(2j - I) ...bl (j), (1 � j

compress b -. bl (~ n N*) per z

b(2j) -. bl (~n
2
N* + j), (1 � j �~~n

2
N*).

The cost for each compress is n2N* + ~(~n
2N*) ÷ 92 and the total cost to



- - -~~~~ - -

~~~~~~ 

- •

b a bI final state

11, 1. 11, 1 11,1
0 b1 1 3  b 113~

b
113 1 b

115 b
1 1 5

b
114 0 b

11~~ b
1 1 7~

1
~ b~~.b 1 b b U ,

b 0 b b~~~~~~ ~ k odd ,
11 ,6 12,3 12,3

1~~~k� N *

12 ,7 22 ,5 22
~
5(l~b 1 2 3  0 b~~~ 7 b92 7  —

(7)b7 1 1  1 b
11 9 b

1 1 1
0 b

11 ,4 
b
ll ,3(2) 1 b 

(2)
21 ,3 11 ,6 12 ,1 ij,k
21 ,4 11,8 12 ,3 k odd ,

l � k � N ~~ 2

21 ,3 12 ,8 22 ,3
b 1 b b (3)
22,1 21 ,2 11 ,1

b 0 b b22 ,2 21 ,4 l1~2 (3)b273 1 b2 1 6  b 1 2 1  b ..
b 2 2 4  0 b2 1 s  b 12 2  f l � k  � N*4

b
2~~8 0 b723 b

222~
3
~ J

Fig . 10.2. Odd-even separation for n = 2, N = 7 , N* = 8. 
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odd-even separate a, b, 2’ and v is ~~ (3n
2 + n) N* + 736. Our initial

extension of A to N* block equations makes it possible to perform this

step using onl y 8 vector compress operations , independent of n . If A

had not been extended we would need either 2(3n2 + n) vector operations

to compress the vectors one component subvector at a time, or n
2 vector

operations to generate a modified control vector consisting of n
2 copies

of z ( b : N ) , f ollowed by the original 8 vector compress operations .

Lambiotte [LI] rejected use of odd-even reduction for 11 > 1 on th is  bas is .

The net effect of our extended data layout is to reduce the n-umber

of vector operations needed to manipulate vectors f or the STAR , and thus

to reduce vector startup costs. On the other hand , we ha-re increased vec-

tor lengths and hence sto rage fror~ N to N*, and th is  may be a more impor-

tant consideration in some cases. The modified control vector approach

would then be most natural despite the increased startup costs. In any

case , 0(n
3
) vector operations are needed for the arithmetic t art of the

reduction sap.

So far we have considered only the odd- even separation to prepare

for the first reduction . In general , the cost of the separation to pre-

pare for the ith reduction , 1 � i � in - 1, is *(3n
2 
± n)N~ + 736,

2
m4~l-i and the total cost for rn-i reductions is ~~(3~2 ± n) (N~ - 2)

+ 736(m—1). For the case n 2 this yields 59.5N* + 736m - 855. We will

see shortly that this is roughly half as much time as is spent in the

arithmetic operations , so the overhead of dealing with a restr ictive

mach ine vector def in i t ion  can be considerable.

Data manipulation for the back substi tution is simplified by saving

the odd- indexed equations of A
(1) 

in appropriate form for vectcr operations

(see fig. 10.2 for the final state of b). Having computed the



even components of x~~~ , we compute the odd componen ts of x~~~ and merge

the two sets into ~~~~~~~~~~~ The merge operation on STAR is comparative ly

more expensive than the compress operation , but we are onl y dealing wi th

the solution vector and not blocks of A. The cos t of the merge operation

a t stage i is 3nN .* ± 123 , and the tota l cost for rn-I reductions is

6n (N~ — 2) + 123(m - 1). For n = 2 this yields 12N* + 123rn - 147.

p-fold reduction: Suitable data arrangement and use of control vectors

for ~-i~~ d roduatL~n zun readil y be cn2rO l ized from our discussion of

odd-even reduction . The oil-even separation ~on~ rali:es to separation

i n to  ~ vec tors , which roq~~Lres p zo~~nress  instruc tions per s torage vec tar;

- - 1 2 - -tue  cost  ~er r e d u ct L o n  w o u l d  oc (~ 
-
~~ ~ ) (3n + n~~~~-- ± 3b3~~

in = 1o g N~ . The back s ub s t i t u t i o n  r e qu i rc .~ me r.~iru~ n vectors into I,
- 

~~ l 1u :~tn~ ~ l mor~ e Lu~~t ruc :Lons  a t  cos t  ~~ 3~~~~— — ;~ nN~~ ± l 2 3 ( p — l) to ~o

~r~)m x ’ to . It is c L e a r  t~iu t  th~~~e cos t s  are m i n im i z e d  b y

= 2.

Jacobi iterations: Data manipulation is unnecessary when A and v cr B A ~

and D A 1  v are stored accordi :u  to our component subvector scheme .

l 0 . C .  Coipparat ive T L m L n ~ Anal ys i .~~

We close w i t h  an execution time comparison of al gori thms for genera l

block tridiagonal systems with  2\2 blocks , based on t iming  i n f o r m a t i o n  for

the COC STAR-IOU. This will expand the crude comParison of the LU factor-

ization and odd—even reduction given in Section 4.D, and illustrates many

earlier statements concerning the cost of various methods. Essential con-

siderations include vector startup costs , creating a substantial penalty

for operations on short vectors , and data manipulation to deal with
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restrictive definitions of vector operands . Section lO .B began our dis-

cussion of the latter problem .

Our initial simplified analysis is based ott the following conven-

tions , which alloy us to consider only arithmetic costs :

1. we assume

a. vector operands may be any sequence of storage locations

in ar ithmetic progression ,

b. pivoting is never necessary ;

2. we ignore

a. instruction overlap capabilities ,

b. address calculations , loop control and termination tests ,

c. load/store costs for scalar operands ,

d. storage management costs , as a consequence of assumption l.a.

Our second , and more realistic analysis will demand that vector operands

consis t of consecutive s torage loca t ions , so ~e must consider storage manage-

ment as explained in Section 1O.B. Overlap, loop control and scalar load~
’

store will also be considered , but not address calculation or termination

of iterations. Algorithms and timing derivations are given in Appendix B;

here we presen t the main results and make comparisons .

Execution times for the basic direct methods are initially estimated

as follows (in ‘ log
2
N~
’)

1. the block LU factorization , using scalar o’erations only (LU) :

1012N - 784

2. odd-even elimination , using vector operations only (OEE) :

94 .5Nm + 12999m - 93. 5N - 1901
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3. odd-even reduction , using vector operations except for the final

block system (OER) : 106.5N + 14839m - 14717.5

4. p- fold reduction , p � 3:

l45N + l9206m 
~1og 2 p~ 

— ( l93 5 lp  — 19579)

We can first dispose of p-fold reduction as a competitive method for ~en-

eral problems since either LU or OER is always cheaper. Execution time

ratios show the benefits of using OER in preference to LU and OEE .

N = 1023 N = 8191 l im i t , N —

OER : LU .23 .13 .11

OER : OEE .24 .11 0.

The importance of vector startups is seen by comParing OER and LU,

for the latter is faster when N < 100. OER works by success ively red uc in~

vector lengths , and at some point this becomes inefficient. A polyalgorithm

combining the two methods is straightforward: if m � 6 then use LU , other-

wise do m-5 reductions , solve the remaining system by LU , and back substi-

tute. This reduces the time for OER to 106.5 N + l4839m - ~ 69O S .5 , and

for N = 1023 it represents a savings of l3~ .

We also note that vector startups are the dominant term for OER when

N � 1332 , and are the dominant term for OEE when N � 137. Of course , OEE

uses 0(N log N) operations vs. 0(N) for the other methods and soon becomes

inefficient. Nevertheless , it is fa ster than LU for  ~ 55 ~ N � 1023 ,

although it is always slower than OER.

Our conclusion is that the OER - LU polyalgorithni is the best direct

method of those considered here .

Now consider the cost of individual eliminations or reductions with 

~~~~~~~~~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~ -.-- --- _ . -, _ _ _
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respect to the total cost of the algorithm. For odd-even elimination,

each elimination step has roughly equal cost, the last being slightly

cheaper. Thus each step costs about l ’m of the total cost. For odd-even

reduction , the cost per reduction decreases as the algorithm proceeds :

cost of the kth reduction as a fraction of total cost

k = 1 2 3 4 5 6 total cost

N 1023 , m = 10 28~ l7~ 12% 3% 7~ 7% 242,622

N 8191 , m 13 43~ 22~~ l2~ 
- 

7~ 3~ 1, 050 ,531

(cost for kth red. = 106 5(2 m k ) + 14839 when N - 1)

For sma~ 1 N , when startup costs are dominant, reduction costs are approxi-

mately equal , while for large N, when true arithmetic costs are dominant,

the kth reduction costs abou t 1 2k of the whole. This has irinnediate con-

seq aences for  the e f f ec tiveness of incomplete reduction , since the omitted

reduc tions are only a small part of the total cost when N is large .

For our comparison of semidirec t and iterative methods , the goal w ill

be to approximate x with a relative error of i N , or to reduce the initial

error by a factor of l ’N. Thus if we ~erforrn either k odd-even elimina-

tions or k reduc tions , we want 3[Hk+l ] J I  � l N  or B[A~~
’
~~~]II 

� 1 N ,

assuming B[A](~ < 1. Theorem 7.1 is then applied to produce the desired

approximation by incomplete elimination or reduction. Taking ~

we have B[Hk+l] ~, 1 B [A~~~~~ ~ 
~ ~~k 

and demanding 8
2k 

� l’N yields

k � log
2
((log

2
N) / (—log

2
e)).

The execution time for k eliminations is

94.5Nk + 12999k + 10.5N - 105(2
k) + 1205,

and the time for k r~ Iuctions is

-
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l06.5N + 14839k — 96(2
m_k
) + 1287.

Typical savings for incomp lete reduction over comp lete reduction would be :

.9, pick k � log
2

log
2
N + 2.718

N = 1023 , k = 7, savings l2~

N = 8191, k 7, savings 7~

8 ~~~, p ick k � log 2 log 2 N + .774

N = 1023 , k 5, savings 25~

N 8191 , k = 5 , savings l2~
1

~~~, pick k � log., log 2 N

N = 1023 , k = 4, savings =

N = 8191 , k ~+ , sav ings = l6~

Comparison to the OER - LU polyalgorithm decreases the savings.

We next consider iterative methods and their combination with semi-

direct methods . One step of the block Jacobi iteration costs 22.5N + 3031 ,

while one step of the block Jacobi semi-iteration costs 2 5 . S N  + 3403 p ius

overhead to estimate parameters such as 2 z (BtA1). Execution time may

be reduced to 12N ± 1840 (16N + 2217) per iteration by d irec t ly comput ing

BIA] and DEA ] ’v (cos t = 38.5N + 4367 3 iterations).

We will use the Jacobi iteration in its simplest form when only a few

steps are demanded , and Jacobi semi-iteration when many steps are needed.

The number of iterations needed by J-SI to reduce the initial error by a

factor of 1 ’N are estimated to be
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The LU factorizatiort is always faster than OEE, and is faster than

OER for N � 312. Vector startup costs are dominant in OEE for N � 152,

and in OER for N � 798. The OER-LU polyalgorithrn should perform m-6 reduc-

tions, solve the remaining system by LU , and back substitute. The time is

183N ÷ l6233m - 70677 , yielding a l6~ saving over OER for N = 1023 but only

a 3~ saving for N = 3191.

The execution time for odd-even elimination is allocated as follows :

N = 1023 N = 8191

çarithmetic 96~ 961~

~overhead 4~ 4~

~resul ts 37~4 98~

vector startups l3~ 2~

Analysis of the total time for odd-even reduction shows the greater impor-

tance of overhead operations :

N = 1023 results startuns 
__________

~arithmetic 33~ 40~ ~~~ 1
~overhead 23~ ~~ 27~

56~ 44~

N 8191 results startups 
__________

~arithmetic 52~ J 11~ 62~

toverhead 37~ l~ 38~

88~ 12/

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . - ~~~~ -- 
_ _ __ __ __ __ _
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limit, N -. results startups

1arithmetic 58~ - 58~

loverhead 42% - 42~

lOO~ —

The increase in time for OER due to overhead is 37~ for N = 1023 , 6l’~ for

N 8191, and 72~ in the limit as N -. ~~. As a consequence of the data

layout of Section lO.B , overhead startup costs are quite small , but the

overhead result costs cannot be ignored and probably cannot be decreased.

The strong requirement that machine vectors consist of contiguous storage

locations leads to much “wasted” effort in execution time.

Most of the execution time of OER is actually spen t in the ari thme tic

and vector compress operations :

cost of individual operation as fraction of total cost

N = 1023 N = 8191 limit, N -.

divide 12~ l2~ 12~

multip ly -~3% 35~ 32%

add/subtract 18~ 15% l4~

compress 2O’~ 29~ 33~

merge 6~ 7~

transmit 3% 3~ 3%

The compress operation assumes more importance as N increases , again

reflecting its low startup costs.

As noted earlier , most of OER’s time is spent in the first few reduc-

tions and subsequent back substitutions .
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p = .9, l.5m iterations,

p = ~~~, .75m iterations,

p = ~~~, .5m iterations .

For p = -
~~~ , for examp le , J-SI is never faster than OER.

As suggested in Section 7.A , we can combine incomplete elimination or

reduction with Jacobi iterations . If k steps of elimination or reduction

are used , fol lowed by 2 iterations and back substitution , k and 2 should

be chosen so that 3 � l~ N , or

(*) k + 1og
2

2 � log
2

( ( log
2
N) / (-log 79)).

The time for the OER- J method would then be

l06.5N + 14839k - 96(2 m k ) + 1287 + 2 (1 9 (2 m k ) + 2615) ,

and it only remains to minimize the time subject to ( *) . For ~

N = 1023 , the resulting values are k = 2, 2 = 5, which represent a savings

of 37:~ over OER. For ~ 
= 

~~~~, N = 8191, the resulting values are k = 3,

2 3, which represent a savings of 15% over OER.

Of course , to determine k and 2 we need to know ~~ . While i t  is true

that ~ = B[A]~ J can be computed directly from A at a cost of 46.5N + 3881,

or from B [A] at a cost of 15N + 308, we recognize that half the rows of

B [A] are available as part of the first odd-even reduction . An estimate

of B1A]~j can be computed from these rows at a cost of 7.5N + 308. For

large N even this cost considerably reduces any benefits gained from using

incomplete reduction , and points out the importance of art analytic estimate

of B [A ]~ rather than a computational estimate.
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This ends our initial comparison of algorithms . We now make the

assumption that vector operands are consecutive storage locations, allow

overlap of scalar operations , and consider the cost of loop control and

scalar load store operations . The net effect is to lower the time esti-

mate for the LU factorization and raise the time estimate for odd-even

reduction . Odd-even elimination remains substantially unchanged. Rather

than simp ly recompute the figures presented earlier , wh ich will be done in

a few cases , we try to indicate where the algori thms spend mos t of the ir

time.

Revised time estimates are given below . These should give a better

indication of actual runtime on STAR, bu t are pr obabl y all underestimates ;

we note changes from the first set of timings. m = rlog2N
T
.

1. LU factorizatiori , (LU) ÔOON — 150

(a 4O,.~ decrease due to use of ins truc tion overlap)

2. Odd-even elimination , (OEE) 98.5Nm -~- l3403m - lOl .5 N - 2261

(a 4~ increase due to overhead costs)

3. Odd-even reduction . (OER) 183N + 16233m - 16108

(a 10-70/ increase due to overhead costs; larger N incurs

larger increases).

Time ratios show the effect of decreasing the LU time and increasing the

OER time

N 1023 N = 8191 limi t , N —

OER :LU .54 .34 .31

OER :OEE .32 .17 0.
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cost of ith reduction as fraction of total cost

i 1 2 3 4 5 6

N = 1023 33~ 19-c l2~ 7~ 6~

8191 45~ 23~ 12% 6~ 4~ 2~;

l imit , N — 50~ 25 1 13~ 6~ 3~ 2~

Of the total time, 86’~ is spent in the reduct ion phase and 14~ in the back

substitution .

One of the e f f e c t s  of the OER- LU pol yal gori thm is to reduce the im~ or-

tance of vector s ta r tup  costs , as seen below .

N = 1023 N 8191

scalar t ime l4~ 2/

vector time 86~ 98~
.1 .1

results 63- 91

star tups 23~ 7~

Of course , when star tup costs are alread y small  no t much improvemen t can

be made . Incomplete reduction and incomp lete reduction + Jacobi iterations

d isp lay similar results. (~~ 
= 1 B rA I J I ).

Incomp lete reduction , savings over OER

N = 1023 N = 3191

k savings k savings

~~= .9 7 io% 7 s~

_ _ _  _ _ _  _ _  _____________
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Incomplete reduction + Jacobi iteration , saving over OER

N = 1023 N = 8191
k ~ savings k L savings

~~= .9 3 9 22~ 4 6

-
~~ 2 5 36~~~ 2 6 l3~~~

4 1 5 ~7 -~ 2 4 21%

As seen ear l ier , the semidirect methods are besr as~ lied when the omitted

odd-even reductions make up a significant part of the OER time. There is

considerable advantage to using incomplete reduction plus Jacobi iterations ,

roughly  doubl io~ the savinJs  obtained by simple incomolete  redu ction .

- • - ~~~~~ ~-
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APPENDIX A

VECTOR COMPUTER INSTRUCTIONS

This section describes those features of the CX STkR-100 needed for

our comparison of algorithms in Section 10. Information given here is

derived from CDC reference manuals and timing measurements made at Lawrence

Livermore Laboratory [C2J, and by no means represents a complete discussion

of the STAR’s facilities.

Execution times are for full-word (64 bit) floating point instructions,

given as the number of 40 nanosecond cycles needed for each instruction.

All times should be accurate ti within 5~ except as noted , though actual

performance may be degraded somewhat due to memory conflicts .

A vector on STA R consists of N consecutive storage locations ,

1 � N � 65 ,536. The vec t~~~1ength restriction is usually not serious, but

the need for consecutive storage is crucial. Other vector computers, the

TI ASC in particular , do not have this restriction . Both machines are

pipeline computers with the usual scalar instructions as well as vector

instructions .

Useful features of vector instructions on STAR include :

broadcas t cons tants - Most vector instructions allow a scalar (the broad-

cast constant , held in a reg is ter) to be transmitted repeatedly to form

one or both of the vector operands . Use of this facili ty decreases exe-

cution time in a few cases.

control vectors - Bit vectors can modify the effect  of vector ins tructions ,

such as suppressi ng storage to selected components of the result vector

or determ ining which operand components are to be used in an operation.
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Use in vector data manipulation (compress and merge) is explained

later.

offset - Modification to the base address of operands .

sign control - Certain vector operations allow the sign of the operands V

to be modified before execution.

Individual classes of instructions follow.

scalar (register) instructions. Issue time is the number of cycles required

to initiate execution. Shortstop time is the time after issue when the

result is first available , but not yet placed in a register. The result

must be used at the precise time given ; if not , the result cannot be used

until it is placed in a register . Result-to-register time is the number

of cycles after issue when the result is placed in a register. Overlapped

execution is possible , but the exact effect on execution time is best

determined by actual testing , which we have not done.

STAR result
instruction operation issue shortstop to register

62 add , normalized 2 6 11

66 subtrac t , no rmal ized 2 6 11

6B multiply, significant 2 10 15

6F divide , s ignif icant 3 - 43

73 square root 3 - 71

78 register transmit 2 4 9

scalar (register) load/store instructions. Up to three load/store instruc-

tions may be stacked in the load/store un i t  at  any given t ime . The stack

is processed sequent ia l ly at a rate of 19 cycles per load and 16 cycles

V --
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per store minimum, assuming no memory conflicts . Once a memory bank has

been referenced it remains busy for 31 cycles; during this time further

references to the bank are delayed and the conflict will affect references

to other memory banks . Start to finish for a single load requires at

least 31 cycles , and a minimum of 66 cycles are required to store an item

and reload it.

STAR result load store
instruction operation issue to register unit busy

7E load 3 23 19

7F store 3 — 16

branch instructions. Execution time for a branch can range from -s to 3—i

cycles , depending on the particular instruction , whether a branch is ac tu-

al ly made , whether the target instruction is in the ins truction stack , etc .

We will be only s l igh tly pessimistic if we take ~ O cycles to be the time

for a typical branch .

vector ope ration instruct ions.  Execution time consists of art initial start-

up time followed by sequential appearance of result vector components , or

startup time followed by processing time of operands if a scalar result is

generated. Vector instructions may not be overlapped except for a negl igible

part of the startup time. In the table below , N is the length of the inpu t

vector(s) and V is the number of omitted items due to use of a controi vec-

tor . Times for instructions D8 - DC may vary as much as ±20’.
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STAR vector
instruction operation time effect

82 add , normalized -~N + 7 1 c . — a. + b .2 1 1 1

86 subtract , normalized !N + 71 c . — a. - b .2 1 1 1

SB multiply, significant N +159 c . a. x b .

SF divide , significan t 2N +167 c . ~
— a . 4- b .

1- 1 1

93 square root 2N +155 C .

transmit —N + 91 C . — a .2 1 1

199 absoLute value —N + 91 c . — aj2 1

D8 maximum 6N - V + 95 c - max a .
N 

1

DA su!tm~ation 6.5N — 2V + 122 c — a~i=l ~
DB produc t 6N - V + 118 c — a .i 1  1

N
DC inner produc t 6N - V + 130 c a

~
b
~

~1=1

vector data manipulation instructions. The compress instruction transmits

selec ted components of one vector into a shorter result vector. Given a

vec tor a and a con trol vec tor z , the instruction essentially executes the

code

j — l

for i l , 2, ..., N

if z. 1 then [c~ — a ;  j — j+lL

The result vector £ has length bitsuin(~) .  The merge instruction “shu f f l e s ”

two vectors into a third , according to the control vector :
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length (c) length (z) = leng th(a)  + length (b)

j l ; k — l

for  i = 1, 2, ..., length(c)

if z. = 1 then ~c — a • ; j — j+l~1 1 J
else tc . — b, ; k — k÷ 1)

In the table below , M
1 

length(a) , M
2 length (c), R number of input

items broadcast from register.

STA R
instruction operation time

BC o~-ipress a — c per z N
1 + ~ -M

2 + 92

BD merge a ,b — c per z 3M.) - 2R ~ 123

Execution times for these instructions may vary as much as ±20~~.

L ~~~~~~~~~~~~~~~~~~~~~~~ ~~.. ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _
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APPE ND IX B

SWI~4ARY OF ALGORITHMS AND TIMINGS

We collect the algorithms discussed in the main tt~X t , and present

timing formulae in general terms for a vector computer . This is then

specialized to block tridiagonal. systems with 2 x 2 bLocks using timing

information for the CDC STAR-l0~
). A comparison of methods based on the

latter set of timings is given in Section b .C. It must be emphasized

that our time estimates have not been verified by d irect testing ~ STAR .

The al gorithms solve Ax = v , A (a , b ., c .)
N
, with blocks cf uni-

form size n ~ n. The basic arithmetic operations are: (S add or Su.)-

trac t, >1 = multip ly,  D div ide)

1. ~ictor an n c n block b

1 ’  1 3cost ~ (n - n)D + ~ (2n - 3n ± n)(N + s)

2 .  ha vi n -z  factored b , solve b~ = f , where f is n ‘< n’

cost = n ’ (nD + (n - n) (N + S
V) )

3. product of n x n and n n’ blocks

2cost = n ’ ( n M  + (n -n)S)

4. difference of two n x n ’ blocks

cost = n’ (tiS)

Depending on context , the symboLs 5, M , D can mean either a single

scalar operation or a vector operation with vector length specified by

the algorithm.

For each algorithm we give a code in terms of blocks of A , since the

translation to individual scalar or vector operations is generally obvious.

I. 
-
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In those cases where additional detail seems to be necessary it is pro-

vided . Two basic sets of timings are given , five formulae in all for

each algorithm :

1. counting arithemtic operations only, assuming machine vectors

can be any seq .ience of storage locations in arithmetic progres-

s ion , and ignoring pivoting , instruction overlap, address cal-

culation , loop con trol , termination tests for itera tions , load

store cos ts f or scala r operands , and any other forms of storage

management

(a) for systems with n x n blocks in general terms for a

vector computer

(b) for systems with n x n blocks , with timing data for

the CX STAR-bOO

(c) for systems with 2 x 2 blocks , with STAR data

2. a more realis tic model of STAR , requiring mach ine vectors to be

Contiguous storage locations , allowing overlap of scalar opera-

tions , counting s torage managemen t and load ”store costs , and

loop control to some extent , but still ignoring Divoting , ad-

dress calcula tions and termination tests for iterations

(a) for systems with n x n blocks , with STAR data

(b) for systems with 2 x 2 blocks , with STAR data.

Additional notes are provided in many cases. Timings 1(c) and 2(b) are

used in Section b .C.

A few remarks on the timings are necessary. Since we eventually want

estimates for 2 x 2 blocks , the only loop control that will be counted is

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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that on the main loops. Operations on n x n matrices or n-vectors are

assumed to be expanded into straightline code.

The address calculations that have been ignored here would be exe-

cuted in scalar mode, and probably can be completely overlapped with

scalar arithmetic operations in the LU factorization . Their effect on

the odd-even methods would be to increase the 0(m) terms , in log
2
N~~, but

this probably represents only a small relative increase since the 0(m)

terms consist of vector startup costs and are already barge . While scaLar

operations can sometimes destroy the efficiency of a vector code , we be—

lieve tha t our basic conclusions will not be al tered b y inc luding address

calculations .
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1. Block LU factorization, using scalar operations mostly

Algorithm:

d
1 

b
1 

; f
1

f o r i 2 , ... , N

solve d • (u. g. ) = (c . f .i 1  i — I  i — i  i — i  j .~~~~i

d . = b . - a. u .
1 1. 1 i_— I

f. = v. - a. g.
1 1. 1 i—b

solve d
N 

X
N

for i N— l, ... , 1

x = g . - u x .
i 1 1 i+l

Storage handling :

If desired we can overwrite d . -
~~ b . ,  2 . = a . dT~ -~ a , u -. c ,,

1. 1 3. 1. i — b

x . — g . — f. —. v .. The factorization loop needs to save either d . and1 1 1 1

f . or ti and g ,  a total of n
2 

± n stores and subsequent loads . If
1 1 1.

d ., f . are saved then the second 1oop would be
1. 3.

for  i = N— i , . . . , 1

solve d . x. = f. - c . x .
1 1 1 1

with a corresponding increase in execution time.

Variations of the basic algorithm , with estimate of minimum runtime

due to load/store unit:

Version 1, a one- time solution.

initialization loads b
1
, V

1

factorization loop loads c .1 , a., ~~ v~

stores u~~ 1~ g~ _ 1

initialization stores

- 
_ --

~~
_----— V.- — -
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back substitution loop loads u .,, g.

stores x .

At 19 cycles per load and 16 per store ,

total time � [19(4n
2 
+ 2n) + l6(n

2 
+ 2n) ) (N- I)

+ 19(n
2 

+ n) + 16(n)

2
= (92n~ ÷ 70n) (N- b) + 16n ÷ 35n

for n = 2, total time � 503N - 362

Vers ion 2 , fac tor + solve , A (.~., I, O)(o, d ., O)(0 , I, u .)

Fac toriza tion requires n (3N - 2) loads for A.

Version a. factorization loon stores d . only , a~ d computes

2. a . d~~ 1, 
u . d~~ c~ by vector operations , vac tor 1en~ t~ N.

total time � 19n (3N - 2) + 16n N + ~ (5n - n)D + -g(b4n - l5n + n’t (M+S),

D T .N + 
~~~~

,,  etc .

for n = 2., total time � 323.5N -~
- 3 4 2 1

Vers ion b. factorization ioop stores d ., u~~, comDutes 2. by -.‘ector

operations , vector leng th N.

total time � l9n2 (3N - 2) + 16n2 (2N - 1)

1 2 1 3 2
+ ~~(3n - n)D + ~~(8n - 9n + a) (M+S)

for n 2 , total time ~‘ 373 .5N + 1769

Version c. factorization loop stores d ., u ., L .

total time � l9n
2
(3N - 2) + 16n 2 (3N - 

I

for n 2, to tal time � 420N — 280

Solution of Ax v, given the factorization of A.

forward elimination loads v
1 

initiall y

1oop loads ~~ v~ , stores f.

solve d~ gj 
= f~ with vector operations.

-- ~~~~~~~~~~~~~~~~~ - - —- -
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back substitution loads x~ initially

loop loads u ,, g., stores x~

total time � 19 (2n2 (N—i) + 2nN) + 16 (2nN )

1 2  1 3 2
+ -~(n + n ) D  + -g (2n ± 3n - 5n) (M+S)

for a 2, total time � 302.5N + 1)39

Timings:

1. Version 1, for initial compar ison , arithmet ic operations without

overlap , load stores ignored.

1 2 1 3 2 -(a) {-~~(3n + n ) t
D ÷ -g( 14n + 9n - Dii) (t~~~ + t

5
) .~N

2 3 2
— cn t

D + (2n + fl ) (t ~1 
t

5
) ~

3 2 3 2
(b) with STAR data : (70n + l l 4n - 2n) N - (60 n  4- 76n )

(c) for n = 2, with STAR data: bOl2N - 784

2. Version 1, for second comparison , allowing overlap and including

load/stores .

In the absence of facilities for direct testing on STAR, a scalar

code was written for the special case ii 2 and time estimates

computed from that code. The details are tedious and well-illustrated

by the simpler tridiagona l code in rL2], so they w ill not be given

here. The main time estimates are

initialize - loads + loop set up 200 cycles

factorization loop 400(N-l)

ini t ial ize 250

back substitution ioop 200(N-l)

total time estimated to be 600N - 150 cycles

This timing is probably optimistic due to unforeseen memory and

overlap conf l i c t s .

-V -V _ — _ V _ _V_ VVV . . V V m , mrIflhllr__ : .~- -~ 
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Notes :

1. Gaussian elimination , taking advantage of the block structure , using

scaler opera tions , requires the same execution time as the block LU

factorjzatjon .

2. If u , 1 � j � N-i , is saved in the factorjzatjon , then B{A
N ]i~ 

may
be computed fo l low ing the f irs t loop at a cos t of

((n-1)- -~- — ) (nN + (n- 1)c ± ~~max 
± max

using the vector maximum instruction. This yields l3N ÷ 166 for a 2

on STAR .

V A
V -VV.V~~~~~~~~~~~ — --- -V.—
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2. Odd-even elimination, using vector operations

We give the algorithm and timing for N = 2
m 

- ~~~, deriving formulae

solely in terms of N and m . Timing for other values of N is approximated

by setting m 
Tlog

2
N~~.

Algori thm: ~~~~~ a ., etc..3 3
- i — b

for i = 1,2 , . . .  ,m (r = 2 ) vec tor
leng ths

for each j 1,2,... ,N

solve ~~~~~~~~ y. ~ .) = (a.~~~ c .~~~ v~~~~) N , N-r
J 3 3 3  3 .3 3

take 
~~~~

. y. = 0, 
~~~~

. 0 if  i < 1 or j > N

b .~~~~~~
+U = ~~~~ — ~~~~ ~y . — ~~~~~~~~~~~~ ~y _  N-r

3 3 3 j—r j
(i+b) (i) (i) (i)

V . = v . - a . ~~~. - C . ~~~. N-r.3 3 3 j — r  3
(i+1) (i)a . = -a. ~~~. N-2r

3 3
(i+1) (i)c .  = -c . v .  N-2r

3 3

for each j =

(m+l) (ms-I)
solve b . x . =

3 3 3

Storage handling : temporary vectors are needed for the factorization of

and for 
~~~

., y., co~ computed at each stage , and we can overwrite

~~~~~~ — ~~~~~ ~~~~~~ —. ~~~~~ etc..3 3 3

Timing :

1. arithmetic only

(a) {~ (5n 2 
+ n)T

D 
+ ~ (38n

3 
+ 3n

2 
-

+ ~ (38n
3 

- 9n2 - 5n)
5)Nm

÷ {~(5n
2 

+ 

~~~~ 
+ ~ (38n

3 
+ 3n 2 

- 5n)~~1

+ ~~(38n 3 
- 9n2 - 5n)c~) 3 m

V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --- .-V. ----- ~~~-_ ~~~~~—---
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1 2 1 3 2- r (3n - n)TD +~~ (46n - 3n ±

27n + 5n) T
5~~ N

+ {(2n )T
M 

+ (2n - 2n + T(n + n ) c

1 3 2
4- ~ (- lOn ± 3n - 5n)c~

1 3 2
+ ~ (-l0n + l5n -

(b) wi th  STAR data ,

~~(3Sn 3 
+ l9n 2 - n)N m + ~~(874 On 3 + 2343n 2 

- 649n)m

-~~(46~~ + 
2 

+ n ) N  - ~~(2282 n
3 

- 2 037n 2 + 649n)

(c) for  a = 2 , wi th  STAR data ,

94.5 Nm + l2999rn — 93.5N - 1901.

(i+b) (i) (i+I) (i)2. With overwriting of a . — a . , c • — c . , it is necessary
3 3 3 3

to develop the produc ts  one row at a time in a temoorary vector , and

then Vise a transmit operation on the whole row . For spec i f i c s  see

the discussion of odd-even reduct ion  to fo l low . The added cos t for

loop control and transmit instructions is
rn—i 

2
~Om ~~

- 

- ~~ 2n(~ rt (N-2
1) + 91) = 40m + n (N(m-2) + 1) + b82n(m-1),

or ~Nm ÷ 404rn - SN - 360 for a = 2.

(a) with STAR data, total time is

1 3 2 1 3 2
~ (33n + 23n - n)Nm + ~~(8740n + 2343n + 443n + 240)m

-~ (46n 3 
+ 9n2 + n)N - ~~(2282n 3 - 2c43n2 + ~74bn)

(b) for a 2 , with STA R da ta , total time is

98.5Nm + 13403m ~~10b .5N - 2261.

— 
— - - — -—. — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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No tes:

1. B [A]~ I may be computed in the first time through the loop at a cost

of ((2n_l)T
+ ÷ Tma

)(nN) + ((2n_ 1)0
s- 

+ 

~max~~ 
This yields 15N + 308

for n = 2 on STAR. B[H.] ii may be computed at a cost of l5(N - 210_ i)
÷ 303 at the appropriate time through the loop.

______ __ V . .
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3. Odd-even reduction, using vector operations

As with odd-even elimination , the algorithm and timings are derived

for  N = 2 10 
- 1. For general N take m = rbog7N~ in the timing formulae ,

even though m = rlog
2
N+r is the proper choice. The algorithm is given in

de ta iled fo rm , using the data layout and storage handling described in Sec-

tion l0.B. For the basic form , see Sec tion 4.D.

Algorithm : A~
1
~ A , w~~~ = v , N~ 2m

set up control vector z (1 0 1 0 . . . ) ,  length n N V ~ b it3

cost not counted in timing , but one instruction on STAR

for i l , 2, ..., m~ 1 (N. = 2 _ l , N.~~~~~2
10
~~~~)

(i) (i)
odd-even separate A , w

8 compress opera tion s , cos t -~~(3n
2 

+ n)N .* + T36

f ac tor b ).+l
(’
~~

, (0 � i �

factorization overwrites b 2 . +i
(1)

need a temporary vec tor , length
1 2  1 3 2cost~~~~~(n - n ) D + ~~~(2n - 3n +n )(N + S),

vec tor len~ ths = N. ~~.
1+1

(i) (i) (i) (i)
solve b

2~÷i ~~2j+1 
‘2j+l ~2j+l

= (a 2 .~~1~~~ c2 . ÷1~
t
~ w7 .~ 1

(i)) ,  (0 � i � N.~~~)

overwrites 
~~~~~~~~~~ 

etc .

need a temporary vector , length N i+i*

cost = (2n + 1) (nO + (a2 - a)  (M + S)),

vec tor leng ths = N .
+i*

b = b (i) 
— a (i) v — c ~ (1 � j � N )

I 2j 2 j  2 . j — b  2J  2j +l  ‘ i+1

overwrites b •
(i)

2j

need a temporary vector , length N
~÷i

.

~ 

___
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cost 2n 3
(M + S) 

I
f or s implicity , take vector length s N *i+1

( i-S-i) (i) (i) (i) (i) (i)W
j 

— a
21 

q~21_ 1 — C
2
~~ 

~2j+l
(i)

overwrites w .
2j

need a temporary vector, length

cos t 2n 2
(M + S)

for s implicity,  take vector lengths N *

i+1
(i+l) (i) (i) (2 � j  

� N )a. a2 j  ~2 j 1 i+ 1
ove~~~ ites ~~~~~~~ produ ct deve loped one row at a time:

f o r k = l , . . , . , n

for £ 1 , . . . , n

(i) ( i ) i � j � N  )
t
2J 

a.
k1 2f °‘12,2j— 1 ‘ j +~.

f o r r = 2 , . . . , n

( i)  ( i )t = t . + (1 ~~~j  �N  ).Lj 2j  akr 2j °
~rL,2j—l ‘ i+l

ak L J  -t~~~~. (1 � .t. � a; I � 
~ N *)i+ 1

3
M + (a 3 - n2)S, vector length Ncost a

i-s-I
+ n t ransmits , vector  length aN . ~~.

1+1

need two temporary vec~~~rs , lengr ’.i aN and Ni+1 i+l •
(i+1) (i) (~~)C . = C- 2 j  V

2
~~~~~~~

1 
(1 � j  � N  - 1)i+ 1

(i+ l)as for a
1

(in) (in) sca lar modesolve b 1
(m) x 1 —

cost ~~(n~ + n ) D  + ~ (2n
3 

+ 3~2 - 5n ) ( M  + S)

for i in- 1, . . . ,  1
(i) (i) (i) (i-s-I) (i) (i-s-i)= 

~2j+l - 
~2j+ 1 X

1 
- 
~
‘2J+1 

x
1~~1 (0 � I � N )

i+ IL
overwrites 

~°2j+l
cost 2n2 (M + S) ,  vector length * 
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(i+ 1)x
1 

— temporary

cost transmit , vector length = aN . *1+1
(i) (i)merge x2~~ 1 , temporary — x

cost = 3nNi* + 123

Timings:

1. arithmetic only,

(a) [~(5n
2 
+ n)TD + ~ (38n

3 
+ iSa

2 
— 5n) r~1

+ -~ (38n 3 + 3n2 - 5n)1
~s
3(N_1)

+ 1~ (5n
2 

+ n)o~ + ~ (38n
3 

+ 15n2 - 5n)c~

+ ~ (38n
3 

+ 3n
2 

- 5n) a
~
)(m_l)

+ C~~(n
2 

+ n )t
D + ~ (2n

3 
+ 3n

2 
- Sn ) ( t

M + t
5
)3

(b) with STAR data: ~-(38n
3 

+ 3ln
2 

- n)(N-l) +

~~(874 0n 3 
+ 5 103n 2 

- 649n) (rn-I) +

(iOn + 38n - 2n)

(c) for n = 2, with STAR data : 106.5N + 14839m - 14717 .5

2. with ioop control and storage manipulation (compress, merge , transmit)

using STAR data ,

(a) forgeneral a, add BOrn + ~ (55n2 + 43n)(N-l) + (182n + 950)(m-1)

(b) for n 2, add 76.5n + l394rn - 1390.5 , so

total time 183N + 16233m - 16108

--V.

- 

~~~~ V V -V - ----- - - - -
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Notes :

1. An estimate for J~ 
B [A )j ~ may be computed in the first time through the

first loop at a Cost of ((2n_ l)1
+ + ¶ )(Nn/2) + ((2n_ 1)a

÷ ÷ ~~~).
This yields 7.5N ÷ 308 for a = 2 on STAR. The estimate of H B1A ]~~I ~~

simp ly the maximum row sum taken over every other block row. The true

value of H IA] II could be found by computing the remaining rows of E t A ) ,

but this is more expensive and defeats the purpose of odd-even reduction.

--
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4. p-fold reduction

The algorithm and timings are given for N p~ - 1, p � 3. For genera l

N, take in = rlog N ’ m~ bog
2 p,  m ~log 9 N ’ ; rn = Tbog N~s~l~ is ac tual l y the

proper choice.

Algorithm : (see Section 6.A for details) , N . = p~~
4~~ - 1.

for i 1, . . . ,  rn—l

for each k = 1, . . . ,  N.
+1 + 1 ,

LU process on

f or each k 1, . . . ,

IlL process on

(i+l~ ( i+i)generate A , w

(~~‘) (i;) (;)solve b x

for i m—1 , . . . ,  1

for each k 1, . . . ,  N . + I1+1

back substitute for 1 � j � p-I

Timing :

r 2 1 3 21. (a) for genera i a , ~(5n ± n)
0 

+ ~.(2on + 3n -

+ ~~(26n 3 - 3a2 - 5n)~~~3 (N-~~ 1)

+ ~5n
2 

+ n)c
0 + ~~(26n 3 

+ 3n2 - 5n)-~

+ k(26n
3 

- 3n2 - 
~~~~~~~~~~~~~~~~~~~ 

(p-I)

+ ~~(n
2 

+ n) t
D + ~ (2n

3 
+ 3a

2 
- Sn) (t

N+tS
) 
~

(b) wi t h STAR data , ~ (2 6n 3 
+ 2ln

2 - n) (N - p + 1)

+ 4(5980n 3 
+ 2769n 2 

- 649n) (i- 1) (p-i)

+ ( iOn 3 
+ 38n2 

- 2n) 

_ _ _ _ _ ___



- - - - -

15 1

(c) using STAR data, n 2: 145N + (19206tn - l935l)(p— l) + 228

~ 145N +l92O6m (
~~
g
1
p) 

— (l935lp - 19579)

2. data nanipulation costs are outlined in Section bO.B. We have not

derived the comp lete timing formulae, as the method is expected to be

too slow .

Notes:

I. In the arithme tic timing , for p � 3, p-fold reduction is always cheaper

than (~-i-l)-fold reduc tion for any a. Comparison of 2-fold (odd-even)

and 3-fold reduction yields an N(n) such that if N � N(n)then odd-even

reduc tion is faster. Although we have not determined N (n) , the block

LU factorization will probably be faster than either reduction method

for N < N(n). Similar results should hold when overhead Costs are

incl uded in the time estimates .

___________ _______
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5. Mixed odd-even reduc tion and LU factorization

( k-s-i) (k-s-i) (k-s-i)Al gorithm: do k odd-even reductions , solve A x = by the

LU factorization , and back subs titu te .

Timing: (based on N = 2
10 

- 1)
I ~

‘ 1 31. (a) [~(5n .4~ a)T
D 

+ ~(38n ± l5n -

+ -~(38n
3 

+ 3n2 - 5n)~ 53(N + ~ - 2tfl~k)

1 2 1 3 2
+ t~ (5n + n)~~0 + ~(38n -s- 15n -

1 3 2
-
~
- — (33n + 3n -
6

1 ~ 1 3 rn—k
± C~ (3n + n ) t

D + -g (l4n -
~
- 9n — 5n ’(t,1 + t

8)3(2 —1)

- [n
2
t0 

+ (2n 3 
+ n 2 ) (t

M + t 5
) ~

The timing difference between odd-even reduction and the mixed algo-

rithm will be an exoression of the form ~ (rn-k) - (2
10_ k

) - ~
, , and kV a n

should be chosen to maximize this expression . For ri 2 using STAR

da ta , we have -~‘ = 14839 , ~ = 905.5 , ‘ = 13028 , k = m-5 , y ie lding

(c) lOG .5N + l4839m — 46908 .5

2. For a = 2 and STAR data , the pol yalgor i thm time is

183N + 16233k + 41 7(2 m~~ ) + 33 , and the optima L choice is k =

yielding

(b) 183N ÷ 16233m - 70677

L -- 
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6. Incomplete reduction

Algorithm : do k odd-even redzictions , solve D[A
(l(+

~~] y
(k+l) 

= ~~~~~~ and

(1) (1)back substitute to obtain y = y x x.

Timing : (based on N = - 1)

1. (a) [~(5n
2 

÷ n)T
0 + -~ (38n3 

÷ l5n
2 

- 5n)~~1

+ ~~(38n 3 
+ 3n2 - 5n)T ) (N + 1 - 2m_k)

1 2 1 3 2
+ ~~(5n + a)CD + ~g(38n + l Sn  - 5n)c~1

1 3 2+ — (38n + 3n - 5n)Q,3k6

+ [~ (n2 + n)T
D 

+ ~~(2n 3 + 3a2 - Sn)(T
N + ¶

5
))~2

m_k 
- 1)

+ [~ (n 2 + n)C
D 
+ ~~(2n 3 + 3n2 - Sn)(

~M 
+

(b) general n , STA R data :

~~(38n3 + 3m 2 
- n )N  + ~~(874 On 3 

+ 5l03n2 - ~~9n) k

- (9n
3 

+ 6n2) (2m k  
- 1) + ~~(46On 3 + 119 in2 - 649n)

(c) using STAR data , a = 2:  106 .5N ± 14839k - 96(2 in~~~~) + 1287

2. (a) general a, STAR da ta:

~ (38n
3 

+ 86n
2 
+ 42n)N + ~~(874On 3 + 5103a2 + 44 3a + 57 00)k

- ~~(36n 3 
+ 79n2 + 51 ) ( 2 m_k - 1)

+ ~~(4 60n3 + 119 in2 
— 1651n) + 80(k-s-l)

(b) a = 2 , STAR data :

183N + 16233k — 176 5(2m k
) + 1113.5

L - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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7. Jacobi iteration, semi-iteration

basic step : ~~~~~ = B[A]y~~ + DEA ]
1
v

for each j 1, . . . ,  N

(i+i) (i) (i)solve b .y. = v . - a .y. - c .y.
3 3 3 3 j — i  j  j+1

Timing (identical for both vector computer models) :

1. (a) ~~(n
2 

+ a) (T
D
N + + ~ (2n

3 
+ iSa2 - 5n) ((T

M 
+ *s~~ 

+ (~~~~~ + ~~~~~
) )

1. (b) 2. (a) using STAR data,

1 3 2 1 3 2
~~(2n + 19n - n)N + g(460n + 395in - 649n)

1. (c) 2.  (b) using STAR data , n 2 :  22 .5N + 3031

Optiona l preprocessing, times for n = 2, STAR data

(1) solve b .(~~. v . p.) (a . c . v .),

cost = 38.5N + 4367. The basic step is then

(i-s-i) (i) (i)
y. = co . - c~.y. - v.y.
3 3 3 3—1 .j j+1

cost = 12N + 1840.

(2) factor b ., cost = 3.5N + 367. The basic step is unchanged from the

original , but cost is 19N + 2634. This is used in the mixed incom-

ple te reduction/Jacobi algorithm.

Semi- iteration, bas ic step:

~ (tn ) . (m)y result of Jacobi step from y

(m) — (m) (rn— i) (tn—i)y w~ s-1
(y - y  ) + y

~ n+l 
= 1( 1  - (p2/4) ))

p 

~~~~~~ V - - V - V~~~ V -  -
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Timing , a 2, using STAR data: 26.5N + 3408, or 16N + 2217 with the first

preprocessing .

Notes :

1. Varga {\73, p. i39] shows that for Jacobi semi-iteration ,

e~~~ � ____ e~ °~ ~,

%
~~~~~~~~~~~~2)

(i) 
— 

(i)
e — y  -x.

A conservative estimate for the number of i terat ions needed to obtain

II e~’~’~ � 1 - N I !  e~°~ is a 2logN / (— 1og (-L.~—l)) . It fo l lows that

the execution time for an iterative solution is O(N log N) vs. 0(N)

for the better direct methods . 

_~~~~~~~~~~~~~-- _ - -~~~~~~~~~ - V -V - V  ~~~~~~~ 
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8. Incomplete reduction p lus Jacobi iterations

(k-~-l) (k+l) (k+i)Al gorithm : do k odd-even reductions , solve D{A ]y = w , do

2 Jacobi iterations to improve ~~~~~~ and back substitute .

(k+l) (k+l) (k+1) V

As a result of solving DrA ]y = w , we have factors for
D~A~~

+
~~ ]. This means the cost is (using STAR data , n = 2)

I. (c) I0 6.5N + 14539k - g6(2 in~~~~
) + 1287 + 2 ( l9(2 10

~~) + 2615).

2 .  (b)  133N + 16233k — 176 5(2
m k ) + 1113.5

+ 2(19 (2
m_k ) + 2615 ).
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