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SYMBOLS

a Local sound speed

b 21r/9 = AO

B Transform modulus I dz/doa

c 1/m = Ar

tc Chord of airfoil mapped to unit circle

C2  Section lift coefficient

CPI CP Pressure coefficient

C p* Pressure coefficient corresponding to local speed of sound

E Circulation constant

h1 , h 2  Curvilinear scale factors

K(O), L(O) Functions in expansion of 0 and p

2 Number of grid lines; 0 = constant

m Number of grid lines; r = constant

M Free-stream Mach number

Mcr Critical Mach number

r Radius, distance from center of transformed plane (circle)

5i Velocity Vector

Z Physical plane; Z = x + iy = ReiPe

a Angle of attack

03,31 Constants of integration

-y Specific heat ratio of air

r Airfoil circulation

0 Angle from trailing edge in transformed plane (circle)

0s Stagnation point

p Density

U Transformed plane; a = reit°

P Translated velocity potential

Velocity potential

Stream function

W Relaxation parameter

92 Complex potential of incompressible flow

vii



ABSTRACT

A finite-difference solution technique has been developed
for subsonic two-dimensional inviscid flow past lifting airfoils.
This work is an adaptation of the method used by Sells (1967).
The full governing equations of compressible flow are written in

terms of a translated velocity potential which is continuous
throughout the flow field. This simplifies solutions for bluff
airfoils (no Kutta condition) where both angle of attack and
lift coefficient are specified. The computational plane is the
interior of a unit circle obtained by mapping the flow field into

the interior of the circle. A line overrelaxation matrix method
is used for solution of the partial differential equation which in
the iteration scheme is coupled with an algebraic equation. The
numerical procedure is accurate and well behaved for all sub-
sonic flow conditions.

ADMINISTRATIVE INFORMATION

The work presented herein was conducted for the Office of Naval Research (Code 460)

as Project Order 2-0127, NR 212-204 and was accomplished in the time period July 1971 to

April 1973.

The material was previously submitted to the University of Maryland in partial fulfillment

of requirements for the degree of Master of Science, Aerospace Engineering. Thus, in some

details the report deviates from the traditional format of the Naval Ship Research and

Development Center (now David W. Taylor Naval Ship Research and Development Center).

Preparation of this report was funded under Work Unit 1-1619-111.

INTRODUCTION

An analysis of the inviscid flow of airfoil sections is of considerable value in designing

new sections and in understanding the performance of existing airfoils. Although viscous

effects influence airfoil characteristics, the distribution of inviscid pressure generally agrees

closely with experimental results, especially on the forward 60 to 80 percent of the airfoil.

Boundary layer control techniques, which are becoming increasingly common, reduce the

effects of boundary layers and thus make the inviscid condition even more applicable. Despite

the usefulness of such solutions, no method has been available for an exact solution of the



governing equations of subsonic compressible flow.* The difficulty arises from the nonlinear

nature of the equations.

Incompressible solutions for arbitrary airfoils have been available for many years. Until

very recently, however, compressible flow solution methods have been limited to the application

of so-called compressibility correction factors to the incompressible solution. The best known

of these are the Prandtl-Glauert and Karman-Tsien factors that are derived from linearization

of the full equations. It is generally recognized that they are adequate for flow conditions

well below those that produce sonic velocity. Unfortunately, accuracy is lost as local sonic

velocity is approached - just where compressibility effects are highest. The error is greatest

near the leading edge where the perturbation velocities are largest and at any point where

local sonic velocity is approached. This deficiency is severe enough to prohibit even an

approximate determination of the critical Mach number of airfoils with rapid flow acceleration

around the leading edge as on blunt-nosed, "peaky" type sections.

In 1967 Sells (Reference 1) presented a practical numerical scheme for solving the sub-

sonic flow equations. The stream function was used as the unknown variable. Unfortunately,

the behavior of the stream function at sonic velocity is such that increasingly severe numerical

problems are encountered as sonic velocity is approached. Solutions are attainable up to a

maximum local Mach number of about 0.95 and 0.98. Even for this, computational time

becomes excessive and error develops because of the polynomial curve fit required when this

approach is used.

This study originated as an attempt to avoid the limitations imposed by the stream

function while retaining some of the desirable concepts used by Sells. It has led to a practical,

well-behaved numerical technique for the exact solution of two-dimensional subsonic flow.

This success resulted from using the velocity potential rather than the stream function.

*Shortly after this project was completed, it was learned that Garabedian and Korn of New York University
were publishing a numerical technique for the compressible flow equations. Time-dependent solutions were
demonstrated several years ago by Yoshihara and Magnus and others.
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APPROACH

BASIC EQUATIONS*

Flow conditions will be considered as steady, inviscid, isentropic, and irrotational. The

continuity equation can be expressed as

V (p 'i) = 0 (1)

with the irrotationality condition given by

VxU = 0 (2)

The Bernoulli integral of the energy equation is

a + =U2 constant
-'-1 2

With

Poo = 1, I oo = 1, a oo= 1/M

the isentropic relationship of

a 2 _ P P oo / p -

a2 P. p

can be used to give

a2 p ly - 1/M2

The Bernoulli equation then becomes

p,,/- 1 1 +
+-_ = - + - (3)

(-y _1 )M2 2  (y-y1 )M2  2

ADVANTAGES OF THE VELOCITY POTENTIAL

The above equations imply the existence of both a velocity potential and a stream

function. Equations could be written with either of these two as the unknown variable.

*The notation of Reference 1 is generally retained here for convenient comparison with the corresponding

development for the stream function.

3
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Figure 1 - Density as a Function Figure 2 - Density as a Function
of Mass Flow of Velocity

As mentioned previously, the stream function is ill-behaved as local sonic velocity is approached.

The nature of this problem can be seen in Figure 1. The mass flow parameter (which is

associated with stream tubes) versus density relationship is multivalued with a saddle point at

the speed of sound. Beginning at about M = 0.85, numerical instabilities are encountered

because of the increasingly large changes in density with small changes in mass flow. Figure 2

illustrates the behavior of the velocity potential. This relationship is single valued and well-

behaved. The potential is therefore to be preferred; however, it has a characteristic which

must be dealt with very carefully in a numerical scheme.
. There is a discontinuous change in value of the potential across a line connecting the

rear stagnation point to infinity. The jump across this Kutta slice is proportional to the

circulation. This can be readily handled numerically if the location of the rear stagnation

point is known. From the Kutta condition, this is the trailing edge point on conventional

airfoils. In recent years there has been increasing interest in airfoils with bluff trailing edges

(no Kutta condition). For these sections, circulation is established and controlled by boundary

layer control techniques such as tangential slot blowing over the rounded trailing edge.

Analysis of the inviscid flow of such airfoils requires the specification of both angle of attack

and lift coefficient. The rear stagnation point is determined as part of the solution; hence the

location of the Kutta slice is not known a priori. This difficulty will be handled quite simply

by introducing a translated potential which is continuous throughout the flow field.

NUMERICAL SOLUTION TECHNIQUE

To minimize the complexity of the finite difference solution that must be performed,

the flow equations are written in the form of a partial differential equation (PDE) coupled

4



with an algebraic expression. In the iteration scheme, line overrelaxation matrix methods are

used to solve the continuity PDE for 0 while the density field is held constant. Then the

density at all grid points is recalculated from the Bernoulli equation by using the new value

of 0. This process is repeated until successive iterations produce insignificant changes in the

unknown variables.

COORDINATE SYSTEM

The transformed coordinate system as used by Sells will also be applied here. This

system employs conformal mapping methods such as that of Theodorsen to map the airfoil

into a unit circle. The exterior (flow) field is then transformed by a 1/R function into the

interior of the circle and this has several advantages. Infinity now appears at the circle center

(r = 0), and that enables the entire infinite flow field to be included in the computations. A

constant Ar, AO grid mesh in the working plane (Figure 31) provides convenient representation

of the finite difference expressions with the airfoil surface always forming one side of an

essentially rectangular computational cell. The most important feature is that this simple grid

results in an inherent mesh refinement in the physical plane. This is readily apparent from

Figure 3. The grid mesh is of higher density near the surface and the leading and trailing edges

just where the flow gradients are largest. This ensures that the nose region is calculated

properly. This has been an area of deficiency in many other attempts at fluid flow

computations.

(()

r= 1
r

LEADING TRAILING
EDGE , EDGE

GRID IN THE COMPUTATIONAL PLANE GRID IN THE PHYSICAL PLANE

(From Sells, Ref. 1)

Figure 3 - Grid System

5



DEVELOPMENT OF EQUATIONS

EQUATIONS IN TRANSFORMED PLANE

The governing equations are now to be transformed into the unit circle coordinates r, 0

by using orthogonal curvilinear coordinate system principles. Curvilinear scale factors are

represented by h1 and h2 . The element of length ds in the Z-plane is given by

ds2 = I dz 12 = hl2 dr 2 + h22 dO2

idz12= dz2 12 B2 2 2d2

d IL Idol B (dr2 +r2 dO2 ) (4)

from which we find

h1 =B,h 2 =rB (5)

where B(r, 0) is the transform modulus I dz/do I between the physical and computational

planes as determined by the airfoil mapping process. The continuity equation (1) becomes

a a
a-(ph2 ur)+0(phi u 0) = 0 (6)

From the irrotationality condition (2)

0" (h2 u0 ) - (hl ur) = 0 (7)

there is a function 0 (r, 0) such that

hO u=,L0 = h1 ur (8)

Substituting (8) into (6),

-p ' 0r) + (p ( 0) =0 (9)

or, from (5), the continuity equation is

S/r ar a + (p " =0 (10)
ar an aO r ra

6



The Bernoulli equation

p = I[ +'Y I-__ M2 (I_ 2)] /( -)
2 (1

remains unchanged except for the expression for velocity obtained from (5) and (8):

I i 12 = u 2 + U0
2  + [- r (12)

BOUNDARY CONDITIONS

At the surface, appropriate boundary conditions are no flow normal to the surface

ur = 0 (13)

and no flow around the sharp trailing edge (if there is one),

00 0 for 0 = 0 (14)

The transformation procedure is assumed to map the trailing edge into the point 0 = 0. This

boundary condition is not applied for bluff airfoils.

Conditions at infinity conespond to free-stream values with

P = Poo, U = Uoo

The infinity condition of free-stream velocity cannot be imposed directly; what is needed

is an expression for 0. For a first examination of 0 at infinity, we assume that at large

distances I Z I in the physical plane, the density is essentially the free-stream value and there-

fore can be considered constant. The flow is then essentially incompressible so that we can

examine the complex potential S2 for steady flow at incidence a with circulation represented

by E. For large I Z I (see any standard text on incompressible flow)

S2 = 0 +ii - Ze-il - iE In z

With Z = Re'i•, the velocity potential can be expressed as

0 = R cos (ýp- a) + pE (15)

and with transformation into the circle by R - I1/r, p = -0

0(0,0) - - cos (0 +a) - 0E (16)r

Thus, conditions at infinity are represented by a dipole and a vortex.

7



TRANSLATED POTENTIAL

The previous expression for 0 at infinity reveals a singularity at r = 0 and a jump in 0 at

0 = 27r. The singularity and the jump can be removed by defining a translated potential

1
1D(r, 0) - cos (0 +a) +OE (17)

r

This function is finite and continuous everywhere. The numerical scheme will solve for D,,

and if needed, the value of 0 itself can of course be found from

0(r,)= +- cos (0 +o) -0E (18)
r

The boundary condition at infinity for 4) will be found by first taking a closer look at the

asymptotic behavior of 0.

BOUNDARY CONDITION FOR THE TRANSLATED POTENTIAL

Expanding 0 and p about r 0 to one more term, we have

q=-cos (0 +a) -OE + L(0) + 0(r) (19)
r

p 1 + rK(0) + 0(r 2 ) (20)

In addition it should be noted that for large I Z I, the nature of the transformation employed

is such that (Reference 1)

B -= --= [1 +0(r 2 )]
du r2

Substituting the above in the continuity equation (10), terms 0(1/r 2 ) cancel and terms 0(1/r)

give

d [C'(0) -K(0) sin (0+oa)] =0 (21)
dO

so that

L'(0) - K(0) sin (0 +ao (22)

Similarly with the expansion for 0 and p substituted into the Bernoulli equation, terms

0(r) give

8



K(O) + E sin (0 +a) - L' sin (0 +a) = 0 (23)
m2

Equations (22) and (23) can be solved for K and L'

(E + 0dl) sin (0 + a)

K(0) = Sin2 ( ) (M) (24)

L'(0) = + MI (25)

sin 2 (0 +a) -

Integration of (25) leads to

-(E +f0) -t1M"-•

L(O) - -tan M 2 tan(0 + L - E(0+a) + (26)L)-/ 41 _- M2

rhe additive constant 3 has no phN'sical significance in the potential and can be dropped

without loss of generality. From (19), (26), and (17), the boundary value of (D becomes

- I
4)(0,0) tan -M 2 tan(a +a +E(i• '+a) (27)

-M 2  
L

.This asymptotic value is a function of the direction from which r = 0 is approached. The

constant 0, will be determined from the consideration that 4) be continuous with no jump at

the rear stagnation point 0s (27r for conventional airfoils). Ohserve that l(O) -- 0 as M - 0

is also required.

CIRCULATION CONSIDERATIONS

From the definition of circulation we have

0,2rI ao 0,O+21r ()

P+uo2s- r rB dO dO (28),/0srB 5 )0. a0

where 0s is the location of the rear stagnation point.

Obtaining ¢0 from (1 8). we then have

r =-2irE +(D,(0s + 27r)- 4F(0s) (29)

9



and by using (27), one obtains

- (E + 01)

r - -E 27r (30)
1 -_ M2

The value of 0, remains to be found. It is desired that Lý be a continuous function

which implies that

d a• fG~s+2nr3

SdO= M dO = 0 (31)1' ao

From this requirement

E31 =E( 1-M2-1) (32)

and

IF-27rEorE=-- (33)21r

Finally, with these constants we obtain the boundary value of (P

4)(r-* 0, 0) i= r- tan -1[11-M 2 tan (0 +a)] -(0 +0) (34)

The relationship between circulation and the lift coefficient CR is given by

P2u•P = c, c? I P"'U 2 (35)

where C' is the chord of the airfoil mapped to the unit circle. The result is that

-47r E
Ck - c' (36)

or for bluff airfoils where CQ is a specified condition,

E - (37)
41r

10



FINAL EQUATIONS

Equations in terms of 4, are readily obtainable by substituting (18) into (10). With
1

= r cos (0 + a) +
r2

1
I sin (0 + a) - E + 40

2
Orr = 2 cos (0 + o1) + Frr

P

¢00 -Icos (0 + a) + (CD00

we obtain

[r2 )r - cos (0 +o) rr sin (0 +a) +E

-4)O] pO+P r2(Drr+r(Dr+4)O0]=O (38)

This is the PDE to be solved by matrix methods while the density p is held constant. The

density is then recalculated from the Bernoulli equation (11) by using the newly obtained

values of (F:

=[I+ I M 2 [1 -([4) cos (06 +a + [(P, - sin(0 +a)-E] /r2)]] 1/(y

Surface boundary conditions become

Pr = cos (0 + a) (39)

If there is a Kutta condition

u0  [sin(0 +a)+E-(40] = 0 (40)
B

from which follows the means by which the circulation is established:

E = (0 - sin (a) (41)

For bluff airfoils, E is calculated directly from (37) by using the input CQ with the rear

stagnation point location found as part of the solution. Conditions at infinity are given by

(27).

11



NUMERICAL METHODS

The complete numerical scheme is diagrammed in Figure 4. The discussion in the next

two sections refer to the MATRIX SOLN block (Figure 4).

INPUT: COORDINATESa
M

TRANSFORM
INTO CIRCLE

INITIAL CONDITIONS
FOR 0 AND p

(INCOMPRESSIBLE FLOW)

MATRIX SOLN FOR
CONTINUITY EQN

r CALCULATION

I p UPDATE USING

BERNOULLI'S EON

NO MAX CHANGE IN p WITHIN

SPECIFIED TOLERANCE?
YES

PRINT RESULTS(

Figure 4 - Flow Diagram for Numerical Solution

FINITE DIFFERENCES

Figure 5 is a schematic of the computational grid. For each point we write the finite-

difference equivalence of the derivatives in the continuity equation (38). The equation is

elliptic for subcritical flow; this means that point 0 in Figure 5 is influenced by all surrounding

points. The finite differencing must reflect this domain of dependence by using centered

differences. Substitution of the finite-difference expressions in (38) will result in an equation

12



UPPER SURFACE

r

LEADING TRAILING
EDGE EDGE

LOWER SURFACE

Figure 5 - Finite Difference Computational Grid

for c) at the point 0 in terms of p and 4) at adjacent points. (Details of this development are

given in the appendix.) This is done for each point in the field of typically 1800 points,

resulting in a like number of simultaneous equations for the values of (D.

LINE OVERRELAXATION

It is not feasible to solve the complete set of equations simultaneously. Instead an

iteration scheme can be formed to enable the flow field to be solved in successive parts.

Referring to Figure 5, we can use standard matrix methods to solve for (D on successive lines -

either lines of constant 0 or constant r. Lines of constant r, that is concentric circles, were

found to be more efficient in computer time. With an initial condition of incompressible

flow, a Gauss-Seidel matrix method is used on each line starting from the innermost circle

(nearly free-stream conditions) and working to the one adjacent to the surface. The values of

(F newly computed for one line are used on the line that follows, and so on. Surface values

of (D are found from the enforcement of the flow tangency condition thereby using one-sided

differences (see the appendix).

Line overrelaxation was found to greatly reduce the number of iterations required. (An

iteration consists of one pass through the complete computational grid to obtain new estimates

of (F followed by the recalculation of density at all points.) Overrelaxation accelerates

convergence by using the difference between successive iterations to estimate a presumably

13



more accurate value. This is done on a line-by-line basis and is expressed by

4new ' (Dnew W + (I - W) Dprevious

where co is the relaxation factor. Theoretically, values approaching 2.0 can be used without

instabilities developing. It was found that a factor of 1.9 produced the fastest convergence.

The number of iterations for convergence is shown in Figure 6 as a function of the

relaxation factor.

1 6 0 1 I 1 I 1 1 1 1 1

w 1400
w
(D 120
Ui1

> 100-
0
0
o 80-

z 60-
0
I--
< 40 - 15-PERCENT ELLIPSE
w 2 M = 0.60t- 20-

0 I I I I I I I I

1.0 1.2 1.4 1.6 1.8 2.0

RELAXATION FACTOR

Figure 6 - Number of Required Iterations as a Function
of Relaxation Factor for a Typical Case

Radial line (constant 0) relaxation was also tried. Since the boundary conditions at each

end of the line are known, a simple tridiagonal matrix solution is possible. The radial line

approach was found to be much less satisfactory, as will be discussed later.

CONVERGENCE

The overall numerical scheme has been diagrammed in Figure 4. After a pass through

the field to calculate new values of T, the density at each point is updated by using the

Bernoulli equation. Circulation is recalculated before the density calculation. Then another

pass is made for 4). When the density is updated at each point, the extent of change from

the previous value is checked. When this difference, or residual, is below a specified level,

convergence is considered complete. It was found that a density change of 0.25 x 10-4
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(normalized to free-stream density) gave sufficient accuracy for practical applications.

Figure 7 shows how the number of iterations required for a given residual varies for a typical

case. Residuals of circulation or 4D could also be used as convergence criteria; however, they

were not tried here.

10-
2
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8 10-3-

• 10-
z
,_j

o 10-5- S15-PERCENT ELLIPSE

M =0.60

10-6 I I I
0 20 40 60 80
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Figure 7 - Residual Reduction with Increasing Iteration
for a Typical Case

COMPUTATIONAL ASPECTS

It was found that time per iteration on the CDC 6600 computer can be expressed by

T (sec/iteration) = 0.24 (km) x 10-3

where k is the number of radial lines and m the number of concentric circles or increments

in 0 and r, respectively. The number of iterations required for convergence in a given case

appeared to be linearly proportional to m; thus the total time for a solution is proportional

to km2.

The mesh size required to obtain a given accuracy depends on the gradients of the

dependent variable. The grid selected as the best compromise between computational costs

and accuracy was k = 120, m = 15. If the pressure distribution is smooth ("non-peaky") then

a grid of 120 x 10 is acceptable. For peaky, high-leading-edge acceleration profiles, a grid of

160 x 15 is recommended.
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Figure 8 - Variation of Number of Iterations
with Mach Number for a Typical Case

The total number of iterations is also a function of the extent of compressibility effects

which are proportional to the free-stream Mach number and the peak surface velocity.

Figure 8 illustrates the variation of number of iterations with Mach number for a typical case.

The above discussion applies to the initial conditions corresponding to incompressible

flow. If, for example, several Mach numbers are to be run for a given configuration, then the

converged solution can be used as the starting condition for the next Mach number. The

number of iterations required is thus substantially reduced. This technique offers one way of

checking the degree of convergence. This is done by computing the same case by starting

from converged solutions below and above the free-stream Mach number of interest.

As mentioned previously, radial line overrelaxation was also investigated. At first this

was tried by starting at 0 = 0 and moving in a clockwise direction (Figure 5). The relaxation

factor that gave the fastest convergence was 1.6. It was found that the converged solution

differed slightly from the concentric circle. solution. Closer observation of flow over

symmetrical airfoils indicated a dissymmetry in the pressure distribution. For example, the

location of the suction peak was shifted forward on the lower surface and rearward on the

upper surface. Reversing the direction of line overrelaxation to counterclockwise reversed the

dissymmetry. If the converged concentric circle solution is utilized as the initial condition,
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it satisfies the radial line version immediately without further iteration; if the converged

solution of a radial line solution is used as the initial condition, it too satisfies the matrix.

Therefore two significantly different results would satisfy the radial line matrix scheme. As

a further experiment, it was found that if a radial line solution was used as input to the

concentric circle version, several iterations were required before convergence was attained.

The resulting solution was the same as that produced by starting from incompressible

conditions.

Alternating sweep direction from one iteration to the next was also tried. Convergence

was slow and unsteady, but the solution was found to be more nearly like that of the

concentric circle matrix.

This distortion in the radial line solution was considered attributable to use of the

updated 4) from the previous line. Use of the old value of (D failed to produce convergence,

but when the program was terminated, the pressure distribution was found to be undistorted.

As a check on the programming, the converged solution from the concentric circle matrix

was used as the initial condition. Convergence was immediate.

Reversed direction for the concentric circle method was also tried. This consisted of

moving from the outer circle to the center of the working plane rather than the other way.

More iterations were required for convergence, but the solution was the same as for the other

direction. In addition, multiple passes through the matrix solution before density update

were tried, but these offered no advantages in computational time.

RESU LTS

The computer program of Reference 2 was used to transform airfoils into the circle.

For circular and elliptical sections, the transformation was performed analytically.

VERIFICATION

Validation of this numerical method is hampered by the limited number of accurate

solutions that are available for comparison purposes. The critical Mach number (Mcr) of a

circular cylinder has been expressed analytically as a series summation. Although this series

has not been completely evaluated, the circle was selected as a check case.

For the utmost accuracy, a grid of 240 x 30 was used and the free-stream Mach number

was increased incrementally until local sonic velocity was reached. Critical Mach number

(0.3985) is in agreement with the value reported in Reference 3. The pressure distribution is

shown in Figure 9. A more practical grid size of 160 x 15 gave a result of 0.3990.
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Figure 9 - Pressure Distribution on Circular Cylinder
at the Critical Mach Number of 0.3985

As a check on the treatment of circulation, the lift coefficient was found for a circle at

which the two stagnation points merged and began to leave the surface. This value of 13.2

(Figure 10) is in the range expected from incompressible flow theory. The critical value for

this condition was used, namely, Mach = 0. 19. As a further test, a value of 20.0 was specified

for Ck. As expected, the stagnation points had left the surface and were found in the flow

field. The entire surface flow was moving in the same direction (Figure 11). No numerical

instabilities were encountered.

Numerical hodograph methods have been developed that give a precise (within numerical

error) relationship between pressure and airfoil geometry for the design Mach number. A

design with a peak Mach number of 0.982 was selected from Reference 4. The agreement is

shown in Figure 12.

No lifting hodograph designs were available for a check of lifting flow. However, a rough

check is possible by determining how C2 varies with Mach number for a fixed angle of attack.

It is known that as a first approximation, the variation is according to the Prandtl-Glauert

factor. The results for an NACA 0012 section at a = 2.0 are shown in Figure 13. The general

trend matches the V1 -- M2 variation.
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Figure 11 - Mach Number Distribution on Circular Cylinder
for a Specified Lift Coefficient

(Note that the stagnation point has left the surface)
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Within the computer program itself, lift can be checked by comparing the lift coefficient

obtained from the calculated circulation with that obtained from numerical integration of the

pressure distribution. In nearly all cases, the difference in the two C2 values was less than

0.2 percent and usually about 0.1 percent. This is an order of magnitude better than

obtained by using the stream function (Reference 1).

COMPARISON WITH OTHER METHODS

It is of considerable interest to compare results obtained by compressibility factor

methods with those of the present exact numerical solution. The Prandtl-Glauert factor is

given by

C = CP inc 1 -M 2

while the Karman-Tsien factor is

Cp = CPin/(,/ I - M2 + 0.5 Cen 0(1-f1-M2 )

ine inc

where CPinc is the incompressible value of the local pressure coefficient and M is the free-

stream Mach number.

Figure 14 compares the determinations of pressure distribution for a 1 5-percent-thick

ellipse at nearly critical Mach number. Note that both compressibility factors overpredict

the nose and underpredict the midchord suction. Also note the difference in the shapes of

the curves. The correction factor technique will always give a curve which closely resembles

the shape of the incompressible distribution. However, the exact solution will give a curve

which changes overall shape rapidly as the critical Mach number is approached.

The overprediction of leading edge suction is characteristic of the correction factors and

worsens for sections with blunt leading edges that result in faster flow acceleration. The

hodograph airfoil is compared with the Karman-Tsien factor in Figure 15. The large

discrepancy at the nose would result in a very erroneous prediction of Mcr for this airfoil.

(Actually, the Karman-Tsien method would indicate supersonic flow; in practice, therefore,

the results would be discarded for this Mach number.) This difference is a strong function of

peak Mach number. Figure 16 compares the Karman-Tsien method with present results for a

1 5-percent ellipse with a rounded leading edge at two Mach numbers. Once again there is a

large discrepancy at high subsonic velocities (Figure 16a). For a substantially lower free-

stream velocity, however, the Karman-Tsien approach gives an acceptable solution (Figure 16b).

It should be pointed out that the sonic velocity for lifting cases can be reached for free-stream

Mach numbers of 0.3 or lower.
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Figure 16 - Comparison of Karman-Tsien Method with Present Results
for a 15 Percent Ellipse with Slightly Rounded Leading Edge
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ADDITIONAL CASES

Solutions by the present method for the NACA 001 2 airfoil are shown in Figure 17 for

different lifting conditions. Since the 0012 is analytically described it provides a convenient

test case. A circulation control case for a 1 5-percent ellipse and critical Mach number is

presented in Figure 18. Note that even though the angle of attack is negative, the pressure

distribution is such that positive lift results from the specified circulation condition.

CONCLUDING REMARKS

The use of compressibility correction factors for estimating critical Mach numbers can

lead to misleading results - even for comparisons of different designs. This is attributable to

the characteristic overprediction at the leading edge and underprediction near the midchord

of suction pressures. Therefore, a comparison of the critical Mach number of airfoils with

different types of pressure distributions could lead to false conclusions.

The possibility of extending this basic method to supercritical flow was investigated

numerically. The inbedded region of supersonic flow requires the use of one-sided finite

difference equations that reflect the hyperbolic nature of the governing equations. (Any

attempt to go beyond sonic velocity with the elliptic equations produced severe instabilities.)

The discontinuity or shockwave that terminates the supersonic region would hopefully be

spread over two or more grid points as a result of truncation errors, thereby producing a

continuous flow field for the numerical solution to proceed smoothly. The above concepts

were successfully applied by Murman and Cole to the small disturbance equations (Reference 5).

Several changes were made to the subsonic program for this investigation. The radial line

matrix method was used in the consideration of propagation direction of transonic disturbances.

Rather than sweeping line by line in a single theta direction, the computations were started at

the forward stagnation point and continued in the direction of the flow to the trailing edge.

At each point a check of the local Mach number was made; if it was greater than unity, the

hyperbolic equations were used.

No successful solutions were obtained. Failure occurred shortly after a supersonic region

appeared. The mode of failure was that the Mach number ahead of the discontinuity grew

steadily to unnatural levels, with the point immediately downstream eventually acquiring a

zero or even a negative velocity. A tentative explanation is that the truncation error or
"numerical viscosity" in the equation as formulated is not sufficient to smooth out the

discontinuity. However, this is only conjecture and no theoretical examination has been made of

the suitability of the overall concept for transonic flow solutions.

24



-1.5

-1.0

-0.5

CP

0

0.5

1.0 I I I
0 0.2 0.4 0.6 0.8 1.0

CHORD X/C
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Figure 17 - Present Method Solutions for NACA 0012
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Figure 18 - Circulation Control Case for a 15-Percent
Ellipse at Critical Mach Number
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APPENDIX

FINITE DIFFERENCE EQUATIONS

Finite difference approximations for the partial derivatives can be obtained from Taylor

series expansions. The grid notation of Figure 5 is used to obtain the expansions in the

uniform Ar, AO mesh:

0 D I2 -O(4 I a3 4) (A0)2+O

4)(G) + HOT0 2A0 6 803 10

4 2 - 2 2 o + P4 1 a4 4) (AO) 2 + HOT
(A0)2 12 a04 0

Analogous expressions are obtained for the r derivatives.

The centered differences used are given below; they have a truncation error of order

(A0) 2 or (Ar) 2 as indicated above.

With

1
c =--Arm

b = Ir AOQ

the expressions are:

2c

D 12- 200 + D3

rr 2

D 2 4)4
00 2b

P 02 - 200 + 44000

P1 -P 3
Pr - 2c

P2 - P4

2b
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These are substituted into the continuity equation (38). Collecting terms and rearranging

results in the linear algeraic equation

AF 4 +Bi(D +C4 2 =D

where

A = P2 - P4 - 4po

B = 8po /r2b2 +c 1

C = P4 -P2 - 4po

D= (4- 2) [sin (0 + u) + Er] +• b2l 3 [r2 (,1- 4)

- 2c cos (0 + a)I+2p 0 rc( 41 - 4 3) +4po r2 (1 +3)

The boundary conditions at the surface are similarly written in finite difference form.

At the trailing edge, the Kutta condition (0 = 0) is

4 )2 - (D 4

E = 2 -sin (a)2b

The complexity of introducing an imaginary external grid line (reflection) for the flow

tangency condition can be avoided by using the following one-sided difference formula:

4r cos (0 + U) - (44° -4) _3-3 1 )

from which there results at r

4o 4 -4 3 + 2c cos(0 +a)

3
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