
ESD-TR-77-f49 # >

ESO ACCESSION LIST
DRI Call Na__aliÜ

rWFi
\ Copy No. 1 of \ cys.

A TT^LF^TTÜ* FLEXIBLE SYSTE/
INITIALIZATION MECHANISM

Massachusetts Institute of Technology
Laboratory for Computer Science (formerly Project MAC)
Cambridge, MA 02139

May \977

Approved for Public ReTease;
Distribution Unlimited.

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 0F73F

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
[400 WILSON BOULEVARD
ARLINGTON, VA 22209

AOAWUH

The views and cone fusions contained in this document are those of the authors and shouTd
not be interpreted as necessarily representing the official poficies, either expressed or
impfied, of the Defense Advanced Research Projects Agency or the U.S. Government.

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

WILLIAM R. PRICE, Captain, TJSAF
Techniques Engineering Division

7 IM.
RÖGEB/ft. SCHELL, Lt Colonel, USAF
ADP^System Security Program Manager

FOR THE COMMANDER

vL^^ir^K^
FRANK J. Emk, Colonel, USAF
Director, Computer Systems Engineering
Deputy for Command & Management Systems

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE
1. REPORT NUMBER

ESD-TR-77-I49

2. GOVT ACCESSION NO

4. TITLE (and Subtitle)

A SIMPLE AND FLEXIBLE SYSTEM
INITIALIZATION MECHANISM

7. AUTHORS

Affen Wiffiam Luniewski

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Massachusetts Institute of Technology
Laboratory for Computer Science (formerly Project MAC)
Cambridge, MA Q2I39

1». CONTROLLING OFFICE NAME AND AODRESS

Deputy for Command and Management Systems
Efectronic Systems Division
Hanscom AFB. MA Qf73f

U. MONITORING AGENCY N AME • AODRESSf// different from Controlling Office)

Defense Advanced Research Projects Agency
f400 Wilson Boufevard
Arlington, VA 22209

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

MIT/LCSAR-I8Q
8. CONTRACT OR GRANT NL 4UMBERC«;

Ff9628-74-C-OI93
ARPA Order No. 2641

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

A02 3

12. REPORT DATE

May f977
13. NUMBER OF PAGES

105
IS. SECURITY CLASS, (of this report)

UNCLASSIFIED
15«. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION ST AT EM EN T (of this Report)
m

Approved for Public Refease; Distribution Unlimited,

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, it different trom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary and identity by block number)

System Initialization
Layered System
Minimal Configuration

Core Image
Dynamic Reconfiguration

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

This thesis presents an approach to system initialization which
is simple and easy to understand and, at the same time, is
versatile in the face of configuration changes. This thesis
considers initialization of a layered system and also considers
the problems one might encounter in implementing the many dynamic
reconfigurations required by this approach to system
initialization.

DD , ^73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ii, n'-r^.i« < im«; i ,,-<»>'■

SECURITY CLASSIFICATION OF THIS PAGEfWhan Data Entarad)

SECURITY CLASSIFICATION OF THIS P *GE(Whan Data Entarad)

MIT/LCS/TR-180

A SIMPLE AND FLEXIBLE SYSTEM INITIALIZATION MECHANISM

Allen William Luniewski

May 1977

The research reported here was sponsored in part by Honeywell
Information Systems Inc., and in part by the Air Force Information
Systems Technology Applications Office (ISTAO), and by the Advanced
Research Projects Agency (ARPA) of the Department of Defense under ARPA
order No. 2641 which was monitored by ISTAO under contract No.
F19628-74-C-0193.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

CAMBRIDGE MASSACHUSETTS 02139

ACKNOWLEDGMENTS

A number of people and organizations have helped in the completion
of this research and I would like to thank them now. I am sure to miss
someone so I apologize in advance for these omissions.

First I would like to thank Dr. Clark, my thesis supervisor. His
help has been very valuable in clarifying many of the ideas present in
this thesis. I am especially grateful for the many hours he has devoted
to reading earlier drafts of this document. Without his many helpful
comments this thesis would never have been brought to completion.

Special thanks to Professor Liba Svobodova who took time out from a
busy schedule to read an earlier draft of this thesis. Her comments
were invaluable in clarifying the exposition of many of the ideas
presented in this thesis.

I would also like to thank Professor Saltzer who suggested this
line of research and whose continued help is greatly appreciated.

I would like to thank all of the members of CSR and especially Art
Benjamin, Steve Kent and Jeff Goldberg. Their comments on various parts
of this thesis have been helpful. Without the many interesting
diversions they provided this research would have never been completed.

Lastly I would like to thank my family. My brother and sister, Tom
and Cheryl, have been a comfort throughout the many years leading up to
this research. To my parents without whose constant love and affection
I would never have started or completed this research.

This research was performed in the Computer Systems Research
Division of the M.I.T. Laboratory for Computer Science. It was
sponsored in part by Honeywell Information Systems Inc., and in part by
the Air Force Information Systems Technology Applications Office
(ISTAO), and by the Advanced Research Projects Agency (ARPA) of the
Department of Defense under ARPA order No. 26A1, which was monitored by
ISTAO under contract No. F19628-74-C-0193.

A SIMPLE AND FLEXIBLE SYSTEM INITIALIZATION MECHANISM *

by

Allen William Luniewski

ABSTRACT

This thesis presents an approach to system initialization which is
simple and easy to understand and, at the same time, is versatile in the
face of configuration changes. This thesis considers initialization of
a layered system. The initialization mechanism is built upon three key
concepts: existence of a minimal configuration, a core image of the
system and dynamic reconfiguration. By assuming that the system will be
running on the minimal configuration we generate a core image of the
base layer of the system which, when loaded into core on any viable
configuration, produces an operable base layer. As higher layers of the
system are initialized dynamic reconfigurations of the lower layers are
invoked to cause the system to run on the configuration actually
present. The thesis also considers the problems one might encounter in
implementing the many dynamic reconfigurations required by this approach
to system initialization.

THESIS SUPERVISOR: David D. Clark
TITLE: Research Associate of Electrical Engineering and Computer Science

* This report is a minor revision of a thesis of the same title
submitted to the Department of Electrical Engineering and Computer
Science on January 21, 1977 in partial fulfillment of the requirements
for the degrees of Master of Science and Electrical Engineer.

TABLE OF CONTENTS

ACKNOWLEDGMENTS 2

ABSTRACT 3

TABLE OF CONTENTS 4

LIST OF FIGURES 6

1. Introduction 7

1.1 Initialization in General 8
1.2 The Need for Versatility 10
1.3 Related Work 14
1.4 Thesis Outline: Preview of Approach 15

2. A Model of a Computer System 19

2.1 Hardware Base 19
2.2 Software Base 21
2.3 Multics Initialization 23
2.4 Wrapup 27

3. Overview of the Initialization Scheme 29

3.1 Initialization in a Layered System 29
3.2 Base Layer Initialization 32
3.3 Wrapup 36

4. Core Image Generation 37

4.1 The Process of System Generation 37
4.2 Where System Generation Occurs 39
4.3 The Minimal Configuration 40

4.3.1 Main Memory Size 41
4.3.2 Main Memory Addresses 43

4.3.2.1 A Relocating Loader 44
4.3.2.2 Realization of Assumed Addresses 46

4.3.3 System Table Sizes 49
4.4 Common Actions 50
4.5 Wrapup 53

5. Base Layer Loading and Initialization 55

5.1 The Core Image Loader 55
5.2 Core Image Size 58
5.3 Base Layer Initialization 60
5.4 Wrapup 62

6. File System Initialization 63

6.1 Dynamic Reconfiguration 63
6.2 Reconf igurat ion 64
6.3 File System Initialization 66
6.4 The Initial Paging Area 69
6.5 The Root 72
6.6 Wrapup 73

7. Dynamic Reconfiguration 75

7•1 Hardware Reconfigurations 76
7.1.1 IOM Addition 76
7.1.2 I/O Device Addition 81

7.2 Software Reconfiguration 81
7.2.1 Parameters 82
7.2.2 Table Expansion 83

7.2.2.1 Supervisor Segment Growth 84
7.2.2.2 Multiple Tables in a Segment 87

7.3 Multics 92
7.4 Wrapup 95

8. Conclusion 97

8.1 Results 98
8.2 Tradeoffs 101
8.3 Further Research 102

BIBLIOGRAPHY 104

LIST OF FIGURES

Figure 7.1 85
Figure 7.2 87
Figure 7.3 88

Chapter One

Introduction

Almost from the first appearance of the stored program digital

computer there have been operating systems for these machines. The

problem has always existed as to how to get an operating system, which

has been designed for a class of machines, up and running upon a

particular member of that class. This is a repetitive problem that

occurs each and every time that it is desired to bring the system up

after it has been down for a while. This is the problem of system

initialization and is the subject of this thesis.

System initialization has been, for the most part, a neglected area

of systems development. The techniques used by most current operating

systems are either ad-hoc, difficult to understand and show correct or

they lack versatility in the face of changes in the collection of

hardware the system will be running upon. This thesis will attempt to

develop a framework for system initialization that maintains this

versatility but still is relatively easy to understand and show correct.

1.1 Initialization in General

To start we provide a general characterization of system

initialization. To do so, we first make a few definitions.

We define the hardware configuration to be the collection of

hardware modules present in an installation as well as their

interconnections (the system "wiring diagram"). For instance processors

and memories are part of the hardware configuration.

The software configuration consists of the values of various system

parameters and the size of the system tables. For instance the maximum

number of processes allowed on the system at one time is part of the

software configuration.

We define the configuration of a system to be the union of the

hardware and software configurations.

With these definitions in mind we can make the following general

observation about system initialization. Most operating systems are

capable of running on a number of different configurations. The goal of

initialization is to produce a version of the operating system tailored

to a particular configuration and running upon that configuration. Most

actions of initialization are present for exactly this reason. This

view is supported by examination of many current operating systems

including Honeywell's Multics, IBM's OS-360 and Control Data's SCOPE

operating systems [CDC, Flores, HISIa].

The actual process of getting an operating system running on a

collection of hardware has the following form. One (or potentially

more) I/O device contains a storage medium, called the bootload medium,

(1) that contains the programs and data necessary to bring up the

operating system. In some system dependent way one or more processors

begin running and use the bootload medium to get the operating system

running on the particular configuration present.

We can identify three important times with system initialization.

System generation time is the time when the bootload medium is generated

(created). This generally occurs during a previous period of the

system's operation. Initialization time is the period of time during

which the operating system is being loaded onto the machine and

initialized but before it is running normally. The time after the

system is initialized, when it is running normally, is called run time.

This thesis will attempt to produce a simple and easy to understand

overall system initialization mechanism. It is a fundamental premise of

this thesis that an activity performed at system generation time or at

run time is inherently simpler than the same action performed at

(1) For instance the I/O device might be a disk drive and the bootload
medium a disk pack.

initialization time. We shall use this premise to produce our

itialization mechanism. in

2 The Need for Versatility

In choosing a way of achieving system initialization we want a

method that is versatile; that is, it has the property that there is

one version of the bootload medium that can be used on any configuration

to bring up the operating system. We will call an initialization

mechanism that has this property configuration independent. For

instance, if the system is initialized using magnetic tape as the

bootload medium, we would like to be able to have one magnetic tape that

can be used on any configuration to initialize the system. This

versatility is very desirable, as the following example will show.

Consider a computer utility with a hardware configuration

consisting of one processor and two boxes of memory and that we have a

tape (1) specifically intended to bring up the operating system on this

configuration. Now suppose that, as the system is running, one of the

memories fails causing the system to shutdown (or, more likely,

immediately "crash").

(1) For convenience we assume that the system is initialized using a
magnetic tape. In principal any suitable type of I/O medium (such as
disks) can be used as the bootload medium.

10

We will want to bring the system up as soon as possible so as to

provide maximum service to the users of the computer utility. If it

will take a long time, say days, to repair the memory, we are now faced

with the problem of bringing the system up on this new, smaller,

configuration of one processor and one memory. Our original tape cannot

be directly used since the configuration has changed and is no longer

the same as the one that the original tape was generated for. There

seem to be four ways of getting our system up and running at this point.

First we might have previously generated a tape for this new

configuration. If so we are in good shape and can just use that tape.

This, however, is not in general likely since we experience

combinatorial explosion in the number of tapes as the number of

variables in the configuration increases. For instance, with two

variables, each taking on two values, four different tapes are required

to handle all possible configurations but five variables each taking on

five values requires 3125 (=5*5*5*5*5) tapes. Thus, for all but the

smallest systems, this technique will fail.

A second approach would be to go to the vendor of the system and

ask him to generate, on his system, a tape for this new configuration.

This is undesirable for two reasons. First it makes the availability of

our computer utility dependent, in this case, on the availability of

someone else's system (the vendor's). Second there might be a delay of

hours before the vendor can supply the new tape. In either case we

11

J

would experience a substantial delay in getting the system back up and

running, violating a prime goal, availability, of a computer utility.

A third possibility is to use the original tape and then "patch"

the system to reflect the new configuration. This is a poor way to

proceed since the chance of an error while patching is very, very high.

At best, this will result in a system that will not run at all; at

worst the system will run but will operate incorrectly in an unnoticed

way. Such undetected, incorrect operation is intolerable so we must

also reject this approach.

The fourth possibility is a "starter" system. This is a separate

operating system (possibly similar to the operating system that we wish

to initialize) with the property that it can come up on any viable (1)

hardware configuration. This starter system is then used to generate a

tape for this new configuration. This approach has two basic drawbacks.

First the generation process may be a very long one. The resultant time

delay may be intolerable. The second is that we may now have two

operating systems to maintain, understand and show correct. We would

ike to avoid this added burden if at all possible.

(1) A viable configuration is a configuration on which the system can
run. For instance a configuration consisting of no processors is not
viable.

12

We have seen four ways of getting our failed system up and running

again. None of these schemes is completely satisfactory so we come to

the conclusion that we must have an initialization scheme that can come

up on any viable configuration if we are to achieve the goal of

availability of our system. This thesis proposes an initialization

mechanism that has this property of configuration independence.

The question naturally arises as to how present day operating

systems address the issue of versatility in their initialization scheme.

The answer, unfortunately, is that many do not. In the face of changes

in the configuration many systems require a new bootload medium to be

created. As this tends to be a long process this is undesirable for a

computer utility. Some systems have other drawbacks beyond this. For

instance IBM's OS-360 [Flores, IBMa] operating systems take a starter

system approach where the starter system is just a version of OS made

for a particular configuration. Unfortunately there exist

configurations upon which one can run OS but which cannot run the

starter system! On the other hand, Honeywell's Multics system has the

property that one bootload medium can be used to initialize the system

on any viable configuration (i.e. it meets our requirement of

versatility). However, the method used, as we shall see in chapter two,

is rather complicated and difficult to understand. In order to achieve

this versatility a great deal of work is done at initialization time.

This, however, is a time that, as we shall argue in the next chapter, is

an undesirable one at which to perform complex operations. The goal of

13

this thesis is to present a method for initialization which has the

versatility of the Multics approach, but avoids its complexity.

1 .3 Related Work

There is very little published material on system initialization.

Ih [GM] a discussion of the initialization of the General Motors

Timesharing System is presented. Initialization of IBM's OS-360

operating systems is discussed very briefly in [IBMa] and [Flores].

Tnese provide a top level view of the goals and methods of achieving

system initialization for these systems. The original design and

motivation of Multics initialization is contained in [MSPM] in both a

top level form and also in very great detail on a module by module

basis. The original design is very close to the present implementation

trhich is described in great detail in [HONa] . Unfortunately none of

these documents and other documents this author has been able to find

address system initialization in a somewhat higher, system independent,

manner. Such a higher level view is one of the goals of this thesis.

This thesis builds upon the work done by Schell [Schell] in the

«irea of dynamic reconfiguration. He discussed dynamic reconfiguration

3f processors and memory. In this thesis we will add to this work by

including some aspects of the dynamic reconfiguration of I/O devices and

Various software reconfigurations.

14

The idea of layering of systems is an important one in this thesis.

The concept of layering has appeared in numerous papers including

[Dijkstra] and [SRI]. As we shall see in the next chapter this thesis

only uses a very weak form of layering, which only requires that the

bottom layer be always core resident; other forms of structuring a

system, such as those in [SRI] , [Reed] and [Huber], are equally amenable

to the techniques presented in this thesis.

1.4 Thesis Outline: Preview of Approach

The ideas presented in this thesis have been inspired by the

Multics time sharing system. As such they are directly applicable to

that system. This does not mean, however, that the ideas cannot be

applied elsewhere. In fact the method presented in this thesis should

be applicable to any general purpose operating system that is based on a

central processor - central memory hardware and that exhibits the

minimal structure presented in chapter two. Its applicability to other

architectures is, however, an open question.

In chapter two we present a model of a computer system. It is a

top level view of the important aspects, from the point of view of this

thesis, of the Multics system (hardware and software). We also look at

the way in which Multics is initialized - an incremental mechanism.

Using this knowledge we discuss the ways in which the scheme leads to

difficulties in understanding Multics initialization.

15

Chapter three Is a top level Look at the Initialization scheme

proposed in this thesis. Initialization of a layered system is

considered. We show that the hardest part of initializing a layered

system is initializing the base layer. The proposed scheme to

initialize a system attempts to take the extremely simple to understand

core image approach to system initialization (in which an image of the

system is just loaded into core to cause the system to run) and modify

it so as to have a way of initializing the system that maintains the

versatility which has been seen to be desirable.

The technique described achieves both simplicity and configuration

independence by the combination of two concepts: a minimal

configuration and dynamic reconfiguration. In reading chapters three

through six the reader should keep in mind that the uniqueness of the

approach presented in this thesis is in the combination of these two

ideas to keep the simplicity of a core image approach and, at the same

time, maintain configuration independence in our initialization scheme.

Chapter four describes the system generation procedure. It is here

that the idea of a minimal configuration is explored in greater depth.

By assuming the existence of a minimal configuration we see that many

current initialization activities become actions performable at system

generation time, with the result that we can create a core image of the

base layer of the system.

16

Chapter five discusses the activities necessary to take the core

image of the base layer of the system, load it into core and cause the

base layer of the system to run. We also discuss the properties that

the core image loader must have and problems associated with the size of

the core image.

In chapter six we discuss how to initialize the second layer in the

two layer system modeled in chapter two. It is here that the idea of

dynamic reconfiguration is used extensively. Dynamic reconfigurations

of the base layer are invoked as part of initializing the second layer

to cause the base layer to be running using the full configuration

actually present. We also see here that we only need one class of

reconfigurations - additive. The subject of an initial paging area for

the file system layer is discussed. The root of the hierarchial file

system and storage system devices are discussed in detail.

The implementation of dynamic reconfigurations is discussed in

chapter seven. Mention is made of the addition of processors and

memory. The addition of I/O related hardware is discussed in detail.

The dynamic changing of software parameters which control system

operation is also touched upon. Lastly the problems associated with

growing system tables, the major type of software reconfiguration, are

discussed in detail. The subprobiem of growing system segments is also

discussed.

17

Finally chapter eight reviews the methods presented in this thesis,

Some comments are made on the applicability of this method and

possibilities for future research.

18

Chapter Two

A Model of a Computer System

In this chapter we will present an overview of the Multics

operating system and some relevant aspects of the hardware it runs on.

Our goal is to provide the reader with sufficient knowledge in these

areas to enable him to appreciate the issues involved in system

initialization on Multics. Using this knowledge, we then discuss how

the hardware and software of Multics affects its initialization. The

description of Multics serves as a general model of a two layer system

and it is in the context of that model that the rest of the thesis will

be presented.

2.1 Hardware Base

Although there are many aspects to the hardware that Multics runs

on, for the purposes of this thesis we can abstract away from the actual

hardware to a great extent. There are, in fact, only two aspects of

interest: the system is centralized and the concept of a system wiring

diagram is important.

19

This thesis only deals with centralized systems. These are systems

consisting of one or more processors sharing memory and peripherals.

Examples of such systems include Honeywell's Multics system, IBM's 360

nd 370 systems, Control Data's 6600 and 7600 systems and DEC's PDP-10

ystems.

The other important aspect is the concept of the system intermodule

wiring diagram which reflects the physical interconnections between the

various pieces of hardware, e.g. a processor or a memory module, that

comprise the system. The system software needs to know this in order to

direct commands from one module to another. For instance on Multics

when a processor wants to initiate I/O it must know where, in the system

wiring diagram, the I/O device in question is. Also, in the case of

Multics, all intermodule communication is via system controllers, which

also contain the memory, by sending messages along parts of the system

wiring diagram.

20

2.2 Software Base

In this section we present a top level overview of the Multics

supervisor, with the aim of presenting the structure of the system

rather than implementation details. See [MAC73] for more details.

Multics is a general purpose timesharing system which implements a

paged, segmented virtual memory, provides a hierarchial file system and

provides for user controlled sharing of information. We will regard the

Multics supervisor as a two layer system. (1) For the purposes of this

thesis we shall regard each layer as being unlayered internally.

The top layer implements the file system. It is responsible for

mapping user names of objects into segment identifiers. The rooted,

hierarchial file system is implemented by this layer. This layer is

also responsible for maintaining the attributes of segments such as the

unique identifier, access control information and the creator.

The bottom layer, which we will call the base layer, provides the

virtual machine that the file system layer runs on. It provides four

basic functions. First, it includes the traffic control module which

(1) By layer we are referring to layering such as in Dijkstra's T.H.E.
system [Dijkstra] or as in [SRI], Layers I to i implement the virtual
machine used by layer i+1.

21

Implements processes, provides the interprocess communication mechanism

and multiplexes physical processors among processes. Second, the paging

fljiechanism and management of main memory are provided by this layer,

ihird, low-level input-output is the responsibility of this layer. It

initiates all I/O and is responsible for determining the status of I/O

Operations. Fourth, this layer is responsible for fielding interrupts

and faults (1) and directing them to their correct handlers. In this

capacity it is also responsible for setting interrupt masks so as to

orevent the occurrence of some, or all, interrupts.

This particular layering of the system has been chosen based upon

three considerations. First the major criterion is to minimize the size

of the bottom layer of the system. As we shall see in chapter four it

is essential to make the bottom layer take up as little memory as

possible. The second criterion is that the file system not be

implemented in the base layer. The correct operation of the file system

layer depends on the integrity of secondary storage. We do not wish the

correct operation of the base layer to depend on this kind of external

condition, as this would make it impossible to find a minimal

configuration. For this reason we do not want the file system

implementation in the base layer. The last criterion is simply one of

convenience. The layering we have chosen models the Multics system very

closely.

(1) A fault is a condition, such as overflow, that is generated
internally by the processor receiving the fault. This is in contrast to
an interrupt that is generated externally to the receiving processor.

22

2.3 Multics Initialization

In the previous sections we have provided a top level view of the

hardware that Multics runs on as well as a simple view of the Multics

supervisor. Using this knowledge, we will briefly touch on the issue:

What makes current Multics initialization hard to understand? In

answering this question we hope to provide further motivation for the

remainder of this thesis.

In order to see what makes Multics initialization hard to

understand, we must first get an idea of how it actually works. The

following is a brief discussion; more detailed information is available

in [HISIa].

Multics system initialization has been organized in a way so as to

have one bootload tape that can be used on any configuration to bring up

the system. Multics initialization has been organized so that almost

all of the actions needed to produce a running system, as opposed to

only the configuration dependent actions, take place at the time that it

is desired to initialize the system. At the time that the bootload tape

is generated all that is done is to take compiled programs and data and

place them on the bootload tape.

23

The way in which the initialization of Multics occurs is best

described by calling it an incremental mechanism. By this we mean that

the total functionality provided by the supervisor and the environment

11) in which the supervisor runs are built up in an incremental manner.

This means that while running in one environment, initialization makes

another item of functionality work. It then proceeds to run in this

itew, augmented environment. In this way initialization builds its way

lirora an initial, primitive, absolute addressing environment to the final

environment consisting of a paged, segmented virtual memory with

multiple processes.

Most of the initialization activities that Multics does are

activities performed to produce a version of Multics adapted to a

particular configuration. Unfortunately not all of them can be

characterized in this way and we list some of them now for completeness.

Some activities are the same for all initializations of the system no

matter what the configuration is. In Multics the best example of this

is an activity known as prelinking in which the external references of

supervisor programs are statically resolved for the life of the system,

t takes place at the same point of initialization, in exactly the same

ay, each and every time the system is initialized. Other such

ctivities are the setting of system wide constants (such as page size

(1) We loosely define the environment of a module to be the collection
of functions available to that module. At any given instant the
tnvironment of a module describes the total functionality currently
vailable to that module.

24

and the size of various table entries). Other than these two items, all

initialization operations can be viewed as activities geared to

producing a version of the system adapted to a particular configuration.

This approach achieves its goal of one bootload medium for all

configurations by delaying, as long as possible, configuration dependent

decisions. All such decisions are made while the system is being

initialized, when the full configuration is known. Initialization is

taking the configuration information available to it at the time the

system is being initialized and producing a version of the system

adapted to this particular configuration and running on it. One can

model what is happening by saying that the initialization algorithms and

the bootload medium embody a model of what the system looks like on a

general configuration, and the execution of initialization, on a

particular configuration, uses this model to produce a version of

Multics for the particular configuration present. However the method

used to achieve this, the incremental mechanism, has problems as we will

now see.

The incremental initialization mechanism serves to define a nested

set of environments. It is important to note that the nested set of

environments does not correspond to the layering of the system.

Instead, at some point the current environment will correspond to that

provided by a layer. The internal, amorphous environment of that layer

will have been obtained by going through many nested environments. This

25

nested set of environments tends to make initialization hard to

understand in two ways.

First, it makes the understanding of the initialization routines

themselves hard to understand. In order to understand whether or not an

initialization program works correctly, it is necessary to know the

environment that the program runs in. Thus to understand if an

initialization program is correct one must first determine where in

initialization it is called and the result (in terms of an environment)

of all initialization programs that have run prior to it and then,

finally, decide upon its correctness.

Second, normal supervisor routines are harder to understand. This

is especially true for the base layer since, as we have noted, the base

layer is essentially an unlayered collection of modules. As the base

layer is being initialized, initialization uses features of this layer.

This causes these supervisor routines to run in environments other than

the one environment (the whole base layer environment) they normally run

in. Thus to demonstrate the correctness of initialization one must show

that these supervisor routines run correctly in not just one environment

but in, potentially, many.

As an example of this last problem consider page control, the

collection of modules which manage the multilevel memory system. When

page control initiates a read of a page into core on behalf of some

process, page control wants the current process to stop running and wait

26

for the I/O to complete. In doing so, it abandons the processor to

another process. However at the time page control begins running there

are no processes because traffic control, the manager of processes, has

not yet been initialized. The problem is to convince oneself that page

control works in the absence of processes (or alternatively that traffic

control does the right thing before it has been initialized). As It

turns out, of course, it does work and it does so due to special casing

inside of traffic control and the zeroing of core prior to the beginning

of initialization.

2.4 Wrapup

We have seen a model of the Multics software as well as a model of

its hardware base. The important hardware features are that it is a

centralized, general purpose computer system and that knowledge of the

system wiring diagram is necessary for the correct operation of the

system. The Multics supervisor has been modelled as a two layer

structure, each layer unstructured. The top layer implements the

hierarchial file system while the bottom layer is responsible for I/O,

interrupt handling, paging and the implementation of processes. The

remainder of this thesis will use this model. Current Multics

initialization has been seen to be an incremental mechanism and we have

argued that it is this incremental character of initialization that

makes it hard to understand. In the next chapter we propose an

27

initialization scheme that is versatile, as is the Multics scheme, but

which avoids the problems of the Multics incremental mechanism.

28

Chapter Three

Overview of the Initialization Scheme

In this chapter we will present an overview of our proposed

initialization method. It works by taking the activities of the

incremental initialization scheme presented in chapter two and ordering

them so that they occur at very well defined times in well defined

environments so as to avoid the discussed problems.

3.1 Initialization in a Layered System

The initialization of a layered system can be made simple by taking

advantage of the layering present. Initialization will proceed upward

in the system, initializing layer by layer, starting at the base layer,

and continuing until the whole system is initialized. In this way the

initialization task is broken into a number of disjoint parts.

We will discuss this initialization plan by considering the general

case of a system consisting of many layers. We first initialize the

base layer in whatever way seems appropriate and get it running. Then

we initialize the second layer, while running on the virtual machine

provided by the base layer, and get it running. Now, while running on

the virtual machine provided by the second layer, we proceed to

29

initialize the third layer. By proceeding in this way we can initialize

tie system layer by layer until the whole system has been initialized

and is running.

After having initialized layers 1 to i, the system will be running

on the virtual machine provided by layer i. We claim that this virtual

machine provides sufficient functionality to initialize layer i+1. If

this were not the case, the idea of walking up the layers, initializing

as you go, would fail. This should not happen in a layered system where

the virtual machine provided by layer i provides all of the

functionality that layer i+1 needs to run. To see this, suppose that

the virtual machine provided by layer i did not provide enough

functionality to allow layer i+1 to be initialized. Layer i must then

provide a "backdoor", for use only during initialization, which has the

equired extra functionality. Unfortunately there is no way for layer i

tjo know for sure when initialization is over since such information

would come from higher layers which are not trusted. Thus this backdoor

is a defacto part of the virtual machine provided by layer i. For this

reason the functionality provided by layer i to layer i+1 should be

sufficient for the initialization of layer i+1. (1) We will assume that

this is the case.

[1) An alternative would be to impose additional constraints on the
system to the effect that only initialization programs may use, directly
r indirectly, such backdoors. Another such constraint is, that when
ompleted, the initialization program inform all layers that
Initialization is over, so that they may all shut the backdoors.

30

The writing of the initialization programs for layer i+1 is no

harder than writing the programs that comprise layer i+1 since, in both

cases, the programs will be running in the same environment - the

virtual machine provided by layer i. Note how this favorably contrasts

with many current initialization methods where the initialization

programs run in a different environment than the regular system

programs.

Thus, in a layered system, the hard part of initialization really

comes down to the initialization of the base layer since it runs in the

most primitive environment - that of the bare hardware. Higher layers

run in progressively more sophisticated environments and thus are

progressively easier to initialize. Even the second layer, in the

system model presented in chapter two, sees a very sophisticated

interface, one which includes processes and a paged virtual memory. The

remainder of this chapter will primarily be devoted to outlining a

scheme for the initialization of the base layer of a layered system.

31

3.2 Base Layer Initialization

We wish to produce a base layer initialization scheme that is

simpler than the incremental mechanism presented in chapter two. The

easiest way to simplify this, and any, mechanism is to make as much of

it as possible go away. We shall take this approach.

In order to make as much possible of base layer initialization go

away, we shall use a core image approach. A pure core image approach

has the following form. At system generation time we create a copy of

the base layer as it should appear in core when working. At the time

the system is to be initialized, this copy (which we will call the base

layer core image or core image for short) will be loaded into core.

Since the core image represents a completely initialized base layer, the

act of loading it into core and transferring control to it produces a

running base layer. In the scheme presented below we will modify this

so that only a small amount of initialization need occur after loading

the core image in order to cause it to run.

We will take advantage of three other concepts: common activities,

minimal configuration and dynamic reconfiguration. Common activities

are actions that are the same for each and every initialization; i.e.

they are configuration independent. An example might be the setting of

32

a system wide constant such as page size. A minimal configuration is a

configuration, including both hardware and software aspects, which is

guaranteed to be common to all possible, viable configurations. One

component of a minimal configuration would be the existence of, at the

least, one central processor. Dynamic reconfiguration is the changing

of the configuration of the system, while it is running, in a way so as

not to disrupt service to users. For instance in his thesis [Schell]

Schell discussed the dynamic addition and deletion of processors and

memories.

In later chapters we will discuss these three concepts more deeply

but for now we will see how they, in combination with the core image

concept, produce a useful, configuration independent system

initialization scheme.

At system generation time we create a core image of the base layer

by assuming that we will be running on the minimal configuration. Note

how this contrasts with the starter system approach where a core image

is generated for the configuration we would ultimately be running on.

While creating the core image we perform all possible common activities,

Note that we can only create the core image and find many common

activities once we have assumed we will be running on a configuration.

In our case we will have assumed the minimal configuration so that the

initialization scheme is configuration independent. At system

initialization time we take this core image and load it into core. At

33

this point control is given to the base layer which must determine (or

be told) the system wiring diagram corresponding to the minimal

configuration since, as we will see in the next chapter, knowledge of

the system wiring diagram is not assumed as part of the minimal

configuration. The result is an operable base layer achieved in a very

simple manner (a core image approach). Note that this core image must

run since we have generated it assuming a configuration, the minimal

configuration, known to be a subset of the configuration actually

present. The routines that initialize the next layer of the system, the

file system layer, are now given control. The file system initializer,

while initializing the file system layer, can now invoke any needed base

layer dynamic reconfigurations to transform the configuration known to

the base layer into the configuration actually present and desired.

Realize that it is only the existence of these dynamic reconfigurations

that allows us to maintain configuration independence in this

initialization scheme. This is accomplished by the file system

initializer invoking dynamic reconfigurations as needed.

This scheme is simpler than the incremental method since base layer

initialization is reduced to, basically, a simple loading operation.

Much of the hard work is embodied in core image generation which takes

place in a "normal", well understood user environment at system

generation time. The remainder of the work of initialization takes

place in the form of dynamic reconfiguration. These reconfigurations

are the same reconfigurations as used during normal system operation.

34

As such, since they are invoked in a normally running system, their use

in getting the system running on the full configuration is, In some

sense, not even part of initialization and, in any event, requires no

additional effort to show correct once the system's regular operation is

believed correct.

This scheme has not been used before for one very fundamental

reason - the lack of a dynamic reconfiguration capability in most

systems, ultimately the success of this method and in particular the

item which makes the assumption of a minimal configuration reasonable,

relies upon the ability to perform many dynamic reconfigurations.

Unfortunately most systems have little, if any, ability to perform

dynamic reconfigurations. As a consequence this scheme could never even

be considered.

In summary, our basic scheme is as follows. At system generation

time we create a core image by assuming that we will be running on the

minimal configuration and, at the same time, we perform all actions

common to all initializations. When it is desired to initialize the

system, the core image is loaded into memory to produce a running base

layer. Dynamic reconfigurations can then be invoked to cause the base

layer to be running on the configuration actually present.

Initialization of higher layers can then occur.

35

3.3 Wrapup

In this chapter we have outlined how initialization in a layered

system can proceed upward, layer by layer, through the structure

hierarchy. In such a system the hard part of initialization is the

initialization of the base layer. A core image approach to base layer

Initialization has been presented based upon the concepts of common

actions, a minimal configuration and dynamic reconfiguration. The next

three chapters will discuss each of the parts of initializing the system

more deeply and explore the underlying concepts more closely.

36

Chapter Four

Core Image Generation

In the previous chapter we outlined our proposed initialization

scheme. One of the cornerstones of this scheme is the ability to

create, at system generation time, a core image of the base layer with

the property that once loaded into core it is essentially functional.

In this chapter we propose one way of generating this core image by

assuming the existence of a minimal configuration.

4.1 The Process of System Generation

In order to generate the base layer core image, we will use

techniques similar to those currently used by IBM's OS-360/370 and CDC's

7600-SCOPE operating systems. In these systems, a version of the

operating system is produced that is tailored to the needs of a

particular configuration. This is done by feeding the system generation

procedures all the information that they need, such as how much memory

and how much disk space will be around, the addresses of available main

memory, device addresses, types and sizes of devices and the system

wiring diagram. The system generation procedures then produce a version

of the operating system made specially for the particular configuration

described. It should be clear that an identical procedure can be used

37

to produce a base layer core image for any system once we know the

configuration. In our case we know that the configuration is the

minimal configuration.

The output of the system generation process is the bootload medium

which might be a disk pack or a magnetic tape. It consists of the

generated core image, with possibly some information describing where it

should be loaded at initialization time, the file system initialization

routines as well as any data they need. In a more general case, at the

time higher levels in the system are initialized it is necessary to have

the routines and data that comprise them available to their

Initialization routines. They must, in general, be provided by the

ystem generation process. For convenience we also place them on the

Dootload medium.

38

4.2 Where System Generation Occurs

The first question to answer is: Where do we generate the boot load

medium and hence the base layer core image? System generation should

take place in a standard user process, the same place that the system

programmer does most of his work. Generating the bootload medium in a

standard process has two very important advantages. The principle

advantage is that the generation programs are written to run in the

normal environment of a user process. This means that the developer of

these programs is working in the environment where he does most of his

work so that his task is eased by not needing to learn some new, and

potentially unusual, environment for the system generation programs. As

this environment tends to be well understood and well defined, the

generation programs should be correspondingly easy to show correct.

This choice, for instance, has been used in IBM's OS-360/370 and CDC's

SCOPE [CDC] operating systems. The second advantage is a consequence of

this one: most (if not all) of the system generation programs can be

written in a high level language. The advantages of programming in a

high level language are well known, so we will not repeat them here.

39

4.3 The Minimal Configuration

We say that configuration A is a subset of configuration B if the

following are true:

i. The set of all hardware in A is a subset of the hardware in
B.

ii. All of the system's hardware independent databases are
smaller in A than in B.

Note that we do not include the system wiring diagram in our definition

of subset. We also are assuming that a consequence of the first

condition is that all of the system's hardware dependent databases (1)

are smaller in A than in B. If we examine the set of all possible,

viable configurations we assume that there will be one that is a subset

of all of the others. We will call this configuration the minimal

configuration. (2)

(1) A hardware dependent database is one that directly depends upon the
hardware configuration.

(2) Current general purpose operating systems, built around central
memory and central processors, seem to have this property. There may
exist classes of architectures for which this is not the case. For
these architectures we may not be able to define a unique minimal
configuration. In this case our initialization scheme will not be
directly applicable.

40

There are basically three aspects to the minimal configuration -

processors, memories and the size of system tables. We will examine

each of these in turn.

First we assume that the minimal configuration consists of one

central processor. (1) One processor is needed or the system cannot run

at all. Second and subsequent processors merely increase performance

and reliability; they are not essential.

A processor without any primary memory is not very useful so our

minimal configuration must contain some primary memory. We will make

two assumptions about primary memory - its size and the existence of

physical addresses. We will now elaborate on these two assumptions

about primary memory.

4.3.1 Main Memory Size

We will assume main memory size based upon three considerations.

First it is necessary to assume the existence of enough primary memory

to contain the primary memory resident supervisor as it must, by

definition, be in primary memory at all times. Second we must have some

primary memory around to contain non-resident parts of the supervisor

(i.e. parts of the layers above the base layer) and parts of user's

(1) This assumption Is valid for traditional centralized architectures.
For other architectures this may not be a valid assumption.

41

programs and data when they are needed, i.e. a paging pool for our

virtual memory system. The size of this pool will be dictated by two

considerations. The hardware will constrain a certain number of pages

to be in core. For instance the pages containing the current

instruction and the data it references may need to be in core. The

system software may impose a lower bound on the size of the paging pool

either through global constraints or per-process requirements. For

instance, Multics requires that there always be ten free (unused but

available for use) pages and, in addition, requires two pages to be in

core, at a minimum, for a running process. (1) This, when coupled with

the hardware constraints, will impose a lower bound of thirteen pages

(2) on the size of the paging pool for Multics. Minimal performance

considerations will cause the size resulting from these two

considerations to be raised to the final minimal size of the paging

pool. The third, and last, effect on memory size comes from the

initialization process itself. If the core image is loaded into core by

a software loader then there must be core for the loader. There must

also be room for the code that ascertains the wiring diagram

corresponding to the minimal configuration and for the file system

initialization code. (3) These will all cause the minimal memory size

(1) The first page of the descriptor segment and the first page of the
ring 0 stack.

(2) Ten free pages, two per-process pages and one for execution of the
current instruction.

(3) Actually, as we will see in chapter six, only part of the file

42

to grow. Considering all three factors it is possible to determine the

minimal size of main memory that is needed in order to bring up the

system. Also knowing that memory comes in certain fixed sized chunks,

we may be able to impose a still higher minimal size.

4.3.2 Main Memory Addresses

We will also assume the existence of the main memory addresses that

the core image will occupy. This is necessary since there are many

absolute addresses within the base layer, such as in segment descriptor

words (SDW's) and page table words (PTW's), that must be filled in at

system generation time in order to produce an operable base layer. If

we do not assume these addresses it will be necessary for the core image

loader to fill them in. This would entail the creation of a relocating

core image loader. Such a loader is not, in general, a reasonable way

to proceed. Let us see why.

system initializer will need to be loaded with the base layer core image
so that its effect on minimal memory size will be small.

43

Ll --- '*•

4.3.2.1 A Relocating Loader

A relocating loader would be responsible for taking the core image,

in pieces perhaps, and loading it into available memory. As it does so,

it must modify all of the physical addresses (as well as derived

quantities) in the core image to reflect the actual physical addresses

and not the ones assumed during system generation. On the surface this

seems very reasonable since the construction of such a loader could

follow the pattern of relocating loaders found on many present day

operating systems for loading programs into a user's address space. The

handling of explicit physical addresses, such as in SDW's and PTW's, is

straightforward. However the handling of implicit addresses may be

difficult. Consider a virtual memory system such as Multics. It is

necessary for it to keep track of the status of each page of physical

memory (usable/unusable, free/in-use ...). This is done by having an

array, called the core map, describing the status of each page where the

i'th entry describes the i'th physical page. To fill in the core map

the relocating loader must be prepared to:

i. Fill in array entries describing the actual status of
pages.

ii. Maintain linked lists of array entries.

iii. Grow the core map array to accommodate the pages actually
used.

44

Item i. is self explanatory. For item ii., it may be necessary to

maintain the entries describing free pages on a list. Similar lists

might exist for used and unusable pages. Items i. and ii. are probably

not that difficult to do. However allowing the loader to do them gives

it a great deal of knowledge about the structure and contents of the

core map; knowledge that we would like to keep only in the system so as

to maintain system modularity. For item iii., suppose that at system

generation time pages 0 to N were assumed to exist and corresponding

array entries were allocated (i.e. the core image was generated to be

loaded with no change into pages 0 to N). At the time the core image is

loaded suppose that it is loaded into pages M to M+N (M>0). It is then

necessary for the loader to allocate array entries to describe pages 0

to M-l. This will cause the array to grow. Although in principle

possible to do, this may, as we shall see in chapter seven, be difficult

to do. The loader must also take the entries in the core image core map

and use that information to fill in the entries for pages M to M+N

(where the system actually is) in the in-core core map. The net effect

of all this is that it is possible to build a relocating core image

loader but the loader would tend to get very complicated. Since it will

run in a very simple and primitive environment, the bare hardware, such

complexity is undesirable. Lastly, each of these tasks that a

relocating loader would need to do, tend to give the loader a large

amount of knowledge about the system and might have undesirable effects

upon system modularity. For these reasons we reject the concept of a

relocating loader and will, instead, just assume physical addresses.

45

4.3.2.2 Realization of Assumed Addresses

Having decided to assume physical addresses in main memory of the

core image as part of the minimal configuration, we must now show that

this assumption is not overly restrictive on possible configurations.

By assuming the existence of physical addresses, an installation is

required, at a minimum, to have those addresses realized in physical

memory. To the extent that it is easy for an installation to assign

these addresses to the available memory this is a reasonable approach.

If, however, this assignment is difficult or impossible then the

assumption of physical addresses will be overly restrictive on possible

configurations.

Let us examine the hardware Multics runs on to see some of the

problems that might arise. Each active module (processor or

input-output multiplexor) in the configuration has an operator settable

collection of switches that describe the base address of the memory

attached to each port on the module. (1) The size of the memory on a

given port is set by a plugboard in the port logic of the active module,

The switches allow the operator to set the base address of a memory

module as a multiple of its size. For instance suppose port 1 has a

(1) Each module has eight ports through which it communicates with
memory modules.

46

256K memory attached to it, then the operator can set the base address

of it to 0*256K, 1*256K, ..., 7*256K. No other base addresses are

possible.

This technique has two drawbacks. First there is the chance for

operator error. The operator must make sure that when he sets the

switches on one active module, he also sets the switches on all other

modules in the same way. (1) Failure to do so will either result in the

bootload immediately failing or in the software detecting the error as

the system comes up. The more serious problem concerns the inability to

set the base addresses to the needed values without creating holes in

the potential address space, potentially affecting future operation of

the system. For instance suppose that we have two memories, one with

128K words and one with 1024K words. Also suppose that the 102AK memory

is broken and that we have generated a core image that requires

addresses 0 to 128K-1 to exist (i.e. the 128K memory as the low order

memory will allow us to bring up the system). Clearly we can bring up

the system by setting the base address of the 128K memory to 0*128K.

However later, while the system is running, when the 1024K. memory is

fixed we will want to dynamically reconfigure it into the system. We

will add it as having a base address of 1*1024K, the lowest available to

it in the physical address space. The effect of this is that there is a

hole in the physical address space - addresses 128K to 1024K-1 do not

(1) This is a requirement of the operating system and not the hardware.

47

exist. The only effect of this is in the core map array. Since it is

an array we must allocate entries for the missing pages and mark them as

unusable. Since this is a core resident table, these unused entries are

wasting valuable memory resources. This loss of memory may be

unacceptable.

If these drawbacks are felt to be severe, we propose a few hardware

changes so that the assumption of physical addresses as part of the

minimal configuration is reasonable. First the base address of the

memory on a port can be made more flexible by allowing the base address

to be set to be a multiple of some small number, say the smallest

possible physical memory size. This will eliminate most chances of

holes in the physical address space. Secondly the registers on active

modules that reflect physical addresses should be software readable and

settable. This includes not only the memory base addresses on ports but

also a processor's interrupt and fault vector addresses as well as an

IOM's mailbox address. (1) In this way the software can verify that all

switches are set correctly and, if necessary, set them correctly and

thus ensure correct operation even in the face of operator error. With

these changes the assumptions about the existence and location of main

memory are quite reasonable.

(1) An IOM is the programmable controller of I/O devices; i.e. it
executes channel programs. Other names for this device might be I/O
controller or channel. A mailbox is used as an incore communication
area between processors and IOM's.

48

4.3.3 System Table Sizes

The last component of the the minimal configuration is the size of

the various system tables. At system generation time it is necessary to

allocate space for, and fill in, the system tables. Here we discuss the

allocation issue, the filling issue will be discussed later. At system

generation time we must decide the minimum size of the various system

tables. We can do so based upon two considerations. First the actual

system structure and design will force the tables to have a certain

minimal size. For instance on Multics there will always be at least two

processes around (1) which, as a consequence, requires that the active

process table have at least two entries. Another example is the active

segment table. (2) At least one entry is required for each

always-active system segment. In addition, the implementation of the

hierarchial file system requires the allocation of other entries.

Minimal sizes can also be forced upon tables as a result of the assumed

minimal hardware configuration. For instance if we have a processor

table, we know that it must have one entry for the one, assumed

processor. A better example is the core map; for each page of memory

(1) The idle process for one CPU and the initializer process.

(2) The active segment table contains the page tables for currently
addressable segments.

49

that we have assumed exists, one entry needs to be allocated in the core

map. For many tables the minimal size will turn out to be the empty, or

null, table. An example of such a table would be the paging device map,

which describes the status of pages on the paging device, since we have

not assumed the existence of a paging device in the minimal

configuration. It should thus be possible to decide, at system

generation time, upon the minimal size of all system tables.

4.4 Common Actions

There is a collection of actions common to all initializations that

can be performed at system generation time. These are either actions

that are the same for every initialization regardless of the

configuration or they are actions that can be performed at system

generation time given that the system will be running on the assumed

minimal configuration. We will call these actions common actions or

configuration independent actions.

One such common action is the prelinking of the supervisor. The

set of segments that comprises the supervisor does not change for the

life of the system. Thus it is possible, at system generation time, to

assign segment numbers to every supervisor segment. Having assigned

segment numbers, it is then possible to resolve all external references

within the supervisor. At the same time it is possible to create and

50

initialize any data bases needed to enable base layer programs to

actually make external references (they will have been resolved). (1)

Then at the time the base layer core image is loaded it will immediately

be possible for it to successfully make external references.

At system generation time we either know, statically, the size of

each supervisor segment (for instance segments containing executable

code are statically sized) or we can calculate it (for instance variable

sized tables, making for variable sized segments, now have a known

length due to assumptions made as part of the minimal configuration) .

The knowledge of segment sizes, when combined with our assumptions about

main memory addresses, allows us to decide where in core each segment

should be. We also can allocate, and fill in, an active segment table

entry (ASTE) for every paged supervisor segment. For every supervisor

segment we can then fill in its segment descriptor word (SDW), either

pointing it to the segment itself or pointing it to the segment's page

table (in its ASTE). Filling in the page table for paged segments and

filling in the SDW for unpaged segments requires us to know the actual

main memory address of these segments. Since we have assumed the

existence of main memory addresses it is possible for us to assign these

addresses at system generation time. As we assign these addresses we

can also fill in the core map.

(1) In the case of Multics these are the combined linkage sections and
the linkage offset table.

51

When the base layer begins running it will have a certain number of

existing processes. The number and nature of these processes is known

at system generation time. We can thus create and initialize, at system

generation time, all of the per-process segments for these processes.

Also we can allocate, and fill in, the active process table entry (APTE)

for each process. This per-process initialization is done in a way that

places each process in a known, desired state at the moment the system

is running thus allowing the use of processes from the moment the system

is loaded.

A large class of common actions come under the heading of table

initialization. Since we wish to create a core image that can be loaded

to produce a running base layer, it is necessary to create and

initialize all of the base layer's databases. We have already described

how we can fill in three major databases - the core map, active segment

table and active process table. The remaining databases can be

initialized in either a minimal or null state. For instance the paging

device map can be initialized to show no paging device. The various

databases that refer to peripherals (such as teletypes, disks and

magnetic tapes) can be initialized to show that no peripherals exist.

Note that these various table initializations are only possible once we

have assumed the minimal configuration.

52

The last set of common actions consists of the setting of software

parameters to some initial value. These parameters are used to control

the actions of the software. For instance it may be possible to turn

metering on or off by setting a software switch. It may be possible to

turn system debugging actions on or off. Scheduler parameters must be

set to some initial value. All such parameters should be set to some

initial value so that the system may run correctly when loaded.

4.5 Wrapup

In this chapter we have described the system generation process.

The system generation procedure runs in a standard user process and

creates a core image of the base layer. This core image is generated by

assuming a minimal configuration and performing all possible common

actions. The actual generation process occurs in a way similar to that

used by systems such as IBM's OS 360/370 and CDC's SCOPE. System

generation then places this core image and the programs and data of

higher layers on the bootload medium.

53

54

Chapter Five

Base Layer Loading and Initialization

In the last chapter we described the system generation procedure.

As part of its output it produced a core image of the base layer on the

bootload medium. In this chapter we describe how the core image is

loaded into core and initialized to produce a running base layer. We

see that the loading and initialization of the base layer are very

simple operations.

5.1 The Core Image Loader

The core image loader is responsible for loading the base layer

into core and giving it control. This loader is also responsible for

validating that the core image has been loaded correctly.

The basic function of the loader is to take the core image from the

bootload medium and load it into the place in core where the core image

wants to be. The location where the core image must be loaded is, in

general, variable (since it is a property of the core image) and should

not be built into the loader. Once the core image is correctly loaded

the loader must then give control to the core image.

55

The first question that arises is: How does the loader get the

core image from the bootload medium into core? The loader fabricates,

or has built into it, a series of commands for the I/O device containing

the bootload medium to cause the core image to be transferred into core.

This transfer represents the entire loading operation. Now we must see

how the loader knows which I/O device contains the bootload medium. We

can regard the loader as running on a configuration consisting of one

processor, all of main memory and the bootload I/O device. (1) Thus it

performs its I/O on the only I/O device it has. The choice of I/O

device is independent of the loader, he has no choice. Typically the

choice will either be built into the hardware or will be settable by the

operator via console switches. Note that this model fits very well with

current hardware bootstrap loaders which have built into them a small

program to read from an I/O device which is specified by operator

settable switches.

Unfortunately it is not sufficient just to load the base layer core

image into main memory and then let it run. At the very least it is

necessary to check that the base layer has been loaded correctly. If

for some reason the loading operation has not been done correctly the

proper operation of the base layer is in doubt. In particular we would

like to be sure that the data generated as the core image is the same

(1) The bootload I/O device is the I/O device containing the bootload
medium.

56

data actually read into core. (1) This is a general problem in using

mass storage media and its solution, in general, is beyond this thesis.

To minimize the chance of such errors we propose to use two techniques.

First, the bootload medium should be written in a standard data format

thus giving give the core image loader the advantage of all the error

detection (and possibly error correcting) machinery associated with

standard formats. (2) This machinery will tend to prevent an erroneous

core image from being loaded and not being detected. This technique,

when coupled with standard hardware error detection on the I/O device,

will reduce the number of undetected errors to a very small number.

Second, to reduce this number even further, if that seems necessary, we

can have the base layer perform checks upon itself once it gains control

and before it passes control onto the initializer for layer 2. The

simplest such check would be to compute a checksum on the whole core

image. Other checks, such as data base consistency checks, could also

be incorporated. Choosing which additional checks the base layer should

make must be based upon the probability of an undetected error (without

more checks) traded against the additional complexity these checks

create before we can consider the base layer to be running. These two

techniques, standard data storage formats and base layer self checking,

(1) Another form of data integrity is insuring that the bootload tape is
only used by authorized personnel in authorized ways. This is a
security issue that we do not address in this thesis.

(2) For instance, a Multics Standard Tape contains a checksum on each
record to aid in detecting errors.

57

should reduce the number of undetected errors in loading the base layer

to a small, and hopefully negligible, number.

The question naturally arises as to whether the loader should be in

hardware or in software. For the purposes of this thesis it does not

matter; it only matters that the result of the load operation is

correct. From a practical point of view the necessity of handling

variable requirements (load point and data formats) indicates that a

software loader may be most appropriate. Using a software loader does,

however, introduce the problem of how to load the software loader. This

can be solved by either applying the results of this thesis recursively

or by using a hardware loader. Note that ultimately a hardware loader

will be used to get things going.

5.2 Core Image Size

In the last section we have implicitly made the assumption that the

base layer core image (plus, potentially, the loader and the file system

layer initializer) will fit into core. This section will address the

possibility that the base layer core image (plus loader and file system

initializer) is too large and does not fit into core.

The situation we are hypothesizing is one in which the

configuration we are coming up on has sufficient memory for the proper

operation of the system, however the core image (plus loader, etc.) does

58

not fit into core. The effect is that the system could, in principle,

run but cannot be initialized under our proposed scheme.

In this situation, there is really nothing we can do. The loader,

when noticing the lack of memory, must simply stop initialization and

report the problem to the operator - the installation has insufficient

memory under our initialization scheme.

The question now is whether the situation of the base layer core

image not fitting in core can reasonably occur. A system that had this

property would be swapping parts of itself to and from secondary storage

as required. Note that in such a system the swapping routines, at the

least, must always remain in core. They cannot depend upon any

swappable routines since at the point that the swappable routine was

needed by the swapping routines it might be on secondary storage. This

means that the swapping routines, and the routines they use, are

self-sufficient and always in core. The self-sufficiency makes them a

layer and, since they are always in core, we can regard them as a base

layer that must fit in core. We can thus use the swapper as the base

layer of the system.

We are now left with the possibility that the core image fits but

the file system initializer plus, potentially, the loader do not. Both

of these can be made very simple programs since their tasks are easy.

As such they will take up little room and we will assume they will fit.

From a practical point of view if the loader and file system initializer

59

do not fit then the system is very much short of memory and will not be

very useful. In any event with the price of memory dropping as it is

this should not be a problem in the future.

5.3 Base Layer Initialization

Our technique of generating the core image creates the task of core

image initialization which is not present in a pure core image approach.

Two types of initialization must be performed. The configuration must

be validated as being a superset of the minimal configuration and the

system wiring diagram must be ascertained.

We have generated the core image based upon a number of assumptions

about the configuration we will be running on. The correct operation of

the base layer, which is of course our goal, depends upon our

assumptions being correct. If we try to run the base layer upon a

configuration that is not a superset of the the one it was generated

for, we cannot, in general, guarantee correct operation. Thus core

image initialization must verify that the particular configuration it is

running on is a superset of the one it was generated for. For instance,

depending on what was assumed in the minimal configuration, this might

involve checking for the existence of disks, memory, front-end

processors, central processors and other I/O devices. If we have

assumed something about the system wiring diagram we must also verify

60

it. A mistake here must almost surely be regarded as a fatal error

causing initialization to fail. (1)

Note that when we discussed the minimal configuration we did not

assume any knowledge of the hardware wiring diagram. This was quite

deliberate since to assume this knowledge would be overly restrictive.

If we were to assume any knowledge of the system wiring diagram we

would, potentially, be restricting greatly the set of possible

configurations that satisfy the assumptions making up the minimal

configuration. (2) Since we have not assumed any knowledge of the

system wiring diagram, and since this knowledge is essential for correct

base layer operation, we must perform some actions once the core image

is loaded and control given to it in order to provide this knowledge.

We do not have to ascertain all such knowledge but, rather, we must only

determine that part of the wiring diagram which corresponds to the

minimal configuration. Having performed this initialization, we will

have an operable base layer and control can be given to the file system

layer initialization routines.

(1) Here we are allowing for an assumed configuration at system
generation time other than the minimal configuration presented in the
last chapter. For that configuration this phase disappears since the
correct termination of the loader is sufficient to insure that the
minimal configuration is present.

(2) If we were to try to assume knowledge of the system wiring diagram
in the minimal configuration we would find that it would not be possible
to find a minimal configuration.

61

Note that base layer initialization runs on the same virtual

machine that the base layer runs on; quite probably this is the bare

hardware. It is due to the primitive nature of this virtual machine

that we have caused base layer initialization to be very small by taking

the core image approach.

5.4 Wrapup

In this chapter we have seen how the core image is taken by the

core image loader and loaded into core. We have seen what properties

the core image loader must have. It has been argued that the base layer

must always fit into core. Finally we have discussed the actions that

must be taken to actually initialize the core image to produce an

operable base layer.

62

Chapter Six

File System Initialization

In the last two chapters we have described how to produce an

initialized, running base layer. This chapter will discuss the manner

in which the next layer in the system, the file system layer, can be

initialized. Particular attention is given to storage system devices

and the root of the hierarchial file system.

6.1 Dynamic Reconfiguration

After the base layer is loaded and running normally it will think

that it is running on the minimal configuration. Any hardware beyond

that in the minimal configuration will not be in use. Various software

tables may be smaller than that desired by the installation. The

software parameters may not be set in the way the installation desires.

It is thus necessary for the system to change itself to conform to the

actual configuration. This process of changing from one configuration

to another is known as reconfiguration; it is dynamic reconfiguration

since it occurs while the system is running.

63

—"—

For our purposes, we need only look at "ADD" type reconfigurations;

that is, we always add a piece of hardware (never delete) or grow a

table (never shrink it). Our reconfigurations take this form due to our

assumption of a minimal configuration. Since we start at the minimal

configuration we can only need, by definition, to add hardware or grow

tables in order to get to the actual configuration. This is fortunate

since, as Schell points out in his thesis, this sort of "DELETE" type

reconfiguration tends to be harder to implement then "ADD" type

reconfigurations due to the necessity of breaking bindings in the

"DELETE" case.

6.2 Reconfiguration

In this section we briefly list the kinds of reconfigurations that

we will need. Reconfigurations fall into two basic categories -

hardware and software. It should be noted that some hardware

reconfigurations cause software reconfigurations as a side-effect (for

instance, adding a memory may cause the core map to grow).

There are a relatively small number of needed hardware

reconfigurations. We need the ability to add the second (and

subsequent) processor in a configuration. We also need the ability to

add additional boxes of memory if they are available. The ability to

add individual pages of a memory will also be needed in order to use any

64

pages that are part of a memory that the core image is loaded into but

which are not actually part of the core image. Input-output

multiplexors (IOM's) (1) will have to be added in order that the system

can control I/O devices. It will be necessary to add I/O devices so

that the system can communicate with the outside world.

A. special case of an I/O device is a storage system device. These

are storage media, such as disks, that contain the file system. The

addition of such devices is really a two step process. First the I/O

device itself must be added. This is a base layer reconfiguration. The

effect of this is to open the communication path between the operating

system and the I/O device. The file system must then verify that the

contents of the device conform to file system standards. In particular,

a previous crash may have left the volume in an inconsistent state,

necessitating a salvage to get it in a consistent state, (for more

information see, for instance, [Stern]).

Software reconfigurations fall into two basic categories. First it

is necessary to be able to set the various software parameters to the

values desired by the installation. In particular, debugging options

must be chosen, metering turned on (or off) and tuning parameters set.

The second category of software reconfigurations needed are table

expansions. It is necessary to expand the initial, minimal tables

(1) An IOM is the programmable controller of I/O devices; i.e. it
executes channel programs. Other names for this device might be I/O
controller or channel.

65

created at system generation time to the size needed, or desired, by the

installation. In particular it will be necessary to expand, at a

minimum, the active segment table, active process table, core map,

paging device map and physical volume table. (1)

The reconfigurations mentioned above, all of which are of the "ADD"

type, are representative of the reconfigurations needed by this approach

to system initialization. Here we have just listed these needed

reconfigurations; in the next section we will see how the file system

initializer uses them and in the next chapter we will consider some of

the issues surrounding the actual implementation of them.

6.3 File System Initialization

File system initialization is basically a six step process. When

complete the file system layer of the system will be running and

initialization can proceed to initialize higher layers of the system.

All of file system initialization runs on the virtual machine provided

by the now running base layer of the system in order to avoid the

problems we saw in chapter two.

(1) The physical volume table has an entry in it for each disk pack in
the system.

66

At the time file system initialization gets control it sees a

hardware configuration consisting of one processor and some memory. The

configuration contains no I/O devices and, in particular, does not

contain the I/O device that contains the bootload medium that, in turn,

contains the remainder of file system initialization as well as the file

system layer itself.

The first task of file system initialization is to gain access to

the bootload medium. To do so a dynamic reconfiguration of the base

layer is invoked to add the IOM that has the bootload I/O device on it.

Next the base layer is invoked to add the bootload I/O device to the

system. The effect of these is to open a physical communication path

between the bootload medium and the operating system. These actions

were necessary because knowledge of the bootload I/O device was not

assumed as part of the minimal configuration. Also note that the core

image loader did have this knowledge and, quite probably, passed this

knowledge along to the base layer initializer. Up to now, however, this

knowledge has neither been used or needed.

The next step is to acquire an initial secondary memory paging

area. Up to this point page control (which provides the paged virtual

memory), although operative, has not been very useful since it had no

place to which to move pages when evicting them from core. In this

state the system has been very memory constrained. By acquiring a

paging area the system, will no longer be memory constrained. The

acquisition of a secondary memory paging area is necessary since the

67

file system layer is large and will not, in general, be able to fit in

core all at once.

At this point it is necessary to read the rest of the file system

initialization routines as well as the file system layer routines into

memory. (1) The necessity of getting the file system routines is clear;

however, the need for additional file system initialization routines may

not be obvious. Recall that the first part of the file system

initializer must be loaded as part of the core image. Due to the desire

to limit the size of the core image we are forced to keep the initial

part of the file system initializer small. For this reason the initial

part of the file system initializer only performs the above tasks. This

second part of the file system initializer performs the remainder of

file system initialization, summarized below.

The next step in file system initialization is to set up any

databases needed by the file system. Since we are dealing with a rooted

hierarchy it is necessary to find the root of the file system and verify

its contents. Finding the root may involve invoking base layer dynamic

reconfigurations to add an IOM or an I/O device. Finally it may be

necessary to verify the contents of all, or part of, the rest of the

hierarchy. At this point the file system layer is initialized.

(1) Recall that we placed the file system routines on the bootload
medium for convenience. If the file system layer is elsewhere we look
for it now and add that device.

68

It may also be desirable, but not essential, to perform some other

reconfigurations during file system initialization. The operator's

console may be added in order to allow communication with the operator;

a paging device and more main memory might be added to improve

performance; if multiple processes are present, the addition of more

processors may improve performance. It is important to note that all of

these reconfigurations being used are the same reconfigurations used

while the whole system is up and running - they are not initialization

time special cases as they were in the incremental initialization

scheme.

In the next two sections we examine some of these aspects of file

system initialization more closely.

6.4 The Initial Paging Area

As we saw in the last section it is necessary for the file system

initialization routines to obtain a paging area. The normal paging area

is on a secondary storage device which is part of the file system.

However a system failure during a previous period of the system's

operation may have left the contents of a storage device in an

unreliable state. In particular we cannot be sure which records on the

device are currently in use meaning that we cannot write to the device

since valid data might be destroyed. Thus, the contents of the

secondary storage device must be validated before being used as a paging

area.
69

The validation of the contents of a storage device, however, is a

file system layer function, normally performed while the file system

layer is running. At file system initialization time we must perform

this validation in order to get the file system running thus creating a

problem. We cannot use the normal validation routines, since using them

would cause them to run in an environment other than our normal one, and

this, as we saw in chapter two, is not a good idea. Further, the

validator tends to be a large, complicated program and will not, in

general, fit into core all at once. Thus it must be paged in and out of

core by the virtual memory mechanism. But we do not currently have an

area to page to since that is what we are trying to get! This is a

dilemma that can be solved in one of two ways.

Since we cannot use the normal validation routines, we must have an

initialization time routine. We would like to keep this routine simple

so as to keep file system initialization simple. We are going to argue

that the initialization time validator need only validate that the

storage system device is formatted properly and need not actually verify

the contents.

If it is possible to page from the bootload medium we can just use

it since we know its contents are correct. This might be possible, for

instance, if the bootload medium is a disk pack.

70

Another, more general, solution is to reserve an area on secondary

storage for the use of the file system initializer. This area will only

contain information that is "recreated" each time the system is

initialized (i.e. the file system layer and initializer) and not

permanent data (i.e. user files). We can use this reserved paging area

as the initial paging area each time the system is initialized since it

will only contain the file system layer from the last initialization,

which is no longer needed.

If we reserve a paging area on a storage system device for the

initial paging area, the file system initialization verifier need only

confirm that that particular device seems to be laid out properly before

using it for the initial paging area. Checking the device format

probably involves checking the volume label for proper contents and

checking that the reserved area on the device does not overlap with the

areas reserved for permanent files and that the records in each area

actually exist. Basically these checks are to ensure that the reserved

paging area is safe to use (i.e. permanent data will not be destroyed).

These checks are very simple and doing them in a special initialization

routine is no great hardship.

71

6.5 The Root

The file system layer is implementing a hierarchial, rooted file

system. In such a file system there is one object, the root, that is

the ancestor of all other objects. In order to operate correctly the

file system layer must know where the root is and it must also believe

its contents. Thus, as part of initializing the file system layer, we

must also gain access to, and validate the contents of, the root.

This requirement creates a small problem. The root resides on a

storage system device that we will call the root physical volume (RPV).

In order to validate the root we must validate the contents of the RPV.

But validation of storage system devices is normally a file system

function, which is what we are trying to initialize, so we have a

problem. The solution is to regard validation of the RPV as a file

system initialization function. This approach, for instance, has been

taken in Multics. This solution is unpleasant since the RPV validator

probably duplicates some of the regular device validator. But if the

file system layer is unstructured, as we assumed, this is our only

solution.

If the file system layer has more structure than we have assumed

then it may be possible to use some of the normal verification machinery

to verify the RPV. This would be possible if the file system layer

72

actually consisted of two layers; an inner layer that knows about the

physical implementation of the file system and an outer layer that knows

the logical structure. If, in such a system, the inner layer has the

validator built into it, then it may be possible to get the inner layer

running without verifying the RPV and then use it to verify the RPV in

the normal way.

6.6 Wrapup

In this chapter we have examined what is needed to initialize the

file system layer. We have seen how the file system initializer needs

dynamic reconfigurations in order to perform its task. A list of needed

reconfigurations has also been presented. We have seen that the file

system initializer must be divided into two parts: one loaded as part of

the base layer core image and another, larger part, loaded by the first

part. Finally a discussion of the addition of storage system devices

was given as well as the validation of the root of the file system.

73

74

Chapter Seven

Dynamic Reconfiguration

In the previous chapters we have described a system initialization

scheme that maintains the simplicity of the core image approach to

initialization but, at the same time, remains as versatile as

incremental techniques. The scheme presented depended, in large

measure, upon the ability to perform a wide variety of dynamic

reconfigurations. In this chapter we will discuss some of the

engineering issues that one encounters in trying to implement these many

and varied reconfigurations. Our discussion will be on the

implementation of dynamic reconfigurations in the general context of a

running system and not just for initialization time reconfigurations.

We do this since at the time initialization invokes reconfigurations of

a lower layer, the lower layer is running normally and it is not

initialization time from his point of view. This is of interest because

most operating systems provide few, if any, dynamic reconfigurations.

It is not the purpose of this chapter to provide final answers to these

issues but rather to point out the important issues and indicate some

possible solutions.

75

7.1 Hardware Reconfigurations

Hardware reconfigurations fall into four categories - add a CPU,

add memory pages or memory modules, add an input-output multiplexor

(IOM) and add an I/O device. In his thesis, Schell discussed at great

length the problems of adding memory and CPU's so we will not discuss

them further here. We shall, instead, concentrate upon the addition of

IOMs and I/O devices.

7.1.1 IOM Addition

The addition of an IOM is a four step procedure the effect of which

is to open a communication path between the IOM and the operating system

and to allow the addition of I/O devices physically attached to the IOM.

The first step in IOM addition is to place the IOM in a known,

valid state. First the IOM is placed in an initialized state where it

is performing no activities and is waiting for commands from a

processor. In particular it should not be performing any I/O or

attempting to send interrupts. This is either done by having the

operator press an INITIALIZE button on the IOM (the approach taken in

most present day architectures towards initializing a module) or by

sending an INITIALIZE signal to it. Next we must ensure that the IOM is

76

using the correct physical address space - we must ensure that the

physical addresses that the IOM believes correspond to individual memory

modules are correct. Finally we must validate its mailbox (1) address.

The effect of these is that when communication between the IOM and

processors is begun the IOM will not inadvertently overwrite parts of

core with ongoing I/O and communications can proceed through a known

area in core.

Next we must clear any pending interrupts associated with this IOM.

(2) Since the operating system is not currently communicating with this

IOM it has masked out the occurrence of these interrupts. When we open

the communication path to the IOM we will be allowing interrupts on

these cells to occur. Any currently pending interrupts on these cells

will then cause spurious interrupts that the operating system may not

handle in a safe manner. So for safety's sake we now clear these

pending interrupts. The manner in which this is done is dependent upon

the available hardware features. Ideally the processor has an

instruction that allows the operating system to clear a pending

(1) The mailbox is an area in core used as the primary communication
means between the IOM and processors.

(2) Each IOM has one, or more, interrupt cells assigned to it on which
it generates interrupts to processors.

77

interrupt on some cell. If such an instruction is not available it is

then necessary to:

i. Set up an interrupt handler for these cells that ignores
interrupts on them.

ii. Set the interrupt mask so as to allow interrupts only on
these cells, saving the old interrupt mask.

iii. Wait a short time to allow any pending interrupts on
these cells to occur and ignore them when they occur (via
the handler set up in i.).

iv. Set the interrupt mask to the saved one.

At the conclusion of this sequence no interrupts will be pending on

these cells and we can safely proceed to the next step of adding the

IOM.

The next step is to allow interrupts to occur on the interrupt

cells associated with the IOM. This involves setting up the interrupt

handler for these interrupts, which is probably the IOM manager. (1) He

must be told that interrupts might be coming from this IOM, but that if

any are received they should be ignored since there are no I/O devices

on the IOM yet (as far as the operating system is concerned). Having

informed the IOM manager about this situation, the system's interrupt

masks are changed to allow interrupts from the new IOM.

The last step is to actually open the communication path between

the IOM and the rest of the system. First we initialize the IOM's

mailbox to some known state. Next we tell the memories to allow the IOM

(1) The routines that control the IOM: the manager of the IOM resource.

78

to access memory (up to now the IOM has been denied access since it was

not part of the configuration in use). With this the complete physical

communication path between processors, memory and the IOM is in

operation. Lastly we inform the IOM manager that the IOM is ready so

that he can use it fully. The IOM has been added.

This addition of an IOM was straightforward but it has one

important implication - interrupt masks must be protected objects. By

this we mean that it must be possible to verify that only valid

interrupt masks (1) are used by the system. This is necessary to avoid

problems before the third step above - allowing interrupts from the IOM

to occur. Prior to the addition of this IOM, interrupts on the cells

associated with it cannot be allowed, since the IOM manager, the normal

handler of IOM interrupts, does not know about this IOM. (2) This means

that all interrupt masks used by the system must be validated to only

allow interrupts on "safe" cells. After step three it is necessary that

those interrupt masks used allow interrupts from this IOM. This is so

the IOM can interrupt the processor when it needs to. In particular we

want to be sure that when the system wishes to allow IOM interrupts,

interrupts are allowed from the IOM being added.

(1) For a fixed configuration there is a collection of interrupt masks
that the system will use. At any instant in time in a situation where
the configuration is changing due to dynamic reconfigurations, we want
to be sure that the system is using interrupts masks corresponding to
the current configuration and not to a previous one.

(2) An alternative would be to direct these interrupts to a handler that
ignores them or to have the IOM manager ignore them since they come from
an unconfigured IOM.

79

Assume there are a fixed number of masks that the system uses.

There are two very similar ways to bring about this protection. First

we could have an interrupt mask manager. Each time it is desired to use

a different interrupt mask he is called to do it and told, "Change to

mask i". (1) He does this by finding, or constructing, interrupt mask i

and then causing it to be the interrupt mask in use. In this case to

allow interrupts from the new IOM we need only inform the interrupt mask

manager to open up the masks and he will do so. The other approach is

to have the collection of interrupt masks currently usable by the system

in one, fixed location. When it is desired to use a particular mask,

one picks up the mask and then begins to use it. This operation of

putting a new mask to use must be atomic so that the interrupt mask

cannot change between picking up and setting the mask. These two

methods are equivalent in that there is only one copy of any particular

mask in the system. The first method simply provides centralized

enforcement of masking conventions. Both methods achieve protection by

only allowing interrupt masks to be used in atomic masking actions and

only to be referred to by name elsewhere. In either method to perform

step three one need only change the few, fixed masks and then ask each

processor to remask (so as to ensure that they get the new masks).

(1) Where "i" is the name of the mask which one wants to use,

80

7.1.2 I/O Device Addition

The addition of an I/O device is simple once the IOM it is attached

to has been added. First the IOM manager must be informed that I/O is

now possible with this device. Second the manager of this particular

(kind of) device must be informed of the device's existence so that the

manager may update its local databases and, possibly, place the device

in some particular state. The only possible difficulty in doing this is

the updating of the device manager's databases as this may involve some

of the problems mentioned below.

7.2 Software Reconfiguration

In this section we discuss some of the problems that may arise in

performing software reconfigurations. We deal in general terms so as to

avoid implementation details and to make our comments as widely

applicable as possible. We deal with two types of software

reconfiguration - setting of parameters and growing of system tables

(databases).

81

7.2.1 Parameters

One class of dynamic reconfiguration is the setting of system wide

parameters, such as scheduling parameters, and switches, such as

metering on/off. Here we can give no guidelines across the whole

spectrum of possible parameter reconfigurations, but we will discuss the

two major kinds - metering and scheduling.

We can turn the metering of some function on or off as a

reconfiguration. Internally this is relatively simple, since when we

turn metering on we simply begin gathering statistics and when we turn

it off we simply stop gathering statistics. The real issue is how users

of the metering statistics being gathered are affected. This is a user

interface problem and questions must be answered such as:

If we turn off metering what do we do with the statistics we
have already gathered?

When we resume metering do we begin counting from where we
left off or do we start from scratch?

Do we need to inform the users of the meters that they have
been turned on (off)?

In answering these questions one will formulate the high level mechanism

of turning metering on/off.

82

Changing system wide scheduling parameters has its major effect

internally; the effect on users is simply a change in performance,

which is the intent. When we change system wide scheduling parameters

the basis upon which we scheduled all current processes is invalid. We

could, at this point, reschedule all processes based upon the new

criterion. This is a workable solution but it may not scale well for if

the number of processes is large or if the cost of rescheduling a

process is high, for then the cost of rescheduling all processes may be

prohibitive. An alternative is to apply the new scheduling criterion to

individual processes as they come up for rescheduling. In taking this

approach care must be taken to ensure that no processes are indefinitely

kept in a state where they will not be scheduled to run.

7.2.2 Table Expansion

We have seen a number of cases where it is desirable to be able to

expand a database dynamically - the core map, the active process table

and the active segment table. In this section we discuss a number of

issues related to such expansions.

In some cases it may be possible to avoid ever having to expand a

table. Instead, at system generation time, it is allocated at its

maximum possible size. Now when we need a new entry in this table it is

already available and we can just begin to use it. Initial allocation

at maximum size is only practical for tables of small maximum size,

83

since allocation at maximum size could tie up excessive memory

resources. For instance on Multics the number of memory modules is

constrained by the hardware to be always less than or equal to eight so

that the table describing memory modules can be initially allocated with

eight entries. On the other hand the core map can have thousands of

entries and thus be very large and so cannot be initially allocated at

maximum size.

7.2.2.1 Supervisor Segment Growth

In attempting to grow a table it is, generally, necessary to grow

the segment that the table resides in. We now consider some of the

issues associated with growing these supervisor segments. The following

discussion will consider such segment growth given that we are trying to

grow a table that is in the segment.

These tables have two properties of major interest. First, they

are supervisor segments and a process cannot lose its ability to address

them. Second, these tables are generally core resident so that the

space they use must be kept small (since memory is a scarce resource).

The first question is whether the table should reside in an unpaged

segment (i.e. an N-word segment is allocated N contiguous words of

memory) or a paged segment (i.e. it is referenced through a page table).

An unpaged segment has the advantage that it only takes as much memory

84

as is actually needed where a paged segment takes an integral number of

pages (potentially wasting space on the last page). The effect is that

the paged segment experiences space fragmentation within it. The

unpaged segment may cause fragmentation of the physically available

memory if, when we grow it, we must move it and thus leave a hole in

In

Use

In

Use

Free
A« Unpaged segment

to be moved.

Before Move

In F In
r A Free |

| Use e
e

Use

After Move

Figure 7.1

memory behind it (see figure 7.1). To make efficient use of core using

unpaged segments the system must be willing to reclaim these holes. In

a paged virtual memory system, such as Multics, such a reclaimer is

unlikely to exist and to build one for this special purpose seems to be

a waste of effort. For this reason keeping tables In unpaged segments

is, in general, less desirable than maintaining them in paged segments.

The one exception is when the maximum table size is small and known,

85

where initially allocating an unpaged segment of the maximally needed

size is reasonable. In short, any table that might be grown should be

kept in a paged segment.

Another problem is that there are many processes referencing these

tables and none can lose addressability since they are in supervisor

segments. This means that care must be taken as we grow the segment.

If we grow an unpaged segment, we must move the data to the new location

and update all descriptor segments that describe the segment; this must

be an atomic operation with respect to references to this segment in all

processes. This may be very difficult to do since the number of

processes may be large and the database may require frequent accessing.

This is another argument against using unpaged segments for growable

tables.

For paged segments this is not as serious a problem. To grow a

segment we need only allocate a new page, fill in the segment's page

table to reflect the new page then go around and change all SDW's to

reflect the new length. Only now, after all this is done, need we lock

the database to add the new entries. This differs from the unpaged case

where we had to lock the database while we were changing all SDW's (and

this is the time consuming part) in order to prevent access to the

table.

86

7.2.2.2 Multiple Tables in a Segment

The next set of problems we will discuss occur as a result of

having more than one growable table in a segment. This packing

technique is used in Multics, for instance, to reduce breakage in

supervisor segments and reduce the number of segments in the supervisor,

Beginning of
Segment

Figure 7.2

For instance in figure 7.2 suppose that A and B represent tables that

both can be grown.

87

If we wish to grow B we simply grow the segment, if needed, and

allocate the new entries for B. No problems occur.

Now consider the case of growing A. In order to grow A it is

necessary to make room for a larger A within this segment. This can be

done in one of two ways: move A so it follows B in the segment or move B

towards the end of the segment and grow A in place. If we move A to the

Free

Free
Beginning of

Segment

Figure 7.3

end of the segment we then have the situation in figure 7.3 The

disadvantage of this scheme is that we create "holes" of unused space in

the segment as we reconfigure. These holes may represent wasted memory

resources and so are undesirable. In any event we must keep track of

88

them so that we may use them later if needed. The alternative, moving

B, does not create holes but it does have the effect that a

reconfiguration of A causes B to be moved. If an undetected error

should occur while moving B we could have the unpleasant situation where

a reconfiguration of A has caused a function associated with B to fail.

In both cases above we have had to move a table. We now must

consider some of the factors that can make the moving of a table

difficult.

The first problem is one of locking. When we move a table we run

into the problem of someone updating the table during the move. (This

problem is analogous to that noted by Schell in his thesis while copying

pages out of a memory that is being deleted). To prevent someone from

performing such modification we must be able to set a lock to prevent

access to the table. If access to the table is controlled by a global

lock we need only set it, move the table and unlock. On the other hand

if some system of finer locks is used to control access to the table, we

will need some means of getting possession of all of these locks. One

way of doing this is by having a global lock that, when set, prevents

the setting of any of the finer locks. To move the table we then set

the global lock, wait for any finer locks to be unlocked, (1) move the

table and then release the global lock. In either of these cases we can

move the table with the assurance that no modifications will take place

(1) We are assuming that no lock will ever be set for an indefinite
time.

89

during the move since all access is locked out. It may also be

necessary to lock out reads of the table during the move so that after

we make the copy the actual table, no one will still be accessing the

old table (and hence out-of-date information).

Another problem in moving a table concerns saved pointers to a

table. When we move the table we must be able to change all pointers to

(or into) the table to reflect its new location. Failure to do so will

leave some pointer pointing to the old table location which, now, does

not have valid table data. This can be solved with a combination of two

techniques. First there should be one pointer to the base of the table

kept in a fixed, known location. All accesses to the table must be

through that pointer. Also that pointer must be protected by the global

table lock (1) so that when the table is moved only correct pointers to

the table are used. Second, pointers into the table must either be

offsets relative to the base of the table or they must be indexes of

table entries. In either case a pointer to the actual data in the table

can only be generated by use of the one pointer to the table base and

this relative offset.

Another problem limiting the ability to move tables is the presence

of immovable data. In the last paragraph we described how virtual

memory pointers could make a table hard to move. Tables can also be

(1) If a finer system of locks is being used, the setting of any finer
locks should prevent modification of this pointer.

90

hard to move due to absolute pointers (1) to the table. Examples

include page tables (used by the hardware memory mapping algorithms) and

I/O databases that the IOM, in most present day systems, has absolute

pointers to. Note that almost all such pointers are for the use of the

hardware. The number of such pointers can be rather large and may be

difficult to update. For this reason databases pointed to by absolute

pointers are probably immovable unless some major redesign of the

hardware is undertaken to minimize the number of absolute addresses in

the system and make such addresses easily modified. Such a design is,

however, beyond the scope of this thesis and so we must consider tables

pointed to by absolute pointers to be immovable.

The issues above have been related to moving one of several tables

in a segment in response to a request to grow one of them. This problem

can be avoided entirely if all of the tables in the segment are

maintained solely by linked lists. In this case to grow a table we need

only get some space at the current free end of the segment, create new

entries there and link them into the relevant table. There is no need

to move any current data.

The best answer to all of these questions regarding moving tables

is to never have to move them. We can easily arrange this by having at

most one growable table per segment.

(1) An absolute pointer is one that points to a particular real, not
virtual, address.

91

7.3 Multics

As part of the research for this thesis Multics was examined to see

how difficult it would be to add additional dynamic reconfigurations.

To this end we investigated the dynamic addition of IOM's, and the

reconfiguration of the active segment table (AST), which holds page

tables for active segments, was designed and successfully implemented.

This second facility allows one to dynamically create AST entries.

The ability to dynamically add an IOM was investigated as part of

this thesis. This investigation resulted in the paper design presented

earlier in this chapter. Two items of interest resulted from this

investigation. First the actual addition of the IOM is not really very

hard. Some minor problems, and in particular the protection of

interrupt masks, must be overcome but no major ones. Second, it was

found that the actual reconfiguration code could be taken, in large

measure, from the current code that initializes the IOM related

databases. This was a surprising result which, if true more generally,

would make retrofitting dynamic reconfigurations onto Multics fairly

easy.

In developing the ability to dynamically reconfigure the AST no

major problems were encountered but two minor problems, not previously

considered in this chapter, were encountered. First was the fact that

92

that the data in the table, the page tables, was directly referenced by

the hardware. This meant that care had to be taken to ensure that the

page tables were laid out properly. In particular, the page tables must

be contiguous in physical memory (as opposed to simply being contiguous

within the segment) so that the hardware memory mapping algorithm works

properly. This was a problem since the segment containing the AST was

made a paged segment as part of implementing this facility and, as such,

page i+1 of the segment might not be immediately after page i in

physical memory. In particular a page table that is split over a

virtual page boundary must still be contiguous in physical memory. The

solution was simply to make the reconfiguration program aware of the

physical addresses of the pages in the segment and act accordingly in

creating new AST entries.

The second problem was software conversion between physical and

virtual addresses. It turns out that frequently the Multics supervisor

needs to translate the virtual address of some object to its physical

address and also from a physical address to the corresponding virtual

address. This is needed, for instance, to find a page table in virtual

memory given its physical address (this occurs while handling page

faults) and to find its physical address given its virtual address (this

occurs when trying to fill in a segment descriptor word while processing

a segment fault). In the current version of Multics this translation is

very easy, a simple addition or subtraction involving the absolute

address of the segment and an offset within it, since the segment

93

containing the AST is known to be contiguous in physical memory. When

the reconfiguration of the AST was implemented it was no longer possible

to guarantee contiguity of the AST in physical memory since the segment

containing the AST was made a paged segment. The solution was to modify

this translation code to take into account the lack of contiguity in the

segment.

The actual details of how these problems were solved are not

important. The important thing is that in implementing dynamic

reconfigurations one is going to encounter minor problems that will have

to be solved. In examining the various kinds of reconfigurations needed

on Multics, and how to implement them, no fundamental problems were

encountered. We conjecture that no fundamental problems would be

encountered in trying to provide dynamic reconfigurations on most other

systems.

94

7.4 Wrapup

In this chapter we have discussed some of the issues associated

with dynamic reconfiguration. The addition of processors and memories

was covered in Schell's thesis. We covered the addition of IOM's in

detail. The important result was that interrupt masks must become

protected objects. Addition of I/O devices was then seen to be trivial

once the problem of IOM addition was solved. Software reconfigurations

were then discussed in terms of parameter changing and table expansion.

The discussion of parameter changing concentrated on two cases, turning

metering on/off and changing scheduling parameters. A number of issues

were discussed with regards to table expansion. The conclusion here is

that, to best facilitate table expansion, in general there should be at

most one variable-size table in a segment and that segment should be a

paged segment (as opposed to an unpaged segment).

95

96

Chapter Eight

Conclusion

In this thesis we have explored system initialization, the problem

of bringing an operating system up on a particular machine. The major

result of this thesis is a method of initializing systems that is both

simple and easy to understand and which, at the same time, has the

property of being versatile in the face of configuration changes. Most

current systems employ a method that is very simple, a core image

approach, but which cannot easily handle configuration changes.

Multics, on the other hand, uses a method that is versatile but which

also is rather ad-hoc and difficult to understand. The method presented

in this thesis maintains the simplicity of the core image approach and

the versatility of the Multics method.

97

8.1 Results

We have considered initialization in the context of a layered

system. In such a system, initialization proceeds upward, layer by

layer, first getting layer i initialized and running and then running

upon it to get layer i+1 initialized; eventually the whole system is

initialized. In this layer by layer approach the hardest part is

initializing the base layer of the system.

The thesis presents a method of initializing the base layer which

essentially reduces its initialization to the loading of a core image of

the base layer. This is done by hypothesizing the existence of a

minimal configuration - a configuration that is a subset of all possible

viable configurations. Such a configuration does seem to exist for the

centralized architectures typical of present day general purpose

computer systems. We now assume that the system will be running on the

minimal configuration, allowing us to create, at system generation time,

a core image of the base layer as it should appear in core. We can only

create this core image once we have assumed some configuration. The

minimal configuration is a useful one to choose since a system that can

run on the minimal configuration can run on any viable configuration.

98

The minimal configuration consists of one processor and some

memory. We assume the existence of both a certain amount of memory as

well as the existence of physical addresses in memory.

When it is desired to actually get the system up and running one

must first get the base layer running. Since we have created a core

image of it this simply involves loading the core image into memory,

validating the correctness of the load operation, and then giving the

base layer control. At this point the base layer must ascertain the

system wiring diagram corresponding to the minimal hardware

configuration. This is necessary since we did not assume this knowledge

as part of the minimal configuration for to do so would reduce the

number of configurations the base layer could run on (i.e. the assumed

configuration would no longer be minimal). After ascertaining this

knowledge the base layer will be running after having only performed a

load operation and a small amount of processing.

Once the base layer is operable, control is given to the file

system initializer. It is here that the second key concept, dynamic

reconfiguration, comes into play. In the process of initializing the

second layer of the system, the file system initializer will invoke

dynamic reconfigurations of the base layer to cause it to run on the

configuration actually present. Note that it is only the availability

of these dynamic configurations that makes the assumption of a minimal

configuration a workable one, as otherwise the system would always run

on the minimal configuration.

99

File system initialization consists of invoking dynamic

reconfigurations of the base layer to gain access to the bootload

medium, an initial paging area and the secondary memory that the file

system resides on. Access is needed to the bootload medium so that the

components of the file system layer may be be obtained since they are,

by convention, on the bootload medium. An initial paging area is needed

since the file system layer is, presumably, too large to fit in core all

at once so that an operable virtual memory mechanism is needed in order

to get it running. Note that up to this point the paging mechanism is

working but is not too useful since it does not have any secondary

storage to use as a paging pool. Before telling page control to use an

area, the file system initializer must verify that the paging area can

be used. This consideration, plus the possibility of a previous system

failure, led us to conclude that a separate area on secondary storage

must be reserved for use as the initial paging pool. The file system

initializer must gain access to the secondary storage that the file

system is on so as to perform validation of its contents since a

previous crash may have left the file system in an inconsistent state.

The remaining tasks of file system initialization are

straightforward. The programs that comprise the file system layer must

be loaded into the system's virtual memory and pre-linked. Also the

databases used by the file system layer must be set up. This completes

file system initialization and control is passed outward to the next

layer in the system.

100

We concluded the thesis with a discussion of implementing dynamic

reconfigurations. The addition of an input-output multiplexor and I/O

devices were discussed as hardware reconfigurations. The changing of

software parameters was briefly discussed. The expansion of software

tables was covered in detail. None of these needed dynamic

reconfigurations was found to present major, or fundamental,

implementation problems.

8.2 Tradeoffs

In considering the approach proposed in this thesis the tradeoff

between initialization time complexity and system run time complexity

must be appreciated.

Fundamentally, the scheme proposed here depends upon the existence

of many dynamic reconfigurations. The introduction of these dynamic

reconfigurations to a system that does not already have them increases,

even if only slightly, the complexity of the system. If they are not

otherwise needed this is a negative factor. On the other hand the

existence of these dynamic reconfigurations increases the flexibility of

the system and reduces initialization complexity a great deal. The

system designer must weigh these two factors and decide at which end, or

where in-between, he wants his system to lie. In helping the designer

make this decision we offer our opinion based upon our experience with

Multics. The presence of the dynamic reconfigurations increases system

101

flexibility a great deal and reduces initialization complexity a great

deal, all at a rather modest increase in system complexity. We also

feel that the system as a whole, including initialization, will be more

easily certified as correct with these dynamic reconfigurations than

without because of the simplicity gained at initialization time.

8.3 Further Research

The results of this thesis suggest five areas where further

investigation is warranted. Four are concerned with dynamic

reconfigurations. First an investigation of the tradeoffs involved in

providing dynamic reconfigurations should be undertaken. In this thesis

we have seen how allowing system segments to be growable can result in

space wastage. Is this inherent? Can other approaches eliminate it?

Do other, unexamined, dynamic reconfigurations incur space/time wastage?

Second is the issue of DELETE type reconfigurations. In this thesis we

found need for many ADD type reconfigurations. In a computer utility

one would also want the complementary DELETE type reconfigurations. An

investigation of the engineering issues involved in providing these is

needed. Underlying the whole area of dynamic reconfiguration is a third

area of possible future research - hardware. In his thesis, Schell

found that the dynamic reconfiguration of processors and memory was

facilitated by certain features of the underlying hardware. Could

hardware features be found to facilitate the dynamic reconfigurations

102

mentioned in this thesis? For the complementary DELETE type

reconfigurations? The fourth area of future research concerns the

formal specification of dynamically reconfigurable systems. Current

papers on formal system specification, such as [SRI], do not discuss

dynamic reconfigurations. Examining such a design, it is not obvious,

to this writer, how to specify dynamic reconfigurations. Research into

the formal specification of dynamic reconfigurations is clearly needed.

The fifth, and last, area where future research might be directed is

towards the general use of contiguous physical memory allocation within

the supervisor. Such allocation might be efficient for things such as

IOM mailboxes and I/O buffers. For general use in the system (i.e. for

user programs and data) the problems of periodic compaction of memory

may be difficult to deal with efficiently. In the limited context of

the supervisor, where the situation is fairly static and the allocations

come in only a few sizes, is the problem more manageable? Can

contiguous allocation be put to use in an efficient manner?

103

BIBLIOGRAPHY

[CDC] Scope 2.1 Installation Handbook, Control Data Corporation, 1974.

[Dijkstra] Dijkstra, E.W., "The Structure of the 'THE' Multiprogramming
System", CACM 11, 5 (May 1968), pp 341-346.

[Flores] Flores, Ivan, Operating System for Multiprogramming with a
Variable Number of Tasks, Allyn and Bacon, Inc., Boston, 1973.

[GH] Ward, M.R., "The GM Multiple Console Time Sharing System. A Simple
Approach to Operating System Generation and Initialization",
SIGOPS 10, 1 (January 1976), pp. 61-70.

[HISIa] System Initialization Program Logic Manual, Honeywell
Information Systems Inc., Order number AN70, 1975.

[HISIb] Multics Processor Manual, Honeywell information Systems Inc.,
Order number AL39, 1976.

[Huber] Huber, A., "A Multiprocess Design of a Paging System", M.I.T.
Laboratory for Computer Science Technical Report 171, 1977.

[IBM] Catalog of Programs for IBM System/360, Models 25 and above, IBM
Corp., Order number GC20-1619-8, 1970.

[MAC] "Introduction to Multics", M.I.T. Project MAC Technical Report
123, 1973.

[MSPM] Multics System Programmers' Manual, M.I.T. Project MAC, 1967.

[Reed] Reed, David P., "Processor Multiplexing in a Layered Operating
System", M.I.T. Laboratory for Computer Science Technical
Report 164, 1976.

104

[Schell] Schell, Roger R., "Dynamic Reconfiguration in a Modular
Computer System", M.I.T. Project MAC Technical Report 86,
1971.

[SRI] Neumann, P.G., et al., "A Provably Secure Operating System", Final
Report of SRI Project 2581, Stanford Research Institute, Menlo
Park, Calif., 1975.

[Stern] Stern, Jerry A., "Backup and Recovery of On-Line Information in
a Computer Utility", M.I.T. Project MAC Technical Report 116,
1974.

105

.

