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Chapter One 

Introduction 

Almost from the first appearance of the stored program digital 

computer there have been operating systems for these machines.  The 

problem has always existed as to how to get an operating system, which 

has been designed for a class of machines, up and running upon a 

particular member of that class.  This is a repetitive problem that 

occurs each and every time that it is desired to bring the system up 

after it has been down for a while.  This is the problem of system 

initialization and is the subject of this thesis. 

System initialization has been, for the most part, a neglected area 

of systems development.  The techniques used by most current operating 

systems are either ad-hoc, difficult to understand and show correct or 

they lack versatility in the face of changes in the collection of 

hardware the system will be running upon.  This thesis will attempt to 

develop a framework for system initialization that maintains this 

versatility but still is relatively easy to understand and show correct. 



1.1 Initialization in General 

To start we provide a general characterization of system 

initialization.  To do so, we first make a few definitions. 

We define the hardware configuration to be the collection of 

hardware modules present in an installation as well as their 

interconnections (the system "wiring diagram").  For instance processors 

and memories are part of the hardware configuration. 

The software configuration consists of the values of various system 

parameters and the size of the system tables.  For instance the maximum 

number of processes allowed on the system at one time is part of the 

software configuration. 

We define the configuration of a system to be the union of the 

hardware and software configurations. 

With these definitions in mind we can make the following general 

observation about system initialization.  Most operating systems are 

capable of running on a number of different configurations.  The goal of 

initialization is to produce a version of the operating system tailored 

to a particular configuration and running upon that configuration.  Most 

actions of initialization are present for exactly this reason.  This 



view is supported by examination of many current operating systems 

including Honeywell's Multics, IBM's OS-360 and Control Data's SCOPE 

operating systems [CDC, Flores, HISIa]. 

The actual process of getting an operating system running on a 

collection of hardware has the following form.  One (or potentially 

more) I/O device contains a storage medium, called the bootload medium, 

(1) that contains the programs and data necessary to bring up the 

operating system.  In some system dependent way one or more processors 

begin running and use the bootload medium to get the operating system 

running on the particular configuration present. 

We can identify three important times with system initialization. 

System generation time is the time when the bootload medium is generated 

(created).  This generally occurs during a previous period of the 

system's operation.  Initialization time is the period of time during 

which the operating system is being loaded onto the machine and 

initialized but before it is running normally.  The time after the 

system is initialized, when it is running normally, is called run time. 

This thesis will attempt to produce a simple and easy to understand 

overall system initialization mechanism.  It is a fundamental premise of 

this thesis that an activity performed at system generation time or at 

run time is inherently simpler than the same action performed at 

(1) For instance the I/O device might be a disk drive and the bootload 
medium a disk pack. 



initialization time.  We shall use this premise to produce our 

itialization mechanism. in 

2 The Need for Versatility 

In choosing a way of achieving system initialization we want a 

method that is versatile;  that is, it has the property that there is 

one version of the bootload medium that can be used on any configuration 

to bring up the operating system.  We will call an initialization 

mechanism that has this property configuration independent.  For 

instance, if the system is initialized using magnetic tape as the 

bootload medium, we would like to be able to have one magnetic tape that 

can be used on any configuration to initialize the system.  This 

versatility is very desirable, as the following example will show. 

Consider a computer utility with a hardware configuration 

consisting of one processor and two boxes of memory and that we have a 

tape (1) specifically intended to bring up the operating system on this 

configuration.  Now suppose that, as the system is running, one of the 

memories fails causing the system to shutdown (or, more likely, 

immediately "crash"). 

(1) For convenience we assume that the system is initialized using a 
magnetic tape.  In principal any suitable type of I/O medium (such as 
disks) can be used as the bootload medium. 

10 



We will want to bring the system up as soon as possible so as to 

provide maximum service to the users of the computer utility.  If it 

will take a long time, say days, to repair the memory, we are now faced 

with the problem of bringing the system up on this new, smaller, 

configuration of one processor and one memory.  Our original tape cannot 

be directly used since the configuration has changed and is no longer 

the same as the one that the original tape was generated for.  There 

seem to be four ways of getting our system up and running at this point. 

First we might have previously generated a tape for this new 

configuration.  If so we are in good shape and can just use that tape. 

This, however, is not in general likely since we experience 

combinatorial explosion in the number of tapes as the number of 

variables in the configuration increases.  For instance, with two 

variables, each taking on two values, four different tapes are required 

to handle all possible configurations but five variables each taking on 

five values requires 3125 (=5*5*5*5*5) tapes.  Thus, for all but the 

smallest systems, this technique will fail. 

A second approach would be to go to the vendor of the system and 

ask him to generate, on his system, a tape for this new configuration. 

This is undesirable for two reasons.  First it makes the availability of 

our computer utility dependent, in this case, on the availability of 

someone else's system (the vendor's).  Second there might be a delay of 

hours before the vendor can supply the new tape.  In either case we 

11 
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would experience a substantial delay in getting the system back up and 

running, violating a prime goal, availability, of a computer utility. 

A third possibility is to use the original tape and then "patch" 

the system to reflect the new configuration.  This is a poor way to 

proceed since the chance of an error while patching is very, very high. 

At best, this will result in a system that will not run at all;  at 

worst the system will run but will operate incorrectly in an unnoticed 

way.  Such undetected, incorrect operation is intolerable so we must 

also reject this approach. 

The fourth possibility is a "starter" system.  This is a separate 

operating system (possibly similar to the operating system that we wish 

to initialize) with the property that it can come up on any viable (1) 

hardware configuration.  This starter system is then used to generate a 

tape for this new configuration.  This approach has two basic drawbacks. 

First the generation process may be a very long one.  The resultant time 

delay may be intolerable.  The second is that we may now have two 

operating systems to maintain, understand and show correct.  We would 

ike to avoid this added burden if at all possible. 

(1) A viable configuration is a configuration on which the system can 
run. For instance a configuration consisting of no processors is not 
viable. 

12 



We have seen four ways of getting our failed system up and running 

again.  None of these schemes is completely satisfactory so we come to 

the conclusion that we must have an initialization scheme that can come 

up on any viable configuration if we are to achieve the goal of 

availability of our system.  This thesis proposes an initialization 

mechanism that has this property of configuration independence. 

The question naturally arises as to how present day operating 

systems address the issue of versatility in their initialization scheme. 

The answer, unfortunately, is that many do not.  In the face of changes 

in the configuration many systems require a new bootload medium to be 

created.  As this tends to be a long process this is undesirable for a 

computer utility.  Some systems have other drawbacks beyond this.  For 

instance IBM's OS-360 [Flores, IBMa] operating systems take a starter 

system approach where the starter system is just a version of OS made 

for a particular configuration.  Unfortunately there exist 

configurations upon which one can run OS but which cannot run the 

starter system!  On the other hand, Honeywell's Multics system has the 

property that one bootload medium can be used to initialize the system 

on any viable configuration (i.e. it meets our requirement of 

versatility).  However, the method used, as we shall see in chapter two, 

is rather complicated and difficult to understand.  In order to achieve 

this versatility a great deal of work is done at initialization time. 

This, however, is a time that, as we shall argue in the next chapter, is 

an undesirable one at which to perform complex operations.  The goal of 

13 



this thesis is to present a method for initialization which has the 

versatility of the Multics approach, but avoids its complexity. 

1 .3 Related Work 

There is very little published material on system initialization. 

Ih [GM] a discussion of the initialization of the General Motors 

Timesharing System is presented.  Initialization of IBM's OS-360 

operating systems is discussed very briefly in [IBMa] and [Flores]. 

Tnese provide a top level view of the goals and methods of achieving 

system initialization for these systems.  The original design and 

motivation of Multics initialization is contained in [MSPM] in both a 

top level form and also in very great detail on a module by module 

basis.  The original design is very close to the present implementation 

trhich is described in great detail in [HONa] .  Unfortunately none of 

these documents and other documents this author has been able to find 

address system initialization in a somewhat higher, system independent, 

manner.  Such a higher level view is one of the goals of this thesis. 

This thesis builds upon the work done by Schell [Schell] in the 

«irea of dynamic reconfiguration.  He discussed dynamic reconfiguration 

3f processors and memory.  In this thesis we will add to this work by 

including some aspects of the dynamic reconfiguration of I/O devices and 

Various software reconfigurations. 

14 



The idea of layering of systems is an important one in this thesis. 

The concept of layering has appeared in numerous papers including 

[Dijkstra] and [SRI].  As we shall see in the next chapter this thesis 

only uses a very weak form of layering, which only requires that the 

bottom layer be always core resident;  other forms of structuring a 

system, such as those in [SRI] , [Reed] and [Huber], are equally amenable 

to the techniques presented in this thesis. 

1.4 Thesis Outline: Preview of Approach 

The ideas presented in this thesis have been inspired by the 

Multics time sharing system.  As such they are directly applicable to 

that system.  This does not mean, however, that the ideas cannot be 

applied elsewhere.  In fact the method presented in this thesis should 

be applicable to any general purpose operating system that is based on a 

central processor - central memory hardware and that exhibits the 

minimal structure presented in chapter two.  Its applicability to other 

architectures is, however, an open question. 

In chapter two we present a model of a computer system.  It is a 

top level view of the important aspects, from the point of view of this 

thesis, of the Multics system (hardware and software).  We also look at 

the way in which Multics is initialized - an incremental mechanism. 

Using this knowledge we discuss the ways in which the scheme leads to 

difficulties in understanding Multics initialization. 

15 



Chapter three Is a top level Look at the Initialization scheme 

proposed in this thesis.  Initialization of a layered system is 

considered.  We show that the hardest part of initializing a layered 

system is initializing the base layer.  The proposed scheme to 

initialize a system attempts to take the extremely simple to understand 

core image approach to system initialization (in which an image of the 

system is just loaded into core to cause the system to run) and modify 

it so as to have a way of initializing the system that maintains the 

versatility which has been seen to be desirable. 

The technique described achieves both simplicity and configuration 

independence by the combination of two concepts:  a minimal 

configuration and dynamic reconfiguration.  In reading chapters three 

through six the reader should keep in mind that the uniqueness of the 

approach presented in this thesis is in the combination of these two 

ideas to keep the simplicity of a core image approach and, at the same 

time, maintain configuration independence in our initialization scheme. 

Chapter four describes the system generation procedure.  It is here 

that the idea of a minimal configuration is explored in greater depth. 

By assuming the existence of a minimal configuration we see that many 

current initialization activities become actions performable at system 

generation time, with the result that we can create a core image of the 

base layer of the system. 

16 



Chapter five discusses the activities necessary to take the core 

image of the base layer of the system, load it into core and cause the 

base layer of the system to run.  We also discuss the properties that 

the core image loader must have and problems associated with the size of 

the core image. 

In chapter six we discuss how to initialize the second layer in the 

two layer system modeled in chapter two.  It is here that the idea of 

dynamic reconfiguration is used extensively.  Dynamic reconfigurations 

of the base layer are invoked as part of initializing the second layer 

to cause the base layer to be running using the full configuration 

actually present.  We also see here that we only need one class of 

reconfigurations - additive.  The subject of an initial paging area for 

the file system layer is discussed.  The root of the hierarchial file 

system and storage system devices are discussed in detail. 

The implementation of dynamic reconfigurations is discussed in 

chapter seven.  Mention is made of the addition of processors and 

memory.  The addition of I/O related hardware is discussed in detail. 

The dynamic changing of software parameters which control system 

operation is also touched upon.  Lastly the problems associated with 

growing system tables, the major type of software reconfiguration, are 

discussed in detail.  The subprobiem of growing system segments is also 

discussed. 

17 



Finally chapter eight reviews the methods presented in this thesis, 

Some comments are made on the applicability of this method and 

possibilities for future research. 

18 



Chapter Two 

A Model of a Computer System 

In this chapter we will present an overview of the Multics 

operating system and some relevant aspects of the hardware it runs on. 

Our goal is to provide the reader with sufficient knowledge in these 

areas to enable him to appreciate the issues involved in system 

initialization on Multics.  Using this knowledge, we then discuss how 

the hardware and software of Multics affects its initialization.  The 

description of Multics serves as a general model of a two layer system 

and it is in the context of that model that the rest of the thesis will 

be presented. 

2.1 Hardware Base 

Although there are many aspects to the hardware that Multics runs 

on, for the purposes of this thesis we can abstract away from the actual 

hardware to a great extent.  There are, in fact, only two aspects of 

interest: the system is centralized and the concept of a system wiring 

diagram is important. 

19 



This thesis only deals with centralized systems.  These are systems 

consisting of one or more processors sharing memory and peripherals. 

Examples of such systems include Honeywell's Multics system, IBM's 360 

nd 370 systems, Control Data's 6600 and 7600 systems and DEC's PDP-10 

ystems. 

The other important aspect is the concept of the system intermodule 

wiring diagram which reflects the physical interconnections between the 

various pieces of hardware, e.g. a processor or a memory module, that 

comprise the system.  The system software needs to know this in order to 

direct commands from one module to another.  For instance on Multics 

when a processor wants to initiate I/O it must know where, in the system 

wiring diagram, the I/O device in question is.  Also, in the case of 

Multics, all intermodule communication is via system controllers, which 

also contain the memory, by sending messages along parts of the system 

wiring diagram. 

20 



2.2 Software Base 

In this section we present a top level overview of the Multics 

supervisor, with the aim of presenting the structure of the system 

rather than implementation details.  See [MAC73] for more details. 

Multics is a general purpose timesharing system which implements a 

paged, segmented virtual memory, provides a hierarchial file system and 

provides for user controlled sharing of information.  We will regard the 

Multics supervisor as a two layer system. (1)  For the purposes of this 

thesis we shall regard each layer as being unlayered internally. 

The top layer implements the file system.  It is responsible for 

mapping user names of objects into segment identifiers.  The rooted, 

hierarchial file system is implemented by this layer.  This layer is 

also responsible for maintaining the attributes of segments such as the 

unique identifier, access control information and the creator. 

The bottom layer, which we will call the base layer, provides the 

virtual machine that the file system layer runs on.  It provides four 

basic functions.  First, it includes the traffic control module which 

(1) By layer we are referring to layering such as in Dijkstra's T.H.E. 
system [Dijkstra] or as in [SRI], Layers I to i implement the virtual 
machine used by layer i+1. 

21 



Implements processes, provides the interprocess communication mechanism 

and multiplexes physical processors among processes.  Second, the paging 

fljiechanism and management of main memory are provided by this layer, 

ihird, low-level input-output is the responsibility of this layer.  It 

initiates all I/O and is responsible for determining the status of I/O 

Operations.  Fourth, this layer is responsible for fielding interrupts 

and faults (1) and directing them to their correct handlers.  In this 

capacity it is also responsible for setting interrupt masks so as to 

orevent the occurrence of some, or all, interrupts. 

This particular layering of the system has been chosen based upon 

three considerations.  First the major criterion is to minimize the size 

of the bottom layer of the system.  As we shall see in chapter four it 

is essential to make the bottom layer take up as little memory as 

possible.  The second criterion is that the file system not be 

implemented in the base layer.  The correct operation of the file system 

layer depends on the integrity of secondary storage.  We do not wish the 

correct operation of the base layer to depend on this kind of external 

condition, as this would make it impossible to find a minimal 

configuration.  For this reason we do not want the file system 

implementation in the base layer.  The last criterion is simply one of 

convenience.  The layering we have chosen models the Multics system very 

closely. 

(1) A fault is a condition, such as overflow, that is generated 
internally by the processor receiving the fault.  This is in contrast to 
an interrupt that is generated externally to the receiving processor. 

22 



2.3 Multics Initialization 

In the previous sections we have provided a top level view of the 

hardware that Multics runs on as well as a simple view of the Multics 

supervisor.  Using this knowledge, we will briefly touch on the issue: 

What makes current Multics initialization hard to understand?  In 

answering this question we hope to provide further motivation for the 

remainder of this thesis. 

In order to see what makes Multics initialization hard to 

understand, we must first get an idea of how it actually works.  The 

following is a brief discussion;  more detailed information is available 

in [HISIa]. 

Multics system initialization has been organized in a way so as to 

have one bootload tape that can be used on any configuration to bring up 

the system.  Multics initialization has been organized so that almost 

all of the actions needed to produce a running system, as opposed to 

only the configuration dependent actions, take place at the time that it 

is desired to initialize the system.  At the time that the bootload tape 

is generated all that is done is to take compiled programs and data and 

place them on the bootload tape. 

23 



The way in which the initialization of Multics occurs is best 

described by calling it an incremental mechanism.  By this we mean that 

the total functionality provided by the supervisor and the environment 

11) in which the supervisor runs are built up in an incremental manner. 

This means that while running in one environment, initialization makes 

another item of functionality work.  It then proceeds to run in this 

itew, augmented environment.  In this way initialization builds its way 

lirora an initial, primitive, absolute addressing environment to the final 

environment consisting of a paged, segmented virtual memory with 

multiple processes. 

Most of the initialization activities that Multics does are 

activities performed to produce a version of Multics adapted to a 

particular configuration.  Unfortunately not all of them can be 

characterized in this way and we list some of them now for completeness. 

Some activities are the same for all initializations of the system no 

matter what the configuration is.  In Multics the best example of this 

is an activity known as prelinking in which the external references of 

supervisor programs are statically resolved for the life of the system, 

t takes place at the same point of initialization, in exactly the same 

ay, each and every time the system is initialized.  Other such 

ctivities are the setting of system wide constants (such as page size 

(1) We loosely define the environment of a module to be the collection 
of functions available to that module.  At any given instant the 
tnvironment of a module describes the total functionality currently 
vailable to that module. 
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and the size of various table entries).  Other than these two items, all 

initialization operations can be viewed as activities geared to 

producing a version of the system adapted to a particular configuration. 

This approach achieves its goal of one bootload medium for all 

configurations by delaying, as long as possible, configuration dependent 

decisions.  All such decisions are made while the system is being 

initialized, when the full configuration is known.  Initialization is 

taking the configuration information available to it at the time the 

system is being initialized and producing a version of the system 

adapted to this particular configuration and running on it.  One can 

model what is happening by saying that the initialization algorithms and 

the bootload medium embody a model of what the system looks like on a 

general configuration, and the execution of initialization, on a 

particular configuration, uses this model to produce a version of 

Multics for the particular configuration present.  However the method 

used to achieve this, the incremental mechanism, has problems as we will 

now see. 

The incremental initialization mechanism serves to define a nested 

set of environments.  It is important to note that the nested set of 

environments does not correspond to the layering of the system. 

Instead, at some point the current environment will correspond to that 

provided by a layer.  The internal, amorphous environment of that layer 

will have been obtained by going through many nested environments.  This 
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nested set of environments tends to make initialization hard to 

understand in two ways. 

First, it makes the understanding of the initialization routines 

themselves hard to understand.  In order to understand whether or not an 

initialization program works correctly, it is necessary to know the 

environment that the program runs in.  Thus to understand if an 

initialization program is correct one must first determine where in 

initialization it is called and the result (in terms of an environment) 

of all initialization programs that have run prior to it and then, 

finally, decide upon its correctness. 

Second, normal supervisor routines are harder to understand.  This 

is especially true for the base layer since, as we have noted, the base 

layer is essentially an unlayered collection of modules.  As the base 

layer is being initialized, initialization uses features of this layer. 

This causes these supervisor routines to run in environments other than 

the one environment (the whole base layer environment) they normally run 

in.  Thus to demonstrate the correctness of initialization one must show 

that these supervisor routines run correctly in not just one environment 

but in, potentially, many. 

As an example of this last problem consider page control, the 

collection of modules which manage the multilevel memory system.  When 

page control initiates a read of a page into core on behalf of some 

process, page control wants the current process to stop running and wait 
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for the I/O to complete.  In doing so, it abandons the processor to 

another process.  However at the time page control begins running there 

are no processes because traffic control, the manager of processes, has 

not yet been initialized.  The problem is to convince oneself that page 

control works in the absence of processes (or alternatively that traffic 

control does the right thing before it has been initialized).  As It 

turns out, of course, it does work and it does so due to special casing 

inside of traffic control and the zeroing of core prior to the beginning 

of initialization. 

2.4 Wrapup 

We have seen a model of the Multics software as well as a model of 

its hardware base.  The important hardware features are that it is a 

centralized, general purpose computer system and that knowledge of the 

system wiring diagram is necessary for the correct operation of the 

system.  The Multics supervisor has been modelled as a two layer 

structure, each layer unstructured.  The top layer implements the 

hierarchial file system while the bottom layer is responsible for I/O, 

interrupt handling, paging and the implementation of processes.  The 

remainder of this thesis will use this model.  Current Multics 

initialization has been seen to be an incremental mechanism and we have 

argued that it is this incremental character of initialization that 

makes it hard to understand.  In the next chapter we propose an 
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initialization scheme that is versatile, as is the Multics scheme, but 

which avoids the problems of the Multics incremental mechanism. 
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Chapter Three 

Overview of the Initialization Scheme 

In this chapter we will present an overview of our proposed 

initialization method.  It works by taking the activities of the 

incremental initialization scheme presented in chapter two and ordering 

them so that they occur at very well defined times in well defined 

environments so as to avoid the discussed problems. 

3.1 Initialization in a Layered System 

The initialization of a layered system can be made simple by taking 

advantage of the layering present.  Initialization will proceed upward 

in the system, initializing layer by layer, starting at the base layer, 

and continuing until the whole system is initialized.  In this way the 

initialization task is broken into a number of disjoint parts. 

We will discuss this initialization plan by considering the general 

case of a system consisting of many layers. We first initialize the 

base layer in whatever way seems appropriate and get it running.  Then 

we initialize the second layer, while running on the virtual machine 

provided by the base layer, and get it running.  Now, while running on 

the virtual machine provided by the second layer, we proceed to 

29 



initialize the third layer.  By proceeding in this way we can initialize 

tie system layer by layer until the whole system has been initialized 

and is running. 

After having initialized layers 1 to i, the system will be running 

on the virtual machine provided by layer i.  We claim that this virtual 

machine provides sufficient functionality to initialize layer i+1.  If 

this were not the case, the idea of walking up the layers, initializing 

as you go, would fail.  This should not happen in a layered system where 

the virtual machine provided by layer i provides all of the 

functionality that layer i+1 needs to run.  To see this, suppose that 

the virtual machine provided by layer i did not provide enough 

functionality to allow layer i+1 to be initialized.  Layer i must then 

provide a "backdoor", for use only during initialization, which has the 

equired extra functionality.  Unfortunately there is no way for layer i 

tjo know for sure when initialization is over since such information 

would come from higher layers which are not trusted.  Thus this backdoor 

is a defacto part of the virtual machine provided by layer i.  For this 

reason the functionality provided by layer i to layer i+1 should be 

sufficient for the initialization of layer i+1. (1)  We will assume that 

this is the case. 

[1) An alternative would be to impose additional constraints on the 
system to the effect that only initialization programs may use, directly 
r indirectly, such backdoors.  Another such constraint is, that when 
ompleted, the initialization program inform all layers that 
Initialization is over, so that they may all shut the backdoors. 
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The writing of the initialization programs for layer i+1 is no 

harder than writing the programs that comprise layer i+1 since, in both 

cases, the programs will be running in the same environment - the 

virtual machine provided by layer i.  Note how this favorably contrasts 

with many current initialization methods where the initialization 

programs run in a different environment than the regular system 

programs. 

Thus, in a layered system, the hard part of initialization really 

comes down to the initialization of the base layer since it runs in the 

most primitive environment - that of the bare hardware.  Higher layers 

run in progressively more sophisticated environments and thus are 

progressively easier to initialize.  Even the second layer, in the 

system model presented in chapter two, sees a very sophisticated 

interface, one which includes processes and a paged virtual memory.  The 

remainder of this chapter will primarily be devoted to outlining a 

scheme for the initialization of the base layer of a layered system. 
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3.2 Base Layer Initialization 

We wish to produce a base layer initialization scheme that is 

simpler than the incremental mechanism presented in chapter two.  The 

easiest way to simplify this, and any, mechanism is to make as much of 

it as possible go away.  We shall take this approach. 

In order to make as much possible of base layer initialization go 

away, we shall use a core image approach.  A pure core image approach 

has the following form.  At system generation time we create a copy of 

the base layer as it should appear in core when working.  At the time 

the system is to be initialized, this copy (which we will call the base 

layer core image or core image for short) will be loaded into core. 

Since the core image represents a completely initialized base layer, the 

act of loading it into core and transferring control to it produces a 

running base layer.  In the scheme presented below we will modify this 

so that only a small amount of initialization need occur after loading 

the core image in order to cause it to run. 

We will take advantage of three other concepts:  common activities, 

minimal configuration and dynamic reconfiguration.  Common activities 

are actions that are the same for each and every initialization; i.e. 

they are configuration independent.  An example might be the setting of 
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a system wide constant such as page size.  A minimal configuration is a 

configuration, including both hardware and software aspects, which is 

guaranteed to be common to all possible, viable configurations.  One 

component of a minimal configuration would be the existence of, at the 

least, one central processor.  Dynamic reconfiguration is the changing 

of the configuration of the system, while it is running, in a way so as 

not to disrupt service to users.  For instance in his thesis [Schell] 

Schell discussed the dynamic addition and deletion of processors and 

memories. 

In later chapters we will discuss these three concepts more deeply 

but for now we will see how they, in combination with the core image 

concept, produce a useful, configuration independent system 

initialization scheme. 

At system generation time we create a core image of the base layer 

by assuming that we will be running on the minimal configuration.  Note 

how this contrasts with the starter system approach where a core image 

is generated for the configuration we would ultimately be running on. 

While creating the core image we perform all possible common activities, 

Note that we can only create the core image and find many common 

activities once we have assumed we will be running on a configuration. 

In our case we will have assumed the minimal configuration so that the 

initialization scheme is configuration independent.  At system 

initialization time we take this core image and load it into core.  At 
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this point control is given to the base layer which must determine (or 

be told) the system wiring diagram corresponding to the minimal 

configuration since, as we will see in the next chapter, knowledge of 

the system wiring diagram is not assumed as part of the minimal 

configuration.  The result is an operable base layer achieved in a very 

simple manner (a core image approach).  Note that this core image must 

run since we have generated it assuming a configuration, the minimal 

configuration, known to be a subset of the configuration actually 

present.  The routines that initialize the next layer of the system, the 

file system layer, are now given control.  The file system initializer, 

while initializing the file system layer, can now invoke any needed base 

layer dynamic reconfigurations to transform the configuration known to 

the base layer into the configuration actually present and desired. 

Realize that it is only the existence of these dynamic reconfigurations 

that allows us to maintain configuration independence in this 

initialization scheme.  This is accomplished by the file system 

initializer invoking dynamic reconfigurations as needed. 

This scheme is simpler than the incremental method since base layer 

initialization is reduced to, basically, a simple loading operation. 

Much of the hard work is embodied in core image generation which takes 

place in a "normal", well understood user environment at system 

generation time.  The remainder of the work of initialization takes 

place in the form of dynamic reconfiguration.  These reconfigurations 

are the same reconfigurations as used during normal system operation. 
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As such, since they are invoked in a normally running system, their use 

in getting the system running on the full configuration is, In some 

sense, not even part of initialization and, in any event, requires no 

additional effort to show correct once the system's regular operation is 

believed correct. 

This scheme has not been used before for one very fundamental 

reason - the lack of a dynamic reconfiguration capability in most 

systems,  ultimately the success of this method and in particular the 

item which makes the assumption of a minimal configuration reasonable, 

relies upon the ability to perform many dynamic reconfigurations. 

Unfortunately most systems have little, if any, ability to perform 

dynamic reconfigurations.  As a consequence this scheme could never even 

be considered. 

In summary, our basic scheme is as follows.  At system generation 

time we create a core image by assuming that we will be running on the 

minimal configuration and, at the same time, we perform all actions 

common to all initializations.  When it is desired to initialize the 

system, the core image is loaded into memory to produce a running base 

layer.  Dynamic reconfigurations can then be invoked to cause the base 

layer to be running on the configuration actually present. 

Initialization of higher layers can then occur. 

35 



3.3 Wrapup 

In this chapter we have outlined how initialization in a layered 

system can proceed upward, layer by layer, through the structure 

hierarchy.  In such a system the hard part of initialization is the 

initialization of the base layer.  A core image approach to base layer 

Initialization has been presented based upon the concepts of common 

actions, a minimal configuration and dynamic reconfiguration.  The next 

three chapters will discuss each of the parts of initializing the system 

more deeply and explore the underlying concepts more closely. 
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Chapter Four 

Core Image Generation 

In the previous chapter we outlined our proposed initialization 

scheme.  One of the cornerstones of this scheme is the ability to 

create, at system generation time, a core image of the base layer with 

the property that once loaded into core it is essentially functional. 

In this chapter we propose one way of generating this core image by 

assuming the existence of a minimal configuration. 

4.1 The Process of System Generation 

In order to generate the base layer core image, we will use 

techniques similar to those currently used by IBM's OS-360/370 and CDC's 

7600-SCOPE operating systems.  In these systems, a version of the 

operating system is produced that is tailored to the needs of a 

particular configuration.  This is done by feeding the system generation 

procedures all the information that they need, such as how much memory 

and how much disk space will be around, the addresses of available main 

memory, device addresses, types and sizes of devices and the system 

wiring diagram.  The system generation procedures then produce a version 

of the operating system made specially for the particular configuration 

described.  It should be clear that an identical procedure can be used 
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to produce a base layer core image for any system once we know the 

configuration.  In our case we know that the configuration is the 

minimal configuration. 

The output of the system generation process is the bootload medium 

which might be a disk pack or a magnetic tape.  It consists of the 

generated core image, with possibly some information describing where it 

should be loaded at initialization time, the file system initialization 

routines as well as any data they need.  In a more general case, at the 

time higher levels in the system are initialized it is necessary to have 

the routines and data that comprise them available to their 

Initialization routines.  They must, in general, be provided by the 

ystem generation process.  For convenience we also place them on the 

Dootload medium. 
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4.2 Where System Generation Occurs 

The first question to answer is: Where do we generate the boot load 

medium and hence the base layer core image?  System generation should 

take place in a standard user process, the same place that the system 

programmer does most of his work.  Generating the bootload medium in a 

standard process has two very important advantages.  The principle 

advantage is that the generation programs are written to run in the 

normal environment of a user process.  This means that the developer of 

these programs is working in the environment where he does most of his 

work so that his task is eased by not needing to learn some new, and 

potentially unusual, environment for the system generation programs.  As 

this environment tends to be well understood and well defined, the 

generation programs should be correspondingly easy to show correct. 

This choice, for instance, has been used in IBM's OS-360/370 and CDC's 

SCOPE [CDC] operating systems.  The second advantage is a consequence of 

this one: most (if not all) of the system generation programs can be 

written in a high level language.  The advantages of programming in a 

high level language are well known, so we will not repeat them here. 
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4.3 The Minimal Configuration 

We say that configuration A is a subset of configuration B if the 

following are true: 

i. The set of all hardware in A is a subset of the hardware in 
B. 

ii. All of the system's hardware independent databases are 
smaller in A than in B. 

Note that we do not include the system wiring diagram in our definition 

of subset.  We also are assuming that a consequence of the first 

condition is that all of the system's hardware dependent databases (1) 

are smaller in A than in B.  If we examine the set of all possible, 

viable configurations we assume that there will be one that is a subset 

of all of the others.  We will call this configuration the minimal 

configuration. (2) 

(1) A hardware dependent database is one that directly depends upon the 
hardware configuration. 

(2) Current general purpose operating systems, built around central 
memory and central processors, seem to have this property.  There may 
exist classes of architectures for which this is not the case.  For 
these architectures we may not be able to define a unique minimal 
configuration.  In this case our initialization scheme will not be 
directly applicable. 
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There are basically three aspects to the minimal configuration - 

processors, memories and the size of system tables. We will examine 

each of these in turn. 

First we assume that the minimal configuration consists of one 

central processor. (1) One processor is needed or the system cannot run 

at all.  Second and subsequent processors merely increase performance 

and reliability; they are not essential. 

A processor without any primary memory is not very useful so our 

minimal configuration must contain some primary memory.  We will make 

two assumptions about primary memory - its size and the existence of 

physical addresses. We will now elaborate on these two assumptions 

about primary memory. 

4.3.1 Main Memory Size 

We will assume main memory size based upon three considerations. 

First it is necessary to assume the existence of enough primary memory 

to contain the primary memory resident supervisor as it must, by 

definition, be in primary memory at all times.  Second we must have some 

primary memory around to contain non-resident parts of the supervisor 

(i.e. parts of the layers above the base layer) and parts of user's 

(1) This assumption Is valid for traditional centralized architectures. 
For other architectures this may not be a valid assumption. 
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programs and data when they are needed, i.e. a paging pool for our 

virtual memory system.  The size of this pool will be dictated by two 

considerations.  The hardware will constrain a certain number of pages 

to be in core.  For instance the pages containing the current 

instruction and the data it references may need to be in core.  The 

system software may impose a lower bound on the size of the paging pool 

either through global constraints or per-process requirements.  For 

instance, Multics requires that there always be ten free (unused but 

available for use) pages and, in addition, requires two pages to be in 

core, at a minimum, for a running process. (1)  This, when coupled with 

the hardware constraints, will impose a lower bound of thirteen pages 

(2) on the size of the paging pool for Multics.  Minimal performance 

considerations will cause the size resulting from these two 

considerations to be raised to the final minimal size of the paging 

pool.  The third, and last, effect on memory size comes from the 

initialization process itself.  If the core image is loaded into core by 

a software loader then there must be core for the loader.  There must 

also be room for the code that ascertains the wiring diagram 

corresponding to the minimal configuration and for the file system 

initialization code. (3)  These will all cause the minimal memory size 

(1) The first page of the descriptor segment and the first page of the 
ring 0 stack. 

(2) Ten free pages, two per-process pages and one for execution of the 
current instruction. 

(3) Actually, as we will see in chapter six, only part of the file 
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to grow.  Considering all three factors it is possible to determine the 

minimal size of main memory that is needed in order to bring up the 

system.  Also knowing that memory comes in certain fixed sized chunks, 

we may be able to impose a still higher minimal size. 

4.3.2 Main Memory Addresses 

We will also assume the existence of the main memory addresses that 

the core image will occupy.  This is necessary since there are many 

absolute addresses within the base layer, such as in segment descriptor 

words (SDW's) and page table words (PTW's), that must be filled in at 

system generation time in order to produce an operable base layer.  If 

we do not assume these addresses it will be necessary for the core image 

loader to fill them in.  This would entail the creation of a relocating 

core image loader.  Such a loader is not, in general, a reasonable way 

to proceed.  Let us see why. 

system initializer will need to be loaded with the base layer core image 
so that its effect on minimal memory size will be small. 
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4.3.2.1 A Relocating Loader 

A relocating loader would be responsible for taking the core image, 

in pieces perhaps, and loading it into available memory.  As it does so, 

it must modify all of the physical addresses (as well as derived 

quantities) in the core image to reflect the actual physical addresses 

and not the ones assumed during system generation.  On the surface this 

seems very reasonable since the construction of such a loader could 

follow the pattern of relocating loaders found on many present day 

operating systems for loading programs into a user's address space. The 

handling of explicit physical addresses, such as in SDW's and PTW's, is 

straightforward.  However the handling of implicit addresses may be 

difficult.  Consider a virtual memory system such as Multics.  It is 

necessary for it to keep track of the status of each page of physical 

memory (usable/unusable, free/in-use ...).  This is done by having an 

array, called the core map, describing the status of each page where the 

i'th entry describes the i'th physical page.  To fill in the core map 

the relocating loader must be prepared to: 

i. Fill in array entries describing the actual status of 
pages. 

ii. Maintain linked lists of array entries. 

iii. Grow the core map array to accommodate the pages actually 
used. 
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Item i. is self explanatory.  For item ii., it may be necessary to 

maintain the entries describing free pages on a list.  Similar lists 

might exist for used and unusable pages.  Items i. and ii. are probably 

not that difficult to do.  However allowing the loader to do them gives 

it a great deal of knowledge about the structure and contents of the 

core map;  knowledge that we would like to keep only in the system so as 

to maintain system modularity.  For item iii., suppose that at system 

generation time pages 0 to N were assumed to exist and corresponding 

array entries were allocated (i.e. the core image was generated to be 

loaded with no change into pages 0 to N).  At the time the core image is 

loaded suppose that it is loaded into pages M to M+N (M>0).  It is then 

necessary for the loader to allocate array entries to describe pages 0 

to M-l.  This will cause the array to grow.  Although in principle 

possible to do, this may, as we shall see in chapter seven, be difficult 

to do.  The loader must also take the entries in the core image core map 

and use that information to fill in the entries for pages M to M+N 

(where the system actually is) in the in-core core map.  The net effect 

of all this is that it is possible to build a relocating core image 

loader but the loader would tend to get very complicated.  Since it will 

run in a very simple and primitive environment, the bare hardware, such 

complexity is undesirable.  Lastly, each of these tasks that a 

relocating loader would need to do, tend to give the loader a large 

amount of knowledge about the system and might have undesirable effects 

upon system modularity.  For these reasons we reject the concept of a 

relocating loader and will, instead, just assume physical addresses. 
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4.3.2.2 Realization of Assumed Addresses 

Having decided to assume physical addresses in main memory of the 

core image as part of the minimal configuration, we must now show that 

this assumption is not overly restrictive on possible configurations. 

By assuming the existence of physical addresses, an installation is 

required, at a minimum, to have those addresses realized in physical 

memory. To the extent that it is easy for an installation to assign 

these addresses to the available memory this is a reasonable approach. 

If, however, this assignment is difficult or impossible then the 

assumption of physical addresses will be overly restrictive on possible 

configurations. 

Let us examine the hardware Multics runs on to see some of the 

problems that might arise.  Each active module (processor or 

input-output multiplexor) in the configuration has an operator settable 

collection of switches that describe the base address of the memory 

attached to each port on the module. (1)  The size of the memory on a 

given port is set by a plugboard in the port logic of the active module, 

The switches allow the operator to set the base address of a memory 

module as a multiple of its size.  For instance suppose port 1 has a 

(1) Each module has eight ports through which it communicates with 
memory modules. 
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256K memory attached to it, then the operator can set the base address 

of it to 0*256K, 1*256K, ..., 7*256K.  No other base addresses are 

possible. 

This technique has two drawbacks.  First there is the chance for 

operator error.  The operator must make sure that when he sets the 

switches on one active module, he also sets the switches on all other 

modules in the same way. (1)  Failure to do so will either result in the 

bootload immediately failing or in the software detecting the error as 

the system comes up.  The more serious problem concerns the inability to 

set the base addresses to the needed values without creating holes in 

the potential address space, potentially affecting future operation of 

the system.  For instance suppose that we have two memories, one with 

128K words and one with 1024K words.  Also suppose that the 102AK memory 

is broken and that we have generated a core image that requires 

addresses 0 to 128K-1 to exist (i.e. the 128K memory as the low order 

memory will allow us to bring up the system).  Clearly we can bring up 

the system by setting the base address of the 128K memory to 0*128K. 

However later, while the system is running, when the 1024K. memory is 

fixed we will want to dynamically reconfigure it into the system. We 

will add it as having a base address of 1*1024K, the lowest available to 

it in the physical address space.  The effect of this is that there is a 

hole in the physical address space - addresses 128K to 1024K-1 do not 

(1) This is a requirement of the operating system and not the hardware. 
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exist.  The only effect of this is in the core map array.  Since it is 

an array we must allocate entries for the missing pages and mark them as 

unusable.  Since this is a core resident table, these unused entries are 

wasting valuable memory resources.  This loss of memory may be 

unacceptable. 

If these drawbacks are felt to be severe, we propose a few hardware 

changes so that the assumption of physical addresses as part of the 

minimal configuration is reasonable.  First the base address of the 

memory on a port can be made more flexible by allowing the base address 

to be set to be a multiple of some small number, say the smallest 

possible physical memory size.  This will eliminate most chances of 

holes in the physical address space.  Secondly the registers on active 

modules that reflect physical addresses should be software readable and 

settable.  This includes not only the memory base addresses on ports but 

also a processor's interrupt and fault vector addresses as well as an 

IOM's mailbox address. (1)  In this way the software can verify that all 

switches are set correctly and, if necessary, set them correctly and 

thus ensure correct operation even in the face of operator error.  With 

these changes the assumptions about the existence and location of main 

memory are quite reasonable. 

(1) An IOM is the programmable controller of I/O devices;  i.e. it 
executes channel programs.  Other names for this device might be I/O 
controller or channel.  A mailbox is used as an incore communication 
area between processors and IOM's. 
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4.3.3 System Table Sizes 

The last component of the the minimal configuration is the size of 

the various system tables.  At system generation time it is necessary to 

allocate space for, and fill in, the system tables.  Here we discuss the 

allocation issue, the filling issue will be discussed later.  At system 

generation time we must decide the minimum size of the various system 

tables. We can do so based upon two considerations.  First the actual 

system structure and design will force the tables to have a certain 

minimal size.  For instance on Multics there will always be at least two 

processes around (1) which, as a consequence, requires that the active 

process table have at least two entries.  Another example is the active 

segment table. (2)  At least one entry is required for each 

always-active system segment.  In addition, the implementation of the 

hierarchial file system requires the allocation of other entries. 

Minimal sizes can also be forced upon tables as a result of the assumed 

minimal hardware configuration.  For instance if we have a processor 

table, we know that it must have one entry for the one, assumed 

processor.  A better example is the core map; for each page of memory 

(1) The idle process for one CPU and the initializer process. 

(2) The active segment table contains the page tables for currently 
addressable segments. 
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that we have assumed exists, one entry needs to be allocated in the core 

map.  For many tables the minimal size will turn out to be the empty, or 

null, table.  An example of such a table would be the paging device map, 

which describes the status of pages on the paging device, since we have 

not assumed the existence of a paging device in the minimal 

configuration.  It should thus be possible to decide, at system 

generation time, upon the minimal size of all system tables. 

4.4 Common Actions 

There is a collection of actions common to all initializations that 

can be performed at system generation time.  These are either actions 

that are the same for every initialization regardless of the 

configuration or they are actions that can be performed at system 

generation time given that the system will be running on the assumed 

minimal configuration.  We will call these actions common actions or 

configuration independent actions. 

One such common action is the prelinking of the supervisor.  The 

set of segments that comprises the supervisor does not change for the 

life of the system.  Thus it is possible, at system generation time, to 

assign segment numbers to every supervisor segment.  Having assigned 

segment numbers, it is then possible to resolve all external references 

within the supervisor.  At the same time it is possible to create and 
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initialize any data bases needed to enable base layer programs to 

actually make external references (they will have been resolved). (1) 

Then at the time the base layer core image is loaded it will immediately 

be possible for it to successfully make external references. 

At system generation time we either know, statically, the size of 

each supervisor segment (for instance segments containing executable 

code are statically sized) or we can calculate it (for instance variable 

sized tables, making for variable sized segments, now have a known 

length due to assumptions made as part of the minimal configuration) . 

The knowledge of segment sizes, when combined with our assumptions about 

main memory addresses, allows us to decide where in core each segment 

should be.  We also can allocate, and fill in, an active segment table 

entry (ASTE) for every paged supervisor segment.  For every supervisor 

segment we can then fill in its segment descriptor word (SDW), either 

pointing it to the segment itself or pointing it to the segment's page 

table (in its ASTE).  Filling in the page table for paged segments and 

filling in the SDW for unpaged segments requires us to know the actual 

main memory address of these segments.  Since we have assumed the 

existence of main memory addresses it is possible for us to assign these 

addresses at system generation time.  As we assign these addresses we 

can also fill in the core map. 

(1) In the case of Multics these are the combined linkage sections and 
the linkage offset table. 
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When the base layer begins running it will have a certain number of 

existing processes.  The number and nature of these processes is known 

at system generation time. We can thus create and initialize, at system 

generation time, all of the per-process segments for these processes. 

Also we can allocate, and fill in, the active process table entry (APTE) 

for each process.  This per-process initialization is done in a way that 

places each process in a known, desired state at the moment the system 

is running thus allowing the use of processes from the moment the system 

is loaded. 

A large class of common actions come under the heading of table 

initialization.  Since we wish to create a core image that can be loaded 

to produce a running base layer, it is necessary to create and 

initialize all of the base layer's databases.  We have already described 

how we can fill in three major databases - the core map, active segment 

table and active process table.  The remaining databases can be 

initialized in either a minimal or null state.  For instance the paging 

device map can be initialized to show no paging device.  The various 

databases that refer to peripherals (such as teletypes, disks and 

magnetic tapes) can be initialized to show that no peripherals exist. 

Note that these various table initializations are only possible once we 

have assumed the minimal configuration. 
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The last set of common actions consists of the setting of software 

parameters to some initial value.  These parameters are used to control 

the actions of the software.  For instance it may be possible to turn 

metering on or off by setting a software switch.  It may be possible to 

turn system debugging actions on or off.  Scheduler parameters must be 

set to some initial value.  All such parameters should be set to some 

initial value so that the system may run correctly when loaded. 

4.5 Wrapup 

In this chapter we have described the system generation process. 

The system generation procedure runs in a standard user process and 

creates a core image of the base layer.  This core image is generated by 

assuming a minimal configuration and performing all possible common 

actions.  The actual generation process occurs in a way similar to that 

used by systems such as IBM's OS 360/370 and CDC's SCOPE.  System 

generation then places this core image and the programs and data of 

higher layers on the bootload medium. 
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Chapter Five 

Base Layer Loading and Initialization 

In the last chapter we described the system generation procedure. 

As part of its output it produced a core image of the base layer on the 

bootload medium.  In this chapter we describe how the core image is 

loaded into core and initialized to produce a running base layer.  We 

see that the loading and initialization of the base layer are very 

simple operations. 

5.1 The Core Image Loader 

The core image loader is responsible for loading the base layer 

into core and giving it control.  This loader is also responsible for 

validating that the core image has been loaded correctly. 

The basic function of the loader is to take the core image from the 

bootload medium and load it into the place in core where the core image 

wants to be.  The location where the core image must be loaded is, in 

general, variable (since it is a property of the core image) and should 

not be built into the loader. Once the core image is correctly loaded 

the loader must then give control to the core image. 
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The first question that arises is:  How does the loader get the 

core image from the bootload medium into core?  The loader fabricates, 

or has built into it, a series of commands for the I/O device containing 

the bootload medium to cause the core image to be transferred into core. 

This transfer represents the entire loading operation. Now we must see 

how the loader knows which I/O device contains the bootload medium. We 

can regard the loader as running on a configuration consisting of one 

processor, all of main memory and the bootload I/O device. (1)  Thus it 

performs its I/O on the only I/O device it has.  The choice of I/O 

device is independent of the loader, he has no choice. Typically the 

choice will either be built into the hardware or will be settable by the 

operator via console switches.  Note that this model fits very well with 

current hardware bootstrap loaders which have built into them a small 

program to read from an I/O device which is specified by operator 

settable switches. 

Unfortunately it is not sufficient just to load the base layer core 

image into main memory and then let it run. At the very least it is 

necessary to check that the base layer has been loaded correctly.  If 

for some reason the loading operation has not been done correctly the 

proper operation of the base layer is in doubt.  In particular we would 

like to be sure that the data generated as the core image is the same 

(1) The bootload I/O device is the I/O device containing the bootload 
medium. 
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data actually read into core. (1)  This is a general problem in using 

mass storage media and its solution, in general, is beyond this thesis. 

To minimize the chance of such errors we propose to use two techniques. 

First, the bootload medium should be written in a standard data format 

thus giving give the core image loader the advantage of all the error 

detection (and possibly error correcting) machinery associated with 

standard formats. (2)  This machinery will tend to prevent an erroneous 

core image from being loaded and not being detected.  This technique, 

when coupled with standard hardware error detection on the I/O device, 

will reduce the number of undetected errors to a very small number. 

Second, to reduce this number even further, if that seems necessary, we 

can have the base layer perform checks upon itself once it gains control 

and before it passes control onto the initializer for layer 2.  The 

simplest such check would be to compute a checksum on the whole core 

image.  Other checks, such as data base consistency checks, could also 

be incorporated.  Choosing which additional checks the base layer should 

make must be based upon the probability of an undetected error (without 

more checks) traded against the additional complexity these checks 

create before we can consider the base layer to be running.  These two 

techniques, standard data storage formats and base layer self checking, 

(1) Another form of data integrity is insuring that the bootload tape is 
only used by authorized personnel in authorized ways.  This is a 
security issue that we do not address in this thesis. 

(2) For instance, a Multics Standard Tape contains a checksum on each 
record to aid in detecting errors. 
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should reduce the number of undetected errors in loading the base layer 

to a small, and hopefully negligible, number. 

The question naturally arises as to whether the loader should be in 

hardware or in software.  For the purposes of this thesis it does not 

matter;  it only matters that the result of the load operation is 

correct.  From a practical point of view the necessity of handling 

variable requirements (load point and data formats) indicates that a 

software loader may be most appropriate.  Using a software loader does, 

however, introduce the problem of how to load the software loader.  This 

can be solved by either applying the results of this thesis recursively 

or by using a hardware loader. Note that ultimately a hardware loader 

will be used to get things going. 

5.2 Core Image Size 

In the last section we have implicitly made the assumption that the 

base layer core image (plus, potentially, the loader and the file system 

layer initializer) will fit into core.  This section will address the 

possibility that the base layer core image (plus loader and file system 

initializer) is too large and does not fit into core. 

The situation we are hypothesizing is one in which the 

configuration we are coming up on has sufficient memory for the proper 

operation of the system, however the core image (plus loader, etc.) does 
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not fit into core. The effect is that the system could, in principle, 

run but cannot be initialized under our proposed scheme. 

In this situation, there is really nothing we can do.  The loader, 

when noticing the lack of memory, must simply stop initialization and 

report the problem to the operator - the installation has insufficient 

memory under our initialization scheme. 

The question now is whether the situation of the base layer core 

image not fitting in core can reasonably occur.  A system that had this 

property would be swapping parts of itself to and from secondary storage 

as required.  Note that in such a system the swapping routines, at the 

least, must always remain in core.  They cannot depend upon any 

swappable routines since at the point that the swappable routine was 

needed by the swapping routines it might be on secondary storage.  This 

means that the swapping routines, and the routines they use, are 

self-sufficient and always in core.  The self-sufficiency makes them a 

layer and, since they are always in core, we can regard them as a base 

layer that must fit in core. We can thus use the swapper as the base 

layer of the system. 

We are now left with the possibility that the core image fits but 

the file system initializer plus, potentially, the loader do not.  Both 

of these can be made very simple programs since their tasks are easy. 

As such they will take up little room and we will assume they will fit. 

From a practical point of view if the loader and file system initializer 
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do not fit then the system is very much short of memory and will not be 

very useful.  In any event with the price of memory dropping as it is 

this should not be a problem in the future. 

5.3 Base Layer Initialization 

Our technique of generating the core image creates the task of core 

image initialization which is not present in a pure core image approach. 

Two types of initialization must be performed.  The configuration must 

be validated as being a superset of the minimal configuration and the 

system wiring diagram must be ascertained. 

We have generated the core image based upon a number of assumptions 

about the configuration we will be running on.  The correct operation of 

the base layer, which is of course our goal, depends upon our 

assumptions being correct.  If we try to run the base layer upon a 

configuration that is not a superset of the the one it was generated 

for, we cannot, in general, guarantee correct operation.  Thus core 

image initialization must verify that the particular configuration it is 

running on is a superset of the one it was generated for.  For instance, 

depending on what was assumed in the minimal configuration, this might 

involve checking for the existence of disks, memory, front-end 

processors, central processors and other I/O devices.  If we have 

assumed something about the system wiring diagram we must also verify 
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it.  A mistake here must almost surely be regarded as a fatal error 

causing initialization to fail. (1) 

Note that when we discussed the minimal configuration we did not 

assume any knowledge of the hardware wiring diagram.  This was quite 

deliberate since to assume this knowledge would be overly restrictive. 

If we were to assume any knowledge of the system wiring diagram we 

would, potentially, be restricting greatly the set of possible 

configurations that satisfy the assumptions making up the minimal 

configuration. (2)  Since we have not assumed any knowledge of the 

system wiring diagram, and since this knowledge is essential for correct 

base layer operation, we must perform some actions once the core image 

is loaded and control given to it in order to provide this knowledge. 

We do not have to ascertain all such knowledge but, rather, we must only 

determine that part of the wiring diagram which corresponds to the 

minimal configuration.  Having performed this initialization, we will 

have an operable base layer and control can be given to the file system 

layer initialization routines. 

(1) Here we are allowing for an assumed configuration at system 
generation time other than the minimal configuration presented in the 
last chapter.  For that configuration this phase disappears since the 
correct termination of the loader is sufficient to insure that the 
minimal configuration is present. 

(2) If we were to try to assume knowledge of the system wiring diagram 
in the minimal configuration we would find that it would not be possible 
to find a minimal configuration. 
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Note that base layer initialization runs on the same virtual 

machine that the base layer runs on; quite probably this is the bare 

hardware.  It is due to the primitive nature of this virtual machine 

that we have caused base layer initialization to be very small by taking 

the core image approach. 

5.4 Wrapup 

In this chapter we have seen how the core image is taken by the 

core image loader and loaded into core.  We have seen what properties 

the core image loader must have.  It has been argued that the base layer 

must always fit into core.  Finally we have discussed the actions that 

must be taken to actually initialize the core image to produce an 

operable base layer. 
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Chapter Six 

File System Initialization 

In the last two chapters we have described how to produce an 

initialized, running base layer.  This chapter will discuss the manner 

in which the next layer in the system, the file system layer, can be 

initialized.  Particular attention is given to storage system devices 

and the root of the hierarchial file system. 

6.1 Dynamic Reconfiguration 

After the base layer is loaded and running normally it will think 

that it is running on the minimal configuration.  Any hardware beyond 

that in the minimal configuration will not be in use.  Various software 

tables may be smaller than that desired by the installation.  The 

software parameters may not be set in the way the installation desires. 

It is thus necessary for the system to change itself to conform to the 

actual configuration.  This process of changing from one configuration 

to another is known as reconfiguration; it is dynamic reconfiguration 

since it occurs while the system is running. 
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—"—  

For our purposes, we need only look at "ADD" type reconfigurations; 

that is, we always add a piece of hardware (never delete) or grow a 

table (never shrink it).  Our reconfigurations take this form due to our 

assumption of a minimal configuration.  Since we start at the minimal 

configuration we can only need, by definition, to add hardware or grow 

tables in order to get to the actual configuration.  This is fortunate 

since, as Schell points out in his thesis, this sort of "DELETE" type 

reconfiguration tends to be harder to implement then "ADD" type 

reconfigurations due to the necessity of breaking bindings in the 

"DELETE" case. 

6.2 Reconfiguration 

In this section we briefly list the kinds of reconfigurations that 

we will need.  Reconfigurations fall into two basic categories - 

hardware and software.  It should be noted that some hardware 

reconfigurations cause software reconfigurations as a side-effect (for 

instance, adding a memory may cause the core map to grow). 

There are a relatively small number of needed hardware 

reconfigurations.  We need the ability to add the second (and 

subsequent) processor in a configuration.  We also need the ability to 

add additional boxes of memory if they are available.  The ability to 

add individual pages of a memory will also be needed in order to use any 
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pages that are part of a memory that the core image is loaded into but 

which are not actually part of the core image.  Input-output 

multiplexors (IOM's) (1) will have to be added in order that the system 

can control I/O devices.  It will be necessary to add I/O devices so 

that the system can communicate with the outside world. 

A. special case of an I/O device is a storage system device.  These 

are storage media, such as disks, that contain the file system.  The 

addition of such devices is really a two step process.  First the I/O 

device itself must be added.  This is a base layer reconfiguration.  The 

effect of this is to open the communication path between the operating 

system and the I/O device.  The file system must then verify that the 

contents of the device conform to file system standards.  In particular, 

a previous crash may have left the volume in an inconsistent state, 

necessitating a salvage to get it in a consistent state, (for more 

information see, for instance, [Stern]). 

Software reconfigurations fall into two basic categories.  First it 

is necessary to be able to set the various software parameters to the 

values desired by the installation.  In particular, debugging options 

must be chosen, metering turned on (or off) and tuning parameters set. 

The second category of software reconfigurations needed are table 

expansions.  It is necessary to expand the initial, minimal tables 

(1) An IOM is the programmable controller of I/O devices;  i.e. it 
executes channel programs.  Other names for this device might be I/O 
controller or channel. 
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created at system generation time to the size needed, or desired, by the 

installation.  In particular it will be necessary to expand, at a 

minimum, the active segment table, active process table, core map, 

paging device map and physical volume table. (1) 

The reconfigurations mentioned above, all of which are of the "ADD" 

type, are representative of the reconfigurations needed by this approach 

to system initialization.  Here we have just listed these needed 

reconfigurations;  in the next section we will see how the file system 

initializer uses them and in the next chapter we will consider some of 

the issues surrounding the actual implementation of them. 

6.3 File System Initialization 

File system initialization is basically a six step process.  When 

complete the file system layer of the system will be running and 

initialization can proceed to initialize higher layers of the system. 

All of file system initialization runs on the virtual machine provided 

by the now running base layer of the system in order to avoid the 

problems we saw in chapter two. 

(1) The physical volume table has an entry in it for each disk pack in 
the system. 
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At the time file system initialization gets control it sees a 

hardware configuration consisting of one processor and some memory.  The 

configuration contains no I/O devices and, in particular, does not 

contain the I/O device that contains the bootload medium that, in turn, 

contains the remainder of file system initialization as well as the file 

system layer itself. 

The first task of file system initialization is to gain access to 

the bootload medium.  To do so a dynamic reconfiguration of the base 

layer is invoked to add the IOM that has the bootload I/O device on it. 

Next the base layer is invoked to add the bootload I/O device to the 

system.  The effect of these is to open a physical communication path 

between the bootload medium and the operating system.  These actions 

were necessary because knowledge of the bootload I/O device was not 

assumed as part of the minimal configuration.  Also note that the core 

image loader did have this knowledge and, quite probably, passed this 

knowledge along to the base layer initializer.  Up to now, however, this 

knowledge has neither been used or needed. 

The next step is to acquire an initial secondary memory paging 

area.  Up to this point page control (which provides the paged virtual 

memory), although operative, has not been very useful since it had no 

place to which to move pages when evicting them from core.  In this 

state the system has been very memory constrained.  By acquiring a 

paging area the system, will no longer be memory constrained.  The 

acquisition of a secondary memory paging area is necessary since the 
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file system layer is large and will not, in general, be able to fit in 

core all at once. 

At this point it is necessary to read the rest of the file system 

initialization routines as well as the file system layer routines into 

memory. (1)  The necessity of getting the file system routines is clear; 

however, the need for additional file system initialization routines may 

not be obvious.  Recall that the first part of the file system 

initializer must be loaded as part of the core image.  Due to the desire 

to limit the size of the core image we are forced to keep the initial 

part of the file system initializer small.  For this reason the initial 

part of the file system initializer only performs the above tasks.  This 

second part of the file system initializer performs the remainder of 

file system initialization, summarized below. 

The next step in file system initialization is to set up any 

databases needed by the file system.  Since we are dealing with a rooted 

hierarchy it is necessary to find the root of the file system and verify 

its contents.  Finding the root may involve invoking base layer dynamic 

reconfigurations to add an IOM or an I/O device.  Finally it may be 

necessary to verify the contents of all, or part of, the rest of the 

hierarchy. At this point the file system layer is initialized. 

(1) Recall that we placed the file system routines on the bootload 
medium for convenience.  If the file system layer is elsewhere we look 
for it now and add that device. 
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It may also be desirable, but not essential, to perform some other 

reconfigurations during file system initialization.  The operator's 

console may be added in order to allow communication with the operator; 

a paging device and more main memory might be added to improve 

performance;  if multiple processes are present, the addition of more 

processors may improve performance.  It is important to note that all of 

these reconfigurations being used are the same reconfigurations used 

while the whole system is up and running - they are not initialization 

time special cases as they were in the incremental initialization 

scheme. 

In the next two sections we examine some of these aspects of file 

system initialization more closely. 

6.4 The Initial Paging Area 

As we saw in the last section it is necessary for the file system 

initialization routines to obtain a paging area.  The normal paging area 

is on a secondary storage device which is part of the file system. 

However a system failure during a previous period of the system's 

operation may have left the contents of a storage device in an 

unreliable state.  In particular we cannot be sure which records on the 

device are currently in use meaning that we cannot write to the device 

since valid data might be destroyed.  Thus, the contents of the 

secondary storage device must be validated before being used as a paging 

area. 
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The validation of the contents of a storage device, however, is a 

file system layer function, normally performed while the file system 

layer is running.  At file system initialization time we must perform 

this validation in order to get the file system running thus creating a 

problem. We cannot use the normal validation routines, since using them 

would cause them to run in an environment other than our normal one, and 

this, as we saw in chapter two, is not a good idea.  Further, the 

validator tends to be a large, complicated program and will not, in 

general, fit into core all at once.  Thus it must be paged in and out of 

core by the virtual memory mechanism.  But we do not currently have an 

area to page to since that is what we are trying to get!  This is a 

dilemma that can be solved in one of two ways. 

Since we cannot use the normal validation routines, we must have an 

initialization time routine.  We would like to keep this routine simple 

so as to keep file system initialization simple. We are going to argue 

that the initialization time validator need only validate that the 

storage system device is formatted properly and need not actually verify 

the contents. 

If it is possible to page from the bootload medium we can just use 

it since we know its contents are correct. This might be possible, for 

instance, if the bootload medium is a disk pack. 
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Another, more general, solution is to reserve an area on secondary 

storage for the use of the file system initializer.  This area will only 

contain information that is "recreated" each time the system is 

initialized (i.e. the file system layer and initializer) and not 

permanent data (i.e. user files). We can use this reserved paging area 

as the initial paging area each time the system is initialized since it 

will only contain the file system layer from the last initialization, 

which is no longer needed. 

If we reserve a paging area on a storage system device for the 

initial paging area, the file system initialization verifier need only 

confirm that that particular device seems to be laid out properly before 

using it for the initial paging area.  Checking the device format 

probably involves checking the volume label for proper contents and 

checking that the reserved area on the device does not overlap with the 

areas reserved for permanent files and that the records in each area 

actually exist.  Basically these checks are to ensure that the reserved 

paging area is safe to use (i.e. permanent data will not be destroyed). 

These checks are very simple and doing them in a special initialization 

routine is no great hardship. 
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6.5 The Root 

The file system layer is implementing a hierarchial, rooted file 

system.  In such a file system there is one object, the root, that is 

the ancestor of all other objects.  In order to operate correctly the 

file system layer must know where the root is and it must also believe 

its contents.  Thus, as part of initializing the file system layer, we 

must also gain access to, and validate the contents of, the root. 

This requirement creates a small problem.  The root resides on a 

storage system device that we will call the root physical volume (RPV). 

In order to validate the root we must validate the contents of the RPV. 

But validation of storage system devices is normally a file system 

function, which is what we are trying to initialize, so we have a 

problem.  The solution is to regard validation of the RPV as a file 

system initialization function.  This approach, for instance, has been 

taken in Multics.  This solution is unpleasant since the RPV validator 

probably duplicates some of the regular device validator.  But if the 

file system layer is unstructured, as we assumed, this is our only 

solution. 

If the file system layer has more structure than we have assumed 

then it may be possible to use some of the normal verification machinery 

to verify the RPV.  This would be possible if the file system layer 
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actually consisted of two layers;  an inner layer that knows about the 

physical implementation of the file system and an outer layer that knows 

the logical structure.  If, in such a system, the inner layer has the 

validator built into it, then it may be possible to get the inner layer 

running without verifying the RPV and then use it to verify the RPV in 

the normal way. 

6.6 Wrapup 

In this chapter we have examined what is needed to initialize the 

file system layer.  We have seen how the file system initializer needs 

dynamic reconfigurations in order to perform its task.  A list of needed 

reconfigurations has also been presented.  We have seen that the file 

system initializer must be divided into two parts: one loaded as part of 

the base layer core image and another, larger part, loaded by the first 

part.  Finally a discussion of the addition of storage system devices 

was given as well as the validation of the root of the file system. 
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Chapter Seven 

Dynamic Reconfiguration 

In the previous chapters we have described a system initialization 

scheme that maintains the simplicity of the core image approach to 

initialization but, at the same time, remains as versatile as 

incremental techniques.  The scheme presented depended, in large 

measure, upon the ability to perform a wide variety of dynamic 

reconfigurations.  In this chapter we will discuss some of the 

engineering issues that one encounters in trying to implement these many 

and varied reconfigurations.  Our discussion will be on the 

implementation of dynamic reconfigurations in the general context of a 

running system and not just for initialization time reconfigurations. 

We do this since at the time initialization invokes reconfigurations of 

a lower layer, the lower layer is running normally and it is not 

initialization time from his point of view.  This is of interest because 

most operating systems provide few, if any, dynamic reconfigurations. 

It is not the purpose of this chapter to provide final answers to these 

issues but rather to point out the important issues and indicate some 

possible solutions. 
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7.1 Hardware Reconfigurations 

Hardware reconfigurations fall into four categories - add a CPU, 

add memory pages or memory modules, add an input-output multiplexor 

(IOM) and add an I/O device.  In his thesis, Schell discussed at great 

length the problems of adding memory and CPU's so we will not discuss 

them further here. We shall, instead, concentrate upon the addition of 

IOMs and I/O devices. 

7.1.1 IOM Addition 

The addition of an IOM is a four step procedure the effect of which 

is to open a communication path between the IOM and the operating system 

and to allow the addition of I/O devices physically attached to the IOM. 

The first step in IOM addition is to place the IOM in a known, 

valid state.  First the IOM is placed in an initialized state where it 

is performing no activities and is waiting for commands from a 

processor.  In particular it should not be performing any I/O or 

attempting to send interrupts.  This is either done by having the 

operator press an INITIALIZE button on the IOM (the approach taken in 

most present day architectures towards initializing a module) or by 

sending an INITIALIZE signal to it.  Next we must ensure that the IOM is 
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using the correct physical address space - we must ensure that the 

physical addresses that the IOM believes correspond to individual memory 

modules are correct.  Finally we must validate its mailbox (1) address. 

The effect of these is that when communication between the IOM and 

processors is begun the IOM will not inadvertently overwrite parts of 

core with ongoing I/O and communications can proceed through a known 

area in core. 

Next we must clear any pending interrupts associated with this IOM. 

(2) Since the operating system is not currently communicating with this 

IOM it has masked out the occurrence of these interrupts. When we open 

the communication path to the IOM we will be allowing interrupts on 

these cells to occur.  Any currently pending interrupts on these cells 

will then cause spurious interrupts that the operating system may not 

handle in a safe manner.  So for safety's sake we now clear these 

pending interrupts.  The manner in which this is done is dependent upon 

the available hardware features.  Ideally the processor has an 

instruction that allows the operating system to clear a pending 

(1) The mailbox is an area in core used as the primary communication 
means between the IOM and processors. 

(2) Each IOM has one, or more, interrupt cells assigned to it on which 
it generates interrupts to processors. 
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interrupt on some cell.  If such an instruction is not available it is 

then necessary to: 

i. Set up an interrupt handler for these cells that ignores 
interrupts on them. 

ii. Set the interrupt mask so as to allow interrupts only on 
these cells, saving the old interrupt mask. 

iii. Wait a short time to allow any pending interrupts on 
these cells to occur and ignore them when they occur (via 
the handler set up in i.). 

iv. Set the interrupt mask to the saved one. 

At the conclusion of this sequence no interrupts will be pending on 

these cells and we can safely proceed to the next step of adding the 

IOM. 

The next step is to allow interrupts to occur on the interrupt 

cells associated with the IOM.  This involves setting up the interrupt 

handler for these interrupts, which is probably the IOM manager. (1)  He 

must be told that interrupts might be coming from this IOM, but that if 

any are received they should be ignored since there are no I/O devices 

on the IOM yet (as far as the operating system is concerned).  Having 

informed the IOM manager about this situation, the system's interrupt 

masks are changed to allow interrupts from the new IOM. 

The last step is to actually open the communication path between 

the IOM and the rest of the system.  First we initialize the IOM's 

mailbox to some known state.  Next we tell the memories to allow the IOM 

(1) The routines that control the IOM: the manager of the IOM resource. 
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to access memory (up to now the IOM has been denied access since it was 

not part of the configuration in use).  With this the complete physical 

communication path between processors, memory and the IOM is in 

operation.  Lastly we inform the IOM manager that the IOM is ready so 

that he can use it fully.  The IOM has been added. 

This addition of an IOM was straightforward but it has one 

important implication - interrupt masks must be protected objects.  By 

this we mean that it must be possible to verify that only valid 

interrupt masks (1) are used by the system.  This is necessary to avoid 

problems before the third step above - allowing interrupts from the IOM 

to occur.  Prior to the addition of this IOM, interrupts on the cells 

associated with it cannot be allowed, since the IOM manager, the normal 

handler of IOM interrupts, does not know about this IOM. (2)  This means 

that all interrupt masks used by the system must be validated to only 

allow interrupts on "safe" cells.  After step three it is necessary that 

those interrupt masks used allow interrupts from this IOM.  This is so 

the IOM can interrupt the processor when it needs to.  In particular we 

want to be sure that when the system wishes to allow IOM interrupts, 

interrupts are allowed from the IOM being added. 

(1) For a fixed configuration there is a collection of interrupt masks 
that the system will use.  At any instant in time in a situation where 
the configuration is changing due to dynamic reconfigurations, we want 
to be sure that the system is using interrupts masks corresponding to 
the current configuration and not to a previous one. 

(2) An alternative would be to direct these interrupts to a handler that 
ignores them or to have the IOM manager ignore them since they come from 
an unconfigured IOM. 
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Assume there are a fixed number of masks that the system uses. 

There are two very similar ways to bring about this protection.  First 

we could have an interrupt mask manager.  Each time it is desired to use 

a different interrupt mask he is called to do it and told, "Change to 

mask i". (1)  He does this by finding, or constructing, interrupt mask i 

and then causing it to be the interrupt mask in use.  In this case to 

allow interrupts from the new IOM we need only inform the interrupt mask 

manager to open up the masks and he will do so.  The other approach is 

to have the collection of interrupt masks currently usable by the system 

in one, fixed location.  When it is desired to use a particular mask, 

one picks up the mask and then begins to use it.  This operation of 

putting a new mask to use must be atomic so that the interrupt mask 

cannot change between picking up and setting the mask.  These two 

methods are equivalent in that there is only one copy of any particular 

mask in the system.  The first method simply provides centralized 

enforcement of masking conventions.  Both methods achieve protection by 

only allowing interrupt masks to be used in atomic masking actions and 

only to be referred to by name elsewhere.  In either method to perform 

step three one need only change the few, fixed masks and then ask each 

processor to remask (so as to ensure that they get the new masks). 

(1) Where "i" is the name of the mask which one wants to use, 
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7.1.2 I/O Device Addition 

The addition of an I/O device is simple once the IOM it is attached 

to has been added.  First the IOM manager must be informed that I/O is 

now possible with this device.  Second the manager of this particular 

(kind of) device must be informed of the device's existence so that the 

manager may update its local databases and, possibly, place the device 

in some particular state. The only possible difficulty in doing this is 

the updating of the device manager's databases as this may involve some 

of the problems mentioned below. 

7.2 Software Reconfiguration 

In this section we discuss some of the problems that may arise in 

performing software reconfigurations.  We deal in general terms so as to 

avoid implementation details and to make our comments as widely 

applicable as possible.  We deal with two types of software 

reconfiguration - setting of parameters and growing of system tables 

(databases). 
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7.2.1 Parameters 

One class of dynamic reconfiguration is the setting of system wide 

parameters, such as scheduling parameters, and switches, such as 

metering on/off.  Here we can give no guidelines across the whole 

spectrum of possible parameter reconfigurations, but we will discuss the 

two major kinds - metering and scheduling. 

We can turn the metering of some function on or off as a 

reconfiguration.  Internally this is relatively simple, since when we 

turn metering on we simply begin gathering statistics and when we turn 

it off we simply stop gathering statistics.  The real issue is how users 

of the metering statistics being gathered are affected.  This is a user 

interface problem and questions must be answered such as: 

If we turn off metering what do we do with the statistics we 
have already gathered? 

When we resume metering do we begin counting from where we 
left off or do we start from scratch? 

Do we need to inform the users of the meters that they have 
been turned on (off)? 

In answering these questions one will formulate the high level mechanism 

of turning metering on/off. 
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Changing system wide scheduling parameters has its major effect 

internally;  the effect on users is simply a change in performance, 

which is the intent.  When we change system wide scheduling parameters 

the basis upon which we scheduled all current processes is invalid. We 

could, at this point, reschedule all processes based upon the new 

criterion.  This is a workable solution but it may not scale well for if 

the number of processes is large or if the cost of rescheduling a 

process is high, for then the cost of rescheduling all processes may be 

prohibitive.  An alternative is to apply the new scheduling criterion to 

individual processes as they come up for rescheduling.  In taking this 

approach care must be taken to ensure that no processes are indefinitely 

kept in a state where they will not be scheduled to run. 

7.2.2 Table Expansion 

We have seen a number of cases where it is desirable to be able to 

expand a database dynamically - the core map, the active process table 

and the active segment table.  In this section we discuss a number of 

issues related to such expansions. 

In some cases it may be possible to avoid ever having to expand a 

table.  Instead, at system generation time, it is allocated at its 

maximum possible size.  Now when we need a new entry in this table it is 

already available and we can just begin to use it.  Initial allocation 

at maximum size is only practical for tables of small maximum size, 
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since allocation at maximum size could tie up excessive memory 

resources.  For instance on Multics the number of memory modules is 

constrained by the hardware to be always less than or equal to eight so 

that the table describing memory modules can be initially allocated with 

eight entries.  On the other hand the core map can have thousands of 

entries and thus be very large and so cannot be initially allocated at 

maximum size. 

7.2.2.1 Supervisor Segment Growth 

In attempting to grow a table it is, generally, necessary to grow 

the segment that the table resides in.  We now consider some of the 

issues associated with growing these supervisor segments.  The following 

discussion will consider such segment growth given that we are trying to 

grow a table that is in the segment. 

These tables have two properties of major interest.  First, they 

are supervisor segments and a process cannot lose its ability to address 

them.  Second, these tables are generally core resident so that the 

space they use must be kept small (since memory is a scarce resource). 

The first question is whether the table should reside in an unpaged 

segment (i.e. an N-word segment is allocated N contiguous words of 

memory) or a paged segment (i.e. it is referenced through a page table). 

An unpaged segment has the advantage that it only takes as much memory 
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as is actually needed where a paged segment takes an integral number of 

pages (potentially wasting space on the last page).  The effect is that 

the paged segment experiences space fragmentation within it.  The 

unpaged segment may cause fragmentation of the physically available 

memory if, when we grow it, we must move it and thus leave a hole in 
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memory behind it (see figure 7.1).  To make efficient use of core using 

unpaged segments the system must be willing to reclaim these holes.  In 

a paged virtual memory system, such as Multics, such a reclaimer is 

unlikely to exist and to build one for this special purpose seems to be 

a waste of effort.  For this reason keeping tables In unpaged segments 

is, in general, less desirable than maintaining them in paged segments. 

The one exception is when the maximum table size is small and known, 
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where initially allocating an unpaged segment of the maximally needed 

size is reasonable.  In short, any table that might be grown should be 

kept in a paged segment. 

Another problem is that there are many processes referencing these 

tables and none can lose addressability since they are in supervisor 

segments.  This means that care must be taken as we grow the segment. 

If we grow an unpaged segment, we must move the data to the new location 

and update all descriptor segments that describe the segment;  this must 

be an atomic operation with respect to references to this segment in all 

processes.  This may be very difficult to do since the number of 

processes may be large and the database may require frequent accessing. 

This is another argument against using unpaged segments for growable 

tables. 

For paged segments this is not as serious a problem.  To grow a 

segment we need only allocate a new page, fill in the segment's page 

table to reflect the new page then go around and change all SDW's to 

reflect the new length.  Only now, after all this is done, need we lock 

the database to add the new entries.  This differs from the unpaged case 

where we had to lock the database while we were changing all SDW's (and 

this is the time consuming part) in order to prevent access to the 

table. 
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7.2.2.2 Multiple Tables in a Segment 

The next set of problems we will discuss occur as a result of 

having more than one growable table in a segment.  This packing 

technique is used in Multics, for instance, to reduce breakage in 

supervisor segments and reduce the number of segments in the supervisor, 

Beginning of 
Segment 

Figure 7.2 

For instance in figure 7.2 suppose that A and B represent tables that 

both can be grown. 

87 



If we wish to grow B we simply grow the segment, if needed, and 

allocate the new entries for B.  No problems occur. 

Now consider the case of growing A.  In order to grow A it is 

necessary to make room for a larger A within this segment.  This can be 

done in one of two ways: move A so it follows B in the segment or move B 

towards the end of the segment and grow A in place.  If we move A to the 

Free 

Free 
Beginning of 

Segment 

Figure 7.3 

end of the segment we then have the situation in figure 7.3 The 

disadvantage of this scheme is that we create "holes" of unused space in 

the segment as we reconfigure.  These holes may represent wasted memory 

resources and so are undesirable.  In any event we must keep track of 
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them so that we may use them later if needed.  The alternative, moving 

B, does not create holes but it does have the effect that a 

reconfiguration of A causes B to be moved.  If an undetected error 

should occur while moving B we could have the unpleasant situation where 

a reconfiguration of A has caused a function associated with B to fail. 

In both cases above we have had to move a table.  We now must 

consider some of the factors that can make the moving of a table 

difficult. 

The first problem is one of locking.  When we move a table we run 

into the problem of someone updating the table during the move.  (This 

problem is analogous to that noted by Schell in his thesis while copying 

pages out of a memory that is being deleted).  To prevent someone from 

performing such modification we must be able to set a lock to prevent 

access to the table.  If access to the table is controlled by a global 

lock we need only set it, move the table and unlock.  On the other hand 

if some system of finer locks is used to control access to the table, we 

will need some means of getting possession of all of these locks.  One 

way of doing this is by having a global lock that, when set, prevents 

the setting of any of the finer locks.  To move the table we then set 

the global lock, wait for any finer locks to be unlocked, (1) move the 

table and then release the global lock.  In either of these cases we can 

move the table with the assurance that no modifications will take place 

(1) We are assuming that no lock will ever be set for an indefinite 
time. 
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during the move since all access is locked out.  It may also be 

necessary to lock out reads of the table during the move so that after 

we make the copy the actual table, no one will still be accessing the 

old table (and hence out-of-date information). 

Another problem in moving a table concerns saved pointers to a 

table.  When we move the table we must be able to change all pointers to 

(or into) the table to reflect its new location. Failure to do so will 

leave some pointer pointing to the old table location which, now, does 

not have valid table data.  This can be solved with a combination of two 

techniques.  First there should be one pointer to the base of the table 

kept in a fixed, known location. All accesses to the table must be 

through that pointer. Also that pointer must be protected by the global 

table lock (1) so that when the table is moved only correct pointers to 

the table are used.  Second, pointers into the table must either be 

offsets relative to the base of the table or they must be indexes of 

table entries.  In either case a pointer to the actual data in the table 

can only be generated by use of the one pointer to the table base and 

this relative offset. 

Another problem limiting the ability to move tables is the presence 

of immovable data.  In the last paragraph we described how virtual 

memory pointers could make a table hard to move.  Tables can also be 

(1) If a finer system of locks is being used, the setting of any finer 
locks should prevent modification of this pointer. 
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hard to move due to absolute pointers (1) to the table.  Examples 

include page tables (used by the hardware memory mapping algorithms) and 

I/O databases that the IOM, in most present day systems, has absolute 

pointers to.  Note that almost all such pointers are for the use of the 

hardware.  The number of such pointers can be rather large and may be 

difficult to update.  For this reason databases pointed to by absolute 

pointers are probably immovable unless some major redesign of the 

hardware is undertaken to minimize the number of absolute addresses in 

the system and make such addresses easily modified.  Such a design is, 

however, beyond the scope of this thesis and so we must consider tables 

pointed to by absolute pointers to be immovable. 

The issues above have been related to moving one of several tables 

in a segment in response to a request to grow one of them.  This problem 

can be avoided entirely if all of the tables in the segment are 

maintained solely by linked lists.  In this case to grow a table we need 

only get some space at the current free end of the segment, create new 

entries there and link them into the relevant table.  There is no need 

to move any current data. 

The best answer to all of these questions regarding moving tables 

is to never have to move them. We can easily arrange this by having at 

most one growable table per segment. 

(1) An absolute pointer is one that points to a particular real, not 
virtual, address. 
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7.3 Multics 

As part of the research for this thesis Multics was examined to see 

how difficult it would be to add additional dynamic reconfigurations. 

To this end we investigated the dynamic addition of IOM's, and the 

reconfiguration of the active segment table (AST), which holds page 

tables for active segments, was designed and successfully implemented. 

This second facility allows one to dynamically create AST entries. 

The ability to dynamically add an IOM was investigated as part of 

this thesis.  This investigation resulted in the paper design presented 

earlier in this chapter.  Two items of interest resulted from this 

investigation.  First the actual addition of the IOM is not really very 

hard.  Some minor problems, and in particular the protection of 

interrupt masks, must be overcome but no major ones.  Second, it was 

found that the actual reconfiguration code could be taken, in large 

measure, from the current code that initializes the IOM related 

databases.  This was a surprising result which, if true more generally, 

would make retrofitting dynamic reconfigurations onto Multics fairly 

easy. 

In developing the ability to dynamically reconfigure the AST no 

major problems were encountered but two minor problems, not previously 

considered in this chapter, were encountered.  First was the fact that 
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that the data in the table, the page tables, was directly referenced by 

the hardware.  This meant that care had to be taken to ensure that the 

page tables were laid out properly.  In particular, the page tables must 

be contiguous in physical memory (as opposed to simply being contiguous 

within the segment) so that the hardware memory mapping algorithm works 

properly.  This was a problem since the segment containing the AST was 

made a paged segment as part of implementing this facility and, as such, 

page i+1 of the segment might not be immediately after page i in 

physical memory.  In particular a page table that is split over a 

virtual page boundary must still be contiguous in physical memory.  The 

solution was simply to make the reconfiguration program aware of the 

physical addresses of the pages in the segment and act accordingly in 

creating new AST entries. 

The second problem was software conversion between physical and 

virtual addresses.  It turns out that frequently the Multics supervisor 

needs to translate the virtual address of some object to its physical 

address and also from a physical address to the corresponding virtual 

address.  This is needed, for instance, to find a page table in virtual 

memory given its physical address (this occurs while handling page 

faults) and to find its physical address given its virtual address (this 

occurs when trying to fill in a segment descriptor word while processing 

a segment fault).  In the current version of Multics this translation is 

very easy, a simple addition or subtraction involving the absolute 

address of the segment and an offset within it, since the segment 
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containing the AST is known to be contiguous in physical memory.  When 

the reconfiguration of the AST was implemented it was no longer possible 

to guarantee contiguity of the AST in physical memory since the segment 

containing the AST was made a paged segment.  The solution was to modify 

this translation code to take into account the lack of contiguity in the 

segment. 

The actual details of how these problems were solved are not 

important.  The important thing is that in implementing dynamic 

reconfigurations one is going to encounter minor problems that will have 

to be solved.  In examining the various kinds of reconfigurations needed 

on Multics, and how to implement them, no fundamental problems were 

encountered.  We conjecture that no fundamental problems would be 

encountered in trying to provide dynamic reconfigurations on most other 

systems. 
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7.4 Wrapup 

In this chapter we have discussed some of the issues associated 

with dynamic reconfiguration.  The addition of processors and memories 

was covered in Schell's thesis.  We covered the addition of IOM's in 

detail.  The important result was that interrupt masks must become 

protected objects.  Addition of I/O devices was then seen to be trivial 

once the problem of IOM addition was solved.  Software reconfigurations 

were then discussed in terms of parameter changing and table expansion. 

The discussion of parameter changing concentrated on two cases, turning 

metering on/off and changing scheduling parameters.  A number of issues 

were discussed with regards to table expansion.  The conclusion here is 

that, to best facilitate table expansion, in general there should be at 

most one variable-size table in a segment and that segment should be a 

paged segment (as opposed to an unpaged segment). 
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Chapter Eight 

Conclusion 

In this thesis we have explored system initialization, the problem 

of bringing an operating system up on a particular machine.  The major 

result of this thesis is a method of initializing systems that is both 

simple and easy to understand and which, at the same time, has the 

property of being versatile in the face of configuration changes.  Most 

current systems employ a method that is very simple, a core image 

approach, but which cannot easily handle configuration changes. 

Multics, on the other hand, uses a method that is versatile but which 

also is rather ad-hoc and difficult to understand.  The method presented 

in this thesis maintains the simplicity of the core image approach and 

the versatility of the Multics method. 

97 



8.1 Results 

We have considered initialization in the context of a layered 

system.  In such a system, initialization proceeds upward, layer by 

layer, first getting layer i initialized and running and then running 

upon it to get layer i+1 initialized;  eventually the whole system is 

initialized.  In this layer by layer approach the hardest part is 

initializing the base layer of the system. 

The thesis presents a method of initializing the base layer which 

essentially reduces its initialization to the loading of a core image of 

the base layer.  This is done by hypothesizing the existence of a 

minimal configuration - a configuration that is a subset of all possible 

viable configurations.  Such a configuration does seem to exist for the 

centralized architectures typical of present day general purpose 

computer systems.  We now assume that the system will be running on the 

minimal configuration, allowing us to create, at system generation time, 

a core image of the base layer as it should appear in core.  We can only 

create this core image once we have assumed some configuration.  The 

minimal configuration is a useful one to choose since a system that can 

run on the minimal configuration can run on any viable configuration. 
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The minimal configuration consists of one processor and some 

memory.  We assume the existence of both a certain amount of memory as 

well as the existence of physical addresses in memory. 

When it is desired to actually get the system up and running one 

must first get the base layer running.  Since we have created a core 

image of it this simply involves loading the core image into memory, 

validating the correctness of the load operation, and then giving the 

base layer control.  At this point the base layer must ascertain the 

system wiring diagram corresponding to the minimal hardware 

configuration.  This is necessary since we did not assume this knowledge 

as part of the minimal configuration for to do so would reduce the 

number of configurations the base layer could run on (i.e. the assumed 

configuration would no longer be minimal).  After ascertaining this 

knowledge the base layer will be running after having only performed a 

load operation and a small amount of processing. 

Once the base layer is operable, control is given to the file 

system initializer.  It is here that the second key concept, dynamic 

reconfiguration, comes into play.  In the process of initializing the 

second layer of the system, the file system initializer will invoke 

dynamic reconfigurations of the base layer to cause it to run on the 

configuration actually present.  Note that it is only the availability 

of these dynamic configurations that makes the assumption of a minimal 

configuration a workable one, as otherwise the system would always run 

on the minimal configuration. 
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File system initialization consists of invoking dynamic 

reconfigurations of the base layer to gain access to the bootload 

medium, an initial paging area and the secondary memory that the file 

system resides on.  Access is needed to the bootload medium so that the 

components of the file system layer may be be obtained since they are, 

by convention, on the bootload medium.  An initial paging area is needed 

since the file system layer is, presumably, too large to fit in core all 

at once so that an operable virtual memory mechanism is needed in order 

to get it running.  Note that up to this point the paging mechanism is 

working but is not too useful since it does not have any secondary 

storage to use as a paging pool.  Before telling page control to use an 

area, the file system initializer must verify that the paging area can 

be used.  This consideration, plus the possibility of a previous system 

failure, led us to conclude that a separate area on secondary storage 

must be reserved for use as the initial paging pool.  The file system 

initializer must gain access to the secondary storage that the file 

system is on so as to perform validation of its contents since a 

previous crash may have left the file system in an inconsistent state. 

The remaining tasks of file system initialization are 

straightforward.  The programs that comprise the file system layer must 

be loaded into the system's virtual memory and pre-linked.  Also the 

databases used by the file system layer must be set up.  This completes 

file system initialization and control is passed outward to the next 

layer in the system. 
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We concluded the thesis with a discussion of implementing dynamic 

reconfigurations.  The addition of an input-output multiplexor and I/O 

devices were discussed as hardware reconfigurations.  The changing of 

software parameters was briefly discussed.  The expansion of software 

tables was covered in detail.  None of these needed dynamic 

reconfigurations was found to present major, or fundamental, 

implementation problems. 

8.2 Tradeoffs 

In considering the approach proposed in this thesis the tradeoff 

between initialization time complexity and system run time complexity 

must be appreciated. 

Fundamentally, the scheme proposed here depends upon the existence 

of many dynamic reconfigurations.  The introduction of these dynamic 

reconfigurations to a system that does not already have them increases, 

even if only slightly, the complexity of the system.  If they are not 

otherwise needed this is a negative factor.  On the other hand the 

existence of these dynamic reconfigurations increases the flexibility of 

the system and reduces initialization complexity a great deal.  The 

system designer must weigh these two factors and decide at which end, or 

where in-between, he wants his system to lie.  In helping the designer 

make this decision we offer our opinion based upon our experience with 

Multics.  The presence of the dynamic reconfigurations increases system 

101 



flexibility a great deal and reduces initialization complexity a great 

deal, all at a rather modest increase in system complexity.  We also 

feel that the system as a whole, including initialization, will be more 

easily certified as correct with these dynamic reconfigurations than 

without because of the simplicity gained at initialization time. 

8.3 Further Research 

The results of this thesis suggest five areas where further 

investigation is warranted.  Four are concerned with dynamic 

reconfigurations.  First an investigation of the tradeoffs involved in 

providing dynamic reconfigurations should be undertaken.  In this thesis 

we have seen how allowing system segments to be growable can result in 

space wastage.  Is this inherent?  Can other approaches eliminate it? 

Do other, unexamined, dynamic reconfigurations incur space/time wastage? 

Second is the issue of DELETE type reconfigurations.  In this thesis we 

found need for many ADD type reconfigurations.  In a computer utility 

one would also want the complementary DELETE type reconfigurations.  An 

investigation of the engineering issues involved in providing these is 

needed.  Underlying the whole area of dynamic reconfiguration is a third 

area of possible future research - hardware.  In his thesis, Schell 

found that the dynamic reconfiguration of processors and memory was 

facilitated by certain features of the underlying hardware.  Could 

hardware features be found to facilitate the dynamic reconfigurations 
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mentioned in this thesis?  For the complementary DELETE type 

reconfigurations?  The fourth area of future research concerns the 

formal specification of dynamically reconfigurable systems.  Current 

papers on formal system specification, such as [SRI], do not discuss 

dynamic reconfigurations.  Examining such a design, it is not obvious, 

to this writer, how to specify dynamic reconfigurations.  Research into 

the formal specification of dynamic reconfigurations is clearly needed. 

The fifth, and last, area where future research might be directed is 

towards the general use of contiguous physical memory allocation within 

the supervisor.  Such allocation might be efficient for things such as 

IOM mailboxes and I/O buffers.  For general use in the system (i.e. for 

user programs and data) the problems of periodic compaction of memory 

may be difficult to deal with efficiently.  In the limited context of 

the supervisor, where the situation is fairly static and the allocations 

come in only a few sizes, is the problem more manageable?  Can 

contiguous allocation be put to use in an efficient manner? 
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