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A NUMERICAL DYNAMIC FRACTURE ANALYSIS
OF THREE WEDGE-LOADED DCB SPECIMENS

by
A. S. Kobayashi*, S. Mall**, Y, Urabe*** and A. F. Emery*

SUMMARY

A dynamic finite element code is used to compute the dynamic fracture tough-
ness and crack arrest stress intensity factor from experimentally determined crack
velocities in three fracturing wedge-loaded double cantilever beam (DCB) specimens.
One experiment involving an Aradite-B DCB specimen by Kalthoff, et al., and two
experiments involving Homalite-100 DCB specimens by Kobayashi, et al. and Irwin,
et al. were analyzed by this hybrid numerical and experimental technique. Despite
minor discrepancies, the computed dynamic fracture toughness and crack
arrest stress intensity factors were in reasonable agreement with those determined
experimentally. This comparative study between different experimental setups
also indicates that the apparent differences in fracture dynamic responses could
be attributed mainly to the differences in material properties, bluntness of the
initial crack and specimen sizes and not to the differences in experimental tech-
niques used.

INTRODUCTION

Over the past several years, Hahn et al. [1,2,3] have been developing wedge-
loaded single/duplex double cantilever beam (DCB) specimens for determining the
relation between dynamic fracture toughness, Kyp, and crack velocity and for mea-
suring a crack arrest stress intensity factor, Kyz. This specimen development was
accompanied by Kanninen et al.'s comprehensive one and two-dimensional dynamic
elastic analyses of the wedge-loaded DCB specimen [4,5] with fixed grip loading
condition. Later analytical developments by Kanninen, et al. included the addition
of a test machine compliance in the loading train for studying the effects of ma-
chine compliance on the dynamic response of a fracturing DCB specimen [6]. The
dynamic responses of wedge-loaded DCB specimens have also been studied experimen-
tally by dynamic photoelasticity [7,8] and the method of dynamic caustics [9].

It is not surprising that the three series of experiments resulted in somewhat
different conclusions regarding the dynamic responses of these DCB specimens. The
results of Reference [7], for example, casts doubts on the existence of a unique
relation between dynamic fracture toughness and crack velocity and hence of a
crack arrest stress intensity factor in the Homalite-100 plates used for fracture
testing. On the other hand, a unique relation between dynamic fracture toughness
and crack velocity is shown in Reference (8] for the same Homalite-100 material of
larger thickness. The crack arrest stress intemsity factor, Kla' was also found
to be 95 percent of the static fracture toughness, KI . Post arrest stress inten-
sity factor was also observed to be slightly lower than KI in agreement with the
concept of Ky, based on a static analysis sometime after crack arrest [10]. Re-
cent fracture testings of Aradite-B specimens tend to confirm the above results
where the crack arrest stress intensity factor, Ky,, was found to be about equal
to the fracture toughness. In these experiments, the dynamic stress intensity
factors after crack arrest oscillated about the corresponding static value which
varied with the crack velocity history (9] in apparent disagreement with findings
of Reference [9].
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Inherent in the above widely varing conclusions of each series of experiments
was the supposition that each result would be generally applicable to any other two
dimensional dynamic fracture problems regardless of sizes, compliances of the load-
ing systems and static and dynamic material properties thus each precluding the
existence of the other two seemingly contradictory conclusions. Before assessing
the possible variability in dynamic responses due to these test parameters, a
standard DCB specimen of common geometry and loading system would have to be ana-
lyzed by the three groups of experimentalists in order to first assess the experi-
mental accuracies of the techniques used. An alternate procedure would be to
analyze the three different wedge-loaded DCB specimens with a common and reliable
analytical technique. The agreement or disagreement between the analytical and
experimental results could then provide some insight into the effects of specimen
size and material properties on the dynamic responses of three different DCB spe-
cimens considered in References [7,8 and 9].

The objective of this paper is to use such analytical procedure for a compa-
rative study of the dynamic responses of one typical fracture test results in each
of References [7,8 and 9] for the purpose of deducing the effects of specimen geo-
metries and material properties in these three separate test procedures.

DYNAMIC FINITE ELEMENT ANALYSIS

The procedure used is a two-dimensional, dynamic finite element code, HONDO
[11]), which was updated and modified for fracture dynamic analysis.®* The basic
modifications consisted of algorithms for startup and for computing dynamic stress
intensity factor, dynamic energy release rate, fracture energy, kinetic energy and
strain energy at each increment of crack advance.

In the startup procedure, the initial static stress distribution in a preload-
ed structure prior to dynamic crack propagation is computed. This initial stress
distribution must be in complete static equilibrium prior to the initiation of a
dynamic event. The finite element breakdown and hence the initial stiffness ma-
trix used in this preliminary static analysis should be identical to those at the
initiation or at the instant of time t = 0+ in the dynamic analysis. Close atten-
tion must be given to computational details. such as matchine the 2x2 Gaussian
integration points in the oreliminarv static and subseauent dvnamic analvses in
order to avoid anv small differences between the finite element aleorithms which
will be sensed as unbalanced residual stresses and thus set off parasitic stress
wave orooagation in the HONDO II analvsis.

In our past dvnamic finite element analvses of fracturine Homalite-100 plates.
considerable oscillations in the calculated dvnamic enerev release rates and hence
in the dvnamic stress intensitv factors were noted [12.13]. Although the lack of
such oscillations in the correspondine dvnamic ohotoelasticitv results are in part
attributable to viscous dampine in photoelastic polvmers. much of the oscillations
were thought to be generated through the instant release of crack-tip, finite ele-
ment nodes during the process of discrete crack-tip advances. In order to reduce
the impulse stress waves generated by such instantaneous release of a crack-tip
node, the nodal force was reduced in equal increments which were determined by
dividing the inter-nodal crack-tip transit time with the built-in finite time-
increment in HONDO II. This procedure physically models a more gradual transit of
the crack-tip between two adjacent finite element nodes. This nodal force release
mechanism is similar to that developed by Keegstra [14-17] with the exception that
the restraining nodal force is completeiy eliminated when the crack-tip reaches the
adjacent node. The dissipated energy during such crack extension will be governed
by the variations in nodal forces versus nodal displacement relation during crack ==

extension. In general this nodal force versus nodal displacement relation is —— y//
s Section
* The updated finite element code is referred to as HONDO II. £oe ion
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non-linear andwill be governed by the dynamic state surrounding the propagating
crack tip thus requiring monitoring of nodal displacement at each incremental

time {f the dissipated energy is used for calculating dynamic energy release

rates. The dynamic stress intensity factor can then be computed from the dynamic
energy release rate using Freund's relation [17]. The generality of this relation
in the presence of reflected stress waves in finite geometry was shown by Nilsson
[18). Alternatively, the near field dynamic stress field as derived by King et al.
[19] can be used to calculate the dynamic stress intensity factor directly from
the numerically obtained stresses either at the closest Gaussian integration point

Or at the center of a'finite element which shares the crack tip node,

The appropriateness of the above procedures for computing a dynamic stress
intensity factor was checked by analyzing the Broberg problem [20]. Figure 1 shows
the coarse finite element breakdown used in analyzing a crack propagating at a
high speed of C/C1 = 0.33 where C and C; are the crack velocity and dilatational
wave velocity in a steel, respectively. The large square finite element of 150
mm x 150 mm as well as the relatively high crack velocity used in this study simu-
lated the extreme conditions experienced in another paper presented at this Sympo-
sium and thus served as an estimate of numerical errors involved in the latter
L21}1.

Figure 2 shows the theoretical and computed crack opening displacements (COD)
as the central crack starts to extend from zero crack length at constant rate.
Despite the coarseness of the mesh, remarkable agreement between the computed and
analytical CODs at even the first few increments of crack extension is noted.

The coarseness of the finite element mesh at the initial phase of crack extension
suggests that the near field COD equations from Reference [19] cannot be used
effectively for computing the dynamic stress intensity factor, K;%Y?. Since the
adfacent Gaussian integration polats and the center of the element was closer to
the crack tip, an attempt was made to compute the dynamic stress intensity fac-
tor, deyn by using the near field, dynamic state of stresses as described in
Reference [19]. The dynamic stress intensity factors computed from the normal
and deviatoric stresses at the nearest Caussian integration point, however, varied
as much as 40 percent from the theoretical values and thus this procedure was
abandoned. The dynamic stress intensity factor computed from the normal stress,
Oyy, at the center of the element as defined in Figure 3 were more stable and
tzua this K, dyn yas compared against the theoretical solution as shown in Figure
3. Note that much of the spurious oscillations in the calculated dynamic stress
intensity factors observed in previous analyses [12,13] were eliminated by the
linearly increasing release of nodal force while the crack tip advanced from one
finite element node to another. The initial large overestimation of Kldyﬂ, as
shown in Figure 3, could be attributed to the inappropriateness in using a one~
term representation of the near field dynamic state of stress when the crack ex-
tended from zero crack length to 3 to 4 finite element lengths. However, re-
markable agreements between computed and theoretical Ky Y0 are noted for longer
crack length where the one-term representation of the near field dynamic state of
stress becomes increasingly valid.

Although the above results indicate the need for finer element breakdown at
the initial phase of the Broberg problem, such fine element breakdown for calcu-
lating deY“ from the mid~element stress may not be always practical, since the
time increment in dynamic finite element analysis is governed by the size of
its smallest element. The strain energy release rate procedure of calculating
static stress intensity factors from the results of finfite element analysis, on
the other hand, consistently provided accurate static stress intensity factors
with relatively coarse meshes and thus the related dynamic energy release rate
procedure was used to compute Kydyn for the same Broberg problem. As shown in
Figure 3, notable improvement in the accuracy of Ky4Y? at the time of the first
increment of crack propagation was made but the K{dyn after 3 to 4 incremental
crack extensions was not as accurate as the Kldyﬂ computed directly from the
mid-element stress. Nevertheless, the proven accuracy of the energy release
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Figure 1. Finite Element Breakdown for Broberg's Problem.

CRACK LENGTH, @ In

CRACK VELOCITY: C/C,20.33

ELASTIC MODWLUS: € +2.067 x 10° uPe

& POISSON'S RATIO: v +0.3 1090

QLATATIONAL WAVE : €, +890¢ m/sec [

) o ANALYTICAL SOLUTION [20] !
=O— FINITE ELEMENT RESULTS

Figure 2. Computed Crack Opening Displacement of a Central
Crack Expanding at a Constant Rate in a Uniaxial
Stress Field of 68.9 MPa (10,000 psi).

=




BSR4

CRACK LENGTH, ain

|
) 2 PN 0

\i
z o
k. 5000
x
o« 50
° -

gt ”
[ - o
e o= Lt 44000
w0l o \
= FROM DYNAMIC
il = ENERGY RELEASE
@ RATE 3000
2z
lél 3o} ANALYTICAL SOLUTION [20]
(2]
. 42000

0F ¢ o |1
g =
@ C +5904m
o €/c2033 as* ]
S 10-  E+2067 x 10°mPo — 1000
§ ve03
rasan

Figure 3.

T RS T, | 1 "
(¢] 200 400 600 800

A e
1000 1200 1400

CRACK LENGTH, a mm

Dynamic Stress Intensity Factors of a
Central Crack Expanding at a Constant

DYNAMIC STRESS INTENSITY FACTOR, K™ psi/in

rate procedure in static analy-
sis and its reasonable accuracy
in computing Kldyn with such
coarse mesh of Figure 1, i.e.
150 mm square, at a high crack
velocity of C/Cy = 0.33 lead us
to choose the procedure of dy-
namic energy release rate for
computing K;®YM in our dynamic
finite element analyses of the
wedge-loaded DCB specimens as
well as the crack arrest test
specimens [21].

WEDGE-LOADED DCB SPECIMENS

The three wedge-loaded DCB
specimens which were analyzed by
the dynamic finite element code
described above are shown in
Figure 4. For convenience in
identification, the three spe-
cimens are designated as KML,
IDKFE and KBW specimens, re-
spectively. The static and dy-
namic material properties as
determined by the three groups
of investigators [7,8,9] are
shown in Table 1. Although the
static material properties were

Rate in a Uniaxial Stress Field of 68.9

MPa (10,000 psi).

& &
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Figure 4. Three Wedge-Loaded DCB Specimens
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Table 1 - Elastic Properties of Wedge-Loaded DCB Specimens

Static Dynamic
Idzpi;:Tcn Material Modulus of | Poisson's | Modulus of Poisson's
ARG oS Elasticity Ratio Elasticity Ratio
CP, GPa
KML[7] Homalite-100 3.72 0.345 4.65 0.345
IDKEF[8] Homalite-100 3.89 0.31 4.82 0.31
KBW[9] Araldite-B 3.38 0.33 3.66 0.39

comparable, the Araldite-B epoxy showed lesser strain sensitivity and higher sta-
tic fracture toughness than the two Homalite-100 plates. The 30 to 40 percent
differences in static and dynamic elastic moduli in the Homalite-100 plates forc-
ed the calculation to be conducted following the procedure [6] developed at Bat-
telle's Columbus Laboratories. Basically, the procedure is to execute all static
and dynamic analyses by using the static elastic modulus and then use the dynamic
static modulus when computing the dynamic stress intensity factor from the dynamic
energy release rate.* Identical fine meshes in the three finite element break-
downs, as shown in Figure 5, were used in analyzing all three specimens in order
to minimize the numerical errors due to different fineness in finite element
breakdown. The crack positions versus time relations for the three specimens,

as shown in Figure 6, were then used to drive the crack at prescribed rates

and the dynamic energy release tate.A}IdY“, and dynamic stress intensity factors,
Kldyﬂ, were computed following the procedure described above. It is interesting
to.note that the crack propagated comparable distances in all three specimens
and that the crack velocity in the KML specimen was significantly higher than
those in the IDKFE and KBW specimens.

RESULTS
KML Specimen [7)

A state of plane stress was assumed in the numerical analysis of this rela-
tively thin Homalite-100 plate. The calculated and measured dynamic stress in-
tensity factors as well as the calculated static stress intensity factor versus
crack position are shown in Figure 7. Since the loading pin displacement at
the onset of crack propagation was not measured in this series of experiments,
the stress intensity factor for crack initiation, Kq*f was estimated on the basis
of matching the total dynamic energy released with the calculated total static
strain energy released in this specimen. The resultant Kq would thus be under-
estimated since no estimate of the extraneous dissipated energy in the specimen
is included in this calculation. Reasonable agreement existed between the com-
puted and measured Kp throughout the crack propagation except for the initial
phase of crack propagation and in the region of momentary crack arrest. The
isolated experimental point in the former was ignored in this comparison due to

* The superposition procedure developed in the original dynamic finite element

analysis [12,13] handles this strain sensitivity problem by using static elas-
tic modulus in the static calculation and dynamic elastic modulus in the dyna-
mic analysis.

** Note that the subscript of I is dropped for all plane stresd results.
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Figure 5. Finite Element Breakdowns of Three DCB Specimens

the blurriness in the dynamic isochromatic fringes and crack tip position which
could have introduced large errors in Kj determination. The wminor discrepancies
between the experimental and calculated Kp in the region of crack arrest can be
attributed to the dynamic finite element analysis which is sensitive to the varia-
tions in crack velocities. Crack velocities measurements in this region were not
accurate due to the discrete recording of the crack which apparently arrested
momentarily before starting up again.

IDKFE Specimen (8]

Figure 8 shows the variations in the calculated and measured dynamic stress
intensity factors as well as the calculated static stress intensity factors.
Note that the state of plane strain was assumed in the static and dynamic ana-
lyses of this specimen, not because this Homalite-100 specimen was thicker (13
mm versus 10 mm), but because the plane stress results yielded a lower Kp and
increased the already existing discrepancies between measured and calculated re-
sults. Further study of the data in Table 2.14 and Figure 2.9 in Reference (8]
indicated that perhaps the recorded wedge-pin-opening displacement in this ex-
periment could be low thus providing a low Kiq on which the entire static and
dynamic calculations were based. If Ky, was underestimated by say twenty per-
cent, then the calculated static and dynamic stress intensity factor curves will
shift upward and almost match the experimental dynamic stress intensity factors.
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Wedge-Loaded DCB Specimens.
KWB Specimen [9]

Figure 9 shows the varia-
tions in the calculated and
measured dynamic stress inten-
sity factors as well as the
calculated static stress inten-
sity factors. Reasonable agree-
ment in the calculated and mea-
sured Kp are seen, with minor
differences in calculated and
measured values in the region
of crack arrest.

Figure 10 shows the calcu-
lated variations in energies
with crack extension. These
energy variations follow the
characteristic rapid decrease
in strain energy, an increase
followed by a drop in kinetic
energy and gradual increase in
dissipated fracture energy
[1-6]. The actual values differ
with those in Figure 2.11 of
Reference [6], particularly in
the former two energies. Part
of these discrepancies could be
attributed to the one-dimen-
sional analysis used in the
Battelle code which would un-
derestimate the strain energy
and hence the fracture energy
computed from energy balance.
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DISCUSSIONS

Calculated and measured dy-
namic stress intensity factors in
KML and KBW wedge-loaded DCB spe-
cimens agreed reasonably well and
there is reason tc speculate that
similar agreement would have been
obtained in the IDKFE specimen.
The dynamic finite element ana-
lysis reproduced the oscillations
in Kp in the KML specimen as well
as the relatively uniform Kyp in
the IDKFE and K in the KBW spe-
. cimen. The oscillations in Kp
in the KML specimen could be at-
tributed to the smallness in
specimen size, as shown in Figure
4, which would generate higher
interaction between the reflected
stress waves and the propagating
1 crack tip. This large stress
wave effect was further augmented
by the high K value necessary to
drive the crack approximately
the same distance as in the other
two IDKFE and KBW specimens.

4 —. L The computed overshoot in Kp im-~
o b o %0 mediately after crack propagation
CRACK EXTENSION, mm could also be attributed to the
large stress wave effect in the
KML specimen. The lower crack
initiation stress intensity fac~
tors in the IDKFE and KBW speci~
mens combined with the much longer
specimen sizes obviously diminished the stress wave effect as shown by the lack of
oscillations in the experimental and numerically determined dynamic stress inten-
sity factors.

o
o0
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EXPERIMENTAL [8) )
M 3

sr/mcw

(PLANE STRAIN)

o
»
—

DYNAMIC FEM.
(PLANE STRAIN)
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o
~N
T

STRESS INTENSITY FACTOR, MPa./m

HOT NS

Figure 8. Stress Intensity Factors in a Wedge-
Loaded DCB Specimen [8].

The gradual deceleration crack speed prior to crack arrest and thus the exis-
tence of a distinct crack arrest stress intensity factor, Ky,, are noted in the
IDKFE and KBW specimens. The high static fracture toughness, Kj., of Araldite-B
could be responsible for the closeness in Ky, and Ky, in the KBW specimen as the
crack slows down to an arrest. Ky, in the KML specimen is less distinct, possibly
due to the lack of experimental data at finer time increments during the period
of momentary crack arrest. Again the difference between the crack arrest charac-
teristics could be attributed to the differences in Kq,specimen sizes and the
assoclated stress wave effects.

The calculated and measured dynamic arrest stress i{ntensity factors of the
three specimens were always lower than the corresponding meéasured fracture tough-
nesses, Ky , and higher than the corresponding static stress intensity factor. The
variability in the latter static stress intensity factor, as noted in Figures 7,

8 and 9, probably exclude this value as material property related to crack arrest.

CONCLUSIONS
The updated HONDO II dynamic finite element code with incremental release

of crack tip nodal force has been shown to be a reliable procedure in analyzing
fracture dynamic problems.
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This code successfully duplicated the experimentally determined dynamic
fracture toughness in two of the three fracturing wedge-loaded DCB specimens and
showed that the apparent differences in fracture dynamic responses could be at-
tributed mainly to the differences in material properties, bluntness of the ini-
tial crack and specimen sizes and not to the differences in experimental tech-
niques used.
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