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1. INTRODUCTION

This paper derives the output covariance function of the Adaptive Line Enhancer
(ALE) for the case of a single known sinusoid in uncorrelated noise. An important applica-
tion of this function arises when deriving the detection performance of a processor incorpo-
rating the ALE as a prefilter. For this case, it is necessary to derive expressions for the means
and variances of the spectral estimates (DFT bin components) at the output of the processor.
When the covariance function of the ALE output is known, it is possible to compute these
spectral means and variances.

This paper contains an expansion of the derivations by Mcduughl for the covariance
function and does not assume a necessarily long filter length compared to signal period nor
that the signal frequency be bin-centered. In addition, the mean and variance derivation con-
tained herein are extended to the case K < L where L is the adaptive filter length and K is
the number of DFT points. The expressions for covariance function and filter output DFT
means and variances as derived in reference | are shown to be correct as long as the following
conditions are met:

I. The filter length L equals the number of points K in the DFT,

2. The signal frequency w is given by wq = mn/L (n = integer). where L is the filter
length and

3. The signal frequency w) is not allowed to approach closely w = 0 or w =7 radians/
sampling interval. This corresponds physically to w( bounded by

T (L 1)
—L<w0<1r —_!_ :

A general expression for the output covariance function is developed when these con-
ditions are not met. An interesting result occurs when condition 2 is not met: the filter out-
put contains a small-magnitude nonstationary component due to the finite length of the
filter.

Section 2 provides a brief introduction to the ALE and outlines its operational char-
acteristics. A specific application of the ALE is presented and a motivation is given to obtain
the output covariance function. Section 3 provides a detailed derivation and discussion of
the covariance function and gives examples of limiting cases and first-order approximations.
Section 4 applies the covariance function to a specific application to find the spectral means
and varnances of ALE output DFTs.

e




2. THE ADAPTIVE LINE ENHANCER (ALE)

PROPERTIES OF THE ALE

The Adaptive Line Enhancer (ALE) is a processor designed to separate the relatively
narrowband signals (i.e., sinusoids) contained in an input sequence from the relatively broad-
band components (i.e., broadband noise) in the input. A block diagram of the ALE, shown
in Figure 1, clearly defines the implementation of a linear prediction filter in the lower chan-
nel. The operation of the ALE has been discussed in detail in the references cited here (2,
3,4, 5) and only will be summarized at this time. The basic principle of operation is: the
narrowband components of the input sequence are strongly correlated over time and thus
may be predicted with accuracy by the linear prediction filter. The broadband componernts
of the input, however, have appreciable correlation only over a short time and are not pre-
dictable with any degree of accuracy. The input sequence is split into two channels: one is

delayed by A sampling periods (denoted by the 78 block) and then input to the linear pre-
diction filter; the other channel is fed directly to a summing junction from which the filter
output is subtracted. The linear prediction filter consists of an L tap tapped-delay-line (TDL),
the taps of which are multiplied by the L weights of the adaptive weight vector (see Figure 2).

input
sequence, $ error, e(k)
x(k)
linear prediction filter output,
-A
e filter * e
delay
weight update
‘ algorithm
Figure 1. Block diagram of the Adaptive Line Enhancer (ALE).
x(k) » e(k)
z 4 7 sos "ok
2u X(k)
Wo Wy Wi 1
+ +
> T pH —» (k)
: 7. )
(LX)

Figure 2. Expanded block diagram of ALE.
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The weights are denoted by the Wj multipliers and these products are then summed to pro-

duce the filter output at time k, denoted by r(k). Mathematically, the filter output is given
by the convolution sum

L-1
k=D Wik x (k-j-a) (1)

j=0
where the filter weights have been written as a function of time argument k to reflect their
adaptive nature. The filter output is then fed into a summing junction and subtracted from
the original data sequence. The purpose of the filter in the delayed channel is to predict the
current value of the data input, x(k), based upon a linear combination of past input samples
x(k = A) through x(k - A - L+ 1). The filter is described as linear prediction, since the filter
output r(k) is a prediction, x(k), of the current actual input sample x(k). Thus the output of

the summing junction, denoted by e(k). may be thought of as the error between the actual
value x(k) and estimate X(k):

e(k) = x(k) - X(k). (2)
If the criteria for the prediction filter is to minimize the mean square of this error. then it is
well known© that the resultant filter weights W* (or coefficients) must satisty the discrete
Wiener-Hopt matrix equation:

wx=R-lp (3)

where R is the L X L autocorrelation matrix of the input sequence and P is the L X 1 auto-
correlation vector with autocorrelation elements

-

rrxx (4)

e (AT

|~
1

(4)

erx(A+L-l)

To solve equation 3 for the W*. sometimes called the Wiener solution or optimal
weight vector, requires perfect knowledge of the autocorrelation lags Tyx (V). but generally
these are never known exactly. The ALE obviates this requirement by solving for the W* via
an iterative technique called the LMS (for least mean square) algorithm. This is a gradient
descent type of algorithm which has been shown7‘ 8 to converge to the Wiener solution for
uncorrelated stationary inputs. The algorithm starts with an arbitrary initial weight vector
W(0) and updates the weight vector elements through the recursion

Wk + 1) = W(k) + 2ue(k) X(K). (5)




In equation 5, X(k) is the vector consisting of the contents of the TDL at time k, e(k) is the
error signal at time k and u is a feedback constant which controls the speed of adaptation.
A stability requirement on u (references 7, 8) is that it be bounded by

0 <p< 1A\ pax (6)

where A is the largest eigenvalue of the input autocorrelation matrix R.

max
Figure 2 shows that the error value e(k) is multiplied by the vector 2uX(k) and then
used to update the individual Wj according to the LMS algorithm. During the adaptation

period, the algorithm updates the filter coefficients such that the filter output converges
toward the highly correlated (and thus highly predictable) components of the input. The
minimization of mean-square-error criteria aligns the phase of the narrowband components
in the data sequence and filter output, which, after convergence, removes the narrowband
components from the error sequence e(k). This is the steady-state operation of the filter in
which the filter weights may be represented by the Wiener solution, as shown ;malyticully3

and expcrimentally.3

In steady-state, the weight vector converges in the mean to the Wiener solution. How-
ever, at any one given time k the instantaneous weight value Wi(k) is given by

& = o (k
WJ(k) W_] +VJ(I\) (7)

where Wj* is the jth element of the optimal weight vector and Vj(k) IS 4 zero-mean gaussian

noise component with variance given by ucz (c: = total input power, signal plus noise). This
component is called the misadjustment noise and is due to the use of the LMS algorithm as a
finite length approximation to the true gradient (reference 2). Furthermore. reference 2
shows the misadjustment noise is uncorrelated from weight-to-weight: that is,

ELV{(K) V{(K)] = ue? 8(i - j). for all i. j 8)

The misadjustment noise and the converged weights W,* are also uncorrelated. Therefore,
due to the zero-mean property of the Vj(k). and that the Wi* are deterministic:

E[W;* Vj(k)] =W E[Vj(k)] =0: for all i, j. 9)

Since the variance of Vj(k) is proportional to . it is evident that the variance of the misad-

justment noise can be made arbitrarily small by decreasing u. This translates into an ability
to approximate the Wiener solution W* to within any desired bound, with the trade-off that
the LMS algorithm takes increasingly longer to converge. For many problems of practical
interest, however, this is of no consequence, and thus this paper will treat the converged
weight vector as the Wiener solution W*.

AN APPLICATION OF THE ALE AS A DETECTION PREFILTER
The ALE provides a real-time method of separating the narrowband input signals

from the corruptive broadband noise components. A primary function of the ALE is as a
detection prefilter as shown in Figure 3. In this implementation. the narrowband components

6




-point -Doi H
x(k)——pf Lpoint L ) Kepoint | 0

ALE DFT
> H,
r(k) R(wp)

Figure 3. Use of the ALE as a predetection filter.

appear at the filter output r(k), which is then used as the input to a DFT. Detection of a
signal with frequency wy is performed by examining the magnitude square of the w) fre-

quency component and comparing it to a predetermined threshold level. Introductions to

the detection problem in general may be found in many textsg' 10 and only the framework
of the problem is presented here to provide motivation for obtaining the covariance function.

The case examined here is a purely sinusoidal signal s(k) corrupted by an additive
gaussian noise sequence, n(k). Let s(k) be defined by

s(k) = A sin (wgk + 6) (10)

where A is the signal amplitude, w) is the signal frequency and 6 is the unknown initial phase
of the sinusoid. Let the additive noise n(k) be a white zero-mean sequence with variance v=:
that is

E [n(k)] =0 (11a)

E [n(k) n(p)] = »> 6(k - p) (11b)

where E[*] denotes the expectation operator and 8(*) is the Kronecker delta operator. With
the signal term and noise sequence represented by the preceding equations, the received data
sequence x(k) becomes

x(k) = s(k) + n(k). (12)

Now consider the operation of the converged prediction filter upon x(k). Since s(k)
is completely deterministic and zero-mean. the variable x(k) is a zero-mean gaussian random
variable for all values of k. The filter output. denoted by r(k|#) to reflect the dependence on
unknown initial phase 6. is defined as

L-1
r(k|0)=z Wj* x(k-j-A4). (13)
=0

Thus r(k|6) is a linear combination of previous input samples. The summation of the L gaus-
sian variables, therefore, produces the gaussian variable r(k|@). As shown in Figure 3. the
detection processor then operates upon the filter output with a K-point DFT to produce the
spectral estimate R(w). The w( component of this estimate, R(w). is given by

R(wq) = u +jv (14)




where
K-1
u= 2 r(k|0) cos wok (15a)
k=0
K-1
V= r(k!0) sin wqk. (15b)
k=0

The variables u and v as defined in equations 14 and 15 are recognized to be the real and
imaginary components of the spectral estimate at frequency wq. The statistical independence

of u and v has been demonstrated in reference 1, and thus have a joint probability density
p(u, v) given by

p(u, v) = p(u) p(v). (16)

It may be seen from equations 15a and 15b that for a given w) the variables u and v are
formed by linear combinations of the output samples. Since the individual r(k|0) are gaus-
sian variables, the scaling by cos wpk and summation cause u to be a gaussian variable. A
similar argument holds for v. Thus the u, v are gaussian random variables with calculable
means u and Vv and variances ou2 and 0\,2. which completely specifies the joint probability

density of equation 16:

p(u, v) = —l exp [—

L fv— 7\ 2
exp | - (17)
3m0, 2\ o
I Liu-% 1 pv-vi
u-u V=V
u,v)= Xp |-——(— = =ifli—— : (18)
plw, v) ’wooel)[.’_(o ) 2(0,)] ]

i ® 2 u

Thus, if one has knowledge of the mean values u and v (defined by E(u) and E(v). respec-
% ’ 2, ’, sk s s il o, I ;
tively) and the variances o~ and o, the joint probability density function is immediately

known.
Consider first the variable u. The variance of u is defined by ou:. where
Y 2 2, o 2y
0,° = E{u=} - [E{u} - (19)

By applying the definition in equation 15a to equation 19, "u: becomes

K-1 K-1
o4 s
oy =k S‘ z r(k(6) r(€]6) cos wgk cos w(l
k=0 2=0
K-1 K-1
-E r(k|6) cos wok E z r(216) cos wpl
k=0 =0

8




T

l K-1 K-I
= z z E{r(kl@) r(QlO)} cos wek cos wn
k=0 €=0
l K-1 K-1
E z E{r(kl0)} cos wok z E{r(210)} cos wyl
k=0 =0
or
K-1 K-1
Y - , =
0,” = z [I—_{r(k\ﬂ) r(QIO)} - E{r(klﬂ)} [:{r(QIG)}I cos wok cos wql.
ko0 (20)
The autocorrelation function, ¢p(m) is defined as
¢p(m) = Efr(ki0) r(k + m|9)} (21)
and the covariance function, Ye(m), as
Y (m) = ¢.(m) - E{r(kI0)} Efr(k + mi0)}. (22)
Then, the expression for the variance of the statistic u becomes
K-1 K-1
°u2 = Z z 7L = K) cos wpk cos wp (23)
k=0 =0
Similarly, one may derive for the statistic v the following expression:
K-1 K-I
‘7\'2 = z 31 ¥ (¢ - K) sin wgk sin wg (24)
k=0 ¢=0

Thus the variances of the u and v statistics are dependent upon finding the covariance func-
tion v (¢ - k). This derivation is pursued in the following section.




3. DERIVATION OF THE ALE OUTPUT COVARIANCE FUNCTION

First, the expression is found for the expectation of the output at time k conditioned
on a knowledge of 6, denoted by E{r(kl@)}:

L-|
Efrkio)} = E{ > Witk x(k=j- a)} . gLj<L~1
j=0
L-|
=E{ > [Wj*+ V()] [Asin [wg(k=j-A)+6] +n(k-j-2)]f.
j=0

(25)

However, the misadjustment noise Vj(k) and white noise sequence n(p) are uncorrelated;
that is,

E{Vit nim} = E{v;i0 } E{nm} =0
for all k,j and p. Furthermore, since Wj* is deterministic,
E{Wj* n(p)} = Wj* E{n(p)} =0.

Similarly. the sinusoidal term is completely deterministic, causing the cross product expec-
tation between Vj(k) and the sinusoid to vanish. This reduces equation 25 to the following:

L-1
E{r(kl())} = 2 Wj*Asin lwotk-j-A)+0]. (26a)
i=0
A similar derivation gives the expectation L"{r(k +m|0 )} as
L-1
E{r(k+m]0)} = Wi*AsinIwo(k+m-i—A)+Ul. (26b)
i=0

Using equation 22 as the definition of the covariance function. then the evaluation of @p(m),
as given by equation 21 i<,

¢p(m) = E{r(ki0) r(k + m|6)}. L = filter length.

L-1 L-1
Wj(k) x(k=-j-4) ? Wi(k +m)xtk+m-i-4)
e

=E
=0 i=0

|
|
1
|
|
:
|
i
!
|
.



L-1 L-1
¢p(m)=E 2 z [Wj(k)W]-(k+m)] [Asin [wg(k -j-A)+6]
=0 i=0 l
+tnk-j-4)] X [Asin [wgtk+m-i-A)+6] +n(k+m-i-4)]

(27)
As before, the misadjustment error, Vj(k). the converged weight value Wj*. and the white

noise sequence n(k) are all uncorrelated. This causes several of the cross-products in equa-
tion 27 to vanish, which will simplify the expression. Expanding equation 27:

¢ m) =g +dyt+o3+¢y (28)
where
L-1L-1
$1=E S‘ [Wj(k)Wi(k+m)] AZsin [wok=j-A)+0] sin [wg(ktm=-i-A)+ 0]
et
28 (29)
L-1L-1
¢ =E Z (Wj(k)Wi(k+m)IAsinlwo(k—j—AH(}l nk+m-i-4) (30)
j=0 i=0
L-1L-1
¢3=E \ Z [W:(k) W:(k + m)] A sin [wo(k+n:-i—AD+0| nk-j-4)y 31)
3 Z, i i
=0 i=0
L-11-1
94=E S \ lW(k)\\(k-fm)I nk-j-A)ntk+m-i-A4)}. (32)
e s
j=0 i=0
First, evaluate ¢5:
L-1L-1
¢, =E lWi(k)Wi(k+ m)] Asin [wp(k=j-A)+0] n(k + m=-i-A4)
=0 =0
L-11-1
= A E (W*+V(I\)|lw*+V4k+m,ln(l\+m—|-m}
=0 1=0

Xsinlwo(k—j—AH()l




L-1 L-1
ik Z z EJIW;* Wi* + Vi) Wi* + W;* Vi(k +m) + Vi(k) Vik + m)]
j=0 i=0
Xn(k+m-i-A)} Xsin [wo(k-j-A)+0]. (33)
However, it has been assumed that Wj", Vj(k) and n(k) are all uncorrelated for all j and k.
This causes the expectation in equation 33 to vanish giving

¢2=0.

Similarly, it may be calculated that ¢3=0.

Now evaluate ¢ in eGuation 29:

L-1L-1

=0 =0
X sin [wo(k+m—i-A)+0]
L-1L-1

=A2 DS E{IW+ Vik! W)+ Vick +m)l}
=0 i=0

X sin [wo(k =j-A)+6] sin[wo(k+m—i—A)+01.

Again W;* and Vj(k) are uncorrelated and E{Wj* Vj(k)} =0 giving

L-1L-1
P =A2 Z z E[Wj* W.* +Vi(k) Vi(k+m)l sin [wO(k -j-A)+0]
j=0 i=0
Xsin [wok+m=-i-A)+0]. (34)

For the sinusoid in white noise. it has been shown (references 3 and 4) that the converged
weights Wj* have the form

£t D
Wj ¥ cos wq(j +4) (35a)
where
« = (L/2) SNR 5
T+ (L/2) SNR &8)
and

SNR = A2/202,

12




Thus, we have E[Wj* Wi*] = Wj* W, *. Furthermore, the misadjustment noise is assumed to
(36)

be uncorrelated from weight-to-weight but to have a constant variance over time:

ELV{(k) Vi(k + m)] = pe? 86 - ).

Substituting equation 36 into equation 34 and rearranging, then:

L-1L-1
¢y = \ E A: Wi* WJ-* sin [wo(k—j—A)+H] sin [wo(k+m—i-Al+0l

=0 i=0

S
o

At i=0

—

ue 8(i - j)sin [wp(k -j - A)+6]

(3]

—

X sin [wo(k+m-i -A)+ 0]
L-1

L-1
=D Wit Asin (wgtk=j=2)+0] > Wt A
d pa—;
=0

=0
Xsin [wg(k+m-i-A)+6]

o, L—IL,_.
+% Z uc: 6(i-j)[cosw0(m—i+j)
=0 1=0
- cos w2k +m-i-j-24)+20]]. (37)

But comparing this expression to equations 25 and 26 it is seen that

¢ = E{r(kio)} E {r(k + m(o)}

5 5 L=lL-1
+A—7“C z z 6(i-j) {cos wop(m =i+j)
T j=0i=0

- cos [wg(2k +m=i-j-24)+ 201}

=E {r(klo)} E {r(k + mio)}
y 5 L-1

#5 f““ Z {cns wom - cos [wp(2j -2k +m+24)- 30]}

-




2 2
= E{r(kl@)} E{r(k + mlﬁ)} + A-‘.—“:_-_L cos wom

A’ ‘71‘—
- Tgos[’wo)+(m-’k+’A)wo—’el (38)

j=0

Formulas are available to evaluate a finite sum! ! and several are listed in the appendix. The
last term in equation 38 may be written in the form

L1 sin wqL
z cos [Zwoj + Y] =—cos [wo(L— 1+ Y]
= sin w

where Yy = (m - 2k + 24) w( - 20. Thus equation 38 becomes

-

5
¢y = E{r(klﬁ)} E{r(k + ml())} =+ A L cos wpm

"
A ‘“ SL(wO)Los[wO(L—l)+(m-’k+’A)w0- 0] (39)

where the substitution

sin wolL

St (wp) =—
L'*0 sin w(

has been made. For n(k) a white, gaussian noise sequence, & = 1 is sufficient to decorrelate

signal and noise components. Thus equation 39 simplifies to

-5 AlpclL
?) = E{r(kl())} E{r(k + m[(?)} + —————— cos wgm

b,

A_:“~SL(w0)coslwo(Zk—m-L—l)+201~ (40)

This differs from the expression obtained by Medaugh in reference 1 by the inclusion
of the final term in equation 40. Implications of this will be examined later.

Returning to equation 28, it remains to evaluate ¢4, given by

L-1L-~]
¢4 =E z z {Wj(k)Wi(k+m)j nk-j-A)yntk+m-i~-A)}.
j=0 i=0
Thus,
L-1L-1
¥4 = E W(k)W(k+m)‘>[{n(kq-A)n(l\+m—)—A)f
=0 i=0




e b Tl st s

L-11L-1

- z z [W;* Wi* + E{Vi(k) Vick + m)} ] Efnck - - A)
=0 1=0

X n(k+m-i—A)}.

n . . : . 2
The noise sequence n(k) is white, zero-mean and gaussian with variance v

=. Thus,
L-1L-1
¢4 = z z [W*W*v 6(m-1+1)+ut 8(i-j) v 8(m-i+j)]
=0 i=0
L-1L-~1
4a*? : . : -
- " cos [wgl + A)] cos [wgli +4)] d(m-i+))
=0 i=0 L-
L-]
+ z el 72 5(m)
i=0
’4*2 2 P
04 = [cos wgli-j)+cos wpli +j+24)] d(m -i+j)
j=0 i=0

+ /.u:"" »2 L 6(m).

41)
Now sum over the i-index in the first term of equation 41

. The impulse function is non-zero
only when i = m + j, and the double-summation reduces to
IR

z z gos wo(i-j)+cos wo(i+j+2A)} S(m=-i+j)
i=0 j=0

= z {cos wp(m) + cos wo(m+2i+2A)}. (42)
i

O0<|m|/<L-1.
The index on i no longer goes from 0 to L - 1 since not every value of j = [m[ + i lies in the

interval 0 < m|+i<L-1.

There are only j = jm| values of i for which the delta function in
equation 42 will be non-zero. The index i thus has the value i = j - |m|, and

when j=0—1=-m|,

whenj=L-1->i=L-1-[mj|

————




Furthermore, the lower bound on i is limited to i = 0 and the upper bound isi =L - |. Since
m can be positive or negative lag in the range Im| < L - 1, the summation in equation 42 may
be written as either:

L-1-m
= z {coswom+cosw0(m+2i+2A)}, T
1=0
or
L-1+m
i = z {cos wom + cos w(2i - m + 24)}. 0>m>-L+1.
1=0

Evaluating the finite summations I and Il according to the identities in the appendix
and substituting A = 1:

sin wO(L -m)

| =(L—m)cosw0m+ cos [wqg (L + 1],

sinwo
0<m<L-1

sin wO(L +m)

ll=(L+m)cosw0m+ cos [wq (L+ 1)},

sin wq
O0>m>-L+1.

By employing the absolute value notation |m|, the expressions I and 11 may be combined
and the left-hand side of equation 42 written as

cos wO(L +1)
(L - {m}) cos wom+ | ———— }sin wq (L -1mpJ.
Sin LuO

0<|m<L-1.

Substituting this expression into equation 41 gives the final value for P4q:

Ya#2 2 cos wg(L+ 1)
¢4 = (L - [m]) cos wom +| —————— ] sin wq (L - |m|)
L2 sin wq

+uc? v2 L 8(m), 0<Im<L-I. (43)
Now substituting equations 40 and 43 into equation 28, the autocorrelation function

becomes

) 5,
oe(m) = E{r(ki0)} E{rck + mio)} + A7H L o om




r—“.b S ————

3. D
Aa- N &
= ;L SL(wo)coslwo(Zk-m—L—I)+20] +;.4c2 V2L6(m)
e cos wo(L+ 1)\
T e (L = Im[) cos wgm +{ ——————— ] sin wg ‘L - im)}.
L~ Sin wO
m|<L-1. (44)

Thus, the covariance function as given by equation 22 becomes

Y(m) =y (m) +y5(m) +y3(m) +y4(m) +y5(k, m),

O0<|mIsL-1 (45)
where

‘y](m)=yc2u:L &(m) (40a)
9, 5

72(m) =P“,L—L] Cos wpm (46b)
1a*2 y2

y3(m) = '—L,—( L - Im]) cos wpm (46¢)

13*: V: Cos Wy (L+1)
Fqlm) == S Sin wg sin wq (L - Im]) (46d)
A2 gice
Ys(k.m)=- [——?L—]SL (wg) cos [w(Zk- m- L- 1)+ 20] (46¢)

For lags. Im| 2 L. the covariance function becomes
'yr(m)=73(m)+75(k.m) 47)

The origin of these terms is ecasily understood by considering the steady-state filter
response as the superposition of two processes: (a) a fixed filter converged at the Wj 2
and (b) a broadband “noisy™ filter due to the misadjustment noise. Thus, the Y term is due

to the uncorrelated noise sequence passing through the broadband noisy filter. The result is
to produce an uncorrelated noise sequence in the filter output which is scaled by the product

. . . P . . . i .
of total misadjustment noise power, uc-L, and white noise input power, v=. The term 7y is

: : 2 ; = :
produced by the sinusoid (of power A=/2) passing through the broadband filter. As such it
represents a pure sinusoidal term in the output at wq whose power is scaled by the sinusoid

power and total misadjustment power. The term 3 is produced by the input white noise

within the bandwidth of the converged filter. This produces a narrowband noise term in the
filter output centered at the same frequency as the sinusoid, but with a bandwidth of the
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converged filter. The finite bandwidth of this noise process is evidenced by the triangular
weighting on the y3 component. The terms Y4 and y4 result from the finite number of pre-

dictor weights and are produced, respectively, by uncorrelated noise passing through the con-
verged filter and the sinusoid passing through the broadband filter. Note that Y| Y4 are

not functions of time argument k and therefore represent stationary components of the filter
output time series. However, Y5 is a function of k and as such represents a nonstationary

component of the output sequence.

The terms Y1.72.and v3 are contained in the covariance expression derived by
Medaugh [1]. However, the function defined by Yp(m) in this paper contains the additional

terms y4 and 15 which will next be examined in detail.
Origin of Nonstationary Covariance Terms

Consider Figure 4, which illustrates the case for an integral number of signal cycles
contained within the filter length L. Note that for this case. SL(wO) = 0 and thus the

7v5(k, m) vanishes. This corresponds to the continuous case that the integral over any number

of full sinusoid cycles must vanish. As k increases. the signal progresses through the filter

_4n
(oS
P -~
= VA 4
t=ky |, \ / \\
N S (a) AA =0
~/ \\-l

|==————filter length = L ———

= 7 N
t= k2 ‘, \‘ / \.
/7 \ / X (b) AA =0
- \N /7 \~'
”~N -
= V4 /7 N\
t=kg ' \\ ) \
/ \ 4 (c) AA=0
/
\\/, \s’

Figure 4. Progression of signal through filter for integer
(n = 2) number of cycles.




but the integer characteristic of signal cycles remains constant. Thus yg = 0. and the resuit-
ing expression for the covariance y (m) given by equation 45 is independent of absolute
time index k. As wq changes slightly, however, an incomplete cycle of signal data is held
within the filter. (See Figure 5.) The quantity AA is the measure of excess sinusoidal cycles
contained in the filter at the times t = kl' ks, k3. For the case wq = 4n/L in Figure 4, there
is no cycle excess for any value of t. However, the absolute time value k causes an uncancelled
cycle excess when the frequency wq # 2na/L. Furthermore. the “polarity™ of AA oscillates
between its extrema with a frequency given by 2wq. This phenomenon can be seen by trac-
ing the cycle excess in (a), (b) and (¢) of Figure 5. From (a) to (¢), the sinusoid itself has
traversed /2 radians through the filter, while the cycle excess has gone from its minimum to
its maximum, a transition ot « radians for a sinusoid. This is reflected in the time-dependent
term yg(k, m) which has oscillations at a frequency 2w(. For fixed lag mg. the value of

v5(k, mg) will oscillate about its mean value with frequency 2w as the time index k
increases. For fixed time value k), the function v5(kg. m) behaves cosinusoidally as the lag

m is increased.

Being dependent upon the time index k. ys(k. m) as defined by equation 46. repre-

sents a nonstationary process occurring within the filter. This is due to the finite length of

5 - >~
Lt / \

/7 (a) AA = -Y% cycles
/
o z«

=) 7
t=k, , \\
T > % (b) AA =0
S
P
7 N

i il e,

\ ,’ (c) AA = Y% cycles

b O

Figure 5. Progression of signal through filter for
non-integer number of cycles.
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the filter being “mismatched” to the signal frequency. However, there are two reasons why
this term essentially can be neglected:

1. As time k increases, the average over k of 75(k, m) is zero.

2. The amplitude of y5(k,m) for all k, m is typically bounded much smaller than
the amplitudes of the other terms in the covariance expression 45.

Figure 6 shows a plot of

SL(wO) _ sin wOL

L L sin w()

vs. wq which illustrates the frequency intervals for which v5(k, m) may be neglected. For
this figure L = 64, but the plot is representative of all values of L. The envelope of Sp(wq)/L
decays quickly and is bounded by 1/L for w( near /2. For purposes of comparison, con-
sider y5(m) which is another narrowband component of the covariance expression equation
45. It is seen that the amplitude of y5(k, m) is much smaller than Azuch/l for frequencies

away from the DC bin by forming the ratio of the two amplitudes:

Auc g (om
Amp [y5(k. m)] L)
== o e, =——SL(w0)
Amp [73(m)] A3 chL L

I
25 =~ 26
L B el — 10
us
2r  Ar  6n z 7 (L-3) m(L-1)
L L L 2 L i 5

radian frequency, wo

Figure 6. Plot of SL(wO)/L vs. wy for L= 64.
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Thus, the amplitude ratio of (k. m) to the narrowband component y5(m) is given by the
plot of Figure 6. For n/L < wqg < (L-1)/L, the y5(k, m) term may be neglected without

introducing appreciable error into the covariance function y (m).
?

The second term under consideration, y4(m) as given by equation 47. is next to be
examined. Its effects upon the total covariance function can best be seen by comparison
with the narrowband covariance component y3(m). This term and YH(m) both contain the
scale tactor

and thus may be compared easily. This is shown in Figures 7a, 7b and 7¢ which compares
the two terms as a function of lag (m) for three different frequencies (a filter length

L = 1000 was chosen). Figures 7a and 7b illustrate that the narrowband component y3(m)
dominates y,(m) for w(y = 7/10 and w( = 7/100. The narrowband component has a tri-

angular envelope due to the (L - [m|) weighting and thus only as the lag (m| approaches L
does y4(m) become appreciable in magnitude to y3(m). For wg = /1000, however, Figure

7¢ shows that y4(m) becomes appreciable in relative magnitude at about m = 0.2L. This

frequency represents a line at the boundary between the DC bin and bin centered around
w = 2m/L = 27/1000. For this frequency, the y4(m) should not be disregarded, especially
for large m.

A similar behavior appears as w( approaches m radians/sample interval. The term
Y4(M) is NOW a narrow band component with frequency approaching m, but with an
envelope similar to that of y4(m) in Figure 7¢. I w is located at the bin boundary between
the w = mand w = (L - 2)7/L bins, then y (m) will be appreciable in magnitude for mid-

range values of m and should not be disregarded.
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Figure 7. Relative values of covariance function components
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4. CALCULATION OF DFT MEAN AND VARIANCE FOR ALE OUTPUT

This section applies the covariance function toward obtaining expressions for the
ALE filter output DFT mean and variance. The general outline of Section 2 is followed
here, and the derivations from Section 3 are utilized.

As derived in Section 3, the following expression for the covariance sequence,
Yr(m), will be used in the subsequent DFT mean and variance calculations:

3 a9 *2 D
Atpes L, 2a <y
B)

7r(m)=pc3v2L6(mb+ & =3 (L-Iml) } cos wgm

+

23*2 p2 fcos w( (L+1)

LZ sin W)
K2 pel T,

= “,L coswgm, Im =L . (48)

) sin wg (L-Imf), 0<|m|<L-1

In this section the DFT component means, denoted by E(u) and E(v), are derived, where u
and v are defined by equations 15a and 15b, respectively. Additionally, the DFT compo-

9, )
nent variances, o~ and g,,~. are derived.
DERIVATION OF COMPONENT MEANS
Begin by deriving the expectation of u, the real component of the output DFT at
frequency wy, for the case of signal present. The notation
sin w( K

SK (wo) B sin w(

will be used, as will the solution for Wj*. the converged value of the jth weight, given by

Yo ¥

Wi" = = cos [wg (+4)]

J
where the delay is A and the filter length is L.
Thus, for a DFT of K points,

K-1 =
E {u} = E r(kl@)coswpkt = E z Wj(k)x(k—j—A)
k=0 0 Lj=0

X cos wok




K-1 K-1
Z z g {[Wj*+vj(k)] [Asin [wg (k-j-4) + 0]
k=0 j=0

+n (k-j-4)1} cos wgk

K-1 K-1I

z 2 {AWj*sin[wO(k—j—A)+0]+AE{Vj(k)}
k=0 j=0

X sin [w(k=j-A) + 0] + W;* E {n(k-i-2)}

+ E {Vj(k) n (k—j—.‘.\)}} cos ka

K-1 K-1
A 2 Wj* sin [w() (k=j-A) + 0] cos wpk
k=0 j=0
K-1 K-1
2a* A . : A
T sin [wo(k—J—AHHI cos [wo (j+4)] cos wpk
k=0 ;=0
oo Bk Kol
a_A 2 sin [wg(k-j-4) +0] {coswo(j—k+A)
k=0 j=0

a* A e . -
= sin [_wO (G-k+A) + 0] +sin {0]

+sin [wg (2 + 24) - 0] +sin [wo(Zk)+0|}
K-1

'ZL
k=0

+ Sy (wp) sin (w)(K=1)+ 2ag A~ 01 + K sin [2wgk +01}

at A
2L

[Kz sin 6 —SKZ (w() sin le(K-I)— wo(K-1)

- 2w A-01 +K Sy (wg) sin [wg (K- 1) + 2wy A-0]

+K SK (wq) sin [wO(K—I)+01

24
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Let A = 1 for the white noise delay value. This gives the following:

¥ 2 .
a ,,[}JK S B i A

E(u) = 5L

{Skz(wo) sin (2wq +6)
+K Sg(wg) sin [wg(K + 1) -0 K Sg(wq) sin [wo(K-1) +0] }

. 2 S F
= & 2’?‘]( sin()+%tASK3(w0)sin(2w0+0)

'd*
+

AR Sy (wg) sin wgK cos (wy-0) - (49)

If w is bin-centered, SK(wO) =0 and E(u) reduces to

*

5
E(u) = - ,’?_K sin @ . (50)

Note that when the filter length and DFT length are equal, K = L, and

,*
E(u) = 2 ,;\Lsind

which agrees with the expression derived in reference 1.

By the same analysis, E(v) may be shown to be given by

2 F 2 ¥
E(v) = -/E‘,_TK cos 0 - % SKz(wO) cos [2w0—()l
a® AK
+ T SK(wO)sin woK sin(wo—t)) . (51

If wy is bin centered and K = L, then equation S1 reduces to

ok
Bt = & .,ALCOS() (52)

which agrees with reference 1.
DERIVATION OF COMPONENT VARIANCES

. 3 : ’ s
Now, first derive an expression for the variance, 0=, of the real component of the
o : : 3
output DFT at w() under conditions of signal present. The expression for 0~ has been
derived in section 2 and is given by

K-1 K-1
0, = z z YH{E-K) cos wqk cos wgt, K<L (53
k=0 ¢=0
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where K = number of points in the DFT and K is less than or equal to L, the length of the
adaptive filter. All subsequent derivations assume K < L. Substituting equation 48 into
equation 53 one obtains
K-1 K-I
‘) —
oy~ = Z Z {u 6 (¢-k)+ b cos wO(Q-k) + ¢ (L-12-k]) cos wO(Q—k)
k=0 =0
+ cd sin wO(L—|Q~k|)} cos wpk cos wp¥ (54)
. _2a*3)?
where a=gcape L ; ¢F Y.
(55)
21 A2 cos wq (L+1)
b = MC ’LA d o= .____0_——
2 sin wq
The variance expression in equation 54 can be rewritten as
ou2 = 012+a:2+033+042 (56)
where
K-1 K-I
olw = z z a8 (-k) cos wpk cos wpt (57a)
k=0 ¢=0
K-1 K-]
032 = 2 b cos wq(X=K) cos wpk cos wql (57b)
k=0 ¢=0
K-1 K-1I
032 = z z ¢ (L-12-Kk) cos wg(¥~k) cos wgk cos wyl (57¢)
; k=0 €¢=0
K-1 K-
; 042 = od sin wqy (L=[¥=K]) cos wpk cos wt (57d)
k=0 =0
‘ The evaluation of these terms is quite complicated and thus cach term will be treated in a
‘ separate subsection.
'
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A. Evaluation of 012

Begin with 0 2as given by equation 57a:

K-1 K-1
012 = z z ué(Q—k)coswokcoson (58)
k=0 €=0
K-1 K-1
2 a
= a z cos= wok == z [1 +cos2w0k]
k=0 k=0
223 dg (wg) cos wy (K-1 59
O 3 B K(wo uoswo( -1) . (59)
2

B. Evaluation of 05

Begin with 033 as given by equation 57b:
K-1 K-1

04° = Z z b cos w(y(R-Kk) cos wqk cos wq ! (60)
k=0 €=0

Z z b [cos w( cos wk +sin wq ¢ sin wqk] cos wgk
k%
X cos wOQ

z 2 b [cos.2 wOQ cos2 wok +—‘l43in Zwok sin 20.;0 Q]
k ¢

z [1+cos 2w+ cos 2wk + cos 2w (2-Kk)] !
kiR i

|

-~

|z

|K + SK (w() cos wO(K-l ) + K cos 2wgk

>~

+ SK (wq) cos [wp(K-1) - 2wkl |
= —% [K2 + K SK(wO)cos wO(K-l)+ K Sk (wq) cos wq(K-1)
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b2 Kb sKmO)[ SK(wO)]

w o = cos wq (K-1) +——=¢ 61)
C. Evaluation of 032
Start with 032 as given in equation 57¢:
K-1 K-1
032 = z z ¢ (L-1€-k]) cos w((R-k) cos wk cos wp? . (62)
k=0 ¢=0
Using a series of trigonometric identities, this can be written as
K-1 K-1
P
#y¢ = = [1+cos ?_wo(Q—k)+cos 2w0k+cos ZwOQl
=0 k=0
K-1 K-1
-i- [€-Kk| [1 + cos 2wq(L-k) + cos Zwok
=0 k=0
+cos 2wl (63)
= Sl - S: ; (63a)
Sum the first summation Sl over the k index:
K-1
oy = % 2 [K + SK(wo)cos [wp(K-1) - 2wl
=0
+ SK(wO) cos w(K-1) + K cos ZwOQI R
Then sum over ¢:
S = °—4L- [K2+SK3(w0)+2K Sk (wq) cost(K—l)] £ (64)
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Now expand the second summation S, from equation 63 and remove the absolute value

notation:

K-1 -1

2 =-4& z (2-k) [1 + cos 2w0(2—k)+cos 2wgk + cos ZwOQ]

K-1 K-1
4L z 2 (k=9) [1 + cos 2wq(2-k) + cos 2wk

+ cos ZwOQ] (65)

=85,1%82,5 -

bl

Expand S-_, 1 by summing over k:

22('- z Q +QSK ((A)O)COS [wo(K—])—szQ}
3 2-1

+QSK(w0)cos wO(K—l) +Q2 cos 2w ¥ - 2 k
k=0

Q-1 Q-1
- 5 k cos 2w (k-L) - z k cos 2wk
k=0 k=0
Q-1
—cos,?_wOQ z

k=0

7

The final four summations may be written in closed form with the aid of the identities in

the appendix, giving:

K-1
S:.l =% [Qz‘f'SK(wo)QCOS [wo(K—l)—:w()Q]
=0
+ Sk (wq) L cos wO(K—l)+Q2 cos .’_wOQ-Q(—Q:—I—)
1 d Sinon‘
+-—2-d—o;6 —S-Wsmwo(flﬂ)

sin wq @ Qe-1)
Zdwo l Seog * wo(sz-ni - 22D cos 208
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Combining similar terms and grouping the derivative terms together:

d sin wOQ
dess | Tmaeg 19t epitr D -k agli- 1}

19| —

[ 2 sin wg cos wOQl

i

1 d sin wOQ
2dwq | sinwg

d : 3 =
370 {sm w(Q cos wOQ} = Qcos 2wp ¥ |

from which we get:

K-1
Sy1 %% Z

¢ + 22 L R

+ SK(wO) [€cos [2wl- wO(K-l)]

(66)

+Q cos wq(K-1)]

Now sum over £:

+%_ [ ] SK(wO) sin wq (K-1)

Sk (wp)
53— cos wy(K-1)

giving

. 3_ 2 v_on
Sy | =Z‘_ [K6K+3K 4K "SK(wO)cost(K—l)

-

) .
+ l—(4—'-' SK (wg) sin wp(K-1)

-—é—SK" (wq) cos wO(K—I)] (67)

Now return to 52’2 given by equation 65 and make the substitution n=k-g, giving

K-1 K-1-¢
=%‘Z z [n+ncos 2wgn +n cos 2w (n+Q) + n cos 2wyl

(68)
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Summing over n:

K-1 )
=L—Z (K- (K-8~ Q)(K Q- ]) | d sin w( (K-0) i (K12
2.2 Tidag | TSy N0 ’
=0
sin w(K-2)
+—] d .0 sin wp (K=-1+9)
2dwy sin wq 0

+<K—_W§:t£>coszwoq]

_c g (K2-K) + 0(1-2K) + ¢
o = 4 B}

.-... Z

i d sin wq (K-%) sin wO(K—l)cos wOQ
dwq sin W

e e l
+(K K)+Q(,,l 2K) + ¢ cosZwOQl.

Now sum over :

c [K3-K3+ K(-2K)(K-1) 2K3-3K3+K]
3 3 T

K-1 d ‘sin wp(K=1) sin w(K-9) cos wOQ]

d wQ sin wq

+ (K —I) Sk (wq) cos w(K-1)

) Sk’ (wq) sin w(K-1)

-.é_ SK" (wg) cos wp(K-1 )] : (69)

The summation of the derivative term leads to a complicated expression, to say the least.

To evaluate equation 69, the differentiation of the second term was carried out, then the
resulting terms summed over the € index. The Sg” (wg) and Sk’ (w() terms appearing
were expanded using equations A10 and A15 from the Appendix. Then terms were grouped
according to frequency dependence, giving
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[()K2+2K-3]
iy M

+%SK("’0) cos w(K-1)

K+1 sin wp(K-2)
+( 2 ) Sg (wp) + 4 sinwy
(7K—3)cosw0—(K+l

)
+ m—- } Sin wo(l\-l)

} Cos wy K

cOsS w
( ) cos wq(K-2)
4 sln'- wq

[O\w0+

+% ———l\;——— |l—coszw0+wsw0cosw0(21\'-l)
4 sin- w(
|
K cos wg K (l+cosw0)msw0(l\'—l)
4 sin w()

2 sin wo

+(K-1) cos wOK} (70)

. -~ ), . . . ~ . .
The expression for 03~ is now a combination of equations 64.67 and 70. Rewrite

equation 64 as

LK
_ cLK® ¢ .
S| = 2 +ESK(°"O)FI (KL. woi : (71)
First observe that if
m

wo = K (m = integer),

then

sin wOK
Sy lwp) =——— =0
K*'*0 sin-w)

This is the case of signal frequency being exactly bin-centered or exactly on bin boundaries
of the K-point FFT. When Sk (w()) vanishes then S| reduces to

5
_ ¢cLK~
§; = ol (72)
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Even when w is not at these critical frequencies, the function F](KL.uo) is much less

than LK? by a factor of 1/K. The notation KL in F1 (KL,wq) represents the highest order

products appearing in the function. As wqg = 0orwg—m, then Sk (wg) = K and a term

approaching a magnitude LK? does appear. However, as long as n/L < wo <m (L-1)/L

work can be done accurately with the approximation
Sk (wg) < K

from which
Sk (wg) F| (KL.wgy) < K2L

which will allow the approximation to S as given by equation 72.

The term S, ) from equation 67 may be rewritten as

3
_c[K3] ¢ [K 3

+ Sk’ (wq) F3 (K.wg) + Sk (wq) Fy4 (w()

The behavior of Sk’ (w()) and Sk (wq) is examined in the Appendix. The result is that as
long as w) is sufficiently removed from 0 or 7, the expression for S5 | is dominated by the
first term. Thus S: | may be approximated by

w

_ ¢K
Sz‘ = 24 - (73)

The same approach may be taken toward Sy > as given by equation 70, which may

be rewritten as

; 3 . 3 5
_c (K3 ¢ [K3] . ¢ 2
52.2 = 74‘ (T) —I [—()—] +ZSK (0)0) FS (wO.K .K)
+7Fg (wo.K2K) . (74)

For wq not near the critical frequencies, the approximation becomes:
0 q

. [13 33
a i ] - CK
S22=4[6] o (75)
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By using equations 63a, 72, 73 and 75 the useful (and workable) approximation to

o
03 then becomes:

932 = 81-85 =S5,
B 3 ,
_clK? K3 . a2 fL K
=£4 ‘k“—z = &k (’4"1'3) : 76)

Note that when the transform length K equals L, the filter length, then

y _ ¢l3

03" = 7

which agrees with the result in Medaugh's derivation.
: 2
D. Evaluation of 04~

The evaluation of 043 as given by equation 57d produces a result of the following
form:
5 -
04~ = 5 [Sg(wp) G (wo.KL) + S (w() Grlw.KL) + G3lwy.K.L)]
Thus, for n/L <wg < m(L-1 )/L this term has a magnitude on the order ¢KL/2, which
is much smaller than the expression for 032 as given by equation 76. Thus the working
approximation to 043 will be

)

04

1]

UL 77

USEFUL VARIANCE EXPRESSION

The useful approximation to the variance of u is now obtainable. By the preceding
arguments, the following approximations are valid for n/L < wg < m(L-I )/L :

akK _ ucz v2 LK
2y X 5

By equation 59, 012 =X (78)
b Y Y D )
By equation 61, 032 = blﬁ = MR—L—L{— : (79
: b 3 £L K 1 K2 (L_K
By equation 76, 03~ = ¢K~ (T'ﬁ) = 2a%2)7 43 (—4—— ]—f) (80)
By equation 77, 042 =0. (81)
34




r . o .
The expression for the approximation to g, is

2.2 E I RO
0,2 = MV LK pe ATLKT, 22 = L (7%-1'-(,-) K<L (82)

By the symmetry of the DFT operation, the extension to the variance of the imaginary com-

R . .
ponent g~ may be made, giving

2= (83)

Y u

v
When the transform length, K, equals the filter length L, equation 82 becomes the variance
expression derived in reference 1:

2 Y .9
DI T et T B o A~ L3 a*

T 3 g : L (84)

Fes X
where a = 2uc= L in reference 1.

Having obtained the results in this section one may proceed with developing the
probability density function for the ALE output, as outlined in Section 2. The desired
mean values u and v are given by equations 49 and 51, respectively. and useful approxima-

: . 5, 3 z ; .
tions to the variances 0., and o~ are given by equations 82 and 83, respectively.
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APPENDIX
USEFUL CLOSED FORM EXPRESSIONS FOR FINITE SUMMATIONS

In deriving the variance and mean solutions, it is necessary to employ closed form
expressions for finite summations of trigonometric terms. From reference 3, the formula
obtained is:

R sin (ll—:—l a) sin (%a+ b)
sin (ka+b) = - = (A1)
k=0 sin%
1l sin (l;—l a) cos (—E:-a+b)
z cos (ka+b) = = | < (A2)
k=0 Si]'l"i
Specifically, let n =K - 1, a = 2w:
K- sin wK
z sin Cwpk +b) = T sin [w( (K-1) +b]
k=0 2
= Sk (wq) sin [wg (K-1)+b] . (A3)
K- sin woK
z cos (2wpk +b) =Wcosiw0(K—l)+b]
k=0 ¥
= SK (wq) cos [w(y (K-1) +b], (A4)
where
_ sin wK
Sk (w) = sin w
By taking derivatives of equations A3 and A4, the following relations may be obtained:
K-1
k cos Qwgk+b) = 3 29 {5 (wp) sin [wy (K- + b1} (AS)
k=0 :
K-1
ksin (2wpk+b) = -_L.Ji_o {Sk (wp) cos [wy (K=1) +bl} . (A6)
k=0




Further differentiation of equations AS and A6 gives:

K-1 :
2 st = kB o
> Keoszwgk +b) = “3 deg 15K (@0) o8 layg (K=D ¥ b1} (A7)
k=0
K- )
k2 sin ek +b) = -3 —9=_ s, (wg)sin [wg (K-1)+ b1} . (A8)
k=0 dwo_

Carrying out the differentiation in equation A5.

K-1
kcos(2w0k+b) =—;{SK'(w0)sin lwo(l\'—l)+b]
k=0
+(K-1) Sk (w() cos [wqy (K-1) + b}
Sk’ (wp)
= L5 (wp) cos [wg (K= +b] + K207 G 1,0 (Ko1) +b)
Sy (wp)
~ K., 0 cosle(K—l)+bl (A9)
where
, . sin wOK . Cos wOK COs wy
Sk (wp) = dwg [sin wg | sin wy) -8 (wo) 5w wq A0

The term Sk (wq)is <K aslongas /L < wg < m(L-1)/L. The behavior of
SK' (wq) at these critical frequencies may be seen either from examining Figure 3 or taking

the limit of both sides of equation A10 as w( = 0 (or wg = m):

. ' : Cos wy K Cos w()
¢im SK (wg) = Um K e Sk (wq) =y
wo 0 wo 0 ’ 0 : 0

Using L’Hopital’s rule, the limit on the right is shown to be zero. Thus,

Qim SK' (wg) = 0 . (A1)
w0—>0
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Returning to equation A9, the limit of both sides is taken as w — 0 and the result from
equation A1l is used:

K-1
im z k cos 2wk +b) = Lim [‘lé Sk (wq)
(AJO"’O k=0 (4)0""0 -

Sk (wp)
--5;—0—] cos [wp (K=1) +b]

giving

K-1 -
z k cos (b) = [:l—(; -—l,i]cos(b) J
k=0 R

For phase angle b = 0 this gives the familiar formula (reference 3)

K-1 K-1

z keos(0) = > k =K&K-D (A12)
od ~

k=0 k=1

Thus the maximum value of the summation in equation AS is given by equation A12. For
. e O , -
wq =0 or w =, the summation may introduce terms on the order of K= (K = filter length

or number of points in DFT), dependent on the phase angle b. A similar analysis will show

that the summation given by equation A6 has the same maximum value of 5 (li_ s and this

is obtained when wq = 0, w and b = a/2. The value of both summations in equations A5 and

A6 decays quickly for wq away from 0 or 7 due to the weighting by the Sk (wq) terms.

Next are derived the bounds for the summations of equations A7 and A8. Carrying
out the differentiation specified in equation A7,

K-1

; 2
Z k2 cos (2wgk +b) = -;— —d-—-., {SK(wO)cosle(k—lel}
= dwn=
k=0 0
= <48 ds "t () cos Tup (K=1) + B]
4dw K i

= (K=1) Sk (wg) sin [wg (K= +b]}
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or
K- ,
> k2 cos Qugk +b) = K7 sy (wp) cos g (K=1)+b]
k=0

+ B {5k’ (wp) sin Twg (K1) +b]

- Sk (wg) €05 [wg (K=1) + b1} +5-{(Sg ()
— SK” (wo)l coS [(,00 (K-”"‘ bl
—ZSK'(wO)sin[wO(K—lH-bl} . (A13)

The maximum for equation A13 occurs when w(p = 0 and b = 0. Taking the limit of both

sides of equation A13 and employing previously derived results gives

K-1
R K .. 1
k=== Qim Sgiwg)-= Uim Sg(wgl+t— Um [Sk(wg)-Sg (w)l
K K21
b [K- Cim SK”(wO)]. (A14)
- wo-*O

Thus, to find the bound the behavior of SK (wq) in the vicinity of wg = 0 must be exam-
ined. From equation A 10,

2 sin wp K cos wp K COS W
S ) = ~S— [ 0] =L g 0 g (wp) ——
d“’O- sin w(y dwo sin wy sin w(y

- o |+L‘052 w(
SK ((4)0) = - K- SK(w0)+SK (wo) B — Fal IR et e

sin'wo

cos wp K cos w

SE ) g T Innfiial ' (A15)
sin- w(

Taking the limit of both sides of equation A15:

¢im SK"(w0)=-K3 Um SK(wOD
w0—>0 wo—’o

Sk (wg) [1 + cos= wol 2K cos wq K cos wy
+ Um - - 3 .
wpy 0 sin~ w( sin= w(
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Application of L’Hopital’s Rule (and steadfast perseverance) gives

3
tim  Sg" (wg) = -K3+ (_2K ”()

3
L MR
= (A16) J
Substituting this result in equation A14 gives
K-1
3 2 3 3 -2
o A0 Al el K'-K| _ 2K -3K“+K |
Zk—4—2+4[K+3] 6 (A17)
k=0
This last result may be factored, giving the familiar identity (reference 3)
K:l
2 k2=(K—I)K6(2K_|). (A18)
k=0

The result from equation A17 shows that for wq ~ (0, ) summation equation A7

may introduce terms on the order of K3. A similar analysis for the summation in equation
A8 gives the same maximum value as wq (0, ). Asin the previous derivation, the summa-

tions equations A7 and A8 decay quickly as wq is moved away from wq = (0, m).




