B — — — ——— —

/' AD=-AO46 588 PATTERN ANALYSIS AND R!CO.NI'"OI CORP ROME N Y F/76 &/4
PATTERN RECOGNITION METHODS FOR DETERMINING SOFTWARE QUALITY,. (V)
OCT 77 T L MCGIBBONs H M HERSH: J M MORRIS F30602=76=C=0214
UNCLASSIFIED PAR=T7=13




Ol

(o

Jllizi =1l

JENIE

Q@
o0




ALITVAD 3HVMLIA0S ONINIWG3AI0 Y03 SAOHLIW NOILINDOD3IY N¥3ILLN

AD No.

033

‘D
O

ADAO 4

DDC FiLE copy

RADC-TR-77-325
Final Technical Report
October 1977

PATTERN RECOGNITION METHODS FOR DETERMINING SOFTWARE QUALITY

Pattern Analysis and Recognition Corporation

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 1344)




s

This report has been reviewed by the RADC Informatlion Office (OI) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

This report has been reviewed and is approved for publication.

APPROVED: Qﬂ w 2 W

DONALD F. ROBERTS
Project Engineer

mom g 1 (Bmemscen

ALAN R. BARNUM
Assistant Chief
Information Sciences Division

FOR THE COMMANDER: /) f /“W

JOHN P, HUSS
Acting Chief, Plans Office

4

If your address has changed or if you wish to be removed from the RADC
mailing 1list, or if the addressee is no longer employed by your;prgnnization.
please notify RADC (ISIS) Griffiss AFB NY 13441, This will assist us in
maintaining a current mailing list. 3

Do not return this copy. Retain or destroy. ¥




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE L T

2. GOVT ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER

PE OF REPORT & PERIOD COVERED

Final Aechnical Ke@, i !
G. 0

—
,PATTERN~RECOFNITION METHODS FOR DETFRMININC/

§0F’I‘WARE QUALITY , = B ————

R CRANT NUMBER(s)

THORTYY

;- Thomas L. ’M(‘Gibbon) '7David A. ’Bennett
. bHarry M./Hersh = Christopher/Landauer

A@A@

P

/
@ John M. 'Morris) N
9 PERFORMING ORGANIZATION NAME AND ADDRESS 10 pRgGRQAwOERLKESS:‘Y PROJECT, TASK
Pattern Analysis and Recognition Corporation),
228 Liberty Plaza —J62702F // g

Rome NY 13440 (/¢ Y558 husse
“S———— .

11, CONTROLLING OFF|ICE NAME AND ADDRESS

£ 1
Rome Air Development Center (ISIS) //
Criffiss AFB NY 13441

T4 MONITORING AGENCY NAME & ADORESS(it dilterent from Controlling Oflice)

Same UNCLASSIFIED 4

1Sa. DECLASSIFICATION DOWNGRADING
SCHEDULE

N/A

16 DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Donald F. Roberts (IS1S)

19 KEY WORDS (Continue on revarse side if necessary and identily by block number)

Pattern Recognition Quality Software

Feature Extraction Computer Program Characteristics
Automatic Classifiers

Programming Constructs

SRS

20 ABQYRACT (Continue on reverse side If necessary and :dentify by block number)

he On-Line Pattern Analysis and Recognition System (OLPARS) was demon-
strated as a tool for evaluating program characteristics which contribute to
program readability, freedom from errors, and development time. Structural
features were extracted automatically from a data base of 155 PL/I programs
and used as inputs to OLPARS. As expected, program length had a dominant
effect on the time required to understand programs; additional features

F30602-76-C-g216 )MV /" |4

affecting understandability included GOTO and RETURN statements. Significant f—>

DD ,Sg:"" 1473  €DITION OF 1 NOV 65 15 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE, ‘When Data Entered,

e ————— -




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

of programs.
programmer styles.

contributions of this study were methods for estimating program error rates
from archival data, and reliable techniques for estimating understandability
An interesting by-product was the ability to identify individual

The principal outcome of the study was the demonstration

that OLPARS could provide a facility for evaluating factors contributing to
software quality.

\

|

ACCESSICN for

:
|

—

NTIS Weite Section &/

DocC B.if Sestion [J

UNANNOUNCTD o
JUSTIFICASITN H

BY )
DISTRYBITIEN /A A8 T ns

[ Dist._ 5P CIAL |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




R A

Section

1.

2.

3.

3.1.

¥
N

Appendix
Appendix
Appendix

Appendix

A

B

€

D

TABLE OF CONTENTS

Introduction and Summary . . . . . . . .
B e e e G €] e e e ol e e ol e e i
Pata Collectioni = o o & o o & = » & 5
Data Base Characteristics. . . . . . . .

Feature Definition « « o & 5 s & & & o
Physical Feature Extraction. « « « « « s
Uniderstandbility « « « ¢ o s v o

Data Analysis.: « « s s « & @

OLPARS OVervieWw: ¢ « « o ‘o) ¢ o v s = =
Analysis of Program Quality Data .
Substantive Conclusions. . . . « . . .
Analysis of Results. « . v & v o = o &
Methodological Conclusions . . . . . . .
Use of OLPARS as a Classification Tool .
Discrete Classes or Continuous Data.

Recommendations for Further Research . .

Understandability Study . . . . . .
Program Documentation . . . . . .
Data Base Generation. . . . « « .+ .

Classification Based on Programming
BEYLE® o v v a0 s i o e e

3-1

3-1

3-3

3-13

3-37

4-1

4-10

5-1

5-1

7-1

A-1

B-1

D-1




LIST OF FIGURES

Figure Page
IR i
4-1 Development Time after Number of Lexemes is

Paptialilad QUEV S0 o e e i et W e w ae e B=1E
4-2 Number of Changes after Number of Lexemes is

Partialled Bul o Sl o ofe e & s e e e e B=E9

4-3 Mean Rating after Number of Lexemes is Partialled
OOt oo o ats v et R s R i SR R, H=20
44 Mean Log Latency after Number of Lexemes is

Pavtial lad O o o Pohre e e o ol S s S e e S, NG Ml

4-5 Number of Changes (Partialled) - Optimal Discriminant
135 o (e o T DA S A R e B e S S R T
4-6 Development Time (Partialled) - Optimal Discriminant
PO EION I, Var et Tatalraron, o o e o e el el iy e e =39
4-7 Difficulty Rating (Partialled) - Optimal Discriminant
Divaction s v GO0 » g e e e S e e W W e R v e Bl
4-8 Log Time for Understanding (Partialled) - Optimal
Discrininant DIvection « ¢« s o « v v o % v & s » ¥ %'w « U=N2
i —

iii




4-11

4-12

4-13

4-14

LIST OF TABLES

Discriminant Coefficients (Partialled Features)
for Number of Changes Analysis. . . . . . . . .

Cross Validated Fisher Logic for Classifying
Programs by Number of Changes . . . . . . . .

Cross Validated Fisher Logic for Classifying
Programs by Number of Changes . . . . . . . .

Development Time (Partialled) Discriminant
CoafficientSe o s v o =

Cross Validated Fisher Logic for Cla551fy1ng
Programs by Development Time. .

Cross Validated Fisher Logic for Classifying
Programs by Development Time. . . . . . . . .

Fisher Discriminant Logic of Ratings and Laten-
cies Using All 32 (Partialled) Features . . .

Discriminant Coefficients (Partialled Features)
for Difficulty Rating Analysis. « « « « ¢« « o &

Discriminant Coefficients (Partialled Features)
for Log Latency Analysis. . « « ¢« « ¢« « + &

Classification Tables for Understandability
Ratings - Fisher Logic on Nine Partialled
Features, . « « « s & v o & & & @

Classification Tables for Study Latencies -
Fisher Logic on Nine Partialled Features.

Classification Tables for Understandability
Ratings - Fisher Logic on Ten Features Including
PPOSTam S128. o v & o % 5w o b 6w v ow w N o€

Classification Tables for Understanding Latencies
- Fisher Logic on Ten Features Including Program
SEZEY 5 i % b wm e e e o e e @ e kv

Classification Tables for Understandability

Ratings - Fisher Logic on Single Program Size
FTORBEUDE 5 & 5 v v o % s @ %@ % oW T W

iv

4-36

4-37

4-50

4-51




4-15 Classification Tables for Understanding Latencies
- Fisher Logic on Single Program Size Features. . 4-52




EVALUATION
Attaining the goals of RADC TPO-5, Software Cost Reduction requires the
development of methods for producing and measuring software that is both
reliable and easily maintained. This includes development of standards for
writing software that is reliable and maintainable as well as methods for

measuring the software in order to predict its quality.

RADC has undertaken a number of efforts to develop models for predicting
the quality of software. This effort is unique in that it is the first
attempt at using classical pattern recognition technology for analyzing
software. The goal of the effort is to identify structural features of
computer programs that contribute in a negative or positive sense to the
quality of the software. If such features can be identified, then automatic
classifiers for predicting the quality of the software, based on these
features, can be designed. In addition, the analysis of the structural
features using pattern recognition techniques, is useful in identifying
programming constructs and practices that should be avoided in order to

produce quality software.

For the study, the On-Line Pattern Analysis and Recognition System
(OLPARS) at RADC was used. The study demonstrated that such systems are
useful for performing rapid analysis of software structural features.

Gyl 7 RRIZS

DONALD F. Roberts
Project Engineer




SECTION 1

INTRODUCTION AND SUMMARY

The goal of the research described in this report was the development of
effective algorithms, based on pattern recognition theory and technology, for
the identification of features which contribute to software reliability, and

for the classification of programs into such categories as reliable/unreliable.

It was shown that RADC's On-Line Pattern Analysis and Recognition System
(OLPARS) provides an effective tool for the analysis of program structural
features. It was possible through the use of OLPARS to apply statistical
tests to determine the relevance of program features in the data base to the
classification of programs. It was possible to replicate some of the results
of earlier studies very rapidly, since OLPARS made an extensive repertoire of
tools available to the user. A number of interesting further results were
also obtained, which added support to recommendations for modern proéramming

practices developed recently by RADC.

In addition to demonstrating the usefulness of OLPARS as a tool for
program structure analysis, this study included the development of several

research techniques.

First, a large number of program structural features were identified as
potentially relevant to the prediction of program reliability. Algorithms

for extraction of these features were prepared and used to provide inputs to
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OLPARS. The feasibility of automatic feature extraction from programs was
demonstrated, and several of the structural features proved to be relevant to

factors affecting program reliability.

Second, a technique for automatic derivation of program error rates was
developed. Such a technique obtains an estimate of error rates by counting
the number of changes introduced into programs over the course of their
development. It was shown that this technique can produce automatic estimates

of error rates, without reliance upon manually-produced report forms.

Third, a method for obtaining reliable estimates of program readability
or understandability was developed and demonstrated. Human subjects were
asked to read and respond to questions about programs in the data base. Both
their subjective estimates of program understandability and objective measures
of the time required and their scores on tests of their knowledge of the

programs were used.

Fourth, methods for obtaining program development time from archival

data were implemented.

One interesting by-product of the study was a scheme for discriminating
among the four programmers who wrote the programs _in the data base, on the

basis of their programming style.

Finally, a number of substantive results concerning factors which affect

program understandability were obtained. Briefly, it was shown that program
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length was the most critical factor in determining the understandability of
these programs. Other factors which appear to have some effect, when the
effect of length is held constant, are: number of GOTO statements, number of
RETURN statements, number of operators per assignment statement, number of
variables used, number of parameters in call statements, number of externally
called subroutines, number of labels, number of assignment statements, and
number of complex ELSE clauses. A full discussion of substantive results of

this research is included in Section 5.

It should be noted that the data base used for these experiments was
quite small, consisting of 155 programs written in the PL/I language for a
single system by just four programmers. For these reasons, results of the
study cannot be applied uncritically to other software developmentec. The
emphasis of the study has rather been on a demonstration of the value of
OLPARS in performing rapid, effective statistical @nalyses of program data.
As more extensive data bases become available, OLPARS will provide a tool for
investigating additional languages and other program features to provide a
body of reliable information concerning the factors that affect program

quality.

The remainder of this report includes the following sections:

Section 2 provides background information concerning the goals and

methods of the project.




Section 3 contains a description of the features extracted from the data
base and the methods used for extracting them. Many features which were
proposed, but which could not be extracted from the given data base, are
described. A description of methods used in the understandability study is

also provided.

Section 4 provides a brief overview of OLPARS, together with a review of

the methods used in the study.

Section 5 includes the substantive results of the study, indicating the

features that affected program reliability.

Section 6 contains methodological conclusions of the study, with a

description of the manner in which OLPARS contributed to the study.

Section 7 includes recommendations for further research.

Appendix A contains a detailed description of the understandability

study reported in Section 3.

Appendix B provides program documentation for software produced during

the study.

Appendix C describes the routines by which the data base was generated.




Appendix D contains the results of the study which automatically

classified programs according to the author's programming style.
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SECTION 2

BACKGROUND

During the recent past, several models have been developed for the
prediction and evaluation of software quality. In this section, one such
model will be briefly described. In addition, a discussion of the background

and motivation for the present project will be included.

Schick and Wolverton [9] evaluated a statistical analysis done by Hatter
[3] of software reliability data collected by TRW in 1971, during the develop-
ment and operation of large operational software systems. Whenever a software
deficiency was detected, a software problem report (SPR) was issued against

that deficiency.

The method used was a least-squares regreséion analysis for the estab-
lishment of relationships among variables which were thought to contribute
to software reliability. In this analysis, a surface of best fit is deter-
mined for any set of linear relationships between data. A goodness of fit is
then determined. The measure of goodness of fit used is the adjusted index

of determination, as defined by

= ,/‘ 2 7’ %
= SRR L - o_est n-1 (1)
2 b n-"T
< o oDs I
where:
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g est

0" obs

= variance of the values of the dependent variable predicted

by the regression equation

= variance of the actual values of the dependent variable

= the number of data points

= the number of terms in the regression equation

A large value of r2 (approaching 1) means that the estimating equation

accounts well for observed variations in the dependent variable. A small

value of r2 (approaching 0) implies that the variance of the dependent

variable has not been accounted for.

From

the results of the regression calculations, the following observa-

tions were derived:

P e v

The only reliable predictor of the number of SPR's charged to a
routine is the size of the routine. However, greater than 50%

variance in SPR's is left unexplained by size.

Programmer experience seems to have little effect on the number of

SPR's charged to a routine.

All possible relationships among the data were not analyzed (only

the most intuitively appealing relationships were tested). Thus,
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it cannot be concluded that no useful relationships exist among the

data.

This Schick and Wolverton study represents a type of research which can
be assisted by OLPARS. Specific factors which are believed to influence
program performance can be tested, and a model for prediction of program
reliability can be developed. In addition, factors influencing other compo-
nents of program quality, such as readability, development time, and error

rates, can be quickly tested.

The experiments which will be reported here represent a continuation of
studies begun during the summer of 1973, near the beginning of a new imple-
mentation of OLPARS in the PL/I language under Multics (Contract #F30602-73-
C-0351). At that time, structured programming concepts were new and rela-
tively untested; it was therefore proposed that the OLPARS implementation
utilize structured programming techniques and evaluate their effectiveness in

improving program quality.

The emphasis in the earlier research was on the use of structured coding,
in which control structures were limited to SEQUENCE, DOWHILE, and IFTHENELSE.
(A preprocessor made it possible to use DOUNTIL and CASE, but the programmers
found these extended structures unnecessary and did not use them.) An experi-
mental design was established, in which two programmers would use structured
coding, and two other programmers would use non-structured forms. As it
happened, the enthusiasm of all of the programmers for structured programming

meant that the majority of the programs were written in structured form,
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However, several programs, including a few that had been written before the
start of the evaluation project, included GOTO and other non-structured

control statements.

During the Multics OLPARS development, a number of error report forms
were used to document the types of program errors which were encountered by
the programmers. Although these provided a good deal of qualitative data,
they did not appear to be statistically reliable. The programmers were often
working alone, at late hours, and there was little motivation for keeping
records of their mistakes. For this reason, a more mechanical approach to
the determination of error rates was required. Such an approach will be

described in Section 3.1.1.

In the experiments to be reported here, OLPARS was both the tool for the
evaluation, and the system which was to be evaluated. The actual programs

which OLPARS comprises were analyzed by OLPARS itself.

Later, as more substantial systems become available, together with
statistically reliable error report forms and other data, it will be possible
to extend the studies reported here. The purpose of this initial study has
been to demonstrate that OLPARS could be used for rapid evaluation of the
features that contribute to program quality. As a demonstration of such a

capability, it has been completely successful.
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SECTION 3

DATA_COLLECTION

Je1- DATA BASE CHARACTERISTICS

This section describes some of the characteristics of the data base
of programs to be analyzed by OLPARS. The analysis was performed on the
260 programs that make up OLPARS itself, since the data base used for this
study consisted of the PL/I programs developed for RADC as the Multics

OLPARS Operating System (Contract #30602-75-C-0226).

The data base consists of chronological versions of the OLPARS programs.
Details of the procedure used in creating the data base can be found in
Appendix C. The average number of unique copies of each program is approx-
imately 4, with a minimum of 1 and a maximum of 16. The 260 programs
represent three years of work (June 1973 through May 1976) by the four pro-
grammers of the Multics OLPARS system development. Each of the programmers
had roughly the same programming experience (three were directly out of
college with some FORTRAN programming experience, and one came from a non-
programming-related teaching job), each had a mathematics-related college
background (i.e., physics, computer science, and mathematics), and each had

no previous PL/I programming experience prior to working on Multics OLPARS.

From a programmer's viewpoint, OLPARS can be viewed as an interactive
pattern recognition system requiring certain graphic, file manipulation,

and mathematical capabilities. Each program written for OLPARS performed

3-1
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its own graphic, file manipulation, and mathematical operations when re-
quired, although subprograms either existed or were written to simplify

each of these tasks.

The Multics OLPARS project was organized in such a way that there was
one project leader, with each of the programmers reporting directly to him.
The project leader, with the support of pattern recognition analysts, defined
each task that would be required, and then assigned each task to one or more
programmers. The programmers designed, wrote, and debugged the programs to
their own satisfaction. If the programmer experienced any problems in
writing his program, help was sought from the project leader or other related
company personnel. After the program had been debugged, the project leader
tested the programs for further errors, and the errors were corrected by the

programmer.

The programming environment was such that each of the programmers was
in constant contact with the other programmers. Programs written by one pro-
grammer were usually read by other programmers. Because of this cross-
checking, the programming style of one programmer was frequently copied by
the others. The original design of the project called for the use of struc-
tured program code by two of the programmers, while the others were to use
non-structured code. Nevertheless, after about two months of programming,
the enthusiasm of the programmers using structured code had encouraged the
others to begin writing in a similar style. By the end of the project, all

the programmers were using structured code.




In spite of this sharing of styles, however, there was sufficient differ-
ence among the programmers to permit OLPARS to discriminate among them. The

results of this study of programming styles are reported in Appendix D.

The use of this data base to evaluate program quality had several draw-
backs. Certainly the structural features of the programs could be evaluated,
for they were contained in the programs themselves. Other, more transient,
data were not available or were only available as rough approximations to the
actual data. For example, information such as error reports and actual
development time were not available. Approximations to these variables were
derived from the Multics apchival information. Although the data base was
deficient in these and other ways, it still provided a basis for the evalu-

ation of pattern recognition techniques for determining software quality.
3.2, FEATURE DEFINITION

This section describes the process of feature selection, and includes
an itemized list of all features which were considered for extraction. The
list was compiled by reviewing those characteristics of programs which were

thought to contribute to program reliability/unreliability.

In the following itemized list of features, a justification for the

inclusion or exclusion of each feature is presented.
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During the course of feature generation and selection, three factors
were important in determining the final feature space. They were: pertinence

to reliability, ease of measurement, and language independence.®

The generated variables fall into the following classificaticns:

1 Structural Features
a. use of variables
b. control flow metrics
s simple counters
d. complex counters
e. comments or reading aids
D Non-Structural Features
S Measures of Program Quality
ITEMIZED LIST OF VARIARLES
1a Structural Features

a. Use of Variables

% The features selected are language independent. However, the methods for
extracting these features are dependent on the particular programming lan-
guage used.
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Number of variables declared. This was easily measured by counting
names in the compiler's cross-reference listing. This is thought
to influence the size and complexity of a program, and hence a

person's inability to deal effectively with the program.

Number of unreferenced variables. These are variables declared, but

never used; as such, they represent oversights or poor proofreading.

Locality of variable reference. This measures the extent to which
references to a single variable tend to cluster in a small section
of the source code. It was measured by considering the text as

a real number between 0 and 1, where each line corresponds to a
discrete number. Each reference to a variable was represented as
the real number of the line on which it occurred. The variance of
all instances of each variable was computed, and the global feature

became the mean of all such variances.

It was hoped that this measure would yield substantial information
about the influence of any "working set" effect when writing (or
reading) a program. If all variables occur in highly local con-

texts, then it should be easier to understand the function of each.

Number of pointer variables. Pointer type variables in PL/I do for
data structures what GOTO statements do for control structures. It
was conjectured that the indiscriminant use of pointer variables
would lead to unstructured (and hence less mentally manageable)

data flow.
3-5




§) Number of based variables. Based variables in PL/I are a mechanism
which types a pointer variable. This typing is dynamic and thus
does not allow a consistent static analysis, or enforce uniform use
of pointers. For this reason, based variables were thought to be
hazardous to the reliability of a program. Note that the measure-
ment here is of the number of declared items, not the number of

instances of each item.

o Number of undeclared variables. This is an attribute which PL/I
ackowledges through its declaration semantics. If a variable is
referenced but not declared, there exists the possibility of an

undetected typographical error accidently becoming a variable.

b. Control Flow Metrics

o Nesting. By measuring the extent to which DO statements occur
nested in-other DO statements, some notion is gained of the com-
plexity of the implemented algorithm. Using the same logic,

BEGIN-END nesting and IF nesting were also measured.

o) Maximum nesting. By measuring the extent to which any statement
may occur nested in any other statement, the overall complexity of
the algorithm is measured. The only statements which were capable

/of containing others in the context of this project were DO, BEGIN,

and IF.
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Paragraphing. The white space surrounding program source text is
an important determiner of the perceived organization and readability

of a program.

IF balance. It was conjectured that understandability suffered
whenever the TRUE clause of an IF statement and the FALSE clause
were grossly different in size, and the FALSE clause was only one
or two statements long. The reasoning was that, once a person had
read through a lengthy compound statement before encountering the
ELSE clause, the sense of the original condition would have been
forgotten. This out-of-balance construct was a frequent occurrence
in the data base. When the single statement in a FALSE clause is
an error report, reversal of the sense of the original Boolean con-
dition will allow a reader to keep fewer facts in his mind at once,

serving to modularize the code.

Complex IF clauses. The IF statement is PL/I's primary decision
mechanism. To the extent that statement alternatives are simple,
the decision represented by the IF will be simple. A simple state-
ment is one which contains no other statements. This metric is

thus a crude approximation of control flow complexity.

Complexity measures C2, P2. These metrics (developed by Mitre[11])
are based on techniques which take a control flow graph as input
and produce a scalar as output. The control flow graph is reduced

by the method to its simplest structural form. The output from

3-7
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the measures is linearly related to the number of simple statements
remaining and the number of control flow paths which do fit into a
simple sequence, decision, or iteration model. The essential
measurement is the degree to which control flow is structured in

the input algorithm.

Complexity of IF statements. This metric represents a measure of
the complexity of the Boolean expression associated with each IF
statement. Since comprehension of decision points is crucial to

comprehension of a program, this was felt to reflect general

understandability.

Complexity of declaration/initialization. Declarational complexity
measures data manageability just as control flow complexity

measures algorithm manageability.

Complexity of I/0 statements. Frequent and/or obscure file manipu-
lations can be a source of confusion to a program author (and thus

lead to unreliability).

a8 Simple Counters

All metrics in this section are counts of the number of occurrences of

some "critical" syntactic structures. Most of them are valid for all ALGOL-

based languages. The justification for simply counting syntactic structures

is twofold: 1) if GOTO statements can be considered harmful, perhaps other
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Statements can also be harmful, and 2) relationships between certain features
may be confirmed. It was expected that at least program length and GOTO

statement counts would show some relationship to program reliability.

Among the counters suggested were the numbers of lines, lexemes, assign-
ment statements, I/0 statements, external calls, external procedures, formal
parameters, actual parameters, semicolons, global variables, types of I/0
statements, and the following PL/I primitives: ALLOCATE, BEGIN, CALL, DECLARE,
DO, DO WHILE, END, FREE, LABEL, GET, GOTO, IF, ON, PROC, PUT, READ, RETURN,

REVERT, STOP, WRITE.

d. Complex Counters

o Multiple target assignment statements. These are statements of
the form V1, V2, V3 = X. It was hypothesized that the use of these

statements would affect program reliability.

o Lexemes® in executable statements. The length or size of a state-
ment is a rough measure of its complexity. This metric is a
representation of the total size of all executable statements in

a program.

% A lexeme is the smallest syntactic construct of the language [14].

3 . . e ————y




Operators per assignment statement. This is a rough measure of the
arithmetic complexity of a program. It serves to break the notion

of complexity into one of its primary components.

Length of I/0 lists. The length of an I/0 list is a function of the
complexity of the I/0 being performed by the program. Due to the
heavy use of Multics pointers into segments in the data base, this

metric is not as accurate as it would be in the general case.

Non-scalar data structures. This metric is a measure of the number

of instances of data structures other than scalars. The only such
data structures used in the data base are arrays, and for this

reason data structure instances were not counted.

Dimensions of arrays. The sum of the dimensionalities of all multi-

dimensional variables forms an indicator of data structure com-

plexity and was measured for each program.

Comments or Other Reading Aids

Number of comments. This, and other comment-related metrics, are

rough approximations to the meaningfulness of comments. The number

of comments may predict the readability.

Characters per comment. Comments may be analyzed in any of several

ways in an attempt to estimate the quality of a particular comment.

3-10
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Extracting the length of each comment was an attempt to decide

empirically whether terse or lengthy comments tended to occur in

reliable programs.

o Density of non-blank characters within a line. It was hypothesized
that large numbers of non-blank characters on a line had a detri-

mental effect on the ability of a person to analyze a program

listing efficiently.

o Locality of comments. This metric was measured in the same way as
the locality of variable reference, and its rationale was similar.
The degree of clustering of comments about a single mean was assumed

to have some bearing on the comprehensiveness of comments.

o Density of non-blank characters outside comments. An attempt is
made here to measure the proportion of white space utilization

across the program text as a whole.

o Variable name lengths. This feature is an attempt to estimate
meaningfulness of variable names. The working hypothesis was that
a long name probably is more meaningful than a short one, and thus

contributes to readability.

25 Non-Structural Features

g, STV AR
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There are other variables, not related to program structure, which may
affect the quality of programs. Variables of this type would include (but
would not be limited to) the following: (1) the amount of testing and veri-
fication performed on the program (e.g. by the author, by the coder, by other
programmers, etc.), (2) the amount of time spent in designing the program,
and (3) the design procedures used (e.g. top down program design, chief pro-

grammer team concept, etc.).

However, since information of this type was not kept during the imple-

mentation of OLPARS and thus was not available for this study, these features

were not considered any further for this effort.

3. Measures of Program Quality

Many important aspects of programs fall under the heading of program
quality. Certain factors directly affect the reliability of the operation of
software, such as the number and severity of errors encountered in running
the program. Other aspects are more related to managerial aspects, such as
the development time of programs and the number of changes a program encounters.
Finally, there are aspects which deal with the software itself. For example,
the understandability of program can be measured in several ways. How easy
it is for a programmer to read and understand the operation of a program may
have a direct influence on the ease of software maintenance. Such important
operations as software implementation and software modification can be
directly affected by the ease with which a programmer can understand, at the

macroscopic and microscopic levels, the functioning of the software.
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PHYSICAL FEATURE EXTRACTION

section describes the algorithms used in extracting the features

]

in section 3.2. (The list of features used in this study is con-

tained in Figure 3-1.) Since many of these algorithms are dependent upon

features of Multics, they will require modification for use with other sys-

tems or languages.

Some of these features are extracted from the PL/I source listing and

others are extracted from the PL/I compilation listing. The PL/I source

listing contains only PL/I statements which follow Multics PL/I syntax rules.

The PL/I1 compilation listing has the following attributes:

=

The top of the listing contains header information about the
listing. This information includes program name, Multics PL/I
compiler implementation date, date and time at which this program

was compiled, and options used when the compiler was interrogated.

Each PL/I statement has a statement number.

Following the listing is a cross-reference listing. It contains

information about all variables used. This information is presented

in columnar fashion. Some of the relevant columns of information

dare:

IDENTIFIER - the name of the variable

3-13
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Figure 3-1 Features

number of comments
average length of comments

average density of non-blank characters in
comments

distribution of comments throughout program
number of lines

average density of non-blank characters outside
comments

number of multiple assignment statements
number of variables

number of semicolons

maximum nesting level

maximum BEGIN-END level

maximum IF-THEN-ELSE nesting

mean variable name length

number of lexemes

IF balance

distribution of variable occurrences vs. program
statements

complexity of assignment statements

number of assignment statements

number of pointer variables

number of based variables

number of implicitly declared variables

number of explicitly declared variables

number of I/0 statements

number of external calls

number of external procedures used

average number of formal parameters in procedure

average number of actual parameters in call
statements
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Figure 3-1 Features (Continued)
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o number of complex IF statements X X X
o number of global variables b1 X
o average number of each kind of I/0 statement X X o
o average length of I/0 list X X P
o number of arrays X X X
o total number of dimensions of arrays X X 2
o number of ALLOCATE statements X X —b
o number of BEGIN statements X X —b
o number of CALL statements X X X
e} number of DECLARE statements X X -b
lo) number of DO statements X X X
o number of DO WHILE statements X X X
o number of END statements X X —b
o number of LABELS statements X X X
o) number of GET statements X X -b
o number of GO TO statements X X X
o number of I statements X X X
o number of ON condition declarations X X -
o number of procedure declarations X X "
o number of PUT statements X X X
o number of READ statements X X .
o number of RETURN statements X X x
o number of REVERT statements X X

b
o number of STOP statements X X
s

o number of WRITE statements X X s
o amount of math computation X :© X
o amount of user interaction X xQ X
a- not extracted because it was a required feature of analyzed programs
b~ removed due to small variance
c~ extracted during understandability study
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STORAGE CLASS

e.g. based, constant, automatic, parameter, etc.

DATA TYPE - e.g. integer, floating point, entry, pointer, etc.
ATTRIBUTES & - contains information about the attributes of a
REFERENCES

variable (e.g. unaligned, external), followed by
the statement numbers of indicating where the

variable was declared and referenced.

The extraction algorithms will work correctly only on PL/I programs
which cause no compilation errors to be produced when compiled by the Multics

PL/I compiler.

Three routines (named '"parse," "list_gxtracr," and "counr_pomments")
were written to extract the features listed in Figure 3-1: "list extract"
extracts those features from the compiled PL/I listing, "count_comments"
extracts those features related to comments from the PL/I source listing,
and "parse" extracts the remaining features from the context of the PL/I

source listing.

The manner in which each of the features is functionally extracted will
be described below. In parentheses next to the feature name will appear the

name of the routine which extracted that feature.

Feature 1 Number of comments (count_pomments)

The number of comments is a count of the number of /% in a PL/I source
a

segment. Thus a comment which extends over several lines, but has only one

/% on the first line, will be recorded as one comment.
3-16
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Feature 2 Average length of comments (count_comments)

The average length of comments is calculated as the total number of
characters inside comments divided by the number of comments (i.e., feature
1). The total number of characters inside comments is the sum of the number
of blank characters and non-blank characters between /% and ®/. Blank char-
acters at the beginning and end of a line of a comment are also included in
this sum. It is assumed there are 125 characters per line and thus a line of
a comment which has its last non-blank character in column 85 and continues
on the next line will also be assumed to have 40 blank characters at the end

of the line.

'
'

Feature 3 Average density of non-blank characters within comments

(count_comments)

The average density of non-blank characters within comments is calculated
1s the number of non-blank characters inside comments divided by the number
of characters in comments. As in feature 2, blanks at the end of comment

lines are included in the number of characters inside comments.

Feature 4 Uniformity of distribution of comments vs. statement lines

(count comments)

This feature is a measure of the way in which comments are distributed

throughout a program. It is felt that many comments spread throughout a
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program are better than the same number of comments grouped in one place in

the program. This metric is calculated as follows:

) O Every time the beginning of a comment is encountered (i.e., a /%),
the normalized line number on which the comment occurs is recorded.
(The normalized line number is the comment line number divided by
the total number of lines in the program). This list of numbers

creates a list of every occurrence of a comment.

2 A mean value is then calculated for this list of numbers.
;2 The variance from the mean is then calculated and is used for this
feature.
Feature 5 Number of lines (list_extract)

This feature is a count of the number of lines in a program. A counter

is incremented each time a new line appears.

Feature 6 Average density of non-blank characters outside comments

(count_comments)

The average density of non-blank characters outside comments equals the

number of non-blank characters outside of comments divided by the total

number of characters outside comments. The total number of characters outside
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comments equals the sum of blank and non-blank characters outside comments

Blanks before and after lines of text are also included in this sum.

Feature

Number of multiple assignment statements (parse)

A counter is incremented each time a statement is recognized in which

more than one variable occurs to the left of an assignment symbol.

Note

Feature

syntax:

V,s Vas s V=  expression

that the counter is incremented once for each vi where j > 1.

Number of variables (list_extract)

A count of the number of variables declared is extracted from the cross-

reference listing on the Multics compilation of a PL/I program. The secti

on

of the cross-reference listing used appears under the heading ""NAMES DECLAREI

BY DECLARE

in the "IDE

NTIFIER" field of the cross-reference listing. The counter is

incremented if the word "entry'" appears in the "DATA TYPE" field, implying

o +)
that the

identifier is a subroutine name.

Number of semicolons (parse)

STATEMENT." A counter is incremented each time a new entry app

ears

not




A counter is incremented once for each semicolon in the source text
which occurs outside a literal string and outside of a comment. A semicolon
is a line terminator and thus the number of semicolons is a count of the

number of statements in a program.

Feature 10 Maximum nesting level (parse)

This integer represents the deepest level of nesting encountered in the
source program. It is measured by taking the maximum value (across the entire

source text) of an integer '"nestlevel," which is evaluated as follows:

B Increment for each instance of either a DO, IF, or BEGIN statement.

2. Decrement whenever an END corresponding with either a DO, IF, or

BEGIN is encountered.

This is a rough measure of the depth of nesting of the program. Note
that including the IF statement as a block bracket tends to make a program
look "deep." That is, most people do not tend to include the IF statement

P
when estimating depth of nesting.

Feature 11 Maximum BEGIN-END nesting (parse)

This feature is subsumed by feature 10 (maximum nesting level). It
decomposes the notion of nesting depth into one of its component parts, i.e.

the nesting created with BEGIN-END brackets.

3-20
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It is measured by incrementing an integer, 'beginnestlevel," once for

each BEGIN statement, and decrementing it once for each corresponding END

. statement. The feature value is the maximum value of "beginnestlevel" across

an entire source text.

Feature 12 Maximum IF-THEN-ELSE nesting (parse)

This feature is subsumed by feature #10. It reflects the maximum depth

of nesting generated by the IF-THEN-ELSE construct. It is similar to feature

11 (maximum BEGIN-END nesting) in that a component of depth of containment of

block structures is being measured.

Maximum IF-THEN-ELSE nesting is derived by taking the maximum value

across a source text of an integer called '"ifthenelselevel,'" which is derived
by:

s Increment for each IF statement encountered.

Decrement whenever an IF statement terminates.

Since an IF statement may contain 2

other statements (each of which may
be compound), this value will become greater than one whenever an IF statement

contains at least one other IF statement.
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The construct:

if <bl> then <el>
else if < b2 > then < e2 >
else if < b3 > then < e3 >

has a nesting level of 3.

Feature 13 Mean variabie name length (list_pxtract)

The mean variable name length is calculated as the sum of all variable
name lengths divided by the number of variables. The variable names and
their lengths are extracted from the "IDENTIFIER" field of the cross-reference
listing. Only those variables declared by DECLARE statements are included in

this feature; however, all variables in the current data base were declared.
Feature 14 Number of lexemes (parse)

This is a count of the number of primitive PL/I lexemes (or tokens, or
atoms) in each source text. Lexemes are groupings of one or more characters
from the source which compose identifiers, simple numbers, operators, and

special symbols.

This feature provides a semantically meaningful measure of program

length.

Comments are not included.
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Feature 15 IF balance (parse)

Given the syntax:

if exp then trueclause else falseclause
This feature is simply
size of (falseclause) - size of (trueclause),

when falseclause is present; zero otherwise

This measure becomes:

L, Large and positive when the falseclause is much larger than the
trueclause.
2. Zero when both clauses are of equal size.

s Large and negative when the trueclause is much larger than the

falseclause.

&, Zero when there is no falseclause.

Feature 16 Distribution of variable occurrences vs. program statements

(list_extract)

This feature is a measure of how localized variable references were,

: B
ST




This feature is extracted from information provided under the heading

"ATTRIBUTES AND REFERENCES" of the cross-reference listing, and thus no un-

declared variables are included. This feature is extracted as follows:

For each variable:

The word "ref" is searched for in the cross-refereice listing.
The information that follows "ref'" is a list of statement

numbers indicating where this variable was used.

For each reference statement number, this statement number is
recorded (in actuality a normalized statement number is stored,
i.e. the statement number divided by the total number of lines
in the program). This list of numbers creates a list of every

occurrence of a variable.

The mean normalized statement number is then calculated for this

list of numbers.

The variance from the mean is then calculated and stored.

For all variables:

The list of numbers generated in 1ld. creates a list of numbers

which measures the locality ~f reference for each variable.
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The mean value of 1d. is calculated and returned as the value
for feature 16. This feature thus measures the locality of

reference for all variables in one program.
Feature 17 Complexity of assignment statements (parse)
This is a crude measure of assignment statement complexity. It simply
counts, for each assignment statement, the number of arithmetic and logical
operators in the statement. (All such statements have a complexity of at

least one, since the initial "=" is tabulated.)

The measure for the entire source text is the mean number of operators

across all assignment statements.
Feature 18 Number of assignment statements (parse)

A count is maintained of the number of assignment statements in each
source text. An assignment statement with more than one identifier as its
leftmost part constitutes one statement in this context. (cf. feature 7)
Feature 19 Number of pointer variables (list_extract)

A counter is incremented if, for a particular variabie, the word "pointer"

appears in the "DATA TYPE" field of the cross-reference listing of those

variables declared by a DECLARE statemert.

3-25

TN —— g




feature 20 Number of based variables (list_extract)

A counter is incremented if, for a particular variable, the word "based"
appears in the "STORAGE CLASS" field of the cross-reference listing of those

variables declared by a DECLARE statement.

Feature 21 Number of implicitly declared variables (list_extract)

This feature may be useful for certain high-level programming languages
(e.g., FORTRAN). However K since the Multics "L/I compiler issues a warning
for all implicitly declared variables, and since we assume we are extracting
from PL/I programs which compile with no warnings or errors, this feature was
not applicable to the current set of programs and thus it is currently set to

zero.
Feature 22 Number of explicitly declared variables (list_extract)

A counter is incremented each time an entry is found in the "IDENTIFIER"
field of the '"NAMES DECLARED BY DECLARE STATEMENT" section of the cross-
reference listing. Since all Multics PL/I programs must have all their
variables declared, this feature will be identical to feature 8.

Feature 23 Number of I/0 statements (parse)

An attempt is made here to estimate the amount of I/0 activity for each

source text. Because of the unorthodox nature of Multics virtual memory and
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Multics PL/I I/0, severe constraints were placed on what could be measured
easily. Consequently, this index represents only I/0 activity expressed in

PL/I 1/0 statements, and Multics I/0 to the user terminal.

The measure was derived by summing the number of instances of PL/I I/0

statements and Multics "ioa " calls.

Applying this measure to IBM PL/I, or any other implementation in which
PL/I I/0 is used, would result in a comprehensive indicator of I/0 activity.
Feature 2u4 Number of external calls (list_extract)

If in the "DATA TYPE" field of the cross-reference listing the word
"entry" appears, we know that this variable is an external subroutine. If
this is the case, the word "ref'" is then searched for, and a counter is
incremented for each reference to the subroutine.

Feature 2% Number of external procedures used (list_pxtract)

A counter is incremented each time a new entry appears in the "IDENTIFIER"

field and the word "entry" appears in the "DATA TYPE" field of the cross-

reference listing.

Feature 26 Average number of formal parameters in procedures (list_extract)
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This feature is the average number of parameters described in the
declaration of the subroutine. It is calculated as the total number of
formal parameters divided by the number of procedures used. The number of
procedures used comes from feature number 25. The total number of formal

parameters is extracted as follows:

1. If we have a new entry in the "IDENTIFIER" field and the word
"entry'" appears in the "DATA TYPE" field of the cross-reference

listing, then continue; otherwise stop.

2. Search in the "ATTRIBUTES AND REFERENCES'" field for the word
"dcl". The number after the word ''dcl'" is the line number where

this subroutine was declared.

3 Start scanning the statement containing the declaration until the
word "entry" is found. The information after the word "entry"

formally describes the parameter list.

4, Initially increment the counter by one, which assumes at least one

formal parameter.

- Scan the remainder of the string until a ";" is encountered and

s

increment the counter each time a "," is located.
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Feature 27 Average number of actual parameters in call statements

(1list_extract)

This feature is the average number of parameters described in the first

all to a subroutine. It is calculated as the total number of actual para-

meters used in the first call to subroutines divided by the number of external

procedures used. The number of external procedures used comes from feature
nurber 25. The total number of actual parameters used in the first call to

subroutines is extracted as follows:

5 If we have a new entry in the "IDENTIFIER" field and the word
"entry" appears in the "DATA TYPE" field of the cross-reference

listing, then continue; otherwise stop.

25 Search in the "ATTRIBUTES AND REFERENCES" field for the word
"ret"., The number after the word '"ref" is the statement number in

which the first call to this subroutine is made.

3. We assume at least one actual parameter, so increment the counter.

9

y, Scan the statement which contains the first call until a ";" is

found and increment the counter each time a "," is found.

Feature 28 Number of complex IF statements (parse)




Given the syntax:

if <expr> then <«Sl>elsec<S2> ,

if either the S1 clause or the S2 clause is compound (that is, IF, DO, or

BEGIN) then that clause is considered complex.

This feature is the total number of such complex clauses occurring in a

single source text.

Feature 29 Number of global variables (list_extract)

A counter is incremented each time a new entry appears in the "IDENTIFIER"

field and the word "external" appears in the "STORAGE CLASS" field of the

cross-reference listing.

Feature 30 Average number of each kind of I/0 statement (parse)

This feature measures the mean number of each kind of I/0 statement in

the source code. The possible kinds of I/0 statements considered are:




readlist
ioa_
Due to the extensive use of Multics I/0 through pointers in the data
base, the value of this feature was not expected to be completely accurate.

However, in a general PL/I environment, this measure could be very informative.

Feature 31 Average length of I/0 list (parse)

The mean number of primitive elements in each I/O statement. I/0

statements examined were:

read
readlist
write
get

put

ioa

Feature 32 Number of arrays (list_extract)

A counter is incremented each time a new entry is found in the "IDENTIFIER"
field and the word "array'" is found in the "ATTRIBUTES AND REFERENCES" field

cf the cross-reference listing.

&
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Feature 33 Total number of dimensions of arrays (list_gxtract)

This feature is a sum of the number of dimensions for each array. The

number cf dimensions for each array is calculated as follows:

1. If we have a new entry in the "IDENTIFIER" field and the word

"array'" appears in the "ATTRIBUTES AND REFERENCES" field of the

cross-reference listing, then continue; otherwise stop.

2 Search in the "ATTRIBUTES AND REFERENCES" field for the word '"dcl'".

The number after the word 'dcl" is the statement number where this

array was declared.

< I We assume at least one dimension, so increment the counter.

L, In the declaration, scan until the variable is found.

5 Scan the statement until a ")" is found and increment the counter

each time a "," is found.

Feature 34 Number of ALLOCATE statements (parse)

A count is maintained, for each source text, of the number of PL/I

ALLOCATE statements.
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Feature 35 Number of BEGIN statements (parse)

A count is maintained, for each source text, of the number of PL/I BEGIN

statements.

Feature 36 Number of CALL statements (parse)

A count is maintained, for each source text, of the number of procedures

>

invoked through the PL/I CALL mechanism.

Feature 37 Number of DECLARE statements (parse)

A count is maintained for each source text of the number of “declare’ or

"decl" statements.

Feature 38 Number of DO statements (parse)

A count is maintained, for each source text, of the number of PL/I DO

statements.

Feature 39 Number of DOWHILE statements (parse)

A count is maintained, for each source text, of the number of PL/I

statements containing a WHILE clause.
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Feature 40 Number of END statements (parse)

A count is maintained, for each source text, of the number of PL/I END

statements. Note that an END statement is always paired with a '"start block

bracket" such as DO, BEGIN.

Feature 41 Number of labels (parse)

A count is maintained, for each source text, of the number of labelled

statements.

Feature 42 Number of GET statements (parse)

A count is maintained, for each source text, of the number of PL/I GET

statements.

Feature 43 Number of GOTO statements (parse)

A count is maintained, for each source text, of the number of PL/I GOTO

statements.

Feature uu Number of IF statements (parse)

A count is maintained, for each source text, of the number of PL/I IF

statements.
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Feature 45 Number of ON condition declarations (parse)

A count is maintained, for each source text, of the number of PL/I ON

condition blocks which were declared.

Feature u6 Number of procedure declarations (parse)

A count is maintained, for each source text, of the number of external

routines used.

Feature u7 Number of PUT statements (parse)

A count is maintained, for each source text, of the number of PL/I PUT

statements.

Feature 48 Number of READ statements (parse)

A count is maintained, for each source text, of the number of PL/I READ

statements.

Feature 49 Number of RETURN statements (parse)

A count is maintained, for each source text, of the number of PL/I

RETURN statements.




Feature 50 Number of REVERT statements (parse)

A count is maintained, for each source text, of the number of PL/I

REVERT statements.

Feature 51 Number of STOP statements (parse)

A count is maintained, for each source text, of the number of PL/I STOP

statements.

Feature 52 Number of WRITE statements (parse)

A count is maintained, for each source text, of the number of PL/I WRITE

statements.

An executive routine was written to go through the entire data base of
PL/I programs and extract the features from the first compilable version of
each program, creating a feature file readable by Multics/OLPARS. Besides
performing this function, the executive also extracts two variables which are

used as estimates of the reliability of programs.

Variable 1 Development time

This is an approximation to the development time of each of the programs.

Each copy of the program in each directory represents a different month which




this program was debugged and tested. This variable is a count of the number

of different months that this program was debugged or tested.

Variable 2 Number of changes

This variable represents the number of lines of code that have been
changed, inserted, or deleted in a program starting from the first compilable
version of the program through the final version of the program. Changes
could occur when program specifications change or when a programming error
is detected and then fixed. Even though both of these types of changes could
have been occurring, the OLPARS system being evaluated is a well-defined
system (see [8]) and thus most changes were due to programming errors. Lines
of comments and leading blanks are ignored in calculating the number of
changes. A straight ASCII comparison (using Multics routine "cpa") was made
of the initial and final version of a program. The final result of this
comparison was stored in a file. This file was then scanned to count the

lines of change.

3.4, UNDERSTANDABILITY

One important aspect of program quality is understandability or psycholog-
ical complexity, the ease with which a programmer (other than the original
author) can read a program and understand its operation. Although independent
understanding of a program is not a necessary condition for reliable program

execution, the amount of cognitive effort required to understand a program




can directly influence the cost of software development, software maintenance,

and software modification.

This portion of the study was an attempt to derive two variables which
measure the conceptual clarity of the programs in the data base through
psychological scaling techniques. In a psychological research paradigm, one
of the most direct techniques for generating an evaluative scale (i.e. a
feature) is simply to ask the subjects to rate the relevant parameter along
a numeric scale: e.g. from 1 to 10 [12]. Over wide ranges of context, exper-
imental demands, and subject populations, rating procedures have been found
to be remarkably reliable, both in the ability of individual subjects to
replicate their own ratings and in the general agreement of ratings across
subjects.® 1In this study, subjects were asked to rate the understandability

of a set of programs on a nine-point scale.

The second feature was more performance-oriented. If the programs in the
data base vary in their understandability, then the time it takes a programmer
to read and understand a program should be directly related to the program's
clarity. Thus reading latency (i.e. reading time) will be an independent
measure of program complexity. In addition, as a check on the validity of
the rating procedure, the two measures should be at least moderately corre-
lated. After all, the latencies and the ratings are two different procedures

for measuring a common construct, program understandability.

% Certainly there are inter-subject differences in the use of any particular
rating scale. Some subjects tend to use the upper end of a scale for
every judgment while other subjects tend to use the lower end. But even
when the mean ratings are very different, the pattern of responses is
very similar: typical inter-subject correlations may be well over .90.
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Twenty employees of Pattern Analysis and Recognition Corporation served
as subjects for this study and were paid for their participation. (See
Section 3.4.3. for details of the payment procedure.) The subjects were all
experienced programmers: the mean (full-time equivalent) programming experi-
ence of the subjects was 5.25 years, with a minimum of one year (full-time

equivalent) of programming experience. In addition, seven possessed Ph.

. Y
five, M.S.'s; and six, B.S.'s in mathematics, computer science, or related

ireas. Thus every subject had sufficient academic/work experience in reading

and writing programs to evaluate the understandability of programs.

B timul

i

i
The original set of 260 PL/I programs varied considerably in size. For
the analysis of psychological complexity, programs of trivial length (less
than 25 lines) as well as excessive length (more than 360 lines) were removed.
The remaining 155 programs still covered a wide range of sizes, yet their
understandability could be reliably assessed with a minimal amount of incon-
venience to the subjects. For each of these programs, the author was asked
to generate a question whose answer would require an understanding of the
program's operation. These questions (along with a monetary incentive) were

used to insure that the subjects carefully read every program encountered.

It was unreasonable to run the subjects for more than one hour per day

or for longer than two weeks. As a pilot study showed that only 3 to 4 of
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the programs could be read in one hour, it was necessary to give each subject
a subset of the programs to read. The programs were divided into four groups
of approximately equal size on the basis of program length. For each subject,
a set of programs was randomly selected from the four size groups according

to the following constraints: 1) Each size group was (approximately) equally
represented; 2) Each subject would see 31 programs; 3) Each program would be
seen by four subjects; and 4) No two subjects would see the same set of pro-
grams. To increase the reliability of the two measures, it was decided that
each program would be read by four subjects and the mean values of the

ratings and latencies would constitute the raw data.

A loose-leaf notebook was assembled to aid in the study of the programs.
The notebook contained verbal descriptions of every subroutine called by the
programs and an explanation of the parameters of the calling sequence. The
notebook also contained descriptions of all files used by the programs. The
subroutine and file descriptions were organized individually to facilitate

their use by the programmers.

As an additional aid to the subjects, each program listing had a program
description attached to it. This description contained a verbal explanation
of the program’s function (at a conceptual level) as well as lists of the
files and subroutines used and their parameters. It was necessary to include
this information as some of the programs already contained similar descrip-
tions as part of their comments. The descriptions gave only information

about the global properties of the programs: e.g. the algorithm used. None
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of the descriptions gave any clues to the flow of the program or other speci-

fic features which might influence the performance of the subjects.

G I Procedure

One week before the start of the experiment, the subjects attended a
PL/I refresher seminar. Features of PL/I and of the Multics operating system
were reviewed to insure that everyone was familiar with the language syntax,
I1/0 specifications, etc. Summary sheets of the features were given to the
cubjects, as were sample programs. The purpose was to minimize any diffi-

culties due to the language or the operating system.

Subjects were run either individually or in pairs. They began by reading
two pages of instructions. The instructions stated that they were to read
one program at a time, until they understood it sufficiently to translate it
into another high-level language. (A copy of the instructions to the subjects
is contained in Appendix A.) The subjects were then given the notebooks of
subroutine and file descriptions, and were allowed to examine them for a few

minutes.

When a subject indicated he was ready, he was given a program listing
and corresponding description chosen randomly from his set of 31 programs.
Simultanecusly, a stopwatch was started. When he indicated that he was
finished =tudying the program, the watch was stopped and the time recorded to
the nearest second. If the subject was still studying a program after 25

minutes, he was stopped, and 25 minutes was entered as the latency. Subjects
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were told that if they had a question concerning the syntax of PL/I, the watch
would be stopped while the question was answered. We were concerned only
with differential performance relative to the programs in this study, not in

peculiarities or difficulties in the language itself.

After the latency was recorded, the subject was asked to rate the pro-
gram on a scale from one to nine, where a rating of one implied a trivial
program and a rating of nine, an incomprehensible one. The subject was also
asked to rate the degree of user interaction in the program and whether the

program was mainly numeric or non-numeric in nature.®

Finally, the subject was given a question concerning the operation of
the program. If the question was answered correctly, 25¢ was credited to the
subject. If the answer was incorrect, 10¢ was subtracted from his account.
We were not interested in the answers per se. This procedure was used to
maintain motivation in the subjects, for a subject's answer had to be correct
in order to produce a monetary gain, and he needed to understand the program

in order to answer the question correctly.

After the question was answered, the process was repeated with another
randomly selected program. Each subject saw three programs per day for nine

days. On the tenth day, he saw four programs. A typical session lasted less

% The subjects were asked to evaluate these two program classification
variables since it was felt that there might be an interaction between
the tvpe of program and the specific features related to reliability.
These classifications reflect global characteristics of the programs
and thus could not be automatically extracted at this time.
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than one hour, and the ten sessions were spread over three weeks. After the

final session, a subject was given the money due him,

The results of this study produced the following information:

Feature 53 Amount of numerical processing

The value was the mean rating across subjects of the relative amount of

numeric processing. A rating of 1 indicated a numeric routine and 2 indicated

a non-numeric routine.

Feature 53 Amount of user interaction

The mean rating of user I/0 across subjects was taken as a global measure

of interaction. A rating of 1 indicated no user interaction; 2, user output

provided; and 3, the program was interactive.

Variable 3 Latency

The latency was the time duration from the moment a subject received a

program listing until he indicated he was finished reading the program. (See

section 3.4.4, for a further discussion of this variable.)

Variable 4 Understandability rating

— e— 3 Swpa—— Sy T ——— -




The understandability of a program was defined as the mean rating given

by the subjects who read the program.

3.4.4, Variable Generation

In order for the ratings and latencies to be considered measures of the
understandability of the programs, it is important to show that the subjects
did, in fact, understand the operation of the programs they read. The number
of correct answers to the questions was collapsed across the programs to
arrive at a measure of the performance level of the subjects. Qverall, the
questions were answered correctly 94% of the time. There were no systematic
patterns to the errors; they appeared randomly distributed over programs and
subjects. Moreover, it appeared that a portion of the errors were due to
ambiguous questions and subject carelessness (e.g. in locating a particular
element of an array). Thus overall it appeared that subjects did understand

the programs which they read.

The understandability ratings for each program were collapsed across the
four subjects who read it to arrive at a mean understandability rating for
that program. Similarly, mean estimates of degree of user interaction and of
numeric/non-numeric processing were obtained for each program. These three

variables were added to the list of physical features for these programs.

Latency or reaction-time data tend to be highly skewed in a positive
direction. A standard procedure for normalizing such time measurements is to

transform the data by replacing the latencies with their common logarithms

3~y
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[7,10]. After they were transformed, the data were collapsed across the
subjects to arrive at a mean (log) latency for each program. This variable was

ilso added to the set of physical program features.

It was claimed at the beginning of section 3.4. that both the under-

standability ratings and the latencies were measuring a common construct
which might be called the psychological complexity of the programs. If they
both were measuring the same construct in different ways, then the two measures
would be related. The correlation between the understandability ratings and

log latencies was 0.80. That is, the two variables were highly related.
fact, even when the effect of the size of the programs was partialled out
(i.e. statistically removed), the correlation between the ratings and log

latencies was 0.62 (see section 4.3.3.).
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SECTION 4

DATA ANALYSIS

ok, OLPARS OVERVIEW

This section will provide a brief description of the On-Line Pattern
Analysis and Recognition System (OLPARS) as implemented under Multics on
RADC's HIS 6180 computer. Elements of the pattern recognition problem and a
functional overview of the Multics OLPARS Operating System will be included.
Emphasis is on the practical use of the system to solve a pattern recognition
problem. (For a more detailed study, see "Multics OLPARS Operating System,"
RADC-TR-76-271.) To test the usefulness of OLPARS in examining program data,
a pattern recognition problem was designed to try to classify programmers
merely by using the structural features of each programmer's programs.

Appendix D presents the details of this procedure.

The pattern recognition problem is described as the recognition of the
state of an environment based on L measurements or features extracted from
the environment. Thus, the pattern recognition problem is composed of (1)
feature extraction, that is, the definition of the measurements, and (2)
pattern classification. The objective in selecting features is to provide a
set of measurements which yield information which will aid in discriminating
between the various environmental states. The pattern classification problem
requires that we design the recognition logic, which classifies the state of

the environment using the previously defined L features.
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The concept of a vector space is fundamental to all of the problems
discussed here. The features (measurements) define the basis of the space;
an object or an event is represented as a vector in that space. Feature
extraction involves defiping the representation space, and pattern classifi-
cation involves defining the partitionment of this space into regions associ-
ated with each of the states (or classes) of the environment. In order to
solve a pattern classification problem, statistical sample vectors from each
state (or class) must be collected and analyzed to yield a satisfactory

classification logic.

The pattern analysis problem differs from the pattern classification
problem in that the states (or classes) of the environment are a priori
unknown to the researcher. The data comprise a set of L-dimensional vectors
which must be analyzed to determine the natural or inherent classes contained
in the vector data. The detection and identification of a substructure of
clusters (sample vectors which cluster together in the vector space) is the

solution to this problem.

The vector data structure is represented within OLPARS as a hierarchical
tree where each node corresponds to a list of vectors. Partitionment of a
list of vectors (node) is represented by branches to lower-order nodes
emanating from the node corresponding to the origingl list, with each subnode

being associated with a sub-list.

OLPARS facilities for solving problems of pattern analysis and classifi-

cation consist of the following types of routines:
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b £ Data Input, Storage and Output

Data input from cards, tape and other Multics files.

Permanent storage facilities in which OLPARS data may be maintained
either for the exclusive access of a given user (exclusive user storage) or
for common access by a number of analysts (common user storage). Data trees
may be output to either type of storage area, retrieved, and deleted. Lists
of the data trees in each area may be obtained by user command. In addition,
OLPARS logic and projection vectors may be stored, retrieved and deleted from

exclusive user storage, and lists of those data may be obtained separately.

Programs for listing and deleting data trees from current storage are
available. 1In addition, data trees within the current storage area may be
modified by adding data classes from other data trees, by combining classes
within the data tree, by deleting any data class or data class substructure,
or by removing individual data vectors from the data set. A node substructure
may be added to the current data tree via the structure analysis module. Any
data tree or data class name may be changed, and a display of the current data
tree is immediately available. Finally, a new tree may be created from data
classes existing in available data trees, or by extracting a percentage of
data vectors from an existing data tree. The purpose of this final option is
to provide a facility for the creation of randomly assigned design and test

sets for the design and independent testing of classification logic.

v
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Listings and data manipulations were very useful in doing preliminary

analysis of the programmer classification problem (see Appendix D).

Data trees from current data storage may be permanently stored on

magnetic tape.

2. Data Display - Projection Planes and Display Formats

OLPARS provides data display in a 2-space scatter or cluster format and
a l-space histogram format. These displays may be viewed in several projec-
tion planes (coordinate, eigenvector, discriminant, and user-supplied).
Facilities for user manipulation of these data projection displays include
printouts indexing specified points, modifying scale factors, sequencing
appropriate data projections, storing projection vectors for later use,
changing the data class composition of a display or highlighting specified
data classes, and implementing partitions drawn via cursor on the display
terminal. For the programmer classification problem , displays were useful

in observing within class and between class scatter of the programmer data.

3. Measurement Evaluation

Measurement evaluation computations are also provided which measure the
discriminability of features. The measurements are then presented in rank
order display format; manipulations available for these displays include
printout, rankings for selected classes, class pairs, or measurements, display

of the distribution of data along a selected measurement in histogram format,
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and selection of a measurement subset for inclusion within a data set of

reduced dimensionality. Finally, a program for

data set reduction is pro-
vided.

For programmer classification, measurement evaluation was primarily used

for purposes of data reduction.

4, Data Tree Transformations

Three addit’onal options are available for creation of transformed data
sets: normalization, eigenvector transformation, and linguistic transforma-

tion of individual measurements.

Since the programmer data had to be normalized prior to analysis, these

transformations were very useful.

5 Structure Analysis Fartitions and Projections

The creation of subnode structure in a data tree (the structure analysis
function) can be implemented via partition of a data projection display or by

linguistic statements based on a priori knowledge of the ranges and relation-

ships of data distributions within and between data classes.

An additional data projection display is available for the structure

analysis function in the form of a nonlinear mapping algorithm. This algo-
rithm has been equipped with a data set clustering algorithm which allows its
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use on large data sets despite the time and space limitations inherent in the
maintenance of arrays related exponentially to data set size, which are

required by this algorithm.

Since no structure analysis was necessary for the programmer data, options

described above were not used.

6. Classification Logic Design and Evaluation

OLPARS logic design facilities provide extensive mathematical/graphical
techniques for allowing the user to tailor decision logic design to the
structure of the class data. In general, pattern classification is undertaken
following a pattern analysis conducted on each of the data classes for which
logic is to be designed. The purpose of this analysis is to ensure that each
data class is unimodal; that is; the vectors from each class are clustered in
one region of the measurement space. Although not always required, the uni-
modality property is highly desirable in order to ensure an effective logic
design. In those cases where the class data are found to be multimodal, the
approach dictates that each mode be identified and the sample vectors corre-
sponding to each mode be grouped as a named subclass. Upon completion of the
logic design, the decision region in the measurement space corresponding to

each subclass can be reidentified with the original multimodal classes.

Basic logic design operations fall into two categories:
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a. Logic capable of completely classifying vectors within the reference

group of data classes (complete within-group logic); and

b. Logic capable of identifying and partitioning completely disjoint

data class groups (between group logic).

The full set of logic design capabilities in OLPARS were very useful

for purposes of data analysis and logic design of the programmer data.

i Complete Within-Group Logic

Nearest-mean-vector logic implementation provides capabilities for class-
ification of data utilizing one of three metrics (Euclidean distance, weighted
vector distance and Mahalanobis weighted distance). An unknown vector, then,

is assigned to the reference class for which the decision metric is minimized.

Fisher pairwise discriminant logic is constructed by computing optimal
linear discriminants and thresholds to distinguish between every pair of

classes (subclasses) within a designated group.

Closed decision boundary logic creates an L-dimensional closed hyper-
region for each class of the selected data set. An unknown vector is assigned
to a class if and only if it lies in the hyperregion associated with that

class and no other.
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8. Between-Group Logic

Data Projections. An obvious drawback to computing pairwise disciminants
is the potentially large number of combinations. In most problems of interest,
some of the classes (subclasses) are statistically disjoint and quite easily
separated from one another. If these disjoint class groups can be identified
and logic can be designed to discriminate the groups, then the pairwise dis-
crimination need only be computed for the statistically overlapped classes
(subclasses) within the group. The OLPARS user will not ordinarily know a
priori how to group the classes (subclasses); therefore, options are provided
to project the class (subclass) data onto one- or two-dimensional subspaces
and display the results. If the user detects nonoverlapping groups of classes
(subclasses), he can draw separating piecewise linear boundaries on the dis-
play. These boundaries may be stored within the system as piecewise linear
hyperplane boundaries which partition the original L-dimensional measurement
space. The user can continue this procedure by selecting one of the class
groups and projecting the corresponding data onto a new two-dimensional sub-
space. If between-class separation is again evident, the user may again par-
tition the original L-space with piecewise linear hyperplanes. If, due to
statistical overlap, the classes (subclasses) cannot be completely separated
using this procedure, it is recommended that the user complete the logic via

within-group discrimination procedures.

Scatter Plot Partitions. The user has the capability to draw multiple

piecewise linear convex boundaries. The region external to the drawn bound-




aries may be designated as a reject region, or can be used for data class

designation.

Boolean (linguistic) Logic Partitions. OLPARS provides for the implemen-
tation of linguistically-defined logic partitions. The user can write any
Boolean statement (any statement that can be evaluated true/false) for use as

classification logic.

Temporary logic evaluation results are displayed following any logic
implementation. Upon completing the logic design, the user can next evaluate
the design against any data set and review the results of that evaluation
within a confusion matrix format. Logic which provides adequate discimina-
tion may be output to the system printer or stored within exclusive user

storage. Inadequate logic may be supplemented, modified, or deleted.

9. Lattice Logic Structure

A capability is provided which permits the analyst to create a lattice-
type logic tree structure. This allows, in effect, for two or more logic

nodes in an OLPARS logic tree structure to branch together.

10. FORTRAN Subroutine Logic

As an alternative to a simple listing of the discriminants, weighting
matrices, etc., which make up the classification logic associated with a

given logic tree structure, a FORTRAN subroutine may be created which can
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execute the logic. The generated subroutine is in "standard" FORTRAN and may
be punched on cards for use at other facilities. A commented listing of the
subroutine may also be produced and any data set may be classified with the

compiled subroutine.

4.2. ANALYSIS OF PROGRAM QUALITY DATA

This section describes the analysis of the data base of 155 PL/I pro-
grams. Since the present study was primarily an investigation of the use of
OLPARS to evaluate program quality, the use of OLPARS in performing the types
of analysis required will be highlighted. The analysis will be divided into

three parts:

X, A preliminary analysis of the structure of the data. This analysis

will be used to determine measurement reduction.

2 Classification of program quality based on
a. development time
b. number of changes
Es program understandability rating
d. program understanding latencies

for determining those features affecting these dependent measures.

& Classification based on programming style: 1i.e. classification by

program author.

e o




The 155 programs used in this analysis represent a majority of the 200
programs that currently exist in the Multics/OLPARS system. These 155 pro-
grams represent the programs used in the psychological complexity study as

described in Section 3.U4.

[Note: Throughout this discussion, when a reference is made to the actual

name of an option used in Multics/CLPARS, that option's name will be under-

lined. ]

B 200, Preliminary Analysis

At the start of the statistical analysis, it was noticed that certain of
the original 54 features were not applicable, since these were not used in

the programs examined. The features removed included:

e Number of implicitly declared variables (all variables must be

declared in PL/T)

2y Number of explicitly declared variables (since all variables must

be declared in Multics PL/I, this number is identical to the number

of variables)

3. Average length of I/0 list

4, Number of instances of allocate
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B« Number of instances of read

6. Number of instances of write

(The I/0 features were not applicable, since Multics PL/I 1/0 is performed by

system subroutines.)

As a result of the psychological complexity study (Section 3.4.), four

new features were added:

il Mean user interaction classification
i Mean numeric/non-numeric processing
3. Mean log latency of understanding

4. Mean understandability rating

The result was a set of 52 features; 46 were structural, 4 were related to
program quality, and 2 were non-structural (user interaction and amount of

computation). The next task was to examine the structure of the data.

Initially, an eigenvector analysis was performed.® As an eigenvector

analysis requires normalized data, the data were normalized by normxfrm. The

eigenvector analysis (eigv$sal) produced a listing of the eigenvalues and the

s

Assumming that the features can be represented in a multidimensional space,
the first eigenvector points in the direction of maximum variance ; the
second eigenvector points in the direction of maximum variance under the
constraint that is it orthogonal to the first; etc.




corresponding eigenvectors. From an examination of the eigenvalues, it was
found that the first eigenvector accounted for 35.2% of the variance whereas
the second vector accounted for only 8.2% of the variance. From this, it can
be seen that the first eigenvector accounts for a large part of the variance
of the data. Those features which were weighted most heavily on the first

eigenvector (i.e. correlated highest with this direction) were:

Number of lines

Number of variables

Number of semicolons

Number of assignment statements
Number of instances of do
Number of instances of end

Number of lexemes

The hope was that the dependent measures (development time, number of
changes, etc.) would be of some importance. However, the first occurrence
(absolute weight greater than .2) of any of the dependent measures did not
appear until the seventh eigenvector (development time loading = -.332).

This vector accounted for only 3.4% of the variance.

Thus the features which weighted highest on the first eigenvector,

were related to program size. Other findings give similar results (see

Section 2). As a result of these findings, it has become programming
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practice to recommend making all programs short (less than 100 executable
lines). However, this merely moves the problem of complexity one level
higher to the system design level without examining the effects of other

programming elements on program quality.

It was felt that this finding was of limited interest by itself. What
was interesting was that over 60% of the variance was naot accounted for by
program size. A question remained as to what features influence program
quality when the effect of program size is held constant. Had all programs
been of the same size, examining these effects would have been straight-
forward. However, the data were from programs which varied over 10:1 in
size. It was possible to eliminate size effects statistically by partialling
out size from each of the features. This could have been done by partialling
out any one of the following size related features (which are all correlated

with values greater than .95):

o Number of lines
o Number of semicolons
o Number of lexemes \

Since the number of lexemes gave the highest weighting on the first eigen-
vector, and since the number of lexemes more nearly reflects the overall size

of programs, it was chosen to be partialled out. By partialling out the




effect of number of lexemes, the result will measure each feature as if the

number of lexemes in each program were held constant.

Partialling out the effect of number of lexemes from each feature is
done according to the following relation (see [6] for a complete discussion

of the partialling procedure in the context of analysis of covariance):

Gl=Fl—(rgE(Pi-P)+F)
P
where
Fi = Value of original feature for ith sample
F = Mean value of F across all samples
Op = Standard deviation of F
Pi = Value of feature being partialled out (for ith sample)
P = Mean of feature P
O B Standard deviation of P
P = Product-moment correlation between F and P
G = Feature F after influence of P has been eliminated

(partialled out)
The effect on the individual features, in relation to the dependent
measures, of partialling out the number of lexemes can be described by the

b following three cases:
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Case 1:

Case 2:

Case 3:

If the feature is uncorrelated with the number of lexemes (correla-
tion = 0.0), then the correlation with the dependent measure will

be unchanged.

If the feature is identically correlated with the number of lexemes
(correlation = 1.0), then the correlation with the dependent measure

will become 0.0.

If the correlation of the feature to the number of lexemes is
between 0.0 and 1.0 (0.0 and -1.0), then the correlation with the
dependent measure is reduced (increased) according to the degree of

correlation between the feature and the number of lexemes.

The partialling was performed on the set of features and the eigenvector

analysis was repeated on the resulting data. The results of this analysis

were much more encouraging in that no one eigenvector accounted for more than

50% of the variance (eigenvector 1 = 15%, eigenvector 2 x 10%). Those

features whic.. were weighted most highly on the first two eigenvectors were:

eigenvector 1
number of variables
number of assignments
number of external calls
number of I/0 statements

number of arrays
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amount of computation

total number of dimensions

eigenvector 2
number of lines
maximum nesting
number of complex ELSE clauses

number of DO statements

The dependent measures did not load highly on any eigenvectors until the
sixth vector, but this vector nevertheless accounts for approximately 5% of

the variance and its effect is thus still of interest.

In Figures 4-1 through 4-4, it can be seen that the dependent measures
are still continuous variables (as they should be). Figure 4-~1 shows a
histogram (crdv$sal) of the development time, 4-2 shows a histogram of the
number of changes, 4-3 shows a histogram of the mean rating, and 4-4 shows a

histogram of the mean log latency.

Another goal of the preliminary analysis was to eliminate any measure-
ments (features) whose value was constant or typically constant, or which was
a linear combination of some other set of features. Examining a listing of
the means, standard deviations, ranges, and correlation matrix (all from
dataprnt) achieved this goal. As a result of this analysis, the following

set of 32 structural and non-structural features remained:
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Figure 4-1 Development Time after Number of Lexemes is Partialled Out
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Figure 4-2 Number of Changes after Number of Lexemes is Partialled
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Figure 4-3 Mean Rating after Number of Lexemes is Partialled Out
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10.

11.

12.

13.

lu.,

15.

16.

17.

18.

19.

20.

Number of comments

Average length of comments

Uniformity of distribution of comments over statement lines
Number of lines (executable + comments)

Number of multiple statements or assignments used
Number of variables declared

Number of semicolons

Maximum nesting

Mean variable name length

IF balance

Distribution of variable occurrences over program statements
Mean number of operators per assignment statement
Number of assignment statements

Number of instances of PUT

Number of I/0 statements

Number of external procedures used

Average number of actual parameters in CALL statements
Number of complex ELSE clauses

Number of arrays

Number of instances of GOTO

Number of instances of CALL

Number of instances of DO

Number of instances of DO WHILE

Number of labels

Mean user interaction

Mean amount of computation (numeric/non-numeric processing)
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275 Number of based variables

28, Average density of non-blank characters outside comments
29, Number of pointer variables

30. Number of global variables

3. Number of instances of IF

32. Number of instances of RETURN

225 Classification Based on Program Quality

Contained in the feature set are variables which are measures of program

quality or program reliability. These measures include:

1. Development time of a program

2 Number of lines of code that have changed throughout the history of

a program
35 Mean understandability rating of a program (see Section 3.4.)
4, Mean (logarithmic) time to understand a program (see Section 3.4.)

The purpose of the data analysis described in this section was to establish
a set of pattern recognition schemes which would distinguish the extremes of

these variables; that is, it would distinguish:

6 " Short development time from long development time
2. Small number of changes from large number of changes
3. High understandability from low understandability

4, Short understanding time from long understanding time




Perhaps more importantly, the analysis was used to determine which features

influenced the four measures of program quality.

A necessary condition for a pattern recognition paradigm is that the
data consist of discrete classes. Using crdvSsal, histograms were drawn for
each of the partialled dependent measures (classification variables). As
can be seen in Figures 4-1, 4-2, 4-3, and 4-4, each of the measures was
continuous in nature. Thus, in order to use a pattern recognition approach,
it was necessary to create classes corresponding to the long and short develop-
ment time, etc. The procedure for generating the classes from the continuous

data was as follows:

15 The vectors were plotted along the feature of interest (e.g.,
development time).

2% The middle 25 vectors were removed.

3 Those vectors whose values were below the region removed were
placed in the reliable class (class name rrrr) and those which were
above the removed region were placed in the unreliable class

(class name uuuu).

The number of vectors (programs) of interest had thus been reduced from
155 to 130 with 65 in each class. Each vector contained 32 features. The

features used in the development time and number of changes problems were

extracted from the first compilable version of each program, since one of
the questions to be answered was: '"Will a program have a short development

time?" or "Will a program have a small number of changes?" The features used
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in the rating and latency problems were extracted from the final (accepted)

version of each program since the ratings and latencies came from subjects

who had read these final versions.

.2, 2.1

Procedure

A methodology was established for performing the analysis of the

following pattern recognition problems for each of the data sets:

AR e,

Using the partialled data

da.

A Fisher discriminant (fisher) analysis was performed on the
entire data set of 130 vectors, using all 32 features. The
Fisher discriminant is a linear combination of features which

maximally discriminates among the classes.

The Fisher direction (i.e. the direction of maximum discrimina-
tion) was plotted using gndv$sal and a listing of the coeffi-

cients of this direction (via vecSsave and vecS$list) was

produced.

The number of features was reduced by selecting the nine
features whose discriminant weights were the largest. Note
that in using this criterion, features were selected according
to how well they correlated with the Fisher direction, inde-

pendent of whether the selected set of features were inter-
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related. The reduction was performed using dscrmeas and

trnsform.®

d. The vectors were randomly divided into two data sets (data set
1 and 2) using crrandts. Each set contained 50% of the vectors.
In the subsequent analysis, one data set was used to generate
the decision logic (fisher) while the other set was used to

test the logic (logicevl).

e. Fisher discriminant logic was designed on data set 1 (fisher)

and tested on data set 2 (logicevl).

f. For purposes of cross-validation, Fisher discriminant logic was

designed on data set 2 (fisher) and tested on data set 1 (logicevl).

25 Using the unpartialled data

As was shown in Section 4.2.1., program size had a significant effect
on the measures of program quality. The analysis of the partialled data
determined which features influenced program quality when program size
was held constant. This part of the analysis used a size feature (number
of program lines) and the nine features from the partialled analysis to

determine the overall program classification.

The motivation for reducing the number of features was to maintain a sig-
nificant number of degrees of freedom for evaluating the design of the
decision logic. Unless the number of features used is much less than the
number of samples, the decision logic will be unduly affected by random
noise in the values of the features.
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a. The data set was reduced to the 9 features used in lc plus

feature 4 (the number of lines) (using dscrmeas and trnsform).

B A data set (data set 4) was randomly created which contained 50%

of the data vectors in this data set (data set 3) (crrandts).

€ Fisher discriminant logic was designed on data set 3 (fisher)

and tested on data set 4 (logicevl).

dis For purposes of cross-validation, Fisher discriminant logic was

designed on data set 4 (fisher) and tested on data set 3 (logicevl).

4.2.2.2.  Results

The analysis described above was used to design classification logic on
the four measures of program quality. The results of these analyses are des-
cribed below. It is important to keep in mind here the convenience and effici-
ency which OLPARS affords the user. For example, each of the studies described
here was completed in 30-45 minutes. This was the total elapsed time from when

the operator sat down at the terminal until the last hard-copy graph was pro-

duced.

Number of Changes

Using the full set of 32 partialled features, the discriminant analysis

correctly classified programs containing large or small numbers of changes

4=-27
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76% of the time. The classification table,

True Class

small large

small 50 16

Classified

large 15 49

indicates that there was some confusion in the ability to predict the relative
number of program changes. Figure 4-5 is a histogram of the two classes pro-
jected onto the discriminant direction as produced by gndv$sal. The extent
of the overlap of the two classes is rather clear here. Table u4-1 shows the
discriminant weights for this classification. The named features were the
ones chosen for the subsequent analysis, since they correlated most highly

with the discriminant vector direction.

The data were then randomly divided into two data sets of equal size, and
Fisher discriminant logic was designed and tested on these two sets. Table
4-2 shows the resulting design and cross-validation performance using logic
derived from the nine partialled features. The upper right and lower left
boxes of Figure 4-2 show the results of the cross validations, where decision
logic was designed on set one and tested on set two, and vice versa. The
significance of the two-by-two classification tables was assessed by a chi-
square (X?) test to determine if the classification of programs was at a
chance level. (If it was, the cell frequencies in each two-by-two table
would be about even.) The overall low level of correct test classification

(64%), though significantly better then chance in each case, indicates that

4-28
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11.
12,
13.
14,
15,
16.
o
18.
19.
20.
21.
22,
23.
24,
25,
26.
27,
28.

29.
30.
31.
32.

Value

.035
.056
-.02
.157
.055
-.060
-.120
Llul
-.335
-.110
.0003
042
<251
-.102
-.009
. 1hb
.091
-.215
-.195
.073
-.162
.358
+057
-.063
-.108
.082
.164
457

-.138
-.104
.016
401

Name

mean variable name length

number

number
number

number
number

of

of
of

of
of

assignment statements

complex ELSE clauses
arrays

instances of call
instances of do

number of based variables
average density of non-blank characters
outside comments

number of instances of return

Table 4-1 Discriminant Coefficients (partialled features)
for Number of Changes Analysis
(The named features represent the reduced feature set.)




DESIGN SET

i: 2
True True
Small Large Small Large
Small] 25 P Small| 24 9
Classified Classified
1 Large| 8 22 Large| 8 23
71% Correct 73% Correct
2
(X '= 10,12, P J001)
[
%
w
=
(95
£
=
True True
Small Large Small Large
Small| 18 9 Small| 23 14
2 Classified Classified
Large| 14 23 Large| 10 19

(X2

64% Correct

£ 6,62, P < ,05)

64% Correct

T e TR
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Table 4-2 Cross Validated Fisher Logic for Classifying Programs by Number of

Changes (9 Features, Program Size was Partialled Out)




there is considerable overlap in the two classes, even when projected in the

optimal direction.

The nine features were then combined with a program size feature (number
of lines of code) and discriminant functions were again computed using the
unpartialled data. Table 4-3 shows the results of the design and test classi-

fications for the unpartialled number of changes analysis. Although one test

classification is not significant, this result appears to be due to the non-
uniformity of the randomly chosen design and test sets. In any case, the
mean correct classification rate for the two test sets‘(GM%) indicates that
the programs are being classified correctly only slightly better than at the
chance rate of 50%. Some of the selected features (e.g. number of DO loops,
number of based variables) do intuitively relate to a program's complexity.
However, the inability to classify programs accurately (according to number
of changes) using the ten best features implies that other factors may have
a substantial effect on the number of changes a program experiences between

being the time of initial compilation and that of final acceptance.

Development Time

Using the full set of 32 partialled features, the discriminant analysis
correctly classified programs which had a short or long development time 75%

of the time. The two-~by-two classification table,
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28.

29
30.
31.
32.

Name

mean variable name length

number of assignment statements

number of complex ELSE clauses
number of arrays

number of instances of call

mean user interaction
average density of non-blank characters
outside comments

number of global variables
number of instances of if

Table 4-4 Development Time (partialled) Discriminant Coefficients
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DESIGN SET
1 2
True True
Short Long Short Long
Short| 21 12 Short| 20 13
Classified Classified
Long 12 21 Long 12 19

63.6% Correct

60.9% Correct

(X2 = 3.12, not significant)

True

Short Long

Short| 18 10
Classified
Long | 15 23

62.1% Correct

(x2 = 5,39, P < .05)

True
Short Long
Shoryy 19 8
Classified
Long 13 24

67.2% Correct

Table 4-5 Cross Validated Fisher Logic for Classifying Programs by Development

Time (9 Features, with Program Size Partialled Out)




DESIGN SET

1 9
True True
Short Long Short Long
Short]| 26 10 Short| 29 L
Classified Classified
X Long 7 20 Long 3 21
74.2% Correct 78.1% Correct
2
(x = 24.2, P < .001)
=
[#8]
w
=
wn
£
=
True True
Short Long Short Long
Short| 22 10 Short{ 27 6
Classified Classified
2 Long | 11 23 Long 5 26
68.2% Correct 82.8% Correct
il
(X" = 8,785 F < :0L)

Table 4-6 Cross Validated Fisher Logic for Classifying Programs by
Development Time (Ten Features, Including Program Size)




short development period. Note that size of the nine selected features was
2lso selected for classifying the number of changes in a program's development.
These features (e.g. number of arrays, number of CALL statements) which reflect
the logical complexity of the programs influence both development time and
number of changes. Perhaps this is not too surprising, for there is a mod-
erate relationship between these two variables: the produce-moment correlation

is 0.26 even with the effects of program size partialled out.

4.2.2.3. Psychological Complexity (Understandability) Measures

Since both the understandability ratings and the latencier were closely
related (r - .62 after program size was partialled out), the results of the
two analyses will be discussed together. As in the previous analyses,
discriminant functions were computed using all 32 partialled features. Table
4-7 shows the results of the classifications, and Figures 4-7 and 4-8 repre-
sent the histograms of the data projected onto the Fisher directions for the

ratings and latencies, respectively,

Tables 4-8 and 4-9 list the discriminant coefficients for the analyses,
along with the labels of the selected features. Few of the features selected
in the previous analyses were also chosen here. Perhaps this is not too
surprising. Development time and number of changes refer to situations in
which a programmer is working with his own program. In addition, these two
variables reflect the transformations that occur in a program from an initial
attempt to a final version. By contrast, the rating and latency variables

refer to programmers who were examining programs that someone else wrote.
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True Class

Easy Difficult
Easy 51 10
Classified
Difficult | 12 55
Understandability Ratings
83.1% Correct
Short Long
Short 50 15
Classified
Long 15 50

Reading Latency

76.9% Correct

Table 4-7 Fisher Discriminant Logic of Ratings and Latencies
Using All 32 (Partialled) Features
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Figure 4-7 Difficulty Rating (Partialled)
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16.
17,
18.
19,
20.
21.
22.
23.
24,
25.
26.
27
28,
29.
30.
31.
32.

Value

. 042
=, 127
-.032
.080
.182
-.225

.013

287
-.132
-.098

.032

.1u49

.358

.100
-.239
-.020
.086
«197
.325
«173
«210
«134
. 337
.170
-.084
.023
«255
«131
" 252
. 049
.001
+125

Name

number of variables declared

maximum nesting

number

number

number

number

number

number

number

of

of

of

of

of

of

of

assignment statements

I/0 statements

arrays
CALL

DO WHILE

based variables

pointer variables

Table 4-8 Discriminant Coefficients (Partialled Features)
for Difficulty Rating Analysis
(The named features represent the reduced feature set.)
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10.
11.
12.
13.
14,
15,
16.
17.

18.
19,
20.
21,
22,
23.
24,
25.
26,
27.
28.
29.
30.
31.
32,

Value

114
-.156
»027
.100
-.066
-.277
-.018
«L7L
-.142
SOk
.008
-39
«221
.058
«158
.234
. 245

-.208
-.123
.382
-.150
+198
.133
-.022
.03y
-.110
.160
-.060
.103
.138
-,060
«329

Name

number of variables declared

mean number of operators/assignment statement
number of assignment statements

number of external procedures used

average number of actual parameters in call
statements

number of complex ELSE clauses

number of GOTO statements

number of labels

number of RETURN statements

Table 4-9 Discriminant Coefficients (Partialled Features) for Log Latency

Analysis

(The named features represent the reduced feature set.)
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But these programs were also finished products, with many of the problems and
errors already eliminated. Witk the two pairs of variables actually measuring
quite different aspects of the programs, it would have been surprising if many

of the same features were used in the classification logics.

It was encouraging that many of the features selected in each analysis
reflect the findings of other recent studies. For example, the degree of
nesting and the use of pointer variables both contributed to increased psycho-
logical complexity, as measured by the ratings. In fact, several of the study
participants had spontaneously mentioned that programs containing pointer
variables were difficult to follow. For the latency analysis, both the number
of GOTO statements and the number of RETURN statements were selected. Both
these features reflect structured programming goals: eliminate the use of
unconditional jumps and provide only a single exit from routines. (A more

detailed analysis of the features can be found in section 5.2.).

The programs were randomly split into two data sets independently for
each analysis. Fisher discriminant logic was then calculated in a cross-
validation design. Table 4-10 shows the classification results for the
ratings. The proportion of correct classifications was somewhat better than
chance (mean test proportion cerrect = .65). The proportion of correct
latency classifications (.59), as shown in Table 4-11, was slightly lower

than in the rating analysis and, in fact, was not significant.

The program size feature was added to the nine selected features in each

analysis, and Fisher discriminant functions were again computed. Tables 4-12




DESIGN SET

X 2
True True
Easy Difficult Easy Difficult
Easy 25 5 Easy |20 12
Classified Classified
1| Difficult 8 28 Difficult |12 20
80.3% Correct 62.5% Correct
2
e = hig) Pi< 05)
—
(#%]
wn
>
w
(%
=
True True
Easy Difficult Easy Difficult
Easy | 24 13 Easy |23 12
Classified Classified
2 | Difficult 9 20 Difficult 9 20
66.7% Correct 67.2% Correct
2E
(Xx* = 8,3, . £.01)

Table 4-10

Classification Tables for Understandability Ratings - Fisher

Logic on Nine Partialled Features
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DESIGN SET

1L 2
True True
Short Long Short Long
Short| 24 1) Short| 18 12
Classified Plassified
X Long 9 22 Long 14 20
69.7% Correct 59.4% Correct
2 G B
(X = 2.5, Not Significant)
£
£
n
[
wn
£
=
True True
Short Long Short Long
Short| 22 16 Short| 21 10
Classified Classified
- Long | 11 17 Long | 11 22
59.1% Correct 67.2% Correct

(X2 = 3,7, Not Significant)

Table 4-11 Classification Tables for Study Latencies - Fisher Logic on Nine
Partialled Features




DESIGN SET

1 2
True True
Easy Difficult Easy Difficult
Easy| 32 8 Easy| 28 2
Classified [lassified
1 Difficult] 1 25 Difficult| u 30
86.4% Correct 90.6% Correct
2
(X® = 42,5, P <,001)
£
%]
w
‘_
o
[
=
True True
Easy Difficult Easy Difficult
Easy| 31 8 Easy| 29 4
Classified Classified
2 Difficult] 2 25 Difficult] 3 28
84.8% Correct 89.1% Correct
2
(X" = 34,2, P <,001)
Table 4-12 Classification Tables for Understandability Ratings - Fisher

Logic on Ten Features Including Program Size
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and 4-13 show the results of classifying the programs by ratings and latencies
using the augmented feature sets. The overall proportions of correct classi-
fications, .88 for the ratings and .82 for the latencies, were highly signifi-
cant. That is, the addition of the program size feature had improved the
ability of the logic to classify programs in terms of their psychological

complexity.

The results of adding the size feature raised the question of how well
this feature could discriminate by itself. Was program size the only impor-
tant feature, or was it one of several influential features? In order to
asseés the importance of program size, this feature was used by itself to
classify the programs in both analyses. The results were then compared with
the results of classifying the programs using size plus the nine selected
feature,.* Table 4-14 shows the results of using only program size to predict
understandability ratings. The results are significant, but the overall level
of performance is considerably less than the classification which used both
the size feature and the other nine (.76 vs. .88). The inclusion of the
selected features increased the performance by 12%, implying that these other
features do influence the psychological complexity of programs in addition to

the effects of program size.

The latency analysis gave very different results. The classifications,

as shown in Table u4-15, are highly significant. The level of performance,

% Statistical procedures have not yet been developed for assessing differ-
ential performance as described here. Thus the effects will be evaluated
simply in terms of gross differences in performance, i.e. in terms of
differences in percentage of programs correctly classified. The question
of statistical evaluation will be discussed further in Section 6.
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DESIGN SET

i 4 2
True True
Short Long Short Long
Short| 29 1Y Shortl 27 7
Classified Plassified
1 Long y 26 Long I 5 25
83.3% Correct 81.2% Correct

(x2 = 25.2; P. <,001)
=
R
wn
=
o
[
£
True True
Short Long Short Long
Short| 31 9 Short| 32 3
Classified tlassified
2 Long 2 24 Long 0 29
83.3% Correct 95.3% Correct

(x? = 32.3, P <.001)

Table 4-13 Classification Tables for Understanding Latencies - Fisher Logic
on Ten Features Including Program Size
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DESIGN SET

True

Easy Difficult

Easy| 26 7
Classified
1 Difficult 7 26

78.79% Correct

Easy
Classified
Difficult

True

Easy Difficult

25

10

7

22

73.44% Correct

(X2 = 14.6, P <.001)
=
9%}
w
-~
)
W
=

True True
Easy Difficult Easy Difficult
Easy| 26 7 Easy| 25 8
Classifie Classified
2 Difficult 7 26 Difficult 7 24

78.79% Correct

(x2 = 21,9, P <.001)

76.56% Correct

Table 4-14 Classification Tables for Understandability Ratings - Fisher Logic

on Single Program Size Feature
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DESIGN SET
1 2
True True
Short Long Short Long
Short| 29 7 Short] 27 y
Classified Classifie
X Long 4 26 Long 9 28
83.33% Correct 85.94% Correct

(X2 = 33.1, P. <.001)
<
=
<
(=}
[ 3
n
()
=
True True
Short Long Short Long
Short| 29 10 Shoryy 27 5
Classifie Classifie
2 Long 1 23 Long 5 27
78.79% Correct 84,38% Correct

(x2 = 2u.1, P <.001)

Table 4-15 Classification Tables for Understanding Latencies -~ Fisher Logic
on Single Program Size Feature
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however, is no different than when the nine features were added (.823 vs.
.824). The addition of the nine features had no noticeable effect on the
classification performance. This finding is in agreement with the fact that
the nine features were classifying the programs (according to understanding

latency) at essentially a chance level, as shown in Table 4-11.
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SECTION §

SUBSTANTIVE CONCLUSIONS

5.1. ANALYSIS OF RESULTS

This section will assess the relative merits of each of the program
quality analyses as described in Section 4. Where appropriate, a qualitative

analysis of the results will be included.

Results of the analysis performed on the latency and rating measures
suggest that substantive features do exist which affect program quality. The

discussion will begin with an analysis of these results.

The results of the analysis of development time and number of changes
are less clear in determining thcse factors which affect program quality, if
development time and number of changes are used as measures of program quality.
For each of these program quality measures, correct classifications were made
at a level only slightly better than chance (50%). Section 5.1.2. will

attempt to assess possible reasons for the inconclusive results.

5.1.1, Understandability Ratings and Latencies

As can be seen from the results presented in Section 4, program size is
an important factor affecting the assigned understandability rating and

understanding time of a program. Correct classifications increased from 59%

5-1
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to 82% for latencies and 62% to 88% for ratings when size was included as a
factor. In fact, it was shown that size was the only significant factor
affecting latency. When size (number of lines) was used as the only feature
in the analysis, correct classifications were identical to those when 10
features (including size) were used. Size was the primary, but not the only,
factor affecting the rating of a program when size was used as the only
feature in the analysis, correct classifications were made at a 76% level vs.

88% when 10 features were used.

When the effects of size are removed from each feature, results are as

follows:

5.1.1.1. Latency

In general, after the effects of size are partialled, the selected set
of features for distinguishing programs which required a relatively short
amount of time to understand, versus those which required a relatively long
time to understand, while less than significant, reflects features of programs
which exemplify varying degrees of program complexity. Upon examining the
sign of the discriminant coefficients of the selected set of 9 features
(positive implies a large amount of time, negative implies a short amount of
time), the following effects can be seen. Note that since the results were
less than significant, no conclusions can be drawn. This analysis is included
primarily because the selected features had considerable intuitive appeal

from the standpoint of program complexity.
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As the number of GOTO statements increased, it took longer to
comprehend a program. In general, programs in the data base do not
have GOTO statements. This result suggests that those programs
which do have GOTO statements required much more time to be under-

stood.

As the number of RETURN statements increased, the time required to
understand a program increased. This suggests that as the number

of multiple returns increases, understandability decreases.

As the average number of cperators per assignment statement in-
creased, it took longer to understand a program. This suggests
that the more mathematically complex a program is, the longer it

takes to understand it. (Number 8, below, also suggests this).

As the number of variables increased, it took a shorter time to
understand a program. This would imply that having many variables,
each with one role, is better than having few variables, each

fulfilling many functions.

As the number of parameters in a call statement increased, the
length of time required to understand a program increased. This

feature reflects the complexity of intersubroutine communication.

As the number of externally called subroutines increased, the time

required to understaad a program increased. This seems reasonable,

5-3




since when a subroutine is called, the calling sequence and sub-

routine description have to be researched.

As the number of labels increased, the time required to understand
a program decreased. Labels were primarily used to identify entry
points in a program. Thus a large number of labels implies a large
number of subroutines in one physical program. It can then be
argued that a program with a large number of smaller subroutines is
easier to understand than a program containing a few larger subrou-
tines. This suggests that modular subroutines, where subroutine is

small, are easier to read than subroutines of longer length.

As the number of assignment statements increased, the time required
to understand a program increased. This feature, in conjunction
with the average number of operators per assignment statement, is a
measure of a program's mathematical complexity. Thus, as would be
expected, as the mathematical complexity of a routine increases,
the difficulty of comprehending a program increases. (Remember
that this feature measures the number of assignment statements

after program size has been partialled out.)

As the number of complex ELSE clauses increased, the time required
to understand a program decreased. A complex ELSE clause was

viewed as an ELSE clause containing more than one statement. When
viewed in the light that ELSE clauses were usually used for proces-

sing error conditions, which are typically simple constructs, this
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feature then measures the modularity (i.e., how small each module
is) of the program. Thus programs containing small, self-contained
modules were easier to read than programs containing more complex

modules.

5.1.1.2. Understandability Ratings

The analysis performed on the understandability ratings, after size was
partialled, showed significant results. In this section those 9 features
selected as the primary factors affecting the user assigned ratings will be
analyzed to determine those concepts which caused a program to be less under-
standable. Ratings ranged from 1 to 9, where 1 is a trivial program and 9 is
an incomprehensible program. The 9 features selected were (in order of

decreasing significance):

b & Number of assignment statements - the larger the number of assign-
ment statements, the less understandable the program. This feature
is one of several features used as a measure of the mathematical
complexity of a program. Thus, as would be expected, the more

mathematically complex routines had higher ratings.

2. Number of DO WHILE statements - as the number of DO WHILE statements
increased, the program became less understandable. This feature,
in some sense, measures the logical complexity of a program. Thus,
as would be expected, the more logically complex routines received

higher ratings.
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Number of arrays - as the number of arrays increased, the rating
increased. Since arrays were typically used to hold intermediate
mathematical values, this feature also signifies that the more

mathematically complex routines had higher ratings.

Maximum nesting level - as the maximum nesting level increased, the’
rating increased. As with the number of DO WHILE statements, this
feature can be interpreted as a measure of the logical complexity

of a routine.

Number of based variables - as the number of based variables
increased, the rating increased. In the data base, based variables
were used (in conjunction with pointer variables) to access and
modify values in OLPARS data files. This implies that the more
types of data (floating point, integer, ASCII, etc.) being used in

files, the higher the understandability rating.

Number of pointer variables - as the number of pointer variables
increased, the rating increased. Typically, pointers were used to
access and modify values in OLPARS data files. The pointer variable
allows a program to access particular elements of a file. This
suggests that the more complex the filing structure used by a

t
program, the higher the rating.,

There is also anecdotal evidence to support features 5 and 6. Several of
the subjects in the study spontaneously mentioned that programs contain-
ing pointer variables were quite difficult. One reason given was that
the structure of the data is implicit with pointer variables, while the
structure is much more explicit when the data are stored in arrays.
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This section will assess possible causes for the inconclusive results of the

Number of I/0 statements - as the number of I/0O statements increased,
the understandability rating decreased. For OLPARS programs, the
1/0 statements being measured are user interaction I/0 statements
(as opposed to disk 1/0). Typically, when user I/0 is required,

the user is asked a question (via a call to ioa ) and the response

is received (via a call to read list ). The meaning of this type of

I/0 is thus reasonably clear to any one reading the program.

Number of variables - as the number of variables increased, the
rating decreased. This would imply that having many variables,
each taking on one function, is more understandable than a few

variables taking on many functions.

Number of external CALL statements - as the number of CALL state-
ments increased, the rating increased. An external procedure call
requires the reader to understand the calling sequence and purpose
of the routine being called. This would add to the logical complex-

ity of a program.

Development Time and Number of Changes

analysis of development time and number of changes. Three possible sources

of difficulty can be identified:

1.

e . e

The characteristics of the particular program data base used.
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2. The reliability and validity of the measures of program quality.

3. The quantification of program features.

Any combination of these factors could have influenced the results. In the

next three sections, each factor will be addressed separately.®

5.1.2.1. Problems with the Program Data Base

As was stated in section 3.1.2., the characteristics of the data base
were such that programs selected to be included represented programs from one
company, from one programming project, from one programming language, and
from programs of only four programmers. It can reasonably be inferred, then,
that the data base may represent too homogeneous a population of programs.
That is, programs to be included in a data base for this type of analysis
should either include programs from a wide variety of sources, or include
programs whose features were varied in a systematic manner. Had other sets
of programs been included, results may have been more significant since
slight differences in a structural feature would not greatly change any

measure of program quality.

¥ Factors 1 and 3 may have also influenced the suboptimal classification
performance with the rating and latency analyses. Although the relation
between the two factors and these analyses will not be explicitly
discussed, it should be recognized that the discussions apply to these
analyses as well.
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5.1.2.2. The Validity of the Program Quality Measures

On performing the eigenvector analysis on the unpartialled data (Section
4.1.), it was shown that the first eigenv.cior accounted for a large portion
of the variance in the data. Upon further investigation, it was shown that
this first eigenvector related to the size of the programs. Further, the
dependent measures (development time, etc.) did not weight highly on any
eigenvector until the seventh and eighth. The dependent measures were inde-
pendent of the size-related features. This suggests that the dependent
variables and the independent variables (features) were actually measuring

very different things.

Salic 2021 Number of Changes

The number of changes was used to estimate the number of errors that
occurred in a program. It was measured as the number of lines of code which
changed over the entire development of each program. Possible problems with
this measure exist in that no qualification for the cause of each change was
made (such data were not available). Thus a program may have had many changes
which were due to a redefinition of the program function. In such a case,
the program should have been divided into two subgroups, where the first
group represents the programs used in the earliest definition of the program
and the second group represents the programs used in the second definition of
the program. The two groups would then be viewed as two separate programs.

However, since such qualification data was not available, it was not possible

e b e - ——— . L E I




to do this. Thus the estimate may not only represent the number of errors,
but also stylistic changes (comments, indentations) or modifications of

functions.

Seleala2.2, Development Time

The development time was used to estimate the amount of effort required

to make a program function properly. Two problems exist with this measure:

X, The measure was at best a rough estimate of the development time.
It was measured as the number of different months on which a program
was tested, without regard to the amount of effort expended in each

month on that program (since the data were not available).

2, As with the number of changes, no reasons were available to explain
why programs were being debugged in a particular month or how many

manhours actually went into the development of the program.

Thus the measure may not have accurately represented the amount of effort

expended in making a program function properly.

5.1.2.3. Problems with Structural Features

In defining structural features, the goal was to quantify certain quali-
ties of a program which affected the logical and psychological complexity of

a program. For example:

5-10




In trying to measure how well a program was commented, the following

features were selected:

a. Number of comments

b. Average length of comments

Ce Average density of non-blank characters within comments

d. Uniformity of distribution of comments over a program (variance

from mean is used)

Distributing comments over a progran in many different ways will

give almost identical results for each of these features.

In trying to measure how mnemonic or useful variable names were,
the feature selected was the mean variable name length. Perhaps a
better measure would be the mode, maximum, or minimum variable name
length. Or perhaps some quantity other than length (e.g., a direct

measure of mnemonic value of a name) would have been better.

In trying to measure how much computation a program performed, the

features selected were:

a. Number of assignment statements
b. Mean number of operators per assignment statement
5-11




Instead of the mean number of operators, perhaps the maximum number
of operators more accurately represents the mathematical complexity

of a program.
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SECTION 6

METHODOLOGICAL CONCLUSIONS

The research discussed in this report approached the problem of investi-
gating program quality from the perspective of a classification analysis.
Although the validity of such an approach will be discussed in Section 6.2.,
the methodological aspects of the analysis actually performed will first ke

reviewed.

6.1. USE OF OLPARS AS A CLASSIFICATION TOOL

Perhaps one of the strongest arguments for the use of OLPARS to analyze
data sets is that the total analysis time decreases dramatically. Anyone who
has tried to run an analytic routine using a standard statistical package
such as BMD or SPSS can certainly appreciate the convenience of using a fully
integrated system such as OLPARS. The ability to run analyses (e.g., eigen-
vectors, discriminant functions) by the typing of a single command, while the
system automatically maintains the data files, necessarily results in
increased throughput (and reduced frustration on the part of the user). For
example, all the analyses described in Section 3.4.2.2. were run in a single
3-hour session. But even then, part of the 3 hours was used to create hard
copies of the graphic displays. In another session, the total analysis of
the stylistic differences among the programmers (Appendix D) required
only one hour of connect time. This included the complete development and

testing of the hierarchical classification logic.
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Another very positive aspect of OLPARS as used in this study was that
graphic displays were generated effortlessly. The ease of constructing plots
of histograms and scatterplots enabled the analyst to remain close to the
data throughout the analysis, thereby allowing the immediate detection of
anomalous situations. For example, by displaying the distributions cf the
data projected onto the Fisher discriminant directions, it was possible
directly to assess whether the shapes of the distributions had affected the

performance of the classification logic.

Other aspects of OLPARS were not so convenient, either due to the lack
of desirable features of the system, or due to the nature of the problem at
hand. For example, OLPARS contains a feature which allows users to specify
arbitrary data transformations by entering a PL/I program. It would have
been desirable to partial out the effects of size using such a user-specified
transformation. Unfortunately, the routine that allows the creation of these
PL/I1 programs was not designed for such involved transformations. As a

result, a minor restriction prevented the use of the transformation package®

Another inconvenience was due to the nature of the problem at hand. 1In
a typical pattern recognition problem, an analyst starts with two (or more)
sets of sample vectors, one from each a priori class. The goal is to use a
combination of the features in the sample vectors to predict the class

membership of the samples. The only requirement is that the ratio of sample

* The problem was that the OLPARS routine automatically inserts a semicolon
at the end of each line. As a result, multi-line statements were not
allowed. Thus, it was impossible to write data definitions for the full
mean and standard deviation vectors. By making the inclusion of semi-
colons at the end of statements a manual operation, this restriction
could be easily circumvented.
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size to number of features be large. In the present problem, the goal of
correct classification was a necessary but not a sufficient condition. It
was important to be able to specify the quality of a program as either good
or bad, but, perhaps more importantly, it was desirable to determine which

features actually contributed to this distinction.

In the type of research discussed in this report, it is desirable to
investigate the contribution of individual features. For example, it is
possible to assess whether a discriminant function of n features is classi-
fying above a chance level by means of a x2 goodness of fit test (or perhaps
more appropriately, by means of a multivariate analysis of variance [2].
However, there is no way that one can objectively (i.e., statistically)
determine whether the addition of the nt+l feature will significantly improve

the classification performance.

The lack of an evaluative procedure is not unique to OLPARS. It is
unclear whether any such evaluative procedure has been developed or even
discussed in the statistical or pattern recognition literature, although
procedures are available when the dependent variables are continuous.

This situation is discussed further in Section 6.2.

The fact that the data were initially continuous implied that only one
class was present. As a pattern classification approach was to be used in
analyzing the data, it was necessary to split the data arbitrarily.-liio two

classes. OLPARS assumes that the data already reflect discrete classes, and




thus the procedures for splitting a single class are less than adequate. The
problem was not that an additional routine could not be incorporated into
OLPARS, for the subroutine would be relatively simple. Rather, OLPARS was
designed as a system for analyzing class data, and classes are typically

unique and specifiable a priori.

6.2. DISCRETE CLASSES OR CONTINUOUS DATA

The analyses performed in this project were all approached from the
perspective of a pattern classification paradigm. In certain situations,
this was entirely appropriate. For example, the analysis of programmer style
clearly fits the classification paradigm. The data represented four unique
classes, defined by the particular authors of the programs. There were no

confusions as to which program belonged to which class.

The analyses of program quality were somewhat different. Each of the
dependent variables was continuous in nature; in fact, each was measured
along an interval scale. It is always possible to reduce interval measure-
ments to ordinal or categorical (dichotomous) scales, but considerable informa-
tion is lost. (This point will be expanded below.) Figures 4-1, 4-2, 4-3,
and 4-4 clearly show that the dependent measures are not dichotomous, but
continuous. There are no distinct clusters, not even bimodality in the
distributions: there is only a gradual transitiocn from simple to difficult,
short to long development time, etc. One can always divide the continuum in
two, but the division will be arbitrary. Another analyst will split the data

at another point. Even the same analyst will probably not be able to replicate
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his line of demarcation accurately. (See [1] and [4] for a further discus-
sion of this point.)

Of course, it is always possible to reduce ;he data to ordinal or even
categorical scales (as was done in this study). For example, Table 6-1 lists
the performance of several hypothetical systems as measured on different
scales. In reducing the scale of measurement from interval to ordinal, the
difference between systems A and B becomes comparable to the difference
between systems B and C. The fact that system A is considerably better is no
longer retained. A similar information reduction occurs when the scale of

measurement becomes categorical.

In the present study, the dependent measures were reduced to categorical
information because originally it was felt that program quality was categori-
cal (e.g., reliable/unreliable). Later, the categorical nature was retained
because the data were compatible with the analytic routines contained in
OLPARS. One point that should be made is that the same analysis could have
been used if the dependent variables remained continuous. It is known that
for a two-class problem, the linear discriminant function is equivalent to

the linear multiple regression equation (see [13] and [5]).

But there are additional benefits to be gained by the use of continuous
data. TFor example, it is possible to use analysis of variance techniques in
order to assess whether the addition of another feature will result in a
significant increase in performance. Also, separate design and test data

sets are unnecessary, as there are additional statistical techniques to




Table 6-1 Performance (Percentage) of Several Hypothetical Systems

Interval Ordinal (Rank) Dichotomous

System Measurement Measurement Measurement
A 99.9% 1 1
B 79,9 2 i
C 79,2 3 1
D 79.1 4 0
E 64.0 5 0
F 627 6 0




TSR

determine the amount of decrease in performance as a function of sample size,

number of features, and obtained performance level.

The point is that the current OLPARS system did not contain routines to
deal with continuous data. Thus in order to use this efficient system, the
data need to be transformed to be compatible. It is important to note that
the inability to manipulate continuous data is not a shortcoming of OLPARS,
as the system was designed for discrete class applications. The next section
will discuss extensions/modifications to OLPARS so that continuous data can

be processed as efficiently as discrete data.
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SECTION 7

RECOMMENDATIONS FOR FURTHER RESEARCH

This report has emphasized the ease with which OLPARS could be used to
determine the relationships among selected features of computer software and

to assist in classification of that software into categories of interest.

As a pilot study, the experimentation reported here was surprisingly
successful. The ability to classify programs according to the style of the
programmer who wrote them, for example, was an unexpected outcome. At the
same time, the data base was relatively small, and other limitations in the

available data would make it unwise to generalize the substantive results of

this project.

As more data become available, it will be desirable to conduct further
small-scale studies to test carefully defined hypotheses concerning components

of software quality. Among the experiments to which OLPARS might be applied

are such studies as the following:

h In the determination of features which contributed to program
readability, a set of existing programs was used. Another, more
controlled approach would call for the generation of sample programs
with designated features to be tested for understandability, and

other characteristics of program quality, in an experimental

setting.
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As noted in this study, the length of a program is likely to be
inversely correlated with its understandability. This observation
has led to the recommendation that program modules be kept short--
typically, to a page or two in length. It has not been shown,
however, that a reduction in module length will lead to greater
system quality, since a larger number of modules, with a much
larger number of interfaces, are likely to be required by the total
system. (In the extreme case, N modules will require N(N-1)/2
interfaces.) For this reason, an evaluation of total system quality
is needed, with techniques for estimating and predicting system

reliability/unreliability.

As of April, 1977, RADC has gathered reports concerning over

25,000 errors from seven software development projects. This newly
acquired data base can serve as a source for future studies of
factors affecting software quality. Since this data base includes
a variety of languages, programmers, and project goals, it should
serve to validate or modify the substantive results of the study
reported here. Specifically, the program features and classifica-
tions used in this study should be applied to RADC's expanded data
base to determine factors affecting program quality, using methods

which are based on those developed for this study.

Research in pattern recognition, as applied to such areas as waveform
processing and image identification, has shown that it is essential

to understand the process by which specific patterns are generated.
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For example, an effective logic for recognition of radar patterns
requires a detailed knowledge of radar technology, as it enters

into the generation of those patterns. Similarly, it is likely

that a much better understanding of the software production process

will be required to identify those characteristics which contribute

to software quality. For this purpose, controlled studies of the

software production process will be needed. During the present

study, methods for evaluating the understandability of programs
were developed; such techniques ought to be expanded to include
tests of the ease with which programmers can use various types of
program specifications, program structures, programmer team organi-
zations, documentation standards, and other factors which can

contribute to software quality.

The studies reported here have demonstrated that the existing OLPARS

implementation is capable of testing features against designated classes, to

develop a classification logic for programs. It would be interesting to

determine what additional facilities might be added to provide a comprehensive

set of tools for research in factors contributing to program reliability.

Other versions of OLPARS have been developed with specialized capabilities

for waveform analysis and for image extraction, enhancement, and analysis. A

new implementation, the Automatic Feature Extraction System, will provide

specialized cartographic capabilities. Similarly, it is possible to describe

an OLPARS which provides specialized tools for research in software reliability




Such a specialized system might include the following facilities:

A language-independent feature extractor. This would permit the
user to specify syntax of the language under investigation, and
would extract selected features from the target language. Output
from this operation would be feature vectors for input to other

OLPARS routines.

Several of the software studies undertaken under RADC sponsorship
require techniques for dealing with continuous variables, rather
than the disjoint distributions assumed by OLPARS. For example,
estimates of software reliability would require the ability to
estimate a variable quantity, rather than merely to classify pro-
grams into reliable vs. unreliable categories. One typical tool
for producing such estimates, which is not now contained in OLPARS,
would be a facility for multiple regression analysis. Techniques
for regression analysis are well known and could easily be included

in a specialized OLPARS implementation.

Input features to OLPARS classification logic now must be numerical
quantities, measured on a ratio scale. Many of the features of
interest in software reliability research, however, are qualitative
rather than quantitative in nature. To take a simplified example,
some languages (such as ANSI FORTRAN) rely most heavily on a DOUNTIL
structure for DO loops, while others (such as PL/I) rely on a

DOWHILE structure. It should be possible to include this as a
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feature for input to OLPARS; but it is a qualitative (DOUNTIL vs.

DOWHILE) feature, rather than a quantitative one.

An earlier version of OLPARS (AMOLPARS), which used the Goodyear
Associative Memory, provided the ability to use qualitative features,
as well as quantitative features. This ability should be included

in a specialized OLPARS facility for software reliability research.

4. PAR has developed a meta-compiler, PARLEZ, which permits the user
to define syntax and semantics of a new language, and which provides
a compiler for the language as defined. A second meta-compiler,
XMETA, is also under development. One or both of these facilities
should be provided in a specialized software research laboratory,

for the purpose of developing and testing new language structures

in an efficient way.

S General enhancements of the OLPARS design would be desirable in a

‘new facility, including such statistical tools as the following:

a. Stepwise multiple regression analysis

b+ Optimal regression techniques, indicating the best number of

features to be selected

c. Traditional factor analysis routines
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d. More flexible non-linear mapping and multi-dimensional scaling
routines
e. Improved procedures for splitting classes
f. Analysis of variance routines
g. Covariance analysis routines
6. Interactive facilities for the specialized OLPARS might include the

ability to display two or more software modules in a variety of
positions, to permit the user to make judgments concerning their

readability, structural characteristics, depth of nesting, etc.

Since existing OLPARS routines have been found to be valuable in the
analysis and classification of programs, and since the extensions described
here are relatively minor and well within the state of the art, the develop-

ment of a specialized OLPARS implementation for the study of software appears

to be a feasible task.
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APPENDIX A

UNDERSTANDABILITY STUDY

A.1l. INSTRUCTIONS TO SUBJECTS

The purpose of this study is to evaluate factors which enter into the
reliability of computer programs. One possible factor is the ease or diffi-
culty with which a programmer can read and understand the operation of the

program.

In this study you are to assume that your task is to translate PL/I
programs into another high-level language. You will be given a set of
programs, one at a time. You are to study the first program until you
understand it sufficiently to be able to rewrite it in another language.

(You need not memorize it, only understand its operation.) The length of
time you study the program will be timed, but you should take your time to
read and understand the program. You will be given scrap paper which you may

use to take notes, draw flowcharts, hand-simulate the program, etc.

When you have indicated that you are finished studying the program, you

will be asked to rate the program from 1 to 9 on a scale of understandability.

A rating of 1 will imply that you understood the program the instant you
looked at it: it was trivial. A rating of 9 will imply that the program is
incomprehensible: it looks like a random list of statements. Intermediate

ratings will indicate that intermediate levels of effort were required in

A-1




order to understand the program. That is, the rating should roughly reflect
how hard you needed to work in order to understand the program. You should

try to use the entire scale from 1 to 9 to assess the understandability of

the programs.

After you rate the program, you will be asked to classify the program.
You will select one category from the following classification scheme, and

record the appropriate number:

No User User Output Interactive
I/0 Provided 1/0
Numeric
Routine 1 2 3
Non-numeric
Routine y 5 6

For example, if a program is mainly a numerical routine which interacts with
the user, the appropriate classification will be class 3. (It might help you

to associate Non-numeric Routines with I/0 bound programs, and Numeric

Routines with CPU bound programs, but remember that this association is only

a guideline.)

Finally, you will be asked a question about the functioning of the
program. You will have one minute to answer the question. (You will have

access to the program listing at all times.) If you answer the question
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correctly, you will be credited with 25¢. If you answer incorrectly, or if
you do not answer in time, you will lose 10¢. The difficulty level of the
question will be independent of the complexity of the particular program.
After the question, you will be given a short break, and then the cycle will

repeat.

Each session will last approximately one hour, in which time you should
be able to study 4 programs. There will be 8 of these sessions; you will see
a total of 31 programs. If you answer every question correctly, you will be
paid a total of $8.00 at the end of the study (as well as being able to
charge the 8 hours to the OLPARS Reliability project). But remember that 10¢
will be deducted for every incorrect response, so be sure to study each
program carefully until you feel that you understand it. If you fail to
correctly answer a total of 5 of the questions, your participation in the

study will terminate. However, you will be compensated for your participation.
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Program Name:

Program Type:

Program Call:

Input Files:

Output Files:

Function:

APPENDIX B

PROCRAM DOCUMENTATION

lastextract

Command level routine

Type in "lastextract"

lastextract assumes a data base organization as

described in Section 3.1.1.

lastextract creates a file named "filedata'" in
the process directory. This file will contain
the feature vectors corresponding to the last

version of programs in the PL/I OLPARS/Relia-

bility data base. Upon completion, this file

is in a form such that if Multics/OLPARS func-
tion "fileinput" is executed, these vectors

will be input into Multics/OLPARS.

lastextract is the executive routine to perform the feature extraction

on the last version of all 260 programs in the OLPARS/Reliability data base.

i
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Y
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Subroutines "list_extract", '"parse", and 'count_comments" are called to

extract structural features from the programs in the data base.

Features:
Feature Number Feature Name
53 Development time
54 Number of changes

Detailed Program Description: See listing




Program Name: list_extract
Program Type: Subroutine
Subroutine Call: Call list_gxtract (listptr, ccount, features)

Input Parameters:

listptr Pointer to the cross-reference listing of a

2LSTPEr g
program

ccount Number of characters in the cross-reference
listing

Output Parameters:

features An array of features corresponding to the

extracted features of this program

Function:

list extract extracts the following structural features from the cross-

reference listing of a PL/I program:
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Feature Number Feature Name

5 Number of lines

8 Number of variables declared

9 Number of variables declared but not referenced
38 Mean variable name length
16 Distribution of variable occurrences vs.

program statements

19 Number of pointer variables

20 Number of based variables

21 Number of implicitly declared variables

22 Number of explicitly declared variables
' 24 Number of external calls

25 Number of external procedures used

26 Mean number of formal parameters in procedures

27 Mean number of actual parameters in call

statements

29 Number of global variables

32 Number of arrays

33 Total number of dimensions of arrays

Detailed Program Description: See listing
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Program Name: count comments

Program Type: Subroutine
Subroutine Call: Call count_comments (p2lptr, cc, num_}ines,
features)

Input Parameters:

pglptr Pointer to the source listing of a PL/I program
cc Number of characters in the source listing
num_lines Number of lines in the source listing

Output Parameters:

features An array of features corresponding to the

extracted features of this program

Function:

count_comments extracts the following structural features (relating to

comments) from the source listing of a PL/I program:
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Feature Number

1

Feature Name
Number of comments
Average length of comments
Average density of non-blank characters within
comments
Uniformity of distribution of comments vs.
statement lines
Average density of non-blank characters outside

comments

Detailed Program Description: See listing
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Program Name: clt

Program Type: Subroutine

Subroutine Call: Call clt (firstname, lastname, feature)

Input Parameters:

firstname The name of the first version of the file to be
compared

lastname : The name of the last version of the file to be
compared

Output Parameters:

feature The number of lines of code that have changed

Function:

clt compares the first version of a PL/I source program to the last
version of the program and returns the number of lines of code that have

changed.

Detailed Program Description: See listing

B-7

e T ———— - R -




Program Name:

Program Type:

Program Call:

Input Files:

Output Files:

Function:

extractem

Command level routine

Type in "extractem'

extractem assumes a data base organization as

described in Section 3,1.1.

extractem creates a file named '"filedata" in

the process directory. This file will contain
the feature vectors corresponding to the first
compilable versions of programs in the PL/I
OLPARS/Reliability program data base. Upon
completion, this file is in a form such that if
Multics/OLPARS function "fileinput" is executed,

these vectors will be input into Multics/OLPARS.

extractem is the executive routine to perform the feature extraction on

the first compilable version of all 260 programs in the OLPARS/Reliability

data base.

Subroutines "list_extract," "parse," and '"count_comments' are

called to extract structural features from the programs in the data base.

"extractem" then extracts the following two non-structural "lastextract" then

extracts the following two non-structural features:
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Feature Number Feature Name
53 Development time
S4 Number of changes

Detailed Program Description: See listing
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Program Name:

Program Type:

Program Ccll:

Input Files:

Output Files:

Function:

""middle" is a routine which operates externally to OLPARS with the

function of removing N (set by user) vectors from a data set. The N vectors

middle

Command level routine

Type in "middle"

"middle" assumes that in file "filedatal" in
the process directory is a single node of 155
vectors with 52 dimensions in the M0OOS function

"fileinput" format.

""middle" creates a file called "filedata" in
the process directory. This is a file in

"fileinput" format containing two nodes with
the number of vectors in each node set by the

user but each vector has 52 dimensions.

removed are those vectors which comprise the middle N vectors if each vector

is ranked according to a selected measurement. Two classes are created, the

first class representing the first (155-(N/2)) vectors of the ranked list,

and the second class representing the final (155-(N/2)) vectors. This

B-10
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routine was used to create the two classes each of low and high development
time, number of changes, understanding latency, and understandability rating.

Such a routine may not be needed in a future version of OLPARS.

User Interaction:

"How many vectors are to be deleted from the middle?"
.
"Enter 2 new 4 character class names"

Py

uuuu

""What feature is to be used?"

n

Detailed Program Description: See listing
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APPENDIX C

DATA BASE GENERATION

The OLPARS programs were prepared on RADC's Multics computer facility
(HIS 645, later upgraded to HIS 6180). As a monthly procedure, the Multics
operator saves all files (programs and data) that exist on the system at that
time. In addition, a tabular listing of all saved files is generated. This
listing contains the tape numbers of the tapes used, and the names of the

directories and segments saved on each of the tapes.

The tapes and listings prepared by Multics provided the historical data
required by this project. By comparing earlier and later versions of the
programs, an estimate could be made of the number of corrections required for
each program. In addition, it was possible to estimate development time for
the programs, by determining the time at which the program first appeared and
the time at which corrections were no longer required. It was also possible
to locate the earliest versions of the programs, and thus to determine those

features which were most likely to require correction.

It was first necessary to locate and restore those programs required for
this study, by searching the archived listings for all applicable segments.
This task was somewhat simplified, since the names of the directories used in
the OLPARS development were known, together with the dates at which the
directories were active. A list of the tape numbers, directory names, and
segment names to be restored was then generated. This list was supplied to the

Multics operator, who then restored the required files in the Multics system.

C~1




The next task was to organize the restored programs into an easily
accessible form (i.e. to create the program data base). A sub-directory (in
the form "program name'".all) was then created for each unique program name.
There are currently 260 such sub-directories, representing the 260 programs

considered for this study.

After the files were restored by the Multics operator, there were many
copies and versions of each program. Every copy of each PL/I program was
then placed in the sub-directory corresponding to the program's name. Prior
to insertion into the sub-directory, a unique two-character extension was
added to the program's file name, so that each copy of each program would
have a unique name. This extension was based on the tape, directory, and
archive from which the program came. The assigned extension name is such
that if an ASCII sort is performed on all of the programs using the extension

name, a chronological sequence of all copies of the program will be the result.

The new name assigned to the program is of the form "program name.exten-
sion.pli". The copy of the program, with the new name, was then inserted
into its appropriate sub-directory. Each sub-directory was then sorted on
the extension to give a chronological history of that program. Identical
copies of each program were deleted, with the result that each sub-directory
contained every unique copy of that program sorted in chronological order.
The first compilable version of each program was then identified, and all

other versions of that program were archived to save space.




N, TR

——— -

In summary, then, each sub-directory represents each program to be used

in this study. Each sub-directory contains every unique version of that

program listed in chronological order by copy date.




APPENDIX D

CLASSIFICATION BASED ON PROGRAMMING STYLE

In Section 4.2.2., program features which influence program quality
were determined, where program quality was variously defined as development
time, number of changes, psychological complexity rating, and understanding
latency. In this appendix, an attempt is made to classify programs by
author. It was assumed that each of the four authors wrote programs using
individual combinations of the various structural features. If the programs
of the four programmers differed systematically in regard to quality of their
programs, it might be possible to relate the success of an author's programs
to the use (or elimination) of certain specific features. This section pre-
sents an analysis, performed using OLPARS, which attempted to distinguish the

programs by author.

The four programmers varied in the number of programs each wrote, as can
be seen in Figure D-1 (treedraw). Before the classification analysis began,
it was important to determine whether any significant differences existed
among the four sets of programs in regard to the four measures of program
quality. In order to assess the presence of systematic differences, a one-
way analysis of variance was computed for each of the measures of program
quality. (A multivariate analysis of variance would have been a more appro-
priate statistic, but since a program to perform this analysis was not readily
available, individual univariate analyses were used.) The analysis of vari-
ance tables for each of the program quality variables are shown in Table D-1.

There were no significant differences between the programs written by the
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prg¢ (2¢)

prg3 (36)
[$11
(155%)
prge (48)
pret (S3)

Figure D-1 Data Tree for Programmer Style Analysis




Source of Degrees of Sums of Mean

Variation Freedom Squares Squares ¥
Development Time 3 22.09 7.365 1,58
S/Development Time 151 703.10 4.656 ~ ;
Number of Changes 3 13619.195  4539.73 1.37
S/Number of Changes 151 500306.661 3313.29 -
Latency 3 .269 .090  1.58
S/Latency 151 8.61 .057 -
Ratings 3 20.09 6.697 2,31
S/Ratings 251 438.64 2.90 -

%
P > .05

Table D-1  Analysis of Variance Tables for Assessing Differences in Program
Quality Among the Programmers




four programmers in terms of any of the measures. From another perspective,
there was as much variation in the quality of an individual author's programs
as there was across the programs of the four authors. The implication was
that the subsequent style analysis would still discover how the programmers
varied among themselves, but the variation would be strictly stylistic, and

not related to program quality.

D. 1< CLASSIFYING USING 32 FEATURES

The first goal was to classify the programs correctly by programmer
using all 32 structural features. By examining the discriminant direction
(gndvS1dl) for all 4 programmer classes simultaneously (see Figure D-2), it
can be seen that programs written by programmers 1 and 3 are relatively
discernable while those of programmers 2 and 4 are not. The first step was
thus to separate programs written by programmer 3 from all others. This was
accomplished by finding the direction which maximally discriminated programs
of programmer 3 from those of brogrammer 1, 2, and 4 (arngldl where group 1
= programmer 3 and group 2 = programmer l, programmer 2, and programmer 4).
After accomplishing this, a threshold was set (draSbndy) for separating out
programs of programmer 3 (see Figure D-3). On the design set, with this

threshold value, correct classifications were made 90% of the time.

The next step was to determine which class was most discriminable of the
remaining classes 1, 2, and 4. By examining the discriminant direction
(gndv$1dl) for programs of programmers 1, 2, and 4 simultaneously (see
Figure D-4), it can be seen that programs of programmer 2 are discriminable

from those of programmers 1 and 4. From this, the next step was to separate
D-4
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CLASS (Programmer)
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Figure D-3 Discriminant Direction and Threshold Value
for Separating prg3 from (prgl, prg2, prgh)

PR S N N <
SN A IR AT N

-9.723

. N W e




<
Odd)

(Jdowweda;

an

SJNnoT ]

¢ ‘1 SJasuweadoad Jo swea8oad J0J UOT108J4T( IUBUT

(& L

D=7



programmer 2 by finding the direction which maximally discriminates programs
of programmer 2 from those of programmers 1 and 4 (ardg$ldl where group 1 =

programmer 2 and group 2 = programmer 1 and programmer 4). Next, a threshold
was set (draSbndy) for separating out programmer 2 (see Figure D-5). On the
design set, with this threshold value, correct classifications were made, at

this level, 93% of the time.

All that remained to be done was to discriminate programs of programmer
1 from those of programmer 4. This task was accomplished by examining the
discriminant direction for separating class 1 from class 4 (ardg$ldl where
group 1 = programmer 1 and group 2 = programmer 4) and setting a threshold
value (draSbndy) (see Figure D-6). On the design set, with the selected

threshold, correct classifications were made, at this level, 95% of the time.

The logic for separating programmers is now complete, and the logic
designed can be represented by the logic tree of Figure D-7 (drawn by
draw$log), where node numbers 2, 4, 6, and 7 represents a classification to
programmer 3, 2, 1, and 4 respectively. Node 1 represents the logic for
separating programmer 3 from 1, 2, and 4. Node 3 represents the logic for
separating programmer 2 from 1 and 4. Node 5 represents the logic for
separating programmer 1 from 4. The final step was to perform an overall
evaluation (logicevl) of this logic on the 32 dimension design set. The
confusion matrix for this test is given in Table D-2 and it shows that

correct classifications were made 83% of the time.
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Figure p-5

Discriminant Direction and Threshold for Separating
Class 2 from Classes 1 and 4
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Figure D-6 Discriminant Direction and Threshold for Separating
Programs of Programmer 1 from Those of Programmer u
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True Class

prgl prg? prg3 prg4
prgl 42 2 0 0
prg?2 5 42 2 L
Classified prgld 3 [ 27 6
prgh 3 0 1 17
rejt 0 0 0 0

Table D-2 Design Data Set of 32 Features Passed against
Logic for the Design Data Set
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In the next two sections, the logic as described in this section will be

repeated, except that at each level of the logic, the best subset of 10

features will be used for performing the discrimination. This subset of the
best 10 features will be derived from the highest (absolute value) 10 coeffi-

cients of the direction which performed the discrimination.

The coefficients of the direction which separated programs of programmer
3 from those of programmers 1, 2, and 4 (corresponding to the coefficients of
the direction described graphically by Figure D-3, and to the logic designed

at logic node 1 in Figure D-7), and the selected 10 features are listed in

Table D-3.

The coefficients of the direction which separated programs of programmer

2 from those of programmers 1 and 4 (corresponding to the coefficients of
the direction described graphically by Figure D-5, and representing the

logic designed at logic node 3 in Figure D-7), and the selected 10 features

are listed in Table D-4.

The coefficients of the direction which separated programmers 1 and 4
(corresponding to the coefficients of the direction described graphically by
Figure D-6, and representing the logic designed at logic node 5 in Figure

D-7), and the selected 10 features are listed in Table D-5.
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1
L2
13.
14,
15.
16.
17.
18¢
18.
20,
21,
22.
235
24,
25,
26,
21,
28.

29.
30.
3l.
32.

Value

. 045
.025
.132
-.368
-.1u41

. 064
.638
.002
<273
-.079
-.017
.082
-.118
-.085
+ 155
» 207
-.012
-.088
-.006
-.072
-.235
-.283
-.070
.0u48
.072
-.006
.076
-.213

.025
-.099
. 067
-.083

Name

distribution of comments vs. statement lines
number of lines

number of multiple statements of assignments
used

number of semicolons

mean variable name length

number of I/0 statements
number of external procedures used

number of instances of CALL
numbe'* of instances of DO

average density of nonblank characters
outside comments

Table D-3 Table of Coefficients and Selected Set of 10 leatures for
Separating Class 3 from Classes 1, 2, and 4

(The named features represent the reduced feature set.)




Table D-4

OOV E WN -

(e}

10.
11.
12,
13.
14,
15.
16.
17.
18.
19.
20.
21.
22.
23.

247

25,
26.
27
28.
295
30.
3l.
32,

.088
.008
.066
-.278
.004
.063
-.387
.032
.223
-+205
-.082
.062
. 349
.001
-.243
-.183
-.065
.077
.077
.078
574

Value

.0002

-.042
.098

.0001

-.008
142
. 0Ly
-.075
-.213
-.1u46

«151

Name

number of lines

number of semicolons

mean variable name length
if-then-else balance

number

number
number

number

number

number

of

of
of

of

of

of

Coefficients and Selected Set of
Class 2 from Classes 1 and 4
(The named features represent the

D-15

assignment statements

I/0 statements
external procedures used

instances of CALL -

based variables

instances of RETURN

10 Features used for Separating

reduced feature set.)




Value Name

31 -.070
2. -.040
3. -.081
4, 484 number of lines
5. .068
(- -.361 number of variables
71 -.324 number of semicolons
8. +170 maximum nesting
9. -.341 mean variable name length
10 014
11, -.027
12, -.224 mean number of operators per assignment
statement
13 .164
14 .099
155 -.007 S i i
16,  -.0u47 AT e
1 M (| MO e
_,”’”,,_*7~-”““”i§f~ -.207 number of complex ELSE clauses
*** £ 19. -.0004
20. w217 number of instances of GOTO
21 .052
22 -.008
23, -.021
24, -.283 number of labels
255 -.029
26. -.019
27 -.001
285 -.003
29, .036
30. .190 number of global variables
31. <145
32. +IX2

Table D-5 Coefficients and Selected Set of 10 Features used for Separating
Class 1 from Class 4
(The named features represent the reduced feature set.)
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R. 2. CLASSIFICATION OF PROGRAMMERS USING 10 FEATURES ON ENTIRE DESIGN
SET

The next step in the analysis procedure was to rerun the logic described
in Section 4.2.3.1., using only the best subset of 10 features at each level
of the logic (the selected set of 10 to be used at each logic level is des-

cribed in Section 4.2.3.1.).

Figure D-8 represents the direct%gg'ggdwibe~%ef€§f§3’f5?€éggld value

e
e

_auJﬂyhich—separéf?éﬂEFGE}ams ﬁf programmer 3 from those of programmers 1, 2, and
4 (via ardg$ldl where group 1 = programmer 3, group 2 = (programmer 1,
| programmer 2, programmer 4), and measurement reduction where measurements
; used are 3, 4, 5, 7, 9, 15, 16, 21, 22, 28). With the selected threshold

value, correct classifications were made 85% of the time.

Figure D-9 represents the direction and the selected threshold value
which separates programs of programmer 2 from those of programmers 1 and 4
(via ardg$1dl where group 1 = programmer 2, group 2 = (programmer 1, program-
mer 4); and measurement reduction where measurements used are 4, 7, 9, 10,
13, 15, 16, 21, 27, 32). With the selected threshold value, correct classi-

fications at this level of the logic were made 89% of the time.

Figure D-10 represents the direction and the selected threshold value
which separates programs of programmer 1 from those of programmer 4 (via
i ! argd$ldl where group 1 = programmer 1, group 2 = programmer 4; selected

measurements used are 4, 6, 7, 8, 9, 12, 18, 20, 24, 30). With the selected

. D-17
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from Those of Programmers 1, 2, and 4 (10 Features)

Direction and Threshold for Separating Programs of Programmer 3
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Figure D-9

Direction and Threshold for Separating Programs of Programmer 2
from Those of Programmers 1 and 4 (10 Features)
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Figure D-10 Direction and Threshold Value for Separating Programs of Programmer 1

from Those of Programmer 4 (10 Features)
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threshold value, correct classifications at this level of the logic were made

88% of the time.

The logic is complete, and an overall evaluation (logicevl) of this
logic was run on the design set. Correct classifications, as shown below,

were made 73% of the time.

True Class

prgl  prg2 prg3  prgh

prgl Y2 2 ) i
prg2 5 - YR S | 3
Classified +
prg3 3 Ak 28 7
prgh 3 2 1L 10
| i

Thus, the number of features has been reduced by almost 70%, and the percent-

age of correct classifications has only been reduced by 12%.

B3 Programmer Classification using 10 Features on Design and Test Set

The final step in the analysis process was to divide the data set into

a design and test group (each with 50% of the data), redesign the logic

described in Section D.2. on the new design set of data and test this

logic on the test set of data.

Figure D-11 represents the direction and the selected threshold value

which separates programs of programmer 3 from those of programmers 1, 2, and
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Figure D-11 Direction and Threshold Value for Separating Programs of Programmer 3
from Those of Programmers 1, 2, and 4 (10 Features, Design Set)
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4 (via arngldl where group 1 program 3, group 2 = (programmer 1, programmer
2, programmer 4); and measurement reduction where measurements used are 3, 4,
5, 7, 9, 15, 16, 21, 22, 28). On the design set, with the selected threshold

value, correct classifications were made 90% of the time.

Figure D-12 represents the direction and the selected threshold value
which separates programs of programmer 2 from those of programmers 1 and 4
(via ardg$ldl where group 1 = programmer 2, group 2 = (programmer 1, program-
mer 4); and measurement reduction where measurements used are 4, 7, 9, 10,
13, 15, 16, 21, 27, 32). On the design set, with the selected threshold
value, correct classifications at this level of the logic were made 87% of

the time.

Figure D-13 represents the direction and the selected threshold value
which separates programs of programmer 1 from those of programmer 4 (via
argdSldl where group 1 = programmer 1, group 2 = programmer 4, selected
measurements used are 4, 6, 7, 8, 9, 12, 18, 20, 24, 30). On the design set,
with the selected threshold value, correct classifications at this level of

the logic were made 83% of the time.

The logic is now complete, and an overall evaluation (logicevl) of this
logic was tested using the design data set. Correct classifications, as

shown below, were made 74% of the time.
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Figure D-12 Direction and Threshold Value for Separating Programs of Programmer 2
from Those of Programmers 1 and 4 (10 Features, Design Set)
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D-11

Direction and Threshold Value for Separating Programs of Programmer 1
from Those of Programmer 4 (10 Features, Design Set)
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Classified

An overall evaluation of this logic was tested using the test

prgl
prge
prg3

prgh

True Class

prgl prg2 prg3 prgi

19 2 ) g

2 18 ) 3

15 4 15 3

5 g ) 6
data set.

Correct classifications, as shown below, were made 60% of the time.

Classified

prgl
prg2
prg3

prgh

True Class

prgl  prg2 prgd  prgh
10 i ¢ 2
6 20 3 3

3 2 10 i

7 1 2 6
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