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ABSTRACT

This is Part I of a two—part paper which generalizes a rearrangement ordering,

develops the theory of functions isotonic with respect to the n~re general ordering,

and presents applications of this theory in statistics. Using the theory of reflec-

tion groups, we define reflection ordering (a generalization of transposition ordering)

and C—ordered functions (a generalization of functions decreasing in transposition).

(See Hollander, Proochan, and Sethuraman (Ann. Statist. 5, 1977, 722—733).) Reflec—

tion ordering is closely related to C—majorization (a point x G—majorizes a point

y if y is an element of the convex hull of the C—orbit of x) and C—ordered func-

tions contain C—monotone functions as special cases (G—inonotone increasing functions

preserve the C—majorization ordering). We develop many preservation properties for

C—ordered functions and we prove a preservation theorem for G—monotone functions under

an integral transform. In Part II we present applications in statistics.
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1. Introduction and Summary.

In this two—part paper we generalize a rearrangement ordering, develop the

theory of functions isotonic with respect to the more general ordering~ and present

applications of this theory in statistics. Itollander, Proschan, and Sethurainan (1977)

define a rearrangement ordering, called transposition ordering, and the corresponding j
order—preserving functions, called functions decreasing in transposition (DT). Using

the theory of reflection groups, we define reflection ordering as a generalization

of transposition ordering . Functions which preserve reflection ordering are called

C—ordered functions and this class of functions contains the clas8 of DT functions

as a special case.

This two—part paper continues the unification of the theory of stochastic com-

parisons. Earlier work in this area had made use of the majorization ordering

(closely related to transposition ordering) and Schur functions (special cases of

DT functions).

Majorization is a well—known partial ordering on Euclidean n—space and Schur—

convex functions preserve the ordering. Hardy, Littlewood , and P6lya (1952) , Bechen—

bach and Bellman (1961), Mitrinovi~ (1970) , and Berge (1963) provide many of the

classical results in this area. Various authors have used majorization and Schur

functions to obtain inequalities useful in probability and statistics . See, for

instance, Marshall and Proschan (1965), Marshall, 01km , and Proschan (1967), Marshall

and 01km (1974), Proschan and Sethuraman (1977), and Nevius, Proechan , and Sethuraman

(1977). Galaxnbos (1971) proves majorization results for vectors of probabilities of

Boolean functions of events: Marshall , ¶~‘alkup , and Wets (1967) study order—preserving

functions with applications to majorization and order statistics~ and Eaton (1970)

uses majorization and Schur functions to establish expectation inequalities for sums

of symmetric Bernoulli random variables. In addition, 01km (1972) and Wong and Yue

(1973) establish inequalities for the multinomial distribution based on majorization



— 2 —

between parameter vectors. Hollander, Proschan, and Sethuratnan (1977) use DT func:~~..

to obtain a preservation theorem for Schur functions under an integral transform.

They develop many properties of DT functions and obtain from these properties some

useful results in probability and statistics .

Using the theory of reflection groups, Eaton and Perlman (1976) introduce a par-

tial ordering on Euclidean n—space , called C—majorization, which contains the inajori—

zation ordering as a special case. They define C-monotone increasing functions which

preserve the G—majorization ordering. We use C—ordered functions to prove a convo—

lution result for C—monotone decreasing functions and also to establish a preservation

theorem for C—monotone functions under an integral transform.

In Section 2 we define reflection ordering for elements of a reflection group

C and for elements of V , a linear subapace of Euclidean n—space. A key property -:

a re’ ection group is that it can be decomposed into finite reflection groups and

orthogonal groups. This simplifies the problem of establishing preservation propc:-

ties for G—ordered functions.

In Section 3, we define functions on the group C, on a space V , and on V
2

which preserve reflection ordering. We term these functions, G—ordered functions, r~ 1

we prove many preservation properties for them. The composition theorem for G—order’d

functions highlights this section. It is reminiscent of the composition theorem fc~.’

TP functions found in Karlin (1968) and is of use in further developing the theory

of C—ordered functions.

In Section 4 we relate reflection ordering to the C—majorization ordering of

Ea~3n and Pen man (1976) and show that C—monotone functions are a special case of

C—ordered functions. Using the properties of G—ordered functions, we establish a

preservation theorem for C—monotone functions under an integral transform. We show

that much of the theory of C—monotone functions is subsumed under the theory of C—

ordered functions.
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2. Reflection Cr~~~s and Reflection Ordering.

In this section we introduce the notion of reflection ordering for any arbitrary

reflection group. We use the notion of a fundamental region in Euclidean n—space

with respect to a finite reflection group . (See Benson and Grove (1971), pp. 27—33.)

TJe derive an analogous notion of a fundamental region for the orthogonal group on

any subspace of Euclidean n—space. In this case, the region is a closed set. We

combine the above—mentioned notions along with a key proposition of Eaton and Perlman

(1976) to define a closed fundamental region for any arbitrary reflection group.

Each distinct closed fundamental region defines a partial ordering, called reflection

ordering, on the elements of the group. ‘Ye present a short summary of the derivation

of reflection groups and fundamental regions for finite reflection groups. Following

that is a derivation of a closed fundamental region for the orthogonal group which

leads to the definition of reflection ordering on any arbitrary reflecti group with

respect to a closed fundamental region. We conclude this section with an example of

reflection ordering: the well—known “transposition ordering” of Hollander , Proschan,

and Sethuraman (1977).

Throughout this section and the rest of this paper Rn denotes Euclidean n—space .

Elements of R~
’ are represented by column vectors and the transpose of a vector a

is denoted by z. The unit ball in is denoted by l3~ , i.e.

{x € R~ : I~ x II 1). where Hx Ij = ~~~~ Is the usual Euclidean norm.

Definition 2.1. Suppose r E B
n 

and I is the n x n identity matrix. The

matrix, M I — 2rr , is called the reflection defined by n.r n

Geometrically, M
r 

reflects points across the (n—l)—dimensional subspace of R’~

perpendicular to r. Clearly Mr ~
1
—r 

— M M;
1

• In particular, we note that

M E 0(R5, the group of all n x n orthogonal matrices.

_ _  ---- - -.
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Definition 2.2. A closed subgroup G of 0(R°) is called a reflection group

if there exists a subset of ~ such that G is the smallest closed subgroup

of O(Rn) containing the set of reflections 
~~r

: r e

We call a generating system of C. A minimal generating system of G is

called a set of fundamental roots of C.

Definition 2.3. The root system of C, denoted 
~~~~
, is the set {r € B~: Mr 

6 G}.

For any given r e ~~~,, partition R~ into the following three subsets:

1. = c R~ : rx  > O}

2. H = {x € R~ : r x  < 0}

3. H0 = {x € Rn r~x = 0)

Since 
~r~

C (I — 2rr ) x x — 2rr x we note that M
r
X x if and only if x € 11 .

Thus the set H° is invariant under the transformation defined by the reflection

tJ~ now introduce the notion of a fundamental region for a finite reflection group.

prom now until we begin the discussion on the decomposition of reflection groups

(Proposition 2.7), C’, will renresent a finite reflection group. ‘)efine the set

TC 
— { t  € : r’t a 0 for each r € Thus T

~ 
is the complement of the set

~rEA 
H~}. When there is no possibility for ambiguity we will drop the subscript

G
G in T

~
. For a fixed t c T, define the sets:

1. — {r € : r t  ‘ 0),

2. • (r E A
0 

: r t  < 0).

Since r c A~. if and only if —r t 
- 

A and partition A
~ 

into two sets of

the sane cardinality .

~ 

~~~~~~~~~~~ --- - -  — -  _ _ _ _;__.___ ~]] ._, — — - --
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We call A the set of t—positive roots and we note two useful properties re-

lating to positive roots.

+ +1. Por every g e C, gA
~ 

= Agt~

2. The equality, A+t , holds if and only if g is the identity element

of G.

For proofs of the above two statements, see Propositions 4.2.2 and 4.2.3 of Benson

and Grove (1971).

We partition T into certain regions, termed fundamental regions, by means of

the equivalence relation defined below . The equivalence relation is based on the

set of positive roots.

Definition 2.4. Suppose t,s € T. Then t is equivalent to s (in symbols,

t ’~~s) if
t S

Definition 2.5. Suppose t € T. The fundamental region F defined by t is

the get {~ € T : t “.. s).

It is evident that for t,s € T, if t ~ s, then t and s define the same

fundamental region. For any t E 1, gt defines a different fundamental region

for each distinct g € C. To see this, note that t is not equivalent to gt for

I a g € C. This is true since A~~ — if and only if g is the identity element

of C as claimed in statement 2 above. Note then that the number of distinct funda-

mental regions and the number of elements of the group G are equal.

In light of the definition of fundamental regions and the above assertions, one

can easily perceive the following properties of any fundamental region F for a

f inite reflection group C. (See Benson and Grove (1971), n. 27.)

1. F is an open set in R~ .

_ - - —------ --~~~-- - -~~~-— ~~~~~~~~
- ---— -- 

~~~~~- - -
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2. F n gF 0 if g is not the identity element of C.

n — — n
3. R = u(gF : g € C) ,  where F is the closure of F in R

Thus the fundamental regions {gF : g € C) are the equivalence classes under the

equivalence relation presented in Definition 2.4.

We now present an analogous notion of a closed fundamental region for any

arbitrary, not necessarily finite, reflection group . Tie must first define a notion

of a closed fundamental region for 0(V), the group of all orthogonal transformations

on V. a linear subspace of R’~.

Definition 2.6. Let V be a linear subspaee of Rn and suppose that r € B i~ V.

The closed fundamental region F for 0(V) defined by r is the set {x € V

x or, a > 0).

The region F defined above depends intrinsically on the point r € B~ n V ,

but we shall suppress reference to that dependence except where ambiguity may result.

Throughout this section and the rest of this paper V is a linear subspace of

Rn. Eaton and Perlman (1976) show that any infinite reflection group acting irredu-

cibly on V is the entire orthogonal group acting on V. A group G is said to

act irreducibly on a space V if V contains no proper G—invariant subspace . We

make use of the following proposition of Eaton and Pen man (1976) to define reflection

ordering for any arbitrary reflection group .

Proposition 2.7. (Eat- i and Perlman (1976)). Suppose C ~ 0(R
”) is a reflection

group acting on Rn. Then C, is isomorphic with C1 
x C2 

x ... x G
k 

acting on

V1 • V2 • ... • Vk (1 � k � n), where ~~ ~~~~~~ . .,Vk 
are mutually orthogonal sub—

k
spaces of R” with ~ dimension (vi) n, and C~ is a reflection group acting

1’ 1

irreducibly on V~.
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Definition 2.8. Let G be a reflection group acting on V such that C is

isomorphic with C
1 

x x x Gk acting on V
1 • V 2 • ... • V~. Let be a

closed fundamental region in V~ for C
1
, i l,2,...,k. Then F’ 

~
‘
2 Fk

is a closed fundamental region in V for C.

We now begin our discussion of reflection ordering for an arbitrary reflection

group with respect to a closed fundamental region. Ue define reflection ordering

for a finite reflection group (Definition 2.10), then for the orthogonal group

(Definition 2.12), and finally for any arbitrary reflection group (Definition 2.14)

using Proposition 2.7.

Let C be a fixed finite reflection group. In order to define reflection

ordering on the group G we present a partition of C. For any fundamental region

F, the set E 
~~ 

is the set of F—positive roots; i.e. = {r e : r t  > 0

for all t e F). Fix a root r c A
G 
and let gF be some fundamental region. Then

r € A~F’ 
or r € A

F. For the given fixed r we partition G into the sets

and G , where G = (g c C : r € and C {g € C : r € ‘
~gF~

’ Technically,

and G depend on the fundamental region F as well as on the root r. We

suppress reference to F unless ambiguity may result.

Definition 2.9. Let G be a finite reflection group acting on V , let F be

a fundamental region in V for C, and suppose that r € 4. Then g is r—larger

than M
~
g (in symbols , g ~ Kg) if and only if g € C . .

Note that if g e G;~ then g is r*_larger than M
~~

g where r* — —r.

Definition 2.10. Let C be a finite reflection group acting on V, let F

be a fundamental region in V for C, and suppose that g1,g2 
e G. If there exists 

- -  -- - -- . - - 
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r r r
a sequence h ,h1,...,h in C satisfying g1 

h �l h1 
�2 �m h — g2, where

€ 4, i 1,2,...,m, then g1 is ~—1arger than g2 (in symbols, g1 ~ g2).

Definition 2.10 presents reflection ordering on the elements of the group C.

We now define reflection ordering as a partial ordering on the space V.

The C-orbit of a point x € V is the set {gx : g € G).

Definition 2.11. Let C and F be as in Definition 2.10. Suppose x
1
,x
2 

€ V

and they also belong to each other ’s orbit, i.e., x2 
gx1 

for some g e C. Then

there exists x € F such that x
1 

g
1~ 

and x
2 

— g
2
x f or some g1,g2 € C. We

say that x
1 

is F—larger than x
2 
(in symbols, x1 ~ x2

) if g
1 g2.

We now define reflection ordering for the orthogonal group.

Definition 2.12. Suppose r € B~ n V and g1,g2 
c 0(V). The closed funda-

mental region F defined by r is the set {x 6 V : x — ar, a > 0). If

fg1
x � x g

2
x f or all x € F , then g

1 
is P—larger than g2 

(in symbols , g1 ~ g2).

Note that reflection ordering on the elements of 0(V) is actually complete.

By a simple extension we define reflection ordering on the space V for 0(V).

Definition 2.13. Let F be as in Definition 2.12 and suppose that g1,g2 e 0(V).

For any x € F define x
1 

= g1
x and x

2 
= g2x. Then x1 

is F—larger than

(in symbols, x1 ~ x2) if g
1 g2

.

Note that when x
1 

and x
2 

are elements of the same orbit, the relation

x1 x2 
holds if and only if u (x

1 
— x

2
) � 0 for all u € F.

We now define reflection ordering for any arbitrary reflection group. 
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Definition 2.14. Let C be a reflection group acting on V such that C is

isomorphic with C
1 

x C
2 

x X C
k 

acting on V
1 
a V2 a ... • V~. Suppose

g1,h~ c C~, 1 — 1,2,...,k, and define g g
1 
S g

2 
S . . .  S g~ and

h h1 • h2 S ... S hk . If g1 �
~ hi~ 

I = 1,2,... ,k, then we say that g is i-larger

than h (in symbols, g h), where F = F1 F 2 ~

We conclude this section with an example of reflection ordering, the well—known

‘traasposition ordering of Hollander , Proschan, and Sethuraman (1977). Let the

group G be P , the group of all permutation matrices acting on R’~. A generating

system of C, A~, is the set {r
1 
: i = 1,2,...,n—l}, where

~~~~~~~~~~~~~~~~~~~~~~~~~ with —1/J~ and i/1~ being the 1
th and (1 +

coordinates respectively of r
i
. A root system of G, AG, is the set

{± r
u 

: i = l ,2 , . . . ,j — l r  j  = 2,3,...,n}, wh~re

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ with —i/li and i//i being the ~~ and

~th coordinates respectively of r
1~
. The G—orbit of a point x € R

5 
is the set

of points defined by the n permutations of the coordinates of x.

Let the fundamental region F ~n be the set {
~ € R

n : x
1 

< x
2 

< ... < x5}.
Since for i c j, the ~

th coordinate of any x € F is larger than the j
th coord ina te,

A; is the set {+ r~1 
: I — 1,2,...,j—l: j = 2,3,...,n}. The set G for any

ii

e AG contains any permutation matrix g such that for x € F, the 1th coordinate

of gx is less than the ~th coordinate. This is obvious, since r
j
gx is the

coordinate of ~x less the I coordinate. For x € F , gx is r1~ — 1arger

-----4 
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than M gx means that the ith coordinate of gx is smaller than the 1
th coordinate.

ru

The point 
~
1r gx is a permutation of the ith and ~th coordinates of gx. Conse—
ii

quently it is easy to see that reflection ordering for P with respect to the

fundamental region {x € R tI : x
1 

< x,~ < ... < x }  is actually the transposition
ordering of Hollander, Proachan, and Sethuraman (1977).

3. G—ordered Functions.

In this section we define functions, termed G—ordered functions, which are

isotonic with respect to reflection ord ring. Functions on the group G, fun ctions

on V, and functions on V
2 

may have the G-ordered property. Although the C. ~rdered

property is essentially a property of functions on the group G , it is more convenient

for theoretical development and practical applications to formulate the C—ordered

property for functions on V and V2.

C—ordered functions contain as a special case functions decreasing in trans-

position (DT). (See Hollander , Proachan , and Sethuraman (1977).) We establish some

basic preservation properties for G—ordered functions . For example, we show tha t

the C—ordered property is preserved under mixtures with respect to a positive measure

and under composition with respect to a C—invariant meas~ re. The product of a finite

number of nonnegative C—ordered functions is C—ordered . Preservation under compo-

sition is particularly useful in further developing the properties of G—ordered

functions.

Definition 3.1. Let G be a reflection group acting on V and let F be a

closed fundamental region in V for G. A function f from C into R1 i~ 

_. - -- - - --~~~~ --- - —- - -- --------— - --~~~~~ - - -—-- — —--- -- -
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C—ordered with respect to F if g1 g2 
implies f(g1

) � f (g
2
), for g1,g2 € C.

Definition 3.2. A subset X of R~ is said to be C—invariant if gX E X

for all g € G .

Throughout this section G will be a fixed reflection group acting on V, a

linear subopace of R0, and F will he a closed fundamental region in V for G.

The sets A and X, with or without subscripts, will denote C—invariant subsets

of V.

Definition 3.3. A function f from X into R~ is C—ordered with respect

to F if for every x € F r, X and for every pair g1,g2 
€ C such that g

1 
g
2
, we

have f ( g
1
x) � f ( g

2
x).

Note that if f is C—ordered with respect to F on X, then whenever x
1 

x~,

we have that f(x
1
) � f (x

2
).

Definition 3.4. A function K from A x X into R 1 is C—ordered if the

following two conditions hold .

(1). K(gA ,gx) K(A ,x) for al.1 g € C.

(ii). For every closed fundamental region F, whenever A € F n A , x € F fl X , and

g

~~ 
g2, 

then K(A ,g1
) � K( A g

2x).

Remark 3.5. Note that condition (I) above can be replaced by:

(1*). K(M
r
A
~
MX) — K(A ,x) for all r in a set of fundamental roots for C.

The following lenina demonstrates the connections among G—ordered functions on

the group C, on X, and on A x X.

Leirina 3.6. Let K(gA ,gx) K (A ,x) for all g e C. Define

(a). i~(x ,X ) — K(A ,x) for A c A , x € X. 

- _ ~~~~~~
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(b). f
~
(x) = K(A ,x) for A € A , x € X .

(c). hx~~
(g) K (X ,gx) for A € 5F n A , for x € gF n X, for all g € C, and for

some g € 0.

Then the following statements are equivalent:

(1). K is C—ordered on A x X.

(2). K is C—ordered on X x A .

is C—ordered with respect to F on X for each A € F n A.

(4). ~~~~ is G—ordered with respect to gF on C for each A € gF n A and each

x € gF n X.

The equivalence follows directly from the definitions of C—ordered functions

on C, on X, and on A x X.H

We now present some preservation properties for C—ordered functions. The proofs

of Propositions 3.7, 3.8, and 3.9 below parallel the proofs of corresponding results

in Hollander, Proschan, and Sethuraman (1977), so we omit them.

Proposition 3.7. Let K be C—ordered on A x X and let f and h be non-

negative C—invariant functions on A and X respectively . Then f(A) K(A ,x) h(x)

is C—ordered on A x X.

Proposition 3.8. Let (Q ,F ,v) be a positive measure space. Suppose that K(A ,x)

is C—ordered on A x X for each w € ~~, and suppose that for all (A ,x) c A x

K( A ,x) € L 1(Q ,F ,v). Then f~~ 
K (A ,x)dv(w) is C—ordered on A x X.

A similar result for mixtures holds for functions C—ordered with respect to F

on C and on X.
k

Consider any function •(A ,x) def ined by $(A ,x) c(A)h(x) exp 
~ 

Ki
(A ,x)

i—i

Using Proposition 3.7, Proposition 3.8 with the counting measure, and the fact that

- - - - —_ _ .. :-~~t~~-~ 9M,~~~~MWW , 
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increasing functions of C—ordered functions are C—ordered , we may show that • is

G—ordered if c and h are C—invariant and K1 is C—ordered , I — 1,2,. ..,k. Note

that densities belonging to the multivariate exponential family are special cases

of this form.

Note that if K is C—ordered on A x X, then K is C—ordered on ftC x X*,

where ft* and XC are any G—invariant subsets of A and X respectively. Thus

if K, a C—ordered function on A x X, is the density of a random vector X and u

is a C—invariant function on X, then the conditional density of X given u(X) u0
,

K , is C—ordered on A x X , where X = {x c X : u(x) u
U

0 
0 0 0

Proposition 2.9. The product of nonnegative C—ordered functions is C-ordered.

Definition 2.10. A measure ii on X is G—invariant if i~(A n X) — u(gA n X)

for any g € C and any Borel set A in R
!
~.

We now present a composition theorem for C—ordered functions on A x X. We

establish first the composition result for C—ordered functions with respect to a

u—invariant measure ~i for C, a finite reflection group . Then we show the compo-

sition result for the orthogonal group on T7~ Recall that any reflection group is

isomorphic with a direct product of groups each of which is either an orthogonal

group or a finite reflection group. The composition result for arbitrary reflection

groups follows immediately .

Lemma 3.11. Let C be a finite reflection group and suppose that K] is

C—ordered on X
1 

x X and K2 is C—ordered on X x X2. Let

K(x,z) 
f 

K1(x ,y)K 2 (y, z)d~ (y) , where the integral is assutned to exist for each

X € X1 
and each z € and p is a C-invariant measure on X. Then K is

C-ordered on X1 
x X2 .
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Proof. (I). We show that K(gx,gz) a K(x ,z)  fo r al l g € C. Suppose g € C.

Then

K(gx ,gz) — 
f 
K1
(gx,y) K

2(y,gz) dp (y)

= 
f 
K
1
(gx,gy) K2(gy,gz) dp (gy)

— 
J 
K
1
(x,y) K

2
(y, z) dp (y)

— K(x ,z), as desired .

(ii). Suppose x c F n X1, z € F n X2, and g
1 g2. We need to show

that K(x,g.,z) � K(x,g2z). Since C is finite, it suffices to show that

+ +K(x ,z) � K(x
~
M
rz) for every r € 

~~ 
Suppose r € A~ . Then

K(x,z) — K(x,M z) = 
f K

1
(x ,y) [K

2(y,
z) — K

2
(y,M z)] dp (y)r r

= 
f

~~~ 

K
1
(x,y) [K

2
(y, z) — K

2
(y,M z)J du (y) (1)

HnX r
r

+ f 
K
1

(x ,y) (K (y,z) — K2(y,
!4 a)] dp (y) (2)

H n X  r
r

+ J~~ 
K1

(x ,y) (K 2(y,
z) — K2(y,M z)] dp (y). (3)

H nX
r

Since K2(y,z) — K2(y, M~z) = 0 for all y € H0 ri X , we drop (3) . We use the traits—

formation y — M
r
U and invoke the C—invariance property of p to conclude that (2)

is equal to:

H~flX 
~
(
i~~~

Mr
t1) [K2~~~

M
r~~ 

— K
2~~,~~ j du (u). (2*)

We now combine (1) and (2*) and factor the integrand to obtain that

K(x,z) — K (X
~
Mr
Z) —

i~~nX 
(K
1
(x,y) — K1(x,My)) [K2(y, z) — K

2(y,
?4 z)J dp (y).
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Both factors of the integrand are nonnegative for y € H n X , so that

K (x,z) — K(X,MZ) � 0, as desired.H

Lemma 3.12. Let C be the orthogonal group acting on V and suppose that

K
1 is C—ordered on X

1 
x X and K

2 
is C—ordered on X x X2. Define

K(x ,z) — 
f 

K1(x ,y)  K
2(y,

z) dp (y), where the integral is assumed to exist for each

x € X
1 

and each a € X2 
and p is a C—invariant measure on X. Then K is

C—ordered on X
1 

x X2.

Proof. (i). The proof that K(gx,gz) = K(x,z) for all g € C is analogous

to the proof presented for Lemma 3.11.

(ii). Suppose z z  — zz and x’(z — a) � 0. Now a — gz for some

g € C; thus we wish to show that K(x,z) — K(x,z) — K(x ,z) — K(x,gz) � 0. Let Mr

be the reflection matrix generated by r = (a — gz)/Jjz — gzf~ and let H~ be the

hyperplane perpendicular to r. Note that Mr 
€ C and that M

r
Z a gz. Write

K(x,z) — K(x,gz) a 
f 

K
1

(x ,y) [K
2
(y,z) — K

2
(y,gz)] dp (y)

X

— K (x ,y) [K2(y,z) — K (y,gz)J dp (y)
H nX
r

+ f K (x,y) [K2(y , z) — K (y,gz)) dp (y)
H nX
r

+ f 
K (x,y) (K 2(y, z) — K (y,gz)] dp (y)

R°nX
r

(K (x,y) ~K2(y,z) — K (y,gz)] +
Hn X
r 

K1 x~M~y) EK2
(M
rY~

Z) — K2
(M~y~gz)J) dp (y). (1)

_ _  -
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In the above we have used the transformation y — M U , the C—invariance of p, and

the fact that

f 
K (x,y) [K (y,z) — K (y,gz) J dp (y) = 0.

H nXr

Since K2
(M
r
y
~
gz) a K2(M y,M z )  — K

2
(y, z) and K2

(y, gz) = K
2(y,M z )  — K2 (M~y~ z ) i

we write (1) as:

J
+ 

[K 1 (x,y) — K 1 (x,M y)] EK.,(y,z) — T’~2(y,gz)] du (y). (1*)
HoX r
r

Now x(y - My) xrr (y - fly) — li z - gz~~~
2 [x (z - ga) ] [(a — gz)~ (y — MrY)] � 0

for y € H n X. Also we have that y(z — gz) � 0 for y € H n X. Consequently

both factors of the integrand in (1*) are nonnegative, so that K(x,z) — K(x,gz) � 0,

as desired. II

Theorem 3.13. Let C be an arbitrary reflection group and suppose that K
1 is

C-ordered on X
1 

x X and 1(
2 

is C—ordered on X x X
2
. Define

K(x,z) — 
J 

K
1

(x ,y) K
2
(y,z) dp (y), where the integral is assumed to exist for each

x € X
1 and each a € X

2 
and p is a C—invariant measure. Then K is C—ordered

on X1 
x X2.

Proof. (1). The proof that K(gx,gz) — K (x,z) for all g € C is analogous

to the proof presented for Lerr’~t 3.11.

(ii). Suppose C is Isomorphic with C
1 

x C
2 

x C
k 

acting on

V1 • V2 S . . .  S Vk. Then for j — 1,2, x~ — a x~
) a ... • ~~~ with

a G
1
—invariant subset of V1

, 1 — 1,2,...,k. Let F be a cloøed fundamental region

in V for C. Suppose x € F n X1, z € F n X2, and g
~ 

g2. Define
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z1 — and a

2 
— g2z. For j = 1,2, write — + ~~2) + ... + with

~~
1) 

~ ~~~ i = l,2,...,k. Define the k intermediate points as follows:
I

;(1) ,~(1) + 42) + + ~(k) ;(2) 
— ~

(l) 
+ ~

.(2) + + + ~(k)

;(k) = 
4~~~ 

+ + ... + z~~~. The closed fundamental region

F — • ~ 
~k

’ Now ~~~ ~1 
~~~~ I 1,2 , . . . ,k , so that

K(x,z~
t
~) � K (x,z~~~~~) for I 1,2,...,k—l as a consequence of Lemma 3.11 if

G
1 

is a finite reflection group or as a consequence of Lemma 3.12 if C~ is the

orthogonal group acting on V~ . It follows that K(x,z
1
) � K(x,z0~ � ... � K(x,~~ 1

~~) —

as desired.If

The following two corollaries represent preservation results for C-ordered

functions on the group C and on the set X. The proofs follow directly from

Lemma 3.6 and Theorem 3.13, so we omit them.

Corollary 3.14. Let C be a reflection group and let p be a uniform measure

on C. Let f
1 

and 
~2 be C—ordered with respect to F on C and define

f(g) - 
f 

f
1
(g~~g) f 2 ( g )  dp ( g ) .  Then f is C—ordered with respect to F on C.

Corollary 3.15. Let K be C—ordered on ft x X and let f be C—ordered with

respect to F on X. Define h(A) = 
f 
K(A ,x) f(x) dp(x), where p is a C—invariant

measure on X. Then h is G—ordered with respect to F on A.
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4. C—majorlzation and C—monotonicity.

C—majorization is a partial ordering on R~ introduced by Eaton and Perlman

(1976). C-monotone funct~rns are isotonic with respect to this ordering. In this

section we relate reflection ordering to the G—majorization ordering and show that

C—monotone functions are special cases of C—ordered functions. We use the properties

of C-ordered functions to establish a convolution theorem for C—monotone decreasIng

functions and also to obtain the preservation o C—inonotoniclty under the integral

transform:

h ( A )  f K (A ,x) f(x) dp (x).

We supply a brief suninary of relevant parts of the work of Eaton and Pen man (1976).

The well—known majorization ordering induces a partial ordering on R’~ and

Schur—convex functions are order preserving with respect to majorization. The

C—majorization ordering of Eaton and Perlman (1976) Includes inajorization as a

special case.

DefinitIon 4.1. Let C be a closed subgroup of O(R5. For x ,y € R~, the

point x is said to C.—majorlze y (in symbols, x y) if y is an element of the

convex hull of the C—orbit of x.

Definition 4.2. A function f from X, a subset of Ri’, Into R’ Is

G—monotone increasing (decreasing) if x y implies f(x )  � (~) f(y).

When C is P . the permutation group, G—majorization coincides with the

familiar inajorization ordering . (See Eaton and Perlman (1976).) Consequently

the class of C—monotone functions coincides with the class of Schur functions when

C is the permutation group.

When C is a finite group , there exists a polygonal path from a point x to

any point In the convex hull of the C—orbit of x. This is a generalization of

_ _  _ __—A
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the famous path lemma for inajonization of Hardy,  Littlewood, and Pôlya (1952 , p. 47).

Stated formally: . . .
‘ -

Lemma 4.3. (Eaton and Perlman (1976)). Let C be a finite reflection group .

Suppose x y,  x ~ y. Then there exists a sequence of points z ,z
1
,...,z such

that a — y, a — x, and
0 m

= EA~I~ + (1 — x~) ~r~
1 zj~ 

1 � j � m ,

where r
1 

€ &~, 0 � A~ < 1, and I is the n x n identity matr ix .

Note that z
j zj1 

for j — l,2,...,m.

Before we show the relationship between C-ordered functions and C—monotone

functions we establish some technical lemmas. We will use results for finite re-

flection groups and orthogonal groups to obtain results for arbitrary reflection

groups. Proofs are omitted where uninstructive.

Lemma 4.4. Let C be a reflection group and suppose that r c &~~. Let

be an orthonormal basis for R~ such that u1 
— r. Suppose x ,y e

and u~x = u y, I = 2,3,...,n. Then x y If and only if I rx 1 � Jr yI .

Lemma 4.5. Let C be a finite reflection group and let F be a closed funda—

mental region in R~
’ for C. Then for r € 4, we have that g M

~
g if and only

if rgx � 0 for all x € F.

Lemma 4.6. Let C be a finite reflection group and let F be a closed

fundamental region in Rn for C. Then for r € 4, the relation, g M
~
g, holds

if and only if A + gic A + Mg x (A — M gx A — gx) for all A such that r X  � 0.

_—- - - —---_.- . - _--

~

—_-_-_--- ——-—---

~

——----

~
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~
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Proof. Without loss of generality assume that g — 1n~ 
We show that

A + x A + M
r
X If and only if (r A)(r x) � 0. Let ~~~~~~~~~~~~ be an ortho—

normal basis for R~ such that u
1 

r. Now

A + x — ((r A + rx) r + ~ (uA + ux)u1)
1—2

and

A + M x  ((r A — rx ) r + ~ (uA + ux)u1).
1—2

Thus A + x A + M
r
X if and only if f r A  + rx I ~ Ir~ 

— r x ~ by Lemma 4.4.

But )rA + rx J  � r A  — r~x~ if and only if (r A)(r x) � 0.

As a conaequence of Lemma 4.5, I M I if and only if r x  � 0. Under then r n

assumption that r~X � 0, A + x A + M x  If and only If r x  � 0. Thus we conclude

that g ~ M g  if and only if A + gx A + M~~x for all A such that r A  � 0.

The proof that g ~~~~ if and only if A — M~gx A — gx is analogous.f~

Lemma 4.7. Let C be an orthogonal group and let F be a closed fundamental

region in R~ for C. Then for g1,g2 € C, the relation, g1 g2, holds if and

only if (A + g
1xY(A + g2

x) � (A + g
2
xY(A + g2x) ((A 

— g1
x)’(A — g1

x)

� (A — g2xY(A —g2x)) for every A , x e F.

Lemma 4.8. Let C be a reflection group acting on V, let ~ be a closed

fundamental region In V for G , and suppose that r € 4. Then g ~ M~
g if

and only if A + gx A + M~~x for all A ,x € F. 

-~~~~-- -~~~~~~~~~ - --- _- - .~~~ ~~~~~~~ ---~~ --—-- -- - . - - - -—-- - — - —-- - - - — - - -~~~~ -—-------—-
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Lemma 4.9. Suppose r € B and z c R~. Then for any a, 0 � a < 1, there

ex~..t points A ,x c such that a = + x , ( r X ) ( r x~) � 0 , and

(ol + (1 - a)M ) ( A + xa ) — A + f r~
Ca~

Theorem 4.10. Let C be a reflection group acting on V. Let K(A ,x) be

of the form f(A + x) (f(A — x)). Then K(A ,x) Is C—ordered on V2 if and only

if f(A + x) (f(A — x))  is C—monotone increasing (decreasing) on V.

Proof. We show that K(A ,x) Is C—ordered if and only if f(A + x) is

G—monotone increasing. The proof that K(A,x) is C—ordered if and only if f(A — x)

is C—monotone decreasing is analogous.

(I) . For all g € C , K(gA ,gx) = f ( g A + gx) = f(g(A + x)). Thus

K(gA ,gx) — K (A,x) if and only if f(g(A + x)) — f ( A  + x) for all g e C.

(h a). Let f be C—monotone increasing. Suppose that A ,x € F and r € 4.

Then I
n ~ 

MrI~~ 
which implIes that A + X A + M

rX by Lemma 4.8. Thus

K (A,x) — K (X,Mx) = f ( A  + x) — f(A + MX ) � fl.

(iib). Let K be C—ordered and suppose that a
1 a2. Suppose C is iso-

morphic with C
1 

x C2 
x • .  x Gk acting on V1 • V2 S ... I Vk. Write

a1 
— ~~~~ + + + ~~~ and a

2 
+ + 41

~~~~~
, so that

, .~ C
�~ z2

1’, I l,2,...,k. Let 3 be a subset of {l,2,...,k} such that for all H

I € 3, C1 
is a finite reflection group. Denote the subset of {l,2,...,k} for

which C1 is an orthogonal group by ~~C
•
~ For each i € .i assume

— (a~
1
~I + 1 — aU~~Mr ~

(i) where 0 � a~
’
~ < 1. By Lemma 4.9, there 

- -.--—- ~~~--~~~~~~~~~~~~~~ -- -— - -—*- - -
~~~~~~~~

- -
~~~~~~~

- -.
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ex ist A
ct
(I) and X

0
(1) such that (I) 

= A
a (i)  + X

(j)~ 
~~ A

a
(i) + Mr x (j)

and ( r A (1))(r x (1))- ~ O.~~Fot~. eacK I-c write ~
U) a AW + i)~ and -

(1) + (I) (I) (I)

— ~~~~ + ~~~~~ where = 

21 
2 

(1) 
= 

21 and

(I) U)z
2 — z 1

2 . Now

f(z
1
) - f(z

2
) - f (z~

1
~ + 

(2) + + z~~~)

- f(z~
1
~ + ~~

2) + + z~~~)

= f((~ (l) + ~ (l)
) ~~~

(2) 
+ ~

(2) ) + ... + (~ (k) +
- f((~U) + ;(1)) + (~ (2) + ~ (2) ) + + (~ (k) +

= K(A ~
1
~ + 

‘~(2) + + ~(k) ;(l) + ;(2) + • • •  + 4k) )

- K(A~
1
~ + ~(2) + + ~(k) ‘—(1) 

+ ;~2) 
+ • •

~~ +

� 0,

A i € J  x i c J  M x  i e J

where - 

3c
’ - 

{x~~~~ i € 3c ’ and (i)  
- 

€

The Inequality holds since ~~~~~~~~~~~~~~ � 0 for each I € J and

a AU)x~
1) for each i €

Definition 4.11. A measure p on V is said to be translation invariant

if p(A n V) p((A + x) n V) for all Borel sets A in R” and all x € V.

_ _  _ _ _ _
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Corollary 4.12. The convolution of C—monotone decreasing functions on

with respect to a translation invariant measure is C—monotone decreasing for C

any reflection group acting on R’~.

Proof. Let f
1 

and f
2 be C—monotone decreasing on R5 and def ine

h( x) — 
f 

f 1(x — y) f 2 (y) du (y) . Then

h(x — z) = 
f 

f
1

(x — z — y) f
2(y) dp (y)

J 
f
1
(x — u) f

2(u 
— z) dp (u) .

By Theorem 4.11, f
1
(x — u) and f 2 (u — z) are C—ordered on R

2
~ . By Theorem 3.13,

h(x — a) is C—ordered on R2~ . Thus we apply Theorem 4.11 again to conclude that

nh is C—monotone decreasing on R

Remark 4.13. For Corollary 4.12 it is not necessary that the functions be

C—monotone decreasing on R~ . Suppose X is a subset of Rn such that the set

~ 
d~f {u € R’~ : u — x + y; x,y c X} is C—Invariant, then the convolution of C—

monotone decreasing functions on X is C—monotone decreasing. This condition is

satisfied if X forms a semigroup under addition, for then U X.

Definition 4.14. Suppose A and X form semlgroups under addition . A function

K on A x X is said to have the C—ordered generalized semigroup property with

respect to a translation invariant measure p, If for A1,A 2 e A and x € X, there

exist G—ordered functions 
~l 

and ft x X such that

K(A
1 

+ A 2, x) — 
f 

K
1
(A
1,

x — y) K
2(A2, y) dp (y).

We now state and prove the main preservation theorem for C—monotone functions

under an integral transform. 

- —- - - -- - - - - - -~~~~ - -~~~~~~--- - - - -
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Theorem 4.15. Let A ,X be as in Definition 4.14 and let a function K on

A x X have the C—ordered generalized semigroup property with respect to a C—Invariant

and translation invariant measure p . Then h(A) 
f 
K(A ,x) f(x) dp (x) Is C—monotone

Increasing (decreasing) on A if f is G-monotone increasing (decreasing) on X .

Proof. We show that f is C—monotone Increasing implies that h is C—monotone

increasIng. We show that h( A + A*) is C—ordered on A2 and conclude that h is

G—monotone increasing on A using Theorem 4.10. Write

h( A + A*) = 
f 
K(A + A*,x) f(x) dp (x)

x

= f f  K1(A ,x — y )  K 2 (A* ,y) dp (y) f ( x )  dp (x)
x x

— 
J 

K~ (A* ,y) 
f 
K~ (X ,x — y) f (x )  dp (x) dp (y)

x x

= 
f 

K~ (A * ,y) 
f K (A ,x) f ( y  + z) dp (z) dp (y),

x xy

where X — {u € R’ : u = x — y; x ,y c X }. Since X forms a semigroup under addition,

Xy ~ X for all y € X.  On the set X — X , K1(A , -.) is zero; hence we replace X

by X for the region of integration of the inside integral. Thus

h ( A + A*) = 
f 

K 2 (A * ,y) 
f 

K1(A ,z) f ( y  + z) dp (z )  dp (y) .
X X

We apply Theorem 3.13 to conclud e that 
f K1(A , z) f (y  + a) dp (z) Is C—ordered on
x

A x X. We appiy Theorem 3.13 again to conclude that h(A + X*) is C—ordered on A 2.

Thus h is G—inonotone increasing on ft.

To show f C—monotone decreasing implies h C—monotone decreasing, we need

only consider —f which is C—monotone increasing and deduce that —h is C—monotone

increasIng. H
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Theorem 4.15 is an extension and generalization of a similar preservation -,

theorem under an integral transform (Theorem 3.7) of Hollander , Proschan, and

Sethuraman (1917). It yields their theorem as a special case when C is the per—

mutation, group, K1 = K2 = K, and the coordinates of points in A and X are

positive real- numbers or positive Integers. 
-

Definition 4.16. Let A ,X be as in Definition 4.14. A function K on A X X

is said to have the C—ordered conditional generalized semigroup property with respect

to a translation Invariant measure p, If there exists a a—finite measure space

(~1,F ,v) and functions K ( A ,x) ,  w € ~2, such that:

(I). K(A ,x) 
f 

K ( A ,x) dv(u) ,
c2

(ii). For each w c ~l, K has the C—ordered generalized semigroup property with

respect to p .

Corollary 4.17. The conclusion Theorem 4.15 holds if K(A ,x) now has the C—

ordered conditional generalized semlgroup property with respect to p.

Proof. Let h (A) d~ f 
f 

K (A,x) f(x) dp (x). Then by Theorem 4.15, h (A) is
x (A)

C—monotone Increasing (decreasing) on A for each u € 0. Now

h (A)  — 
f 

K ( A ,x) f(x) dp (x)
x

— J f K (A ,x) dv(w) f (x) dp (x)
x 0

f J K ( X , x) f(x) dp (x) dv(w )
O x

— f h (A) dv(w).
O w

We apply the mixture result , Proposition 3.8 , and Theorem 4.10 to conclude that

h(A) Is C—monotone Increasing (decreasing) . I I

L - - -- - - -- ----- - --- - - -  -- - - - - —- - - - -— —-- --- . -  -~~--— --- --—--,- *--- - --- ---__ - -
~~~~~
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We present further extensions of Theorem 4.15 in Corollaries 4.18, 4.19, 4.20,

and 4.21. The proofs are fairly routine, so we omit them.

Corollary 4.18. Let $(A,x) have the C—ordered generalized seinigroup property

on A x X with respect to a C—invariant and translation invariant measure p. Let

£
1 

and £
2 be linear, 0—invariant functions on A and X respectively. Define

h(A) — f •(A ,x) K(fj(A)1t2(x)) f(x) dp (x), where K is a function on A x X only

through £1 and £2. Then f C—monotone increasing (decreasing) on x implies

ii C—monotone increasing (decreasing) on A.

Corollary 4.19. Let • and K be as in Corollary 4.18. Let T be a linear

transformation from V into V such that A ~ if and only if TA ~ T~. Define

K(TA ,Tx) •(A ,x) K(.e1
(A) , e2(x)) and h(TA) a f i~(TA ,x) f(x) dp (x). Then f C—

monotone increasIng (decreasing) implies h C—monotone increasing (decreasing) on

TA.

Corollary 4.20. Let + and q~ have the C-ordered generalized semigroup

property on x1 x X2. Define K(x,z) f •(x,y) ~~z,y) dp2(y) and h(x) a

f K(x ,z) f(z)  dp
1

(z) where p~ and p2 are C—invariant measures on X
1 

and

respectively. Then f C—monotone increasing (decreasing) on x1 implies h C—

monotone increasing (decreasing) on X1.

Note that the conclusion of Corollary 4.20 holds as long as the preservation of

G—isonotonicity under an integral transform holds with $ and 4’ as kernels of the

transform.

Corollary 4.21. Let the random vector X have density K(A,x) possessing

the C—ordered generalized semigroup property on A x X. Suppose Y — f (X)X , where 

----- - - - -_ - - -  - - ------ -~~~~~~~~ —- - -
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f, a function from X Into R1, Is such that f(x) — f(y) for all y in the

convex hull of the C—orbit of x, and let $(A,y) be the density of Y. Define

h(A)  a f $(A ,y) £(y) dp(y), where p is a C—invariant and translation invariant

measure on X . Then £ C—monotone increasing (decreasing) on X implies h C—

monotone increasing (decreasing) on A.

Again we should remark that the conclusion of Corollary 4.21 holds as long as

the preservation of G—monotonicity under an integral transform holds with K as

the kernel of the transform.

- -- - - - -- -- -~~~~~~~~~~~~ ---- - -- -~~~~~ - --~~~~~~~~~~-_
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