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ABSTRACT

This is Part I of a two-part paper which generalizes a rearrangement ordering,
develops the theory of functions isotonic with respect to the more general ordering,
k and presents applications of this theory in statistics. Using the theory of reflec-
tion groups, we define reflection ordering (a generalization of transposition ordering)
and G-ordered functions (a generalization of functions decreasing in transposition).

(See Hollander, Proschan, and Sethuraman (Ann. Statist. 5, 1977, 722-733).) Reflec-

tion ordering is closely related to G-majorization (a point x G-majorizes a point |

y 1if y 1is an element of the convex hull of the G-orbit of x) and G-ordered func-

tions contain G-monotone functions as special cases (G-monotone increasing functions

preserve the G-majorization ordering). We develop many preservation properties for
G-ordered functions and we prove a preservation theorem for G-monotone functions under

an integral transform. In Part II we present applications in statistics.
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1. Introduction and Summary.

In this two-part paper we generalize a rearrangement ordering, develop the
theory of functions isotonic with respect to the more general ordering, and present
applications of this theory in statistics. Hollander, Proschan, and Sethuraman (1977)
define a rearrangement ordering, called transposition ordering, and the corresponding
order-preserving functions, called functions decreasing in transposition (DT). Using
the theory of reflection groups, we define reflection ordering as a generalization
of transposition ordering. Functions which preserve reflection ordering are called
G-ordered functions and this class of functions contains the class of DT functions
as a special case.

This two-part paper continues the unification of the theory of stochastic com-
parisons. Earlier work in this area had made use of the majorization ordering
(closely related to transposition ordering) and Schur functions (special cases of
DT functions).

Majorization is a well-known partial ordering on Euclidean n-space and Schur-
convex functions preserve the ordering. Hardy, Littlewood, and Pélya (1952), Bechen-
bach and Bellman (1961), Mitrinovié (1970), and Berge (1963) prcvide many of the
classical results in this area. Various authors have used majorization and Schur
functions to obtain inequalities useful in probability and statistics. See, for
instance, Marshall and Proschan (1965), Marshall, Olkin, and Proschan (1967), Marshall
and Olkin (1974), Proschan and Sethuraman (1977), and Nevius, Proschan, and Sethuraman
(1977). Galambos (1971) proves majorization results for vectors of probabilities of
Boolean functions of events; Marshall, Walkup, and Wets (1967) study order-preserving
functions with applications to majorization and order statistics® and Eaton (1970)
uses majorization and Schur functions to establish expectation inequalities for sums
of symmetric Bernoulli random variables. In addition, Olkin (1972) and Wong and Yue

(1973) establish inequalities for the multinomial distribution based on majorization

P —————
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between parameter vectors. Hollander, Proschan, and Sethuraman (1977) use DT funccol..
to obtain a preservation theorem for Schur functions under an integral transform.

They develop many properties of DT functions and obtain from these properties some
useful results in probability and statistics.

Using the theory of reflection groups, Eaton and Perlman (1976) introduce a par-
tial ordering on Euclidean n-space, called G-majorization, which contains the majori-
zation ordering as a special case. They define G-monotone increasing functions which
preserve the G-majorization ordering. We use G-ordered functions to prove a convo-
lution result for G-monotone decreasing functions and also to establish a preservation
theorem for G-monotone functions under an integral transform.

In Section 2 we define reflection ordering for elements of a reflection group
G and for elements of V, a linear subspace of Euclidean n-space. A key property of
a reZ"ection group is that it can be decomposed into finite reflection groups and
orthogonal groups. This simplifies the problem of establishing preservation propcz-
ties for G-ordered functions.

In Section 3, we define functions on the group G, on a space V, and on V2
which preserve reflection ordering. We term these functions, G-ordered functions, ai !l
we prove many preservation properties for them. The composition theorem for G-orderad
functions highlights this section. It is reminiscent of the composition theorem for
TP functions found in Karlin (1968) and is of use in further developing the theory
cf G-ordered functions.

In Section 4 we relate reflection ordering to the G-majorization ordering of
Eaton and Perlman (1976) and show that G-monotone functions are a special case of
G-ordered functions. Using the properties of G-ordered functions, we establish a
preservation theorem for G-monotone functions under an integral transform. We show
that much of the theory of G-monotone functions is subsumed under the theory of G-

ordered functions.
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2. Reflection Groups and Reflection Ordering.

In this section we introduce the notion of reflection ordering for any arbitrary
reflection group. We use the notion of a fundamental region in Euclidean n-gpace
with respect to a finite reflection group. (See Benson and Grove (1971), pp. 27-33.)
e derive an analogous notion of a fundamental region for the orthogonal group on
any subspace of Euclidean n-space. In this case, the region is a closed set. Ve
combine the above-mentioned notions along with a key proposition of Eaton and Perlman
(1976) to define a closed fundamental region for any arbitrary reflection group.

Each distinct closed fundamental region defines a partial ordering, called reflection
ordering, on the elements of the group. 'e present a short summary of the derivation
of reflection groups and fundamental regions for finite reflection groups. Following
that is a derivation of a closed fundamental region for the orthogonal group which
leads to the definition of reflection ordering on any arbitrary reflectic group with
respect to a closed fundamental region. We conclude this section with an example of
reflection ordering: the well-known "transposition ordering' of Hollander, Proschan,
and Sethuraman (1977).

Throughout this section and the rest of this paper R" denotes Euclidean n-space.

Elements of R" are represented by column vectors and the transpose of a vector =2z

is denoted by 2z°. The unit ball in R" 1s denoted by Bn’ i.e.
B - {x ¢ R" : [|x|| = 1}, where [|x|| = /x"x 1s the usual Euclidean norm.

Definition 2.1. Suppose r ¢ Bn and In is the n x n identity matrix. The

matrix, Mr = In - 2rr”, is called the reflection defined by r.
Geometrically, Mt reflects points across the (n-1)-dimensional subspace of R"
perpendicular to r. Clearly Mr = M-r = H; = M-l. In particular, we note that

r

Mr € O(R“), the group of all n x n orthogonal matrices.
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Definition 2.2. A closed subgroup G of 0(R™) 1is called a reflection groun

if there exists a subset A; of Bn such that G 1is the smallest closed subgroup
*
of OR™ containing the set of reflections {Mr: T e AG} s

*
We call AG a generating system of G. A minimal generating system of G 1is

called a set of fundamental roots of G.

Definition 2.3. The root system of G, denoted A

G’ is the set {r ¢ Bn: Mr e G}.

For any given r ¢ Ac, partition R? into the following three subsets:

1. H: ={zer":rx> 0} s
2. H; ={xeR”: r'x<0},
3 H: ={xer":r'x=0}.

Since er = (In - 2rr’) x = x - 2rr’x we note that Mtx = x 1if and only 1if x € H:.
Thus the set H: is invariant under the transformation defined by the reflection Mr'

We now introduce the notion of a fundamental region for a finite reflection group.
From now until we begin the discussion on the decomposition of reflection groups
(Proposition 2.7), G will represent a finite reflection group. Define the set

T, = {t e »"

G :r’t 20 for each r ¢ AP}. Thus T, {is the complement of the set

{rgA H:}. When there is no possibility for ambiguity we will drop the subscript
G

G in TG' For a fixed t ¢ T, define the sets:

) A: ={red,:r’t >0},

G
2. A, = {r e bp : 7L < 0}.
Since r € AC if and only if -r ¢ A: and A; partition AG into two sets of

the same cardinality.
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+
We call At the set of t-positive roots and we note two useful properties re-
lating to positive roots.

+ o+
1. For every g ¢ G, gAt = Agt

2. The equality, A;t = A:, holds if and only if g 4s the identity element
of G.
For proofs of the above two statements, see Propositions 4.2.2 and 4.2.3 of Benson
and Grove (1971).
We partition T 1into certain regions, termed fundamental regions, by means of

the equivalence relation defined below. The equivalence relation is based on the

set of positive roots.

Definition 2.4. Suppose t,s € T. Then t 1s equivalent to s (in symbols,

tns) if Al =2t
| s

Definition 2.5. Suppose t e T. The fundamental region F defined by t 1{is

the set {s e T : t ~ s}.
It is evident that for t,s ¢ T, if t Vv s, then t and s define the same
fundamental region. For any t ¢ T, gt defines a different fundamental region

for each distinct g e€ G. To see this, note that t is not equivalent to gt for
In 2 g e G, This is true since A;t = A: if and onlyv if g 1is the identity element

of G as claimed in statement 2 above. Note then that the number of distinct funda-
mental regions and the number of elements of the group G are equal.

In light of the definition of fundamental regions and the above assertions, one
can easily perceive the following properties of any fundamental region F for a

finite reflection group G. (See Benson and Grove (1971), n. 27.)

1. F 1s an open set in R".
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2, Fngf=¢g 1f g 1s not the identity element of G.
3. R" = u{gF : g € G}, where F 1s the closure of F 4n R".

Thus the fundamental regions {gF : g € G} are the equivalence classes under the
equivalence relation presented in Definition 2.4.

We now present an analogous notion of a closed fundamental region for any
arbitrary, not necessarily finite, reflection group. We must first define a notion
of a closed fundamental region for 0(V), the group of all orthogonal transformations

on V, a linear subspace of RY,

Definition 2.6. Let V be a linear subspace of R" and suppose that r € Bn nv.

The closed fundamental region F for O0(V) defined by r 1s the set {x e V :

x = ar, a > 0}.

The region F defined above depends intrinsically on the point r € Bn nv,
but we shall suppress reference to that dependence except where ambiguity may result.

Throughout this section and the rest of this paper V 1is a linear subspace of
R". Eaton and Perlman (1976) show that any infinite reflection group acting irredu-
cibly on V 1is the entire orthogonal group acting on V. A group G 1is said to
act irreducibly on a space V 1if V contains no proper G-invariant subspace. We
make use of the following proposition of Eaton and Perlman (1976) to define reflection

ordering for any arbitrary reflection group.

Proposition 2.7. (Eat-an and Perlman (1976)). Suppose G & 0(R™) 1s a reflection

group acting on R". Then G is isomorphic with G1 x G2 X vee X Gk acting on

Vl eV, 6 ... 8 Vk (1 £k €£n), where V
a k
spaces of R with E dimension (Vi) = n, and G1 is a reflection group acting
11

V, are mutually orthogonal sub-

2 1 Vgreooo¥y

irreducibly on Vi.
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Definition 2.8. Let G be a reflection group acting on V such that G 1is

eV, ® ... 8V . Let F be a

i olere
somorphic with G, x G, x x G, acting on V1 2 X "

1 2 k

closed fundamental region in Vi for Gi’ i{i=1,2,...,k. Then F = fi ] F2 Q.00 Fk

is a closed fundamental region in V for G.

We now begin our discussion of reflection ordering for an arbitrary reflection
group with respect to a closed fundamental region. We define reflection ordering
for a finite reflection group (Definition 2.10), then for the orthogonal group
(Definition 2.12), and finally for any arbitrary reflection group (Definition 2.14)

using Proposition 2.7.

Let G be a fixed finite reflection group. In order to define reflection

ordering on the group G we present a partition of G. For any fundamental region

F, the set A+ c A

F is the set of F-positive roots; i.e. A; = {r ¢ AG tr’t>0

G

for all t e F}. Fix a root r ¢ AG and let gF be some fundamental region. Then

re A;F or r € A;F' For the given fixed r we partition G into the sets Gt

and G;, where G: ={geG:re st

gF} and G; ={geG:red}. Technically,

gF
+ =
Gr and Gr depend on the fundamental region F as well as on the root r. We

suppress reference to F unless ambiguity may result.

Definition 2.9. Let G be a finite reflection group acting on V, let F be

a fundamental region in V for G, and suppose that r ¢ A;. Then g 1s r-larger
than Mrg (in symbols, g 3 Mrg) if and only 1f g ¢ G:.
Note that if g € G;, then g 1s r*-larger than Mt*g where r* = -r,

Definition 2.10. Let G be a finite reflection group acting on V, let F

be a fundamental region in V for G, and suppose that 8118y € G. If there exists




gt

r
.,hm in G satisfying g = h 27 h, 2

a sequence ho,h . 1

m
100" o hm 8y» where

+ =
T, € AF’ i=1,2,...,m, then gy is F-larger than 8, (in symbols, 81 g gz).

Definition 2.10 presents reflection ordering on the elements of the group G.
We now define reflection ordering as a partial ordering on the space V.

The G-orbit of a point x ¢ V 1is the set {gx : g e G}.

Definition 2.11. Let G and F be as in Definition 2.10. Suppose x,,x, € V

1°2

and they also belong to each other's orbit, i.e., x, = gx. for some g e G. Then

2 1

¥ = = !
there exists x € ¥ such that Xy g, x and X, 8,X for some 818y € G. Ve

x2) if 8y g g

v |

say that X, is §;1arger than X, (in symbols, X 2 2

We now define reflection ordering for the orthogonal group.

Definition 2.12. Suppose r € Bn nV and By:8y € 0(V). The closed funda-

mental region F defined by r is the set {x e V : x = ar, a > 0}. If

x‘glx 2 x‘gzx for all x e ?} then g is F;larger than 8, (in symbols, 8, E gz).

Note that reflection ordering on the elements of O0(V) 1is actually complete.

By a simple extension we define reflection ordering on the space V for O(V).

Definition 2.13. Let F be as in Definition 2.12 and suppose that 8128y € ow).

For any x ¢ F define X = g% and X, = ByX. Then Xy is f?larger than X,

(in symbols, x g xz) if 8 §

1 8-

Note that when X, and x, are elements of the same orbit, the relation

xgx

s , holds if and only if u’(x; - x,) 20 for all ue r.

We now define reflection ordering for any arbitrarv reflection group.
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Definition 2.14. Let G be a reflection group acting on V such that G is

isomorphic with G, x G, x , x G acting on V

v
1 2 e K eV, ® ... 98 . Supbo?e

1 2 k

gi’hi € Gi’ i=1,2,...,k, and define g = 8 ® e, 6 ... 0 8 and

F =
h = h1 ® h2 @ ... Oh . If 8, 21 h i=1,2,...,k, then we say that g 1is F-larger

k i’

than h (in symbols, g > h), where F = ¥ o’FZ & ...0F.

v |

We conclude this section with an example of reflection ordering, the well-known
"transposition ordering’ of Hollander, Proschan, and Sethuraman (1977). Let the

group G be Pn‘ he group of all permutation matrices acting on Rn. A generating
*

system of G, AG, is the set {ri :1=1,2,...,n-1}, where

r] = (0,...,0,-1/¥2,1/¥2,0,...,0) with -1//Z and 1// being the £ 2ot (14 D™

coordinates respectively of r A root system of G, AG, is the set

.
{% rij 4 ® 152 o018 = 253 ... ,n}; where
tfy = 000 0,-1/Y2,0,...,0,1//2,0,...,0) with -1/¥Z and 1/YZ being the £ ona

jth coordinates respectively of r The G-orbit of a point x € R" 1is the set

1"
of points defined by the n! permutations of the coordinates of x.
Let the fundamental region F in R" be the set {x ¢ R" : X) € Xy < .. <X e

Since for 1 < j, the jth coordinate of any x € F 1s larger than the ith coordinate,

+
6Y 1s the set (4 r,, : 1= 1,2,...,3-1;: § = 2,3,...,n}. The set G for any
¥ 1j rij

rij € AG contains any permutation matrix g such that for x ¢ F, the 1th coordinate

of gx 1s less than the jth coordinate. This 1is obvious, since rijgx is the jth
coordinate of 2x less the ith coordinate. For x ¢ F, gx 1is rij-latger




= 0

than M_ gx means that the 1th coordinate of gx 1is smaller than the 1th coordinate.
1]

h

The point Mr gx 1s a permutation of the it and jth coordinates of gx. Conse-

1]

quently it is easy to see that reflection ordering for Pn with respect to the
fundamental region {x ¢ BT X € K€ e < xn} is actually the transposition

il 2

ordering of Hollander, Proschan, and Sethuraman (1977).

3. G-ordered Functions.

In this section we define functions, termed G-ordered functions, which are
isotonic with respect to reflection ord ring. Functions on the group G, functions
on V, and functions on V2 may have the G-ordered property. Although the G-srdered
property is essentially a property of functions on the group G, it is more convenient
for theoretical development and practical applications to formulate the G-ordered
property for functions on V and Vz.

G-ordered functions contain as a special case functions decreasing in trans-
position (DT). (See Hollander, Proschan, and Sethuraman (1977).) We establish some
basic preservation properties for G-ordered functions. For example, we show that
the G-ordered property is preserved under mixtures with respect to a positive measure
and under composition with respect to a G-invariant meastre. The product of a finite
number of nonnegative G-ordered functions is G-ordered. Preservation under compo-
sition is particularly useful in further developing the properties of G-ordered
functions.

Definition 3.1. Let G be a reflection group acting on V and let F be a

closed fundamental region in V for G. A function f from G into R1 is
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G-ordered with respect to F if 8 £ g, implies £(g,) 2 f(gz). for g,,8, € G.

Definition 3.2. A subset X of R" 1s said to be G-invariant if gX c X
for all g e G.

Throughout this section G will be a fixed reflection group acting on V, a
linear subspace of R", and F will be a closed fundamental region in V for G.

The sets A and X, with or without subscripts, will denote G-invariant subsets

of V.

Definition 3.3. A function £ from X into R1 is G-ordered with respect

to F if for every x € Fn X and for every pair 8118, € G such that gy g 8yr We

have f(glx) 2 f(gzx).

£ x..

Note that if f 1s G-ordered with respect to F on X, then whenever X

we have that f(xl) 2 f(xz).

1

Definition 3.4. A function K from A x X into R is G-ordered if the

following two conditions hold.
(1). K(gr,gx) = K(1,x) for all g e G.

(i1). For every closed fundamental region F, whenever A e Fn A, x € F n X, and

81 g 8ys then K(A,gl) 2 K(A,gzx).
Remark 3.5. Note that condition (1) above can be replaced by:
(i%). K(er,er) = K(A,x) for all r 1in a set of fundamental roots for G.

The following lemma demonstrates the connections among G-ordered functions on

the group G, on X, and on A x X,

Lemma 3.6. Let K(gi,gx) = K(A,x) for all g e G. Define

(a). E(x,k) = K(A,x) for X e A, x ¢ X.

-



- 12 =

(b). fx(x) = K(A,x) for X e A, x € X.
(c). hA x(g) = K(A,gx) for A\ € EF n A, for x € EF n X, for all g e G, and for

some E e G.

Then the following statements are equivalent:
(1). K 1is G-ordered on A x X,

(2). K is G-ordered on X x A.

(3). f, 1s G-ordered with respect to F on X for each A € F n A.

A
(4). hA < is G-ordered with respect to EF on G for each A € EF n A and each
b
X € EF n X.

The equivalence follows directly from the definitions of G-ordered functions
on G, on X, and on A x X.II

We now present some preservation properties for G-ordered functions. The proofs
of Propositions 3.7, 3.8, and 3.9 below parallel the proofs of corresponding results

in Hollander, Proschan, and Sethuraman (1977), so we omit them.

Proposition 3.7. Let K be G-ordered on A x X and let f and h be non-

negative G-invariant functions on A and X respectively. Then f(A) K(A,x) h(x)

is G-ordered on A x X.

Proposition 3.8. Let (2,F,v) be a positive measure space. Suppose that Km(A,x)

is G-ordered on A x X for each w € 9, and suppose that for all (A,x) € A x X,

Kw(A,x)e Ll(Q,F,v). Then IQ Kw(k,x)dv(w) is G-ordered on A x X,

A similar result for mixtures holds for functions G-ordered with respect to F
on G and on X.
k
Consider any function ¢(A,x) defined by ¢(A,x) = c(A)h(x) exp Z Ki(x,x) v
i=1

Using Proposition 3.7, Proposition 3.8 with the counting measure, and the fact that
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increasing functions of G-ordered functions are G-ordered, we may show that ¢ 1is
G-ordered if ¢ and h are G-invariant and Ki is G-ordered, 1 = 1,2,...,k. Note
that densities belonging to the multivariate exponential family are special cases
of this form.

Note that if K 1is G-ordered on A x X, then K 1is G-ordered on A% x X*
where A* and X* are any G-invariant subsets of A and X respectively. Thus
if K, a G-ordered function on A x X, is the density of a random vector X and u

is a G-invariant function on X, then the conditional density of X given u(X) = us

K , is G-ordered on A x X , where X = {xe X : u(x) = u }.
u o o o

Proposition 2.9. The product of nonnegative G-ordered functions is G-ordered.

Definition 2.10. A measure u on X is G-invariant if u(A n X) = u(gA n X)

for any g € G and any Borel set A 1in R".
We now present a composition theorem for G-ordered functions on A x X. We
establish first the composition result for G-ordered functions with respect to a

G-invariant measure u for G, a finite reflection group. Then we show the compo-

sition result for the orthogonal group on V. Recall that any reflection group is
isomorphic with a direct product of groups each of which is either an orthogonal
group or a finite reflection group. The composition result for arbitrary reflection

groups follows immediately.

Lemma 3.11. Let G be a finite reflection group and suppose that Kl is
G-ordered on Xl x X and K, is G-ordered on X x Xz. Let
K(x,z) = f Kl(x,y)Kz(y,z)du(y), where the integral is asswuwed to exist for each

X e X1 and each z ¢ X2 and p 1is a G-invariant measure on X. Then K is

G-ordered on Xl x XZ.
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Proof. (1). We show that K(gx,g8z) = K(x,z) for all g e G. Suppose g € G.

Then

K(gx,gz) = [ K, (2x,y) K,(v,g2) duly)
=/ K, (gx,8y) K,(gy,g2z) du(gy)
= [ K (x,9) Ry(y,2) du(y)

= K(x,z), as desired.

(41). Suppose x e Fn X,, z ¢ F n X, and g g g We need to show
1 2 1

2
that K(x,g.z) 2 K(x,gzz). Since G 1s finite, it suffices to show that

+
K(x,z) 2 K(x,Mrz) for every r € AF' Suppose r € A;. Then

K(x,z) - K(x,M _z) =£ Ky (x,) [Ky(y,2) - Ky(y,M _2)] du(y)

<[4 K6 [Ky(y,2) - Ky(y,M 2)] duly) (1)
HrnX
+ ﬁ- o 106 [Ky(7,2) = Ry(y,4,2)] duty) 2
rn
* h o 1Y) [Ky(7,2) - Ky(y,4,2)] du(y). 3)
H n

) =

Since Kz(y,z) - Kz(y,Mrz) =0 for all vy ¢ Hz n X, we drop (3). We use the trans-
formation y = Mtu and invoke the G-invariance property of u to conclude that (2)

is equal to:

f+ F Kl(x,Hru) [Kz(u,Mrz) - Kz(u,z)] du(u). (2%)
H n

We now combine (1) and (2*) and factor the integrand to obtain that

K(x,z) - K(x,Mrz) =

[. K (x,9) = K (x,M_y)] [K,(y,z) - K (y,M 2)] du(y).
H+nX 1 1 r 2 2 r
r




i

= 15 ~

Both factors of the integrand are nonnegative for vy ¢ H: n X, so that

K(x,z) - K(x,Mrz) 2 0, as desired.ll

Lemma 3.12. Let G be the orthogonal group acting on V and suppose that

K, 1is G-ordered on Xl x X and K

1 is G-ordered on X x X2. Define

2

K(x,z) = f Kl(x,y) Kz(y.z) du(y), where the integral is assumed to exist for each

X € Xl and each z € X2 and u 1s a G-invariant measure on X. Then K is

G-ordered on X1 x X2.

Proof. (i). The proof that K(gx,gz) = K(x,z) for all g € G 1is analogous
to the proof presented for Lemma 3.11,.
(i1). Suppose zz = 2’z and x"(z - ;) >0. Now z = gz for some

g € G; thus we wish to show that K(x,z) - K(x,;) = K(x,z) - K(x,g2z) 2 0. Let Mr
be the reflection matrix generated by r = (z - gz)/||z - gz|| and let H: be the
hyperplane perpendicular to r. Note that Mr € G and that Mtz = gz, Write

K(x,z) - K(x,gz) = £ K, (x,y) [K,(y,2) - Kz(y,gz)l du(y)
=/

o Kl(x.y) [Kz(y,z) - Kz(y.gz)] du(y)

HrnX

+ [ Ry [Ry(y,2) - R,(y,g2)] duly)
HrnX

+ [ K (xy) [K,(y,2) - K, (y,g2)] duly)
H:nx 1 2 2

= I+ (K, (x,) [K,(y,2) - K,(y,82)] +
ﬂrnX

K1(’""r7) [szry.z) - KZ(Mry.sz)l} du(y). (1)

S
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In the above we have used the transformation y = Mru, the G-invariance of u, and

the fact that

1Il°nx K, (%) [Ky(y,2) - K,(y,g2)] du(y) = 0.
E

Since K,(M y,gz) = Ky(M y,M z) = Kz(y.Z) and K, (y,g2) = Ky(y,M 2) = K,(M_y,2),

we write (1) as:
£+nx (K, (%) = Ky (6,M 9) ][R,y (y,2) = Ky(y,82)] du(y). (1%)
r
Now x“(y - Mry) = xrr'(y - Mry) = ||z - gzll_2 [x“(z - g2)] [(z ~gz)° (y - Mry)] 20

+
for y € Ht n X. Also we have that y“(z - gz) 20 for vy ¢ H: n X. Consequently

both factors of the integrand in (1*) are nonnegative, so that K(x,z) - K(x,gz) 2 0,

as desired.| |
Theorem 3.13. Let G be an arbitrary reflection group and suppose that K1 is

G-ordered on Xl x X and K, 1s G-ordered on X x Xz. Define

2

K(x,z) = f Kl(x,y) Kz(y,z) du(y), where the integral is assumed to exist for each

X € Xl and each z ¢ X2 and y 1is a G-invariant measure. Then K 1is G-ordered

on Xl x Xz.

Proof. (i). The proof that K(gx,gz) - R(x,z) for all g ¢ G 1s analogous
to the proof presented for Lemma 3.11.

(11). Suppose G 1is isomorphic with G1 x G2 R wan X Gk acting on

1) (2) (k) 1)
Vp®V,® ... 0V,. Then for j=1,2, X, =X, oxj ® ... 0 X, vith X,

a Gi—invariant subset of Vi. i=1,2,...,k. Let F be a closed fundamental region

in V for G. Suppose x ¢ F n Xl, zeFan Xz, and 81 g g Define

2

, )
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z, = glz and z2 = 8,Z. For j = 1,2, write zj = z;l) + z}z) W yipa z;k) with
CORPRVEY

zj € y i=1,2,...,k. Define the k intermediate points as follows:

;(1) = zgl) + 2{2) + ...+ z{k), ;(2) = zgl) + zéz) + 2{3) + ...+ z{k),

7 = zgl) + z§2) i,

R T + zgk)

. The closed fundamental region

F
o ek e i 1
F=F,0F,0..0F. Now zi)zizg),

1 2 i=1,2,...,k, so that

K(x.;(i)) b4 K(x,;(i+l)) for 1 =1,2,...,k=1 as a consequence of Lemma 3.11 if

Gi is a finite reflection group or as a consequence of Lemma 3.12 if G1 is the

) HONE

orthogonal group acting on V It follows that K(x,zl) > K(x,; 2 ... 2 K(x,2z

g
K(x,zz), as desired.| |

The following two corollaries represent preservation results for G-ordered

functions on the group G and on the set X. The proofs follow directly from

Lemma 3.6 and Theorem 3.13, so we omit them.

Corollary 3.14. Let G be a reflection group and let u be a uniform measure

on G, Let f1 and f2 be G-ordered with respect to F on G and define

f(g) = I fl(g-lgo) fz(go) du(go). Then f 1s G-ordered with respect to F on G.

Corollary 3.15. Let K be G-ordered on A x X and let f be G-ordered with

respect to F on X. Define h()) = f K(A,x) f(x) du(x), where u 1s a G-invariant

measure on X. Then h 1is G-ordered with respect to F on A.
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4. G-majorization and G-monotonicity.

G-majorization is a partial ordering on R" introduced by Eaton and Perlman
(1976) . G-monotone functicns are isotonic with respect to this ordering. In this
section we relate reflection ordering to the G-mﬁjorization ordering and show that
G-monotone functions are special cases of G-ordered functions. We use the properties
of G-ordered functions to establish a convolution theorem for G-monotone decreasing
functions and also to obtain the preservation of G-monotonicity under the integral
transform:

h(A) = [ R(\,x) £(x) du(x).
We supply a brief summary of relevant parts of the work of Eaton and Perlman (1976).

The well-known majorization ordering induces a partial ordering on R" and
Schur-convex functions are order preserving with respect to majorization. The
G-majorization ordering of Eaton and Perlman (1976) includes majorization as a

special case.

Definition 4.1. Let G be a closed subgroup of O(Rn). For x,y € Rn, the

point x is said to G-majorize y (in symbols, x ¢ y) if y 1s an element of the
convex hull of the G-orbit of x.

Definition 4.2. A function f from X, a subset of R“, inte Rl is

G-monotone increasing (decreasing) if x ¢ y implies f£f(x) 2 (<) f(y).

When G 1s Pn, the permutation group, G-majorization coincides with the

familiar majorization ordering. (See Eaton and Perlman (1976).) Consequently
the class of G-monotone functions coincides with the class of Schur functions when
G 1s the permutation group.

When G 1is a finite group, there exists a polygonal path from a point x to

any point in the convex hull of the G~orbit of x. This is a generalization of
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the famous path lemma for majorization of Hardy, Littlewood, and Pélya (1952, p. 47).

Stated formally: .

[§

Lemma 4.3. (Eaton and Perlman (19765); Let G Be a finité refiecfion group.
Suppose x g y, X # y. Then there exists a sequence of points zo,zl,...,zm such
that zo =y, zm = x, and

z2iy = NI+ Q-2

j ) Mr 12,153 5w,

] j ]
where rj € AG, 0 < Aj < 1, and In is the n x n identity matrix.

Note that zj g zj_1 for § =1,2,...,m.

Before we show the relationship between G-ordered functions and G-monotone
functions we establish some technical lemmas. We will use results for finite re-
flection groups and orthogonal groups to obtain results for arbitrary reflection

groups. Proofs are omitted where uninstructive.

Lemma 4.4. Let G be a reflection group and suppose that r ¢ AG. Let

“1’“2""’un be an orthonormal basis for Rn such that uy = r. Suppose X,y € Rn

-

and ui

X = uiy, i=2,3,...,n. Then x ¢ y if and only if |r’x| = |r’y|.

Lemma 4.5. Let G be a finite reflection group and let F be a closed funda-

mental region in R" for G. Then for r e A+ we have that g g Mrg if and only

F,

if r'gx 2 0 for all x ¢ F.

Lemma 4.6. Let G be a finite reflection group and let F be a closed

fundamental region in R" for G. Then for r e A;, the relation, g g Mrg, holds

if and only 1f ) + gx Ean Mrgx N\ - Mrgx E gx) for all A such that r“\ 2 0.
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Proof. Without loss of generality assume that g = In' We show that
A+ x E A+ er if and only if (r°A)(r°x) 2 0. Let Upslyseee,uy be an ortho-

normal basis for R™ such that v = r. Now

n
A+ x= ((r’2+r’x) r+ 122 (uix + uix)ui)

and

n
AtME={(rX-rx)r+ 122 (u1A + uix)ui).

Thus A + x g A+ er if and only if Ir‘A + r‘xl 2 | - r‘xl by Lemma 4.4.

But |r°A + r’x| 2 |r"A - r’x| 4f and only 1f (r“A)(r’x) 2 0.

As a consequence of Lemma 4.5, In g MrIn if and only 1f r“x 2 0. Under the
assumption that r“A 2 0, A + x g A+ er if and only if r“x 2 0. Thus we conclude
that g g Mrg if and only if A + gx g A+ Mrgx for all X such that r”“A 2 0.

The proof that g g Mrg if and only 1f A - Mrgx g A -gx 1is analogous.fl

Lemma 4.7. Let G be an orthogonal group and let F be a closed fundamental
region in R" for G. Then for 8118y € G, the relation, g, g 8ys holds if and
only 1f (A + glx) i+ gzx) 2 (A + gzx) ( + gzx) [(x - glx) - glx)

s (- szx)’(l -gzx)] for every A, x € F.

Lemma 4.8. Let G be a reflection group acting on V, let F be a closed
fundamental region in V for G, and suppose that r ¢ A;. Then g g Hrg if

and only 1f ) + gx g A+ Mrgx for all A,x e F.
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Lemma 4.9. Suppose r € Bn and z ¢ R". Then for any a, 0 < a < 1, there

n % -
exi.t points Aa’xa € R such that =z ka + L (r Aa)(r xa) 2 0, and

(uIn + (1 - u)Mt)(Aa + xa) = Aa + era'

Theorem 4.10. Let G be a reflection group acting on V. Let K(A,x) be

of the form f(A + x) (f(A - x)). Then K(A,x) 1is G-ordered on V2 if and only

if £(X + x) (f(A - x)) 1is G-monotone increasing (decreasing) on V.

Proof. We show that K(A,x) 1is G-ordered if and only if f(A + x) is

T

G-monotone increasing. The proof that K(A,x) is G-ordered if and only if f(A - x)

is G-monotone decreasing is analogous.
(1). For all g e G, K(gh,gx) = f(gr + gx) = £(g(A + x)). Thus

K(gA,gx) = K(A,x) 1if and only if f£(g(X + x)) = £(A + x) for all g ¢ G.

= +
(iia). Let f be G-monotone increasing. Suppose that A,x ¢ F and r € A_.

Then In g MrIn’ which implies that A + x g A+ er by Lemma 4.8. Thus
K(A,x) - K(A,er) = f(A+x) - f(A + Mtx) >N,

(1ib). Let K be G-ordered and suppose that z, g z,.

morphic with G1 x 62 X ... X G, acting on V1 eV, ® ... 6V . Write

k 2 k

and z

e 2

= z{l) + z{z) + ... ¢+ zik) L zgl) + 252) + (k)

1 cer 2, 7, 80 that

G
z{i) >1 z;i)

F

Suppose G 1s 1iso-

,1=1,2,...,k. Let J be a subset of {1,2,...,k} such that for all

1 e€J, G, 1is a finite reflection group. Denote the subset of {1,2,...,k} for

i

which G1 is an orthogonal group by J®. For each {1 € J assume

zgi) = (u(i)I + (1 - a(i))Mr ) zii), where 0 < a(i) < 1. By Lemma 4.9, there
i
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(1) =2 + x (1) = A
1

such that =z a(i), 22

+
Mt X

ia

exist Aa(i) and x ( (1)

ey e ey

and (rixa(i))(rix&(i)) 7 0. For each 1« 3¢, write zii) = i(f) + i{i)‘ and

CORANNCY A5y )
zgi) = A(i) + xgi), where A(i) =-—l———5-—3——, x{i) = —!;——?r-il-', and xéi) =
zgi) " zii)
T Ee 1 e How

£(z) - £(z) = £V 42D 4 4.0
- £ 42D 2l
= £(GD 4 ;{1)) +6@ 4 ;iz)) ol ALY x{k)))
- £GP 3Dy + @D 3Dy 4 e @0 4 5By
= kG 4+ 5@ 4 430 ;il) + ;{2) $ ..o xik))

kG +3@ 4 4 i(k), ;gl) + §§2) o i xgk))

>0,
& A (1) 1eJ B X (1) 1eJ Mr X (1) 1 eJ
where A(i) ={° 3 x(i) {0 , and ;(i) = hs .
s P x{i) $ e d° - xgi) T
~(1)

The inequality holds since (rii(i))(rixl ) 20 for each 1 ¢ J and

x(i) ;{1) 2 A(i) ;gi) for each 1 ¢ Jc.ll

Definition 4.11. A measure u on V 1s said to be translation invariant

1f u(AnV) =u((A+ x) nV) for all Borel sets A 1in R" and all x € V.
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Corollary 4.i2. The convolution of G-monotone decreasing functions on Rn

with respect to a translation invariant measure is G-monotone decreasing for G

any reflection group acting on gt
Proof. Let fl and f2 be G-monotone decreasing on R" and define
h(x) = [ £,(x - y) £,(y) du(y). Then

h(x - 2z) = f fl(x -z-y) fz(Y) du(y)

= f fl(x u) fz(u - z) du(u).

By Theorem 4.11, fl(x - u) and fz(u - z) are G-ordered on Rzn. By Theorem 3.13,

h(x - z) 1is G-ordered on Rzn. Thus we apply Theorem 4.11 again to conclude that

h 1s G-monotone decreasing on Rn.ll

Remark 4.13. For Corollary 4.12 it is not necessary that the functions be

G-monotone decreasing on R". Suppose X is a subset of R" such that the set

u dgf n

{fueR :u=x+y; x,y ¢ X} 1is G-invariant, then the convolution of G-
monotone decreasing functions on X 1is G-monotone decreasing. This condition is

satisfied if X forms a semigroup under addition, for then U = X.

Definition 4.14. Suppose A and X form semigroups under addition. A function

K on A x X is said to have the G-ordered generalized semigroup property with

respect to a translation invariant measure u, if for Al,xz e A and x € X, there

exist G-ordered functions Kl and K2 on A x X such that

KOG + A %) = [ K Oux - y) KyQhy, y) duly).

We now state and prove the main preservation theorem for G-monotone functions

under an integral transform.
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Theorem 4.15. Let A,X be as in Definition 4.14 and let a function K on
A x X have the G-ordered generalized semigroup property with respect to a G-invariant
and translation invariant measure u. Then h(i) = f K(A,x) f(x) du(x) 1is C-monotone

increasing (decreasing) on A if f {s G-monotone increasing (decteasing) on X.

Proof. We show that f is G-monotone increasing implies that h 1s G-monotone
increasing. We show that h()A + A*) 1is G-ordered on A2 and conclude that h is
G-monotone increasing on A using Theorem 4.10. Write

h(d + A%) = [ R(A + A*,x) £(x) du(x)
X

= £ { Ky Oux - ) K,(O%,y) du(y) £(x) du(x)

. £ K, (A*,y) { Ky (Lx = y) £(x) du(x) duly)

{ K,O%,y) [ RIOLx) £(y + 2) du(z) du(y),
X
Vi

where Xy ={uerR?:u=x- y; x,y € X}. Since X forms a semigroup under addition,

Xy 2 X for all y e X. On the set Xy - X, Kl(A,-) is zero: hence we replace Xy
by X for the region of integration of the inside integral. Thus

h(L+ 2% = [ K, (%,y) [ R (h2) £(y + 2) dul2) du(y).
X

X

We apply Theorem 3.13 to conclude that f Kl(l,z) f(y + z) du(z) 1s G-ordered on
X

A x X, We apply Theorem 3.13 again to conclude that h(\ + A*) 4is G-ordered on AZ.
Thus h 1s G-monotone increasing on A.
To show f G-monotone decreasing implies h G-monotone decreasing, we need

only consider ~f which is G-monotone increasing and deduce that -h 1is G-monotone

1ncreasing.||
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Theorem 4.15 is an extension and generalization of a similar preservation.
theorem under an integral transform (Theorem 3.7) of Hollander, Proschan, and
Sethuraman (1977). It yields their theorem as a special case when G is the per-
mutation, group, Kl = K2 = K, and the coordinates of points in A and X are

o

pdsitive real numbers or positive 1ntegérs."

Definition 4.16. Let A,X be as in Definition 4.14. A function K on A x X

is said to have the G-ordered conditional generalized semigroup property with respect

to a translation invariant measure u, if there exists a o-finite measure space

Q,F,v) and functions Km(l,x), w e 9, such that:

). K(,x) = [ K (A,x) dv(w),
Q w

(11). For each w € 9, K, has the G-ordered generalized semigroup property with
respect to u.

Corollary 4.17. The conclusion Theorem 4.15 holds if K(A,x) now has the G-

ordered conditional generalized semigroup property with respect to u.

dgf

Proof. Let h (A) / K (,x) £(x) du(x). Then by Theorem 4.15, h () 1s
X

G-monotone increasing (decreasing) on A for each w € Q. Now

h(d) = [ K(A,x) £(x) du(x)
X

w

]
X

[ R (A,x) dv(w) £(x) du(x)
Q

- [/ K, (%) £(x) du(x) dv(w)
o X

£ h, (V) dv(w).

We apply the mixture result, Proposition 3.8, and Theorem 4.10 to conclude that

h()\) 1is G-monotone increasing (decreasing).||
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We present further extensions of Theorem 4.15 in Corollaries 4.18, 4.19, 4.20,

and 4.21. The proofs are fairly routine, so we omit them.

Corollary 4.18. Let ¢(A,x) have the G-ordered generalized semigroup property

on A x X with respect to a G-invariant and translation invariant measure u. Let

Ll and Lz be linear, G-invariant functions on A and X respectively. Define
h(\) = f ¢ (A, x) K(ll(k),lz(x)) f(x) du(x), where K 1s a function on A x X only
through Ll and £2. Then f G-monotone increasing (decreasing) on X implies
h G-monotone increasing (decreasing) on A.

Corollary 4.19. Let ¢ and K be as in Corollary 4.18. Let T be a linear

transformation from V into V such that A § X 1f and only 1f TA g TA. Define

K(TA,Tx) = 0(3,%) K(£;(\),£,(x)) and h(TA) = [ R(TA,x) £(x) du(x). Then f G-

monotone increasing (decreasing) implies h G-monotone increasing (decreasing) on

TA.

Corollary 4.20. Let ¢ and y have the G-ordered generalized semigroup

property on X1 x X2. Define K(x,z) = f ¢ (x,y) v(z,y) duz(y) and h(x) =

f K(x,z) f(2) dul(z) where Hy and u, are G-invariant measures on Xl and Xz
respectively. Then f G-monotone increasing (decreasing) on X1 implies h G-
monotone increasing (decreasing) on Xl.

Note that the conclusion of Corollary 4.20 holds as long as the preservation of
G-monotonicity under an integral transform holds with ¢ and ¢ as kernels of the

transform.

Corollary 4.21. Let the random vector X have density K(A,x) possessing

the G-ordered generalized semigroup property on A x X. Suppose Y = f(X)X, where




rvwmﬂ.w.km R
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f, a function from X into Rl, is such that f(x) = £(y) for all y 1in the
convex hull of the G-orbit of x, and let ¢(A,y) be the density of Y. Define
h(}) = f ¢(A,y) £(y) du(y), where u 1is a G-invariant and translation invariant
measure on X. Then £ G-monotone increasing (decreasing) on X dimplies h G-
monotone increasing (decreasing) on A.

Again we should remark that the conclusion of Corollary 4.21 holds as long as
the preservation of G-monotonicity under an integral transform holds with K as

the kernel of the transform.
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