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PREFACE

The work described in this report was done under the Project AIR
FORCE (formerly Project RAND) study effort entitled "Target Acquisi-

tion." The specific subject is "map matching,"

or image correlation,
to achieve autonomous target acquisition and terminal guidance for vari-
ous missiles. The report updates and supplements two recent Rand pub-

*>
lications on the same subject, and some familiarity on the part of the

reader with those publications is presumed. This research should be
useful to Alr Force and other Department of Defense agencies and their

contractors who are concerned with technical aspects of air-to-ground
|

attack, as well as others working in the basic field of image correla-

tion.

H. H. Bailey, F. W. Blackwell, C. L. Lowery, and

4 1 vy /1 y v o »

J. A. Ratkovic,

: 2057/1-PR, No-

vember 1976; and H. W. Wessely, Image Correlation, Fart II: heoretica
R-2057/2-PR, November 1976.
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SUMMARY

'his report makes the following contributions to image correlation:

) Analysis of block-substitution effects (snow, shadows, clouds,
and the like) on the probability of correlation, !“..

2. Development ot a closed-form approximation for computing i'(‘.

. HNew techniques for calculating the inherent scene character-
istics (number of independent elements in the scene and the
scene correlation length).

ve A completely new procedure for estimating the value of I‘(‘
from the correlation data themselves.

> A new technique for selecting and locating the significant

features in a scene,

Block=substitution errors result when portions of the scene to be
imaged suffer uniform amplitude errors such as might be produced by
shadows in the scene or snow on the ground. This report analvzes the
effect of this class of errors and determines the degradation in !‘(‘ as
a function of the magnitude of the amplitude error and the sizes of the
sensor and reference maps involved.

The computation of I’(_ heretofore has involved numerical integration
techniques. The immediate consequence of the approximation technique
developed in this report is to simplify the computational work. Addi-
tionally, (1) some insight has been obtained into the variables that
contribute most significantly to improving l'(‘; (2) it has become easier
to implement the estimation procedure for determining )‘C directly from
the correlation data; and (3) using this algorithm may enable one to
identify a priori the distinguishing features in a scene.

The terminology used most often in describing the statistical
characteristics of a scene include one of several definitions for the
scene correlation length and the number of independent elements in the
scene, The usual one=dimensional calculation is a primary limitation

when computing the correlation length for area applications. The new
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technique developed in this report works backward from the correlation
data to calculate the number of independent elements in the scene-~—fror
which an effective correlation length can easily be calculated. I'he
technique was verified using a randomly generated scene. The assump-
tion of Gaussian statistics in these calculations also proved reasonably
representative of the statistics of the real terrain imageryv tested.

The heart of the report describes a new procedure for estimating
the )x_ value directly from the data. The technique again works back-
ward from the correlation data to estimate the scene characteristics—-
i.e.. the number of independent elements in the scene, the variance in
scene intensity, and the signal-to-noise (S/N) ratio. From these esti-
mates of the scene characteristics, one can calculate the number of in-
dependent displacement positions at which the two maps are compared and
the variance of the in~-register correlation function. With these esti-
mates and the l‘r closed-form approximation, one can compute P directly.

This technique was tested using Monte Carlo simulations with real
imagery. In these simulations, the correct match point was identified
in all cases (Pv SIMULATED = 1). Values determined using the estimation
technique for each individual correlation experiment varied between
0.83 and 0.99, Perhaps even more importantly, a separate experiment
was set up wherein two different maps were correlated. Obviously, for
this situation, PC SIMULATED = 0. The estimation technique in this
case produced values no greater than 0.24., Thus, the estimation tech-
nique appears to be capable of distinguishing between cases where the
sensor map is or is not contained in the reference map.

Finally, a new technique for selecting and locating the signifi-
rant features in a scene has been developed. The technique is based
on estimating the value of PC for a large number of submaps and selec-
ting those submaps (sets of points constituting the "significant"
features) that have the greatest effect on the value of P . An ex-

€

ploratory computational experiment showed sufficiently encouraging re-

sults to warrant further research on this technique.
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. REVIEW OF PREVIOUS WORK

This report updates previous Rand publications on image correla-
[lwn(,‘)) and describes some interesting new work., To provide. continu-
ity, results of the earlier studies are reviewed in this section.

'hne tirst major conclusion was that an approximate lower bound on
the probability of correct target acquisition, Pr, can be calculated,
s0 that we can, at least in principle, design systems to meet an acqui-

ition specification,

Ouantitative relationships in Refs. 1 and 2 showed the dependence
of P on N (the sensor map size), M (the search area or reference map
size), S/N (nominally the signal-to-noise ratio but, more importantly,

measure of the fidelity of the reference map vis a vis the real-time
sensor map), and various parameters describing systematic intensityv and
reometric errors. [hus, one has the tools for carrying out design trade-
offs on sensor resolution and field of view (to increase N), on mid-
ourse navigation (to decrease M), on attitude reference and guidance
(to reduce geometrical distortions), on data processing capabilities
(to reduce both synchronization and quantization effects), on more re-
C /\:

ent and more accurate reference data (to increase the ratio), and

50 on, including finally a tradeoff of the cost of increasing the P

(
requirement itself with the loss of those few weapons that would be
wasted if they achieved a false lock-on.

Most of these relationships for PP were derived from a simple
Gaussian theory that is known to be unrealistic. Fortunately, however,
this theory appears to err on the conservative side--most scenes are
more distinctive than assumed and results are better (i.e., vield fewer
pross errors) than predicted. On the other hand, real systems have ad-
ditional error sources that were not analyzed or simulated. Neverthe-
less, the important point is that, with a "floor" established for Pv'
there should be no major surprises in future flight tests of image-
correlation hardware. Improvements in the theory, and additional data
from simulation experiments using specific scenes of interest, are ex-

pected to improve the predictions and relax some of the design




constraints, One 1 design to l'(. requirements, though at the moment
not as effectively as is desired.

The second major conclusion was the following: First, since a
review of he theorv showed that none of the commonly used algorithms
is necessarily optimum (all are approximations to a definable but un-
attainable ideal), we are free to look for other algorithms and new ap-
proaches; and second, since the best way to avoid false locks is to
provide a high S/N ratio, and since one way of achieving a high S/N
ratio would be to enhance the characteristic features in a scene and
throw awav the rest of the data (which contributes mostly noise), a
deliberate effort to search out the unique or distinctive features in
any scene might be highly desirable.

We do not know at this time how to extract the 'characteristic
features'" or invariant properties of a scene--those least likely to
change with time or environmental conditions and therefore most likely
(in this context) to lead to high values of the signal-to-noise ratio.
However, the discussion of error sources in Sec. IIl of Ref. 1 made it
clear that the useful information resides more in the geometric rela-
tionships than in the intensity or signal amplitude dimension of an
image. Absolute intensity levels are the least dependable quantities,
and intensity ratios and even the algebraic sign of differences (con-
trast) or gradients are unreliable. But the locations of most intensity
boundaries are fixed, subject only to certain geometrical distortions
that are (a) limited in magnitude (largely controlled by the system
design) and (b) constant or slowly varying over a given image.

In particular, it was suggested that techniques currently being
developed in the field of pattern recognition should be explored and
exploited for this purpose. These might even include some of the com-
plex, heuristic, upward and downward directed, hypothesis-testing tech-
niques used in so-called artificial intelligence programs. But also,
at least for the present, one should not rule out completely the use of
people to examine the reconnaissance imagery and pick what "look like"
good features, followed by the selection on a specific ad hoc basis of

"filters" or special image-processing algorithms appropriate to each




cene., In any case, the on-board processing would then consist of ap-

plving only the selected filters, looking solely for those features

known to be significant in that weapon's assigned target area, followed

presumably) by a simple correlation or pseudo-correlation algoriths
for locating the match point, [t is anticipated that in this way al-
gorithms more efficient than those in practice to date will evolve, and
that at the same time higher values of P ill result. I t ip, the
(

suggest ion 15 ide (independently of milar prion uggest ior !

't hie ) that emphasi 1ight well be shifted away fr scheme that ym—
AT ¢ {fcture lement (pixel) in the reference and sensor image:
t ‘ hy for ive extr t the invariant and "dist " featurs
i £ cene.

I t t p yoint 1 Aiat i nite thi 1o the for g
iggest 1 I ange ir firection, 1t t emor
trated t " 4 ¢ f e ' -~ tract YO ¢ + ) " to - I Y
e T eSO I uture t will ¢ pensive, a ) c soluti 1y

have to be yun for 11 st eve cene; I ! } i C 3
in mditio W one oOr re of 1 nt I it 1

t il For the ime bei - i bot 1]
e pursued 1t we that, 1 yrder t [ ] ¢ ]
capabilit 5  Elu 1 lies in feature extr 10N. [t i € even
further in the direction of pattern recog n per se, as differenti-
ited from conventional! correlation with images reduced through feature
extraction; but clearly that choice cannot be ile at this time.




= P
LT ANAI IS OF BLOCK=SUBSTITUTION ERROR!
e reliminary "block substitution'" simulation experiments wers
rihe erv hriefl in Sec, IIT (p. 42) of ef . L. bie upport i
1 ¢ ere carrie nit too, late to be included in that re t but
- resented here.
‘henever contiguous areas suffer uniform amplitude errors, t
1 ! re referred to as block substitutions, had oy lue t ttere
low I on r change in sun angle can cause darl locks, a interven-
imli 1 i i ert n ki 1 of i a S - srodu bright 1 | .
11 1ly one type of error is treated at a time, such blocks in b
ch icterized by ust two parameters-—- ’ the averasge (constant) mpli-
tude of the ignal i the blocl - and v fraction of the total irea
that 1¢ ;0 affected.

n genceral, these errors have two effects on the image correlation

First, only that portion of fie sensor map which is not changed con-

tributes to the correlation Pt'(’lk. H(‘H('l', the absolute value of the dif-

ference between the in-register and out-of-register values of the cor-

relation function should be reduced bv the factor 1 - [, Second, the
ixels that are changed effectively add a significant amount of "noise"
into the correlation, These effects can be analvzed quantitatively,

following the general procedures described in Ref. 1, bv calculating

the expected value and the variance for the in- and out-of-register cor-

relation function as functions of and B, and then compnting P hv

integrating the following expression [identical to Eq. (4) of Ref. 1]

where w is 4 = ¢ , erf is the error function (see footnote on p. 14),
(8} (8}

() is the number of possible out-of=-register positions of the sensor map,
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and the statistical quantities () , Pype T ind ) can be shown to have
the values given in Tables 1 and 2 for the Product and MAD (mean abso-
lute difference) algorithms, respectivelyv.

A rather large number of numerical cases have been evaluated. Two
values of were used: zero (with no noise added, possibly simulating
a shadow) and 30_ (roughly the maximum signal level, with various
amounts of noise added, to represent the second category). everal
values of have been used, typically 0,1, 0.3, 0.5, and up to 0.7.

)

Typical results are summarized in Figs. 1 through 4. Figures 1 and

show the &h'}‘t*ﬂ(l(‘lh'n‘ of ?'(_ on both « and 5 and Figs. 3 and 4 show more
clearlv the [F-dependence. As would he expected, increasing decreases
P , and the effects are always worse when «t deviates from zero (the
L
mean value of the signal),

Several specific cases have been extracted and listed in Tables 3

AT

through 6 to illustrate the following points., With the MAD algorithm,
the P achieved when block substitutions are present is alwavs less than
if the unchanged sensor elements, N(1 - £) in number, were the only
elements affecting the correlation process; that is to say, the addi-
tional noise introduced still further degrades }"_. For the Product
algorithm, the changed blocks do not contribute anything additional to
the noise when the intensity level is equal to the mean (au = 0); in
that case the reduction in the number of operative pixels is the only
effect. However, as « deviates from the mean, the additional noise ef-
fects are again evident in the last column of Table 6. Finally, for
low S/N ratios (i.e., high noise levels), this additive noise effect is
not very significant; but as S/N increases, especially when S/N >> 1,
the added noise decreases l’(‘ markedly, as seen particularly from the
last entries in Tables 3 and 4.

For completeness, the simulation results from Ref. 1 are repeated
here in Table 7. As expected and as predicted by the analysis, degrada-
tion increases with increasing size of the substituted blocks and with
deviation of the substituted value from the signal mean. Tt also de-
pends somewhat on scene type. Fimally, the Normalized Product algorithm
(NProd) is much more resistant to large-=block suhstitution errors than
i{s the MAD algorithm, particularly in the case of shadows; but both are

serfously degraded in the presence of large amounts of jamming.
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Fig. 3—The effects on P. of a variation in f3:

MAD algorithm
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Fig. 4—The effects on P. of a variation in 3

Product algorithm




Table 3

EFFECTS OF BLOCK SUBSTITUTIONS ON P
MAD ALGORITHM, « = 0 ‘

_ . : e
S/N N 0 P, AP,
{
0.1 2000 G. 5 10 0.62 |
0.05
%
0.1 1000 0 10 0.67
] 200 | 0.5 {0 e o
’ .19
] 100 0 10° (.98
L ) .
3 50 | 0.3 16° | 1067 v o8
0.2
i3 Lo BB, 10° | 0.90 |
4
30 o 0] (O G A 7l ) o 5 s
3 .0
30 1510 107 ] 0.75
Table 4

EFFECTS OF BLOCK SUBSTITUTIONS ON P :
c

MAD ALGORITHM, a = 30

S/N ~ ] 1: | B 0 : ”i", oy ié'vyi,—
0.1 3000 0.5 )()’ 0.79 0.11
, .
B tiseolo 110” to9od
S
000 10 .90
] 100( / : 0.9¢( 0.10
kel B3O8 O 130 1 2.0
9
30 30 s 10 D
: : " 0.75 | 9.7
30 ) 15 0 10 0.04 J
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4 A A CLOSED-FORM APPROXIMATION FOR P

The most important new development in the Rand study following pub-

lication of Refs. 1 and 2 has been the generation of an approximate ex-

pression for computing P in closed form. The immediate consequence of
&

this approximation is to simplifv the computational effort in obtaining

. Additionally, there have been three other consequences. First,
we have gained some insight into the variables that contribute most
ignificantly to improving P., as described below. Second, with this
implified closed-form expression, it becomes a much easier task to
estimate the value of P , in real time, directly from the correlation
data. This latter point is discussed in the next section. Third, the
use of P may lead to a method for identifying a priori the most dis-
tinguishing features in a scene. This is discussed in Sec. V of this
reporte.
It has been shown (1) that the integral that must be evaluated (by
numerical techniques) in determining I’C for correlation algorithms is

of the general form:

2 Q) %
P l... CXy (_'/; ) [I/A’ b erf (AZ + (ﬂ)] dz (" .;);:urilhr')
¥ min

*Fnr a maximizing algorithm (e.g., Product) the positive sign in
front of the erf is used and for a minimizing algorithm (e.g., MAD) the
negative sign is nesed, Note also that throughout this section the error
function is defined as:

whereas in Ref. 1 and in Sec. I1 of this report, it is defined as




.
where A (0)
.1
(0)r - (.1
R > —- bt
1. .12
= total number of displacement positions (excluding t}
vosition) at which the sensor and reference map are
( , 5 3 s GG ensemb 1 e tatistic (dependent
algorithm choice and the S/N r:
ipproximat ic technique, taken ft f. 3, has be ¢
by H. W. Wessely of ind. The essence t technique is t«
mate the quantity
r }
contained in Eq. ’) by a step function. Thus, this function
maximizing algorithm) will be replaced by
1 i
‘. "
F(Z)
l ) tor
The rationale for this approximation {c¢ that for large va
) and A (which are normal in the cases of greatest interest),
transitions between its extreme values of zero and one fairly

in a continuous, nondecreasing manner. The transition point,
be found by setting r(zo) equal to a halt and solving for Z .
(8}

Thus,

: (*) erf "7[(_1 [2) IA/” U/”ZJ, B
A

max
min

4lnurilhm)

Defining

| 1 /0 .
I ert [(l"'] 1|")]

atio} .

(for

lues of

F(Z)
rapidly

>

Z can
o’

(4)




=1 6=

and substituting into Eq. (4) vields

!
)} 4 mal
= ( ) 1l o th (6)

[he quite intractable integral in Eq. (2) is thus reduced to

which is readily evaluated to yield

(
() ‘|‘[

lable 8 compares the approximate values obtained for 1

Rl

(29 atgorin (%)

“. using
Eq. (8)] with the exact values [using Eq. (2)] for the MAD and Product
algorithms. The approximation looks good for values of ) as low as 100,
which is typically the minimum number that would be used in any correla-
tion process. Table 9 lists the values of A and B' (B' = B/VN) obtained
for these algorithms as a function of the S/N ratio. As can be seen

)
from Eq. (3) and plots thereof, the larger the value of A (where A™ is
the ratio of the in- and out-of-register variances), the better is the
step function approximation for F(Z). The greatest deviations between
exact and approximate values of l‘v do not appear to result from using
small values of () so much as from small values of A,

Larger deviations between exact and approximate values for 1‘(‘ can
be seen in Table 8 for the MAD algorithm with S/N ratios for which A is
less than 0.5 (S/N = 10 and S/N = 30). However, even for values of A
as low as computed in Table 9 (A = 0.13), the approximation is still
not too bad. Since A is computed in the process of approximating P

(
by Eq. (8), it can also serve as an indicator of how well the

)

” " '
Limits ~» to '/y for a min algorithm,
(
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Table 8

EXACT AND APPROXIMATE VALUES FOR P

'roduct P for MAD

P. for
( ( LS.
Approximate [ Exact | Approx 1t \T Exact
0.22 1 0.02 | ) d
0.0 ).07 ). 00 t 0.0
.03 0.073 ; 0.00 0.00
4 4 + oL
0. 70 0.68 | 1. 08 ). 09
0.44 0 ." 0.01 01
0.26 0 3 0.00 .00
4 4 s
1.0 0.99 0.31 0. 30
(.98 0.96 | (i 0 180 ¢ 0.10
0.93 0.90 | 0.03 0.03
{ | { I
1.00 1.00 0.90 0.87
1.00 L+00 0.70 0.6/
1.00 1.00 0.49 0.44
0.43 0.42 k2 0.15
0.22 0.22 0.01 0.01
0.12 [ % 0 0.00 0.00
4 ! PSSt
(.88 .86 | 0.85 0.79
0.71 0.69 | 0.42 0.41
0.56 052 .14 Owl3
1.00 1.00 | 1.00 1.00
0.99 0.99 1.00 1.00
0.98 .98 0.99 0.97
0.66 0.64 1.00 | 0.94
0.45 0.44 0,66 0.58
0.32 | 0.30 0.03 | .05
+ +
0.98 | 0.97 1.00 | 1.00
0.93 | 0.93 1.00 | 1.00
0.87 0.84 1.00 1.00
y et
0.68 0.66 1.00 0.99
0.48 0.47 1.00 0.88
0.34 0.32 0,41 0.33
7
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approximation will match the exact value. As a rule of thumb, the data
indicate that values of A probably as low as 0.10 would yield reason-
able approximations to the exact value of P .

c

Table 9

VALUES OF A AND B' FOR THE MAD
AND PRODUCT ALCORITHMS

——
Product MAD
BN
SIN| A | B'" | A B'
|
€51 1.04 | 0.30 ‘ 0.90 -0.115
| ‘
1.0 o, | n.71 0,58 -0.56
| |
10,0 a3 [ ), a5 1 Nn,22 i -1.04
300, 0 [ 1.40 i 0,08 1 0.13 1 = 515
NOTE: B' = B/VN and N = number

of sensor map elements.

In Eq. (8), the ratio A is a function of the S/N ratio only,
whereas the variable B is a function of both the S/N ratio and the num-
ber of sensor map elements. By defining a new variable B' = B//§, as
was done above, Eq. (8) can be rewritten in terms of variables that are
either a function of only the S/N ratio (A and B') or the numbher of

sensor map elements (N). The result is

) () K - /N B’ ax
P 1/2 (3) erf [ e S ] (m}x Jlunri(hm) (9)
( A min

With P expressed in this form, we can estimate the number of
¢
sensor elements required to achieve a given P level. Solving for N
c

in terms of Pv and the other variables in the above equation yields

(*) K = A erf”! Iy B = B/2)] o
e - S = ( = dlﬂUTith) {10}

1 min




o i

ne must recognize that this approximation solves for the number of
sensor elements in the scene, and that the number of pixels

required mav be several times the nunher of elements given by this

equation to achieve a given }‘(‘ level if there is any spatial correla-

tion in the scene.

rable 10 shows the value of N required to achieve a P close to

=
unity (I .99) using this expresslon, for both the MAD and Product
1lgorithms. Also shown in this table is the value of N (taken from
Ref. 1) for which the same 5“_ level is achieved. The approximation
looks reasonably good except for the MAD algorithm cases with S/N ratio
equal t J0. It should be remembered that this was the case for which

the approximation for P also started to break down due to low values
'hus the approximation technique can greatly simplify the P com-
&
wutation and provide, as well, a means for estimating a priori the
number of sensor map elements required in the correlation process to

achieve a given P level.

Table 10

APPROXIMATE NUMBER OF SENSOR MAP ELEMENTS REQUIRED
'0 ACHTEVE P, = 0.99

(Q = ln))

Algorithi S/t N " N (1)
Approximate Simulated

—— - - T - - . B - T ___________ - —————e e
Product i 0.1 414 1 520
Product 1 4 i 100
Product 50 50 70

= Srovmn) (S 3 e e S VAN £y e
MAD ] 2523 , 3100
MAD | | 81 90
MAD 30 §2 30)

- S W— e — - S— — —

-
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Returning to Eq. (9) with this approximation in hand, it is now
possible to obtain a deeper insight into the importance of certai:
variables and their interaction in the correlation process. Since

'——the difference between the in- and out-of-register expected value
f the correlatic function rmal 1 N ¢ 1 ign
as K, Eq. (9) in be wit & i more general I (independent
whether the goritt 1 imiz1 X ] i

Vi i greater

in fact that ‘ imized by minimizing the expression

{ H 4 ') (139

lable 11 shows some computed values of Yy and }“. for three different
algorithms., As seen in this table, minimum values of Y do correspond
to maximum ."(_ values for a given S/N ratio. Several additional con-
clusions can also be tentatively drawn from these data and Fq. (13),

as follows:

1. As the number of sensor map elements, N, increases, the value
of decreases. This results in an increased value of P .
&
2. As the number of out-of-register positions, Q, increases, 7
increases, l'his results in a decreased value of P(.'

A I

J. Since A and B' are both dependent on the S/N ratio and the
scene characteristics, no universal relationship between Yy
and these two variables is to be expected,

4, From the data given in Table 11 it appears, over the S/N ratio
region examined, that the algorithm with the highest absolute

value of B' also achieves the minimum value of y, and hence
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P . Thus, the value of |B'| can serve
o

" "
poodness

the maximum value of
of an algorithm, where, to

as a measure of the

repeat

appear from the data in Table 11 that further sub-
by either

does not

c i
can be found

Do 1t
optimal expressions for maximizing P
o

numerator or minimizing the denominator of

maximizing the

2 ¢
also be noted from the data that, over the S/N ratio

minimizing the variable alone does not

6. It should
region investigated, Y

maximize P .
e

Reflection on the physical meaning of B | , as described at the
top of page 20, makes it quite clear why its maximization is a good
criterion, why suboptimization of its parts is not useful, and why it

Ve

is far more efficient as an estimator than the ratio




IV, ESTIMATION TECHNIQUES USTING CORRELATION DATA

One concept frequently neglected in the correlation field is the
possibility of using the correlation data themselves to estimate some
of the important parameters of the process, such as the number of in-

dependent elements in the scene, N the correlation length of the

I ,
scene, (0, the signal-to-noise ratio, S/N, and the probability of cor-
rect lock-on, E‘v.

'here are two methods by which one could obtain these estimates.
First, one might develop an expression for the statistical properties
of the correlation process, allowing the scene to be spatially cor-
related with any appropriate distribution. The problem here is that it
is extremely difficult to develop these statistical relationships. How-
ever, if a general solution could be obtained, accurate estimates could
be made directly. The other method would be to assume the scene to be
uncorrelated and Gaussian distributed. The statistical expressions
that result for any algorithm are generally quite simple; however, there
is now an additional unknown quantity that needs to he estimated--the
number of independent elements in the scene. Any spatial correlation
in the scene will result in a lower number of independent elements than
the number of pixels contained in the sensor map. This latter method
is used to estimate the important parameters of the process, as de-

scribed below.

ESTIMATING SCENE PARAMETERS FROM THE CORRELATION DATA

To i1llustrate the estimation process, let us first assume that in-
and out-of-register values of the correlation function have been gen-
erated. The following quantities can be extracted from such data, where

the subscript M indicates quantities derived from measured data:

mq(ﬂ) = minimum achieved value of the correlation function in-

register
&M(J) = average measured value of the correlation function out-
' of-register
)
KIM(AI) = measured variance of the correlation function out=-of=-
: reglster
'l rw— o - R "w/




L=

lhese quantities can then be used as estimates for the ensemble sta-

) }
tistics E1d(0)}!, Eid(JI)}, and 0" (J), respectively. The quantity '_"(H)
cannot be estimated from these data since, in general, there is only
one observed extremum value., Quantities derived using these assump-

tions will carrv a caret () over the symbol.
For the (lgoprd tien (assuming an uncorrelated, Gaussian-dis-

tributed, zero-mean scene), the estimates of the statistical measures

) )
are related to the scene characteristics, 0, 0, and \'!, by the follow-
X n I
. ) 1)
Ing equations:
. (0) 2/ (14)
1/92
( v 2 ( 4 ) ) (15)
M - n
(‘ : ' )
15(1) = (1 = 2/7) % ‘ (16)
{ N
!
where o variance of the scene
X
)
'“ = variance of the noise
T-'( = number of independent elements in the sensor scene.

With three equations and three unknowns, one can thus compute esti-

mates for the scene parameters from the measured data. Specifically,
~A7)

- 5 _4 =
= (n/2) .’.:1((1) directly from Eq. (14), ;’w‘; = (n/2) [‘.‘;1(;1) — .‘;1(””

from Eqs. (14) and (15), and the formula for N_ derived from Eqs. (14),

(15), and (16) is
N ' (17)

The entire procedure is diagrammed in Fig. 5. The two maps are

first correlated. The extremum {s taken as the in-register value of




D{Dp UOD[9110d QYW Wwoly si@jdwoiod 3uIds jo uoowiysy—¢g *Biyg

)
T RSN |
A
EESURSSIEREN, S —— P — ﬁ e
ke ] ke * T e
K¢
|
| =
—~
d e s 4 4 - -
w .
|
te 5
et
- i L




-26=-

the correlation function and is extracted from the data; the first and
second moments of the out-of~-register values are then computed from the
remaining data. Based on these moments, the extremum value of the
correlation function, and the correlation statistics, the scene param-
eters are estimated. This estimation procedure assumes that the cor-
relation statistics for the MAD algorithm are Gaussian. Obviously,
most scenes are not truly Gaussian and do not generate purelv Gaussian
statistics. The question remains as to how close to Gaussian, in gen-
eral, are typical scene statistics.

A control experiment was run to test the accuracy of the parameter
estimates and to examine the validity of the Gaussian assumption. The
experiment consisted of generating a reference map whose elements were
independently Gaussian distributed, and extracting from this reference
map a 10 « 10 element sensor map that was then correlated over the en-
tire reference map using the MAD algorithm in the absence of noise,.

)
Based on the out-of-register correlation data, (J) and o_(J) were

b,
computed and \I estimated using Fq. (17). Table 12? shows the results
of the estimation process using 25 different reference scenes, each of
which contained 15 x 15 elements. Also shown in this table are the
values of the third and fourth moments, by and My of the out-of-regis-
ter correlation function. For a Gaussian distributed process, the
third moment should equal zero and the fourth moment should be three
times the square of the variance. As seen in the table, in this case
the process 1is reasonably close to Gaussian. These moments were also
calculated for real scene imagery and similar results were found. The
correlation length, discussed further below, can be defined quite

generally by the relationship
S (N/Nl)”“ (18)

with N = actual number of sensor elements (pixels) in the scene. The
values of ; given in Table 12 are computed from Eq. (18).

The disturbing result of this experiment is that the average value
of the estimate for N_ 1s 168 (which {s much larger than the actual

I
number of elements, 100, from which the scene was constructed) and that




L
Table 12
ESTIMATION OF NI USING MAD ALGORITHM DATA
(M = 225, N = 100, Q = 35, random scene)
— SRS EPSEE e S S sy Coe e
Variance l 1 LEstimated No. y kst imated
(out of I'hird | Fourti f Independent rrelati
register) | Moment Moment k1 eme S Length
b s 1) * 1
e o MY L. et '
00424 L00003 48.0 . BLL
.00363 .\thu" « 233 200.9 0. 7f
.00307 ). 00001 y. 93 238.1 0.648
4 0.00259 0.00259 | 2:153 288.1 .H589
, _004139 0.00015 | 2.668 148.1 ), 822
t ), 00557 -0.00015 2.536 137.5 35 2
). 00747 -0 . 00008 2.465 88.7 'h 2
5 0.00324 0.00014 3. 826 259.0 0.621
) 0.00801 0.00017 l <0352 94 .9 1.02
10 0.00383 | -0.00002 | 1.911 | 200.3 0.707
11 0.00753 0.00007 2.354 | 117.6 0.922
12 | 0.00398 | 0.00000 | 2.079 | 1443 0.832
13 | 0.00405 -0.00002 2079 163.1 . 183
14 P 0.00532 0.00001 3. 380 ! 134.7 0.86
L5 0.00414 0.00002 2,621 159.6 0.792
L6 0.00426 | -0.00017 3.139 173.4 0.760
L7 | 0.00528 |-0.00000 | 2.637 134.5 0.862
18 | 0.00391 0.00006 | 2.574 | 164.2 0.780
19 0.00415 -0.00012 ’ 2. 125 | 215.1 0.082
20 | 0.01144 0.00009 2.828 | 83.2 1.096
21 | 0.00475 0.00011 2.406 206.5 0.696
22 1 0.00347 0.00004 2.493 239.9 | 0.646
23 | 0.00656 -0.00011 2.286 114.6 | 0.934
24 0.00290 | -0.00009 3. 066 250.0 | 0.633
25 i 0.00680 0.00003 2,317 99 .9 1.001
Me an LJ,U!)J.‘)H -0.00007 2.564 168. 2 0.805
" s, SS———

there is a large variation in the range of the estimate (from 83 to

228).

with similar results.

This experiment was repeated using different reference map sizes,

The hypothesis was put forth that there is

nothinrg wrong with the estimation technique per se, but rather that

values of the MAD algorithm computed at closely spaced displacements

are,

in fact, correlated.

Such a correlation would cause the variance

of the map-correlation function to be somewhat smaller than was




alculated by the theorv, thus leading to overestimation of TI through

Eq. (17).
w that there is indeed correlation between adjacent values
f the correlation function when the MAD algorithm is used, a simple
two=e lement sensor map was hypothesized and correlated over adjacent
ition it 1 three-element reference map. I'he reference map ele-
ents, , were considere to be independent and identically distrib-
uted with distribution N0, T , and the sensor map elements, T
had the distributi s 5 s he adijacent orrelation functions were
the ¢ 11¢ B ¢

(19)

. K. Chow of The Rand Corporation has determined the covariance be-

tween these two functions to be

\

where

M ; and

Since the correlation coefficient between these two functions, ¢ (1)
and $(2), is given by the covariance of the two functions divided by

the product of the standard deviations of each (and, in practice, the

I
Private communication.




=79
covariance is almost never equal to zero), then, in general, there is
correlation between these two adjacent values. Thus Eqs. (16) and (17)
ire 1ot valid for the determination of scene parameters from MAD cor-
relation data.
'his correlation hetween adjacent computed values has a further

important implication with regard to the predicted performance of the

MAD algorithm. The reduction in the out-of-register variance not only
leads to an overestimate of ‘.'I (as mentioned), but also, and more im-
portantly, results in an underestimate of "[.-——Iwmn- the values calcu-
te n the past for the MAD algorithm are all too conservative,
the ‘ » f o (again assuming an uncorrelated, Caus-
sian-distributed, zero-mean scene), the estimates of the statistical
measures are related t the scene characteristics by the f <

(J) = O (23)

Since Gaussian theory requires the average of the out-of-register

values to vanish, the second of these equations is not usable in solving

for the scene parameters; hence there are only two equations with three
unknowns. However, in the noise-free case, i.e., in autocorrelations

- ~
with ';‘ = (0, Eqs. (22) and (24) can be solved for NI with the result

02 (0)
N, xS (25)
o el B

The complete process In this case is diagrammed in Fig. 6.
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Further analysis of a two-element sensor map shows that the co-
variance between adjacent values of the Product correlation function
is zero, indicating (as expected) statistically independent values.
The experimental results shown in Table 13 verify this analytical pre-
diction. The average number of independent elements over all refer-
ence maps is close to 100, and the estimated correlation length, de-

}

Y

fined by Eq. (18), is close to unity. The assumption of Gaussian
statistics was again tested using real-world imagery in Product correla-
tion, and the result was again reasonably positive.

In the past, correlation length has normally been computed by
determining the average distance over a given region of the scene at
which the autocorrelation falls to a value of 37 percent of its maxi-
mum. This process is complicated when applied to a two-dimensional map
because of the multiple directions in which the correlation function
can be computed. The estimation method presented here is an cpera-
tionally simpler technique for determining the effective correlation
length of a scene. This technique was used to estimate the number of
independent elements and the correlation length in four regions (agri-
cultural, mountain, desert, and suburban) of the earth resources satel-
lite data base described in Ref. 1. Each region was broken down into
twenty-five 20 » 20 reference maps. The Product correlation algorithm
was applied to each of these twenty-five subregions, using 10 * 10 sen-
sor maps, and an estimate of the number of independent elements and the
corresponding correlation length in each subregion was obtained. These
estimates are shown in Tables 14 through 17 for the four regions. The
average values of the correlation lengths in each of these regions are

summarized below:

i\'v&in_n 0
Agriculture 3.0
Mountain 2
Desert 2.0
Suburban 2.0
Random (from Table 13) 1.0




f[able 13

ESTIMATION OF .‘.'l AND ¢ USING PRODUCT ALGORITHM

(M 225, N 100, Q 3%, random scene)
Ldepeitaett I Lorretat
Llement s Length
ubregion | 1
1 +
;
104,04 i 0,98
gl. 30 | ) L 5
1] .88 | 1 .04
/4 7 | {
5 ¢ ). 86
19 .41 1.00
08 gy
! = 10
i J ) ey
() 1 ()
84
| 1O 3, ) 8
) o 33
14 114, 3 )4
1> 23.91 U3
t Wi 3 .04
i 1 ' 04
| 8 +3.66 U.83
) 80, 80
() 8626 1.08
] | 85.78 { 1.08
| 9/7.48 { 1.01
3 125.43 | 0.90
47 MR E { 0.95
G793 : g8
t 1
te an ! 101.25 1.004
'

ESTIMATING THE S/N RATIO FROM THE CORRELATION DATA

When the sensor map contains extraneous noise, as it always does,
it is of considerable interest to estimate the S/N ratio directly from
the correlation data. One can do so for the MAD algorithm by solviag

) )
for estimates of x and n using Eqs. (14) and (15) and then taking the
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ratio--avoiding the use of FEq. (16), since N] is known to be incorrect.
lfable 18 shows the comparison between the estimated and actual S/N
ratio for a 10 * 10 sensor map and a 20 * 20 reference map taken over
various regions of the earth resources satellite map. The estimate is
correct to within about 15 percent rms.

A more detailed description of this estimator and its variance,
and analogous results for the Product algorithm, are contained in the

appendix.

Table 18

COMPARISON OF ESTIMATED AND ACTUAL S/N RATIOS
USING THE MAD ALGORITHM

(M = 400, N = 100, Q = 120)

Region S/N (actual) S/N (estimated)
Agricultural 0.70 0.61
0.97 1.064
0.97 ; 1.02
Mountain 107 ‘ 1.12
0.96 { 0.87
0.92 1.06
Desert 1.13 0.95
.14 0.80
0.92 0.76
Suburban 0.95 i
1.12 0.98
1:02 0.86
Random 0.99 0.88
— - _JL___ R C— S

ESTIMATING PC FROM THE CORRELATION DATA

The most important quantity to be estimated from the correlation
data is the degree of confidence one can have that the extremum gives
the correct matchpoint, i,e., the Pc associated with the extremum.
Jsing the approximation technique developed in Sec. III, PC can be ex-

pressed, following Eq. (11), as




=36~

where K is given by Eq. (5) and A and B have values as defined following
Eq. (2).

As before, the value of the extremum, ¢ (0), can serve as an esti-
mate for E{$(0)}. Similarly, the mean value of all the out-of-register

(J), and the variance of these values, 7_(1),

correlation values, =

M
measured from the data . serve as estimates for F< (]} and @™ (),
respectively. In order to estimate Pc’ it 1s stil]l necessary to find
values for 0(0) and K in Eq. (26). The exact procedures to he used
differ for the two principal algorithms.

For the Product algorithm, the crucial step is the generation of
the estimate for NI given by Eq. (25), which was obtained by perfor
an autocorrelation on the reference map. Actually, in this process

is using the values of N, and, through Eq. (18), of the effective cor-

1
relation length measured on the reference map as estimates for the
corresponding quantities on the sensor map; accordingly, one should
probably perform the autocorrelation on the sensor-map-sized portion
of the reference centered on the target, or a somewhat larger sized
portion, but not on the entire reference map.

With ﬁl thus in hand, and ﬂi and Wi determined from Eqs. (22) and
(24), one can proceed. One first observes that, although 0(0) cannot

be obtained directly from the data (since there is ordinarilv only one

extremum), it is only the ratio 0(J)/0(0) that occurs in Eq. (26). Now

) ) )
OZ(J) is given by Eq. (24) and ﬂz(”) is known(l) to he (:'; + A)(‘;/Nl).
Thus the desired ratio is simply
2
nz + 0 l/
ol)) _f . x_..n (27)
a(n) 2”2 + 02
X n
which involves only known quantities.
' I - — -— S——
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Secondly, from Eq. (5), K is a function only of , the number of
nonmatching displacements for which the correlation function is evalu-
ited., ) in turn is given in Ref. 1 (in the footnote on p. 7) as
) (m n+ 1) ] (28)
where m’ M is the reference map size and n’ N is the sensor 1]
size, ince the sensor map size has been scaled down by the square of
the correlation length to use the statistical relationships, it i 1]l so
necessary to scale () similarly. The expression for the number of in-
lependent displacements, T is therefore
IN y
/ = - /N + ] )
V N Vo (29)
hus () and K can also be estimated, and then P using Eq. (26). Ihi
-
complete process is diagrammed in Fig. 7.
For the M tlgorithm, the ratio 0(J)/0(0) can be found by a simi-
2 ’ , 2 . (1)
lar process. 7 (J) is given in Eq. (16), and (0) is known to be
(1 = 2/n) ( /?Jl). Thus the desired ratio is
n
- S
2 Z
y, +
old) X n (30)
1(0) )
n
However, K is still a function of (')I’ as given by Eq. (29). Since
m n, ”l increases monotonically with NI’ and so does K by Eq. (5);
and finally, P decreases with increasing K, as shown by Eq. (11) or
&
Eq. (26). Thus it is seen that the previously mentioned fundamental
difficulty with the MAD algorithm, caused by the partial correlation of

adjacent values of this particular function,

values of N

high, and the resulting predictions for l’(.

cannot

be

derived from the equations will always be somewhat

avoided.

The

too

correspondingly pessimistic.

The estimation procedure given here 1s nevertheless expected to be suf-

ficlently accurate to be useful under many circumstances,

and is
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diagrammed in full in Fig. 8. The inherent difficulty is reflected in
the use of an > sign with ﬁc in the last box of the figure.

An experimental simulation of the estimation process has heen run
for an agricultural region of the earth resources satellite map. The
MAD algorithm was employed to investigate the degree of overestimation
of ‘I] and 0 and the underestimation of 12‘. The reference map size was
20 20 and the sensor map size was 10 x 10, Additive noise was super-
imposed on the sensor map such that the S/N ratio was approximatelv 1.
Twenty-five correlations were run using the same scene and different
noise samples. For this scene, N = 100 and Q = 120, Table 19 shows
the results of this estimation experiment. For all 25 runs, the cor-
relation algorithm (MAD) correctly matched the two maps (i.e., simu-
lated FV =1). Pv was estimated using, first, the GI derived from
estimating the number of independent sensor map elements, as given by
Eq. (29), and second, the entire number of map matching positions
(Q = 120), where no attempt was made to account for correlation in the
scene. This latter approach obviously yields a very low (conservative)
estimate of PC, as expected, Although the former approach, PV(HI\, is
not quite right, since the estimates of N] are still too high, the esti-
mates for PC are reasonably close to the simulated value of 1. The S/N
ratio and the correlation length were also estimated in this experiment,
and the values are included in Table 19. Note that this experiment
(one scene with 25 different samples of noise added) is different from
that in Table 14 (25 different scenes), and furthermore that the ef-
fective correlation length in the present case should be significantly
less than that in Table 14 because the added noise is completely un-
correlated.

The experiment was extended by examining the PC estimates when the
wrong sensor map (a map not extracted from the reference map region)
was correlated over the same agricultural region. The results are
shown in Table 20 with two different noise samples added to make the
S/N ratio of the map approximately 1.

In conclusion, the estimation technique appears capable of yield-
ing an estimate for PC from a single correlation function similar to

that found by Monte Carlo methods over numerous correlation runs. In
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Table 19

ESTIMATION OF P, FOR AN AGRICULTURAL REGIGN OF THI
EARTH RESOURCES MAP

(MAD, M = 400, N = 100, 0 = 120, S/N 1)

] ] timated 7 I 1 ‘ N

u N Correl 1Iiw1\‘ . S/N 0 b T T
Number | l.ongt| | S/N (‘I\fllvllll [ ( I
—_— — §~———~—-——{ — e e
)6y '\1)_‘40; 1.08 \ H.'\ .85 }o DY
| .89 Iu.‘lh 1 .01 iﬁi“r.\ (0.9 0.76
s <2 1.9 1 .47 1 .00 | 36 .4 | ().99 ()59
.86 ). 54 0.92 [39.3] 0.97 | 0.89
) . ] (>‘} 0.91 1ﬂ“./‘ 0.83 .50
f & 1.9 1 .03 | 0.9 ! 36 fa, 0.97% ). 7f
| .14 | [ .06 131.1 .98 ). 8
- 3() . K 4() .89 0.9¢ 1.9 0.91 ( f
i ~ .96 1.19 1.04Y 3 i .96 ().84
] | 73 ] 1»',1 .99 4.5 .9 (). 9
11 g4 1.49 i 1.09 [35.1 (.,99 0.94
i ' 1.09 (.97 I3td 0.94 ()
1.9] 1.18 .10 37 .8 0.9 )
| .6 {) 'l 05 0.93 33 a: 0.90 0. ¢
] .00 [ 012 199! 34.9 0.9] 0,70
] ¢ \ | .86 1.07 ' 1.01 39.4 | 0.96 ().84
1 9.1 | [.85 (1.13 | 0.96 39,9 0.97 | 0.88
18 'Yy i L .85 1 1.08 ' .99 "o"’.fﬂ' \[ 0.96 , ). 86
149 Lt i | 1.91 A 5 0.92 371 .7 (.96 0.85
) ( Q5 1.83 [1.24 0.94 '.(),’.i (.98 i .93
21 28. 5 | .87 [ o0 ) - 1.07 [39.2 ] 0.96 | 0.85
)2 3.3 2.07 i],u, | 1.01 [32.90 0.90 | 0.66
3 9.7f  1.83 1.39 | 1.03 [40.7 | 0.99 | 0.97
24 | 22 [ e A, 1.04 0.90 ‘%l.h t 087 | 0.64
25 | 29.0] 1.8 '1.|H 0.95 |39.7] 0.98 | 0.90
Mean 6 I T.94 I],]; 0.99 {;711{ 0.94 0.80
g | o EWri | SR S B

addition, comparison of Tables 19 and 20 indicates that the estimation
procedure can easily distinguish between cases where the sensor map is

or is not contained in the reference map.

ADDITIONAL PERSPECTIVE ON THE ESTIMATION PROCESS

Further discussion may be helpful at this point on the nature of
the map-matching process and the significance of the estimation pro-

cedures described above.
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Table 20

ESTIMATION RESULTS CORRELATING
A WRONG SENSOR MAP OVER THE
AGRICULTURAL REGION

(N =100, 0 = 120)?

N 0 P () | P ()
{ 14 | =

: i o 1

49,1 63.1 | 0.225 0.149

48.5 52 .6 0.235 N.155

a,
Sensor scene does not come
from reference scene,

Consider first the (auto)correlation of a single sensor map with
an identical, noise-free, reference map. The distribution of values
for this function is indicated schematically in Fig. 9A. For simplic-
ity, a maximizing algorithm such as Product is assumed. It 1s further
assumed that a digital calculation is performed and that the scene {is
gpatially completely uncorrelated, so that the value at the match point
is essentially a d-function--otherwise there would be a small one-sided
tail to the left of $(0). In this case, the map-matching process {is
almost trivial. The spread in the out-of-register distribution func-
tion is determined by the statistics of the scene itself, a function of
Ox and NI as given by Eq. (22) with Wn = 0, and in principle this can
be computed beforehand from the reference map.

Consider next the introduction of noise~-intensity fluctuations
or prediction errors, geometrical distortions, real changes in the
scene, all the causes of differences between the two maps=--but still
assuming a single sensor map properly centered over the target ({i.e.,
with perfect midcourse navigation). The distribution of values of the
correlation function 18 now represented in Fig. 9B. The possible cross-
over of the talls of the two curves demonstrates the possibility of a
false match or gross error, and hence the need for calculating Pc' the
probability of a correct match. This quantity can be calculated fairly
easily If the distributions are assumed to be Gaussian. Since ”x and

NI are known ahead of time, in this case the observed width of o(l)
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a(J)
f(a,' Nl)

19

(1)) 0(0)

A . Autocorrelation with a single map (no noise)

a(J)
filox, on, N1)
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e (J)) om(0)  9(0)

B. Correlation with a single map with noise added

lv(O);

v‘a(J) .

|
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° () ou(0) 9(0)

C. Correlation with an ensemble of possible sensor maps

Fig. 9 — Distribution of values of the correlation function
under various conditions




could be used to estimate T8 from which Pv can he found., This is not,
however, the real operational situation.

Consider finally the case in which there is a midcourse navigation
error and the sensor map may be any one of a large number whose center
is displaced from the center of the reference map (i.e., the target
bv an unknown amount--an amount that may easily be large enough to
cover a portion of the reference map having different statistical prop-
erties from the portion immediately adjacent to the target. In this
case, one is concerned with the ensemble of possible sensor maps. The
resulting distributions are represented in Fig. 9C by the artificial

insertion of an extra "ensemble'" term, T in the variances. It is

/

these ensemble distributions that were analyzed by Johnsnn,(‘) and ex-
tended by the Rand group,(z) in terms of parameters assumed to be known.
The estimation procedures described in this report provide a method
for drawing from the observed data an inference concerning the distri-
bution of the possible extrema, 0(0). This inference in turn permits
the best possible estimate of PC to be made before the fact, i.e., on
the basis of the correlation statistics obtained with a single sensor
map, even though T(0) cannot be known and is simply estimated by fM(U\.
This estimation procedure is believed to represent a new contri-

bution to the theory of image correlation.
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V. INITIAL WORK IN FEATURE SELECTION

INTRODUCT TON

Previous work has focused on area correlation per se, and Ref. 1
lescribes in considerable detail approaches to correlation from bott
theoretical and experimental points of view., It seems wise at thi

juncture to take a broader point of view and recognize that both the
incorporation of feature selection methods from the field of pattern
recognition and the use of more sophisticated algorithms can improve
the map-matching process. Although the map-matching problem addressed
here is not formulated precisely according to the standar

¥

ognition paradigm of assignment to one of several classes, manv con-
cepts nevertheless carry over and, in particular, the techniques of
feature extraction are relevant. First, however, we look at the noi

characterization in our experiments, because this is important in as-

sessing the relevance of the work for the real world.

NOISE IN THE MAPS

Most of the experimental work described in Ref. 1 assumed Gaussian
noise. Although useful results can, and did, follow from this assump-
tion, it is appropriate to look at noise that 1is more representative
of that found in the real world. This is accomplished when a reference
map 1is derived from reconnaissance imagery taken in one region of the
spectrum (e.g., aerial photography) and the sensor operates in a dif-
ferent region (e.g., infrared or radar). In such cases, the major
source of "noise'" resides in erroneous predictions of the intensities
placed in the reference map rather than in geometrical distortions.
There were available several high-resolution pictures (7.8 meters per
pixel) of downtown Los Angeles taken at various wavelengths in the
visible and near-infrared portions of the spectrum, and it was cleal
that one of these pictures could serve as a '"noisv" reference map and
the other as a "corresponding'" sensor map. Experiments with the two
pictures in the yellow and near-infrared wavelengths vielded widelv

varying S/N ratios, with a mean of 1.2. The actual Pearson correlation
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coefficient (related to the normalized product correlation) between

the two pictures was only ,59, despite the fact that the two pictures
are registered identically and appear quite similar to the eye. This
last observation emphasizes the fact that judicious feature selection

is critical, as is discussed next.

FOUR EXPERIMENTS
It has long been recognized that careful feature selection 1is a

key to effective pattern recognition. In conventional pattern recog-

nition, feature selection (1) reduces the dimensionality of the space

and hence the quantity of computing required and (2) improves the ac-

curacy of clagssification. Although (1) has not been as important in

this work, it is still relevant; item (2) is of obvious significance.

Several different kinds of very preliminary feature-selection experiments

have been conducted, as described below.

Edge Detection

One of the most obvious kinds of features to consider in map match-
ing is that of edges. As described in Ref. 1, some simple edge detec-
tions were tried, using various gradient and Laplacian operators. The
results were marginal, probably due to a combination of the noisiness of
the pictures and the lack of sophistication in the operators themselves.
More recently, the Hueckel operatnr(s) was applied to some of our pic-
tures, FEach plcture was covered with a set of non-overlapping discs
of constant diameter. In each disc, the Hueckel operator finds the
best "ideal edge,'" that is, the straight line in the disc that best
separates the disc into two parts of differing pixel value. Such an
edge can have any orientation and any lccation within the disc, and in
fact these values are outputs from the operator. A parameter of the
Hueckel operator {s the goodness of fit, that i1s, the degree to which
an edge approximates an ideal edge. Experiments were conducted with
various sizes of the Hueckel operator and values of the fit parameter.
Two outputs are shown in Figs. 10 and 11, where the disc size was five
pixels in diameter, {.e., a 5 « 5 square with the corners removed. The

field boundaries in the agricultural region show clearly, whereas the
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Fig. 10 — Hueckel operator applied to an agricultural scene
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Fig. 11 — Hueckel operator applied to a suburban scene
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features (including roads) of the suburban scene are vague for the
most part.,

We experimented further with Hueckel operators of different
sizes, although the 5 * 5 square seemed best for our purposes. We
also tried various values of the acceptance threshold. Tt is clear
that there should be different values of this parameter and different
sizes of the disc for different types of scenes, and that these param-
eters can be deduced experimentally. However, it would be valuable to
have dvnamic and automatic adjustment of these parameters, and experi-
mentation with this concept seems in order,

A

A disappointing result of applying t!

he Hueckel operator to the

]

vellow and infrared suburban scenes was that the correlation between

the scenes was much less (.29 compared with .59) after such applica-
r +

: H Tme 14 . P N a3 an s loorit! <1
£10Na fhis AAA)‘!ll'.‘\ that correlation algorithms such as

AD and Product

would not work as well after using the Hueckel operator. However, ad

justing the acceptance threshold and operator size might well improve
these results,

Other edge and shape detectors will be examined. In suburban
scenes, for example, where there is a good estimate of road width (and
even orientation in some cases), specialized detectors that use this
information can be applied. This is part of a larger concept in which
a whole arsenal of techniques is used to extract features from pictures,
and some way is needed of reasonably selecting the best technique for
application to any particular picture or class of pictures. The more
automated this process can become, the better, although at some point
the problem becomes close to one of artificial intelligence. This

point is raised again later,.

A Gradient Approach that Fnsures the Presence of Features

A particular difficulty in depending on features, as above, is
that a given scene may not contain any. Sensor maps are usually rather
small, and it is quite possible that in relatively featureless areas
the operators will yield nothing. As mentioned before, one approach to

this problem is to modify the operator threshold or size. Another ap-

proach, which has been briefly tried, is to ensure features by
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associating with each point some function of it and its neighboring

points, such as the simple gradient or Laplacian. Specifically, the

scheme associates with each point of a picture a vector of eight values,

obtained as follows. Divide the 9 » 9 square of which the given point
is the center into four 5 ¥ 5 quadrants (the edges overlap). Then
compute a smoothed gradient for each of these quadrants, with the ori-
gin at the center of each. Since each gradient has an x-value and a
y-value, there is a vector of eight values far each point in the sensor

scene. Such a vector obtained from a sensor scene can he compared wit
the corresponding stored (or computed) vectors for each point of a ref-
erence scene. The match point is determined to be that for which the
associated reference vector is closest to the sensor vector, where
"closest" can be any of a number of measures, including Euclidean dis-
tance, sum of the absolute deviations, minimax, or other. Preliminary
tests actually gave poorer results in a simulation (19 correct matches
out of 100, compared with 69 out of 100 for MAD), but clearly there {is
an opportunity to try different gradient sizes and different decision
rules about vector comparison. Second-derivative information and other
measures such as the goodness of fit of a Hueckel operator might also

be used.

Features Based on Entropy

The amount of information conveyed by parts of a scene seems to
be a plausible quantity on which to base feature selection, and indeed
a measure based upon entropy considerations (directly related to infor-
mation) is sometimes used in ordinary pattern recognition. A simple
entropy calculation that was tried consisted of replacing the center
point of a 5 * 5 square by the average information conveyed by the
points in this square. This 1s done by counting the frequency of pixel
values among the 25 points. We regard these frequencies as probabili-
ties, 1.e., if a particular pixel value i occurs K times, its empirical

probability of occurrence is Py - K/25. Then the total information is

. log
pi O ‘,i
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This calculation was made on the original suburban scene, after which
correlation was simulated. The results were again worse than those

for the original MAD algorithm (21 versus 69 cases out of 100) for

S/N =1 with a 5 ¥ 5 sensor scene and a 15 * 15 reference scene. More
judicious aggregation into classes or more elaborate information valua-
tion (such as the concept of mutual information adapted for this situa-
tion) might improve these results.

It is worth noticing that, unlike most of the other features dis-
cussed here, entropy is a function of the distribution of pixel values
rather than a direct function of the values themselves. As such, it
represents another class of features and gives further insight into the

various kinds of features available.

Features Based on the Estimated Value of P

Yet another approach to feature selection has been tried. In thic
new technique, for a given number of elements (feature size) to be
chosen from the sensor map, all possible submaps contained in the sen-
sor map are created. Each submap is then compared with the reference
map using the correlation process; the match position and correlation
statistics are simultaneousiy determined. The CGaussian theory then
relates the statistics of the correlation process (expected value and
variance of the in- and out-of-register values of the correlation func-
tion) to the scene parameters (variance of the scene intensity, variance
of the noise, and number of independent elements in the scene). By
using these relationships, it is possible to derive all the information
necessary for estimating Pc’ as described in Sec. 1V, Having developed
a technique for estimating Pc for each submap, it is now possible, by
ranking the submaps relative to the PC measure, to determine the fea-
tures (sets of points contained in the submap) that are most signifi-
cant in the scene.

One brief experiment has been performed that illustrates this con-
cept and offers some encouraging results. Taking a very small simulated
reference and sensor scene, it was attempted to determine the relative
importance of each of the sensor points in making a potential match,

This was done in two ways: One, through a direct simulation with noise




added, resulted in what is here called an "ohserved P "; the other,
-

through the closed=form approximation described above, vielded an

Al "

'estimated P .
.

The reference scene chosen was the following 7 * 7 "manufactured"

) ?

%cenu containing only 0's, 1's, and s

Fig. 12 — "Manufactured"” reference scene

It has an ill-defined, approximately vertical streak that might be
termed a "road." The center 3 < 3 portion of this scene was extracted
and approximately 500 different samples of Gaussian noise were added

to each of the cases formed by deleting exactly one point. The noise
was multiplied by the appropriate factor with the MAD algorithm to give
a S/N ratio of 1 for one set of cases and a S/N ratio of 3 for another
set. The reduced 3 = 3 square (with noise added) was then superimposed
in all possible positions. The "observed PC" in Table 21 is the number
of times the MAD algorithm yielded the correct match (with S/N = 1)
divided by the total number of cases. The "estimated Pc" is the value
calculated following the procedure described in Sec. 1V.

The results show that single-point deletion in general has little
effect, with the possibly significant exceptions that results were
better when one particular point was deleted (8 or 1, depending on
which method was used), and that they were definitely worse when another
was deleted (9 or 2). The latter result indivates that point 9 (or 2)

is the most '

'significant" in contributing to the correlation value.
The experiment was repeated deleting all possible pairs of points.
The results were similar but more pronounced than for the single-point

situation; they are shown In Table 22, A particular palr of points
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f[able 21

EFFECTS OF SINCLE-POINT DELETION

3 - :
Point Deleted | Observed P Estimated P
- 0.617 | O.670
1 }u 36D ; 0.740
\ 0.577 ‘ 0.666
0.569 | 0.658
[ 0,565 ‘ 0.694
; 0.550 ' (.688
0.538 ‘ 0.611
) Yo 29 0.649
) 0.468 0.635
No deletion 0.591
2 1 : 1 i

NOTE: Sensor scene points are numberec
as follows:

L 2 3
4 y b
/7 89

(5, 9) was found to be the most important using the simulation method,
and (2, 9) was the most important in the estimation approach. In both
cases, the pair of points chosen were the two highest in importance in
the corresponding single-point experiment.

A comparison of the two sets of results provides a crude measure
of the "goodness" of the approximation approach. The estimated F{
values are all higher since no noilse was added, but this is less impor-
tant than the rank ordering. It is seen, for example, that the two
least important pairs are the same in both approaches (though inter-
changed 1in order); the ordering at the upper end is not quite as con-
sistent, although the same general trend is evident. The complete rank
difference correlation coefficients are given in Table 23,

This experiment has demonstrated in a crude way the concept of
selecting features on the basis of their I" values. In principle, of
course, we would continue the process of eliminating triplets, quad-
ruplets, and so forth, of points from a real scene in the search for

"features'" that make significant contributions to P . Presumably, after

(

a simple start as shown above, we might avoid the theoretical
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Table 23
RANK CORRELATIONS IN POINT DELETION EXPERIMENTS

Number of
Points Deleted

Quantities to be Rank=Correlated 1 2
Estimated P versus observed P for S/N = 1 0.65 0. 76
( =
Estimated P versus observed P for S/N = 3 i 0.47 0. 54
« {
Observed P 's for S/N = 1 versus S/N = 3 0.65 0.61
(

requirement to examine all possible combinations of points, concentra-
ting instead only on those combinations that contain, for example, the
best third of the smaller sets. This 1is but the germ of an idea; how-
ever, the modest success achieved at this point indicates the desir-

ability of more extensive similar experiments in the future.

CONCLUSIONS

Two conclusions can be drawn from the three unsuccessful experi-
ments. The first i1s that too simple and naive an application of con-
ventional feature-selecting algorithms is not often adequate when
dealing with images of real terrain. Those successes that have been
demonstrated by others should be recognized as the result of quite
sophisticated and extensive efforts. The second and more important
conclusion 1s that all feature-selection algorithms, whatever their
degree of success in achieving matches, should be conscientiously com-
pared with the more conventional correlation alternatives for (a) ac-
curacy, (b) gross error rate, and (c) cost in terms of computing effort.

The fourth approach, based on the use of P , is considered promis-

[

ing and further experimentation is recommended.
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VI. 1IDEAS FOR FUTURE WORK

Three of the approaches described in Sec. V failed in their first
implementation. They will be pursued, by adjustment of parameters or
more sophisticated refinements, until either they are made to work or
their failure is better understood. In addition to the feature selec-
tion based on P , there are at least two other techniques to be con-

.

sidered.

IMPROVING CORRELATION SYSTEMS

Figure 13 shows the layout of a typical correlation processing
scheme in which sensor data are fed through a preprocessing operation.
This operation may have many functions, including "grey level coding"
of the data, feature extraction via pattern recognition techniques,
ind scene enhancement via either global (e.g., histogram equalization,
Fourier transformation, etc.) or local operators (e.g., gradients,
l.aplacians, etc.). Once these sensor data are preprocessed, they are
ted into a processor where, by means of a correlation algorithm, the
match position and the location of the sensor map relative to the ref-
erence map are determined.

One of the major problems associated wi*h this formulation of the
correlation process is that if the match position (selected on the
basis of some metric exhibiting an extremum) does not fall in the re-
gion surrounding the true match position, the correlator will fail. It
would, therefore, be very desirable, in addition to determining the
"match position,'" to also determine a confidence measure on which to
base a determination that this is the true match position. The prob-
ability of correct lock=-on, Pv, provides such a measure. However, its
computation until]l now was a complicated calculation that was not obtain-
able in a closed-form expression. Section III has provided a "good
approximation'" method for obtaining PC in a closed-form expression.
This development has led to a reconfiguration of the correlation pro-
cessor,

Figure 14 shows the proposed correlation scheme. It differs from
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the present-day schemes primarily in that an estimation process and de-
ion criteria are included in the overall operation. The function

t the estimation process is to determine from the correlation data
what the scene statistics were (variance of the scene intensity and
variance of the noise) and, based on these statistics, what are the
best estimates of the S/N ratio and the probability of correct lock-on.
Iwo assumptions are made in this estimation process. First, it is as-
umed that the scene statistics are Gaussian. The effects on thi
estimation process of non-Gaussian scene statistics have been tested
but need more simulation using real-scene imagery data. Second, it is
ssumed that error sources other than additive noise (geometric, in-
tensity scaling, etc.) are controlled to such an extent (by placing
tolerance limits on design parameters) that they do not significantly
i1lter the estimates obtaine' for }:( or S/H. This assumption will also
be tested using a simulation process.

The estimate of the S/N ratio can be valuable in selecting the
proper algorithm for the next correlation update and possibly enhancing
the performance of the preprocessing operation. The estimate of P 1is
important from two standpoints., Most importantly, it can be useful in
leciding whether the match position obtained via the correlaticn pro-
cess is the true match position or not, and consequently whether the
correlator should remain in the acquisition mode or should switch over
to track mode. Second, if P(. is quite high, then, in addition to de-
ciding to switch to a track mode, it would be possible to reduce the
search area (which would free the computer to process out other error
sources in the track mode); or, if }’( is low, then the search area might
either remain fixed or possibly be expanded.

The success of this formulation of the correlation process depends
on two conditions, namely: (1) that the two aforementioned assumptions
(Gaussian statistics and limited geometrical errors) do not severely
degrade the estimate of f’( and S/N and (2) that the variance of these
estimates is small enough to render them useful.

Methods for estimating l’;( and S}N from the data have been formu-

lated. Initial analysis on the S/N estimate has shown it to have a

relatively "tolerable" variance. Analysis on the variance of P  and
L
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testing these estimation techniques using simulation techniques remai

ARTIFICIAL INTELLIGENCE

Artificial intelligence was mentioned in Sec. V, and is discussed
briefly here even though the precise level of application is not clear
at this time.

A human performs map matching by bringing, if necessary, a vast
amount of prior knowledge to bear on the problem; additionally, i1
specialized receptors in the eye and subsequent visual interpretat i
in the brain are powerful front-end processors. To simulate these
processes directly is far beyond the state of the art; in fact, if

ould be done, a significant part of the artificial intelligence pr«
lem would be solved and a new computer revolution would be at hand.

Nevertheless, techniques from the emerging computer science dis~
cipline of artificial intelligence can be applied to map matching. We
have already mentioned edge detection. Une subject within artificial
intelligence describes the ways in which edges, lines, corners, and
other primitives are put together to form recognizable objects. The
analyst then matches these descriptions rather than the objects them-
selves,

Of ultimate importance in artificial intelligence is a "world
model" that ties together a large amount of information about how real-
world scenes of interest are constructed and how their subparts are
related. It is a higher-order synthesis than that described above.

For example, statements like '"a large river always ends at an ocean"
and "freeways never dead-end" are common-sense facts that people "know"
but an artificial intelligence computer has to be told. Determining
what statements are important, how to put them into an appropriate in-
format ifon structure, how to relate the statements, and how to access
and manipulate the information are all major considerations in artifi-
cial Intelligence.

Artificial intelligence programs are generally heuristic in nature,
meaning that they try a number of plausible chains of reasoning in at-

tempting to solve problems, and may back up and re=try several times
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I map matching, for example, such prograr could forr
about the correct match, and then reject the hypotheses or

ther based on information in the stored world model.

ificial intelligence programs are large, complex, time-
Ftiil, & expensive. Ihes ittributes 1 1Ke the 1m-
use in the real world of target acquisition. owever,

cost and size of computers and the increasing under-
rtiticial intelligence may make such ylutions feasible

next decade or less. Even if other cost-effective
ound in the meantime, an appreciation of the philosophy
of artificial intelligence may lend some insight a

0 more conventional appi hes.
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Appendix

ESTIMATION OF THE S/N RATIO

Ihis appendix describes a method for estimating the S/N ratio

ym the correlation data, using either the MAD or the Product algorithm,
ind determines the standard deviation of these estimates. It is noted
that the estimates derived using the Product algorithm assume no spa-
tial correlation in the scene, i.e., all map pixels are assumed to be
independent (or N must be interpreted as the number of independent ele-
ents). IThe estimates using the MAD algorithms are also correct (un-
lespite the difficulty with N for this algorithm that is dis-

blased),

ussed in Sec. IV, since the two equations that involve N [Egs. (A-14)

ind (A-16)] do not have to be used.

ESTIMATING THE S/N RATIO USING PRODUCT ALGORITHM DATA

Statistically, for the Product algorithm, the following relation-

ships hold true:

E{(0(0)} = o (A-1)
2
2(0) = ﬁl (zq + i) (A-2)
E{¢ ()} = 0 (A-3)
2
2(3) = X (i + ;) (A-4)

From the correlation data, estimates for three of these quantities

can be obtained as follows:

E{9(0)} The value of the correlation function at the match
position, QM(U), can serve as an estimate of this
quantity. Since there is (generally) only one match

)
point, there is no way of estimating o° (0).

k PRECEDING PAGE BLANK-NOT FI1LMED g &

i — R ——— e
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Eid(J) ! The mean of the measured out-of-register values of
the correlation function can serve as the estimate of

this quantity, i.e.,

(J) This quantity can be estimated by
) ! - i .r A )
| f - g ¥l A
Wiz *' 5 Z [‘.\1( J: " ] M Lol

The S/N ratio per se does not come directly from these three
) )
values, but ; and ’2 can be estimated separately and then the ratio
X r
)
tormed. It has been suggested that ’, can be measured by using only

the portions of the reference map that correspond to the sensor map.
However, when we consider that with "live" imagery both maps have
noise superimposed on them, it becomes apparent that this is not a
satisfactory approach. Our approach is to (1) estimate ): from Eq.
(A~1), Li€@sy ‘i = ;M(U); (2) with this estimate of 'i solve Eq. (A-4)
for an estimate of 'i; and finally (3) form the ratio of these two

quantities to obtain the desired estimate. The result is

S/N = i/»i B —-2—L~——— (A-7)
N 0% ()
M
S
¢M(0)

The variance of this estimate can be approximated in terms of the
variance of 0(J) and J(0) by using a Taylor series expansion of Lkq.
(A-7), dropping terms higher than ftirst order and forming the expected

*
For the Product algorithm, this quantity is not measured but as-
sumed by the statistical model to be zero.
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value of the square of the change in the S/N ratio. The interesting

peneral formula is that

RTAY o\
Var F(X. ¥Y) (‘:‘;) Var X ’( ’,‘) Var ¥ (A=R)

which im this case, i.e., for F = Eq. (A-7), yields the result

“(0)

4 )
The variance of ¢(0) is simply o (0), which can be obtained fron
Eq. (A-2). Obtaining the variance of 0(J) is somewhat more complicated,
4.

but for large values of Q (Q > 30), a close approximation (attributed

to W. K. Chow of Rand) is

The expected values of /§(0), Ao(J) are taken to be zero and, with
:(0) independent of ©(J), the expected value of the product ¢ (0) "= (J)
is also zero.

. 2
With ¢7(J) given by Eqs. (A-5) and (A-6),

() () :
2 I
3 () E PR — ] :E: b CK)
(8] ()
[=1 K= 1
O
Q )
2 | :E: el G
d) b(I) - @(K)
()
[=1

where T(K) represents the mean value of the out-of-register correla-
tion function (taken to be zero for the Product algorithm) and ¢ (1)

is assumed to be distributed N[O, 32(J) ). 52(J) is then chi=square

distributed with Q=1 degrees of freedom. Thus,

() = 2
Y s -s@i 2
”2(J) 0-1

I=1

)
whoere 0O9(¢1) is needed in the denominator to give the 9(1) variables

a unit variance, Given that
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.

A J
var o(J) = ',é ) (A-10)
Equation (A-9) can now be written as
: 7(.J) J =(J 2
Var (S/N) ; i ; ( : 'm L3 )( ) 5 (0)
1“(J) N _ l]“ L:‘rn) ¥ )
b= (0) J
. : ; p e 2 L d
Expressing this in terms of " and .n resuits in
AUA TS T
o X % Q.5 < S <
var S/N = 4 | — — + ] e -1
/ s \ 2 Q = (A-11)
n n

or

var (S/N) = 4(s/N)° [1+ (S/N)]z [933 + 5—343{§§1§1 ] (a-12)

Var JZ)((Z_I ] e : = ‘ s + higher order terms,
! 4(Q-1)  8(Q-1)°

D
the Var VW“(.I) is found to be approximately

e 2 o (1) . 2
Var o(J) = Vari\/ 2 2XQ-1

()AZV(AJ_) et | SECTT 3
20 8(0-1)>

or

var o(J) = -
4(Q-1)

For reasonably large values of Q, this reduces to

({2'(: 1)

Var 0(J) = 20
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Table A=1 shows some values of the variance of the estimate for
th range of S/N ratios of interest. As seen in this table, for S/N

ne

ratios above 1, the estimator has too large a variance to be of any

practical use.

Table A-1

VARTANCE OF THE ESTIMATE OF THE S/N RATIO USING
THE PRODUCT ALGORITHM FOR Q = 250 and N = 100

Standard

N

Actual S/} S/ _# Variance S/N Deviation
|
|
[
\

0.0059 0.077
O.512 8. 712
86.4 9. 30

lll$ 33.4

10

ESTIMATING THE S/N RATIO USING MAD ALGORITHM DATA

For the MAD algorithm, the following relationships statistically

hold true:

(o)t = V2/no (A-13)
n

Az(n) = (1 = 2/W) ‘h/N (A-14)
5 5 A2
E{p())} = 2/m (2~‘ . u;) (A-15)
X
(')rtz + 112)
(J) = (1 = 2/m) XN L (A-16)

Estimates of E{¢(0)}, E{¢(J)}, and © (J) can be obtained from the data
as described in the previous subsection of this appendix. Again, there

is no way to directly estimate the S/N ratio, but it must be obtained
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) )
by estimating 0  and 0  separately and then taking the ratio. The
JEX n g

estimate of ; is given by
(1)) (A"l])

Table A~Z. shows some values of the variance ot the estimate for
the same S/N ratios as are shown in Table A-1l. As can be seen, for
S/N ratios around 0.1, the Product algorithm provides a better estimate
of the S/N ratio; but for the S/N ratios in the range of general in-
terest (U.5 to 5), the MAD algorithm provides the better estimate. The
standard deviations of the estimates appear to be small enough (from
Table A-2) that this technique can be considered a useful means of

estimating the S/N ratio.

Table A-2

VARIANCE OF THE ESTIMATE OF THE S/N RATIO USING
THE MAD ALGORITHM FOR Q = 250 AND N = 100

Standard
Actual S/N Variance 5/N Deviation 5/N
|
) l 0.0164 0.128
ka0 0.1026 0. 32
) ]. 38 LBy
10) y 03 2.264
= » s ——— s ) . —

ESTIMATING THE S/N RATIO USING BOTH MAD AND PRODUCT ALGORITHM DATA

I[f both algorithms are used in the correlation process, a simple

estimation for the S/N ratio would be

/N 2 402 [;(u>] Product

T A - [:’<u>] MAD

The variance of this estimator is

(A-18)




-69-

1 3 :
Var S/N (\) (S/N) [2(n=1)(S/N) + 1] (A-19)

Table A-3 shows that the variance of this estimator is similar to that

of the MAD estimator, but is somewhat better in all cases. Equation

Table A-3

VARIANCE OF THE ESTIMATE OF THE S/N RATIO USING BOTH THE
MAD AND PRODUCT ALGORITHM DATA FOR Q = 250 AND N = 100

Y Standard Ak
Actual S/N i lgrimnw-S/N Deviation S/N 3
!
0.1 0.0014 Q.8 37
1 0.053 0.23
5 Bl 1.05
10 RS &~U9

(A-16) cannot be used since, as discussed in the main text, N does not

represent the number of independent samples. Nevertheless, an estimate
)

of ¢ can be obtainted using Eqs. (A-15) and (A-17), with the result

being:
2 ] m =% 2
L (,)(2) [«'M(_r) = “M(m]

where ZM(J) is defined in Eq. (A-=5).

It follows that

: - 4. (J)
sine 3= = B = (A-20)
s" ) .',1(0)
n ™

The variance of this estimate can be found in a manner similar to that
described for the estimate obtained using the Product algorithm. The

result is

T ————————— - N
T ' . 2
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: (J) -

Var (S/N) ; Var ¢(J)
p - (0)
which equals

: & (J) )

Var (S/N) - )
b~ (0)
In terms of and 07, this can be writ
X n

Var (S/N) ( T 1) 2

1.14
Var (S/N) = % 2(
( e

?l 1)
+
p(0)

ten as

)

S/N) + 1]°

(A-21)

(A-23)

4)

L)

(A-

This estimator appears to yield reasonably good, unbiased estimates of

the S/N ratio and correct estimates of its variance, even when spatially

correlated data are used.
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