- 7 AD=AO46 573 TRW DEFENSE AND SPACE SYSTEMS GROUP HUNTSVILLE ALA F/6 9/2
REVS MAINTENANCE MANUAL. SREP FINAL REPORT, VOLUME III.(U)
AUG 77 W E BENOIT, P N BERGSTRESSER DASG60=75=C~0022
UNCLASSIFIED TRW=27332-6921-026=VOL-3

| o

1

A N O O 3 ed.

”l” 1.0 2:8 Il2-5
= o |2

JluL oo ode

Chcopegpinl - SE0S
22 I

NATIONAL BUREAU OF ST

R aRana dui a4 2 e et oo o aadiie

27332-6921- 026

™

e

10

Ne

<H

- REVS MAINTENANCE MANUAL
!

2 SREP FINAL REPORT - VOLUME 1lI

CDRL C005 1 AUGUST 1977

r£1) 1) L.
(NN N
S8 38 "-vL"_‘H;!
D NOV 18 1977 ||
Prepared For 3; i ST N it
BALLISTIC MISSILE DEFENSE WL U B
ADVANCED TECHNOLOGY CENTER A

DASG60-75-C-0022

TRW

DEFENSE AND SPACE SYSTEMS GROUP
HUNTSVILLE, ALABAMA

AD No.—
DD FiLE COPL

p——

TRLY

TITLE: REVS MAINTENANCE MANUAL DATE: 30 SEPTEMBER 1977
DOCUMENT NO: 27332-6921-026
REVISION: A

RZASO! FOR CHANGE:
This revision documents the ARC CDC 7600 installation of REVS.

NSTRUCTIONS:

To update this manual, make the following cranges.

AFFECTED PAGES:

iii, v, ix

1-1

2=l, 2-24 2=3

2-4 (add)

3-32

6-1

7-1, 7-18, 7-19

9-2

A-1

A-2 (add)

B-1 through B-25 (add)

ERNUE=
AT
(30 White Secties

03s Butl Sectes
ENANKEONCED
JUSTIFIGATION. ..coamncecaanns e

@ rases e RS STIPR ORI bnd S uta a1 Sen e

DISTRIBUTION /AVAILARILITY & 10ET

TTDisl AVAIL exc xSl

H |

SYSTEVS GACL= OF TRY INC

ARMY SUPPORT FACILITY « 7702 GOV ERNORS DRIVE WEST, HUNTSVILLE, ALABAMA 35805 (205) 837 2400

RECORD OF REVISIONS

REVISION DATE DESCRIPTION
A 9/30/77 Documents the ARC CDC 7600 installation of REVS.

i
|
1
:
i

Revision A

" - UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Fntered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVY ACCESSION NO.

CDRL CO05 (Volume III)

3. RECIF‘K&_"S CATALOG NUMBER
!

|4 TITLE (and Subtitle)

REVS Maintenance Manual.

SREP Final Report, Volume ITLJ.

| 27332- 6921-926 V‘L

>

7. AUTHOR(s)

CONTRACT OR GRANT NUMBER(s)

TRW Defense and Space Systems Group
7702 Governors Drive, West
Huntsville, Alabama _ 35805

-

W. E. /Benmt aem F. N, [Bevgstresscr \ DASG60-75- c-npzzi
W. ‘://fc,/\’/! y G.,CJH. T
“NAME AND ADDRESS - B A— 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

6.33.C4.A

11. CONTROLLING OFFICE NAME AND ADDRESS
Ballistic Missile Defense Advanced Technolog
Center, P. 0. Box 1500, Huntsville, AL 35807

"/

LB

j2._REPORT DATE _

422

ATTN: ATC-P
14. MONITORING AGENCY NAME !_A‘QADRESS(II dlitferent {rom Controlling Office) 15. SECURITY CLASS. (of thia report)
UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGPADING
SCHEDULE

16. MIEYRIAUTION STATFMFENT /nf thia Rannrt)

Reference BMDSC-CRS letter dated 8 March 1977.

Cleared for public release - distribution unlimited.

. DISTRIBUTION STATEMENT (of the abstract enterod in Block 20, {f different from Report)

18. SUPPLEMENTARY NOTES

KEY WORDS (Continue on reverso side il nocessary and Identily by block number)

Requirements Engineering and Validation System
Requirements Specification Language

Automated Simulation Generation

Automated Documentation

Language Processors
Software Requirements Engineerin

!

ABSTRACT (Continue on reveres a/de If nccesaary and Idantily by block number)

e

This document presents maintenance material for the Requirements Engineering
and Validation System, a software system to support the generation, valida-
tion, and documentation of software requirements.*~

e

F ORM
JAN T

DD | 1473

FOITION OF 1 NOV 63 1S OBSOLETE

UNCLASSIFIED

SCCURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

497 67

27332-6921-026

REVS MAINTENANCE MANUAL

SREP FINAL REPORT - VOLUME III

CDRL C005 1 AUGUST 1977
CLEARED FOR PUBLIC RELEASE -~ DISTRIBUTION THE FINDINGS OF THIS REPORT ARE
UNLIMITED. REFERENCE BMDSC-CRS LETTER NOT TO BE CONSTRUED AS AN OFFICIAL
DATED 8 MARCH 1977. DEPARTMENT OF THE ARMY POSITION.

Prepared For

BALLISTIC MISSILE DEFENSE
ADVANCED TECHNOLOGY CENTER

DASG60-75-C~0022

TRW

DEFENSE AND SPACE SYSTEMS GROUP
Huntsville, Alabama

27332-6921-026

REVS MAINTENANCE MANUAL 1
SREP FINAL REPORT - VOLUME III

CDRL C005 1 AUGUST 1977
Principal Authors: Approved By:

W. E. Benoit

P. N. Bergstresser

L. J. Gunther

W. G. Heckler

G. C. Hitt Z /(77;%—

D. E. McQueen (AIC) L. R. Marker, Manager

R. W. Smith Software Requirements

Engineering Methodology Program

; .8 My %_f,{,/;]

M. E. Dyer /Manager ames E. Long, Manafer
SREP Software and Language Huntsville Facility
Development
E
Prepared For Ty s
; 0/1“.‘ 1 :' g
BALLISTIC MISSILE DEFENSE ~ L ,?r:’,‘. T
ADVANCED TECHNOLOGY CENTER W_[af? [CHY e
DASG60-75-C-0022 HU Nov

| e g—

TRW

DEFENSE " PACE SYSTEMS GROUP
Huri.. 1le, Alabama

i

TABLE OF CONTENTS
Section Title Page
1.0 R B G O e ol &y b b (T 1-1
el PURBOSE S O MANI A et e s S B o e 1-1
$.2 PURPOSE OF SOFTHARE . . & < i s v s & 80 s % i & 1-1
2.0 ENVIRONMENT/SYSTEM DESCRIPTION . . . v v v v v v v v v v . 2-1
o) VRSN S T e e e i R e 2-1
2.2 /ASC INTERFAGING SOFTWARE. . ¢« & . v & w'm o w5 2-1
2.3 CDC INTERFACING SOFTWARE. . & « & « o o o 5 & = « = » 2-2
2.4 ASC COMPUTER AND INTERFACING HARDWARE 2-3
2.5 CDC COMPUTER AND INTERFACING HARDWARE 2-3
3.0 COMPUTER PROGRAM DESCRIPTICN - REVS. 3-3
3.1 REVS ERECUEIVE SEREVSE ol o e v o n ot e e e e e e 3-3
SLh e RENS Inout CAXREVSEND = % d s o i e e 5 a 3-6
3.le2 REVS Output (AXBEVSOUTY . o ol v o hi%e % 3-10
Fela3: EASSMEReER S L MRl o e S e 3-13
3.2 RSL TRANSLATION (RSLE; RSEXINDY. & v o v 5o v o o o » 3-20
3.2.1 Overall Structure of the RSL Translator . . . 3-21
3:2.2 - The Syntactic Analyzer. . . < « o & o« % 5.+ = 3-23
S.2.3 TherbexicdlAT@IYZer = o & v o v 5 v o e 3-29
3.2.4" ‘The Semantic Andllyzer . oo s w o v o & = = o 3-31
Judn s Errar Hatd g o e i e e 3-90
3.3 INTERACTIVE R-NET GENERATION (RNETGEN). 3-93
3.3.1 Begin:Structure (HISTRIYPEL . ¢ . v & « & @ = 3-98
3.3.2 Create Node (TICRMODE). . . « & « « « = « = 3-103
3.3.3 Delete Node (IIDENODE). « . . . 3-108
Jedad Move Node (IIMVNODE) ¢ ¢ « ¢ v « & . 3-111
3.3.5 Join Nodes (IIJNNODE) . . . & & ¢ = « « « & » 3-114
3.3.6 Disjoin Nodes (LIDINODE). - » o & » s o = « 3-117
3.3.7 Comment Node (IICMNODE) ¢« « ¢ « v « « . 3-119
3.3.8 Successor Nade (LISUNGDE) < < ¢ & < » & = = « 3-121
3.3.9 Seroitl Neth GDESCROEDIES . & o e ene e o v 4 s 3-124
33U SaverNeC CRISAVEN o s vie v = 8 ais o o s 3-127
3.3. 11 Zoom=0ut On Net C(TLZEOMOUT) . o « = « « « = » 3-130
3.3.12 Zoom=In On Ret (IIZOOMINY ¢ « « . ¢ &« « « « & 3-132
3.3.13 Generate CALCOMP Plot (IICALCOMP) 3-135
3.3.14 Set Colow (UICOEORN sidis vl « o s 5% & = 3-137
3.3.15 Wisplay Brawch (LIDSPBRNY . & « 5 s v = = @ 3-139
3.3.16 Display Node (IIDSNODE) 3-142
33 1l Display Net (LIDISNER] « oo v v v o & % v 3-145
3.3.18 Display Zoomed-Out Net (IIDISZOUT) 3-148
3.3.19 Menu Read (IIMENUREAD) v ¢« v « « « . 3-150
3.3.20 CALCOMP Nat Display (CCNET) &« + « ¢ = v & & 3-153
3.3.21 Autoplot (ITAUTOPLOT) « + v v v v o v o o o . 3157
3.3.22 Move Subtree (IIMVSUBTREE) . . . « ¢ « . . . 3-160
it Revision A

TABLE OF CONTENTS (Continued)

Section Title Page
3.4 REQUIREMENTS ANALYSIS AND DATA -EXTRACTION (RADX). . . 3-163
3.4.1 Define Set (QQDEFINESET). . « « o & o = & o & 3-171
3.4.2 Combine Sets (QOCOMBINESET) . . o « « o « » & 3-173
3.4.3 Cuatify Set (OOOQUALSET) . . « = » « o o s » = 3-176
3.4.4 Define Hierarchy (QQDEFHIER). 3-180
3.4.5 List or Qualify Set by Hierarchy (QQDOHIER) . 3-182
3.4.6 Define Append Options (QQDEFAPPEND) 3-186
3.4.7 List Element [BOLISTELT). . & « v o « o & = o 3-188
3.4.8 List ROL [OOLSTRSEY < « v o s 5.5 % % 6.4 & @ 3-192
3.4.9 Requirements. Analysis (QQANALYZE) 3-196
3.4.10 Data Flow Analysis (QQDATAFLOW) 3-203
3.4.11 List Permisston (QOLPERM) . . + v ¢ ¢ o « « » 3-208
3.4.12 Plot Structures (QQPLOT) 3=210
3.5 SIMULATOR GENERATION (SIMGEN) « . « « « .« . . 3-212
3.5.1 Data Translation (GGTRDATA) 3-226
3.5.2 Event/Enablement Translation (GGTREVNT) . . . 3-239
3.5.3 Validation Translation (GGTRVAL). 3-246
3.5.4 Alpha Translation (GGTRALFA). 3-249
3.5.5 R-Net/Subnet Translation (GGTRRNET) 3-267
3.5.6 Consolidation (GGCONSOL). « « . . . 3-272
3.5.7 Analytic Simulator Validation Translation 3-276
(GGTRVP)
3.5.8 performance-Requirement Translation (GGTRPR) . 2-383
3.6 SIMULATOR EXECUTION (SIMXQT). + v v v v v ¢ v o« « o & 3-295

3.7 SIMULATION DATA ANALYSIS (SIMDA). . . . + ¢ v ¢« « « . 3-298

4.0 COMPUTER PROGRAM DESCRIPTION - REVS GENERATED

SIMULATOR PROGRAM: & v v s o o s o 5 « & % 5 & % & & & o % 4-1

4,1 SIMULATOR INITIALIZATION (EEINITIAL). « . . . 4-3

4,2 SIMULATOR EXECUTIVE (EEXEC) . v v v ¢ ¢« ¢ ¢ v v o o & 4-8

4.3 SIMULATOR EVENT MANAGEMENT. « ¢« ¢ v ¢« « o« o & 4-11
4.3.1 SEFEVENT, . s vie moos e R . 7o o 4-1
4,3.2 Remove Event (EERTOPE). v 5 v ow Bl

4.4 SIMULATOR DATA MANAGEMENT v ¢ ¢ ¢« v v « v o & 4-16
& AT CRENTE (EEBCRERTE). & ¢ = - s'v » win . 4 R
4.4.2 DESTROY (EESDESTROY). o « v v v v » w o & 4-24
4.4.3 FORM (EEBFORMY. . & ¢ v & e v w d % & % 5 4-26
G840 FOR BRGH. ¢ v ¢ o 5 5 © @ 3 % & v % & % & » % 4-28
4. 0.5 - SEEECE PIRSE: < & sl¢ v o % @ w v o & & % 4 4-31
0.0 - SEREGR NEXT. . & o dis &8 e 8w o e RS
G807 SEY EEESSENYR) % s s v Bla i v o n & & % % 4-39
4,4.8 UPDATE (EESUPDATE). « + v « ¢ « v o o o « o & 4-42

iv

TABLE OF CONTENTS (Continued)

Section Title Page
5.0 COMPUTER PROGRAM DESCRIPTION - REVS GENERATED
SIMULATOR POST-PROCESSOR PROGRAM 5-1
5.1 SIMULATOR POST-PROCESSOR INITIALIZATION (VVINITL) . . 5-5
5.2 SIMULATOR POST-PROCESSOR EXECUTIVE (VVMAIN) 5-8
5.3 SIMULATOR POST-PROCESSOR DATA MANAGEMENT. 5-10
5.3.1 SELECT FIRST/NEXT VALIDATION POINT RECORDING
SRR o e e s 5 S LR 5t 5-12
5.3.2 FOR EACH VALIDATION POINT RECORDING (FEVPR). . 5-16
5.3.3 SELECT FIRST/NEXT FILE RECORD (SFNFR). 5-18
5324 EOREACHEEELENRECOREMIEEER .. L . s s . 5-22
6.0 ENSTALLATION PRUCEDURES., o v (s o 5 miw & S W s e 6-1
6.1 SYSTEM INSEALEATION . v o « v = 2 v = ol e = o & 5 & s 6-1
6.2 PROGRAMACONSTRUCTEONL S il e dihel e e 5 ot b 6-1
Bl) S MG R Gy e e e ol St s s o 6-3
(51, A =]) S R el B ey B e i A e i B e S R 6-7
7.0 DETATEERHDATAT %o 3 5 U e B s e Siw e Gk e) s 7-1
7«1 SGETMWARE DEIIVERABLESSEIEE L o 0 o e v e o o s e 7-1
o2 TREV S RNTERNARS T ES S A s e v i s e e s el s 7-4
7.2.1 Abstract System Semantic Model (ASSM). 7-5
7.2.2 RSL Transtator Input Files w ¢ . « & « w o & & 7-10
7.2.3 Simulator Generation Input Files 7-11
7.3 SUPPORT SOBTWAREUTILTEEES . sl o's v vid e w6« v o o 7-1
7.3.1 Lecarme-Bochmann Compiler Writing System . . . 7-14
132 DatdiBase Conkrofll Systen . v v @« v = 5 . 7-18
8.0 EHANGES GONSTDERNBEONS IR L ety o e e e e o b sl ek s 8-1
8.1 REVS EXECUTIVE CHANGE CONSIDERATIONS. 8-1
8.2 RSL TRANSLATOR CHANGE CONSIDERATIONS. 8-1
8.3 RNETGEN GHANGE CONSIDERATIUNS « o« « « ¢ o o v« « & 8-3
8.4 RADX CHANGE CONSIDERATIONS. . . . ¢« ¢ ¢ ¢ ¢ v ¢« o « & 8-3
8.5 SIMGEN CHANGE CONSIDERATIONS. ¢« . « .. 8-4
8.6 SIMXQT CHANGE CONSIDERATIONS. « « « « .« . 8-7
8.7 SIMDA CHANGE CONSIDERATIONS « <« o < s & s % o o & v 8-7
9.0 REEERENGBSC T S e i o v ol ot e a6 o o 1 e et 6 9-1
APPENDIX A - RSL TRANSLATOR ERROR MNEMONICS . « « « « « « « s « . A-l
APPENDIX B - REVS INSTALLATION AND MAINTENANCE ON COC B-1
» Revision A

YV — Y T YT P ——T—

LIST OF ILLUSTRATIONS

Figure Title

3-1 RENS Exéentive MRENS). . . . ' v i s i s o as o
3-2 REVS Inpat (MARBVSIND. . o o v hils on o oo s 5w r s
3-3 REVS Output (XREVSOUT). . & & v i & v v s oo n o o
3-4 Structure of the RSL Translator, , .,
3-5 BHETGER Manth . . 0 v v e s e s e e s a s .
3-6 R-Net Generation (RNETGEN) « v v v v v v .
3-7 Begie Structure (TISIRTYPE], | @ « o o s 5 « & = =
3-8 Create Node (RIGRNODEY o 0 i v
3-9 Delete Rode (PIDENODE) & ¢« s 5 5 s v « = = 5 5

3-10 Move Node (IIMVNODE)
3-11 Join Nodes (IIJNNODE)
3-12 Disjoin Nodes (IIDJNODE)
3-13 Comment Node (IICMNODE)
3-14 Successor Node (IISUNODE)
3-15 Scroll Net (IISCROLL)
3-16 Save Net (IISAVE)
3-17 Zoom-Out On Net (IIZOOMOUT)
3-18 Zoom-In On Net (IIZOOMIN)
3-19 Generate CALCOMP Plot (IICALCOMP)
3-20 Set Color (IICOLOR)
3-21 Display Branch (IIDSPBRN)
3-22 Display Node (IIDSNODE)
3-23 Display Net CRIBISNET) . . ¢ o 'v c e @ vin & o o R e

3-24 Display Zoomed-Out Net (IIDISZOUT) « . . Ee R

3-25 Menu Read (IIMENUREAD)
3-26 CALCOMP Net Display (CCNET)
3-26.1 Autoplot (IIAUTOPLOT). . . v & v v v v v v e v e e e e
3-26.2 Move Subtree (IIMVSUBTRLE)
3-27 RADX Data Structures for Set Management
3-28 Requirements Analysis and Data Extraction (RADX)
3-29 Define Set (QQDEFINESET)
3-30 Combine Sets (QQCOMBINESET)
3-31 Qualify Set (QQUALSET)

ooooooooooooooooooo

.................

................

oooooooooooooooo

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
3-32 Define Hievarchy (QODEFRIER) + « » « « = s o 5 5 s & » » » 3-181
3-33 List of Qualify Set by Hierar.)y (QQDOHIER). 3-184
3-34 Define Append Options (QQDEFAPPEND). . . . « « « . . « . . 3-187
3-35 List Element (QQLISTEET) v o @i e o 6 ¢ o s o 6o o s o o 3-189
3-36 List RSL (OOLSTRIE): ~ « w5 = 48 © 5% % s m & w & & & 4 3-193
3-37 Information Network. . « « « « v ¢« v ¢ v v v 0 o o v o 0 W 3-198
3-38 Requirements Analysis (QQANALYZE). « . . . « . . 3-199
3-39 Data Flow Analysis (QQDATAFLOW). . . « « « & v ¢« v v o o 3-205
3-39.1 List Permission (OOLPERMY. '« - = ¢ = « « = o & 5 ¢ 5 ¢ « @ 3-209
3-39.2 Plot Structures {OOPLOT) « « » o 5 ¢ o 5 o o & s 2 5 & » » 3-211
3-40 Overview of Simulator Translation List (STL) 3-219
3-4] ALPHA LISt (AEPALIST L. | . v v i b o x o n 6 % mon5s s 3-220
3-42 ENTITY CLASS LAgt fEUSSLEST) & &+ w « v s o o5 5 o n 5 « 3-221
3-43 STL Subilist (EVNTLIST) - v i v o' @ o owie 5 % 5 5 o 5 3-222
3-44 FILE BAsh CRRERE IR e s e e m s o e W e 3-222
3-45 INPUT and OUTPUT_INTERFACE List (INLIST, QUTLIST). 3-223
3-46 R_NET, SUBNET, and Simple DATA List (RNETLIST, SNETLIST,
AN SERELISN T e o o e gl G, Wil e e ek 3-224
1 3-47 VALIDATION POINT List (VALLIST). 3-224
: 3-48 Simulator Generation (SIMGEN). 3-225
3-49 RDS Allocation and ACCESS. . « » & = « s » v & v o 5 s & & 3-232
3-50 Data Translation (GGTRDATA). « v v v v v v v o v . 3-233
3-51 Example Formats for EEVLIST and EEDEPLST 3-243
3-52 Event/Enablement Translation (GGTREVNT). 3-244
3-53 Validation Translation (GGTRVAL) v « . . 3-248
3-54 Keyword Record SEPUCLUTE o « « s s « o & « o & & o o = & = 3-258
3-55 Alpha Translation (GGTRALFA) v v v v v v v « 3-259
3-56 R-Net/Subnet Translation (GGTRRNET). « . « « . . 3-270
3-57 Simulator Program Organization 3-274
3-58 Consolidation (GGCONSOL) . . . « v v v v v ¢ ¢« ¢ v « o v « 3-275
3-58.1 Analytic Simulator Validation Translation (GGTRVP) 3-279
3-58.2 Performance-Requirement Translation (GGTRPR) 3-286
3-59 Simulator Execution (SIMXQT) ¢« ¢« v v ¢« v v v o o 3-297
3-60 Simulator Data Analysis (SIMDA). . . . « ¢ « v v ¢ « « . 3-300
vii

e ~A-u----u-lllllIlllIiIllllIlilllIIIIIIIIIII.IIII‘II..II'

Figure
4-1
4-2

4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-1
4-12
4-13
4-14
4-15

LIST OF ILLUSTRATIONS (Continued)

Title

Simulator Program Overview « « « « . . .
Simulator Program (EEPROGRAM). . . - . « « « « s « = « « &
Simulator Initialization (EEINITIAL) « . . .
Simutator Executive (EEXEC): v o o li & v oo 5 2 s o & «
S e o e AR o) ol i iy Sl s SGER i ol . = ORE)
Remove Event (EERTOPE) « » o « o s s s o v o 5 2 » % 5 =
Simulation Data Manager Components «
CRENTE (EEBCRERBE) = v v s o v v & 5 nile s ale & aiss 8 =
DESTRAY(EESDE SR O o e o e ol e b b, S T i
FORM CBERPORIT - o i 0 s 30 cd e min b a5 9 e
R A e e e A e e < IVl v ol TS T 5
SEEECTBIRST St e e A IR oo andihon o, R Ly, o
S E R G N e e e s e I IS e T et TS0
SEL AERHSEIYPY wis o 5 v s e e e W m w w o
UPDATE (EEBUPBAIE) ~ - = ¢ 5 = 5 v 5 s o 2 mon =% & 3in
Simulator Post-Processor Overview. « . « . . .
Simulator Post-Processor Program (VVEXEC).
Simulator Post-Processor Initialization (VVINITL).
Simulator Post-Processor Executive (VVMAIN).
Simulator Post-Processor Data Manager Components
Select First/Next Validation-Point Recording (SFNVPR).

For Each Validation-Point Recording (FEVPR).
Select First/Next File Record (SFNFR).
For Each EvletRecordl ol s o W i vl v ol b e i
Sample dob to Plnch REVS MAGrGS. « « v v « v v & « 0 v « «
Sample Job to Reconstruct REVS Load Module
Format of REVS Software Deliverables File

(9 Teack, 1OO0 BPL, L) o & v nin o s G mw i et
REVSEIB Moduile BTags e sis 5 s eile s i ol i v ke
ASSM CoONFRGUrEtION oo o at 5 ior v s o el e it o
Foymat OFf RISE < = e ai i a's foie wip v v o0 ey i
FOPAE OF SDEw = ¢ 4 o & v & il v e e e e

viii

LIST OF ILLUSTRATIONS (Continued)

Figure Title Faue
7-6 Sample Job for RSL Translator Construction 7-15
7-7 Sample Job to Initialize ASSM. 7-19
7-8 Sample Job to Initialize VV Data Base. 7-21
B-1 Job Bependency Chart . . o & 4 o s o eo sl e e e B-3

B-2 Deck Setup to Create SDF UPDATE File B-6

B-3 Deck Setup to Create the RSL Translator. B-8

B-4 Deck Setup to Construct the DBCS Library B-11
B-5 Deck Setup to Construct REVS Load Module B-13
B-6 Deck Setup to Construct VV Library B-15
B-7 Deck Setup to Create Null Data Bases B-17
B-8 Deck Setup to Create RISE. v sl v e oli @ o w o w0 & s s s B-19
B-9 Deck Setup to Construct ISL EMulatorS. « « « « o & = « =« B-21
B-10 Deck Setup to Construct REVSLIE Library. B-23

B-11 Deck Setup to Create Nominal ASSM. ¢ « & o & & « o =« & = = B-25

LIST OF TABLES

Table Title Page

3.1 Condensed RSL SYREAX. .« v & o o v o o 5 b wom e e e s 3-24

3.2 RSL Translation Stop and Continuing Symbols. 3-91
ix

Revision A

'l'F""1r"""""”"""“""“""""""""'“""""7

1.0 IKTRODUCTION

The Requirements Engineering and Validation System (REVS) is a soft-
ware system designed to support the development and validation of software
requirements. REVS was developed for the Ballistic Missile Defense Advanced
‘ Technology Center (BMDATC) under the Software Requirements Engineering
’ Program, a research program concerned with the development of a systematic
approach to the development of complete and validated computational require-
ments specifications and consists of: concepts and structured techniques for
decomposition of requirements, the Requirements Statement Language (RSL),
REVS, and the procedures for their application.

1.1 PURPOSE OF MANUAL

This maintenance manual provides information necessary to maintain the
Requirements Engineering and Validation System (REVS) installed on both the
Texas Instruments Advanced Scientific Computer (ASC) and the CDC 7600 Com-
puter Tocated at the BMDATC Advanced Research Center (ARC). The operation
of each REVS function is documented to provide a clear understanding of its
processing and functional organization. This material updates the informa-
tion provided in the REVS Software Design Document [1].

REVS is implemented and maintained in the Process Design Language (PDL 2)
(2] on the TI-ASC while on the CDC 7600 it is implemented and maintained using
the PASCAL compiler and other SCOPE 2 System support software as outlined in
Section 2. The REVS source code contains documentation of the operation of
the REVS procedures obtainable from the Process Design System (PDS 2). This
same information is retained on the REVS program library file in the form of
a single deck (REVSDOC) and can be obtained via the CDC UPDATE [22] source
manager. This manual does not repeat that information. Instead it is
intended to provide maintenance personnel with an understanding of each
operation REVS performs and to guide the programmer to the REVS procedures
which perform these operations. Thus this manual should be used in conjunc-
tion with the source code documentation.

1.2 PURPOSE OF SOFTWARE

The Requirements Engineering and Validation System (REVS) provides the
capability to maintain, analyze, simulate, and document software requirements

1-1 Revision A

stated in the Requirements Statement Language (RSL) [3]. RSL and REVS
were designed to meet the needs of Ballistic Missile Defense (BMD) systems
and other large real-time systems with imbedded software, and to provide a
degree of precision, automation, and confidence in software requirements
development unattainable by conventional means.

1-2

2.0 ENVIRONMENT/SYSTEM DESCRIPTION

The Requirements Engineering and Validation System (REVS) operates
on both the Texas Instruments Advanced Scientific Computer (ASC) and the
Centrol Data 7600 Computer at the BMDATC Advanced Research Center (ARC) in
Huntsville, Alabama. The following subsections identify the system soft-
ware and hardware environment for the two computer systems at the ARC in
which REVS operates.

2.1 SYSTEM OVERVIEW

REVS has been designed to operate in both on-line and off-line mode
: under control of the standard operating systems on both the TI-ASC and
E CDC 7600 to allow user selection of all REVS functions (except REVS Executive)
| in any order and any number of times during a single REVS execution. Simu-
lator load modules are dynamically built under REVS control, not requiring
the REVS user to use the Job Statement/Control Language. Thus, although
REVS utilizes separately configuration controlled software, this is done in
a manner which is transparent to the user and does not require special modi-
fication of the externally maintained software. All other software used by
REVS 1is under the direct caontral of the REVS Executive.

2.2 ASC INTERFACING SOFTWARE

REVS operates under control of the standard TI-ASC General Purpose
Operating System (GPOS), explicitly using the following components during
installation or execution:

e Job Statement Language (JSL) [4]
e FILECOPY Utility [5]

e FORTRAN Compiler (NX) [6]

e Linkage Editor [7]

e System Object Library

e Supervisor Service Calls [8]

® Source Management System (SMS) [9]

2-1 Revision A

| | —

e Card Image File Editor (CIFER) [10]

e Partitioned Direct Secondary Access Method (PDSAM)
Utilities [11]

In addition to the standard ASC system software, REVS uses the TI-
Huntsville developed Process Design System (PDS 2) [2] and the following
components in particular:

e Source Library Management System (SLMS)
e Configuration Processor
e Process Design Language Compiler (PDL 2)

e Object Module Processor

e Overlay Processor
o Object Library Utilities

e PDS Macros

REVS also utilizes several libraries on the ASC that have been
installed by the ARC contractor for local use:

e Off-line Plotter Library (CALCOMP) [12]
e On-line Color Graphics System (ANAGRAPH) [13, 14]

2.3 CDC INTERFACING SOFTWARE

REVS operates under control of the SCOPE 2.1 operating system on the
CDC 7600 computer system located at the ARC. The following system components
are explicitly used during REVS installation or execution.

e JOB CONTROL LANGUAGE FOR SCOPE 2 [20]

e FORTRAN COMPILER (FTN) [21]

e UPDATE [22]

e PASCAL Compiler [25]

e LOADER [23]

e Off-line Plotter Library (CALCOMP) [12]

e On-line Color Graphics (ANAGRAPH) [13,14]

2-2 Revision A

e LIBEDT (Library Manager) [20]
e COMPASS (CDC Assembler) [24]

REVS provides for the use of all ARC ASC hardware facilities available

2.4 ASC COMPUTER AND INTERFACING HARDWARE
' through the operating system:

o Central Processor

o Central Memory

0o Memory Extension

o Disks (Head per track)
o Tapes (7 and 9 track)
o Card Reader and Punch
o Line Printer

In addition to the standard ASC configuration, there are other hardware
systems installed at the ARC with which REVS interfaces and utilizes:

o Off-line Paper Plotter (CALCOMP) via 7 track tape
o0 On-line Color Graphics System (ANAGRAPH)
2.5 CDC-7600 COMPUTER AND INTERFACING HARDWARE

REVS provides for use of the following CDC hardware facilities avail-
able through the operating system.

e Small Core Memory (SCM)
e Large Core Memory (LCM)
e Central Processor

o Disks

e Tapes (7 and 9 track)

e Card Reader and Punch

e Line Printer

2-3
Revision A

As on the ASC, REVS on the CDC-7600 also interfaces with an utilizes
the following hardware systems installed at the ARC.

e Off-line Paper Plotter (CALCOMP)
e On-line Color Graphics (ANAGRAPH)

2-4 Revision A

3.0 COMPUTcR PROGRAM DESCRIPTION - REVS

The Requirements Engineering and Validation System (REVS) maintains,
analyzes, simulates, and documents software requirements stated in the
Requirements Statement Language (RSL). The REVS software is organized by
function into the following components:

® REVS Executive

® RSL Translation (RSL, RSLXTND)

e Interactive R-Net Generation (RNETGEN)

® Requirements Analysis and Data Extraction (RADX)
e Simulator Generation (SIMGEN)

e Simulator Execution (SIMXQT)

e Simulation Data Analysis (SIMDA).

REVS is controlled by the user through the REVS Control Language (RCL).
RSL, RCL, and the operational instructions for each of the REVS functions are
documented in the REVS Users Manual [3]. These functions are briefly
described below and are documented in the remainder of this section. The
Simulator Program generated by REVS is documented in Section 4. The REVS Users
Manual [3] presents a complete 1ist of messages which can be generated by any
of the REVS functions.

REVS Executive

REVS is controlled at the highest level by the REVS Executive. It pro-
cesses the Executive portions of the REVS Control Language (RCL) to invoke
the various REVS functions and to select Executive options. The REVS
functions, with the exception of RNETGEN, interface with the user through
the Executive input and output procedures. The functions access the require-
ments data base, the Abstract System Semantic Model (ASSM), using the ASSM
Access utilities of the Executive.

RSL Translation

RSL Translation parses RSL statenents, performs syntax and semantics
checks and enters the requirements into the ASSM or modifies the ASSM as
directed by the RSL. The RSL translation function supports both the
entry/modification of requirements in RSL and the entry/modification of
extensions to RSL.

Interactive R-Net Generation

RNETGEN allows the user to interactively create, retrieve, and
modify R-Nets in a graphical form from the Anagraph termminal. The R-Nets
and graphics information are maintained in the ASSM. RNETGEN also pemmits
the user to develop a graphical representation of an R-Net previously
defined through RSL.

Requirements Analysis and Data Extraction

RADX performs analysis on the requirements stored in the ASSM and
provides the user with diagnostics concerning consistency and completeness
of the requirements. RADX also contains a generalized query system which
permits the user to selectively extract information from the ASSM and out-
put it in RSL.

Simulation Generation

SIMGEN translates the R-Nets, data and simulator model descriptions
and their relationships established in the ASSM into Process Design
Language (PDL 2) components, consolidates these with REVS provided simu-
lator utilities and an externally provided driver, and compiles and 1link
edits the procedural code into an exccutable simulator.

Simulation Execution

Simulator run-time parameters are processed by SIMXQT, in preparation
for execution of a REVS generated simulator.

Simulation Data Analysis

Simulation post-processor run-time control parameters are processed by
SIMDA. A parameter file to be read by the Simulator Post-Processor Program
is also constructed by SIMDA.

)
I
[a]

3.1 REVS EXECUTIVE (REVS)

Description

The REVS Executive function establishes the initial conditions needed
for the execution of REVS, changes state from executive to function and
back to selectively execute REVS functions as directed by RCL Executive
Commands (REVS-EXEC-RCL), changes mode from off-line to on-line and back,
and terminates execution when requested. A1l input statements from XXREVSIN
are routed to XXREVSOUT before performing the specified operation. Unrecog-
nizable statements are merely flushed with a diagnostic while valid
executive state statements are accompanied by action messages. Although
the Executive passes control to functions as specified by RCL, it retains
ultimate supervision and teminates functions and REVS executions in an
orderly manner when run time errors require it.

Input
REVS-EXEC-RCL - Executive state RCL only

IR R T TR

R

Processing

REVS Executive processing is shown in the flow diagram of Figure 3-1.
The following comments refer to processing steps in the flow diagram.

(1] - A1l Executive variables and files are
set as well as global variables and
files required for inter-function use
(e.g., ASSM Access and Calcomp plot
subfunctions).

[4] - The Executive receives only executive
RCL statements which are limited to
executive state use only. Other execu-
tive RCL statements which are immediate
are processed within XXREVSIN.

[5] - XXREVSOUT is sent a demarcation line
before and after function execution to
clearly identify which output is
from the Executive and which is from
the function. If a graphics console
synchronization error occurs following
RNETGEN execution, the Executive notes
this on XXREVSOUT and recovers.

e B R A AN o N S MR

3-3

[6] - There is no limit to th~ number of mode
changes unless conditioned by the user
with a GO ONLY statement which causes
the next GO statement to be interpreted
as a STOP statement. An appropriate
message is issued as for all other
executive actions.

(71 - A mode change to on-line causes one
Anagraph console to be reserved by the
Executive with an initial display of
the TRW/SREP logo accompanied by the
user identification. A mode change to
off-Tine causes the same TRW/SREP display
followed by release of the console.

[9] - The Executive never runs out of input
before encountering the STOP statement
Jjust as functions never run out of input
before encountering the FEND statement,
thereby obviating the need for an inde-
pendent end-of-file test.

[11] - The user can specify that the job is to
be stopped with the STCP JOB statement.
This kind of abort suppresses tape saves
or sirmulator builds/executions.

Procedure References

The following list correlates the functional processing steps shown
in Figure 3-1 with the REVS procedures in which the processing is performed.

1] - XXUINIT ,

[2-9] - XXREVS i

[10] - XXUTERM
3-4 \

T

U _—.—.——-_—-“

INITIALIZE 1/0,

GLUAL VARIALLES,
EACCUTIVE STATE,
OFELLE MODE,

L

3
/i XXREVSIN 5!
OBTAIN NEXT IMAGE. /

3
[XXREVSOUT 7

ECHO IMAGE.

4
ELSE~ pcL TYPE.

GO

STOP NO
CONDI'_I'{XONED

ES
8 -

FUNCTION, |

EXECUTE
SPECIFIED FUNCTION.

ESTABLISH NEW
OPERATING MODE .

CHANGE [MAGE
TYPE TQ STOP.

Figure 3-1

CLOSE ALL FILES.

3-5

REVS Executive (REVS)

3.1.1 REVS Input (XXREVSIN)

Description

XXREVSIN is the Executive component which provides the standardized
input interface for the Executive-and all REVS functions. XXREVSIN supports
the standard off-line (batch) input file REVSIN, as well as additional user
specified files, and the on-line color graphics console. Although on-line
input images are limited to 72 characters in length, XXREVSIN will support
off-1line files with records up to 132 characters in Tength. However, the
normal size is 80. On each use of XXREVSIN the next image is returned from
the current input file, which may be the standard REVSIN file, an alternate
file, or the on-line console, as previously specified by REVS~-EXEC-RCL.
XXREVSIN logs all executive RCL unconditionally and logs function RCL and
RSL if specified by the user with a LOG ALL statement. The file source of
the input is shown on the log and executive RCL is time stamped.

XXREVSIN buffers (temporarily saves) some executive RCL statements
when a state change is implied, and generates an appropriate implied execu-
tive RCL statement. A subsequent call will then obtain the buffered image.

XXREVSIN contains the executive RCL translator since some RCL is
immediate in nature and is executed immediately upon detection. The trans-
lated statement is retained for use by the REVS Executive in those cases
where executive state is required for processing. Only semantically and
syntactically legal executive RCL statements are recognized by this trans-
lator, and all other input images are considered to be function RCL or RSL.

When in the on-line mode, the status display is updated whenever
executive RCL is processed so that the on-line user always has a current
dicsplay of the executive state variables.

Input

REVSIN FILES - Standard input, alternate addfiles, or
color console keyboard.

Output

IMAGE - The next input image available to the
caller, with blank fil1l and computed
length.
3-6

-

FEND - Function end of data flag.
STATDISPLAY - On-line status display. o’ o

Processing

XXREVSIN processing is shown in the flow diagram of Figure 3-2. The
following comments refer to processing steps in the flow diagram.

[1] = No function is allowed to read past
the FEND image and is aborted if it
tries.

[4] - Input images that require a state change

from function to executive are buffered
and an implicit FEND is generated to
synthesize what the user should have
provided.

[5] - The next image is obtained from the input
file REVSIN, the on-line console keyboard,
or an alternate file as determined by the
specification of mode and addfile by
the user.

[7] - The free form image is translated to a
coded matrix for use by this module and
the executive module.

[10] - This step is currently superfluous as
the RCL translator now includes this
logic for efficiency of translation.

[12] - Logging of function RCL is only performed
if explicitly requested by the user.

[16] - Executive RCL which requires the execu-
tive state causes image buffering when
cncountered in the function state.

[21] - Executive RCL which does not require
executive state is processed within
XXREVSIN.

[22] - The return status is set based on
whether or not the transmitted image
is a FEND.

3-7

T TR e——

Procedure References

The following list correlates the functional processing steps shown in
Figure 3-2 with the REVS procedures in which the processing is performed.

(2]
(3]
[s]
(7]
[13]
(15]
[19]
(21]

XXREVSLOG
XXHALT
XXGETIMAGE
XXCLASSIFY
XXREVSLOG
XXREVSLOG
XXREVSLOG
XXPERFORMANCE

3-8

e CHENEh———

@——n

ATTEMPT
T0 EXCEED \JYES

FEND
?

NO

Y 1s

IMAGE
BUFFIERED

YES
6

ISSUE MESSAGE .

| GET NEXT INPUT IMAGE.

OBTAIN BUFFERED IMAGE

r_]

=

10

OVERR!DE IMAGE
TYPE TO NON RCL.

21

LOG IMAGE.

17

LOG IMAGE.

EXEC
STATE
RE JU?I RED

YES

aneecn 'Il\f‘!
SV et eceluce

18

GENERATE FEND.

19

LOG IMAGE.

YES

o c————————

PERFORM SPECIFIED

EXEC_RCL ACTION. 22

20715
[MAGE
IMMLOIATE
EXEC_RCL
7

NO

SET FEND
RETUPN STATUS.

Figure 3-2 REVS Input (XXREVSIN)

3-9

EXIT

3.1.2 REVS Output (XXREVSOUT)

Description

XXREVSOUT provides the standard output interface for the REVS Executive
and functions which causes print line images to be output to the off-line
printer and/or to the on-line console. On-line operations allow paging at a
rate determined by the user by requiring user stimulus when he is finished
with a page. A page wrapping technique is used which allows the user to
view a complete page at all times. Screen conditioning is required upon
first use of the console, or after dedicated use of the screen area by a
function such as Interactive R-Net Generation. REVS functions are, therefore,
insulated from the details of output routing which is user controlled. The
user stimulus (via the trackball) will specify to continue or to interrupt
the output flow. This status will be available to the function to enable
interruption of lengthy outputs and to direct a return to the input process
to determine the user's next request. The interrupt status will be reset on
the next call to XXREVSIN. In addition, the user can change the output
routing of off-line at that point if he so desires. That would not retro-
actively affect previously displayed output.

Input

IMAGE - The variable length image to be printed/
displayed_according to current routing.

hics The image has a length component.

SPACING - Spacing controls for off-line printing.

Qutput

IMAGE - A line is printed and/or displayed on the
console.

INTERRUPT - A signal to the calling program if the
user indicates an interruption is desired.

Processing

XXREVSOUT processing is shown in the flow diagram of Figure 3-3. The
following comments refer to processing steps in the flow diagram.

'F!F?"""""""""""""""""""""""""""'r

M - On-line routing is legal but ignored if
not in on-line mode.

[3] - The user controls the speed of page
wrapping by this pause for him to signal
when ready.

[4] - Previous page is not cleared to allow

maximum visibility of previous lines.

[6] - User can change output routing dynamically
without explicit RCL.

[9] - User can request function interrupt.
Function response is not enforced. In-
tended for large printing functions (RADX
is responsive).

[13] - Line below current one is blanked to
highlight page bottom.

[14] - Current line is always underscored in
red to highlight it.

[15] - On-line function RNETGEN can reserve the
normal XXREVSOUT page area for its use
in which case only one line is left to

use.

[17] - Off-line routing is optional.

[18, 21] - Automatic page skipping is performed on
XXREVSOUT.

Procedure References g

The following list correlates the functional processing shown in

Figure 3-3 with the REVS procedures in which the processing is performed.

(6] = XXPERFORMRCL

3-1

AN

XXREVSQUT

MODE &

ROUTING

Uil INE
?

WAIT FOR
USER STIMULUS.

« 3

RESET TO PAGE TOP.

WAS
OFFLINE
RONTINR

REQUESTE
?

WAS
IATERRUPT
PEQU%STED

12
YES

NO
13

BLANK NEXT LINE.

14 9

UNDERLINE CURRENT
LINE IN RED.

INDEX TO NEW POSITIG.'

CHANGE ROUTING
TO OFFLINE.

RETURN
INTERRUPT CONDITIWN.

SUPPRESS ONLINE
DISPLAY THIS LINE.

DISPLAY LINE

e

v
ROUTING
N0~ OFFLINE
?
fts
18
COMPUTE LINE

SPACING NEEDS.

19

WRITE LINE WITH
SPACING TO REVSOUT.

EJECT PAGE.

Figure 3-3 REVS Output (XXREVSOUT)

3-12

EXIT

3.1.3 ASSM Access

Use of the core Data Base Control System (DBCS) (15] software to interface
directly with the ASSM at the very lowest level would require more knowledge
of the data base system than the REVS tools designer requires or cares to
know. Therefore, a higher level interface to the ASSM, via the aforementioned
DBCS software, has been implemented which more conveniently meets the needs
imposed by the various REVS functions described in succeeding subsections
in Section 3.

The ASSM interface software can be grouped into four major categories: 1
ASSM Storage, ASSM Retrieval, ASSM Deletion, and ASSM Utilities. A list and
brief description of the ASSM Access procedures is presented below by
category.

ASSM Storage

This group of ASSM access procedures provides for storage into the
ASSM of all basic components which make up RSL in addition to some structure
related components which can only be entered via the RNETGEN function.

AAEET - Enters an element type.

AAEE - Enters an element.

AAEPR - Enters a primary relationship.

AAECR - Enters a complementary relationship.

AAERST - Enters a relationship subject element
type.

AAERQT - Enters a relationship object element
type.

AAEQOW - Enters an optional word.

AAEPOW - Associates an optional word to a pri-
mary relationship.

AAECOW - Associates an optional word to a
complementary relationship.

AAEA - Enters an attribute.

AAEAAT - Enters an attribute applicable element
type.

3-13

FT

AAEALV
AAENPET
AAERW
AAECS
AAETS
AAAC

AAERI
AAEAI
AAEAWV

AAAAV

AAENPN
AAESPR

AAENCXY
AAENCOL
AAENAXY

AAEORD

AAECE

AAENAE

AAACE

AAENBAE

AAEPER

Enters an attribute legal value.
Enters legal net/path element type.
Enters a reserved keyword.

Enters a comment segment.

Enters a text string segment.

Associates a text string to an applicable
ASSM component.

Enters a relationship instance.
Enters an attribute instance.

Enters an attribute instance without
its value.

Associates an attribute value to an
attribute instance in the ASSM.

Enters a node on a structure.

Enters the successor/predecessor rela-
tionship between two nodes on a structure.

Enters graphic coordinates of a node.
Enters color attribute of a node.

Enters graphic coordinates for the arc
between two nodes.

Enters the ordinal value of a structure
branch.

Enters the conditional expression for a
structure branch.

Associates an element to a node in a
structure.

Associates a conditional expression to
a node branch.

Associates an element to a node branch
in the ASSM.

Enters a given ASSM configuration

control permission with permission
level.

3-14

ASSM Retrieval

This group of ASSM access procedures provides for retrieval of all
data forms which may reside in the ASSM.

AARET - Retrieves an element type.

AARETE - Retrieves the element type of a given
element.

AARPR - Retrieves a primary relationship.

AARCP - Retrieves a complementary relationship
given the primary.

AARPC - Retrieves the primary relationship of a
given complementary relationship.

AARRLS - Retrieves a subject element type of a
given relationship.

AARRLO - Retrieves an object element type of a
given relationship.

AARPOW - Retrieves the optional word of a given
primary relationship.

AARCOW - Retrieves the optional word of a given
complementary relationship.

| AARA - Retrieves an attribute.

AARAET - Retrieves an applicable element type
for a given attribute.

AARALV - Retrieves the legal value for a given
attribute.

AARNPET - Retrieves a leqgal net/path element type.

AARRW - Retrieves a reserved keyword.

AARCS - Retrieves a comment segment.

AAREET - Retrieves an element of a given element
type.

AARRSE - Retrieves a subject element of a given
relationship instance.

AARROE - Retrieves an object element of a given
relationship instance.

AARRS - Retrieves a relationship instance given
its subject element.
3-15

WM

AARRO

AARAAE

AAREA

AARAVE

AARRI
AARAI
AARE

AARFN

AARSN

AARPN

AARNT
AARNCXY

AARNCOL

AARNAXY

AARORD

AARCE

AARTNODE

AAREAN

AARNAE

AARNBAE

Retrieves a relationship instance given
its object element.

Retrieves an attribute instance given
its applicable element.

Retrieves an applicable element given
an attribute instance.

Retrieves the attribute value for a
given attribute instance.

Retrieves a relationship instance.
Retrieves an attribute instance.
Retrieves an element.

Retrieves the first node of a given
structure.

Retrieves the successor node of a given
node.

Retrieves the predecessor node of a
given node.

Retrieves the type for a given node.

Retrieves graphic coordinates for a
given node.

Retrieves the color attribute of a given
node.

Retrieves the graphic coordinates for
the arc between two nodes.

Retrieves the ordinal value on a node
branch.

Retrieves the conditional expression
associated with a node branch.

Retrieves a node in the temporary
structure area. .

Retrieves an element associated with
a given node.

Retrieves a node associated with a
given element.

Retrieves a node branch associated with
a given element.

3-16

AAREANB - Retrieves an element associated with a
given node branch.

AARTS - Retrieves a text string.

AARRST - Retrieves next relationship having a

given legal subject type.

AARROT - Retrieves next relationship having a
given legal object type.

AARAAET - Retrieves next attribute having a
given legal applicable element type.

ASSM Deletion

This group of ASSM access procedures provides for removal of all data
forms which may reside in the ASSM.

AADET - Removes an element type.

AADPR - Removes a primary relationship.

AADCR - Removes a complementary relationship.

AADRST - Removes a subject element type for a
given relationship.

AADROT - Removes an object element type for a
given relationship.

AADOW - Removes an optional word.

AADPOW - Removes the optional word for a given
primary relationship.

\

AADCOW - Removes the optional word for a given
complementary relationship.

AADA - Removes an attribute.

AADAAT - Removes an applicable element type for

a given attribute.

AADALV - Removes the legal value for a given
attribute.
AADNET - Removes a legal net/path element type.
AADCS - Removes a comment segment.
AADE - Removes an element.
3-17

AADRI - Removes a relationship instance.

AADAI - Removes an attribute instance.

AADN - Removes a node.

AADSPR - Removes the successor/predecessor rela-
tionship between two nodes.

AADPER - Removes the given ASSM conficuration
control permission and its permission
level.

AADORD - Removes the ordinal for a given node
branch.

AADCE - Removes the conditional expression
associated with a given node branch.

AADNBAE - Removes the association of a given

. node branch to an element.

AADPS - Removes a structure.

AADTS - Removes a text string.

ASSM Utilities

This group of ASSM access procedures provides all additional needs
for interfacing with the ASSM and also supports many of the other ASSM
access procedures.

AAURTYP - Provides for changing the type of an
existing element in the ASSM.

AAURNAM - Provides for changing the name of an
existing element in the ASSM.

AAUBS - Performs the necessary initialization
for building a structure in the ASSM.

AAUES - Performs the cleanup necessary in the
ASSM upon conclusion of generating a
structure.

AAURCSTR - Retrieves the character string in the

ASSM associated with a given ASSM pointer.

AAURPTR - Retrieves the ASSM pointer for a given

character string. 5

AAURART

AAULEN

AAUPAD

AAPERID

Retrieves the record type (ASSM) for a
given record in the ASSM.

Computes the length of a given character
string.

Pads a character string with trailing
blanks.

Sets up current permission lTevel for
the ASSM.

3.2 RSL TRANSLATION (RSL, RSLXTND)

The RSL Translator is one functional componert of the Requirements
Engineering and Validation System (REVS). Its purpose is to translate
input stated in the Requirements Statement Language (RSL) into entries in
the REVS data base, the Abstract System Semantic Model (ASSM).

The RSL Translator operates in either of two modes, basic or extension,
corresponding to the REVS function to be performed, RSL or RSL extension
(RSLXTND). In the basic RSL mode, the RSL Translator supports the entry,
deletion and modification of requirements stated in the Requirements
Statement Language. In the extension mode, the RSL Translator supports
the entry, deletion and modification of the definitions of RSL element-
types, attributes and relationships.

The input to the RSL Translator is in the form of RSL command lists
as defined in a condensed form in Section 3.2.2. The syntax for the command
lists allows an arbitrary mix of RSL and RSL extension commands; the dis-
tinction between the types of commands is enforced by the semantic interpre-
tations for the command list constructs as defined in Section 3.2.4 (i.e.,
a semantic error is detected if an RSL extension command is input while the
translator is operating in the basic RSL mode). This combination of the two
types of commands into one syntax allowed for the most efficient and effective
use of the Lecarme-Bochmann Compiler Writing System [16, 17] as an aid in the
development of the RSL Translator.

3-20

3.2.1 Overall Structure of the RSL Translator

The RSL Translator is a procedure generated by the Lecarme-Bochmann
Compiler Writing System (L-B CWS). As such, it has the general structure
of L-B CWS cenerated compilers as described in the Compiler Writing System
User's Manual [17]. The discussion below is summarized from that source.
The actual usage of the Compiler Writing System and its inputs are described
in Section 7.3.1.

The translator consists of four functional segments: syntactic
analyzer, lexical analyzer, semantic analyzer, and error treatment. The
syntactic analyzer is the central function of the translator; i.e., it
controls the operation of the other parts. Each time the syntactic
analyzer needs another syntactic unit, it calls the lexical analyzer.
Each time it finds that a part of the source text corresponds to the
application of a particular part of the grammar, it calls a procedure in
the semantic analyzer to perform the appropriate action. In addition,
error treament routines exist to recover from the recognized error so that
the translation may continue. The error treatment routines may be called
by any function of the translator. In turn, they may call the lexical
or syntactic analyzers in their attempt to recover from the error. The
resulting functional structure of the translator is given in Figure 3-4.

The lexical and syntactic analyzers are supplied as standard source
code by the Compiler Writing System. No significant changes have been
made tc the syntax analyzer (parser) and only minor changes have been
incorporated into the lexical analyzer to support the translation of RSL.
The Compiler Writing System also provided the framework for the treatment
of errors; a framework which was tailored for use by the RSL Translator.
The semantic analyzer, in contrast, is almost totally dependent on the

language to be translated. As such, the bulk of the significant aspects
of the RSL Translator is concentrated on the semantic actions which the

translator takes, and the semantic errors which it detects.

Succeeding subsections describe the general approach used in each of
the functions of the translator. These descriptions, when combined with
the skeleton specification of the compilers generated by the Compiler
Writing System, constitute the functional design of the RSL Translator.

3-21

- —————l

SYNTAX ANALYZER

REVSIN

4

/

OBTAIN INPUT
LINE IMAGE.

/

£

/

LEXICAL ANALYZER

7

SEMANTIC ANALYZER @

e
REVSOUT

/

7l
ECHO BACK
INPUT RECEIVED.

/

ERROR TREATMENT

1

l

[REVSOUT /
REPORT ‘
ERRORS.

Figure 3-4 Structure of the RSL Translator

3-22

|

3.2.2 The Syntactic Analyzer

; To facilitate error recovery, the RSL input is processed on a

| sentence-by-sentence basis, rather than on a section-by-section basis.
Combination of sentences into sections is done semantically. Also,
periods are considered by the parser as separators between sentences
rather than a part of the sentence. This enables error messages to be
issued as soon as the period is read, rather than waiting until part of
the succeeding sentence has been processed.

Syntactic Treatment of Names (Identifiers)

There are essentially two classes of names recognized by the parser:
(1) previously defined attribute, relation, and element-type-names; (2)
previously defined element-names, and value-names and new (not previously
defined) names. Names of class (1) are treated by the parser as separate
syntactic entities, and have a semantic attribute which is a pointer to
the appropriate entry in the ASSM. Names of class (2) are syntactically
identical, but can be distinguished by their semantic attributes. (See
Section 3.2.4, "Semantic Treatment of Names".)

RSL Syntax (Condensed)

Table 3.1 contains a description of the syntax of RSL in condensed
i form more suitable for reading by humans than the full version which is
input to the L-B CWS. (See Section 7.3.1.) For each syntax production,
this table also identifies the page in Section 3.2.4 on which the
semantics for the production are documented.

3-23

Table 3,1 Condensed RSL Syntax

<errcr-level comnand>
| <applicable types>
| VALUE value-name [comment].

RSL PRODUCTION RULE P:gs
<command list>::=
{<ca-nand>}n end-of -file 3-33
Fps
<command>: := 3-34
[<section keyword>] <definition> 3-35
| RENAME element-name AS new-name [comment]. 3-39
| RETYPE element-name AS element-type-name. 3-40
| <error-level command> 3-41
| <extensfon-control command> 3-42
<extension-control command>::=
IDENTIFICATION name. 3-35
| EXTENSION_PERMISSIOH name. 3-36
| CONTROL_PERMISSION name. 3-37
| KESCIND PERMISSION name. 3-38 |
<error-level comand>::=
ERROR LEVEL integer. 3-42
{ <section keyword>::= 3-43
DEFIKE
) ADD
| DELETE
i MODIFY
<«definition>::= 3-44
<elerent-type definition>
{ «attribute definitions
| <relation definitions
| <elerent definition>
<element-type definitions::=
<elecent-type-definition header> a 3-45
{[tsentence keyword>] <element-type-definition sentencv}o
<element-type-cefinition header>:: - 3-46
ELEMENT TYPE element-type-name [comment]. 3-47
<element-type-definition sentence>::= 3-48
<error-level command>
1
NET
| ﬂkmxw:AwLmAMan{MTJ].
<sentence keyword>::= 3-49
INSERT
| REMOVE
<attribute definition>::= 3-50
<attribute-definition header> o
{[qentence keyword>] <attribute-definition sentence>}L
<attribute-definition header>::= 5 3-51
ATTRIBUTE attribute-name [comment]. 3-52
<attribute-definition sentence»::= 3-53

3-24

Table 3.1 Condensed RSL Syntax (Continued)

RSL FAOCUCTION RULE i
<applicable types>::= 3-54
APPLICABLE [ELEMENT_TYPE] <element types>.
<element types>::= 3-54
ALL =
| [ALL EXCEPT] {element-type—nawe}l
<relation definition>::= 3-55
<relation-definition header>
{[<sentence keyword>] <relation-definition sentence>}£
<relation-definition header>::=
1
{:Et:;}g:smp} <relation id> [comment]. g-gg
<relation id>::= 3-56
relation-name [(string)] 3-57
<relation-definition sentence>::= 3-58

<error-level command>
| <complementary part>

| <subject part>

| <object part-
<complementary part>::= 3-58

RELATION })
RELATIONS=1P

COMPLEMENTARY { <relation id>.

<subject part>::= 3-59
SUBJECT [ELEMENT_TYPE] [<element types>].

<object part>::= 3-60
OBJECT [ELEMENT_TYPE] [<element types>].

<element definition>::= 3-61

<element-definition header> .
[<sentence keywcrd>] <element-definition sentence>}0

<element-definition header>::= 3-62
element-type-name element-name [comment]. 3-63
<element-definition sentence>::= 3-64
<error-level command> 3-65

| <attribute declaration>

| <relation declaration>

| <path declaration>

| <structure declaration>
<attribute declaration>::= 3-64

‘vaIue-nare
attribute-name|. nurber [comment] 3-65
]stri ng 1

Table 3.1 Condensed RSL Syntax (Continued)

PAGE
RSL PRODUCTION RULE NO.
<relation declaration>::= 3-66
relation-name <object list>. 3-67
<object 1ist>::= = 3-66
[element-type-name] element-name [comment] } 3-67
A4
<path declaration>::= 3-68
, n
PATH [{(validation node>} END] [comment]. 3-69
1
<validation node>::= 3-68
[element-type-name] element-name [comment] 3-69
<structure declaration>::= 3-70
n
STRUCTURE (!<node>} END] (comment]. 3-71
2
<node>::= 3-70
<element node> 3-71
| <terminator>
| <and node>
| <or node>
| <consider-or node>
| <for-each node>
| <select node>
<element node>::= 3-72
[element-type-name] element-name [comment]
<terminator>::= 3-73
TERMINATE [comment)
| RETURN [comment]
<and node>::= . 3-74
DO [comment] <branch> {AND <branch>} END
1
<branch>::= ~ 3-75
<node>}
1
<or node>::= 3-76
IF [comment] <conditional branch>
n
{OR <conditional branch>}
0
OTHERWISE [<branch>] END
<conditional branch>::= 3-77
[integer] <condition> <branch>
<consider-or node>::= 3-78
<consider-data> 3-81
| <consider-entity-class>
<consider-data>::= 3-78

CONSIDER [DATA] enumerated-data-name IF [comment]
<consider-data branch> n

OR <consider-data branch>}
END !

3-26

Table 3.1 Condensed RSL Syntax (Continued)

RSL PRODUCTION RULE

PAGE
NO.

<consider-data odranch>::=
(<enureration-value-list>) <branch>
| (<enureration-value-list>)

<enumeration-value-list>::= >
enumeration-value-name {OR enumeration-va]ue-name}

<consider-entity-class>::=
CONSICZR [ENTITY_CLASS] entity-class-name IF [comment]
<consider-entity branch> n
{OR <consider-entity branch>h

END

3-81

<consider-entity-class branch>::=
(<entity-type-1ist>) <branch>
| (<entity-type-list>)

3-82

<entity-type-list>::= "
entity-type-name {OR entity~type-name}
o

3-82

<for-each node>::=
FOR EACH <for-each subject> [SUCH THAT <condition>]
D0 [corment] <for-each body node> END

3-83

<for each subject>::=
[FILE] file-name [RECCRD]
| [ENTITY_TYPE] entity-type-name
| [ENTITY_CLASS] entity-class-name

3-84

<for-each body rode>::=
[ALPHA] alpha-name [comment]
| [SUBNZT) subnet-name [comment]

3-85

<select node>::=
SELECT <select subject> SUCH THAT <condition>
[comment)

<select subject>::=
[ENTITY_CLASS] entity-class-name
| [ENTITY_TYPE] entity-type-name

3-27

'-.‘l’lllIllllllIllIIIIIIIllIIlIllllllllllllllllIlll.llllllllllllllllﬂhﬁhusw

Table 3.1 Condensed RSL Syntax (Continued)

<Boolean expression>::=
n
<simple Boolean> {<8 op> <simple Boolean>}o

| <simple Boolean>::= a
<Boolean term> {OR <Boolean term>}o

<Boolean term>::=

i n
| <Boolean factor> {AND <Boolean factor>}o

<Boolean factor»>::=
<Boolean> [<rel op> <Boolean>]
| <arithmetic expression> <rel op> <arithmetic expression>
<Boolean»::=
[NOT] <Boolean primary>
<Boolean primary>::=
TRUE
| FALSE
| data-name
| (<Boolean expression>)
<arithmetic expression»::=
[<ad op>] <arithmetic term> -
; | <arithemtic expression> {<ad op> <arithmetic tenm>}o

<arithmetic term>::= “
<arithmetic factor> {<mu1 op> <arithmetic factor>}o

<arithmetic factor>::=

number
| data-name
{ (<arithmetic expression>)
<B op>::=
EQU | XOR
<rel op>::=
slc|>| <] >=| o

<ad op>::=
+ | &
anul op>::=
* | /| DIV | MOD

RSL PRODUCTION RULE P:g[
<condition>::= 3-88
(<Boolean expression>) 3-89

3-28

3.2.3 The Lexical Analyzer

The function of the lexical analyzer is to scan the input stream
and to generate RSL terminal symbols for the syntactic analyzer. Some
semantic information is also generated for the terminals and associated
with them in the form of semantic attributes. The following paragraphs
identify the terminal symbols of RSL and provide a summary of the semantic
attributes associated with each symbol.

End-of-file

This symbol is generated when an end-of-file indicator is returned
from XXREVSIN. It has no semantic attributes.

Name

This is a sequence of up to 60 alphanumeric characters, the first
one of which is alphabetic. (The underscore character is considered
alphabetic.) Its semantic attributes include: (1) a flag indicating
whether the name can be found in the ASSM; (2) the type of ASSM record;
(3) a pointer to the ASSM record. If the name cannot be found in the
ASSM, it is either a value-name or a name being defined for the first
time. Names are kept in a one-position name table. When an unrecognized
name or possible value-name is processed by the lexical analyzer, it is
moved from working storage to the name table, and a flag is set indicating
that the name table is full. When the semantic analyzer determines that
the name is to be used, it moves it back to working storage and resets
the flag. If the semantic analyzer determines that the name is not to be
used, the flag is reset and the name in the table is discarded.

Two semantic errors can occur in the use of the name table: error
number 448 (too many new (undefined) names); error number 451 (new
(undefined) name was lost). These are only expected to occur as a result of
syntax errors or other semantic errors.

3-29

Comment

Comments are scanned completely and stored in the ASSM (with their
comment brackets) as a chain of text. The line structure of multi-line
comments is preserved as follows: (1) a new comment segment is begun when-
ever an end-of-line indicator is returned by XXREVSIN, regardless of the
number of characters scanned; (2) a single line which contains 60 or more
characters is stored as two comment segments, the first containing exactly
60 characters, and the second containing the remaining characters. (In the
case of a comment line containing exactly 60 characters, two segments are
generated, the second of which is null.)

The semantic attribute of a comment is a pointer to the first seg-
ment of the text chain in the ASSM. This will later be associated with
the appropriate ASSM record by the semantic analyzer.

String

Strings are processed in exactly the same way as comments. (The
delimiting double quotes are stored along with the text.)

Integer

The binary value of an integer is returned as its semantic attri-
bute. The character-string representing the integer is retained as a
global variable, for possible use as an attribute-value. A global value
is adequate for this purpose, since each attribute-value is processed
as a separate sentence.

Real Number

Real numbers are defined exactly as in PASCAL. Real numbers are
checked for validity, but have no semantic attributes. The character-
string representing the number is retained as a global variable, for
possible use as an attribute value.

Conditional Expressions

Conditional expressions are checked by the parser for syntactic
validity, but are also copied into the ASSM as a chain of text segments,
including the surrounding parentheses. A pointer to this string is 1
saved as the semantic attribute of <conditional expression>. Later the
semantic analyzer will associate this text chain with a node-branch of
a structure.

3-30

3.2.4 The Semantic Analyzer

The semantics of an artificial language is the output, other than
an indication of syntactic correctness, generated by the translator. In
the case of RSL, the semantics consists of a series of interactions with
the ASSM.

A semantic action may be taken by the RSL translator for each
production in the syntactic description of RSL which was input to the

L-B CWS (see Section 7.3.1). A semantic action has inputs which are the
semantic attributes associated with the symbols on the right-hand side of
a production. A semantic action may call the ASSM access routines to
retrieve information from or enter it into the ASSM. Semantic actions
may also test and set global variables which are internal to the RSL
translator. The highest level at which semantic action is taken is the
section. However, most information is processed at the sentence level,
and the only information retained between sentences is the type of the
header, the associated name in the ASSM, and the type of the <section
keyword>.

Production-by-Production Semantics

This section contains a description of the semantic actions for
each production of RSL, as expressed in the condensed RSL syntax shown
in Table 3.1. Since each production in the condensed syntax usually
corresponds to several productions in the syntactic input to the L-B CWS,
there is a similar subdivision of the semantics.

The semantics for each production is expressed in two parts, normal
semantic action and possible semantic errors. The tests for errors are
actually performed before any semantic action is taken, but the order
has been reversed in the description in order to clarify understanding
of the normal case. The name or names of the software modules which
perform each semantic action are indicated in parentheses following the i
description of the action. |

Semantic errors are communicated to the user in the form of integer
numbers. For each possible semantic error, the error number and the
software modules which can detect the error are given in parentheses

3-3

following the description of the error. A cross-reference between the
error numbers and the actual mnemonic names used in the RSL Translator
source code is presented in Appendix A. A complete listing of all

possible error codes and their interpretatiors is presented in the REVS
Users Manual [3].

In most cases, a semantic error invalidates the entire sentence and
a semantic error in a section header invalidates the entire section. A
few semantic errors result only in a warning message, and a few cause the
RSL translator to terminate abnormally (fatal errors).

The highest syntactic unit processed by the parser is the sentence,
so descriptions of semantic actions above the sentence level are actually
summaries of actions already taken at a lower level.

S Revision A

—————

<command list>::=

n
{<command>}] end-of-file

Semantic Action

After each command has been processed, and an end-of-file signal is
received from XXREVSIN, RSL returns control to the REVS Executive.

3-33

o

<command>::=

[<section keyword>] <definition>

Semantic Action

The <definition> is processed in the mode corresponding to the
<section keyword>. If no <section keyword> is present the default mode is
DEFINE, if the name in the section header is undefined, or MODIFY, if the name
in the section header was previously defined (ACTION).

3-34

<command>: :=

<extension-control command>
<extension-control command>::=
IDENTIFICATION name.

Semantic Action

This command identifies the user and estabiishes the appropriate per-
mission level (none, extension only, or ;ontro]) in accordance with the
permission level associated with the name (TTEXTCNTRL). This permission
lTevel remains in effect until superseded by another IDENTIFICATION command
or by the conclusion of the function execution. The name may have a maximum
of 58 significant characters to form a unique permission identifier, but is
maintained separately from all other RSL names so that no conflict can arise.

Possible Semantic Errors

The RSL translator was not invoked in extension mode, i.e., via
RSLXTND (500-TTEXTCNTRL).

3-35

[—————

i

<extension-control command>::= %
EXTENSION_PERMISSION name.

Semantic Action

AT Ay

The name will be entered in the ASSM and extension permission asso-
ciated with it (TTEXTCNTRL).

Possible Semantic Errors

1. The current permission level is not control permission
(497-TTEXTCNTRL).

2. A permission is already associated with the name (498-TTEXTCNTRL). i
3. No control permission exists in the ASSM (502-TTEXTCNTRL). §

3-36

P m————~,

<extension-control command>::=
CONTROL_PERMISSION name.

Semantic Action

The name will be entered in the ASSM and control permission associated
with it (TTEXTCNTRL). Note that control permission includes extension
. bermission.

Possible Semantic Errors

1. The current permission level is not control permission
(497-TTEXTCNTRL).

2. A permission is already associated with the name (498-TTEXTCNTRL).

3-37

[§

mm_mmﬁ. :

<extension~-control command>::=
RESCIND PERMISSION name.

Semantic Action

! The permission associated with the name will be rescinded. This takes
effect immediately unless the given name was the one used to acquire control
permission on the preceding IDENTIFICATION command, in which case it will take
effect at the next IDENTIFICATION statement or at conclusion of function
execution.

Possible Semantic Errors

1. The current permission level is not control permission
(497-TTEXTCNTRL).

2. No permission is associated with the name (499-TTEXTCNTRL).

3. The name has the only control permission in the ASSM and there
is at least one outstanding extension permission (501-TTEXTCNTRL).

3-38

<command>: :=

RENAME element-name AS new-name [comment].

Semantic Action

1. The name of the element will be changed (TTRENAME).

2. Any existing comment for the element will be removed
(TTATTCOM).
/
3. The comment, 1f given, will be associated with the element
(TTATTCOM).

Possible Semantic Errors

1. The new-name is already in use (449-ACTION).
2. The old element-name is not a valid element-name (479-ACTION).

3. The old name is an element- ~type-name, attribute-name, or relation-
name (syntax error).

3-39

<command>::=
RETYPE element-name AS element-type-name.

Semantic Action

The element-type of the element is changed to the new element-type
(TTRETYPE).

Possible Semantic Errors

1. The name is not a valid element-name (47Y-ACTION).

2. The element has an associated STRUCTURE and the new element-type
is not SUBNET or R_NET (475-TTRETYPE).

3. The element has an associated PATH (481-TTRETYPE). (Only
elements of type VALIDATION_PATH may have an associated PATH.)

4. The element is associated with a node of a structure and the new
element-type has not been defined with STRUCTURE APPLICABILITY
NET (427-TTRETYPE).

5. The element is associated with an OR-node or a node branch on
a structure (409-TTRETYPE).

6. The element is associated with a node on a PATH and the new
element-type has not been defined with STRUCTURE APPLICABILITY
PATH (480-TTRETYPE).

7. The existing attributes of the element are not applicable to the
new element-type (401-TTRETYPE).

8. The existing relationships of the element are not defined for the
new element-type (441, 442-TTRETYPE).

9. The element-type-name is the same as the element-type of the
element (487-TTRETYPE).

10. The element is associated with a FOR EACH node and the new
element-type is not FILE, ENTITY_CLASS, or ENTITY_TYPE
(433-TTRETYPE).

11. The element is associated with a SELECT node and the new element-
type is not ENTITY_CLASS or ENTITY_TYPE (486-TTRETYPE).

12. The element is associated with a node immediately following a FOR
EACH node and the element-type is not ALPHA or SUBNET (432-
TTRETYPE). f

13. The element is associated with a node on a STRUCTURE and the old
or new element-type is OUTPUT_INTERFACE (491-TTRETYPE).

3-40

, | 4

H"——_—_—_'——_f

14. The element is associated with a node on a SUBNET and the new
element-type is INPUT_INTERFACE (488-TTRETYPE).

15. The element is associated with a node on a STRUCTURE which

follows another node and the new element-type is INPUT_INTERFACE
(436-TTRETYPE).

3-41

<command>: :=
<error-level command>
<error-level command>::=
ERROR LEVEL integer.

Semantic Action

The error message level will be set to the specified integer. The
default value is 1 (ACTION).

[—

<section keyword>::=
DEFINE
| AbD
{ | DELETE
{ | MODIFY

Semantic Action

The <section keyword> sets the mode in which the succeeding definition
is to be processed. ADD and DEFINE are synonymous (ACTION).

3-43

<definition>::=
<element-type definition>
| <attribute definition>
| <relation definition>
| <element definition>

Semantic Action

The <definition> will be processed in the appropriate mode (ADD,
MODIFY, or DELETE), and the ASSM will be updated appropriately.

3-44

<element-type definition>::=
<element-type-definition header>
[<sentence keyword>]
<element-type-definition sentence>}3

Semantic Action

The header is processed according to the mode of the <section keyword>
(explicit or default), and each sentence is processed according to the mode
(explicit or default) of the <sentence keyword>.

Possible Semantic Errors

1. An <element-type-definition header> is followed by a sentence which
is not an <element-type-definition sentence> (430-TTSNTCHK).

2. An <element-type-definition sentence> is not preceded by an
<element-type-definition header> (425-TTSNTCHK).

3. An <element-type-definition sentence> appears in an <element-type
definition> of mode DELETE (411-ACTION).

3-45

<element-type-definition header>::=
ELEMENT _TYPE element-type-name [comment].

Semantic Action

ADDition mode

1. A new element-type is entered into the ASSM with the given
name (TTNEWELT).

2. The comment, if any, is associated with the element-type
definition in the ASSM (TTATTCOM).

MODIFication mode

1. The NET/PATH indicator is changed as specified in the following
sentence (TTFLAG).

2. The comment, if any, replaces the one in the ASSM (TTOLDELT).

3. If the comment is not given, any existing comment will be retained.

DELETion mode

1. The comment, if any, is deleted from the ASSM (TTDELCOM).
2. The element-type is deleted from the ASSM (TTOLDELT).

Possible Semantic Errors

ADDition mode

1. No comment is specified (201-ACTION).
2. The element-type-name is already in the ASSM (415-TTOLDELT).

MODIFication mode

1. The name is not defined in the ASSM as an element-type-name
(446-TTNEWELT).

DELETion mode

1. The name is not defined in the ASSM as an element-type-name
(446-TTNEWELT).

2. An element of this type exists in the ASSM (426-TTOLDELT).

3. The element-type is an applicable element-type of an attribute
(403-TTOLDELT{.

3-46

"-'r----ll---uu--Illl-l-I--u------ﬂﬂiiﬂﬂl--'"--"ﬂ"'L ——

4. The element-type is a legal subject element-type of a relation
(472-TTOLDELT)-

5. The element-type is a legal object element-type of a relation
(471—TTOLDELT{.

A1l modes

Extension permission has not been established (496-EREXTMODE).

3-47

'..uu--q.r---""""""""""""""""""----------.-'--"Eﬁﬁ“*wp%hw”

<element-type-definition sentence>::=

STRUCTURE APPLICABILITY {NET }]
PATHS,

Semantic Action

INSERT mode

The element-type is flagged as a legal NET/PATH element-type (TTFLAG).
REMOVE mode

The element-type is deleted as a Tegal NET/PATH element-type (TTFLAG).

Possible Semantic Errors

INSERT mode

The element-type is already flagged as a legal NET/PATH element-type
(417-TTFLAG).

REMOVE mode

1. NET is specified and the element-type is not a NET legal type
(457-TTFLAG).

2. PATH is specified and the element-type is not a PATH legal type
(457-TTFLAG).

3. An element of the given type is used on a NET or PATH (429-TTFLAG).

<sentence keyword>::=
INSERT
| REMOVE

Semantic Action

The <sentence keyword> sets the mode in which the succeeding sentence

is to be processed. If no <sentence keyword> is specified, the default mode is
INSERT (ACTION).

Possible Semantic Errors

1. A REMOVE sentence appears and the <section keyword> is not MODIFY
or DELETE (439-ACTION).

2. An INSERT sentence appears and the <section keyword> is DELETE
(411-ACTION).

3-49

<attribute definition ::=
<attribute-definition header>
{[<sentence keyword>] ;
<attribute-definition sentence%}o

Semantic Action

The header is processed according to the mode of the <section keyword>
(explicit or default), and each sentence is processed according to the mode
(explicit or default) of the <sentence keyword>.

Possible Semantic Errors

1. An <attribute-definition header> is followed by a sentence which
is not an <attribute-definition sentence> (405-TTSNTCHK).

2. An <attribute-definition sentence; is not preceded by an
<attribute-definition header> (404-TTSNTCHK).

3. An <attribute-definition sentence> appears in an <attribute
definition> of mode DELETE (411-ACTION).

i
E
i
i
B
13
3
]

<attribute-definition header>::=
ATTRIBUTE attribute-name [comment].

Semantic Action

ADDition mode

1. The new attribute-name is entered into the ASSM (TTNEWATTR).

2. The comment, if any, is associated with the attribute-name in the
ASSM (TTATTCOM).

MODIFication mode

1. Applicable types and legal values are changed as specified in
the following sentences.

2. The comment, if any, replaces the one in the ASSM (TTATTCOM).

3. If the comment is not given, any existing comment will be retained.

DELETion mode

1. A1l applicable element-types for the attribute-name will be removed
from the ASSM (TTOLDATTR{.

2. A1l legal value-names and associated comments for the attribute-
name will be removed from the ASSM (TTOLDATTR, TTDELCOM).

3. The attribute-name and any associated comment will be removed from
the ASSM (TTOLDATTR, TTDELCOM).

Possible Semantic Errors

ADDition mode

1. The attribute-name is already in use (449-ACTION).
2. No comment is specified (201-ACTION).
MODIFication mode

1. The name is not defined in the ASSM as an attribute-name
(444-TTNEWATTR) .

3-51

DELETion mode

1. The name is not defined in the ASSM as an attribute-name
(444-TTNEWATTR).

2. An element exists which has this attribute (400-TTOLDATTR).
ALL modes

Extension permission has not been established (496-TTNEWATTR,
TTOLDATTR).

3-52

l *;I~

<attribute-definition sentence>::=
<applicable types>
| VALUE value-name [comment].

Semantic Action

INSERT mode

1. The value-name is entered as a legal value for this attribute
(TTVALDEF).

(NOTE: The identifiers NAMED, NUMERIC, and TEXT are not
reserved words, but have special properties when used as value-
names. Cf. the semantics of <attribute declaration>.)
2. The comment, if any, is associated with the value-name (TTATTCOM).
REMOVE mode

1. The value-name is removed from the set of legal values for this
attribute (TTVALDEF).

2. The associated comment, if any, is removed from the ASSM (TTDELCOM).

Possible Semantic Errors

INSERT mode

The value-name is already a legal value for this attribute (423-TTVALDEF).

REMOVE mode
1. The value-name is not a legal value for this attribute (464-TTVALDEF).

2. An element exists with this attribute and value equal to the
value-name (400-TTVALDEF).

3. The legal value of this attribute is NAMED, NUMERIC, or TEXT and
an element exists with the attribute (400-TTVALDEF).

4, A comment is specified (202-ACTION).

3-53

<applicable types>::=

APPLICABLE [ELEMENT TYPE] <element types>.

<element types>::=

I

ALL
[ALL EXCEPT] {e]ement-type-name}:

Semantic Action

INSERT mode

{ I

The element-types on the list will be entered into the ASSM as

applicable types for this attribute, unless already present
(TTAPPELTYPES).

If ALL is specified, all currently defined element-types will be
copied and entered (TTAPPELTYPES).

If ALL EXCEPT is specified, all currently defined element-types
except those on the 1list will be copied and entered (TTAPPELTYPES).

REMOVE mode

ks

If ALL is specified, all applicable element-types will be
removed (TTAPPELTYPES).

If a Tist is specified, those element-types will be removed from
the 1ist of applicable element-types (TTAPPELTYPES).

Possible Semantic Errors

LP
2.

ALL EXCEPT is specified in REMOVE mode (452-TTAPPELTYPES).

An element-type is specified in REMOVE mode, and is not on the
list of applicable element-types (401-TTCHKETLM).

An element of a type listed in REMOVE mode has this attribute
(400-TTVALDEF).

No element-types are specified for INSERT mode (463-TTAPPELTYPES).

3-54

<relation definition>::=
<relation-definition header>
[<sentence keyword>]
<relation-definition sentence>}n

Semantic Action

The header is processed according to the mode of the <section keyword>
(explicit or default), and each sentence is processed according to the mode
(explicit or default) of the <sentence keyword>.

Possible Semantic Errors

1. A <relation-definition header> is foilowed by a sentence which is
not a <relation-definition sentence> (467-TTSNTCHK).

2. A <relation-definition sentence> is not preceded by a <relation-
definition header> (468-TTSNTCHK).

3. A <relation-definition sentence> appears in a <relation definition>
of mode DELETE (411-ACTION).

3-55

<relation-definition header>::=

{RELATION } 1

RELATIONSHIP <relation id> [comment].
1

<relation id>::=
relation-name [(string)].

Semantic Action

ADDition mode

1. The new relation-name is entered into the ASSM (TTRELDEF).

2. The optional word contained within the string is entered as the
optional word associated with the relation (TTRELDEF).

3. The comment, if any, is associated with the relation-name in the
ASSM (TTATTCOM).

MODIFication mode

1. The complement name, optional word, legal subject types, and
legal object types are changed as specified in the following
sentences.

2. The comment, if any, replaces the one in the ASSM (TTATTCOM).

) 3. If the comment is not given, any existing comment will be retained.

DELETion mode

1. The lists of legal subject and object types will be removed from
the ASSM (TTRELDEF).

2. The complementary relation-name, its association with an optional
word, if any, and its associated comment will be removed from the
ASSM (TTRELDEF).

3. The relation-name, its association with an optional word, if any,
and any associated comment will be removed from the ASSM (TTRELDEF).

Possible Semantic Errors

ADDition mode

1. The relation-name is already in use (449-TTRELDEF).

2. The optional word is not a legal optional word (449-TTGETOW). %

3. No comment is specified (201-ACTION).
3-56

_

MODIFication mode

1. The name is not defined in the ASSM as a primary relation-name
(408, 446-TTRELDEF).

l 2. The optional word is not a legal optional word (449-TTGETOW).

DELETion mode

1. The name is not defined in the ASSM as a primary relation-name
(408, 446-TTRELDEF).

2. An instance of the relation exists between elements in the ASSM
(400-TTRELDEF).

ALL modes

Extension permission has not been established (496-TTRELDEF).

3-57

<relation-definition sentence>::=
<complementary part>
| <subject part>
| <object part>

<complementary part>::=

: 1
RELATION
COMPLEMENTARY {RELATIONSHIP} : <relation ids.

Semantic Action

INSERT mode

1. The complementary relation-name is associated with the primary
relation (TTRELCOMP).

2. The optional word is entered as the optional word associated with
the complementary relation-name (TTRELCOMP).

REMOVE mode

The complementary relation-name, and {ts associatfon with an optional
word, {f any, are deleted from the ASSM (TTRELCOMP).

Possible Semantic Errors

INSERT mode

1. The complementary relation-name is already in use (449-TTRELCOMP).
2. The optional word is not a legal optional word (449-TTGETOW).

REMOVE mode

The name is not defined in the ASSM as the complement of the primary
relation-name (438-TTRELCOMP).

3-58

<subject part>::=
SUBJECT [ELEMENT_TYPE] [<element types>].

Semantic Action

INSERT mode

The Tist of element-types is entered into the ASSM as the set of legal
subject types for the relation (TTRELSUBJ). (NOTE: See <attribute-
definition sentence> for the semantics of <element types>.)

REMOVE mode

1. If no <element types> are specified, or ALL is specified,all
subject element-types will be removed (TTRELSUBJ).

2. If a list is specified, those element-types on the list will be
removed from the set of subject element-types (TTRELSUBJ).

Possible Semantic Errors

INSERT mode

1. No element-types are specified (463-TTRELSUBJ).

2. A comment is specified. The comment will be ignored, and the
<subject part> processed (202-ACTION).

REMOVE mode
1. A1l EXCEPT is specified (452-TTRELSUBJ).

2. There is an instance of this relation with subject element of a
type listed (470-TTRELDEF).

3. An element-type specified is not in the set of legal subject types
(442-TTCHKETLM, TTCHKRSUBJ).

4. A comment is specified. The comment will be ignored, and the
<subject part> processed (202-ACTION).

3-59

<object part>::=
OBJECT [ELEMENT_TYPE] [<element types>].

Semantic Action

INSERT mode

The list of element-types is entered into the ASSM as the set of legal
object element-types for the relation. (NOTE: See <attribute-definition
sentence> for the semantics of <element types>.)

REMOVE mode

1. If no element-types are specified, or ALL is specified, all
object element-types will be removed (TTRELOBJ).

2. If a list is specified, those element-types on the list will be
removed from the set of object element-types (TTRELOBJ).

Possible Semantic Errors

INSERT mode
1. No element-types are specified (463-TTRELOBJ).

2. A comment is specified. The comment will be ignored, and the
<object part> processed (202-ACTION).

REMOVE mode
1. ALL EXCEPT is specified (452-TTRELOBJ).

2. There is an instance of this relation with object element of a
type listed (470-TTRELOBJ).

3. An element-type specified is not in the set of legal object types
(442-TTCHKETLM, TTCHKROBJ).

4. A comment is specified. The comment will be ignored, and the
<object part> processed (202-ACTION).

3-60

<element definition>::=
<element-definition header>
[<sentence keyword>]
<element-definition sentence%}g

Semantic Action

The header is processed according to the mode of the <section keyword>
(explicit ordefault), and each sentence is processed according to the mode
(explicit or default) of the <sentence keyword>.

Possible Semantic Errors

1. An <element-definition header> is followed by a sentence which is
not an <element-definition sentence> (424-TTSNTCHK).

2. An <element-definition sentence> is not preceded by an <element-
definition header> (425-TTSNTCHK).

3. An <element-definition sentence> appears in an <element definition>
of mode DELETE (411-ACTION).

3-61

<element-definition header>::=
element-type-name element-name [comment].

Semantic Action

ADDition mode

1. The new element-name is entered into thé ASSM with type correspond-
ing to the element-type-name (TTELEMDEF).

2. The comment, if any, is associated with the element-name in the
ASSM (TTATTCOM).

MODIFication mode

1. The comment, if any, replaces the one in the ASSM (TTATTCOM).

2. If the comment is not given, any existing comment will be retained.

DELETion mode

1. A1l attribute instances involving the element, and their associated
comments, will be removed from the ASSM (TTELEMDEF).

2. The element-name and its associated comment will be deleted from
the ASSM (TTELEMDEF).

Possible Semantic Errors

ADDition mode

The element-name is already in use (449-TTELEMDEF).

MODIFication mode

1. The element-name is not defined in the ASSM (445-ACTION, TTNULLERR).

2. The type of the element does not correspond to the element-type-name
(443-TTCHKTYPE, TTCHKELTYPE).

DELETion mode
1. The element-name is not defined in the ASSM (445-ACTION, TTNULLERR).

2. The type of the element does not correspond to the element-type-name
(443-TTCHKTYPE, TTCHKELTYPE).

3-62

3.

The element is the subject or object of a relationship instance
(465, 476-TTELEMDEF).

The element has an associated STRUCTURE or PATH, or the element is

associated with a node or branch of a STRUCTURE or PATH 3
(402-TTELEMDEF). i

<element-definition sentence>::=

<attribute declaration>
| <relation declaration>
| <path declaration>
| <structure declaration>
<attribute declaration>::=

‘va]ue-name' L
attribute-name | number [comment]
)Strir 1

Semantic Action

INSERT mode

1. An instance of the designated attribute is entered into the ASSM
(TTATTRDCL).

2. The attribute value is attached to the attribute instance in the
ASSM (TTATTRDCL).

3. The comment, if any, is associated with the attribute instance in
the ASSM (TTATTCOM).

REMOVE mode

1. The comment, if any, associated with the attribute is removed from
the ASSM (TTDELCOM).

2. The attribute and its value are removed from the ASSM (TTATTRDCL).

Possible Semantic Errors

INSERT mode

1. The type of the element is not on the list of applicable element-
types for this attribute (401-TTATTRDCL).

2. The value is a value-name, and neither the value-name or NAMED
appears on the list of attribute legal values (437-TTCHKAVAL).

3. The value is a number, and NUMERIC does not appear on the 1ist of
attribute legal values (437-TTCHKAVAL).

{. The value is a string, and TEXT does not appear on the list of
ittribute legal values (437-TTCHKAVAL).

“n instance of this attribute already exists (413-TTATTRDCL).

3-64

REMOVE mode

T. An instance of this attribute does not appear in the ASSM for the
applicable element (453-TTATTRDCL).

2. A value is specified (482-TTATTRDCL).
3. A comment is specified (202-ACTION).

3-65

<relation declaration>::=

relation-name <object list>.
<object list>::=

n
[element-type-name] element-name [comment]}

Semantic Action

INSERT mode

A relationship instance is entered in the ASSM for each element-
name in the <object 1ist> (TTRELDCL). (The subject is the element
whose name is in the header.)

If the element-name was not previously defined, it is entered into
the ASSM with the specified type (TTCHKELTYPE).

The comment is associated with the preceding relationship instance
(TTATTCOM).

If the relation-name is a complementary relation, an instance of the
primary relationship is entered, with subject and object reversed
(TTRELDCL).

REMOVE mode

Each relationship instance which has an object on the <object 1ist>, and
subject element in the header, is removed from the ASSM, together with
its associated comment (TTRELDCL, TTDELCOM).

Possible Semantic Errors

INSERT mode

&

The element-name in the header is not a legal subject type for the
given relation (442-TTCHKETLM, TTCHKROBJ).

The element-name on the <object Tist> is not a legal subject type
for the given relation (441-TTCHKETLM, TTCHKROBJ).

An instance of the relationship a]readg exists with given subject
and object (informative error only) (204-TTCHKROBJ).

The element is undefined and no type is specified (461-ACTION).

The type of an element does not match the preceding element-type-
name (443-TTCHKELTYPE, TTCHKTYPE).

The relationship is EQUATES, and the given SYNONYM already EQUATES
TO an element (477-TTRELDCL).

3-66

REMOVE mode

1. The given relationship instance does not exist (459-TTCHKROBJ).

2. The type of an element does not match the element-type-name (443-
TTCHKELTYPE, TTCHKTYPE).

3. A comment is specified (202-ACTION).

<path declaration>::=
n
PATH [{<va1idation node>}1 END] [comment].

<validation node>::=

Semantic Action

i [element-type-name] element-name [comment]
I

INSERT mode

2.

A PATH structure is begun (TTPATHDCL).

A node of type NET-AND-PATH-FIRST is created, and asscciated with
the element-name in the header (TTPATHKW).

A node is created for each <validation node>, and linked to the pre-
ceding NET-AND-PATH-FIRST node or <validation node>. The comment
following the <validation node>, if any, is attached to it (TTNODELINK).

If there are no syntactic or semantic errors, the PATH structure 1is
made permanent (TTPATHDCL).

The comment following the END, if any, is associated with the
NET-AND-PATH-FIRST node (TTATTCOM).

REMOVE mode

The PATH structure associated with the element-name in the header is
deleted from the ASSM (TTPATHDCL).

Possible Semantic Errors

INSERT mode

1.

The element-name in the header is not of type VALIDATION PATH
(481-TTPATHKW) .

The element already has an associated STRUCTURE or PATH (422-
TTPATHKW) .

The element-type-name in the <validation node> does not match
the type of the following element-name (443-TTCHKELTYPE, TTCHKTYPE).

The element-type-name in the <validation node> is not legal for
PATHs (480-TTVALNODE).

No <validation node> is specified (484-TTPATHDCL).

REMOVE mode

1. The element-name in the header does not have an associated
VALIDATION_PATH (458-TTPATHKw).

2. A <validation node> is specified (483-TTPATHDCL).
3. A comment is specified (202-ACTION).

3-69

e

<structure declaration>::=

STRUCTURE [{<node>}; END] [comment].

<node>::=

Semantic Action

<element node>
<terminator>

<and node>

<or node>
<consider-or node>
<for-each node>
<select node>

INSERT mode

{
2.

REMOVE mode

The
the

Possible Semantic Errors

A NET structure is begun (TTSTRDCL).

A node of type NET-AND-PATH-FIRST is created, and associated with
the element-name in the header (TTSTRKW).

Each succeeding <node> is linked to the preceding one (TTNODELINK).

The comment following the END, if any, is associated with the
NET-AND-PATH-FIRST node (TTATTCOM).

If there are no syntactic or semantic errors, the structure is made
permanent (TTSTRDCL).

R_NET or SUBNET structure associated with the element-name in
header is deleted from the ASSM (TTSTRDCL).

INSERT mode

|

The element-name in the header is not of type R_NET or SUBNET
(475-TTSTRKW) .

The element already has an associated STRUCTURE or PATH (422- I
TTSTRKW) .

There is no node other than an interface or <terminator> (473-
TTSTRDCL).

The final node is not an <element node> of type OUTPUT_INTERFACE
or a <terminator> (474-TTSTRDCL).

3-70

5. A <node> follows a <terminator> or OUTPUT_INTERFACE (450-TTSTRNSN,
TTCBRANCH).

6. An <element node> of type INPUT_INTERFACE appears, and is not the
first <node> followin, STRUCTURE (436-TTSTRSN, TTCBRANCH).

7. The element-name in the header is of type SUBNET and no RETURN
node appears in the STRUCTURE (489-TTSTRDCL).

REMOVE mode

1. The element in the header does not have an associated R_NET or
SUBNET (460-TTSTRKW).

2. A <node> is specified (456-TTSTRDCL).
3. A comment is specified (202-ACTION).

3-N

<element node>::=
[element-type-name] element-name [comment]

Semantic Action

; INSERT mode

1. A node of the appropriate type is created and associated with the
element-name (TTSTRKW).

2. The comment, if any, is associated with the node (TTATTCOM).

Possible Semantic Errors

‘ INSERT mode

| 1. The element-type-name does not match the type of the element-name
(443-TTCHKELTYPE).

2. The element-name is not of a NET legal type (427-TTELNODE).
REMOVE mode

This production is not allowed (456-TTSTROCL).

3-72

<terminator>::=
TERMINATE [comment]
| RETURN [comment]

Semantic Action

INSERT mode

A node is created of type TERMINATE or RETURN and the comment, if any,
is associated with the node (TTERMINODE).

Possible Semantic Errors

INSERT mode

1. A RETURN exists on an R_NET (469-TTERMNODE).

2. More than one RETURN exists on a SUBNET (490-TTERMNODE).
REMOVE mode

This production is not allowed (456-TTSTRDCL).

3-73

<and node>::=

n
DO [comment] <branch> {AND <branch>}] END

Semantic Action

INSERT mode
1. A pair of AND-nodes is created in the ASSM (called the AND-head and
the AND-tail). For a terminating node, only the AND-head is
created (TTBEGAND).
2. The comment, if any, is associated with the AND-head (TTATTCOM).

3. Each <branch> is linked as the successor of the AND-head and the
predecessor of the AND-tail, if present (TTNODELINK).

4. The AND-head will be linked to the predecessor of the <and node>,
and the AND-tail, if present, will be linked to its successor
(TTNODELINK).

Possible Semantic Errors

INSERT mode

Terminating and non-terminating branches are mixed (478-TTCONAND).

REMOVE mode

This production is not allowed (456-TTSTRDCL).

3-74

<branch»::=

n
<{<node>},|

Semantic Action

INSERT mode

1. Each <node> is linked to its successor (TTNODELINK).

2. The first node on the <branch> will be linked to the predecessor

of the <branch>, and the last node will be linked to the successor
of the <branch> (TTNODELINK).

Possible Semantic Errors

INSERT mode

1. An INPUT_INTERFACE begins a <branch> (435-TTBBRANCH),

2. An INPUT_INTERFACE follows another <node> on a <branch>
(436-TTCBRANCH, TTSTRSN).
3. A <node> follows a <terminator> or OUTPUT_INTERFACE
(450-TTCBRANCH, TTSTRSN).
4. An INPUT_INTERFACE exists on a SUBNET (488-TTSTRSN,TTSTRFN).
REMOVE mode

This production is not allowed (456-TTSTRDCL).

3-75

<or node>::=

IF [comment] <condition%1 branch>
OR <conditional branch>
OTHERWISE [<branch>] END

Semantic Action

INSERT mode
1. A pair of OR-nodes is created in the ASSM (called the OR-head and
the OR-tail). For a terminating node, only the OR-head is created
(TTBEGOR).
2. The comment, if any, is associated with the OR-head (TTATTCOM).

3. Each <conditional branch> is linked as the successor of the OR-head
and the predecessor of the OR-tail, if present (TTNODELINK).

4. The word OTHERWISE is associated with the following <branch> as if
it were a <condition> (TTFINOR).

5. The OR-head will be linked to the predecessor of the <or node>, and
the OR-tail, if present, will be linked to its successor (TTNODELINK).

Possible Semantic Errors

INSERT mode

Terminating and non-terminating branches are mixed (478-TTCONOR,TTFINOR).

REMOVE mode
This production is not allowed (456-TTSTRDCL).

3-76

<conditional branch>::=
[integer] <condition> <branch>

Semantic Action
I INSERT mode

1. The integer (ordinal), if any, is associated with the <branch>

(TTBEGOR, TTCONOR).

2. The <condition> is associated with the <branch> (TTBEGOR,
TTCONOR).

3. Data-names in the condition are associated with the <branch>
(TTASSDATA).

Possible Semantic Errors

INSERT mode

The integer is greater than four digits (406-TTCONOR, TTBEGOR).
REMOVE mode

This production is not allowed (456-TTSTRDCL).

3-77

AD=AO46 573 TRW DEFENSE AND SPACE SYSTEMS GROUP HUNTSVILLE ALA F/6 9/2
REVS MAINTENANCE MANUAL. SREP FINAL REPORT., VOLUME III.(U)
AUG 77 W E BENOIT, P N BERGSTRESSER nassso-Ts-c-uoaz

UNCLASSIFIED TRW=27332~6921-026=-VOL-3

s =,
e L
THE e

<consider-or node>::=

<consider-data>

<consider-data>::=
CONSIDER [DATA] enumerated-data-name IF [comment]

<consider-data branch> {OR <consider-data branch>}

n

END 1

Semantic Action

INSERT mode

1.

A pair of OR-nodes is created in the ASSM (called the OR-head and
the OR-tail). For a terminating node, only the OR-head is created
(TTBEGOR).

The comment, if any, is associated with the OR-head (TTBEGOR).
The enumerated-data-name is associated with the OR-head (ACTION).

Each <consider-data branch» is linked as the successor of the
OR-head and the predecessor of the OR-tail, if present (TTNODELINK).

The OR-head will be linked to the predecessor of the <consider-or
node>, and the OR-tail, if present, will be linked to its successor
(TTNODELINK).

Possible Semantic Errors

INSERT mode

P

The enumerated-data-name is not an element of type DATA (492-ACTION,
TTCONSIDER).

The enumerated-data-name has a value other than ENUMERATION for the
attribute TYPE (493-TTCONSIDER).

Terminating and non-terminating branches are mixed (478-TTCONOR,
TTFINOR). .

3-78

4. The <consider-data> node has no non-empty branch (503-TTFINOR).

5. The <consider-data> node has more thanone empty branch (504-TTCONOR).
REMOVE mode

This production is not allowed (456-TTSTROCL).

3-79

<consider-data branch>::=
(<enumeration-value-list>) <branch»
| (<enumeration-value-1list>)

<enumeration-value-list>::= .
enumeration-value-name {OR enumeration-va]ue-name}b

Semantic Action

INSERT mode

The <enumeration-value-1ist>, along with the surrounding parentheses,
is entered as an alphanumeric string associated with the arc from the
OR-head to the <branch», if one is present, or associated with the arc
from the OR-head to the OR-tail, if the <branch> is empty (TTBEGOR,
TTCONOR).

Possible Semantic Errors

INSERT mode
1. A name specified is not an enumeration-value-name (495-TTASSEOREVNAME).

2. A name is duplicated in the <enumeration-value 1{st>(505-
TTEOREVNAME) .

k 3. The <enumeration-value-list> contains illegal "blank" characters,
i.e., commas, colons, or semicolons (506-TTCHKCOND).

REMOVE mode

This production is not allowed (456-TTSTRDCL).

3-80

<consider-or node>::=

<consider-entity-class>

<consider-entity-class>::=
CONSIDER [ENTITY_CLASS] entity-class-name IF [comment]
<consider-entity-class branch>{0R <consider-entity-class branch>}
END 1

n

Semantic Action

INSERT mode

1. A pair of OR-nodes is created in the ASSM (called the OR-head
and the OR-tail). For a terminating node, only the OR-head is
created (TTBEGOR). 1

2. The comment, if any, is associated wtih the OR-head (TTBEGOR).

3. The entity-class-name is associated with the OR-head (ACTION).

4. Each <consider-entity-class branch> is linked as the successor
of the OR-head and the predecessor of the OR-tail, if present
(TTNODELINK).

5. The OR-head will be Tinked to the predecessor of the <consider-
entity-class> node, and the OR-tail, if present, will be 1inked
to its successor (TTNODELINK).

Possible Semantic Errors

INSERT mode

1. The entity-class-name is not an element of type ENTITY_CLASS
(492-ACTION, TTCONSIDER).

2. Terminating and non-terminating branches are mixed (478-TTCONOR,
TTFINOR).

3. The <consider-entity-class> node has no non-empty branch (503-
TTFINOR).

4. The <consider-entity-class> node has more than one empty branch
(504-TTCONOR).

3-81

<consider-entity-class branch>::=

(<entity-type-1ist>) <branch>
| (<entity-type-list>)
<entity-type-list>::=

n
entity-type-name {OR entity-type-name}
()

Semantic Action

INSERT mode

The <entity-type-list>, along with the surrounding parentheses, is
entered as an alphanumeric string associated with the arc from the
OR-head to the <branch>, if one is present, or associated with the

arc from the OR-head to the OR-tail, if the <branch> is empty (TTBEGOR,
TTCONOR).

Possible Semantic Errors

INSERT mode

1. A name specified is of an element-type other than ENTITY_TYPE
(494-TTASSEOREVNAME) .

2. A name is duplicated in the <entity-type-list> (505-TTEOREVNAME).

3. The <entity-type-list> contains illegal "blank" characters, i.c ,
commas, colons, or semicolons (506-TTCHKCOND).

<for-each node>::=
FOR EACH <for-each subject> [SUCH THAT <condition>]
DO [comment] <for-each body node> END

Semantic Action

INSERT mode

1. A FOR-EACH-node is created in the ASSM (called the FOR-head)
(TTFOREACH) .

2. The comment, if any, is associated with the FOR-head (TTATTCOM).

3. The <condition> is associated with the branch from the FOR-head
to the <for-each body node> (TTFOREACH).
| 4. Data-names in the <condition> are associated with the branch from
; the FOR-head to the <for-each body node> (TTASSDATA).

Possible Semantic Errors

REMOVE mode

This production is not allowed (456-TTSTRDCL).

3-83

<for-each subject>::=
[FILE] file-name [RECORD]
| [ENTITY_TYPE] entity-type-name
| [ENTITY_CLASS] entity-class-name

Semantic Action

INSERT mode

An element of the appropriate type is created, if not previously
defined, and associated with the FOR-head (TTCHKELTYPE, TTFOREACH).

Possible Semantic Errors

INSERT mode

1. The element-type-name does not match the type of the element-name
(443-TTCHKELTYPE).

2. The element-type-name is not FILE, ENTITY_TYPE, or ENTITY_CLASS
(433-TTFILENCHK).

3. The word RECORD is specified but the element-type-name is not
FILE (431-TTFILENCHK).

REMOVE mode

This production is not allowed (456-TTSTRDCL).

3-84

<for-each body node>::=
[ALPHA] alpha-name [comment]
[SUBNET] subnet-name [comment]

Semantic Action

INSERT mode

1. A node of the appropriate type is created and associated with the
ALPHA or SUBNET name (TTELNODE).

2. The comment, if any, is associated with the node (TTELNODE).
3. The node is attached as the successor of the FOR-head (TTNODELINK).

Possible Semantic Errors

1. The element-type-name does not match the type of the element-name
(433-TTCHKELTYPE).

2. The element-type-name is not ALPHA or SUBNET (432-TTFEBODY).

REMOVE mode
This production is not allowed (456~TTSTRDCL).

3-85

<select node>::=
SELECT <select subject> SUCH THAT <condition> [comment]

Semantic Action

INSERT mode

1. A SELECT-node is created in the ASSM (TTSELECT).
2. The comment, if any, is associated with the SELECT-node (TTSELECT).

3. The <condition> is associated with the branch from the SELECT-
node to its successor node (TTSELECT, TTNODELINK).

Possible Semantic Errors

REMOVE mode i

This product is not allowed (456-TTSTROCL).

3-86

<select subject>::=

[ENTITY_CLASS] entity-class-name
| [ENTITY_TYPE] entity-type-name

Semantic Action

INSERT mode

An element of the appropriate type is created, if not previously
defined, and associated with the SELECT-node (TTCHKELTYPE, TTSELECT).

Possible Semantic Errors

INSERT mode

1. The element-type-name does not match the type of the element-name
(443-TTCHKELTYPE).

2. The element-type-name is not ENTITY TYPE or ENTITY_CLASS (486-
TTENTCHK) .

REMOVE mode

This production is not allowed (456-TTSTRDCL).

3-87

<condition>::=

(<Boolean expression>)
<Boolean expression>::=

n
<simple Boolean> {<B op> <simple Boo’lean>}0

<simple Boolean>::=
<Boolean term> {OR <Boolean tenn>}3
<Boolean term>::=
<Boolean factor> {AND <Boolean factor>}n
<Boolean factor>::= 4
<Boolean> [<rel op> <Boolean>]
| <arithmetic expression> <rel op> <arithmetic expression>
<Boolean>::=
[NOT] <Boolean primary>
<Boolean primary>::=
TRUE
| FALSE
| data-name
| (<Boolean expression>)
<arithmetic expression>::=
[<ad op>] <arithmetic term>
| <arithmetic expression> {<ad op> <arithmetic term>}
<arithmetic term>::=
<arithmetic factor> {<mu1 op> <arithmetic factor>}n
<arithmetic factor>::= 3

n
0

number
| data-name
| (<arithmetic expression>)

<B op>::=
EQU | XOR
<rel op>::=
=|<|>|<=|>=|<>
<ad op>::=
+|..
<mul op>::=

* | /| DIV | MOD

P

Semantic Action

INSERT mode
The <condition> is scanned, checked for syntactic validity, and
stored as an alphanumeric string, including the surrounding paren-
theses (ACTION).

Possible Semantic Errors

INSERT mode
1. A data-name is not an element of type DATA (409-TTDATANAME).

2. The <condition> contains illegal "blank" characters, i.e., commas,
colons, or semicolons (506-TTCHKCOND).

REMOVE mode
This production is not allowed (456-TTSTRDCL).

3-89

3.2.5 Error Handling

Errors are of three types: 1lexical, syntactic and semantic. A
lexical error occurs during the processing of individual characters in
the input stream by the lexical scanner, which is unable to combine them
into the termina! symbols of the grammar (reserved-words, identifiers,
punctuation, real numbers, integers, comments, and strings). A syntactic
error occurs when legal terminal symbols are juxtaposed in a way which is
not permitted by the grammar of RSL. A semantic error occurs when the
meaning of a syntactically correct RSL command conflicts with that of a
previous one.

In the case of a lexical or semantic error, the parser can issue a
message and continue. However, recovery from a syntax error is complicated
by the presence in the parse stack of partially parsed RSL commands. Error
recovery is made by searching the input stream for a stop symbol, and
then discarding all symbols in the parse stack above a corresponding

E continuing symbol. After this process is completed, an error recovery

F message is issued, and parsing continues. All text between a syntactic
error and its recovery is ignored. In addition, some preceding text may
have been effectively ignored because of the discarding of a portion of
the parse stack. A list of stop and continuing symbols is given in
Table 3.2.

Emptying of the parse stack must be done with care, since there may
be information in the ASSM corresponding to a symbol in the parse stack.
A CASE statement, indexed on the L-B CWS code for the symbol in the parse
stack, is executed and information deleted from the ASSM in the appropriate
cases.

The parse stack is initialized to contain <command-list head> and

end-of-file as a stop symbol, so that recovery can always be made from a

syntax error. The mechanism provided by the L-B CWS for cases when no

error recovery is possible has been left in the RSL translator to aid
- in diagnosing any translator bugs, but is not expected to be executed.

3-90

Table 3.2 RSL Translation Stop and Continuing Symbols

Stop Symhol i Continuing Symbol
<command>
<command-1ist head>

END <and-node header>

OTHERWISE <or-node header>

AND <and-node header>

OR <or-node header>

) (

end-of-file <command-1ist head>
3-91

Error messages are controlled by the value of ERROR LEVEL as follows:

0 - No error messages.
1 - Error number and pointer. (The default value is 1.)
2 - Dump of the parse stack when a syntax error is

encountered, and again when recovery is made.

3 - Dump of the parse stack whenever the lexical
scanner is called. (This should only be used in
extreme cases, as it produces a huge amount of
output.)

A pause stack dump will display the actual non-terminal and terminal
symbols used as input to the Lecarme-Bochmann Compiler Writing System
(L-B CWS) to define the syntax of the Requirements Statement Language (RSL).
The complete syntax of RSL as input to the L-B CWS is contained on deck
RSLDEF of the CWS Source Program Library (SPL). This SPL is maintained as
file number fifteen on the REVS Software Deliverable File (see Sections
7.1 and 7.3.1).

3-92

3.3 INTERACTIVE R-NET GENERATION (RNETGEN)

Description

Although REVS provides the user with the capability of defining an
R-Net structure via a one-dimensional RSL input text string, the R-Net
Seneration function provides the REVS user with an alternate method of
creating and maintaining R-Nets and Subnets. This method fulfills the
need for creating/presenting a structure in a two-dimensional graphical
representation. This is accomplished via an interactive graphics display
system, namely, the Data Disc Color Graphics Display System [4]. This
facility does not preclude, however, a structure declaration via the RSL
structure syntax in the batch operating mode. It, in fact, supports the
transformation of an RSL generated structure into its two-dimensional
graphical representation via the Successor Node Module. Once a structure
exists in this graphical form, it may be manipulated via the interactive
terminal. That is, nodes may be added, deleted, moved about, disconnected,

commented, etc. The entire net may be scrolled, displaying selected por-
tions of the net as requested by the user. Modified structures may then
replace the original structures in the ASSM if the user so desires.
Input
MENU SELECTION - From a menu list, depicted in Figure
3-5, the user selects a menu entry
via the trackball input facility, an
input mechanism which allows the user
to input an x,y screen position via |
the placement of a cross-hair cursor |
at any position on the screen. |
ASSM - The user specified structure declaration
for an R-Net/Subnet.
TRACKBALL/KEYBOARD ENTRY - Further inputs are required at the
appropriate module levels and are docu-
mented in their corresponding sections.
Output
NET/NODE DISPLAY - Net/nodes are displayed on the screen
as requested by the user via the module
level.
3-93

ASSM

Processing

Figure 3-6 is a flow diagram for the R-Net Generation function. The
following comments further clarify the processing for the indicated steps.

(1]

(2]

(3]

Procedure References

The following correlates the functional processing steps shown in
Figure 3-6, with the REVS procedures which perform the indicated processing.

(1]
(3]
[4]
(6]
(7]
(el
(9]
(10]
(1]
[12]
REY

- The R-Net/Subnet structure declaration
is saved or updated according to user
inputs at the module level.

- Coordinates use of the graphics screen
area with the REVS Executive.

- If REVS is in the off-line mode, an
error condition exists since RNETGEN
can be executed only in the on-line
mode.

- A11 flags used by RNETGEN are initialized.
The default color selection is set to
turquoise. A1l ASSM pointers required
by RNETGEN are retrieved for subsequent
access. The menu is displayed on the
CRT and color codes for zoomed-out
displays are appropriately initialized.

XXREVSGRAPH
- TINITIAL

- TIMENUREAD, IINSGOUT, IICHKTYPNOD, IIRESETM
- XXREVSOUT

- [ISTRTYPE

- I ICRNODE

- IIMVNODE

- ITJNNODE

- IIDJNODE

- ITSAVE

- IICOLOR

3-94

M

(14]
(1s]
[16]
(17]
[18]
(19]
(20]
[21]
[22]
[23]
[24]
[25]

IIDENODE

I ICMNCDE
IISUNODE
ITSCROLL
ITZOOMIN
11Z0OMOUT
I IDSNODE
IICALCOMP
IIDSPBRN
IISTOP
[TAUTOPLOT
IIMVSUBTREE

3-95

—

MENU

e STRUCTURE TYPES

e RNET

| ® SUBNET

| e VALPATH

e NODE TYPES

| o INPUT e OR

| o VALPT e FOR

| ® ALPHA ® AND
e EVENT e FIRST
® SUBNET e TERMINAL
e OQUTPUT ® RETURN
e SELECT o OTHER

MOVE SUBTREE
MOVE NODE
CONNECT NODES
DISCONNECT NODES
DELETE NODE
COMMENT NODE
SUCCESSOR NODE
DISPLAY NODE
DISPLAY BRANCH
SCROLL NET
AUTOPLOT
ZOOM-IN ON NET
Z0OM-OUT ON NET
CALCOMP

SAVE NET

STOP

Figure 3-5 RNETGEN Menu

3-96

RNETGEN

DETERMINE /0
STATUS AiD
RESERVE SCREEN SPACE,

DISPLAY
ERROR MES

INITIALIZE
EXIT RNETGEN FUNCTION.
< »
TIMENUREAD
ACCEPT USER
MENU SELECTION.
4
TISTRTYPE TI0ENGOE
o e ¢ BEGIN DELETE WE" ;‘335 Ag"m =
; 2 st B
TICANODE i - TICHNGOE
fe ot vone - CREATE | COWENT___ ENTER COMMENT |
DA Sabeldl ‘. E
i TIMVNODE TISUNGDE 5 Woss
MOVE SUCCESSOR
10 ﬂ"sc,‘?& RETRIEVE NEXT NQDE.[17
k TIJNAODE TISCROLL
| FORM SUCC./PRED. CONNECT SCROLL
i 1 T RELATIONSHIP n 8 MOVE NET ON SCREEN. [~}
l BETWEEN HODES. T10J400E TTZOOMIN
" ECT
“ fe— KEMOVE | SUCC./PRED. (¢ DISCOMECT] Z0M Iy genemare pETAILED
i o NET DISPLAY. 9
[TISAVE BETWEEN nUDES. 11200MOUT
SAVE Z00M OUT GENERATE
i L L) COLOR-COOED | |
- : T1COLOR TT0SNODE NET DISPLAY.
COLOR DISPLAY DISPLAY ELEMENT
SELECT COLOR. ASSOCIATED 21
TIAUTOPLOT WITH NODE. 1ICALCOMP
¢—] GENERATE GRAPHICS AUTOPLOT | CALCOMP GENERATE F“
a2 ;s o
anbivrc TI0SPERN OLSPLAY HOVE TIMVSUBTREE PLOT.
INFORMATON - ON NET.
STOP
%)
T1510P
CLEANUP AND
TERMINATE ,
EXIT
i Figure 3-6 R-Net Generation (RNETGEN)
327

3.3.1 Begin Structure (IISTRTYPE)

Description

Upon input of the structure type and associated element name, this
module will determine the existence of such a structure in the ASSM. If it
does exist, it will be retrieved and displayed on the CRT, otherwise an
entry node will be created for it and displayed at the top center of the
CRT. The user may then add to or alter the structure via other menu

selections.

Input

STRUCTURE TYPE - Desired structure type as selected from
the available structure types in the
menu.

ELEMENT NAME - Element name of ASSM element owning
the structure.

Output

ASSM - Temporary copy of structure if one already
existed in ASSM.

NET DISPLAY - Display of the structure on the CRT.

SCREEN MATRIX - As nodes are displayed on the CRT, their

corresponding ASSM pointers are entered
into the corresponding screen matrix
element.

COORDINATE TRANSFORMATION X,y transformation parameters required
PARAMETERS to translate from the current screen
position to the initial screen position
are initialized to zero.

Processing h

The flow diagram for this module is presented in Figure 3-7. Following
is a further description of selected processing steps in the flow diagram.

[6,7] - A message, requesting the user to key-in
via the keyboard the element name owning
the desired structure, is displayed.

[8] - RSL element names must begin with an
alphabetic character and can only con-
tain alphanumeric characters with the
exception of the underscore.

3-98

hi'““‘“'“"‘“""""“-"--‘-"---i--lI-I-I-IIlﬁllIllIlIIIl-illIl-lIIllIl.lll.lllllilllllllll'i

[9-18]

(19, 20, 24, 25]

(26, 27, 33, 34, 36]

[28, 29, 30, 31, 35]

(32, 37, 38]

If the element name which was keyed in
is not found in the ASSM, the user is
given the option to allow RNETGEN to
enter it in the ASSM or to completely
ignore the menu operation, in which
case the module returns control back
to the function level.

If the element name is found to already
exist in the ASSM, then the user is
given the option to allow RNETGEN to
retrieve its associated structure or

to completely ignore the menu operation,
in which case the module returns con-
trol back to the function level.

If the selected element has an asso-
ciated structure, it is copied to the
ASSM temporary structure area, otherwise,
the first node is created in the ASSM
and displayed at the top center of the
screen display area.

If the selected structure has no graphics
data associated with it, the user is
given the option to allow the graphics
data to be automatically generated via
ITAUTOPLOT or to use the prompting
capability via SUCCESSOR node menu

entry.

If the structure has graphics data asso-
ciated with it, the user is given the
option to display the structure in either
its zoomed-in or its zoomed-out mode.

3-99

Procedure References

The following correlates the functional processing steps shown in
Figure 3-7 with the REVS procedures which perform the indicated processing.

[4]

[5]

[6]

[7]

(8]

[10, 12, 13]
[14]

[18]

[20, 21, 22, 23]
[24]

[29]

[31]

[33, 35]
[36]

[37]

[38]

IICLEARSCREEN
TICLEARMATRIX
IIMSGOUT
IIMSGIN
IICHKNAME
TIMSGOUT
TIMSGIN
IIDISFRST
IIMSGOUT

I IMSGEN
IIMSGOUT
XXCNET

[IMSGOUT
IIDISFRST
I1Z0OMOUT
TIDISNET

3-100

ASSM

1ISTRTYPE

HAS USER
BEEN l‘;ARNED

YES

DISPLAY
WARNING
MESSAGE.

CLEANUP ASSM
TEMPORARY
STRUCTURE AREA.

11

RESET WARNING FLAG.

INITIALIZE
SCREEN MATRIX.

‘ EXIT ’

DISPLAY
ELEMENT
REQUEST.

DISPLAY
ERROR
MESSAGE .

AN

12

DISPLAY
MESSAGE .

14
INPUT
RESPONSE .

1
ADD
T0 i;SSH

YES

16,
ELEMEN
TYPE IN
ASSM
&

YES
ASSM 17

FIRST NODE
TO ASSM.

ADS ELEMENT AND

DISPLAY
FIRST NODE
ON SCREEN.

DISPLAY
MESSAGE .

DISPLAY
ERROR
MESSAGE.

CORRECT
TYPE

DISPLAY
MESSAGE .

Figure 3-7 Begin Structure (IISTRTYPE)

3-101

DISPLAY

DESIRED
ELE?ENT

DISPLAY
MESSAGE.

COPY STRUCTURE
TO ASSM
TEMPORARY AREA.

34 y

CREATE FIRST NODE
FOR STRUCTURE.

DISPLAY
MENU
SELECTION.

DISPLAY
FIRST NODE
ON SCREEN.

DISPLAY
MESSAGE.

CCNET

GENERATE
GRAPHICS DATA.

37
11260MOUT TIDISNET
DISPLAY COLOR CCOED DISPLAY NET
NET ON SCPEEN, ON SCREEN.

|

EXIT EXIT

Figure 3-7 Begin Structure (IISTRTYPE) (Continued)

3-102

3.3.2 Create Node (IICRNODE)

Description

Upon input of the node type, associated element name, color, and
screen position provided by the user, this module will display the node
at the indicated x,y screen position. Input checks are performed to
insure legality of the selected x,y position. An ASSM node record is
created and the internal screen matrix is updated accordingly.

Input

NODE COLOR - The user may specify node color for
display from a displayed list of
available colors. The selection is
made at the function level.

NODE POSITION - This input is provided by the user via
a trackball entry indicating the
desired x,y position for the node on
the screen.

SCREEN MATRIX - Screen positional matrix and ASSM
correlation matrix.

NODE DESCRIPTION - Node physical characteristics.

SCREEN LIMITS - Defines screen drawing area.

NODE TYPE - Desired node type as selected from the
menu.

ELEMENT NAME - Associated ASSM element, if applicable.

Qutput

ASSM - Node record containing node type, color,
and x,y position.

NODE DISPLAY - Visual representation of the node at
the selected x,y position on the screen.

SCREEN MATRIX - Node record pointer is entered into
the appropriate screen matrix element.

Processing

The flow diagram for this module is given in Figure 3-8. Following is
a description of selected processing steps in the flow diagram.

3-103

- Checks are performed to insure that the
node will fit on the screen at the
selected position and that it will not
overlap existing nodes on the structure.

- A check is performed to insure that the
selected node is legal for the current
structure type.

- If the node is an 'OR' node, the user
is given the option to associate it to
a data element.

- If the node is a 'FOR EACH' node, the
user must specify its associated element
type.

- The associated element name is keyed in
via the keyboard.

- The keyed in element name must begin
with an alphabetic character and can
only contain alphanumeric characters
with exception of the underscore,
otherwise the menu operation is ignored.

- If the specified element name is not to
be found in the ASSM, the user is given
the option to allow RNETGEN to enter it
or to completely ignore the menu operation.

[22-25] - If the specified element name is already
in the ASSM, the user is given the option
to allow RNETGEN to associate the node
with it or to completely ignore the

menu operation.

Procedure Refecences

The following correlates the functional processing steps shown in
Figure 3-8 with the REVS procedures which perform the indicated processing.

(1] - TICMPMAT

(2] - TIMATCHK, IICHKNODESEL
(3] - TICHKNODTYP

(7] - TIMSGIN

(8] - TICHKNAME

3-104

5 O Bl B ke ¢ poTem e e e s e AT

[10] - TIMSGOUT
[l - 1IMSGIN
[16] - TINODIS
[19] - 1IDISNAM
[23] - TIMSGOUT
[24] - TIMSGIN
[26] - 1IMSGOUT

3-105

SCRLEN
POSITION
SELECTION.

SYNTAX YES

DISPLAY
MESSAGE .

Figure 3-8 Create Node (ITCRNODE)

3-106

s ees]

DISPLAY
ERROR
MESSAGE.

CREATE ASSM
NOUE RECORD.

UPDATE MATRIX.

DISPLAY
NODE ON
SCREEN.

ATTACH ELEMENT
ASSM TO NODE.

19
DISPLAY
ELEMENT F

2

EXIT i

Figure 3-8 Create Node (IICRNODE) (Continued)

3-107

e |

3.3.3 Delete Node (IIDENODE)
Description

The indicated screen selection is verified after which the selected
node is removed from the screen, together with all its associated arcs.
The node is subsequently removed from the ASSM structure and the internal
screen matrix is updated accordingly.

Input

NODE SELECTION - The user specifies the node to be
deleted from the net via the trackball
input facility.

ASSM - Node record data and associated
successor/predecessor record data for
the selected node.

SCREEN MATRIX - Node positional and ASSM correlation
data.

SCREEN LIMITS - Defines screen drawing area.

NODE DESCRIPTIQNS - Node physical characteristics.

Outputs

ASSM - Corresponding ASSM node record is
removed from the ASSM structure. Also,
any associated successor/predecessor
records are removed.

SCREEN MATRIX - Updated accordingly.

DISPLAY - The selected node is removed from the
screen.

Processing

A flow diagram of this module is presented in Figure 3-9. The follow-
ing comments apply to the indicated boxes of the flow diagram.

[2] - An input check is performed to insure
an existing node was selected.

[3] - The selected node is removed from the

screen along with all its associated
arcs.

3-108

(4]

Procedure References

AR R i e

The ASSM structure is updated to reflect
the node deletion. Any successor/prede-
cessor relationships with this node are
removed. The node/ASSM element relation-
ship is also removed, if one exists.
Finally, the node record, itself, is
removed from the ASSM.

The following correlates the functional processing steps shown in

Figure 3-9 with the REVS procedures which perform the indicated processing.

(1]
(2]
(3]
(6]

IICMPMAT
IIMATCHK
IISETNODE, IINODIS
I IMSGOUT

3-109

[IDENJDE

NODE SELECTION
LNPUT.

INPUT ERROR

REMOVE NODE
FRUM SCREEW.

JPUATE ASSM
STRUCTURC.

T

Figure 3-9 Delete Node (IIDENODE)

UPDATE
SCREEN MATRIX.

PROCESS ERROK.

3-110

3.3.4 Move Node (ITMVNODE)

Description

Upon verification of a selected node and the 'to' x,y screen position,
the indicated node and all its associated arcs are removed from its current
position on the screen and subsequently redrawn at the desired 'to' screen
position. The ASSM node and connector records are updated to reflect the
new screen position of the node.

Input

NODE SELECTION - The user specifies the node to be
moved via an x,y screen position using
the trackball entry key.

ASSM - Node record data and associated suc-
cessor/predecessor record(s).

SCREEN MATRIX - Node positional and ASSM correlation
data.

SCREEN LIMITS - Defines screen drawing area.

NODE DESCRIPTIONS - Node physical characteristics.

SCREEN SELECTION - The user specifies the x,y 'to' position
on the screen to which the node will be
moved.

Output

ASSM - Node record data and associated suc- |
cessor/predecessor record(s) data.

NODE DISPLAY - Removal of selected node at current
screen position and display of node at
newly selected screen position.

SCREEN MATRIX - Jpdated screen matrix.

Processing

Figure 3-10 is a flow diagram for this module. The following comaents
further clarify the processing for the indicated steps.
[1] - The user inputs the desired node on the
screen to be moved via an x,y screen

position selection using the trackball
facility.

3-1M

[2] - A validity check on input is performed.
First, to determine whether the selected
X,y position is within the screen draw-
ing limits; and, secondly, to determine
if a node exists at the selected x,y
position.

[3] - The user inputs the desired x,y screen
position to which the node selected in
Step [1] is to be moved. This again
is accomplished via the trackball
facility.

[4] - An input check is performed to insure
that the selected x,y position is within
the screen limits. A check is also made
to insure against node overlap of
existing nodes on the screen.

(71 - Internal screen matrix is updated to
reflect the new x,y position of the node.

[8] - The ASSM node record and associated
successor/predecessor records are up-
dated accordingly.

[9] - The node is redrawn on the screen at

its new x,y position and control is
returned to the function level.

Procedure References

The following correlates the functional processing steps shown in
Figure 3-10 with the REVS procedures which perform the indicated processing.

(1] - TICMPMAT
[2] - TIMATCHK
[3] - TICMPMAT
[4] - TIMATCHK, IICHKNODESEL
[5] - ITISETNODE
(6] - 1INODIS, IISCNCHK, IILINE
(7, 8] - TICMPINT
[9] - TINODIS, IIDISNAM, IISCNCHK, IILINE
(10] - TIMSGOUT
3-112

1IMVNODE

NOOE SELECTION
INPUT,

SELECT SCREEN
LOCATION.

DETERMINE
NODE TYPE.

10 1

PROCESS ERROR,

UPDATE
SCREEN MATRIX,

2 v

UPDATE STRUCTURE
IN ASSM.

ASSH 9
DISPLAY
NODE AND

ARCS AT NEW

POSITION.

EXIT

Figure 3-10 Move Node (IIMVNODE)

3-113

= ., “mHﬂ--in-.-m-l-l-Hll-II-IIllII.lﬁli.lill..lll...l.ll.‘

3.3.5 Join Nodes (IIJNNODE)

Description

Upon identification of the 'from' and 'to' nodes on the screen, checks
are performed to determine the legality of the selections. If errors are

detected, the input selection sequence must be repeated. Node intersection
points are computed and a node connector record containing these intersec-
tion points is created and entered in the ASSM. The directed arc is sub-

sequently displayed on the screen.

In the case of an out-branching 'OR/FOR'

node, the user must specify a branching condition which will also be

entered in the ASSM.

Input
NODE SELECTIONS

ASSM

CONDITIONAL

SCREEN MATRIX

NODE DESCRIPTIONS
SCREEN LIMITS

Qutput
ASSM

DISPLAY

Processing

The user specifies the nodes to be
connected via the trackball facility.
The node selection sequence also implies
the direction for the directed arc.

Node record data for the selected nodes.
In the event of an 'OR/FOR' node, the
user must provide the conditional branch
data via the Anagraph keyboard.

Node positional and ASSM correlation
data.

Node physical characteristics.

Defines screen drawing area.

A node connector record is entered into
the ASSM, together with appropriate
branching condition, if the node is a
branch node of an 'OR/FOR' node.

The directed arc between the two nodes
is displayed on the screen.

Figure 3-11 presents a flow diagram of the processing for this module.
Following are comments which apply to selected boxes in the flow diagram.

3-114

———————

[2] - Checks are made to insure that a node
does exist at the selected screen
position and that it may legally be
used as a predecessor node.

[4] - Checks are made to insure that a node
does indeed exist at the selected
screen position and that it may legally
be used as a successor to the previously
selected predecessor node.

[7-15] - If the predecessor node is an 'OR/FOR
EACH' node, then the user enters the
associated conditional expression and
ordinal, if applicable.

[9] - A syntax check is performed on the con-
ditional expression.

Procedure References

The following correlates the functional processing steps shown in
Figure 3-11 with the REVS procedures which perform the indicated processing.

(1] - TICMPMAT

[2] - TIMATCHK, IICHKPRED

[3] - TICMPMAT

[4] - TICHKNODESEL, IIMATCHK, IICHKSUC

(81 - TICONDIN

[9] - TICHKSYNTAX

[13] - TIORDIN

[16] - TICMPINT

[17] - TILINE

(18] - 1IMSGOUT |
|

3-115

TTJNNGDE

INPUT
PREDECESSOR
NOUE .

INPUT
SUCCESSOR
NODE.

ENTER SUCC/PRED
RELATIONSH!P
INTO ASSM.

Figure 3-11

AN

DISPLAY
ERROR
MESSAGE .

‘ EXIT ’

ENTER
CONDITIONAL EXPR.
INTO ASSM.

REQUIRE
ORD %NAL

INPUT
ORDINAL
VALUE.

ILLEGAL
MD% NAL

15 ;
- ENTER
m’ | ORDINAL
INTO ASSM.
16 -
COMPUTE ARC

INTERSECTION POINTS
AND ENTER IN ASSM.

3-116

DISPLAY
ARC ON
SCREEN.

19

DISPLAY
ERROR
MESSAGE.

&=

REMOVE SUCC/PRED
RELATICNSHIP
FROM ASSM.

]

Join Nodes (IIJNNODE)

| f r

! o S RS
P

3.3.6 Disjoin Nodes (IIDJNODE)

Description

Upon verification of the node selections, this module removes successor/
predecessor relationships between the indicated nodes, both in the ASSM
structure and visually on the screen.

Input

NODE SELECTION - The user selects the two nodes to be
disconnected via the trackball input
facility.

SCREEN MATRIX - Node positional and ASSM correlation H
data.

SCREEN LIMITS - Defines screen drawing area.

Qutputs

ASSM - The successor/predecessor record data
is removed from the ASSM structure for
the indicated nodes.

DISPLAY - The directed arc between the two nodes
is removed from the screen.

Processing

Figure 3-12 is a flow diagram of the processing for this module.

Procedure References

The following correlates the functional processing steps shown in
Figure 3-12 with the REVS procedures which perform the indicated processing.

(1] - TICMPMAT E
[2] - TIMATCHK !
[3] - TICMPMAT |
(4] - TIMATCHK, IICHKNODESEL '
[5] - TILINE
(7] - 1IMSGOUT

3-117

NODE SELECTION
LilPUT.

ERROR

NODE SELECTION
INPUT.

ERROR I

7 4

PROCESS ERROR.

REMOVE
DIRECTED
ARC.

UPDATE
ASSM STRUCTURE.

Figure 3-12 Disjoin Nodes (IIDJNODE)

3-118

P —

3.3.7 Comment Node (IICMNODE)

Description

This module provides a mechanism for allowing the user to insert, dis-
play, or remove a comment with any node on a net structure. This is accom-
plished by selecting the applicable node via the trackball input facility and
subsequently selecting the desired operation via the trackball.

Input
NODE SELECTION - The user selects the applicable node
on the screen via the trackball.
COMMENT - Textual data is input by the user via
the Anagraph keyboard.
SCREEN MATRIX - Node positional and ASSM correlation
? data.
SCREEN LIMITS - Defines screen drawing area.
OPERATION SELECTION - The user selects the desired operation
using the trackball input facility.
Qutput
ASSM - Comment is added/removed/displayed
from the applicable node in the ASSM
structure.
] Processing

The processing performed by this module is shown in Figure 3-13. In
Step 2, an input check is performed to determine whether the selected x,y ;
screen position is within the screen drawing area. A further check is made :
to insure that a node does, indeed, exist at the selected x,y position.

Procedure References

The following correlates the functional processing steps shown in i
Figure 3-13 with the REVS procedures which perform the indicated processing.
(1 - TICMPMAT !
[2] - TIMATCHK
(7] - TICOMENTIN
[11, 13, 14, 15] - TIMSGOUT
3-119

REMOVE

INPUT
COMMENT
OPTION.

OPTION

SPECIFIED

DISPLAY

FROM

REMOVE COMMENT

ASSM.

REMOVE COMMENT
FROM ASSM.

1
DISPLAY
MESSAGE .

ASSM

ENTER
COMMENT.

ENTER COMMENT
INTO ASSM.

DISPLAY
COMMENT.

DISPLAY
MESSAGE.

DISPLAY
ERROR

MESSAGE .

EXIT

Figure 3-13 Comment Node (IICMNODE)

3-120

3.3.8 Successor Node (IISUNODE)

Description

This module is used to display on the screen a structure which was
created in the batch (off-1line) mode via the RSL translator. Such nodes
have no graphics coordinate data or color associated with them. After
having requested such a structure via the menu, the entry node will be dis-
played at the top center portion of the structure display area. The user
should then select the Successor Node Module, via the menu, followed by succes-
sive trackball selections of the nodes for which successors are not displayed.
The type of the successor node is identified and its desired position on the
screen is then selected by the user.

e A AN S T S B0 A 5

Input

NODE SELECTION - The user selects the applicable node
for which he wishes to display its
successor.

ASSM - The entire ASSM net structure.

SCREEN POSITION - The user selects an x,y screen position
at which the successor node is to be
displayed (trackball input).

SCREEN MATRIX - Node positional and ASSM correlation
data.

SCREEN LIMITS - Defines screen drawing area.

NODE DESCRIPTION - Node physical characteristics.

Qutputs

ASSM - X,y screen positions are added to the
ASSM.

DISPLAY - Node is displayed on the screen.

SCREEN MATRIX - Screen matrix is updated accordingly.

Processing

The processing performed by this module is shown in Figure 3-14. The
following comments clarify the indicated processing step.

3-121

————————

(2]

(4]

(5]

(6]

[7]

Procedure References

An input check is performed to determine
whether the x,y input coordinate is
within the screen drawing area and also
to insure that a node does, indeed,
exist at the selected x,y position.

A check is made to determine if more
successors exist at the selected node.

The user is informed of the node type
for the next successor.

An x,y screen position at which the node
is to be displayed is selected by the
user,

A check is performed to insure that the
selected x,y position is within the screen
drawing area and that the entire node

will fit within the screen limits. A
check is also made to insure against node
overlap with existing nodes on the screen.

The following correlates the functional processing steps shown in
Figure 3-14 with the REVS procedures which perform the indicated processing.

1]
(2]
(6]
(7]
(0]
(1l
[12, 13]

IICMPMAT

TIMATCHK

ITCMPMAT

ITCHKNODESEL, IIMATCHK
TINODIS, IIDISNAM
IICMPINT, ITSCNCHK, ITLINE
[IMSGOUT

3-122

NODE SELECTION
INPUT.

GET NODE FROM
DATA BASE.

P

ALL
SUCCESSORS
DISP%AYED

DISPLAY
SUCCESSOR
NODE TYPE

SCREEN POSITION
TWPUT,

UPDATE SCREEN
MA

x.

ENTER NODE COLOR
AND NODE POSITION.

11

10

DISPLAY NODE
ON SCREEN.

ASSM

COMPUTE AND DISPLAY
ALL ARCS ON NODE.

DISPLAY MESSAGE.

13

PROCESS ERROR.

Figure 3-14 Successor Node (IISUNODE)

I !

3.3.9 Scroll Net (IISCROLL)

Description

This module provides a windowing capability for building and displaying
nets which outgrow the screen drawing limits. The 'FROM' and 'TO' x,y screen
selections are input by the user indicating an x,y 'FROM' position on the

f net to be moved to an x,y 'TO' position on the screen. This coordinate
translation is performed on the entire net and the net is removed from the

| screen and redrawn at its new position on the screen. The coordinate trans-
| lation parameters are maintained internally so that the net can be

continuously moved about.

Input

SCREEN SELECTION - The user inputs the 'FROM' and 'TO'
X,y screen positions via the trackball
facility.

ASSM - Entire ASSM net structure.

SCREEN MATRIX - Node positional and ASSM correlation
data.

SCREEN LIMITS - Defines screen drawing area.

NODE DESCRIPTIONS - Node physical characteristics.

Qutput

SCREEN MATRIX - Node positional and ASSM correlation
data.

DISPLAY - Entire net is removed from screen and
redrawn at new x,y position.

COORDINATE TRANSLATION - See Section 3.3.1.

PARAMETERS
Processing

A flow diagram of this module is shown in Figure 3-15. Selected pro-
cessing steps are further clarified below.

[2] - A check is performed on the 'FROM' x,y
screen position to insure that this
position is, indeed, contained within
the screen drawing area as defined by
the SCREEN LIMITS.

3-124

[6] - Coordinate translation parameters are
computed from the x,y screen position
input in Step 1 and 5.

Procedure References

The following correlates the functional processing steps shown in
Figure 3-15 with the REVS procedures which perform the indicated processing.

[2] - TICHKNODESEL
(4] - TIMSGOUT

[7] - TICLEARSCREEN
(8l - TICLEARMATRIX
[9] - TIDISNET

3-125

IISCROLL

INPUT 'FROM'
POSITION.

IDENTIFY
' FROM*
PQSITION
ON SCREEN

DISPLAY
MESSAGE
TO USER.

INPUT 'TO*
POSITION.

COMPUTE COORDINATE
TRANSLATION PARAMETERS.

REMOVE NET
FROM SCREEN.

CLEAR
SCREEN MATRIX.

9 !
TIDISNET

DISPLAY NET
AT NEW POSITION,

EXIT

Figure 3-15 Scroll Net (IISCROLL)

3-126

*—‘—W

3.3.10 Save Net (IISAVE)

Description

As an R-Net/Subnet is being built by the user, its structure is main-
tained in a temporary working area of the ASSM. If the structure is to be
saved permanently in the ASSM, an explicit command must be issued by the
user requesting such, as the structure will be lost when processing flow
returns to the function level. No user inputs are required within this
module level; however, structure analysis is performed prior to inserting
the structure permanently in the ASSM and if errors exist, appropriate
messages will be displayed to the user informing him that he must make
appropriate structure changes before the structure can be put into the
ASSM permanently.

Input

ASSM - The temporary structure of the net to
be saved.

COORDINATE TRANSLATION - See Section 3.3.1.

PARAMETERS

STRUCTURE STATUS FLAG - Error condition resulting from a
structure analysis.

Qutput

ASSM - Permanent net structure.

Processing

The processing for this module is shown in the flow diagram of
Figure 3-16. Selected processing steps are further described below.

(1] - The structure is checked for complete-
ness and correctness. If it is found
to be either incomplete or incorrect,
it will not be saved. However, it
is retained in temporary storage and
the user may correct the indicated
error and attempt to save again.

3-127

Procedure References

The following correlates the functional processing steps shown in
Figure 3-16 with the REVS procedures which perform the indicated processing.

(1]

(4]
[5]
(6]

IIGRACHK, ITCOMCHK, IILOOPCHK,
ITANDORMATCHCHK, IICHKOTHERWISE

IICLEARSCREEN
IICLEARMATRIX
IIMSGOUT, IIDENTIFY

3-128

LISAVE

CHECK FOR
LEGAL STRUCTURE.

' SAVE STRUCTURE.

(&)

-
v

4w

CLEAR SCREEN
DISPLAY AREA. PROCESS ERROR ,

INITIALIZE
SCREEN MATRIX.

EXIT 3

Figure 3-16 Save Net (IISAVE)

3-129

3.3.11 Zoom-Qut On Net (IIZOOMOUT)

Description

As described in Section 3.3.9, the user inay create a net structure,
using the scroll net facility, which extends beyond the limits of the
screen. IIZOOMOUT reduces the net structure such that it can be displayed
in its entirety within the screen drawing area.

Input

ASSM - The entire net structure.

Qutput

ASSM - Updated x,y positional data for the
entire net.

DISPLAY - The entire net is displayed in a
color-coded, zoomed-out mode.

Local Data

COORDINATE TRANSFORMATION X,y transformation parameters required

PARAMETERS to translate from the zoomed-in net
structure to the zoomed-out net struc-
ture.

Processing

The processing performed by this module is shown in Figure 3-17. The
following comments elaborate on the indicated processing for selected boxes.
[3] - The x,y translation and scaling param-

eters required to transform the net

structure to a zoomed-out structure are
computed.

Procedure References

The following correlates the functional processing steps shown in
Figure 3-17 with the REVS procedures which perform the indicated processing.

(1] - ITCLEARSCREEN
[2] - ITCLEARMATRIX
3] - TTIFINDXY

[4] - IIDISZOUT

3-130

IIZooMoUT

CLEAR SCREEN
DISPLAY AREA.

=

INITIALIZE
SCREEN MATRIX.

i
COMPUTE 4

TRANSFCRMATION
PARAMETERS.

. I
IIDISZOUT

DISPLAY
ZOOMED-OUT NET.

EXIT

F=3

Figure 3-17 Zoom-Out On Net (IIZOOMOUT)

3-131

3.3.12 Zoom-In On Net (IIZOOMIN)

Description

As indicated in Section 3.3.9, the user may create a net structure
which extends beyond the limits of the screen. A capability exists for him
to zoom-out on such a structure so that the entire structure, regardless of
size, can be totally contained within the screen display limits. When the
net structure has been displayed in this 'zoomed-out' mode, the user may use
the Zoom-In On Net module to select any point on the screen to be ‘zoomed-in'
on. The selected point is centered at the top of the screen and the net is
displayed downward in a ‘zoomed-in' mode to the screen limits.

Input

SCREEN SELECTION The user selects an x,y point on the
screen around which 'zooming-in' will
take place.

ASSM Entire net structure (zoomed-out).

SCREEN LIMITS Defines screen drawing area.

NODE DESCRIPTIONS Node physical descriptions.

Output

ASSM Screen positional data for entire net
structure.

SCREEN MATRIX Node positional and ASSM correlation
data.

DISPLAY The zoomed-out net is removed from the

screen and the zoomed-in net is subse-
quently displayed.

Processing

Figure 3-18 is a flow diagram of this module and the following comments

apply to the indicated processing boxes.

[1] - A check is performed to insure that a
zoomed-out net does, indeed, exist.

[2] Coordinate translation parameters are
computed and the net x,y positional data
is transformed from the zoomed-out mode
to the zoomed-in mode centered about the
selected x,y screen positions.

3-132

[5] - The net is displayed at its new position
on the screen.

Procedure References

The following correlates the functional processing steps shown in
Figure 3-18 with the REVS procedures which perform the indicated processing.

[3] - IICLEARMATRIX
[4] - IICLEARSCREEN
[5] - TIDISNET

(6] - IIMSGOUT

1IZOOMIN

IS NET

NO

ZOOMED-OUT

g COMPUTE COORDINATE
W TRANSFORM PARAMETERS.

e

\

INITIALIZE
SCREEN MATRIX.

PROCESS ERROR.

L

CLEAR SCREEN
VISPLAY AREA.

B

IIDISNET

DISPLAY NET
ON ANAGRAPH.

EXIT

Figure 3-18 Zoom-In On Net (IIZOOMIN)

3-134

3.3.13 Generate CALCOMP Plot (IICALCOMP)

Description

This module generates a CALCOMP hard copy plot of any structure
which has had graphics information entered through RNETGEN. Standard 8-1/2
by 11 document size output will be generated unless otherwise specified by
the user. If necessary, the structure will be reduced in size such that
the entire structure is contained within the selected document size.

Input
' ASSM - The entire net structure and associated
. elements.
f DOCUMENT SIZE - Width and height (inches) with default
% being 8-1/2 x 11.
E
' Output
NET DISPLAY s CALCOMP plot of current net structure.
Processing

The following descriptions provide additional clarifying information
for selected processing steps presented in Figure 3-19.

[1] - Standard document size of 8-1/2 x 11
inches is set up for CALCOMP output.

[2-5] - The user is given the option to accept
standard document size or to specify
optional width and height (inches).

(7] - This box represents a set of procedures
(see Section 3.3.20) which produce the
CALCOM? plot of a given structure.

Procedure References

The following correlates the functional processing steps shown in

Figure 3-19 with the REVS procedures which perform the indicated processing. §

[2] - 1IMSGOUT
(3] - TIMSGIN
(5] - TIVALIN
(7] - CONET
[9, 10] - 1IMSGOUT
3-135

M-M

‘ TICALCOMP ,

1
SETUP FOR STADARD
DOCUMENT SIZE.

DISPLAY
MESSAGE
TO USER.

KEY IN HEIGHT
AND WIDTH.

INPUT YES

ERF?QOR PROCESS ERROR.

@)
CONET

AL GENERATE

(ASSH_ CALCOMP PLOT.

PLOT YES

ERROR
?
/,/////r 10

NO

PROCESS ERROR.

EXIT

Figure 3-19 Generate CALCOMP Plot (1ICALCOMP)

3-136

f | — d

R ————————————

3.3.14 Set Color (IICOLOR)

Description

This module shown in Figure 3-20 determines the particular color
selected from a menu of available colors to be used during net creation or
modification. The selected color is used for displaying all subsequent
nodes entered. The color attribute is added to the description of each node
as it is entered and maintained in the ASSM. The color of an existing node
may be changed by selecting the desired node via the trackball immediately
following the color selection.

Input
COLOR MENU SELECTION - The user provides a color selection via
the trackball input facility. The
following colors are available in the
menu:
e red e purple
e green e turquoise
e blue e white.
o yellow
NODE SELECTION - The user selects the applicable node
for which he wishes the selected color
to apply.
Qutput
NODE COLOR - The selected color is maintained
internally (color code is preset to
turquoise).
Processing

The processing for this module is presented in the flow diagram of
Figure 3-20.

Procedure Reference

The following correlates the functional processing steps shown in
Figure 3-20 with the resulting REVS procedures which perform the indicated

processing.

[3] - 1ISETCCOL
(4] - IICMPMAT
(5] - 1IMATCHK
(6] - 1ISETNODE
(7, 8] - 1INODIS
(9] - 1IMSGOUT

3-137

| —

1ICOLOR

DETERMINE NODE

SELECTED COLOR. SELECTION
INPUT.

3 »

SET UP
SELECTED COLOR.

ENTER NODE COLOR DISPLAY
INTO ASSM. ng?%z

NODE FROM
ASSM SCREEN.

ISPLAY NODE
IN NEW COLOR
ON SCREEN.

EXIT

Figure 3-20 Set Color (IICOLOR)

3-138

3.3.15 Display Branch (IIDSPBRN)

Description

Upon input of the predecessor and successor node for the desired
branch, this module will optionally display the branch ordinal value, if
one exists, and the conditional expression, if one exists. The selected
branch must be an 'OR/FOR' branch; otherwise, the input is rejected.

Input

NODE POSITIONS - This input is provided by the user via
trackball selections of the predeces-
sor/successor nodes.

SCREEN MATRIX - Screen positional and ASSM correlation
matrix.

ASSM - Structure data.

SCREEN LIMITS - Defines screen drawing area.

Qutput

DISPLAY - Display of ordinal value, if applicable,
and conditional expression.

Processing

Figure 3-21 presents a flow diagram of the processing steps within
this module. Following is further clarifying information for the indicated
processing steps.

[2] - Checks are made to insure that the
selected node does indeed exist and that
it is either an 'OR' or a 'FOR EACH'
node.

[4] - - Checks are made to determine the existence
of the selected node and to insure that it
is indeed a successor to the previously
selected node.

[5] - The user is given the option to have the
ordinal displayed for the indicated
branch, if indeed, one exists.

[6] - Again, the user is given the option to
have the conditional expression displayed,
if one exists.

3-139

Procedure References

The following correlates the functional processing steps shown in
Figure 3-21 with the REVS procedures which perform the indicated processing.

(1] - IICMPMAT

[2] - TIMATCHK

[3] - TICMPMAT

(4] - TICHKNODESEL, IIMATCHK

(5] - TIMSGOUT, IIMSGIN

(6] - I1IMSGOUT, IIMSGIN

(7] - TIMSGOUT
ﬂh
1

3-140

IIDSPBRN

PREDECESSOR
NODE
SELECTION.

DISPLAY
ORDINAL IF

DISPLAY
CO:DITIONAL
XPRESSION.

t

PROCESS ERROR.

Figure 3-21 Display Branch (IIDSPBRN)

3-141

A

3.3.16 Display Node (IIDSNODE)

Description

Upon input of the desired node, this module will display the full
RSL name of the element associated with the node, if applicable.

Input

NODE POSITION - The input is provided by the user via
a trackball selection of the desired
node.

SCREEN MATRIX - Screen positional and ASSM correlation
matrix.

ASSM - Structure related data.

SCREEN LIMITS - Defines screen drawing area.

Qutput

DISPLAY - RSL element name of associated element,
if applicable.

Processing

Figure 3-22 presents a flow diagram of the processing steps within
this module. Following is further clarifying information for the indicated
processing steps.

[2] - Checks are made to insure that the
selected node does indeed exist on the
screen.

[3] - A further check is made to determine

whether the selected node is associated
to an element in the ASSM.

[4] - The full RSL element name is retrieved
from the ASSM and displayed on the
screen,

3-142

Procedure References

\

The following cor@elates the functional processing steps of Figure 3-22
with the REVS procedures which perform the indicated processing.

[1] - TICMPMAT
[2] - I ICHKNODESEL
[4, 5] = 1IMSGOUT

3-143

Eon e b S mer g S S AR S
-

Procedure References

The following correlates the functional processing steps of Figure 3-22
with the REVS procedures which perform the indicated processing.

0] - 1ICMPMAT
[2] ~ I ICHKNODESEL
[4, 5] = 1IMSGOUT
%
: i
‘ |
5-143 i

o e

IIDSNODE

NODE
SELECTION
INPUT.

ERROR

) ¥

DISPLAY
ELEMENT
NAME.

PROCESS ERROR.

Figure 3-22 Display Node (IIDSNODE)

3-144

3.3.17 Display Net (IIDISNET)
Description

This module is used to display an R-Net/Subnet in the 'zoomed-in'
mode. Each node on the net is interrogated to determine if it will fit .
within the screen display limits and if it does not fit, the node is i

ignored and processing continues at the next node.
Input 4’
ASSM - The entire net structure.
SCREEN LIMITS - Defines screen drawing area.
E

NODE DESCRIPTIONS - Node physical descriptions.
NODE COLOR - Selected by the user. ﬁ
Qutput
DISPLAY - Net display on the screen.
SCREEN MATRIX - Node positional and ASSM correlation 3

data. %
Processing '

The processing for this module is shown in Figure 3-23. The follow-
ing provides additional processing descriptions for the indicated boxes.

0] - Node record data and successor/predeces-
sor data is retrieved from the ASSM.

(2] - The x,y positional data is translated,
if required, using the coordinate trans-
lational parameters computed by the
Scroll Net module.

[3] - A check is performed to insure that the
node will fit on the screen. If the
node does not fit on the screen, process-
ing is continued at the next node on
the net.

(4] - The appropriate node color is set up
for subsequent display.

(5] - The node is displayed on the screen at
the appropriate x,y position.

3-145

[6] - The internal screen matrix is updated
to reflect the node screen position.

[7] - A1l directed arcs from/to this node
are displayed and processing returns
to step [1] until all nodes on the
net have been processed.

Procedure References

The following correlates the functional processing steps shown in
Figure 3-23 with the REVS procedures which perform the indicated processing.

[3] - TICMPMAT, IICHKNODESEL
[4] - IISETNODE
[5] - TINODIS, IIDISNAM
[7] - TIDSPLINES
3-146

‘ [IDISNET ’

FOR EACH
NODE ON NET.

TRANSFORM
NODE COORDINATE.

SET UP COLOR.

A
S

) e

SCREEN.

6 Y

UPDATE
SCREEN MATRIX.

A

7
DISPLAY
DIRECTED
ARCS.

Figure 3-23 Display Net (IIDISNET)

3-147

l"Fl-llll-l--""l-'!-'---"-"-'--"""""“""'F"""""""“

3.3.18 Display Zoomed-Qut Net {IIDISZOUT)

Description

This module is used to display a color-coded miniature display of the
current structure. This provides a capability for displaying the entire
structure, regardless of size, within the structure display area of the
CRT. The x,y scaling factors to translate from the nominal (zoomed-in)
structure mode to the zoomed-out mode are computed and all connecting arcs
on the structure are first displayed from node-center to node-center.

The nodes are subsequently displayed in color-coded form.

Input
E ASSM - The entire net structure.
: SCREEN LIMITS - Defines screen drawing area.
NODE CHARACTERISTICS - Color codes and physical descriptions.
Qutput
DISPLAY - Miniature color-coded display of
Structure.
SCREEN MATRIX - Zeroed out.
Processing

Figure 3-24 presents a flow diagram for the processing in this module.

Procedure Reference

The following correlates the functional processing steps shown in
Figure 3-24 with the REVS procedures which perform the indicated
processing.

[8] - TISETNODE

3-148

‘ 110Iszout >

FOR EACH
NODE ON NET.

ASSM

TRANSLATE NODE
CENTER POSITION.

4

FOR EACH
SUCCESSUR iODE.

TRANSLATE SUCCESSOR
NODE CENTER POSITION.

ASSM

2 DISPLAY
ARC TO

SUCCESSOR
NUOE.

FOR EACH
NODE ON NET.

ASSM

TRANSLATE
NODE CENTER.

y

DISPLAY NODE.

Figure 3-24 Display Zoomed-Out Net (IIDISZOUT)

EXIT

3-149

|
J

crmreTiar

3.3.19 Menu Read (IIMENUREAD)

Description

This module provides menu selection capability via the trackball
input facility. The selected x,y screen coordinate is translated to a
menu line entry. Appropriate indicators are set and control is returned
to the function level.

Input

MENU LIMITS - Defines menu limits.

MENU LINES - Defines menu line entries.

SCREEN SELECTION - X,y screen coordinate value as input
via the trackball facility.

Qutput

MENU SELECTION - Selected menu line entry.

Processing

The processing for this module is presented in Figure 3-25. The follow-
ing comments provide additional clarifying information for the indicated
processing boxes.

[3] - A determination is made as to whether
the selected x,y screen position indi-
cates a menu line entry.

[4] ~ A check is made to insure that the
selected menu entry is indeed legal.

[5] - If a structure type was selected in
the menu, a determination is made as
to what type (i.e., RNET, SUBNET,
VALPATH).

[6] - If a node type was selected in the
menu, a determination is made as to
what type (i.e., ALPHA, EVENT, OR, AND,
etc.).

(7] - If neither a structure type or node
type was selected, then the appropriate
menu entry is determined and so indi-
cated (i.e., move node, scroll, net,
etc.).

3-150

Procedure References

The following correlates the functional processing steps shown in
Figure 3-25 with the REVS procedures 'vhich perform the indicated
processing.

[10] - ITCHKNODESEL
[, 12] - I IMSGOUT

3-151

11

PROCESS ERROR.

‘ TIMENUREAD ’

INPUT
SELECTION,

SET APPROPRIATE FLAGS.

LEGAL
SELE;.NN

13

DETERMINE

MENU SELECTION.

SET MENU
STRUCTURE TYPE.

4 12

PROCESS ERROR.

YES STRUCTLURE
TYPE

SET MENU NODE TYPE.

SET MENU TYPE.

SET APPROPRIATE FLAGS.

EXIT

Figure 3-25 Menu Read (IIMENUREAD)

3-152

3.3.20 CALCOMP Net Display (CCHET)

Description

This module will plot a selected structure in the ASSM which has
associated graphics coordinate data. Its output is recorded on a CALCOMP
compatible tape for plotting on 30-inch paper. The plot size is provided
via the argument 1ist along with the ASSM pointer to the element to which
the structure is attached.

Input

ASSM - The entire net structure and associated
elements.

DOCUMENT SIZE - Desired width and height (inches) of
the plotted output.

FLAG - First pass flag.

Output

DISPLAY - CALCOMP plots of the selected structure.

Processing

The following information is presented for clarification of selected
processing steps appearing in Figure 3-26.

[1] - If the selected ASSM element has no
associated structure, an error flag is
set and control is returned to the
calling program.

(2] - A1l required ASSM pointers to RSL
element types are retrieved for
subsequent use.

[3, 9] - If the selected structure is not
currently in temporary storage it is
moved there.

[6] - X,y scale factors to translate Anagraph
coordinate units to CALCOMP coordinate
units such that the entire structure
will be contained within the requested
document size are computed.

3-153

[7, 8] - If this is the first execution of CCNET,
the CALCOMP tape is initialized and the
TRW Togo frame is generated.

[10] - If the structure contains no associated
graphics data, the graphics data will be
generated automatically and entered in
the ASSM.

[16, 21] - If a node is associated to an ASSM
element, the element is retrieved and
displayed at the node on the structure.

[20, 22] - If a conditional expression exists on
a node branch, 'OR/FOR EACH' node,
then the branch is numbered on the
structure and the associated ordinal
and conditional expression is entered
in the branch legend of the structure.

[24] - If the structure was not already in
temporary storage upon entry into
CCNET, then it is removed from
temporary storage.

Procedure References

The following correlates the functional processing steps shown in
Figure 3-26 with the REVS procedures which perform the indicated processing.

(6] - CCFINDXY, CCAMSN, CCAMAX

(8] - CCTRWLOGO

[10] - CCAUTOPLT

(13] - CCSETNODE

[21] - CCPUTEXT

[22] - CCPRINTNOBR, CCPRINTTBBR
3-154

CONET

!
STRUCTUREN. NQ_

\PRE.SLNT/

o Ys
2

INITIALIZE
REQUIRED
ASSM FOINTERS.

3
TRUCTUR
NO_~“IN TEMPORAR

AREA
?

MOVE STRUCTURE YES
TO TEMPORARY AREA.

s RAPHIC
NO DATA SET ERROR
l AVAILABLE RETURN FLAG.
?

GENERATE A
GRAPHICS DATA
AUTGMATICALLY.

5
CALCOMP
PLOTS NO
nzs;nzn

YES

COMPUTE X, Y
SCALE FACTORS.

YES

INITIALIZE
PLOT TAPE. EXIT

DISPLAY TRW LOGO.

FOR EACH
NODE ON
THE STKUCTURE,

13

DETERMINE NODE TYPE.

Figure 3-26 CALCOMP Net Display (CCNET)
3-155

TRANSLATE X, Y
hODE CENTERS
TO CALCOMP UNITS.

oAb

DISPLAY NODE
ON CALCOMP,

O

DISPLAY ELEMENT
NAME ON CALCOMP.

FOR EACH
SUCCESSOR
NOOE.

18

G

TRANSLATE ARC X, Y
COORDINATES
TO CALCOMP UNITS.

w4

DISPLAY DIRECTED
ARC ON CALCOMP.

22 l

)/

COND.

e EXPRESSION
1

@—D UPDATE BRANCH LEGEND.

23

DRAW FRAMES
AROUND PLOTS.

& 4

G

REMOVE STRUCTURE
FROM TEMPORARY AREA,
IF NECESSARY.

Figure 3-26 CALCOMP Net Display (CCNET) (Continued)

3-15

6

3.3.21 Autoplot (IIAUTOPLOT)

Description

This module provides the capability for the automatic generation of
graphics coordinate data for the current structure. All nodes on the
structure will also have their color changed to the currently selected
color in the menu. The resulting structure will in general, have a
neater and more pleasing appearance than one which is drawn manually
via RNETGEN.

Input 1
ASSM - The entire net structure and associated
elements
COLOR - Current color as indicated via the]
menu.
Qutput
SCREEN MATRIX - Updated screen matrix.
‘ ASSM - Graphics coordinate and color data for
t each node on the current structure.

DISPLAY - The structure is displayed in either
its zoomed-out or zoomed-in mode.

Processing

The following information is presented for clarification of selected
processing steps appearing in Figure 3-26.1.

[2] - The color on all nodes in the structure
is set to blank. This is required by
the automatic graphics coordinate data
generator program.

[3] - This procedure will automatically
generate graphics coordinates for each
node on the structure.

[4] - A1l nodes on the structure is given
the color of that specified on the
menu.

16s 72 8, 9) - The user selects, via the trackball,

to display the structure in either its
zoomed-out or its zoomed-in mode.

3-157

Procedure References

(1]
(2]
(3]
(4]
(5]
(8]
(9]

IICLEARSCREEN
1 IREMGRAPH
XXCNET

I IREMGRAPH
IIMATCLEAR
11Z0OMOUT
TIDISNET

3-158

e i T A S AT S P T EARPR

200M-0UT

ITAUTOPLOT

REMOVE
STRUCTURE
RCM SCREEN

REMOVE COLOR AND
COORDINATE DATA
FROM STRUCTURE.

S

CCNET

GENERATE GRAPKICS
DATA AUTOMATICALLY.

i 4

SET COLOR OF
ALL NODES TO
CURRENT COLOR.

g L

CLEAR SUREEN MATRIX.

DISPLAY
USER
OPTIONS.

OPTION

11Z00MOUT

DISPLAY ENTIRE
STRUCTURE IN
COLOR-CODED FORM.

L

e

\Smuy
1

TIDISNET

DISFLAY
STRUCTURE IN
DETAILED FORM.

J

Figure 3-26.1

3-159

Autoplot (ITAUTOPLOT)

Description

3.3.22 Move Subtree (IIMVSUBTREE)

This module allows the user to move portions of the currently dis-
played structure by selecting an existing node on the structure and speci-
fying a position on the screen to which the selected node is to be moved.
The selected node and all nodes on the structure below it are moved

accordingly.

Input
ASSM

NODE SELECTION

SCREEN MATRIX

SCREEN LIMITS
NODE DESCRIPTIONS
SCREEN SELECTION

Qutput
ASSM

DISPLAY

SCREEN MATRIX

Processing

The entire net structure and associated
elements.

The user specifies the subtree to be
moved via a node selection using the
trackball.

Node positional and ASSM correlation
data.

Defines screen drawing area.
Node physical characteristics
The user specifies the x,y 'to' position

on the screen to which the node will be
moved.

Coordinate data for selected node and
associated successor/predecessor nodes
in the subtree which was moved.

Removal of selected subtree at current
screen position and display of subtree
at newly selected screen position.

Updated screen matrix.

The following information is presented for clarification of selected

processing steps appearing in Figure 3-26.2.

1]

The user identifies a subtree on the
currently displayed structure by
selecting the leading node of the
desired subtree to be moved.

3-160

W : - - - —

(2]

(3]
(4]

(7]

-

Procedure References

0]
(2]
[4]
(6]
[7]
(9]
[10]
)

A validity check on input is performed.

First, to determine whether the selected
X,y position is within the screen drawing
limits; and, secondly, to determine if a
node exists at the selected x,y position.

The user inputs the desired x,y screen
position to which the node selected in
Step [1] is to be moved.

An input check is performed to insure
that the selected x,y position is within
the screen Timits.

The identified subtree structure is

removed from the screen and its new

coordinates are computed and entered
into ASSM.

The identified subtree structure is
displayed at its new position on the
screen.

The following correlates the functional processing steps shown in
Figure 3-26.2 with the REVS procedures which perform the fndicated processing.

T1ICMPMAT
[IMATCHK
ITCHKNODESEL
ITDETNOD
IIPROCBRNCH
IIDETNOD
ITPROCBRNCH
1 IMSGOUT

3-161

TIMVSUBTREE

INPUT
DESIRED NODE.

NPUT 'TO*
POSITION
ON_SCREEN.

SET FIRST
PASS FLAG.

SAVE NODE POINTER.

e .

DETERMINE
NODE TYPE.

REMOVE
BPANCH AT

MESSAGE.

RESET NOOE
POINTER.

DETERMINE NODE TYPE.

DISPLAY "\
BRANCH AT

EXIT

Figure 3-26.2 Move Subtree (IIMVSUBTREE)

3-162

]

3.4 REQUIREMENTS ANALYSIS AND DATA EXTRACTION (RADX)

Description

The Requirements Analysis and Data Extraction function provides a
variety of capabilities to aid in the development of requirements specifi-
cations. These include a generalized ASSM query and data extraction
facility, an RSL documentation capability, and a static analysis capability
to identify simple and complex anomalies in the requirements specifications.

The query and data extraction facility uses the concept of a SET, a
collection of ASSM elements, to provide flexible and powerful user control
for the interrogation and documentation of the contents of the ASSM. Docu-
mentation is selectively generated in either RSL text or a hierarchical
map form. There are two types of SETs -- predefined and user defined. The
predefined SETs are:

e The universal set which is referred to as ALL_SET contains
all the elements in the ASSM.

o Element-type sets which are referred to by the element-type
name contain all the elements that are of the named element-

type.

e Element sets which are referred to by the element name
contain the named element.

A user defined set is a collection of elements defined by the user
in one of the following ways:

@ The elements in a list of SETs
The logical combination of two SETs
e The elements in a SET that satisfy a qualification criterion.

The RSL documentation capability allows all or part of the currently
legal definition of RSL to be displayed. This includes the description of
element-types, relations, and attributes.

The static analysis capability diagnoses anomalies in the flow-oriented
portion of the requirements. Such things as loops in a data or structure

3-163

hierarchy, illegal combinations
flow errors are identified.

Input
USER RCL

ASSM

TYPE ACTIVATION

Output
DIAGNOSTIC MESSAGE

of relationships or attributes, and data

- RADX control statement that defines
operations to be performed.

- Any part of the ASSM can be retrieved
by RADX.

- In addition to the normal interface with
the user, RADX interfaces with the
SIMGEN function (see Section 3.5) to
perform static analysis and data collec-
tion for that function.

- Input control statement not processed
due to error during statement translation.

Other outputs from RADX are made from the various modules that compose RADX.

Local Data
The following information

TYPE_COMMAND

WIDTH
HEIGHT
PERMISSION_ID

MEMBER LIST
NEW_SET_NAME

TYPE_QUALIFY

is generated by translating user RCL.

- Indicates operation to be performed by
RADX. Operations are: DEFINE_SET;
QUALIFY_SET; COMBINE SETS; DEFINE
HIERARCHY; DEFINE APPEND; LIST SET;
LIST HIERARCHY; LTST RSL; ANALYZE;

LIST_PERMISSION; PLOT
- Width of PLOT.
- Height of PLOT.

- Identifier of the CONTROL_PERMISSION
to be displayed.

- List of SETs for defining a new set.

- The name of the new set that results
from performing a DEFINE_SET, QUALIFY_
SET or COMBINE_SET operation.

- Indicates the technique used to qualify
the members of an existing set to form

3-164

-

QUALIFYING_ATTRIBUTE
QUALIFYING_VALUE

QUALIFYING_RELATION
QUALIFYING_OBJECT_SET

FIRST INDEPENDENT SET

SECOND_INDEPENDENT_SET

TYPE_COMBINATION

HIERARCHY_NAME

HIERARCHY_ENTRIES

SELECTED_APPEND_TYPE

APPEND_ITEM_LIST

INDEPENDENT_SET

SELECTED_HIERARCHY

HIER_DISPLAY_FORM

a new set. Legal techniques are
BY ATTRIBUTE, BY RELATION, and
BY_HIERARCHY.

Attribute used to qualify a set.

The value of an attribute used to
qualify a set.

Relation used to qualify a set.

Collection of elements used when quali-
fying BY_RELATION.

The first set of a COMBINE_SETS
operation.

The second set of a COMBINE_SETS
operation.

Indicates how sets are to be logically
combined. The combination can be
UNION, INTERSECTION, or DIFFERENCE.

The name of a user defined hierarchy.

A list of one or more triplets which
define how to trace direct and indirect
relationships between elements in the
ASSM. The triplet is (SUBJECT TYPE,
BINDING_RELATION, OBJECT TYPE).

Indicates the element type that has
been selected to have its APPEND_OPTION
changed.

List of associated information such as
relations and attributes to be displayed
when an element of a particular type is
displayed.

Collection of elements to be listed,
qualified, or analyzed.

Identifier of a previously defined
hierarchy that is to be used for listing
or qualifying a set.

Indicates format to be used for dis-

playing hierarchy. Legal val S
MAP, SEQUENCE, and GROSP. Sk s

3-165

RSL_LIST_OPTION

DATA_FLOW_OPTION

Indicates what portion of RSL definition
has been selected to be displayed. Legal
selections are ALL, TYPES, RELATIONS,
ATTRIBUTES, SUMMARY, ONE_TYPE, ONE
RELATION, ONE_ATTRIBUTE, and ONE_TYPE_
SUMMARY .

Indicates that option to perform data
flow analysis has been selected.

Figure 3-27 illustrates the data structures used by RADX for the
management of SETsand their related information. The following further

explains these data structures:

SET_LIST_ARRAY

SET_DESCRIPTION_RECORD

APPEND_OPTION_RECORD

SET_MEMBER_RECORD

ASSM_ELEMENT ARRAY

An entry is made into this array for

each set known to RADX. The entry con-
tains the location of the SET_DESCRIPTION_
RECORD. The first entry contains the
location of ALL SET which is the uni-
versal set of all elements in the ASSM.
Entries 2 through n+l contain the loca-
tions for the n predefined sets. The
remainder of the entries are reserved

for user defined sets.

Contains the name of the set, the loca-
tion of the first APPEND_OPTION_RECORD,
and the location of the first
SET_MEMBER_RECORD.

Contains one type of information to be
displayed when an element that is a
subset of the owning SET_DESCRIPTION_
RECORD is displayed.

Contains indexes into the ASSM_ELEMENT_
ARRAY which identify the members of
the set.

An entry, which contains the location
of the element, is made in this array
for each element in the ASSM. The
array is ordered alphabetically by
element type.

3-166

el

Processing

Figure 3-28 contains the functional flow diagram for this module.

Procedure References

The following correlates the functional processing elements in

Figure 3-28 with the REVS procedures which perform the indicated processing.

1] -
(3, 5] -
[10-20] -
[21, 22] -

QQINIT

QQTRDXM

QQDXM

QQDXM, QQLISTSET

3-167

:
%
!
i

WSSY N1
1MW3N3
HIY3 01
ﬁl Y3INIOd |

(173v) AvVHdY
INIWITI WSSV

jusuebeuey 335 J0j $34NIINUIS BIRQ XQVY [L2Z2-€ 94nbi4

135 JHL 40 SHIGWIN ¥V
[2-X3GNI] 173V HINOYHL
« [L-X30NI] 173V SINIWIT3 VML SIITdWI |,

J<,
N g o5 ol LR N NOILdO [NOTLO 3dAL
040238 1XIN| 113V OINI | 173V OINI NOILdO 1X3N
01 ¥IINTOd | ~z-x30NI L-X3ONI 0L ¥3INTog | NOTLdO | NOILdO 3dAl
04003¥ IX3N | 173V OINT | 173V OINI NOTLdO LX3N
0L ¥3INIOd | ~ 2-X3aNI L-X30NT 01 ¥3INIOd NOI1d0 | NOILdO 3dAL
0073y 0¥077Y
YITNIW $135 39N NOI1d0
135 O8I ON3ddV
SYITWIW 135 [SNOTLdO ONId4y
OL ¥IINIO | oL¥iwlo4 | TWWNIIS e |

(13S HIV3 ¥04 3NO)

Y023y NOIL4T¥IS3Q 135

SNOI1d41¥JS30
135 0L
ﬁl Y3INIOd

AVdYY 1S17 135

=

S13S
y3sn

S13§
Q3INI43034d

v

3-168

&)

RADX

TR

1

INITIALIZE PREDEFINED
CONTROL PARAMETERS.

USER 4//’////Jl\\\\‘\\

3

/ GET USER COMMAND. /

SIMGEN

ACTIVATION.

TRANSLATE
INPUT COMMAND.

INFORM USER THAT
REQUESTED COMMAND
NOT PROCESSED.

*)

6

INITIALIZE FOR SIMGEN
ANALYSIS AND
DATA COLLECTION.

7 4

QQANALYZE

PERFORM STATIC
TEST AND
DATA COLLECTION.

EXIT

Figure 3-28 Requirements Analysis and Data Extraction (RADX)

3-169

11 15
QUJUALSET QQOEFINESET
DEFI\c WEW SET AS FY NE S
ELEMENTS IN R ENOET DEFINE SET DEFINE A SET FROM
SUBELT SET THAT A LIST OF SETS.
12 16
QUEFRIER QuCOMBINESET
ENTER DESCRIPTION DEFINE HIERARCHY Loming 31T OOl caL coearnaTION
OF NEW HIERARCHY. OF TW0 EXISTING SETS.
13 17
LSTRSL _ QUDEFAPPEND
LIST RSL NE_APP
LIST ALL OR DEFINE APPEND ENTER NEW APPEND
PARTS OF RSL. OPTIONS ON ELEMENT TYPE
14 18
QUANALYZE JUDOHIER
Y
szﬁyggﬁgars ANALYZE LIST HIERARCHY DISPLAY ELEMENTS
et ACCORDING TO HIERARCHY.
LIST SET
19 20
QQPLOT QQUPERM
P PLOT LIST PERMISSION Li5T T,
STRUCTURES. PERMISSION .
2
FOR
ELEMENT

EACH
IN SET
TO BE LISTED.

22

QULISTELT

LIST &
APPL

APPEND OPTIONS.

YING

&l
LEMENT I
|

Figure 3-28 Requirements Analysis and Data Extraction (RADX) (Continued)

®

3-17

0

o —— . -

3.4.1 Define Set (QQDEFINESET)

Description

This module defines a new set as the union of a list of previously
defined sets.

Input

MEMBER_LIST - List of sets used to define a set.

NEW_SET_NAME - The name of the new set that results
from performing a DEFINE SET,
QUALIFY_SET, or COMBINE_SET operation.

COUNT_OPTION - Option to display number of members
in newly defined set.

Qutput

SET_DESCRIPTION_RECORD - Contains the name of the set, the loca-
tion of the first APPEND_OPTION_RECORD,
and the location of the Tirst
SET_MEMBER_RECORD.

SET_MEMBER_RECORD - Contains indexes into the ASSM_ELEMENT_
ARRAY which identify the members of
the set. '

: SET_LIST_ARRAY - An entry is made into this arra} for
each set known to RADX. The entry con-
tains the location of the SET_DESCRIPTION_
RECORD.

Processing

Figure 3-29 contains the functional flow diagram for this module.

K Procedure References

The following correlates the functional processing elements in Figure
3-29 with the REVS procedures which perform the indicated processing.

[1] - QQSTARTSET
[2-4] - QQSETDEF

[5-8] - QQENDSET

QQDEF INESET

ALLOCATE
SET_DESCRIPTION RECORD;
STORE LOCATION
IN SET_LIST_ARRAY;
NEW_SET_NAME
IN THE RECORD.

FOR_EACH
SET IN
MEMBER_LIST.

EACH

FOR
ELEMENT IN SET.

ADD ELEMENT TO
ISET_DESCRIPTION_RECORDS.

DELETE PREVIOUS SET.

COUNT_OPTIO)
sst?cun

YES

.

DISPLAY NUMBER OF
MEMBERS IN SET,

Figure 3-29 Define Set (QQDEFINESET)

3-172

AD=AO46 573 TRW DEFENSE AND SPACE SYSTEMS GROUP HUNTSVILLE ALA F/6 9/2
REVS MAINTENANCE MANUAL. SREP FINAL REPORT. VOLUME III.(U)
AUG 77 W E BENOIT:. P N BERGSTRESSER DAS660-75=C~0022
TRW=27332=6921=026=VOL=3

UNCLASSIFIED
=2

- |

h

R T D e
T N

[(= D T)

\

i

1 0 28 JJE2
= 315 \‘\n:‘giz

111 i B
ll= " g

e oy o

3.4.2 Combine Sets (QQCOMBINESET)

Description

This module derives the collection of members to be included ina new
set as the logical combination of two independent sets. The logical combi-
; nation can be INTERSECTION, UNION, or DIFFERENCE.

Input
FIRST_INDEPENDENT_SET

k
E
E
| SECOND_INDEPENDENT_SET
:
E

TYPE_COMBINATION

NEW_SET_NAME

COUNT_OPTION

Output
SET_DESCRIPTION_RECORD

SET_LIST_ARRAY

SET_MEMBER_RECORD

Processing

Figure 3-30 contains the functional flow diagram for this module.

3-173

The first set of a COMBINE_SETS operation.

The second set of a COMBINE_SETS
operation.

Indicates how sets are to be logically
combined. The combination can be
UNION, INTERSECTION, or DIFFERENCE.

The name of the new set that results
from performing a DEFINE_SET,
QUALIFY_SET, or COMBINE_SET operation.

Option to display number of members
in a new set that results from the
COMBINE_SETS operation.

Contains the name of the set, the loca-
tion of the first APPEND OPTION RECORD,
and the location of the first SET_
MEMBER_RECORD.

An entry is made into this array for
each SET known to RADX. The entry
contains the location of the SET_
DESCRIPTION_RECORD.

Contains indexes into the ASSM-ELEMENT_
ARRAY which identify the members of
the set.

Procedure References

The following correlates the functional processing elements in Figure
3-30 with the REVS procedures which perform the indicated processing.

[1] - QQSTARTSET
[3-5] - QQORSET
[6-8] - QQDIFFSET
[9-12] - QOANDSET
[13-16] - QQENDSET

3-174

UNION

QQCOMB INESET

ALLOCATE
SET_DESCRIPTI0 RECORD:
STORE LOCATIV N
SET_LIST_AnKAY,

New SET (AME
IN THE RECORU.

TYPE

3

CoPY
FIRST_INDEPENDENT_SET
T0 SET_MEMBER_RECORD.

4

OR EACH ELEMENT
OF SECOND_
INDEPENDENT SET.

ADD ELEMENT I
TO SET_MEMBER_RECORD.

o s s | o e

coeen:mou

OIFFERENCE

COPY
FIRST_INDEPENDENT_SET
T0 SET_MEMBER RECTRD -

A

OR EACH ELEMENT
OF SECOND_
INDEPENDENT SET,

DELETE_ELEMENT J
FROM
SET_MEMBER_RECORD.

OR EACH ELEMENT
OF FIRST_
INDEPENDENT_SET.

10
OR EACH ELEMENT
OF SECOND_
INDEPENDENT SET.

o

ADD ELEMENT 1
70 SET_MEMBER_RECORD.

Figure 3-30 Combine Sets (QQCOMBINESET)

DISPLAY NUMBER OF
MEMBERS IN NEW_SET.

EXIT

3-175

B i i s g s i . i

3.4.3 Qualify Set (QQQUALSET)

Description

This module determines the collection of elements to be included in
" NEW_SET as those elements in a subject set which satisfy a qualification
criterion which can be one of the following:

o BY ATTRIBUTE
o BY RELATION
e BY HIERARCHY.

Input

ASSM - Attribute and relationship instances.

COUNT_OPTION - Option to display number of members
in the new set that results from the
QUALIFY_SET operation.

NEW_SET_NAME * The name of the new set that results
from performing a DEFINE_SET,
QUALIFY_SET, or COMBINE SET operation.

TYPE_QUALIFY - Indicates the technique used to
qualify the members of an existing
set to form a new set. Legal techniques
are BY ATTRIBUTE, BY RELATION, and
BY_HIERARCHY.

QUALIFYING_ATTRIBUTE - Attribute used to qualify a set.

QUALIFYING_VALUE - The value of an attribute used to
qualify a set.

QUALIFYING_RELATION - Relation used to qualify a set.

QUALIFYING_OBJECT_SET - Collection of elements used when
qualifying BY_RELATION.

INDEPENDENT_SET = Collection of elements to be listed,
qualified, or analyzed.

SELECTED_HIERARCHY - Identifier of a previously defined

hierarchy that is to be used for
listing or qualifying a set.

3-176

Qutput

SET_DESCRIPTION_RECORD - Contains the name of the set, the
location of the first APPEND OPTION_
RECORD, and the location of the first
SET_MEMBER_RECORD.

SET_LIST_ARRAY - An entry is made into this array for
each set known to RADX. The entry
contains the location of the
SET_DESCRIPTION_RECORD.

SET_MEMBER_RECORD - Contains indexes into the
ASSM_ELEMENT _ARRAY which identify
the members of the set.

Processing

Figure 3-31 contains the functional flow diagram for this module.

Procedure References

The following correlates the functional processing elements in
Figure 3-31 with the REVS procedures which perform the indicated processing.

[1] - QQSTARTSET
(3] - QQDOHIER
[4, 5] - QQENDSET
[8-14] . QQBYATT
[15-25] - QQBYRSLREL, QQBYIMPREL
t
3-177

I QQQUALSET ,

ALLOCATE
SET_DESCRIPTION_RECORD;
STORE LOCATION IN
SET_LIST_ARRAY;
PLACE NEw_SZT_nAME
IN THE RECORD.

1

BY_RELATION

BY_HIERARCHY

3
QQDOAIER
QUALIFY SET
BY HIERARCHY.
@
Y
4 A
N0~ SET_NAYE

AME AS PRZVIOU
SET
?
YES

RELEASE PREVIOUS SET.

OUNT_OPTION
SELECTED

YES
7
DISPLAY NUMBER
OF MEMBERS
IN Nid_SET.

EXIT

Figure 3-31

3-178

13

()

FOR EACH
ELEMENT IN —_——
INDEPENDENT_SET. qI

‘ |

ASSM
ALUE SATISF

I

OT_OPTION
SELE?CTED

NO

YES

QUALIFYIWG
VALUE

0T_OPTIO!
SELECTED

14

PLACE ELEMENT IN
SET_MEMBER_RECORD.

Qualify Set (QQQUALSET)

I
I
I
|
I
|
|
I
|
I
|
|
I
I
|
|
I

&)

17

19
FOR EACH : |
ELEMENTT IN) o e — |
INDEPENDENT SET. 1 1
]
=
ACH I H
ELEMENT J IN :
QUALIFYING s |
OBJECT_SET- ' | i
0BJECT SET- I ll [
ADD THOSE ELEMENTS l
WHICH ARE OBJECTS | |
OF CURRENT ELEMENT l
VIA COMPLEMENT OF ' |
QUALIFYING_RELATION ADD I TO |
T0 WORKING SET T. : WORKING SET S. |
- J]
| T .
| : '
* S G
INDEPENDENT _SET
AT
?
24
NEW_SET
NEW_SET « § INDEPENDENT SET
-s
Figure 3-31 Qualify Set (QQQUALSET) (Continued)
3-179

e S o i e

3.4.4 Define Hierarchy (QQDEFHIER)

Description

This module accepts a translated hierarchy definition and stores it
with hierarchy connectivity information such that it can be used later for
qualifying or listing a set in a hierarchical manner.

Input
HIERARCHY NAME -

HIERARCHY_ENTRIES -

Qutput
HIERARCHY_DESCRIPTION_RECORD -

o NAME_OF HIERARCHY
o TOP_TYPE

e HIERARCHY START POINTS

e HIERARCHY_OPERATIONS

e FROM, TO

Processing

Name used to apply hierarchy in a list
set or qualify set command.

Each entry contains the triplet
(SUBJECT_TYPE, BINDING RELATION,
OBJECT_TYPE) which is used to trace
elements through the ASSM from
SUBJECT_TYPE to OBJECT TYPE via the
BINDING_RELATION.

Storage of a user defined hierarchy
which contains the following:

e Name given to hierarchy by user.

o Type of elements that can begin
hierarchy.

o Entries in hierarchy where
hierarchy tracing can begin.

o A list of ordered triplets that
direct the tracing of relation-
ships between elements in the ASSM.
The triplet is (SUBJECT TYPE,
BINDING_RELATION, OBJECT TYPE).

e Two arrays that specify the order
in which HIERARCHY_OPERATIONS are
to be applied.

Figure 3-32 contains the functional flow diagram for this module.

Procedure Reference

The following correlates the functional processing elements in Figure
3-32 with the REVS procedures which perform the indicated processing.

(3] -

QQHIERMATCH

3-180

GQOEFHIER

“ A CiHY NAME
1105 IN

HILA ALHY_
DESCRIPTIud_RcCORD.

TOP_TYPE + TYPE OF
SUBJECT_TYPE(1).

NEW
HIERARCHY
NAME SAME AS
PREVIOUS

5l DELET)

E
PREVIOUS HIERARCHY,

" |

FOR I =1 T0
NUMBER OF
HIERARCHY

ENTRIES.

S RN

ADD I TO LIST OF
ENTRIES THAT CAN
START HIERARCHY.

FOR J = 1 T0
NUMBER OF — v —— —— —— — —

HIERARCHY

R 10
T%JEEQ ,r_ YES PLACE CONNECTION J

« 08J FOLLOWS I IN THE FROM,
TYPE(J)> TO ARRAYS.
7

NO

EXIT

Figure 3-32 Define Hierarchy (QQDEFHIER)

3-181

”_m. T T

3.4.5 List or Qualify Set by Hierarchy (QQDOHIER)

Description

This module either lists or qualifies a set of elements according to
a defined hierarchy. Those elements which are listed or placed in the new
set must be in the original independent set and they must also be encountered

while traversing the hierarchy.

Input

LIST_OR_QUALIFY_OPTION - Indicates whether to Tist or qualify
set.

HIER DISPLAY_FORM - Indicates format for 1isting hierarchy.

INDEPENDENT_SET - Collection of elements to be listed,
qualified, or analyzed.

QUALIFYING_HIERARCHY - Hierarchy used to qualify a set con-
taining the following:

e NAME_OF_HIERARCHY e Name given to hierarchy by user.

e TOP_TYPE o Type of elements that can begin
hierarchy.

o HIERARCHY_START POINTS e Entries in hierarchy where hierarchy
tracing can begin.

e HIERARCHY_OPERATIONS e A Tist of ordered triplets that
direct the tracing of relationships
between elements in the ASSM. The
triplet is (SUBJECT TYPE,
BINDING_RELATION, OBJECT TYPE).

e FROM, TO e Two arrays that specify the order in
which HIERARCHY_OPERATIONS are to be
applied.

Qutput
SET_MEMBER_RECORD - Contains indexes into the ASSM_ELEMENT
ARRAY which identify the members of the
set.
Processing
Figure 3-33 contains the functional flow diagram for this module.
3-182

o Vi A R .

Procedure References

The following correlates the functional processing elements in
Figure 3-33 with the REVS procedures which periorm the indicated processing.

(2, 12-18] - QQCONTHIER
[4-11] - QQINCLUDE

3-183

‘ QQDOHIER ’

CURRENT_SET+
INDEPENDENT SET;
CURRENT_ENTRY«
FIRST_ENTRY.

FOR EACH ELEMENT
IN CURRENT_SET.

5

PLACE ELEMENT e

IN NEW_SET. il
?
7
LIST SEQUENCE

ELEMENT NAME.

9

PLACE ELEMENT
IN TEMP_SET.

ALLOCATE
TEMP_SET.

|
n 2
QQLSTELT
LIST ELEMENT

AND APPEND
INFORMATION.

@+
“ T T MR S A

Figure 3-33 List or Qualify Set by Hierarchy (QQDOHIER) ' ‘

3-184

12

FOR EACH HIER
ENTRY REACHED
FROM CURRENT

_ENTRY.

13

NEXT_SET
<ELEMENTS TN CURRENT
0BJECT_SET WITH BINDING
_RELATION WITH ELEMENT.

LIST BINDING
RELATION,

L

14

NEXT_SET “_YES
ENPTY?

NO

Yst
YES BY MAP
OPTION?

NC

1

NEXT_ENTRY+ENTRY
- THAT STARTS
WITH OBJECT
PART OF CURRENT_ENTRY.

18

PROCESSING FROM
10 @ : CURREN

_SET = NEXT_SET. CURRENT

~_ENTRY = NEXT_ENTRY;.

QQLSTELT

LIST MEMBERS OF
TEMP_SET.

| 1

19

LIST BY
GROUP OPTION

YES

Figure 3-33 List or Qualify Set by Hierarchy (QQDOHIER) (Continued)

3-185

—— — e— — — GT—— — G—— — — — — — — — e— S— — a——

—_—————eeeeeeepeo - 0®

|
t
I
|
|
I
|
L

. - e
’p---n---llllllllua.mw-M“mMW.

3.4.6 Define Append Options (QQDEFAPPEND)

Description

This module updates the append options that are attached to a
SELECTED_APPEND_TYPE. The append options for all TYPE SETs or for one
selected TYPE_SET can be updated. The update consists of deleting the
E
f

current options, making a copy of the new options, and attaching the copy %
to the SELECTED_APPEND TYPE. f
Input
SELECTED_APPEND_TYPE - Indicates the element type that has
been selected to have its APPEND_
OPTION changed.
APPEND_ITEM_LIST - List of associated information such
as relations and attributes to be
displayed when an element of a particu-
lar type is displayed.
Qutput
SET_DESCRIPTION_RECORD - Contains the name of the set, the loca-]
tion of the first APPEND QPTION_RECQROD,
and the location of the first
SET_MEMBER_RECORD.
‘ APPEND_OPTION_RECORD - Contains one type of information to be
3 displayed when an element that is a
subset of the owning SET DESCRIPTION
RECORD is displayed.
Processing
Figure 3-34 contains the functional flow diagram for this module.
Procedure References

The following correlates the functional processing elements in Figure
3-34 with the REVS procedures which perform the indicated processing.

£2, 3] - QQDISPAPLIST

L4, 5] - QQCOPYAPLIST

(7, 8] - QQDISPAPLIST

[9, 10] - QQCOPYAPLIST
3-186

QUDEFAPPEND

2

OR EACH

FOR EA
EXISTING OPTION
ON THE |
SELECTED_APPEND
TYPE.

DELETE OPTION.

FOR EACH
ENTRY IN THE
APPEND_ITEM_LIST.

COPY AND ATTACH
OFT10N TO
SELECTED_APPEND_TYPE.

TYPE = ALL
?

FOR EACH
EXISTINS CFTION
ON ELEMENT TYPE.

10

I
|
DELETE OPTION. |
I
I

FOR EACH
FNTRY T4 THE

APPEID_IT2H LIST.

COPY AND ATTACH

TYPE_SET.

|
|
|
OPTION TO |
|
J

Figure 3-34 Define Append Options (QQDEFAPPEND)

3-187

3.4.7 List Element (QQLISTELT)

Description

This module displays an element and its associated relations, attri-
butes, and structural information according to the append option that is
in effect for the type of the element.

Input

ELEMENT - Element to be displayed.

ASSM - Any part of ASSM that contains infor-
mation associated with element.

APPEND_OPTION_RECORD - List of associated information to be
displayed with the element.

Qutput

RSL TEXT - A1l displays made by this module are
legal RSL.

Processing

Figure 3-35 contains the functional flow diagram for this module.

Procedure References

The following correlates the functional processing elements in
Figure 3-35 with the REVS procedures which perform the indicated processing.

[1] - QQENDLINE, QQPUTELT, QQPUTCMT
[2] - QQRETS
[5-8] - QQLAPREL, QQLACREL
[9-11] . - QQLAT
[12, 13] - QQLALLPREL, QQLALLCREL
[14, 15] - QQLALLAT |
[16-18] - QQLSTR
(19-22] - QQLREFS |
[23-27] - QQLREFBY
3-188

ISPLAY ELEMENT TYPE
ELEMENT NAME,
AND COMMENT.

BASED ON ELEMENT
TYPE DETERMINE
APPEND OPTIONS.

FOR EACH
APPEND OPTION.

4
TYPE OPTION
?
PARTICULAR
RSL RELATION 8/1
< /

PARTICULAR
ATTRIBUTE

on

ALL_INFORMATION @
| ALL RSL RELATIONS cz,
ALL ATTRIBUTES .(>

STRUCTURE

C/2

REFERS RELATION

G/2

Mﬂ.@
PRIMARY RELATIONS

COMPLEMENTARY
RELATIONS

c/3

DISPLAY
RELATION NAME.

FOR EACH INSTANCE
OF RELATION.

DISPLAY
OBJECT ELEMENT
AND COMMENT.

PARTICULAR RSL RELATION

A1

NSTANCI
OF ATTRIBUTE
EXLIEST FOR

DISPLAY
ATTRIBUTE NAME.

11 l

DISPLAY
ATTRIBUTE VALUE.

PARTICULAR ATTRIBUTE

— — — — — — — — — — —— — — — — — o— — a— — —

@
l
|
|
I
|
-

A1

Figure 3-35 List Element (QQLISTELT)

3-189

ko ol S IS AP VT B A e

ALL RSL RELATIONS

FOR EACH
LEGAL RELATION
OF ELEMENT.

13

|

PERFORM PROCESSING l
IEME" AND @)1 l
l

ALL ATTRIBUTES

FOR EACH
LEGAL ATTRIBUTE
OF ELEMENT.

15 l
[PERFORM PROCESSING |
|

|

BETWEEN AND @.

M

STRUCTURE

RETRIEVE FIRST
NODE FROM
ELEMENT STRUCTURE.

FIRST
NOOE
PRESENT

18

LIST STRUCTURE. /

@)
0

@ REFERS RELATION

19
RETRIEVE FIRST

NODE FROM
ELEMENTS STRUCTURE.

2 4

TRAVERSE STRUCTURE
ELEMEATS ASSOCIATEQ
WITH NODE

3 LEMEN
ASSCCIATED
Wil A
NO_?E

24

;. _—
FOR EACH

NODE ASSQCIATED
WITH ELEMENT.

26

RETRIEVE SUCCESSORS OF
KUOE ULTIL FIRST
ASSM NODE REACHED.

|
|
l
27 4 |
I
I

DISPLAY ELEMENT
ASSOCIATED WITH
FIRST NODE.

@)
()

Figure 3-35 List Element (QQLISTELT) (Continued)

3-190

ALL PRIMARY
RELATIONS

ALL INFORMATION

28

LIST ALL ATTRIBUTES BY
PERFORMING PROCESSING FOR EACH LEGAL

PRIMARY RELATION
muzm@ it @ OF ELEMENT.

29

LIST ALL RELATIONS BY
PERFORMING PROCESSING PERFORM PROCESSING

BETWEEN @ AND @ BETWEEN

|
|
|
g mo@. :
|

LIST REFERS RELATION BY
PERFORMING PROCESSING

BETWEEN @ mo (0. —_—

31

LIST REFERRED RELATION BY)
PERFUKMING PROCESSING

mzsn@ AND @

k3

——

LIST STRUCTURE BY
PERFORMING PROCESSING

ema:n@ an0 67

ALL COMPLEMENTARY
RELATIONS

FOR EACH LEGAL
COMPLEMENTARY
’ RELATION OF
ELEMENT

36

i PERFORM PROCESSING
| BETWEEN

{: AND @.

e e e —— — — —]

Figure 3-35 List Element (QQLISTELT) (Continued)

3-191

3.4.8 List RSL (QQLSTRSL)

Description

This module displays the descriptions of the basic components of RSL
(i.e., ELEMENT_TYPEs, RELATIONs, and ATTRIBUTEs) contained in the ASSM.

Input

RSL_LIST_OPTION - Indicates portion of RSL description
to list.

ASSM - That part which contains RSL descrip-
tion.

Output

RSL Description

Processing

Figure 3-36 contains the functional flow diagram for this module.

Procedure References

The following correlates the functional processing elements in
Figure 3-36 with the REVS procedures which perform the indicated processing.

[1-5] - QQLSTRSL
[6,10] - QQRSLAETP
[7,11] - QQRSLAREL
[8,12] - QQRSLAATT
[9] - QQRSLSUM
[13-15] - QQRSLTYPE
[16-23] - QQRSLREL
[24-29] - QQRSLATT
[30-38] - QQRSLSELT

3-192

QQLSTRSL

ONE_TYPE

DO PROCESSING FROM

ONE
_RELATION

RELATIONS

TO FOR

ALL ELEMENT TYPES.

DO PROCESSING FROM

ONE
_ATTRIBUTE

ATTRI BUTE§’

@ TO FOR

ALL RELATIONS .

DO PROCESSING FROM

ONE_SUMMARY| SUMMARY

@)

ALL ATTRIBUTES.

DO PROCESSING FROM

ALL
10

TO FOR

ALL ELEMENT TYPES.

DO PROCESSING FROM

@ TO FOR

ALL ELEMENT TYPES.

v

DO PROCESSING FROM

@n)

ALL RELATIONS.

12

v

DO PROCESSING FROM

@

ALL ATTRIBUTES.

P

EXIT

Figure 3-36 List RSL (QQLSTRSL)

3-193

ELEMENT_TYPE

13
DISPLAY ELEMENT
TYPE NAME.

1L

DISPLAY ELEMENT
TYPE COMMNT.

sy
DISPLAY NEY
AND PATH
APPLICASILITY.

RELATIONSHIP

16

DISPLAY
RELATION NAME.

17

DISPLAY
OPTIONAL WORK.

18

DISPLAY
RELATION COMMENT.

19

DISPLAY
COMPLEMENTARY
RELATION.

20

DISPLAY
COMPLEETARY
RELATIC| CPTIONAL
=K,

21

DISPLAY
COMPLZMENTARY
RELATIC! COMMENT,

22

DISPLAY
SUBJECT ELEMENTS.

23

DISPLAY
OBJECT ELEMENTS.

ATTRIBUTE

24

DISPLAY
ATTRIBUTE NAME.

25

DISPLAY
ATTRIBUTE COMMENT.

26 l

DISPLAY
APPLICABLE
ELEMENT TYPES.

FOR EACH LEGAL
VALUE.

DISPLAY
LEGAL VALUE.

DISPLAY LEGAL
VALUE COMMENT.

o e . e

i e i

Figure 3-36 List RSL (QQGLSTRSL) (Continued)

T T

@ ELEMENT_TYPE SUMMARY

30
DISPLAY
ELEMENT
TYPE NAME.

FOR EACH LEGAL
RELATIONSHIP,

32
DISPLAY
RELATIONSHIP
NAME .

FOR EACH RELATED
ELEMENT TYPE.

FOR EACH LEGAL
ATTRIBUTE,

DISPLAY
ATTRIBUTE NAME.

FOR EACH
LEGAL VALUE.

DISPLAY
LEGAL VALUE.

Figure 3-36 List RSL (QQLSTRSL) (Continued)

3-195

3.4.9 Requirements Analysis (QQANALYZE)

Description

This module serves the dual purpose of selecting elements from the ASSM
for simulation/analysis and statically analyzing the elements to identify
anomalies in the requirements specifications. The selection of elements is
based on a set of R-Nets provided by the user (through either RADX or SIMGEN),
the type of simulation/analysis (BETA or GAMMA) to be performed, and the
contents of the ASSM. The analysis consists of testing for the following:

e Loops in a data or structure hierarchy.

e Data having membership in more than one repetitive data set
(e.g., FILE, ENTITY CLASS).

e Illegal specification of the USE attribute in a data
hierarchy.

e LOCALITY of a repetitive data set and its members is not
the same.

e Sequential data flow errors

- Reference to unassigned data values
- Assigned data values that are never referenced.

® Concurrent data flow errors

- The same data values concurrently assigned T
- The same data values concurrently assigned and referenced.

Input

ASSM - That portion of ASSM pertaining to flow-
oriented requirements.

DATA_FLOW_OPTION - Indicates whether data flow analysis
should or should not be performed.

TYPE_OF_ACTIVATION - Indicates whether RADX was activated
by the SIMGEN function or by the user.

INDEPENDENT_SET - The collection of R-Nets to be
analyzed/simulated.

TYPE_OF_SIMULATION/ANALYSIS - Indicates whether data with USE BETA
or data with USE GAMMA is to be
analyzed/simulated.

3-196

Output

SIMGEN TRANSLATION LIST - A 1ist of elements used by the SIMGEN
function to determine what elements to
translate and consolidate into a
simulator (Section 3.5).

DIAGNOSTIC MESSAGES = Identification of structural errors. }

Local Data

INFORMATION NETWORK - A linked 1ist illustrated in Figure 3-37
which contains the elements toc be
analyzed/simulated and the relationships
that exist between the elements.

TOKEN - An information container that is moved
along the structure of an R-Net when
data flow analysis is performed. The
TOKEN provides the status of data
accessible to a node when it is
traversed.

Processing

Figure 3-38 contains the functional flow diagram for this module.

Procedure References

The following correlates the functional processing elements in
Figure 3-38 with the REVS procedures which perform the indicated processing.

(1] - QQZINIT

[2] - QQINFOGEN
(3] - QQZSUBSET
[4-14] - QQMEMTEST
[15-17] - QQZATTSET
[18-33] - QQLOCTEST
[40] - QQSIMINIT

3-197

UL

HIMIW SIHL 40 3dAL

1IN

TIN

.
.

YIATH W

YITW SIHL 40 3dAL

Y3C'"W JX3N

1IN

UICATA

iy

1In

.
.

YINHIN

Y3e¥3W SIHL 40 3dAL

YIAWIW 1X3IN

1IN

300N Y3GWIW

¥JOMI3N UOLJRUMOJU]

4

“toryIy
[938HEA 03WF0 30 3dK

1IN

.
.
.

Y38W3W 03NMO LSYI3 u

NOTLIVT3Y

IA=Y 3P0 40 3dAL

[RITRECIITRL

=== 1IN

Y30 3N QINMO LSY¥I4

_NOTIVTTY
W3ICIEA 03170 30 3dA

1IN

“I‘L

| Y39k 3W Q3NMO 1SHI4

LE-€ d4nbi4

YITWIN
Y3IH3W SIHL 40 3dAL

NOILY3Y Q3NMO ISHId

YITHEW J

YITWI SIHL 40 3dAL
y3nk 1X3N —

NOTLIVIY

RG34 O3NMO JO 3dAL

NOTIYI3Y IX3N

NOILYI3Y Q3NMO LSHI e

YITWIW
Y3613 STHL 30 3dAL
439K _IXZH

Y38h3A QINMO LSHIJ

30N NOILVI3Y

3719VI174dY ICN
RITH3N 03MF0 40 3dA

TIN

NOILY134 Q3HMO ISHIJ

JAON Y3W3W

YISWIW O3HVMO 1S¥I3

(300N 32¥N0S XYOML3IN)
300N NOILVI3Y

3-198

CONSTRUCT [NTERNAL
HIEKARCHY TO

BE UStD FOR
JATHERING..

2
GENERATE [HFORMATION
NETWORK sASED ON
INDEPENDENT SET OF
R NETS AU TYPE OF
SIRUWATION/ANALYSIS o

3

FORN SUBSETS FROM
INFORMAT [ON NET«ORK
FOR EACH ELEMENT
TPt IN THE NETWORK,

A MEMBER OF THE
ENTITY CLASS, FILE,
OR MESSAGE SUBSETS

OR EACH
A MEMBER OF THE
ENTITY }cuss

RDSI « THOSE
MEMBERS WHICH
ARE PART OF I.

2 .

RDSJ « THOSE
MEMBERS WHICH
ARE PART OF J.

ERROR _SET « [NTERSEZCTION
OF RSDI AND RSDJ.

ERKOR:
REPETITIVE DATA
SETS CONTAIN

MON KS

5

— —— — — — — — — —— — — —— —— — p— — —— — — . st e, i s

ASSM

DISPLAY MEMBERS
IN ERROR_SET.

S
}
|
|

— — —

GENERATE SUBSET OF
LOCAL SIMPLE DATA IN
INFORMATION NETWORK.

16 b

GENERATE SUBSET OF
GLOsAL SIMPLE DATA IN
INFORMATION NETWCRK.

17

GENERATE SUBSET OF
LOCAL SIMPLE UATA
WITH INITIAL_VALUE IN

N NETHORK, |

Figure 3-38 Requirements Analysis (QQANALYZE)

3-199

@

21 l

MAKE INFORMATION
LOCAL FOR ANALYSIS
PURPOSES.

l
I
s g e | L gl
Z DISPLAY ERROR / |
MESSAGE . |
I

FOR EACH
ENTITY_CLASS.

LOCAL
INFORMATION
PART OF THE

CLASS

DISPLAY
ERROR MESSAGE.
25 1

MAKE INFORMATION
GLOBAL
FOR ANALYSIS PURPQSES.

Figure 3-38 Requirements Analysis (QQANALYZE) (Continued)

3-200

FILE
CONTAIN LOCAL
NFORMATIO
?
29
DISPLAY DISPLAY
ERROR MESSAGE. ERROR MESSAGE.
k) 3 Y
MAKE INFORMATION MAKE INFORMATION
LOCAL FOR ANALYSIS GLOBAL FOR ANALYSIS
PURPOSES . PURPOSES.

Figure 3-38 Requirements Analysis (QQANALYZE) (Continued)

3-201

Figure 3-38 Requirements Analysis (QQANALYZE) (Continued)

FOR EACH R_NET
TO BE ANALYZED.

WITH LOCAL DATA THAT

INITIALIZE TOKEN
HAS INITIAL VALUE.

37

v

NODE OF NET.

QUDATAFLOW

L04 Al
STARTING FROM
CURRENT NOUE .

1
I
|
I

CURRENT_NODE « FIRST I
l
|
|
I

INFORMATION NETWORK AND

TRANSFER DATA FROM

SUBSETS TO SIMGEN
TRANSLATION LIST.

(EXIT ’

3-202

r—.—-_——_—-_—‘

3.4.10 Data Flow Analysis (QQDATAFLOW)

Description

This module detects errors in the requirements specifications by per-
forming a data flowanalysis for a given R-Net. The errors that are detected
include the reference to unassigned data, the assignment of data that cannot
be referenced, the assignment of the same data from more than one parallel
path, and the assignment and reference of the same data from different
parallel paths.

The analysis is performed by moving a TOKEN from the CURRENT NODE in
a structure to all successors of the CURRENT_NODE. The TOKEN contains the
status of data accessible by a node. The test for data flow errors consists
of determining whether the contents of the TOKEN is consistent or inconsistent
with the data requirements of the CURRENT_NODE. The data requirements are
obtained from the relationships of the elements associated with the CURRENT_
NODE and from the data referenced by OR nodes and FOR EACH nodes. After
the test for data flow errors, the TOKEN is updated to reflect the data
requirements of the CURRENT NODE.

Input

ASSM - Structures, elements associated with
nodes and node branches, and relation-
ships.

CURRENT_NODE - Node in a structure to analyze.

TOKEN - Status of data accessible to CURRENT_

. NODE.

Output

DIAGNOSTIC MESSAGES - Identification of sequential and con-
current data flow errors.

TOKEN - Status of data accessible to successors
of CURRENT_NODE.

Processing

Figure 3-39 contains the functional flow diagram for this module.

3-203

’p-II--lIIIlIlIIIlllIIIlllIlIllIlllIIllIIIlIlIIIIIIIlIlIIlllIllllllllll.lﬁiﬁﬁﬁiﬁiﬁﬁ;mgWuyu«
o

Procedure References

The following correlates the functional processing elements in Figure
3-39 with the REVS procedures which perform the indicated processing.

[1, 10-12] - QQTRAVERSE
[2-6] - QQFLWALVP, QQFLWEVT
[7-9] - QQFLWSNT
[13-27] - QQFLOWOR
| [28-37] - QQFLOWAND -
[38, 42] - QQFLOWFOR, QQFLOWSLT
3-204

QQDATAFLOW

SPLIT_OR/AND IMPLIES
THE FIRST NODE IN
AN OR/AND CONSTRUCT.

ALPHA, EVENT OR

VALIDATION_POINT @
SUBNET @
SPLIT_OR "@
SPLIT_AND @

FOR EACH, SELECT ; ()

@y

EXIT

@ ALPHA, YALIDATION_POINT, OR EVENT

2

RETURN

GET DATA REUIRCMENTS
FUR ELEMENT A350CiATLD
WITH CURRLAT _.{QuE.

3 v

TEST FOR
SEQUENTIAL UATA
FLOW ER<URS AND

DISPLAY CI,.40STICS
JF NECcSOARY.

UPDATE TOKEN
BA>.D O ITS
CUR=eaT 5TATe AD
DATA RE uIRuidzinTS
OF CURRC T {Jii.

5 v

ICURRENT _NODE + SUCCESSOR
OF CuRredT_NOUz.

QUDATAFLOW

USING TOKEN.

Figure 3-39 Data Flow Analysis

3-205

PLACE CURRENT_NODE

ON SUBNET
REFERENCE STACK .

s v

CURRENT_NODE « FIRST
NODE OF
SUBNET STRUCTURE:

DA

QQDATAFLOW

USING TOKEN.

(o) Rerun

10

CURRENT_NODE =

SUCCESSOR OF LAST ENTRY
ON SUBHET
REFERENCE STACK.

|

DELETE LAST ENTRY
FROM SUBNET
REFERENCE STACK.

12
QQDATAFLON
USING TOKEN .
(QQDATAFLOW)

me"
W

OR NODE
1 26
CURRENT NODE «
GET DATA SUCCESSOR OF
USED BY OR_NOOE. REJOIN OR NODE.
r z
DATAFL
TEST FOR SEQUEWTIAL 9 -
DATA FLOW c<RORS USING TOKEN.
AND DISPLAY DIALNUSTICS
L [F NECESSARY,
5
uscg ofn ns CURRENT
STATE AND DATA
JS€0 BY UR NOE.
16
FOR EACH
OUT BRANCH. 28
FOR EACH
” OUT BRANCH. _"l
TOREN = TOKEN |
: TORN Y ey
- .
Y I
GET DATA v I
USED BY BRANCH. CURRENT_NODE +
SUCCESSOR NODE OF
- CURRENT BRANCH. I
TEST FOR_ SCICCTTIAL 3 v l
DATA FLOW ERPORS
AND DISPLAY DIAGNOSTICS QQDATAFLOW
IF NECESSARY, USING |
20 BRANCi: TOKEN.
UPDATE_BRACH TOKLN |

ED ON ITS CURRENT
STATE AND UATA
USED BY GBRANCH.

21 v

| CURRENT NODE +
, SUCCESSOR NODE
| OF CURRENT BRANCH.

32
TEST FOR CONCURRENT
OATA FLOW EHRORS AND
DISPLAY DIAGHOSTICS
IF_NECESSARY.

33

UPDATE TOKEN
BASED ON THE STATE
OF EACH BRANCH TOKEN.

QQDATAFLOW
USING BRANCH TOKEN.

SRR e e T

23

| UPDATE TOKEN BASED
| ON STATE OF EACH
BRANCH TOKEN.

ERROR:
PARTIALLY REJOINING
AND CONSTRUCT.

3%
T _NODE
SUCCESSOR OFCRESSIN
AND AND_NODE.
ERROR:
PARTIALLY REJOINING 37 l
OR CONSTRUCT. QQDATAFLOW
USING TOKEN.

Figure 3-39 Data Flow Analysis (QQDATAFLOW) (Continued)

3-206

FOR EACH, SELECT

GET INFORMATION
ASSOCIATED WITH
ELEMENTS REFERENCED
BY NOOE.
3 l

TEST FOR
SEQUENTIAL DATA FLOW
ERRORS AND DISPLAY
DIAGNOSTICS IF NECESSARY .

40
UPDATE TOKEN BASED ON
CURRENT STATE OF TOKEN
AND DATA ASSOCIATED
WITH NODE.

41

CURENT NODE « SUCCESSOR
OF CURRENT NOLE.

42 l

QQDATAFLOW
USING TOKEN.

Figure 3-39 Data Flow Analysis (QQDATAFLOW) (Continued)

3-207

& |

3.4.11 List Permission (QQLPERM)

Description

Given a CONTROL_PERMISSION identifier, this module produces the RSL
statements for the identifier and all other CONTROL_PERMISSION and EXTENSION_
PERMISSION identifiers in the ASSM.

Input

PERMISSION_ID - Identifier of CONTROL_PERMISSION to
be displayed.

ASSM - CONTROL_PERMISSIONS and EXTENSION_
PERMISSIONS.

Qutput

RSL TEXT - List of permissions.

Processing

Figure 3-39.1 contains the functional flow diagram for this module.

\ 2550

YES

Figure 3-39.1

ERROR: ILLEGAL
PERMISSION
SPECIFIED.

DISPLAY
PERMISSION_ID

FOR EACH
PERMISSION e
IN ASSM.

5 _CURREN
PERMISSION=
PERMISSION_ID

NO

DISPLAY TYPE
OF CURRENT
PERMISSION.

PERMISSION
IDENTIFIER.

List Permission (QQLPERM)

3-209

_~_w_,

3.4.12 Plot Structures (QQPLOT)

Description

This module generates a CALCOMP plot for each element in the user
specified independent set that has a structure.

Input

INDEPENDENT_SET - Collection of elements to be plotted.

ASSM - Element structures.

WIDTH - Width of plot.

HEIGHT - Height of plot.

Output

CALCOMP PLOT - Plot of each element with a structure.
PLOT COUNT - Display of number of generated plots.

Processing

Figure 3-39.2 contains the functional flow diagram for this module.

Procedure References

The following correlates the functional processing elements in Figure
3-39.2 with the REVS procedures which perform the indicated processing.

[3] - XXCNET

3-210

QQPLOT

FOR EACH
ELEMENT IN e e
INDEPENDENT_SET.]

PLOT STRUCTURE
WITH WIDTH
AND HEIGHT.

INCREMENT
PLOT COUNT.

DISPLAY
PLOT COUNT.

EXIT

Figure 3-39.2 Plot Structures (QQPLOT)

3-21

3.5 SIMULATOR GENERATION (SIMGEN)

Description

The Simulator Generation function constructs a Simulator Program which
models the software requirements specified in the ASSM. The organization
of the Simulator Program source code is shown in Section 3.5.6. The
functional components of the Simulator Program and their interrelationships
are detailed in Section 4.0. The Simulator Generation function also
constructs a Simulator Post Processor Program if an analytic simulator is

constructed. The Simulator Post Processor Program is described in Section 5.0.

The Simulator Program components can be separated into three basic
groups on the basis of their functions:

a) System Environment and Threat Simulation (SETS)
b) Requirements Modeling

R_NET Model Procedures
SUBNET Model Procedures
ALPHA Model Procedures

c) Simulation Support

Simulator Executive
Simulator Event Management
Simulator Data Management
Simulator Initialization

SETS is the driver for the software requirements models. The produc-
tion of the source code for the SETS functions is performed independently
of the Simulator Generation function and externally to REVS.

The components that perform the requirements modeling functions are
termed requirements dependent since these procedures are intended to simulate
the behavior of software which meets the requirements specified in the ASSM.
The requirements modeling procedures must be created in accordance with the
ASSM contents and, consequently, involve a translation from the information
content of the ASSM to executable source code.

3-212

Al i A I

The simulation support functions are composed of a mix of requirements
independent (since they do not depend directly on the contents of the ASSM)
and requirements dependent source code. The framework of the Simulator
Executive is independent of the ASSM content, while the detailed scheduling
and invocation of requirements models is requirements dependent. Likewise,
the framework for the Simulator Data Manager and Simulator Initialization
remain constant for any ASSM. There is, however, a considerable amount of
source code which must be tailored to the ASSM content for each of these
functions. The Simulator Event Manager, in contrast, is entirely require-
ments independent.

The primary functions of Simulator Generation then are tc:

e Translate necessary ASSM elements, attributes, and relation-
ships into the requirements modeling procedures and require-
ments dependent portions of the simulation support functions.

e Consolidate the generated requirements dependent source code
with the requirements independent SETS and simulation support
components into a compilable source program.

o Compile the simulator source program and linkage edit the
object to form a Simulator Program load module.

o Compile the simulator post processor source program and linkage
: edit the object to form a Simulator Post Processor Program
load module.

The Simulator Generation function is performed in five processing
phases:

e User Input Control Processing - parses the user input RCL.

e Requirements Analysis - checks for requirements data base
consistency and generates linked lists of ASSM elements
required in Translation.

e Translation - generates PDL 2 scurce statements representing
the requirements specifications in the ASSM.

e Consolidation - combines the requirements dependent PDL 2
source statements and the requirements independent source
modules for input to the PDL 2 compiler.

3-213

gl il s S i d e el anidd L oL L et e ok

e Compilation - calls a REVS Executive utility which invokes the
PDL 2 compiler and linkage editor to generate load modules for
the Simulator Program and Simulator Post Processor Program.

In the current implementation, the Executive utility sets a
JSL variable which causes the compiler and linkage editor to
be executed after completion of REVS execution (see Section

6.3).

Input
ASSM

REQUIREMENTS INDEPENDENT

SOURCE FILE (RISF)

SETS DEFINITION FILE (SDF)

USER RCL

Output

EVENT/ENABLEMENT DEFINITION
FILE (EEDF)

Simulator Generation accesses elements,
attributes, and relationships as well
as R_NET and SUBNET structures.

The RISF contains source code needed
to build components of the Simulator
Program that are independent of the
particular requirements model being
generated (See Section 7.2.3).

The SDF contains the SETS source
code (See Section 7.2.3).

Simulator Generation control state-
ments. These statements specify what
type of simulator is to be generated
(BETA or GAMMA) and which R_NETs are
to be included in the simulator.

The EEDF contains the information
necessary to initialize enablement
control tables that are used by the
Simulator Program to associate proce-
dure enablements with EVENTs,
INPUT_INTERFACEs, and OUTPUT INTERFACEs.
The EEDF contains an Event Definition
Record for each EVENT, INPUT_INTERFACE,
and OUTPUT INTERFACE referenced by the
software requirements model. The EEDF
also contains the data and time SIMGEN
was executed, the ID given by the user
and names of the PERFORMANCE_REQUIRE-
MENTs.

3-214

Event Definition Record

Event Number
Event Name

Event Type (Immediate, Delayed, Input
Interface, Output Interface)

Delay
Pointer to First Dependent Procedure
Pointer to Last Dependent Procedure

LOAD MODULE FILE (LMF) - Object 1oad module for the Simulator
Program.

PERFORMANCE REQUIREMENT SOURCE A PDL 2 text file containing the source
FILE (PRSF) code for the Simulator Post Processor
Program.

Local Data

CONSTANT DECLARATION FILE (CDF)

A PDL 2 text file containing source

code for the requirements dependent

constant declarations to be included
in the Simulator Program.

COMPILE FILE (CF) - A PDL 2 text file containing the
source code for the entire Simulator
Program. The CF is input to the PDL 2
compiler. During SIMGEN execution, the
CF is also used as a scratch file.

PROCEDURE DECLARATION SOURCE - A PDL 2 text file containing the source

FILE (PDSF) code for requirements dependent
procedures.

PROCEDURE SCHEDULER SOURCE - A PDL 2 text file containing procedure

FILE (PSSF) enablement source code to be inserted

in the Procedure Scheduler procedure
of the Simulator Program.

SIMULATOR TRANSLATION LIST - A multi-level linked 1ist of ASSM pointers
(STL) that define and describe the ASSM data to

be translated by SIMGEN. The STL contains
the following sublists:

e ALPHA (ALFALIST)

® ENTITY _CLASS (CLSSLIST)

e EVENT (EVNTLIST)

e FILE (FILELIST)

e INPUT INTERFACE (INLIST)

e OUTPUT INTERFACE (OUTLIST)

® R_NET (RNETLIST)

SUBNET (SNETLIST)

Simple DATA (SDATLIST)
VALIDATION POINT (VALLIST)
PERFORMANCE_REQUIREMENT (PRLIST)

The structure of STL and its sublists
are shown in Figures 3-40 through 3-47.

TYPE DECLARATION SOURCE FILE - A PDL 2 text file containing source
(TDSF) code for the requirements dependent
type declarations to be included in

the Simulator Program.

VARIABLE DECLARATION SOURCE - A PDL 2 text file containing source
FILE (VDSF) code for the requirements dependent
variable declarations to be included

in the Simulator Program.

Processing

Simulator Generation processing is shown in Figure 3-48. Additional
commentary for some of the processing steps is given below.

[1] - Necessary control variables are
initialized. No values for simulator
type (BETA or GAMMA) or the scope of
the simulator (which R_NETs are to be
included) are assumed.

[2] - The user input RCL is parsed. (See
the REVS Users Manual E3] for the
definition of the SIMGEN RCL.) Both
the simulator type (BETA or GAMMA)
and the scope of the simulator (which
R_NETs to include or exclude) are
required inputs.

[9-10] - The Requirements Analysis and Data
Extraction Function (RADX) is called
through the REVS Executive interface
procedure XXRADX to perform an analysis
of the R_NETs to be included in the
simulator build. The RADX function also
constructs the Simulator Translation
List (STL), a linked 1ist of ASSM
element pointers, which is used to
control the phases of translation.

D
r""“‘.., T —

L]

(12-19]

(20]

[21-23]

Procedure References

The date and time of the SIMGEN

execution, along with the ID supplied

by the user and the names of PERFORMANCE
REQUIREMENTs included in the simulator

build are recorded on the EEDF for
later use by SIMDA and by the Simulator
Program.

The steps of translating the ASSM
content into executable PDL 2 source
code are executed. Each of these
steps is further described in the fol-
lowing sections.

To conserve memory space, the space
occupied by the Simulator Translation
List (STL) is released.

If no fatal errors were encountered in
any of the translation steps, the con-
solidation phase will combine all of
the requirements dependent source code
built during translation with the re-
quirements independent source code and
SETS modules to construct a compile
file (CF).

The following list correlates the functional processing steps shown

in Figure 3-48.with the REVS procedures in which the processing is per-

formed.
(2]

[9]
(1]
2]
[13]
[15]
(16]
(17]
[18]

GGPARSER
XXRADX
GGPRIMEDF
GGTRDATA
GGTREVNT
GGTRVP
GGTRPR
GGTRVAL
GGTRALFA

3-217

(19]
f20]
[21]
[22]

GGTRRNET
GG8DISPOSE
GGCONSOL
GGCOMPIL

3-218

POINTER TO STL (GGARGU)
POINTER TO SUBLIST ALFALIST (FRSTALFA) Fig. 3-41,

ﬁ———POIMTER TO SUBLIST CLSSLIST (FRSTCLSS) Fig. 3-42,
ﬂ POINTER TO SUBLIST EVNTLIST (FRSTEVNT) Fig. 3-43,
E POINTER TQO SUBLIST FILELIST (FRSTFILE) Fig. 3-44,

0

POINTER TO SUBLIST INLIST (FIRSTIN) Fig. 3-45,
:@: POINTER TO SUBLIST OQUTLIST (FRSTOUT) Fig. 3-45,
ﬂ: POINTER TO SUBLIST RNETLIST (FRSTRDAT) Fig. 3-46,
ﬂ:POINTER TO SUBLIST SNETLIST (FRSTSNET) Fig. 3-46,

POINTER TO SUBLIST SDATLIST (FRSTSDAT) Fig. 3-46,

POINTER TO SUBLIST VALLIST (FRSTVAL) Fig. 3-47,.
NIL

POINTER TO SUBLIST PRLIST (FRSTPR) Fig. 3-46.
NIL

Figure 3-40 Overview of Simulator Translation List (STL)
3-219

FRSTALFAr—1 11 pOLATCR TO REFERENCED ALPHA
* ASSM POINTCR TO RELATIOWSHIF CRCATES
ALLN PULATLR TO CRZATLD ENTITY_CLASS
NIL

ASSM POINTER TO CREATED ENTITY_CLASS
NIL
NIL

"

ASSM POINTER TO RELATIONSAIP DESTROYS
A55M4 POINTER TO WESTROYLD &dTITY_CLASS
NIL

ASSM POINTER TO DESTROYED ENTITY_CLASS
NIL
NIL

o

ASSM POINTER TO RELATIONSHIP INPUTS
ASSM POINTER TO A LOWEST LEVEL SIMPLE INPUT DATA
niL

ASSM POINTER TO A LOWEST LEVEL SIMPLE INPUT DATA
NIL

ASSM POINTER TO A LOWEST LEVEL SIMPLE DATA CONTAINED IN AN INPUT FILE
NIL

ASSM POINTER TO A LOWEST LEVEL SIMPLE DATA CONTAINED IN AN INPUT FILE
NIL
NIL

L& — ASSM PUINIcK iU KELATIUNSRIF OUTPUTS
ASSM POINTER TO A LOWEST LEVEL SIMPLE OUTPUT DATA i
NIL

ASSM PQINTER TQ A LOWEST LEVEL SIMPLE QUTPUT DATA
NIL

ASSM POINTER TO A LOWEST LEVEL SIMPLE DATA CONTAINED IN AN OUTPUT FILE
NIL

ASSM POINTER TO A LOWEST LEVEL SIMPLE DATA CONTAINED IN AN QUTPUT FILE
NIL

=z
—_
P=

ASSM POINTER TO RELATIONSHIP SETS
ASSM PGINTER TO E«TITY_TYPE
] i

ASSM POINTER TO ENTITY_TYPE
NIL
NIL

s

ASSM POINTER TO REFERENCED ALPHA
(SUBSTRUCTURE FOLLOWING “** IS REPEATED FOR EACH ALPHA)
NIL

Figure 3-41 ALPHA List (ALFALIST)

3-220

TR

FRSTCLSS

|— ASSM POINTER TO REFERLNCED ENTITY CLASS
ALSM POIWTLR TU RELATIUdSHIP COMPOSES

ASLA PUINTLR Ty uTITY_TYPE

ALM PULWTER TO RELATIONSHIP ASSOCIATES

Asud POINTLR TO SIMPLE LOWEST LEVEL ASSOCIATED DATA
NIL

ASSM POINTER TO SIMPLE LOWEST LEVEL ASSOCIATED DATA
NIL
NIL

ASSM POINTER TO RELATIONSHIP ASSOCIATES
ASSM POINTER TO ASSOCIATED FILE
NIL

ASSM POINTER TO ASSOCIATED FILE
NIL
NIL

ASSM POINTER TO ENTITY TYPE

ASSM POINTER TO RELATIONSHIP ASSOCIATES

ASSM POINTER TO SIMPLE LOWEST LEVEL ASSOCIATED DATA
NIL

ASSM POINTER TO SIMPLE LOWEST LEVEL ASSOCIATED DATA
NIL
NIL

ASSM POINTER TO RELATIONSHIP ASSOCIATES
ASSM POINTER TO ASSOCIATED FILE

7, E@-m

ASSM POINTER TO ASSOCIATED FILE
NIL
NIL

SSM POINTER TO RELATIONSHIP ASSQCIATES
ASSM POINTER TO ASSOCIATED FILE
NIL

ASSM POINTER TO ASSOCIATED FILE

NIL

NIL

ASSM POINTER TO RELATIONSHIP ASSOCIATES
ASSM POINTER TO SIMPLE LOWEST LEVEL ASSOCIATED DATA
NIL

ASSM POINTER TO SIMPLE LOWEST LEVEL ASSOCIATED DATA
NIL
NIL

ASSM POIWTER TO REFERENCED ENTITY_CLASS
(SUBSTRUCTURE FOLLOWING “** [S REPEATED FOR EACH ENTITY_CLASS)
NIL

Figure 3-42 ENTITY_CLASS List (CLSSLIST)

3-221

HiTOd ASSM POINTER TO REFERENCED EVENT

NIL

ASSM POINTER TO REFEREWCED EVENT
NIL

ASSM POINTER TO REFERENCED EVENT
NIL
NIL

Figure 3-43 STL Sublist (EVNTLIST)

e ASSM POINTER TO REFERENCED FILE

ASSM POINTER TO RELATIONSHIP CONTAINS
ASSM POINTER TO SIMPLE LOWEST LEVEL CONTAINED DATA
NIL

ASSM POINTER TG SIMPLE LOWEST LEVEL CONTAINED DATA

NIL
NIL

ASSM POINTER TO RELATIONSHIP ORDERS
ASSM POINTER TO A SIMPLE LOWEST LEVEL CONTAINED DATA
NIL
NIL

ASSM POINTER TO REFERENCED FILE
(SUBSTRUCTURE FOLLOWING "*" IS REPEATED FOR EACH FILE)
NIL

Figure 3-44 FILE List (FILELIST)

3-222

A

T
FRGTIN {FRSTOUT) ASSM POIATER TO REFERZACED I.4PUT_IATERFACE (OUTPUT_INTERFACE)

ASSM POINTZR TO RELATIONSHIP PASSES

ASSH FOLIWTZR TO MESSAGE

ASSM POLATZR T RELATIONSHIP MAKES
ASSH POILTER TO DATA

NIL

ASSM POINTER TO DATA
NIL
WIL

ASSM POINTER TO RELATIONSHIP MAKES
ASSM POINTER TO FILE
NIL

ASSM POINTER TO FILE
NIL
NIL

ASSM POINTER TO MESSAGE
A%gi POINTER TO RELATIONSHIP MAKES

A AS3in POLNTER TO DATA

NIL

#E? o

ASSM POINTER TO DATA
NIL
NIL

ASSM POINTER TO RELATIONSHIP MAKES
ASSM POINTER TO FILE
NIL

ASSM POINTER TO FILE
NIL

NIL

i

ASSM POINTER TO REFERENCED INPUT_INTERFACE (OUTPUT_INTERFACE)
(SUBSTRUCTURE FOLLOWING "*" IS REPEATED FOR EACH INPUT_INTERFACE/OUTPUT_INTERFACE)
NIL

Figure 3-45 INPUT and OUTPUT_INTERFACE List (INLIST, OUTLIST)

3-223

FRSTROA
TSN

T
" FRSTSNET el '
RSTSDAT ASSM POINTER F
R 0 TO REFERENCED SIMPLE LOWEST LEVEL DATA
NIL 'ERFORMNCE_REQUIMNT
St
& Ni
ASSM POINTER TO REFERENCED | SUover o o
NIL 'ERH)MCE_REQUI REMENT

R_NET

SUBNET
ASSM POINTER TO REFERENCED SIMPLE LOWEST LEVEL DATA
NIL PERFORMANCE_REQUIREMENT
NIL

Figure 3-46 R_NET, SUBNET, and Simple DATA List
(RNETLIST, SNETLIST and SDATLIST)

FRSTVAL ASSM POINTER TO REFERENCED VALIDATION_POINT

ASSM POINTER TO RELATIONSHIP INPYTS
ASSM POINTER TO SIMPLE LOWEST LEVEL INPUT DATA
NIL

ASSM FOINTER TO SIMPLE LOWEST LEVEL INPUT DATA
NIL

NIL

ASSM POINTER TO RELATIONSHIP INPUTS
ASSM POINTER TO INPUT FILE
AS5A POINTER TO RELATIONSHIP CONTAINS

NIL

NIL
NIL

ASSM POINTER TO INPUT FILE
ASSM PCINTER TO RELATIONSHIP CONTAINS

NIL

NIL
NIL

ASSM POINTER TO REFERENCED VALIDATION_POINT

(SUSSTRUCTURE FOLLOWING "*" IS REPEATED FOR EACH VALIDATION_POINT)
NIL

Figure 3-47 VALIDATION_POINT List (VALLIST)
3-224

ASSM POINTER TO SIMPLE LOWEST LEVEL CONTAINED DATA

ASSM POINTER TO SIMPLE LOWEST LEVEL CONTAINED DATA

ASSM POINTER TO SIMPLE LOWEST LEVEL CONTAINED DATA

ASSM POINTER TO SIMPLE LOWEST LEVEL CONTAINED DATA

|
|

s Wﬁm

INITIALIZE
CONTROL VARIABLES.

PR

@—H PARSE USER INPUT RCL.

[XXRzvsouT]

L OUTPUT JIAGNOSTIC /
MESSAGE .
5 v

SET TRANSLATION
FLAG TO FALSE.

RADX

ANALYZE ASSM AND

7| CONSTRUCT LINKEU LISTS.

PERFORMANCE_REQUIREMENT
NAMES

STl

STL

TDSF
12
GGTROATA VOSF
TRANSLATE
DATA CONSTRUCTS.
POSF
3
GGTREVNT
TRANSLATE EVENTS PSSF
AND ENABLEMENTS.
CO
14
SIMULATOR EEDF

TYPE'_IBETA

- GGTRVP -
‘ TRANSLATE
VALIDATION_POINTS —
x =
16
‘ GGTRPR W
TRENSLATE
S REES PitrlNEs 3
T
7 v
GGIRVAL
STL TRANSLATE
VALIDATION_POINTS.
ASSH 18
GGTRALFA
TRANSLATE ALPHAS. oSE
STL 19
GGTRRNET
TRANSLATE
EEOF, R_NET STRUCTURES.
TRAHSLATE
SUBNET STRUCTURES. Flrg
L5 (st
STL 2 +
QISPOSE OF
LINKED LISTS.
21 ACONSOLIDATI
TOSF rum?mus
VDSF.
S - (EXIT
GGCONSOL
CONSTRUCT
PSSF COMPILE FILE.
COF
23
RISF COMPILE AND
LINK EDIT. _@
SOF

Figure 3-48 Simulator Generation (SIMGEN)

3-225

3.5.1 Data Translation (GGTRDATA)

Description

The Data Translation module of the Simulator Generation function
examines the repetitive and simple data items in its input lists and
generates the PDL 2 declaration statements to define Data Management
structures of the required nature and PDL 2 procedures to access those
Data Management structures. Section 4.4 gives a complete description of
the Data Management functions that are provided.

Figure 3-49 illustrates the functional linkages used to model the
Repetitive Data Sets (RDS) structure and used to access it from the
R_NETs and ALPHAs. RDS's are stratified into four levels of complexity -
class, data-set, instance, and data-item. These levels are generalized
to cover the many special cases of data objects that REVS supports. A
class is a generalization of ENTITY CLASS and is defined as a collection
of data-sets. Every data-set belongs to one and only one class. A
data-set is a generalization of FILE and is defined as a collection of
instances. A FILE, and INTERFACE, and an ENTITY_TYPE are all data-sets
each belonging to a class. Two special pseudo-classes are generated,
one containing all FILEs and the other containing all INTERFACEs. An
instance is an occurrence of a collection of DATA and/or FILES belonging
to a data-set. In the case of FILEs and ENTITY_TYPEs, all instances
belonging to a data-set are identical but an INTERFACE may pass different
MESSAGEs (i.e., own different kinds of instances). Since the number of
instances belonging to a particular data-set is variable, instance storage
is dynamically allocated and released and instance access is via doubly
Tinked Tist structures. The R_NET or ALPHA requests data manager action
on instances with a number of different high level statements such as
CREATE, DESTROY, and SELECT. Finally, at the lowest level, individual
data items are the smallest quantum of information and may be ‘simple'
(unattached to a Repetitive Data Set) or may be a member of an instance.
If DATA is associated with an RDS, the R_NET or ALPHA model gains access
to it via the SELECT or FOR EACH high level commands if an instance is
located. If two instances cannot be selected at once, DATA may belong
to both -- as in the case of instances of two ENTITY_TYPEs owned by the
same ENTITY_ CLASS.

3-226

A

These generalized data elements are translated into three different
PDL 2 constructions -- type declarations, variable declarations, and
executable procedures. These constitute the three outputs of the Data
Translation module.

Each data-set and class is declared in a PDL 2 type declaration as
one element of an enumerated type, EE7DSLST. This enumerated type is
declared as the index into the Data-Set/Class Description Array (EE9DS)
which, at simulator execution time, describes all data-sets and classes.
The elements of the Data-Set/Class Description Array are two variants of
one type, EE7DSTYP. One variant is generically named a Data-Set Descrip-
tion Block because such an entry contains an execution time description
of a data-set and points to the linked list of dynamically allocated
instances which the data-set owns. The other variant is called a Class
Description Block because it contains, at simulator execution time, a
description of a class and indicates which data-sets are owned by the Class.
Section 4.4 contains a detailed breakdown of all data fields in these two
entry types.

Each instance is declared in a PDL 2 type declaration as one element
of an enumerated type, EE7INLST and as a variant of a 'super' record descrip-
tion, EE7INTYP. Each data item of an instance is declared as a field within
the instance variant of EE7INTYP. Thus all dynamically allocated instance
records are of the same PDL 2 type with variants depending on the instance
type. A static variable of *type specified in the ASSM is declared for
every data item (simple or repetitive). The user accesses a data item by
operating on the ¢ rresponding static variable using PDL 2 statements. For
a repetitive data item, an instance must be selected (data values transferred
from the dynamic instance record to the static variables) before the static
variables contain valid information.

Most of the PDL 2 procedures which are created during Data Translation
manipulate the dynamically allocated instance records and/or static variables
in accordance with higher level Data Management requests. These procedures
create a dynamic instance record of a requested variant type (EESNEWI),
destroy a dynamic instance record of a requested variant type (EES8DISI),
transfer data items to and from a dynamic instance record (EE8XIO and EE8XII),

3-227

order dynamic instance records in a data-set (EES8KYCMP), and transfer data
items between dynamic instance records (EE8CPYIN). The remaining generated
PDL 2 procedures initialize the static instance variables (EES8ININ, EESINCL,
EESIIFAC, and EE8LOCAL) or initialize the Data-Set Description Blocks
(EE8SETUP and EE8FORM).

The Data Translation module, in the course of performing its functions
as described above, generates a series of linked lists which are used by
other modules in the SIMGEN function. The lists which are generated are as
follows: A list of all files used in the simulation (headed by GGILFILST),
a list of all data items used in the simulator (headed by GGIDECLST), a list
of all types used in the simulator (headed by GGITYPLST), a list of all
initial values used in the simulator (headed by GGIIVLST), a list of all
enumerated types with sublists of enumerated values used in the simulator
(headed by GGIENMLST), and a list of all owners of data or files in the
simulator (headed by GGOPWNRL).

Input
ASSM - A1l data element names.

SIMPLE DATA LIST (SDATLIST) A simple linked list of all simple
(non-repetitive) DATA items to be
included in the Simulator Program

(See Figure 3-46).

FILE LIST (FILELIST) - A complex (multi-level) linked list of
all FILEs to be included in the Simu-
lator Program with sublists of DATA
items CONTAINED IN each FILE (See
Figure 3-44),

INPUT_INTERFACE LIST (INLIST)

A complex (multi-level) linked list

of all INPUT_INTERFACEs to be

included with sublists of MESSAGEs
which are PASSED THROUGH each INTERFACE
(See Figure 3-45).

OUTPUT_INTERFACE LIST (OUTLIST)

A complex (multi-level) linked 1list of
all OUTPUT_INTERFACEs to be included
with sublists of MESSAGEs which are
PASSED THROUGH each INTERFACE (See
Figure 3-45).

ENTITY_CLASS LIST (CLSSLIST) A complex (multi-level) linked list of
all ENTITY_CLASSes to be included in

the Simulator Program (See Figure 3-42).

3-228

Qutput

PROCEDURE DECLARATION SOUR