
r ‘C

AD AWIb 5Th TRU DEFENSE AND SPACE SYSTEMS GROUP HUNTSVILLE ALA FIG 9/2
REVS MAINTENANCE MANUAL. SREP FINAL REPORT. VOLUME III.(U)
AUG 77 i £ BENOIT, P N DERGSTRESSER DASG6O—75— C—002 2

IJNCLASSIF 1W TR1 27332 6921 O26 VO4 . 3 Pt

_ _

n
_ _ _ _ _

_

_

_ _____

!r •

~~~~~~~~ _ _

_ _ _ _ _

_  _U ! !( S~fl



I,

•~~.

1•0 2~~

::
I • 1

• 1Il~
25 

~~~~~
NATIONAL BUREAU OF STANDARDS

1 .0 Ir~TN buCT10~

27332•6921 - 026
—

REVS MAINT ENANCE MANUAL
SREP FiNAL REPORT - VOLUME HI

CDRL C005 1 AUGUST 19?7

~ D D C

NOV 18 1977 ~~Prepared For
BALLISTIC MISSILE DEFENSE L

A D V A N C E D T ECHNOLOGY CENTER A
DA SG6O ~75 .C-o022

I ~~~~~~~~
-

• — +
ic

~~~~~~~

>
u11

~ 
—~ ---- •- -

• _ fl i~_
.

C-)

_  TRW.
Cu, DEFENSE AND SPACE SYSTEMS GROUP

HUNTSVILLE . ALA BAMA



- 
~~~~~~~~~~~~~~ -‘

T ~~~~~~~~~~k—~

TITLE : REVS MAINTENA NCE MANUAL DATE: 30 SEPTEMBER 1977

DOCUMENT NO: 27332-6921—026

REVISIO N: A

REASO N FOR CHANGE:

+ This revision documents the ARC CDC 7600 installation of REVS.

INSTRUCTIO1S:

To update this manual , make the follow ing c’~anges.

AFFECTED PAGES:

iii , v , ix
1— 1
2-1 , 2—2 , 2-3
2—4 (add)
3-32
6-i
7—1 , 7—18, 7—19
9—2
A-i
A-2 (add)
B—i through B—25 (add)

IT4 ~~~ ~
•v1~ ~~ ~.

iU~1I~lGATIOl.+. ._— ..- —.

IT
,,STIIIUI4OI ,ø*I IIt :~~

+ —j —j~~~~~~~~~ •~ :

p h i
S~~~~(~ ’~ ~~ CS ~R.. ?~C

ARMY SUPPORT FACILITY • e’~ons CRlv~ WE S T ,~+~JN T$ v ,LLr A LA 8A MA 3~+S’~ (2~25~ 837 ~~OO

RECORD OF REVIS iONS
REVISION! DATE DESCRIPTION

A 9/30/77 Documents the ARC CDC 7600 inst allation of REVS.

_ _
_ _ _ _ _ _ _

H

Revision A

+ + -~~~~~~-+-—•+ • +~~~~~~~~~ ~~~~ +~~~--~

UNCLASSIFIED
S E C U R I T Y C L A S S I F I CA T I O N OF tills P*r,r (w~~,, D.e. Fnternd)

R E A D I1~STRUCTION SREPORT DOCUNEHTATIO~ PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 3. RcC~eI9g.j~ s C A T A L O G NUMBER

CDRL C005 (Volume III)
ACCE SSIO N

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ EQ4. TITLE (aid Subliti.)

Final

~~~~~~Final Report 4~ P~~1renuIuS BILl. ~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~ 
•

~~~~~~~~~~~~~~~~~ 
CONTRACT ~~R GRANT N U M S E R(.)

_______________ 
____  

27332-692 1
~~~ AUTHOR (.) 

• Volum

+,

~~~~~~~~~~~

T

~

en°j t , j

~ 
_ _ _ _ _~~ I~~ ~/ J/ ~ / -~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

J PERFO An — 10. PROGRAM ELEMENT . PROJ E CT . TAS K
AREA & WORK UNIT R U N N E R S

TRW Defense and Space Systems Group + 

6.33.04.A7702 Governors Drive , Wes t
Huntsvil 1e~ Alabama 35805 ____________________________

12. REPORT OA TE ..II. CONTROLL ING OFFICE NAME AND ADDRESS 

~~ ~~~~~~ ~~~~~~~~~~~~~
Ballistic Missile Defense Advanced Technolog __________________________
Center , P. 0. Box 1500, Huntsville , AL 35807 ~~~~~~~~ATTN : ATC-P 422

14. MONITORING AGENCY N A M E  S ADORES5(II dIf feren t from Co+nt ro lllng Office) 15+ SECURITY CLASS. (of thI. r.port)

UNCLASSIFIEDC~
) ‘/~~~~~ -‘~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I 
+ 

IS.. DECLA SS IF ICATI ON / D O W N G P + A O I N G
SCHEDUL E

I5~ 
f l ,C tO I  a* I t l f l & J  C T  * ~~f l IFW t ~nI iCI. R n,,.tt

Cleared for public release - distribution unlimited .
Reference BMDSC-CRS letter dated 8 March 1977.

I?. DISTRISUTI O N ST A T E M E N T  (of ?~. abstract ent.,~ d In 81.,ck 20, II different from Report)

IS. SUPP L E W E N T A R Y  11OTES

IS. K E Y  #ORDS (Conti~..~• on r•C~~r• .Icf. If n.~ ....ry ~ ,d Identify by bled , number)

Requirements Engineering and Validation System
Requirements Specification Language Language Processors
Automated Simulati on Generation Software Requirements Engineerin

+ 
Au tomated Documentation

2b,. A O STRACT (Cunflnu. ,,v.r.n aide SI nec.e.a’v wd Id,ntlly b7 block numb.,)

“This document presents maintenance material for the Requirements Engineering
and Validation System , a software system to support the generation, valida-
tion , and documentation of software requirernents .,~

V

Do ~~~~~~ 1473 FOIT1ON OF I NOV 45 15 ODsO LF~~E UNCLASSIFIED
S CC U R I ’ Y  CLA SSI~~,CATI ON OF THIS PAGE (~~~tm, tl.f. ~nt.t. d)



27332-6921 -026

I

REVS MAINTENANCE MANUAL

SREP FINAL REPORT — VOLUME III

CDRL C005 1 AUGUST 1977

CLEARED FOR PUBLIC RELEASE — DISTRIBUTION THE FINDINGS OF THIS REPORT ARE
UNLIMITED. REFERENCE BMDSC-CRS LETTER NOT TO BE CONSTRUED AS AN OFFICIAL
DATED 8 MARCH 1977. DEPARTMENT OF THE ARMY POSITION .

C

Prepared For

BALLISTIC MISSILE DEFENSE
ADVANCED TECHNOLOGY CENTER

DASG6O-75-C-0022

TRW.
DEFENSE AND SPACE SYSTEM S GROUP

Huntsv i lle, Ala bama 

—-— • - .• . ~~~~~~~~~~~~~~ • - +—• - •~~— -~~~-~~~~ — - - -  -—--- -~~ --“- +



27332—6921—026

REVS MAINTENANCE MANUAL

SREP FINAL REPORT - VOL~JME III

CDRL COO5 1 AUGUST 1977

Principa l Authors : Approved By:
W. E. Benoit

+ + .~ 
+ P. N. Bergstresser

+ + L. J. Gunther J

~: ~: 
Heckler 

____

D. E. Mc Queen (AIC) . R. arker , Manager
R. W. Smith Software Requirements

Eng i neering Methodology Program

Z~~~~42q~
) 

_ _ _ _ _ _ _ _

M. E. Dyer~~Manager ,1~ies E. Long , Man
’
~~er

SREP Software and Language Huntsville Facility
Devel opment

Prepared For .•“~~I.. + + -. + —- + +

BALLISTIC MISSILE DEFENSE - Li
ADVANCED TECHNOLOGY CENTER + 

~
+ 

DASG6O-75-C-0022 . . .
,
.+ + + +

L i - .

TRW.
DEFENSE ~\CE SYSTEMS GROUP

Hun ... ile , Alabama

ii



+ .~
-+ +

~ 
- +

TABLE OF CONTENTS

Section Title

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . .  1-1
1.1 PURPOSE OF MANUAL • . . . . . . .. . . . . . . . . .  1-1
1.2 PURPOSE OF SOFTWARE . . . .. . .. , . . . . . . . .  1-i

2.0 ENVIRONMENT /SYSTEM DESCRIPTION 2-1
2.1 SYSTEM OVERVIEW 2- 1

2.2 PISC INTERFA CING SOFTW~I R E . . . . . . . . . . , . . . ,  2-1
2.3 CDC INTERFACING SOFTWARE 2-2

2.4 ASC COMPUTER AND INTERFA CING HARDWARE • 2-3

+ 2.5 CDC COMPUTER AND INTERFACIN G HARDWARE • , , . . ,  2-3

3.0 COMPUTER PROGRA M DESCRJ PT1~J~ - REVS 3-3

3.1 REVS EXLCUTIVE (REVS) 3-3

3.1.1 K F V S  Input ( X \ ~ f liSIN) 3—6
3.1.2 REVS Output ~~ REVSOUT) 3-10
3.1.3 ASSM Accesc 3-13

3.2 RSL TRAN SLAT ION (RSL , RSLXTND) 3-20

3.2.1 Overall Structure of the RSL Translator . .  3—21
3.2.2 The Syntactic Pnalyzer 3-23
3.2.3 The Lexical Analyzer 3-29
3.2.4 The Semantic Analyzer 3— 31
3.2.5 Error Handling 3-90

3.3 INTERACT iVE R—NET ~LNERATI ON (RNETGEN) 3—93

3.3.1 Begin Structure (IISTRTYPE) 3-98
‘3.3.2 Create Node (IICRNODE) 3-103
3.3.3 Delete Node (JIDENODE) 3-108
3.3.4 Move Node (IIMVNODE) 3—11 1
3.3.5 Join Nodes (JI.JNNODE) 3-114
3.3.6 Disjoin Nodes (IIDJNODE) 3-117
3.3.7 Comment Node (JICMNODE) 3-119
3.3.3 Successor Node (IISUNODE) 3-121
3.3.9 Scroll Net (IISCROLL) 3-124
3.3.10 Save Net (IISAVE ) 3-127
3.3 .11 Zoom-Out On Net (IIZOOMOUT ) 3-130
3.3.12 Zoom-In On Net (IIZOOMIN) 3-132
3.3.13 Generate CALCOMP Plot (IICALCOMP ) 3-135
3.3.14 Set Color (IICOLOR ) 3— 137
3.3.15 Display Branch (IIDSPBRN ) 3-139
3.3.16 Display Node (IIDSNODE) 3-142
3.3.17 Display Net (!IDISNET) 3—145
3.3.18 Display Zoomed-Out Net (IIDISZOUT) 3-148
3.3.19 Menu Read (IIMENUREA O ) 3-150
3.3.20 CALCOMP Net Display (CCNET) 3-153
3.3.2 1 Autop lot ( IIAUT OPLOT) 3- 157
3.3.22 Move Subtree (+IIMVSUBTREE) • 3160

1ff Revis ion A 

- + . ~~~-.~~~.-.- +~~~~~~~~~~~~



P.,- +—--- - -

~~ 

+-—---———--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

TABLE OF CONTENTS (Continued)

Section Title Page

3.4 REQUIREMENTS ANALYSIS AND DATA•EXTRACTION (RADX). . 3-163

3.4.1 Define Set (QQDEFINESET) 3-171
3.4.2 Combine Sets (QQCOMBINESET) 3-173
3.4.3 QuaLify Set (QQQUALSET) 3-176
3.4.4 Define Hierarchy (QQDEFHIER) 3-180
3.4.5 List or Qualify Set by Hierarchy (QQDOHIER) 3-182
3.4.6 Define Append Options (QQDEFAPPEND) 3-186
3.4.7 List Element (QQLISTELT) 3—188
3.4.8 List RSL (QQLSTRSL) 3—192
3.4.9 Requirements. Analysis (QQANALYZE) 3-196
3.4.10 Data Fl ow Anal ysis (QQDATAFLOW) 3-203
3.4.11 LIst Permission (QQLPER~1) 3—208
3.4.12 Plot Structures (QQPLOT) 3—210

3.5 SIMULATOR GENERATION (SIMGEN) 3-212
3.5.1 Data Translation (GGTRDATA) 3-226
3.5.2 Event/Enablement Translation (GGTREVNT) . . 3— 239
3.5.3 Validation Translation (GGTRVAL) 3— 246
3.5.4 Alpha Translation (GGTRALFA) 3—249
3.5.5 R-Net/Subnet Translation (GGTRRNET) 3— 267
3.5.6 Consoli dation (GGCONSOL) 3—272
3.5.7 AnalytIc Simulator Validation Translation 3-276

(GGTRV P)
3.5.8 Performance-Requirement Translation (GGTRPR) 2 383

3.6 SIMULATOR EXECUTION (SIMXQT) 3—295

3.7 SIMULATION DATA ANALYSIS (SIMDA). 3-298

4.0 COMPUTER PROGRAM DESCRIPTION REVS GENERATED
+ SIMULATOR PROGRAM 4-1

4.1 SIMULATOR INITIALIZATION (EEINITIAL) 4-3

4.2 SIMULATOR EXECUTIVE (EEXEC) 4—8
+

4.3 SIMULATOR EVENT MANAGEMENT 4-il

4.3.1 SETEVENT 4-11
+ 4.3.2 Remove Event (EERTOPE) 4-14

4.4 SIMULATOR DATA MANAGEMENT 4-16 +

4.4.1 CREATE (EE8CREATE) 4-22
4.4.2 DESTROY (EE8DESTROY) 4-24
4.4.3 FORM (EE8FORM) 4-26
4.4.4 FOR EACH 4-28
4.4.5 SELECT FIRST 4-31
4.4.6 SELECT NEXT 4-35
4.4.7 SET (EE8SETYP) 4-39
4.4.8 UPDATE (EE8UPDATE) 4-42

lv

- _ _ _ _ _

TABLE OF CCN TE 1~TS (Continued)

Section T i t l e Page

5.0 COMPUTER PROGRAM DESCRIPTION - REVS GENERATED
SIMULATOR POST-PR OCESSOR PROGRAM 5-1

5.1 SIMULATOR POST-PROCESSOR INITIALIZATION (VVINITL) . 5-5
5.2 SIMULATOR POST-PROCESSOR EXECUTIVE (VVMAIN) 5-8
5.3 SIMULATOR POST-PROCESSOR DATA MANAGEMENT 5-1 0

5.3.1 SELECT FIRSTJ ’NEXT VALIDATION POINT RECORDIN G
(SFNVPR) 51 2

5.3.2 FOR EACH VALIDATION POINT RECORDING (FEVPR). 5-16
5.3.3 SELECT FIRST/NEXT FTLE RECORD (SFNFR) 5—18
5.3.4 FOR EACH FILE RECORD (FEFR) 5-22 +

6.0 INSTALLATION PROCEDURES 6-1

6.1 SYSTEM INSTALLATION 6-1

6.2 PROGRAM CONSTRUCTION 6-1

6.3 JSL MACROS 6-3

6.4 FILES 6-7

7.0 DETAILED DATA 7-1
+

7.1 SOFTWAR E DELIVERABLES FILE 7-1

7. 2 REV S EXTERNAL FILES 7-4

7.2.1 Abstract System Semantic Model (ASSM) 7-5
7.2.2 RSL Translator Input Files 7-10
7.2.3 Simulator Generation Inpu t Files 7—11

7.3 SUPPORT SOFTWARE /UTILITIES 7-11

7.3.1 Lecarme-Boc hmann Compiler Writing System -14
7.3.2 Data Base Control System 7-18

8.0 CHANGE CONSIDERATIONS 8-1

8.1 REVS EXECUTIVE CHANGE CONSIDERATIONS 8-1

8.2 RSL TRANSLATOR CHANGE CONSIDERATIONS 8-1

8.3 RNETGEN CHANGE CONSIDERATIONS 8-3

8.4 RADX CHANGE CONSIDERATIONS 8-3

8.5 SIMGEN CHANGE CONSIDERATIONS 8-4

8.6 SIMXQT CHANGE CONSIDERATIONS 8-7

8.7 SIMOA CHANGE CONSIDERATIONS 8-7

9.0 REFERENCES 9-1

APPENDIX A - RSL TRANSLATOR ERROR MNEMONICS . . A-i

APPENDIX B - REVS INSTALLATION AND MAINTENANCE ON COC B-i +

V Revision A

LIST OF ILLUSTRATIONS +

Figure Title

3-1 REVS Executive (REVS) 3-5
3-2 REVS Input (XXREVSIN)
3—3 REVS Output (XXREVSOUT) 3— 12
3-4 Structure of the RSL Translator 3-22
3-5 RNETGEN Menu 3-96.

3-6 R—Net Generation (RNETGEN) 3-97
3-7 Begin Structure (IISTRTYPE) 3-101
3-8 Create Node (IICRNODE) 3-106
3-9 Delete Node (IIDENODE) 3-110
3—10 Move Node (IIMVNODE) 3-113

3—il Join Nodes (IIJNNODE) 3-116

3-12 Disjoin Nodes (lIDJNODE) 3-118
3-13 Coment Node (IICMNODE) 3-120
3—14 Successor Node (IISUNODE) 3—123
3-15 Scroll Net (IISCROLL) 3—126
3-16 Save Net (IISAVE) 3—129
3-17 Zoom-Out On Net (l1ZOOMOVT) 3-131
3—18 Zoom-In On Net (IIZOOMIN) 3—134
3-19 Generate CALCOMP Plot (IICALCOMP) 3—136
3-20 Set Color (IICOLOR) 3—138
3—21 Display Branc h (IIDSPBRN) 3—141
3-22 DIsplay Node (IIDSNODE) 3-144
3-23 Display Net (IIDISNET) 3-147
3-24 DIsplay Zoomed-Out Net (IIDISZOUT) 3-149
3—25 Menu Read (IIMENUREAD) 3—152
3—26 CALCOMP Net Display (CCNET) 3-155
3-26.1 Autoplot (IIAUTOPLOT) 3-159
3—26.2 Move Subtree (IIMVSUBTREE) 3—162
3-27 RADX Data Structures for Set Management 3-i68
3-28 Requirements Analysis and Data Extraction (RADX) 3-169
3-29 Define Set (QQDEFINESET) 3—172
3-30 Combine Sets (QQCOMBINESET) 3-175
3-31 Qualify Set (QQUALSET) 3-178

vi

. + . -- ~~~~~~ - + + -~~~~~~~~~ --+ -~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~ +

LIST OF ILLUSTRATIONS (Continued) +

Figure Title ~~~~~~~~~~ +

3-32 Define Hierarchy (QQDEFHIER) 3-181
3-33 List of Qualify Set by HierarL~y (QQDOHIER) 3-184
3-34 Define Append Options (QQDEFAPPEND) 3—187
3-35 List Element (QQLISTELT) 3—189
3—36 List RSL (QQLSTRSL) 3—193
3-37 InformatIon Network 3—198
3-38 Requirements Analysis (QQANALYZE) 3-199

+

3-39 Data Flow Analysis (QQDATAFLOW) 3-205
3—39.1 List Permission (QQLPERM) 3—209
3-39.2 Plot Structures (QQPLOT) 3— 211
3-40 Overview of Simulator Translation List (STL) 3—219 +

3-41 ALPHA List (ALFALIST) 3—220 ‘

3-42 ENTITY_CLASS List (CLSSLIST) 3-221
3-43 STL Sublist (EVNTLIST) 3-222
3—44 FILE List (FILELIST) 3—222
3-45 INPUT and OUTPUT_INTERFACE List (INLIST, OUTLIST) 3—223

3-46 R NET , SUBNET , and Simple DATA List (RNETLIST , SNETLIST ,
and SDATLIST) 3-224

3-47 VALIDATION_POINT List (VALLIST) 3-224
3-48 Simulator Generation (SIMGEN) 3—225
3—49 RDS Allocation and Access 3—232
3-50 Data Translation (GGTRDATA) 3-233

+ 3-51 Example Formats for EEVLIST and EEDEPLST 3-243
3—52 Event/Enablement Translation (GGTPEVNT) 3—244
3-53 Validation Translation (GGTRVAL) 3-248
3-54 Keyword Record Structure 3-258
3-55 Alpha Translation (GGTRALFA) 3-259

+ 3-56 R-Net/Subnet Translation (GGTRRNET) 3-270
3-57 Simulator Program Organization 3-274
3-58 Consolidation (GGCONSOL) 3-275
3-58.1 Analytic Simulator Validation Translation (GGTRVP) . . 3-279
3-58.2 Performance-Requirement Translation (GGTRPR) 3-286
3—59 SImulator Execution (SIMXQT) 3-297
3-60 Simulator Data Analysis (SIMDA) 3—300

vii

LIST OF ILLUSTRATIONS (Continued)

Fi gure Titl e

4-1 Simulator Program Overv i ew 4-5
4-2 Simulator Program (EEPROGRAM) 4-6
4—3 Simulator Initialization (EEINITIAL) 4—7
4—4 Simulator Executive (EEXEC) 4-10

4-5 SETEVENT 4-13

4-6 Remove Event (EERTOPE) 4-15

4-7 Simula tion Data Manager Components 4-18

4— 8 CREATE (EE8CREATE) 4-23

4-9 DESTROY (EE8DESTROY) 4-25

4-10 FORM (EE8FORM) 4-27
4-11 FOR EACH 4-30

4-12 SELECT FIRST 4—33

4-13 SELECT NEXT 4—37

4-14 SET (EE8SET YP) 4-4~
4-15 UPDATE (EE8UPDATE) 4-44

5-1 Simula tor Post-Processor Overview 5-3
5-2 Simulator Post-Processor Program (VVEXEC) 5—4

5-3 Simulator Post—Processor Initial ization (VVINITL) 5—7

5-4 Simulator Post-Processor Executive (VVMAIN) 5-9
5-5 Simulator Post-Processor Data Manager Components 5-11
5-6 Select First/Next Validation-Point Recording (SFNVPR). 5—14
5—7 For Each Validation-Point Recording (FEVPR) 5— 17

5—8 Select First /Next File Record (SFNFR) 5—20

5-9 For Each File Record 5-23

6-1 Sample Job to Punch REVS Macros 6-2

6-2 Sample Job to Reconstruct REVS Load Module 6-4
7-1 Format of REVS Software Deliverables File

(9 Track , 1600 BPI , NL) 7-2
7—2 REVSL IB Module Fla gs 7—3

7-3 ASSM Configuration 7-6
7-4 Forma t of RISF 7-12

7-5 Format of SDF 7-13

viii

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +~~++-~~~~ +~~~~~~~~~ + + +  +-



+ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•
~~~

LIST OF ILLUSTRATIONS (Continued )

fj~~re Title

7-6 Sample Job for RSL Translator Construction 7-15
7-7 Sample Job to Initialize ASSM 7-19
7-8 Sample Job to Initialize VV Data Base 7—21
B-i Job Dependency Chart B-3
B—2 Deck Setup to Create SDF UPDATE File 8-6

B-3 Deck Setup to Crea te the RSL Translator B-8

B-4 Deck Setup to Construct the DBCS Library B-il

B-5 Deck Setup to Construct REVS Load Module B—1 3

B-6 Deck Setu p to Construct VV Li brary B-l 5
+ B-7 Deck Setup to Create Null Data Bases B-1 7

B-8 Deck Setu p to Create RISF B- 19
B-9 Deck Setup to Construct JSL Emulators 8-21

B-lO Deck Setup to Construct REVSLIB Library B-23

B-li Deck Setup to Create Nominal ASSM B-25

LIST OF TABLES

Table Title

3.1 Condensed RSL Syntax 3-24
3.2 RSL Translation Stop and Continuing Symbols 3—91

ix
Revision A

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



1 .0 If~T ROLJUCT IOi~

The Requirements Engineering and Validation System (REVS) is a soft-

ware system desi gned to support the development and validation of software

requirements . REVS was developed for the Ballistic Missile Defense Advanced

Technology Center (BMDATC) under the Software Requirements Eng i neering

Program , a research prog ram concerned with the developn ient of a systematic

approach to the development of complete and validated computational require-

ments specifications and consists of: concepts and structured techniques for

decomposition of requirements , the Requirements Statement Language (RSL),

REVS , and the procedures for their application.

1 .1 PURPOSE OF MANUAL

Th i s ma i ntena nce manual prov id es i nforma ti on necessary to main ta i n the
Requiremen ts Engineering and Validation System (REVS) installed on both the

Texas Instrumen ts Advanced Scientific Computer (ASC) and the CDC 7600 Com-

puter located at the BMOATC Advanced Research Center (ARC). The operation
of each REVS func tion is documented to provide a clear understanding of its

processing and functional organization . This material upda tes the informa-
tion provided in the REVS Software Desiqn Document [1].

REVS is implemented and maintained in the Process Design Language (PDL 2)

[2] on the TI-ASC while on the COC 7600 it is implemented and mainta i ned using

the PASCAL compiler and other SCOPE 2 System support software as outlined in

Section 2. The REVS source code contains documentation of the operation of
the REVS procedures obtainable from the Process Design System (PDS 2). This

same information is retained on the REVS program library file in the form of
a single deck (REVSDOC ) and can be obtained via the CDC UPDATE [22] source
manager. This manua l does not repea t that information . Instead it is

intended ~o provide maintenance personnel with an understanding of each
operation REV S performs and to guide the programme r to the REVS procedures

which perform these operations. Thus this manual should be used in conjunc-
t i on with the source co de documenta tio n.

1.2 PURPOSE OF SOFTWARE

The Requirements Eng i neering and Validation System (REVS) provides the
capability to maintain , analyze , simulate , and document software requ i rements

1-1 Revision A



stated in the Requirements Statement Language (RSL) [3]. RSL and REVS
were designed to meet the needs of Ballistic Missile Defense (BMD) systems
and other large real-time systems wi th imbedded software, and to provide a
degree of precision , automation , and confi dence in software requirements
development unattainable by conventional means .

1—2 



+ +

2.0 ENVIRONMENT / SYST EM DESCRIPTION

The Requirements Eng ineering and Valid ation System (REVS) operates
on both the Texas Instruments Advanced Scientific Computer (ASC) and the
Control Data 7600 Computer at the BMDATC Advanced Research Center (ARC ) in
Huntsv i lle , Ala bama . The follow ing subsections identify the system soft-
ware and hardwa re environment for the two computer systems at the ARC in
which REVS operates .

2 .1 SYSTEM OVERVIEW

REVS has been designed to operate in both on-line and off-line mode
under control of the standard operating systems on both the TI-ASC and

CDC 7600 to allow user selection of all REVS function s (except REV S Executive)
in any order and any number of times during a single REVS execution . Simu-
lator l oad modules are dynamically built under REVS control , not requiring
the REV S user to use the Job Statement/Control Language. Thus , although
REVS util izes separatel y confi guration controlled software , this is done in

a manner which is transparent to the user and does not require special mod i-
fication of the externally main ta i ned software. All other software used by
REVS is under the direc t control of the REVS Executive.

2.2 ASC INTERFACING SOFTWARE

REVS operates under control of the standard TI-ASC General Purpose

Operating System (GPOS), explicitly using the following components during

installation or execution:

• Job Statement Language (JSL) [4)

• FILECOPY Utility [5]

• FORTRAN Compiler (MX) [6]

• Linkage Editor [7)

• System Object Library

• Supervisor Service Ca lls [8)

• Source Management System (SMS) [9]

2-1 RevisIon A



+ • Card Image File Ed i tor (CIFER ) [10]

• Partitioned Direct Secondary Access Method (PDSAM)
Utilities [11]

In add ition to the standard ASC system software , REVS uses the TI-
Huntsville developed Process Design System (PDS 2) [2] and the fol l owing
components in particular:

• Source Library Management System (SLMS)

• Configuration Processor

• Process Desi gn Language Compil er (PDL 2)

+ • Object Module Processor +

• Overlay Processor

• Object Library Utilities

• PDS Macros

REVS also utilizes severa l librari es on the ASC that have been

installed by the ARC contractor for local use:

• Off-l ine Plotter Library (CALCUMP) [12]

• On-l ine Color Graphics System (ANAGRAPH ) [13, 14]

2.3 CDC INTERFACING SOFTWARE

REVS operates under control of the SCOPE 2.1 operating system on the

COC 7600 computer system located at the ARC. The following system components
are explicitly used during REV S installation or execution.

• JOB CONTROL LANGUAGE FOR SCOPE 2 [20]

• FORTRAN COMPILER (FTN) [21]

• UPDATE [22]

• PASCAL Com piler [25]

• LOADER [23]

• Off-l ine Plotter Library (CALCOMP) [12]

• On-l ine Color Graphics (ANAGRAPH) [13,14)

2-2 RevIs ion A 

—++ +-*- ~~~+- +—-~ ~~~~ -~~~—+~~~~~~ — . +  ~~~~~
.-,+- + +.

~~~~~ 
. +

~~~~~~~~
+ .4



• LIBEOT (Library Manager) [20]

• COMPASS (CDC Assembl er ) [24 ]

2.4 ASC COMPUTER AND INTERFACING HARDWARE

REVS provides for the use of all ARC ASC hardware faci l i t ies avai lable
through the operating system :

o Centra l Processor +

o Central Memory

+ o Memory Extens i on

o Disks (Head per track)

o Tapes (7 and 9 track)

o Card Reader and Punch

o Line Printer

In addition to the standard ASC configuration , there are other hardware
systems installed at the ARC with which REVS interfaces and utilizes:

o Off -l ine Paper Plotter (CALCOMP) via 7 track tape

o On-line Color Graphics System (ANAGRAPH)

2.5 CDC-7600 COMPUTER AND INTERFAC II4G HARDWARE

REVS provides for use of the following CDC hardware facilities avail-
able through the operating system .

• Small Core Memory (SCM )

• Large Core Memory (LCM)

• Centra l Processor

• Disks

• Ta pes (7 and 9 track )

• Card Reader and Punch

• Line Printer

+ 
- 

Revision A



~~~~~~~~~~~~~~~~~~~~~ + -~---~~+~~~~~~~~~~~~~~~ + +~

As on the ASC , REVS on the CDC-7600 also interfaces with an utilizes
the followi ng hardware systems installed at the ARC.

+ • Off-line Paper Plotter (CALCOMP)

• On-line Color Graphics (ANAGRAPH)

2-4 RevisIon A

L ~~~ + + ~~~~~ -++~~~~~ ~+— - + - +~~~~~~~~+

+ ~~~~~~~~~~~~~~~~~~~~~~~~
TT~~~

3.0 COMPUTER PROGRAM DESCRIPTION — REVS

The Requirements Engineeri ng and Validation System (REVS) maintains ,

analyzes , simulates , and documents software requirements stated in the

Requirements Statement Language (RSL). The REVS software is organized by

function into the following components : +

• REVS Executive

• RSL Translat ion (RSL, RSLXTND)

• Interactive R-Net Generation (RNETGEN)

• Requirements Analysis and Data Extraction (RADX)

• Simulator Generation (SIMGEN)

• Simulator Execution (SIMXQT)

• Simulation Data Analysis (SIMDA).

REVS is controlled by the user through the REVS Control Language (RCL).

RSL , RCL , and the operational instructions for each of the REVS functions are
documented in the REVS Users Manual [3]. These functions are briefly
described below and are documented in the remainder of this secti on. The
Simulator Program generated by REVS is documented in Section 4. The REVS Users
Manual [3] presents a complete list of messages which can be generated by any
of the REVS functions .

REVS Executive

REVS is controlled at the hi ghest level by the REVS Executive. It pro-

cesses the Executive portions of the REVS Control Language (RCL) to invoke
the various REVS functions and to select Executive options . The REVS
functions , with the exception of RNETGEN , interface wi th the user through
the Executive inpu t and output procedures . The functions access the requ ire-
ments data base , the Abstract System Semantic Model (ASSM), using the ASSM
Access utilities of the Executive.

3—1

-~~~~~ + + - - --+~~~~~~~~~~ +

RSL Translation

RSL Translat i on parses RSL statemen ts , perform s syntax and semant ics
checks and enters the requirements into the ASSM or modifies the ASSM as

d irected by the RSL . The RSL translation function supports both the

entry/modificati on of requ i rements in RSL and the entry/modi fication of

extensions to RSL .

Interac tive R-Net Generation

RNETGEN allows the user to in teractively create, retrieve , and
modify R-Nets in a graphical form from the Anagraph terminal. The R—Nets

and granhics information arc maintained in the ASSM . RNETGEU also permits
the user to develop a graphical representation of an R-Net previously
defined through RSL.

Requirements Analysis and_Data Extraction

RAOX performs analysis on the requ i remen ts stored in the ASSM and

provides the user with diagnostics concerning consistency and completeness
of the requi rements . RADX also contains a generalize d query sys tem which
permits the user to selectively extract information f rom the I4SSM and out-
put it in RSL.

Simulation Generation

SIMGEN transl ates the R-t4ets , data and simulator model descriptions

and their relationships establish ed in the ASS~1 into Process Design

Language (POL 2) components , consoli dates these with REVS provided simu-

lator utilities and an externally provided driver , and compiles and link
edits the procedural code into an executable simulator .

Simu lation Execution

Simula tor run-time parameters are processed by SIMXQT , in preparation
for execution of a REVS generated simulator .

S imulation Data Anajysis
Simulation post-processor run-time control parameters are processed by

SIMDA . A parameter file to be read by the Simulator Post-Processor Program
is also constructed by SIMOn .

++- - - ~~~~~~ -~~~~~~~ + - ~~~~~~~~~~ - + ~~~~~~ -+

3.1 REVS EXECUTIVE (REVS)

Descript i on

The REVS Execut ive function establishes the initial conditions needed

for the execution of REVS , chan ges state from executive to function and

back to selectively execute REVS functions as directed by RCL Executive
Commands (REVS-EXEC-RCL), changes mode from off-line to on-line and back ,
and terminates execution when requested . All input statements from XXREVSIN

are routed to XXREVSOUT before performing the specified operation. Unrecog-

nizable statements are merely flushed with a diagnostic while valid

executive state statements are accompanied by action messages . Al though +

the Executive passes control to functions as specified by RCL , it retains
ultimate su pervis ion and termi nates functions and REVS execut ions in an
orderly manner when run time errors require it.

Input

R E V S — E X E C - R C L - Executive state RCL only

Processing

REVS Executive process ing is shown in the fl ow diagram of Figure 3-1.
The following comments refer to processing steps in the flow diagram .

[1] - Al l Executive variables and files are
set as well as global variables and
files required for inter-function use
(e.g., ASSM Access and Calcom p plot
su bfunctions).

[4] - The Executive receives only executive
RCL statements which are limited to
executive state use only. Other execu-
tive RCL statements which are immediate
are processed wi thin XXREVSIN.

[5] - XXREVSOUT is sent a demarcation line
before and after function execution to
clearly identify which output is
from the Executive and which is from
the function. If a graphics console
synchronization error occurs following
RNETGE II execution , the Executive notes +

this on XXREVSOUT and recovers .

3—3

_ ~~~~~“+-- - + + - -~~~~~~~~~~~~~~~ - - - + -
~~~~~~~~~~



[6] - There is no 1i~ it to th” number of mode
changes unless conditioned by the user
with a GO ONLY statement which causes
the next GO s tatemen t to be inter p reted
as a STOP statement. An appropriate
message is issued as for all other
executive actions.

[7] - A mode change to on-line causes one
Anag raph console to be reserved by the
Executive wi th an initial display of 

+

the TRW/SREP logo accompanied by the +

user identif ication. A mode change to
off—line causes the same TRW/SREP display
followed by release of the console.

[9] - The Execu tive never runs out of input
before encoun tering the STOP statement
jus t as funct ions never run out of input
before encounterin g the FEND statement ,
thereby obv ia ting the need for an inde-
pendent end-of-file test.

[11] — The user can spec ify that the job is to
be stopped with the STOP JOB statement.
This kind of abort suppresses tape saves
or simula tor builds/executions .

Procedure References

The followi ng list correlates the functiona l processing steps shown
in Fi gure 3-1 wi th the REVS procedures in which the processing is performed .

[1] — XXU IN IT

[2-9] .‘ XXREVS

[10] — XXUTERM

3-4



REVS

IN IT IA LIZL I/O.
GL~J o~L ~~<IA u L~S .
~AL LL +JT~~ L ~T~ IL .

X XR tV S IN

OBTAIN NEXT IMAGE.

XXRE V SOUl

ECHO IMAGE.

4 5 
+

ELSE R TYP FUNCTION EXECUT E0. E. SPECIFIED FUNCTION .

GO

76
STOP NO ESTA ~3LISH NEW

CONDITIO NED OPERATING MODE.
1

ES

B

CHANGE IMAGE
TYPE TO STOP .

CLOSE ALL FILES.

(~~
ABORTj

Figure 3-1 REVS Executive (REVS)

3—5



3.1.1 REVS Input (XXREVSIN )

Description

XXREVS IN is the Execut ive component which provides the standardized

in put interface for +the Ex~cu-tive-and a ll REVS functioñs~ XXREV~ IN supports

the standard off-line (batch) i npu t file REVS IN , as wel l as add itional user

specified files , and the on-line color graphics console. Although on-line

input images are limited to 72 characters in length , XXREVSIN will support
off-line files with records up to 132 characters in length . However , the
normal size is 80. On each use of XXREVSIN the next image is retu rned from

the current in put file , which may be the standard REVSIN file , an alternate
file , or the on-l ine console , as prev iously specified by REVS-EXEC-RCL.

XXREVS IN logs all executive RCL unconditionally and logs function RCL and

RSL if specified by the user with a LOG ALL statement. The file source of

the input is shown on the log and executive RCL is time stamped .

XXREVSIN buffers (temporarily saves) some executive RCL statements
when a state change is implied , and generates an appropriate implied execu-
tive RCL statement. A subsequent call will then obtain the buffered image.

XXREVS IN contains the executive RCL translator since some RCL is

immediate in nature and is executed immediately upon detection. The trans-
lated statement is reta i ned for use by the REVS Executive in those cases
where executive state is required for processing. Only semantically and
syntactically legal executive RCL statements are recognized by this trans-
lator , and all other input images are considered to be function RCL or RSL.

When in the on-line mode , the status display is updated whenever
executive RCL is processed so that the on-line user always has a current
display of the executive state variables .

REVSIN FILES - Standard input , alternate addfiles , or
color console keyboard.

IMAGE — The next input image availab le to the
caller , with blank fill and computed
length .

3-6



-~~~~

FEND - Function end of data fla b .

STATDISPLAY - On-line status display. ._~~~~~ + —

Processin g

XXREVSIN processing is shown in the flow diagram of Figure 3-2. The
followin g cu4r~ents refer to processing steps in the flow diagram .

[1] - No function is allowed to read past
the FEND image and is aborted if it
tr i es.

[4] — Input images that require a state change
from function to exec utive are buffered
and an implicit FEND is genera ted to
synthesize what the user should have
provided .

[5] - The next image is obta i ned from the input
f i le REVSI N , the on—line console keyboard ,
or an alternate file as determined by the
specification of mode and addfile by
the user.

[7] - The free form image is translated to a
coded matrix for use by this module and
the execu tive module .

[10] - This step is currently superfluous as
the RCL translator now includes this
logic for efficiency of translation.

[12] - Logg ing of function RCL is only performed
if explicitl y requested by the user .

[16] - Executive RCL which requires the execu-
tive state causes image buffering when
encountered in the function state.

[21] - Executive RCL which does not require
executive state is processed wi thin
X XR [V SI N .

[22] - The return status is set based on
whether or not the transmitted image
i s a FEND .

3-7 

-+ -~~~~~~~~~~~~~~~-—~~~~~~~~ ~~~~.+ V~~~~~~~~ + -- --
~~~~~~~~~~ --


— - +
~~ ~ : V V ~~~~~~~~~

+
--

Procedure References

The following list correlates the functiona l processing steps shown in
• Figure 3- 2 with the REVS procedures in which the processing is performed .

[2] - XXREVSLOG

[3] — XX HALT

[5] - XXGETIMAGE

[7] — XXCLASS IFY

[13] — XXREVSLOG

[15] — XXREVSLOG

[19] - XXREVSLO G

[21] — XXPERFORMANCE

3-6

p
• •

XXRE VS ZN

All

2 IS
ATTEMPT NO IMAGE

TO EXCEED YES ISSUE ~~SSAGE .

—

~~~~~~~~~~~~~~~~~~~~~~~~~~~ EXLC_RCL
IFIHO

7
YES

NO 3 ALL 
14

MO 0011. 

NO LOGGING

ABORT FUNCTION

NOWYES 
STATE EXECUTI VE

7

IS
LOG IMAGE. 

CT~~

1 
LOG IMAGE.IMAGE NO GET NEX T INPUT IMAGE.

BUFFERE D 
__________7 1 IS

_____________ 
(EEC NOYES STATE

RE~UIRED

OBTA IN BUFFE~~D IMAGE . YES
17

I !UFF~.”

TRANSLAT E Rd. IMAGE.

18

,/~~~~~~~NCY N0 — 

[ GENERATE FEND.

9~~~~~L 

_ 
_ _ _ _ _

~~ TE~~ INAL 

LOG IMAGE. 
J

_ _ _ _ _  

YE
s<

~~

:;> 
___J

i” IMAGE

“.~~ STR IN(.. ,
V..

~ 7~~~
+ t!~AGE

E
~

E— 
12

_ 

I P~lL U ATE
UEC RCL

10 21r OYERR!DE IMAGE 1 PERFORM SPECI FIED NO
TYPE TO NON Rd.. £AEC_RCL ACTIUN. 

RETUP+N STATUS. ]SET FEND

WI _
CE~D

FIgure 3-2 REVS Input (XXREVSIN)

3-9



3.1.2 REVS Output (XXREVSOUT)

Description

XXREVSOUT provides the standard output interface for the REVS Executive

and functions which causes print line images to be output to the off-line

printer and/or to the on—line console. On-line operations allow paging at a

rate determined by the user by requirin g user stimulus when he is finished

with a page. A page wrapp ing technique is used which allows the user to

view a complete page at all times . Screen conditioning is required upon
first use of the console , or after dedicated use of the screen area by a
function such as Interactive R-Net Generation. REVS functions are , therefore ,
insulated from the details of output routing which is user controlled. The
user stimulus (via the trackba ll) will specify to continue or to interrupt
the output flow. This status will be available to the function to enable
interruption of lengthy outputs and to direct a return to the input process
to determine the user ’s next request. The interrupt status will be reset on
the next call to XXREVSIN. In addition , the user can change the output
routing of off—line at that point if he so desires . That would not retro-

actively affect previously displayed output.

Inpu t

IMAGE - The variable leng th image to be printed !
displ ecLa.ccc~ding to current routing .
The image has a length component.

SPACING - Spacing controls for off-line printing .

Output

IMAGE - A line is printed and/or displayed on the
console .

INTERRUPT - A signal to the calling program if the
user indicates an interruption is desired .

Processing

XXREVSOUT processing is shown in the flow diagram of Figure 3-3. The

following comments refer to processing steps in the flow diagram .

3-10



[1] - On-line routing is legal but ignored if
not in on-line mode .

[3] - The user controls the speed of page
wrapping by this pause for him to signal
when ready .

[4] - Previous page is not cleared to allow
maximum visibil ity of previous lines .

[6] — User can change output routing dynamically
without explicit RCL.

[9] — User can request function interrupt.
Function response is not enforced . In-
tended for l arge printing functions (RADX
is responsive).

+ [13] - Line below current one is blanked to
hi ghlight page bottom .

[14] - Current line is always underscored in
red to highlight it.

[15] - On-line function RNETGEN can reserve the
normal XXREVSOUT page area for its use
i n wh i ch case only one li ne i s left to
use.

* 
[17] - Off-line routing is optional .

[18, 21] - Automatic page skipping is performed on
XXREVSOUT .

Procedure References

The followi ng list correlates the functional prOcessing shown in
Figure 3-3 with the REVS procedures in which the processing is performed.

[6] - XXPERFORMRCL

3-il



V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-• + + -+ +-V +-~~~~~ --V ~~~~ V

~~~~~~ VSOUT 1~ 
3/1

~~~~~~~ YES

~~~~~~~~~~~~

~~~ 
8 TOM 

N.
>
NO 

NEXT LINE. ]
tI~OERLINE CURRENT

_______________________ 
L INE IN RED.

MA lT FOR
USER STIMULUS.

I 15 15
________________________ 

YES PAGE
AREA

RESET TO PAGE TOP. 
RESERVED

~IP 16 
NO

INDEX TO NEW POSITI~~.

~ ~*

+ j

~T~3./ ~~~~~~~~~~~~~~~~~~~ 

NO ROUT ING

CHANGE ROUTING I RETURN 
OFFL.INE

L To OFFLZNE. Lf!ERRQPT
I 

YES
18

SUPPRESS ONLIN E CO~~UTE LINE
DISPLAY THIS LI IE. SPACIN~ NEEDS.

S Nq/’~~~ E~~~ ’*~~ 

19 

UNE WITH

ISPLVAI E

YES
11 NO BOITOM

DISPLAY LINE
YES

+ 

21

(•_) EIII::~ 
EJECT PAGE.

EXIT

Figure 3-3 REVS Output (XXREVSOUT)

3-12



V ~~ VV~~~~~_ _V~~ V

3.1.3 ASSM Access

Use of the core Data Base Control System (DIICS) [15] software to Interface

directly with the ASSM at the very lowest level would require more knowledge

of the data base system than the REVS tools designer requ i res or cares to

know. Therefore, a higher l evel interface to the ASSM , via the aforementi oned
V 

DBCS software, has been implemented which more conveniently meets the needs
imposed by the various REVS functions described in succeed i ng subsections
in Section 3.

The ASSM interface software can be grouped into four major categories :

ASSM Storage, ASSM Retri eval , ASSM Deletion , and ASSM Utilities. A list and
brief description of the ASSM Access procedures is presented below by
category .

ASSM Storage

This group of ASSM access procedures provides for storage into the

ASSM of all basic components which make up RSL in addition to some structure

related components which can only be entered via the RNETGEN function .

AAEET - Enters an element type .

AAEE - Enters an element.

AAEPR - Enters a primary relationship.

AAECR - Enters a complementary relationship.

AAERST - Enters a relat ionship subj ec t element
type .

AAERQT - Enters a relationship object element
type.

AAEOW - Enters an optiona l word .

AAEPOW - Associates an optiona l word to a pri-
mary relationship. +

AAECOW - Associates an optional word to a
complementary relationshi p.

AAEA - Enters an attribute .

MEAAT - Enters an attribu te applicable element
type .

3-13

~ 

+ • ~~~~~~~~~~~~~~~~~~



AAEALV - Enters an attribute legal value.

AAENPET - Enters legal net/path element type . +

AAERW — Enters a reserved keyword .

AAECS - Enters a comment segment.

METS — Enters a text string segment.

AAA C - Associates a text string to an applicable +
ASSM component.

AAER I - Enters a relationship instance .

AAEA I - Enters an attribute instance .

AAEAWV — Enters an attribute instance wi thout
its value .

AAAAV - Associates an attribute value to an
V attribute instance in the ASSM .

AAENPN - Enters a node on a structure .

AAESPR - Enters the successor/predecessor rela-
tionship between two nodes on a structure.

AAENCXY - Enters graphic coordinates of a node.

AAENCOL - Enters color attribute of a node.

AAENAXY - Enters graphic coord i nates for the arc
between two nodes.

AAEORD - Enters the ordinal value of a structure
branch .

AAECE - Enters the conditional expression for a
structure branch.

AAENAE - Associates an element to a node in a
structure .

AMCE - Associates a conditiona l expression to
a node branch.

AAENBAE - Associa tes an element to a node branch
in the ASSM .

AAEPER - Enters a g iven ASSM conf iguration
control permission with permission
level .

3-14

L_ _ __ _ _ __ _ _ __ _ _ _ _  ~~~~~~~~~ + +~~~VV +



+ • •  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ASSt4 Retrieval

This group of ASSM access procedures provides for retrieval of all

data forms which may reside in the ASSM .

AARET - Retrieves an ele ert type.

AARETE - Retrieves the element type of a given
element .

AARPR - Retrieves a primary relationship.

AARCP - Retrieves a complementary relationship
given the primary .

AARPC - Retrieves the primary relationship of a
given complementary relationship.

AARRLS - Retrieves a subj ect element type of a
given relationshi p.

AARRLO - Retrieves an object element type of a
g iven relat i onshi p .

AARPOW - Retrieves the optiona l word of a given
primary relationship.

AARCOW - Retrieves the optional word of a given
complementary relationship .

AARA — Retrieves an attribu te.

AARAET - Retrieves an applicable element type
for a given attr ibute .

AARALV - Retrieves the legal value for a given
attribute .

AARNPET - Retrieves a legal net/path element type.

AARRW - Retrieves a reserved keyword .

AARCS - Retrieves a comment segment.

MREET - Retrieves an element of a given element
type.

MRRSE - Retrieves a subjec t element of a given
relationship instance.

AARROE - Retrieves an object element of a given
relationship instance.

AARRS - Retrieves a relationship instance given
its subject element.

3- 15



V V +~~~~~ V V~~~~~~~~~ V~~~~~~ +~~~~~

AARRO - Retrieves a relationsh i~. instance given
its object element .

AARAAE - Retrieves an attribute instance given
its applicable element.

AAREA - Retrieves an applicable element given
an attribute instance .

AARAVE - Retrieves the attribute value for a
given attribute instance .

AARRI — Retrieves a relationship instance .

AA RAI - Retrieves an attribute instance .

AARE - Retrieves an element.

A .ARFN - Retrieves the first node of a given
structure.

AARSN - Retrieves the successor node of a given
node.

AARPN - Retrieves the predecessor node of a
g iven node .

AARNT - Retrieves the type for a given node.

AARNC XY - Retrieves graphic coordinates for a
given node.

AARNCOL - Retrieves the color attribute of a given
node.

AARNAXY - Retrieves the graphic coordinates for
the arc between two nodes. +

AARORD - Retrieves the ordinal value on a node
branch .

AARCE - Retr i eves the conditional expression
associated wi th a node branch.

MRTNODE - Retrieves a node in the temporary
structure area .

AAREAN - Retrieves an element associated with
a g iven node .

AARNA E - Retrieves a node associated with a
given element.

MRNBAE - Retrieves a node branch associated wi th
a given element.

3-16



AAREANB — Retrieves an element associated wi th a
given node branch.

AARTS - Retrieves a text string . +

AARRST - Retrieves next relationshi p having a
given legal subject type .

AARROT - Retrieves next relationship having a
given legal object type.

AARAA ET - Retrieves
V
next attribute having a

given legal a pp l icable element type.

ASSM Deletion

This group of ASSM access procedures provides for removal of all data
forms which may reside in the ASSM .

AADET - Removes an el ement type.

AADPR - Removes a primary relationship.

AADCR - Removes a complementary relationship.

AADRST - Removes a subjec t element type for a
given relationship.

AA DROT - Removes an obj ect element type for a
given relationship.

AA DOW - Removes an optional word .

AADPOW - Removes the optional word for a given
primary relationship.

AADCOW - Removes the optiona l word for a given
complementary relationship.

AADA - Removes an attribu te.

AA DAAT - Removes an applicable element type for
a g iven at tri bute .

AADALV - Removes the legal value for a given
at tr I bu te.

AADNET - Removes a legal net/path element type.

AADCS - Removes a comment segment.

AADE - Removes an element.

3-17

• .~~~~~~~~~~~~~~ + ~~~~~~~~~~~~ • V~~~~



+ + ~~+*+~~~~~~~~~~~~~~~~~~~~~ + •• + + + 

I

MDR I — Removes a relationship instance.

AADA I - Removes an attribute instance .

AADN - Removes a node.

AADSPR - Removes the successor/predecessor rela-
tionship between two nodes .

AADPER - Removes the given ASSM confi ”jration
control permiss ion and its permission
level .

AADORD - Removes the ordinal for a given node
branch.

AADCE — Removes the conditiona l expression
associa ted w i th a gi ven node branch.

AADNBAE - Removes the assoc i a ti on of a g iven
node branch to an element.

MOPS - Removes a structure .

AADTS - Removes a text string .

ASSM Utilities 
V

This group of ASSM access procedures provides all additional needs

for interfac ing with the ASSM and also supports many of the other ASSM

access procedures .

MURTYP - Provides for changing the type of an
exist ing element in the ASSM .

AAURNAM - Provides for chang i ng the name of an
exist ing element in the ASSM .

MUBS - Performs the necessary initiali zation
for building a structure in the ASSM.

MUES - Performs the cleanup necessary in the
ASSM upon conclus i on of generating a
structu re.

MURCSTR - Retrieves the character string in the
ASSM associated with a given ASSM pointer .

MURPTR - Retrieves the ASSM pointer for a~~iven
character string.

3-18 

•• + + + • + ~~ ++ + V + • ~~~ + +V +~~~ + + • +~~~ •+ V~~~~~~~~~~~~~ • • + + ~~~~~~~ _ _ _ _ _



-

AAURART - Retrieves the record t~~e (ASSM) for agiven record in the ASSM .

AAULEN — Computes the length of a g i ven character
string .

PIAUPAD - Pads a character string with traili ng
b lanks.

AAPERID - Sets up current permission level for
the ASSM .

3-1 9



3.2 RSL TRANSLATION (RSL , RSLXT UO)

The RSL Translator is one functional component of the Requirements

Engineering and Validation System (REVS). Its purpose is to translate

+ input stated in the Requirements Statement Language (RSL) into entries in

the REVS data base, the Abstract System Semantic Model (ASSM).

The RSL Transla tor operates in either of two modes , basic or extension ,
corresponding to the REVS function to be performed , RSL or RSL extension
(RSLXTNU). In the basic RSL mode , the RSL Translator supports the entry ,

deleti on and modification of requirements stated in the Requirements

Statement Language. In the extension mode , the RSL Transla tor sup ports
the entry , deletion and modification of the definitions of RSL element-

types , attributes and rel ationships .

The in put to the RSL Translator is in the form of RSL command lists

as defined in a condensed form in Section 3.2.2. The syntax for the command +

lists allows an arbitrary mix of RSL and RSL extension commands ; the dis-

tinction between the types of commands is enforced by the semantic interpre-
tations for the command list constructs as defined in Section 3.2.4 (i.e.,

a seman tic error is detecte d if an RSL ex tension command is i nput while the
translator is operating in the basic RSL mode). This combination of the two
types of commands into one syntax allowed for the most efficient and effective

use of the Lecarme-Bochmann Compiler Writin g System [16, 17] as an aid in the

deve l opment of the RSL Translator.

3-20

-- 



• 3.2.1 Overall Structure of the RSL Translator

The RSL Translator is a procedure generated by the Lecarme-Bochmann

Compiler Writing System (L—B CWS). As such , it has the general structure
of L-B CWS Qenerated compilers as described in the Compiler Writing System

User ’s Manual [17]. The discussion below is summarized from that source.

The actual usage of the Compiler Writing System and its inputs are described

in Section 7.3.1. +

The translator consists of four functiona l segments: syntactic
analyzer , lexical analyzer , semantic analyzer , and error treatment. The
syntactic analyzer is the central function of the translator; i.e., it

control s the operation of the other parts. Each time the syntactic

analyzer needs another syntactic uni t, it calls the lexical anal yzer.

Each time it finds that a part of the source text corresponds to the

application of a particular part of the gramar , it calls a procedure in

the semantic analyzer to perform the appropriate action. In addition ,

error treament routines exist to recover from the recognized error so that
the translation may continue . The error treatment routines may be called

by any function of the translator. In turn , they may call the lexical
or syntactic analyzers in their attempt to recover from the error. The

resulting functional structure of the translator is given in Figure 3-4.

The lexical and syntactic analyzers are supplied as standard source

code by the Compiler Writing System. No significant changes have been
made to the syntax analyzer (parser) and only minor changes have been

incorporated into the lexical analyzer to support the translation of RSL.

The Compiler Writing System also provided the framework for the treatment

of errors; a framework which was tailored for use by the RSI Translator.
+ The semantic analyzer , in contrast , is almost totally dependent on the

language to be transla ted. As such , the bulk of the si gni f icant as pec ts
of the RSL Translator is concentrated on the semantic actions which the

translator takes , and the semantic errors which it detects .

Succeeding subsections describe the general approach used in each of

the functions of the translator . These descriptions , when combined with

the skeleton specification of the compilers generated by the Compiler
Writin g System, constitute the functional design of the RSL Translator.

3-el



-‘I,

SYNTAX ANALYZER

REVS IN
OBTAIN INPUT
LINE IMAGE .

LEXICAL ANALYZER SEMANTIC ANALYZERASSM ASSM

REVSOUT
ECHO BAC K

INPUT RECEIVED.

ERROR TREATMENT

1

~~

L
I REPORT
/ ERRORS .

FIgure 3-4 Structure of the RSL Translator

3-22



+ ~~~~~~~~~~~~~~~~~~~~ + 

3.2.2 The Syntactic Analyzer

To facilitate error recovery, the RSL input is processed on a
sentence-by-sentence basis , rather than on a section-by-section basis.
Combination of sentences into sections is done semantically. Also ,
periods are considered by the parser as separators between sentences
rather than a part of the sentence. This enables error messages to be

issued as soon as the period is read , rather than waitin g until part of

the succeeding sentence has been processed .

Syntactic Treatment of Names (Identifiers)

There are essentiall y two classes of names recognized by the parser :

(1) previousl y def i ned attri bute, relation , and elemen t-type-names; (2)
previously defined element-names , and value-names and new (not previously
defined ) names. Names of class (1) are treated by the parser as separate
syntactic entities , and have a semantic attribute whi ch is a pointer to
the appropriate entry in the ASSM. Names of class (2) are syntactically

identical , but can be distinguished by their semantic attributes. (See
Section 3.2.4, “Semantic Treatment of Names ” .)

RSL Syntax (Condensed)

Table 3.1 contains a descri ption of the syntax of RSL in condensed
form more suitable for reading by humans than the full version which is

in put to the L-B CWS. (See Section 7.3.1.) For each syntax production ,

this table also identifies the page in Section 3.2.4 on which the

semantics for the production are documented.

3-23

-4



— +---

Tabl e 3.1 Condensed RSL Syntax

PSI PRODUCTION RULE

‘co ,meand hst ’ :: ’
{>cmi ,and_}~ end-of-f I le 3.33

• <ccyrand’::= 3—34
[<section keyword >] ‘def in i t ion ’  3.35
RENAME element-name AS new-name [coewnent). 3.39

I RETYPE element-name AS element-type-name. 3—40

I <error -level coemand> 3—4 1

<extension-contro l comand >

<extens ion-control cor’lr.and>: :

IDENTIF ICAT ION name .

+ 
I EX T ENS L ON_PERMISSI O~I name. 3—36

CONTROL PERMISSION name . 3_37

RESCINO PERMISS ION name . 3—38

‘error -lev el corToand’: :

ERROR LEVEL inte ger. 3 4 ~+ <sectio n keyw ord ’ :: ’ 
-

~~~~~~~~

DEF I NE

I ADD

I DELETE

cd. f j n i t io n > : : . 3 4 4
cele rent-type def ini t ion ’
.at trib u te definition,

< relation definition ,

*
,elerent def inition ,

elenent-type definit i on,:: ’

cele ren t- typ e -def inition heade r ’ 3 4 5
{ [‘sentence keyword’] ‘e l em ent -type-defInit ion sentence’~0

cele ,ent-type-definitiorc hea der ’:: 3—46

ELE 11E 4T TY P E element-type-n ame_ [comentj.
— _______________________________ 3—47

elemen t-type-def mni tio n sente nce . :‘ 3—48
<error- leve l ccamnand’

I STRUCTURE APPLICABILITY
b’ATH~ ~~

‘

___________ ___________________

<sen tence keyword’:: ’ 3-49+ IN S E R T

I RCMO.E
< a ttribute de f :r,it io n;: ~ 3—SO

< attr ibute-def i n i t i on header ’

(‘se ntence keyword’] ‘at tr ibute-definition sentence >)

<a ttribute-de finition header ’::- 3—51

ATTR IY UTE attribute-n am e (com iTment). 3—52
<a ttr i bute- def i nit i on sentence : : 3—53

‘e rro r- leve cocinand ’

‘a pplic a ble type s ’

VAL UE value-n am e [ccnrent].

3-24

• •

Table 3. 1 Condensed RSL Syntax (Continued)

RSL F~~ JCTI~N RULE

<applica ble types’::’ 3—54
APPLICABLE (ELEYlENT_T~PE] ‘element types> .

—

<element types>::’ 3.54
ALL

I (ALL EXCEPT) ~element_type_rarre} 1

<relation definition>:: — 3-55
<relation—definition header>

((<sentence keyword’) <relation —definition sentence>)”

<relation-definition header’::.

{ RELATIONSHIP) <relation id> (coment).

<relation id> ::’ 3-56
relation—name ((string)] 3-57

<relat lon-def inition sentence’::- 3—58
<error-level co,mnand’

I <complementary part’

I <subject part>

I ‘object part<
<c om p lementary par t ’ : : - 3_ 58

C~ IPL EMENTA RY {RE LAT IOlmS ~ IP} <relation Id’ .

<s ubject par t> : : . 3_ 59
SUBJECT (ELEMENT_TYPE] [<element types’).

—
<object part’::. 3—60

OBJECT [E LEMENT_TYPE) (<element types’].
—

<element definition ’::- 3—61
ele,nent-definitlon header’

([<sentence keyword’) celem ent—d ef init lon sentence>)0
<element-definition header’::~

element-type-name elee ent.n~-ie (cccnr,ent]. 3-63
‘element-defInitIon sentence’::’ 3-64

<error-level comand’ 3—65

I <attribute declaration>

I <relation declaration>

I <path declaration>

I <structure declaration>
<attribute declaration>:: — 3—64

1~vaiue—na—e~
1 1

•ttribute-nenel nurber ~
. [conrent]~. 3—65

~jstring ~ 1 J

3—25

r~~~v

Table 3.1 Condensed RSL Syntax (Continued)

PALE
RSL PRODUCTION RULE NO.

<r elat ion dec la ra t ion>: :— 3—66
relati on-na me <object l i s t ’ . 3-67

<object lIst’::— 3—66

([element-type-name] element-name [coment] 3-67

<path declaration ’::’ 3.68

PATH [(<validation node>) END] (conrment]. 3-69

<val idat ion node ’ :: ’ 3—58
(e~erne nt-ty pe- na me] element—name [co esnent) 3-69

<structure declaration’::’ 3.70

STRUCTURE [~‘.cnode>}
”

END] [corrient). 3-71

<node>: :‘
•

3—70
<element nOae> 3-71

I <ter nii nator >

I <and node>

I <or node>
<consider-or node ’

I <for—each node>

I <select node’
<element node’::’ 3-72

[element-type-name) element-name (coment]
<terminator>:: ’ 3-73

TERMIIIA1E [coerient)

I RETURN [corn ent)
sand node’::’

~ [cornent) <branch ’ (AND < br a nch ’ } END

<branch >::— ,, 375
(< node>)

<or node ’ :: ’ 3-76
IF [corirnent] <conditional branch ’

~OR <condit ional branch ’~‘0
OTHERWISE [<branch’] END

<conditional branch’::’
[integer) <condition ’ <branch ’

<consider-or node’::’ 3-78
‘consIder-data> 3-81

I ‘consider—entity-class ’
<consider-data’::’ 3-78

CONSIDER [DATA) enumerated-data-name IF [conmient)
<c onsider-data branch ’

(OR ‘consider—data branch~}
END 1

—

3-26

Table 3.1 Condensed RSL Syntax (Continued)

PAuE
RSL PRODUCTION RULE itO.

conslder—data cra~~ir ’::— 3.80
(‘enu -erat i on-ya 1~ e—list>) ‘branch’

I (<en~~.~r~ t l o n - v a l u e — l i s t>) +
<enuncerat ion-v ~, . e - i i s t + . : < ,, 3-80

~OR enumeration-value_ name)
—

consider—ent i t i-c lass’ : :’ 3— 81
COUSIC~R [ENTITY _CLASS) ent i ty-c lass-name IF [coennent)
<cons ider—ent i ty branch’ n
(OR <consider —ent ity branch4

1END
<consIder-entit y-class branch>::’ 3—82

(‘ent i ty—type- l is t’) <branch’

I (‘entity-type-list>)
<entity —ty pe-list ’::’ ,, 3—82

enti ty-type-name (OR entity _ type_name)is
‘for-each node’::’

FOR EACH <f or-each subject’ [SUCH THAT <condition>)
DO [cc—re n t) <for-each body node> END

—
‘for each sub jec t > : : ’ 3..~4

[FILE] fi le-name (RECORD]

I [ENTITY_TYPE) entity-type-name
I [ENTITY CLASS) entity-class-name

—
<for-eac h body r+3d0> : :~ 3-85

(ALPHA] alpha-name [cornnent)

I [SUBN~T) subset—name [corrinent)
—

‘select node ’ :: ’ 3-86
SELECT <select subject’ SUCH THA T <condi t ion>

(corrlent]
<select subject’::’ 3—87

(ENTITY _CLASS) entity-class-name

I (ENTITY _TYPE) ent ity-type — name

3-27

______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ---— —-----~~~~~
-
~~~~~~~ + ~~~~~~ 

—
~~~~~~ 

— -
__

~~~~~~~~~~~~~~~~~~~~

_

~~~ 
—

Table 3.1 Condensed RSI Syntax (Continued)

RSL PRODUCTION RUL E

‘condition’:: • 3—88
(<Boolean expression>) 3-89

‘Boo l ea n expression>: ’
< simp le Boo lean ’ ~‘B op’ < simple Booleans)”

< simpl e Boolean ’::—
<Bo ol ean term ’ {o~ ‘Boolean term>)”

<Bo olean tern” : : -

cBoo lea n factor’ • 4N0 ‘Boolean factor’)0

<B oolean factor ’::’

‘Boolean’ (<rel op’ <Boo lean >) +

‘a r l t’ l e t i c express ion’ ‘rd op’ <ar ithmetic expression>
‘6001 can’::-

[NOT) <Bool ean pr Imary~
<Boolean pr ina ry ’ :

TRUE

I FALSE

1 data-name

I (‘Boolean expression’)
‘arithmetic expression ’::—

[‘ad op.) ‘aritlynetic term”
I ‘a r it in e t ic ex presslon < ~‘ad op’ ‘arithmetic term4

—arithmetic term’ :: ’
‘arithmetic factor’ (‘mul op’ ‘arithmeti c factor’)

<a r i thmet ic factor ’ : :’
number

I data-name

I (<arithmetic expression ’)

‘B op’::’
EQU I XOR

• <rd op’::’
• I < I I ‘ I ‘ — I

<ad op>::

amiu l op’::’
• I / I DIV I MOD

3-28

L + _ — _~~~~• + - --

- - -
~~
—- —-

3.2.3 The Lexical Analyzer

The function of the lexical analyzer is to scan the input stream
and to generate RSL terminal symbols for the syntactic analyzer. Some
semantic information is also generated for the terminals and associated
with them in the form of semantic attributes. The following paragraphs
identify the termi nal sym bols of RSL and provide a sumary of the semantic
attributes associated wi th each symbol .

End-of-f ile

This symbol is generated when an end-of-file indicator is returned
from XXREVSI N. It has no semantic attributes.

Name

This is a sequence of up to 60 alphanumeric characters, the first
one of which is al phabetic. (The underscore character is considered

alphabetic.) Its semantic attributes include: (1) a flag indicating

whether the name can be found in the ASSM; (2) the type of ASSM record ;

(3) a pointer to the ASSM record. If the name cannot be found in the

ASSM, it is either a value-name or a name being defined for the first
time. Names are kept in a one—position name table. When an unrecognized

name or possible value-name is processed by the lexical analyzer , it is
moved from working storage to the name table , and a flag is set indicating
that the name taL’le is full. When the semantic analyzer determines that
the name is to be used , it moves it back to working storage and resets

the flag . If the semantic analyzer determines that the name is not to be

used , the flag is reset and the name in the table is discarded .

Two semantic errors can occur in the use of the name table: error

number 448 (too many new (undefined) names); error number 451 (new

(undefined) name was lost). These are only expected to occur as a result of

syntax errors or other semantic errors.

• 3- 29

• + + +~~~:

Coment

Comments are scanned completely and stored in the ASSM (with their
comment brackets) as a chain of text. The line structure of multi-line
comments is preserved as follows : (1) a new comment segment is begun when-

ever an end-of-line indicator is returned by XXREVSIN , regardless of the
number of characters scanned; (2) a single line which contains 60 or more
characters is stored as two comment segments , the fi rst containing exactly +

60 characters , and the second containing the remaining characters . (In the

case of a comment line containing exactly 60 characters , two segments are
generated , the second of which is null.)

The semantic attr i bute of a coment is a pointer to the first seg-

ment of the text chain in the ASSM . This will later be associated with

the appropriate ASSM record by the semantic analyzer .

String

Strings are processed in exactly the same way as coments. (The
delimiting double quotes are stored along with the text.)

Integer

The binary value of an integer is returned as its semantic attri-
bute. The charac ter-string representing the integer is retained as a

global varia ble , for possible use as an attribute—value. A global va l ue

is adequate for this purpose , since each attri bute-value is processed
as a separate sentence.

Real Number

Real numbers are defined exactly as in PASCAL. Real numbers are
checked for validity , but have no semantic attributes. The character-
string representing the number is retained as a global variable, for
possible use as an attribute value.

~onditional Expressions

Conditional expressions are checked by the parser for syntactic
validity , but are also copied into the ASSM as a chain of text segments ,
Including the surrounding parentheses. A pointer to this string is
saved as the semantic attribute of <conditional expression> . Later the
semantic analyzer will associate this text chain with a node—branch of
a structure .

3—30

3.2.4 The Semantic Analyzer

The semantics of an artificial language is the output, other than
+

an indication of syntactic correctness, generated by the translator. In

the case of RSL , the semantics consists of a series of interactions with
the ASSM.

A semant ic action may be taken by the RSL translator for each

production in the syntactic description of RSL wh ich was input to the
L-B CWS (see Section 7.3.1). A semantic action has inputs which are the
semantic attributes associated with the symbols on the right—han d side of
a production. A semantic action may call the ASSM access routines to
retrieve information from or enter it into the ASSM . Semantic actions
may also test and set global variables which are internal to the RSL
translator. The hi ghest level at which semantic action is taken is the

- —

section. However, most information is processed at the sentence l evel ,
and the only i nformation retained between sentences is the type of the
header, the associated name in the ASSM , and the type of the <section

keyword> -

Production-by-Production Semantics

This section contains a description of the semantic actions for
each production of RSL , as expressed in the condensed RSL syntax shown +

in Table 3.1. Since each production in the condensed syntax usually

corresponds to several productions in the syntactic i nput to the L-B CWS,

there is a similar subdivision of the semantics.

The semantics for each production is expressed in two parts, normal
semantic act i on and possible semantic errors. The tests for errors are
actually performed before any semantic action is taken , but the order

has been reversed in the descri ption in order to clarify understanding

of the normal case. The name or names of the software modules which

perform each semantic action are indicated in parentheses followi ng the

description of the action.

Semantic errors are communicated to the user in the form of integer

numbers. For each possibl e semantic error, the error number and the
software modules which can detect the error are given in parentheses

3-31

- - _
~~~~~~~~~~~~

_ _
~~~~~~
-

~~~~~~~



fo llowing the description of the error. A cross-reference between th€
error numbers and the actual mnemonic names used in the RSL Transla tor

source code is presented in Appendix A . A complete listing of all
possible error codes and their interpretatiort s is presented in the REVS
Users Manual [3] .

In most cases , a semantic error invalidates the entire sentence and
a semantic error in a section header i nvalidates the entire section. A
few semantic errors result only in a warning message , and a few cause the
RSL translator to termi nate abnormally (fatal errors).

The highest syntactic unit processed by the parser is the sentence,
so descriptions of semantic actions above the sentence level are actually
summaries of actions already taken at a l ower level.

3-32
Revision A

_ _ _  ______  -_ _- “ • -• --~~~~~~~



<c ommand list>: :

‘~<coniiiand>}~ end-of-file

Semantic Act ion

After each command has been processed , and an end-of-file signal is
received from XXREVSIN , RSL returns control to the REVS Executive.

3—33

_ _ _  -~~~~~ - - - - - - •~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



<command>: : =

[<section keyword>] <definition>

Semantic Action

The <definition> is processed in the mode correspond ing to the

<section keyword> . If no <section keyword> is present the default mode is

DEFI NE, if the name in the section header is undefined , or MODIFY , if the name
in the section header was previously defined (ACTION).

3-34

L • -~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _ _



<command> : : =

<extension-control command>
<extension—control command>: :

IDENT IFICATION name .

Semanti c Action

This command identifies the user and establishes the appropriate per-
mission level (none, extension only, or control) in accordance wi th the
permission level associated with the name (TTEXTCNTRL). This permission
level remains in effect unti l superseded by another IDENTIFICATION comand
or by the conclusion of the function executi on . The name may have a maximum
of 58 significant characters to form a unique permission identifier , but is
maintaine d separately from all other RSL names so that no conflict can arise.

Possibl e Seman tic Errors
The RSL translator was not invoked in extension mode , i.e., via

RSLXTND (500-TTEXTCNTRL ) -

3—35 

~~•—• •-- + •-+~~~-_ _  - -_ -~~~~~~~ - ~~~~~~~~~~~-~~~~~~~~~~~~~~~ • - •  --  -



q

<extension-contro l command>::=
EXTENSION_PERMISSION name .

Semantic Action

The name will be entered in the ASSM and extension permission asso-
ciated with it (TTEXTCNTRL).

Possible Semantic Errors

1. The current permission level is not control permission
(497-TTEXTCNTRL) -

2. A permission is already associated wi th the name (498—TTEXTCNTRL).

3. No control permission exists in the ASSM (502-TTEXTCNTRL).

I

3-36 

• - - • • •+ • + - + • • - - • -  • -- -•-~~~~~~~~~~~~~~~~~ - •_ ~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~ -- - - - - . -
~~



<extension—control command> : :=
CONTROL_PERMISSION name.

Semantic Action

The name wi ll be entered in the ASSM and control permission associated
wi th it (TTEXTCNTRL). Note that control permission includes extension
permission.

Possible Semantic Errors

1. The current permission level is not control permissi on
(497-TTExTCNTRL).

2. A permission is already associated wi th the name (498-TTEXTCNTRL).

• 3-37



_ _ _ _  +

<extension-control command> : :=
RESCIND PERMISSION name.

Semantic Action

The permission associated with the nai ie will be rescinded. This takes
effect immediately unless the given name was the one used to acquire control
permission on the preceding IDENTIFICATION command , in which case it will take
effect at the next IDENTIFICATION statement or at conclusion of function
execution .

Possible Semantic Errors

1. The current permission level is not control permission
(497-TTEXTCNTRL).

2. No permission is associated with the name (499-TTEXTCNTRL).

3, The name has the only control permission in the ASSM and there
is at least one outstanding extension permission (501—TTEXTCNTRL),

3— 38



_
~~~l,

<coninand> :

RENAME el ement-name AS new-nam e [comment] .

Semantic Act ion

1. The name of the element will be changed (TTRENAME).

2. Any existing comment for the element will be removed(TTATTCOM).
3. The coment, If given , will be associated wi th the element

(TTATTCOM).

Possible Semantic Errors

1. The new-name is already in use (449-ACTION).

2. The old element-nam e is not a valid element-name (479-ACTION).

3. The old name is an element-type-nam e, attribute-name , or relation-
name (syntax error). -

3-39

_ _ _ _ _ _ _ _ _ _ • +~~~~~~~~~~~ .

<command> : : =
RETYPE el ement-name AS element-type-name.

Semantic Action

The element-type of the element is changed to the new element-type
(TTRETYPE) .

Possible Semantic Errors

1. The name is not a valid element-name (479-ACTION).

2. The element has an associated STRUCTURE and the new element-type
is not SUBNET or R_NET (475-TTRETYPE).

3. The element has an associated PATH (481—TTRETYPE)+. (Only
elements of type VALIDATION_PATH may have an assoc iated PATH.)

4. The element is associated with a node of a structure and the new
element-type has not been defined wi th STRUCTURE APPLICABILITY
NET (427-TTRETYPE) -

5, The element is associated with an OR-node or a node branch on
a structure (409—TTRETYPE).

6. The element is associated wi th a node on a PATH and the new
element-type has not been defined with STRUCTURE APPLICABILIT Y
PATH (480-TTRETYPE).

7. The existing attributes of the element are not appli cable to the
new element-type (40l -TTRETYPE).

8. The existing relationships of the element are not defined for the
new element-type (441, 442-TTRETYPE).

9. The element-type-name is the same as the element-type of the
element (487-TTRETYPE).

10. The element is associated with a FOR EACH node and the new
element-type is not FILE , ENTIT Y CLASS, or ENTITY_TYPE
(433-TTRETYPE).

11. The element is associated with a SELECT node and the new element-
type is not ENTITY_CLASS or ENTITY_TYPE (486-TTRETYPE).

12. The element is associated with a node immediately following a FOR
EACH node and the element-type is not ALPHA or StJBNET (432-
IT RETYPE).

13. The element is associated with a node on a STRUCTURE and the old
or new element-type is OUTPUT_INTERFACE (491-TTRETYPE).

3-40

L •-- ~~~~~~~ -~~~~~~~~~~~~~ -~~~~
+ -

~~~
- 

~~~~~~~~~~


14. The element is associated wi th a node on a SUBNET and the new
element-type is INPUT_INTERFACE (488—ITRETYPE).

15. The element is associated with a node on a STRUCTURE which
follows another node and the new element-type is INPUT_INTERFACE
(436-TTRETYPE).

3-41

-~~ +- ~~~~ -~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~ -- -~~~~~~~~~~~~~~~ - - - +-

—
~~~~~~~~ . ~~~~~~~~

<command> : : =

<error-level command>

<error-level command> : :
ERROR LEVEL integer .

Semantic Action

The error message level will be set to the specified integer . The

default value is 1 (ACTION),

3-42



<section keyword>:
DEFINE

I ADD
I DELETE
I MODIFY

Semantic Action

The <section keyword> sets the mode in which the succeeding definition
is to be processed. ADD and DEFINE are synonymous (ACTION).

3-43



— iA~~ ’. + + + -  ~~~~~~lIW~~~W _
~~~~~~-~~•

.• + • - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
‘
~~~ 

• + —
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

<definition> : :=
<element-type definition>

I <attribute definition>
<relation definition>

I <element definition>

Semantic Action

The <definition> will be processed in the appropriate mode (AD D,
MODIFY , or DELETE), and the ASSM will be updated appropriately.

3.,44

“

~

——

~

- + --- - - • • + —-•~~~~~~~~~-~~~~~~~ - • -• ---•~~~~~~~~~--~~~—--- - - -- • • — ~~~~ • •— + -

<element-type definition> : :
<element-type-definition header>

{[<sentence keyword>]
<element-type-definition sentence~.}”

Semantic Action

The header is processed according to the mode of the <section keyword>
(explicit or default), and each sentence is processed according to the mode
(explicit or default) of the <sentence keyword>.

Possible Semantic Errors

1. An <element-type-definition header> is followed by a sentence which
is not an <element-type-definition sentence> (430-TTSNTCHK).

2. An <element-type-definition sentence> is not preceded by an
<element-type-definition header> (425-TTSNTCHK) .

3. An <element-type-definition sentence> appears in an <element-type
definition> of mode DELETE (411-ACTION).

3-45

<element-type-definition header> : :=
ELEMENT_TYPE element-type-name [comment].

Semantic Action

ADDition mode -

1. A new element-type is entered into the ASSM with the given
name (TTNE WELT) .

2. The comment , if any , is associated wi th the element-type
definition in the ASSM (TTATTCOM).

MODIFication mode

1. The NET/PATH indicator is changed as specified in the fol l owi ng
sentence (TTFLAG).

2. The comment , if any , replaces the one in the ASSM (TTOLDELT).

3. If the comment is not given , any existing comment wil l be retained .

DELETion mode

1. The comment , if any , is deleted from the ASSM (TTDELCOM).

2. The element-type is deleted from the ASSM (TTOLDELT).

Possible Semantic Errors

ADDition mode

1. No comment is specified (201-ACTION).

2. The element-type-name is already in the ASSM (415-TTOLDELT).

MODIFication mode

1. The name is not defined in the ASSM as an element-type-name
(446-TTNEWELT).

DELETion mode

1. The name is not defined in the ASSM as an element-type-name
(446-TTNEWELT).

2. An element of this type exists in the ASSM (426-TTOLDELT).

3. The element-type is an applicable element-type of an attribute
(403-TTOLDELT).

3-46

—. — - -~~~~~~~~~~~~ - - - --•~~~~~-~~~~

4. The element-type is a legal subject element-type of a relation(472-TTOL oELT)~
5. The element-type is a legal object element-type of a relation

(471 —TTOLDELT).

All modes

Extension permission has not been established (496-EREXTMODE).

3-47

<element-type-definition sentence> : :=
STRUCTUR E APPLICABI LITY

Semantic Action

INSERT mode

The element-type is flagged as a legal NET/PATH element-type (TTFLAG).

REMOV E mode

The element-type is deleted as a legal NET/PATH element—type (TTFLAG).

Possible Semantic Errors

INSERT mode

The element-type is already flagged as a legal NET/PATH element-type(417-TTFLAG) -

REMOVE mode

1. NET is specified and the element-type is not a NET legal type(457-TTF LAG) -

2. PATH is specified and the element—type is not a PATH legal type(457-TTFI..AG).

3. An element of the given type is used on a NET or PATH (429-TTFLAG).

3—48

- - - -- + -

~~~~~~~~

•-

~~~~~~~ 

• -•• -- —--

~~~~~~~~

- — -

~~~~~~~

- ----

~~~~ 

- • + - + - - _-- • --

<sentence keyword> : :=
INSERT

+ 

1 
REMOVE

Semantic Action

The <sentence keyword> sets the mode in which the succeeding sentence
is to be processed . If no <sentence keyword> is specified , the default mode is
INSERT (ACTION),

Possible Semantic Errors

1. A REMOVE sentence appears and the <section keyword> is not MODIFY
or DELETE (439-ACTION).

2. An INSERT sentence appea rs and the <section keyword> ~s DELETE
(411 -ACTION).

I

3-49



<attribute definition
<attribute-definition header>

{[<sentence keyword>] ri
<attribute-definition sentence>~)0

Semantic Action

The header is processed according to the mode of the <section keyword>
(explicit or default), and each sentence is processed according to the mode
(explicit or default) of the <sentence keyword>.

Possible Semantic Errors

1. An <attribute -definition header> is followed by a sentence which
is not an <attribute—definition sentence> (405—TTSNTCHK).

2. An <attribute-definition sentence~ is not preceded by an<attribute-definition header> (404-TTSNTCHK).

3. An <attribute-definition sentence> appears in an <attribute
definition> of mode DELETE (411-ACTION).

3-50

I
t



+ •
~~~~~~~~~~~~~~~

• • •
~~~~~~~~~~~~~~~~~~ -—

<attribute-definition header>: :=
ATTRIBUTE attribute-name [comment].

Semantic Action

ADDition mode

1. The new attribute-name is entered into the ASSM (TTNEWATTR).

2. The comment, if any, is associated with the attribute—name in the
ASSM (TTATT COM).

• MODIFication mode

1. Applicable types and legal values are changed as specified in
the following sentences.

2. The comment, if any, replaces the one in the ASSM (TTATTCOM).

3. If the comment is not given , any existing comment will be retained .

DELETion mode

1. All applicable element-types for the attribute-name will be removed
from the ASSM (TTOLDATTR).

2. All legal value—names and associated comments for the attribute-
name w ill be removed from the ASSM (TTOLDATTR , TTDELCOM).

3. The attribute-name and any associated comment will be removed from
the ASSM (TTOLDATTR , TTDELCOM).

Possible Semantic Errors

ADDition mode

1. The attribute-name is already in use (449-ACTION).

2. No comment is specified (201-ACTION).

MODIF ica tion mode
1. The name is not defined in the ASSM as an attribute-name

(444 -TINE WATTR).

3—51



DELETion mode +

1. The name is not defined in the ASSM as an attribute-name
(444-TTNEwATTR).

2. An element exists which has this attribute (400-TTOLDATTR).

ALL modes

Extension permission has not been established (496-TTNEWATTR,
TTOLDATTR).

3—52 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~ ~~~~~~~~~~


<attribute -definition sentence> : :
<applicable types>

I VALUE value-name [comment].

Semantic Action

INSERT mode

1. The value-name is entered as a legal value for this attribute
(TTVALDEF).
(NOTE: The identifiers NAMED , NUMERIC , and TEXT are not
reserved words , but have special properties when used as value -
names. Cf. the semantics of <attribute declaration> .)

2. The comment , if any , is associated with the value—name (TTATTCOM).

REMOVE mode

1. The value-name is removed from the set of legal values for this
attribute (TTVALDEF).

2. The associated comment, if any, is removed from the ASSM (TTDELCOM).

Possible Semanti c Errors

INSERT mode

The value-name is already a legal value for this attribute (423-TTVALDEF).

REMOV E mode

1. The value-name is not a legal value for this attribute (464-TTVALDEF).

• 2. An element exists wi th this attribute and va l ue equal to the
value-name (400-TTVALDEF).

3. The legal value of this attribute is NAMED , NUMERIC , or TEXT and
an element exists with the attribute (400-TTVALDEF).

4. A comment is specified (202-ACTION) .

3—53

-a

- • ~~ — • • —~----——

<appli cable types>:
APPLICABLE [ELEMENT_TYPE] <element types> .

<element types>: :=
ALL

I [ALL EXCEPT] {element_type_name~~

Semantic Action

INSERT mode

1. The element-types on the list will be entered into the ASSM as
applicable types for this attribute , unless already present
(TTA P P ELTYP ES)

2. If ALL is specified , all currently defined element-types will be
copied and entered (TTAPPELTYPES).

3. If ALL EXCEPT is specified , all currently defined element-types
except those on the list will be copied and entered (TTAPPELTYPES).

REMOVE mode

1. If ALL is specified , all applicable element-types will be
removed (TTAPPELTYPES),

+ 2. If a list is specified , those element-types will be removed from
the list of applicable element-types (TTAPPELTYPES).

Possible Semantic Errors

1. ALL EXCEPT is specified in REMOVE mode (452—TTAPPELTYPES).

2. An element-type is specified in REMOVE mode , and is not on the
list of applicable element-types (40l-TTCHKETLM).

3. An element of a type listed in REMOV E mode has this attribute
(400-TTVALDEF).

4. No element-types are specified for INSERT mode (463-TTAPPELTYPES).

3-54

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



<relation definition>::=
<relation -definition header>

[<sentence keyword>] 
‘
~ n<relation -definition sentence>>
)0

Semantic Action

The header is processed according to the mode of the <section keyword>
(explicit or default), and each sentence is processed according to the mode
(explicit or default) of the <sentence keyword>.

Possible Semantic Errors

1. A <relation -definition header> is foilowed by a sentence which is
not a <relation -definition sentence> (467-TTSNTCHK).

2. A <relation -definition sentence> is not preceded by a <relation -
definition header> (468-TTSNTCHK) -

3. A <relation -definition sentence> appears in a <relation definition>
of mode DELETE (411 -ACTION).

3-55



• ~- ~ -

<relation -definition header> :

{ RELATIONSHIP} <relation id> [comment].

<relation id>::=
relation-name [(string)].

Semantic Action

ADDition mode

1. The new relation-name is entered i nto the ASSM (TTRELDEF).

2. The optional word contained within the string is entered as the
optional word associated wi th the relation (TTRELDEF).

3. The comment , if any , is associated with the relation-name in the
ASSM (TTATTCOM).

MODIFication mode

1. The complement name , optional word , legal subject types, and
legal object types are changed as specified in the followi ng
sentences.

2. The comment , if any , replaces the one in the ASSM (TTATTCOM).

3. If the comment is not given , any existing conrent will be retained .

DELETion mode

1. The lists of legal subject and object types will be removed from
the ASSM (TTRELDEF).

2. The complementary relation-name , its association with an optional
word , if any , and its associated comment will be removed from the
ASSM (TTRELDEF).

3. The relation-nam e, its association with an optional word , if any ,
and any associated comment will be removed from the ASSM (TTRELDEF).

Possible Semantic Errors

ADDition mode

1. The relation-nam e is already in use (449-TTRELDEF).

2. The optional word is not a legal optiona l word (449-TTGETOW).

3. No coment is specified (201-ACTION).

3-56



r~r~

I’ 
MODIFication mode

1. The name is not defined in the ASSM as a primary relation-name
(408, 446-TTRELDEF).

2. The optional word is not a legal optional word (449-TTGETOW).

DELETion mode

1. The name is not defined in the ASSM as a primary relation-name
(408, 446-TIRELDEF) -

2. An instance of the relation exists between elements in the ASSM
(400-TTRELDEF).

ALL modes

Extension permission has not been established (496—TTRELDEF).

3—57



<relation-definition sentence>: :=

<complementary part>
I <subject part>

<object part>

<complementary part>::=

COMPLEMENTARY {~~h~T~~ sHIP} <relation ida..

I

Semantic Action

INSERT mode

1. The complementary relation-name is associated with the primary
relation (TTRELCOMP).

2. The optiona l word is entered as the optional word associated with
the complementary relation-name (TTRELCCMP).

REMOVE mode

The complementary relation-name , and its association with an optional
word, if any, are deleted from the ASSM (TTRELCOMP).

Possible Semantic Errors

INSERT mode

1. The complementary relation-name is already in use (449-TTRELCOMP).

2. The optional word is not a legal optional word (449-TTGETOW).

REMOVE mode

The name is not defined in the ASSM as the complement of the primary
relation-name (438-TTRELCOMP).

3-58



<subject part>::=
SUBJ ECT [ELEMENT_TYPE] [<element types>].

Semantic Action

INSERT mode

The list of element-types is entered into the ASSM as the set of legal
subject types for the relation (TTRELSUBJ). (NOTE: See <attribute-
definition sentence> for the semantics of <element types> .)

REMOVE mode

1. If no <element types> are specified , or ALL is specified, all
subject element-types will be removed (TTRELSUBJ).

2. If a list is specified , those element-types on the list will be
removed from the set of subject el ement—types (TTRELSUBJ).

Possible Semantic Errors

INSERT mode

1. No element-types are specified (463-TTRELSUBJ).

2. A comment is specified . The comment will be ignored , and the
<subject part> processed (202-ACTION).

REMOVE mode

1. All EXCEPT is specified (452—TTRELSUBJ).

2. There is an instance of this relation with subject element of a
type listed (470-TTRELDEF).

3. An element-type specified is not in the set of legal subject types
(442-TTCHKETLM, TTCHK RSUBJ ) .

4. A coment is specified . The comment will be ignored , and the
<subject part> processed (202-ACTION).

3-59



-- + -• • + ., +  ~~~~~~~~i~~~~~ • ‘W _ - t1~ TWL ~~~~~~~~~~~~~~~

<object part>::=
OBJECT [ELEMENT_TYPE] [<element types>].

Semantic Action

INSERT mode

The list of element-types is entered into the ASSM as the set of legal
object element-types for the relation. (NOTE: See <attribute-definition
sentence> for the semantics of <element types> .)

REMOVE mode

1. If no element-types are specified , or ALL is specified , all
object element-types will be removed (TTRELOBJ).

2. If a list is specified , those element—types on the list will be
removed from the set of object element-types (TTRELOBJ).

Possible Semantic Errors

INSERT mode

1. No element-types are specified (463-TTRELOBJ).

2. A comment is specified . The coment will be ignored , and the
<object part> processed (202-ACTION).

REMOV E mode

1. ALL EXCEPT is specified (452-TTRELOBJ).

2. There is an instance of this relation wi th object element of a
type listed (470-TTRELOBJ).

3. An element-type specified is not in the set of legal object types
(442-TTCHKETLM, TTCHKROBJ).

4. A comment is specified . The comment will be ignored , and the
<object part> processed (202-ACTION).

3-60

- - + • -~~~~~~~~~—---+ - -- - • - •~ ~~+ +-+ ••••-— 



<element def init iori>::=
<element-definition header>

[<sentence keyword>] 
‘
~ n<element -definition sentence>J~0

Semantic Action

The header is processed according to the mode of the <section keyword>
(explicit or default), and each sentence is processed according to the mode
(explicit or default) of the <sentence keyword>.

Possible Semantic Errors

1. An <element -definition header> is followed by a sentence which is
not an <element -definition sentence> (424-TTSNTCHK).

2. An <element -definition sentence> is not preceded by an <element—
definition header> (425-TTSNTCHK).

3. An <element -definition sentence> appears in an <element definition>
of mode DELETE (411 -ACTION). +

3-61

L ~~•• • • • • ~~~~ + + + • • •  + + •~~~~~~~~~~~ • •~~~~~~~~~~~~~~~~~~~~~~~~~ +



<element -definition header> :
element-type-name element-name [comment]. +

Semantic Action

ADDition mode

1. The new element-name is entered i nto the ASSM with type correspond-
ing to the element-type-name (TTELEMDEF).

2. The comment, if any , is associated with the element—name in the
ASSM (TTATTCOM).

MODIFication mode

1. The comment , if any , replaces the one in the ASSM (TTATTCOM).

2. If the comment is not given , any existing comment will be retained .

DELETion mode

1. All attribute instances involving the element , and their associated
coments , will be removed from the ASSM (TTELEMDEF).

2. The element-name and its associated comment will be deleted from
+ the ASSM (TTELEMDEF).

• Possible Semantic Errors

ADDition mode

The element-name is already in use (449-TTELEMDEF).

MODiFication mode

1. The element-name is not defined in the ASSM (445-ACTION , TTNULLERR).

2. The type of the element does not correspond to the element-type-name
(443-TTCHKTYPE , TTCHKELTYPE).

DELETion mode

1. The element-nam e is not defined in the ASSM (445-ACTION, TTNULLERR).

2. The type of the element does not correspond to the element-type-name
(443-TTCHKTYPE , TTCHKELTYPE).

3-62



3. The element is the subject or object of a relationship instance
(465, 476-TTELEMDEF).

4. The element has an associated STRUCTURE or PATH , or the element is
associated wi th a node or branch of a STRUCTURE or PATH
(402-TTELEMDEF) -

3-63



.—-- —
~~~•

—-.~~~~~~~~~~
-•-- -----•---- -• .--- ---——-—.--.-—-•••- - •- —••• -. — —--- --

<element-definition sentence>: :~
<attribute declaration> +

I <relation declaration>

I <path declaration>

I <structure declaration>
<attribute declaration> : :=

[~value-name ~
1

attribute -namel• number ~> [comment]
[~strir + i

Semantic Action

INSERT mode

1. An instance of the designated attribute is entered into the ASSM
(TTATTRDCL).

2. The attribute value is attached to the attribute instance in the
ASSM (TTATTRDCL).

3. The comment , if any , is associated with the attribute instance in
the ASSM (TTATTCOM).

REMOVE mode

1. The comment , if any , associated with the attribute is removed from
the ASSM (TTDELCOM).

2. The attribu te and its value are removed from the ASSM (TTATTRDCL).

Possible Semantic Errors

INSERT mode

1. The type of the element is not on the list of applicable element-
types for this attribute (40l -TTATTRDCL).

2. The value is a value-name , and neither the value-name or NAMED
appears on the list of attribute legal values (437-TTCHKAVAL).

3. The value is a number , and NUMERIC does not appear on the list of
attribu te legal values (437-TTCHKAVAL).

The value is a string, and TEXT does not appear on the list of
•~ttr ibute legal values (437—TTCHKAVAL).

t ’~ Instance of this attribute already exists (4l3-TTATTRDCL).

3-64

REMOVE mode

1. An instance of this attribu te does not appear in the ASSM for theapplicabl e element (453-TTATTRDCL).

2. A value is specified (482-TTATTRDCL).

3. A comment is specified (202—ACTION).

3-65

- -+- + - - - • •- —- . -- -~~~~~
• -..--

~~
-. -.— •--~~~~~~~

<relation declaration> :
relation -name <object list> .

<object list> ::=

{
[element-type-name] element-name [comment]}~

• Semantic Act ion

INSERT mode

1. A relationship instance is entered in the ASSM for each element—
name in the <object list> (TTRELDCL). (The subject is the element
whose name is in the header.)

2. If the element-name was not previously defined , it is entered into
the ASSM with the specified type (TTCHKELTYPE).

3. The comment is associated with the preceding relationship instance
(TTATTCOM).

4. If the relation -name is a complementary relation , an instance of the
primary relationship is entered , with subject and object reversed
(TTRELDCL).

REMOV E mode

Each relationship instance which has an object on the <object list> , and
subj ec t element in the header , is removed from the ASSM , together wi th
its associated comment (TTRELDCL, TTDELCOM).

Possible Semantic Errors

• INSERT mode

1. The element-name in the header is not a legal subject type for the
given relation (442-TTCHKETLM , TTCHKROBJ).

2. The element-name on the <object list> is not a legal subject type
for the given relation (44l-TTCHKETLM , TTCHKROBJ).

3. An instance of the relationship already exists with given subject
and object (informative error only) (2t~4-TTCHKROBJ).

• 4. The element is undefined and no type is specified (461-ACTION).

5. The type of an element does not match the preceding element-type-
name (443-TTCHKELTYPE , TTC HKTYPE).

6. The relationship is EQUATES , and the given SYNONYM already EQUATES
TO an element (477—TTRELDCL),.

3-66

-~~~~~~~“-‘———---~~r - .~~~~~ + +~~~~~• — -~~~~~~~~~~~~ --

REMOVE mode

1. The given relationship instance does not exist (459-TTCHKROBJ).

2. The type of an element does not match the element-type-name (443-
TTCHKELTYPE , TTCHKTY PE) -

3. A comment is specified (202-ACTION).

3-67

-+-~~~~~~~~~~~ •~~~~~~~
- • — . . •• • •-~~~ .—-- — - - - — — —•

<path declaration>::=
PATH [{<validation node>}’1 END] [comment].

<validation node> :
[element-type-name] element-name [comment]

Semantic Action

INSERT mode

1. A PATH structure is begun (TTPATHDCL).

2. A node of type NET-AND-PATH-FIRST is created , and associated with
the element-name in the header (TTPATHKW).

3. A node is created for each <validation node> , and linked to the pre-
ceding NET-AND-PATH -FIRST node or <validation node> . The comment
following the <val idation node’, if any , is attached to it (TTNODELINK).

4. If there are no syntactic or semantic errors, the PATH structure Is
made permanent (TTPATUDCL).

5. The comment following the END , if any , is associated wi th the
NET-AND-PATH-FIRST node (TTATTCOM).

REMOV E mode

The PATH structure associated with the element-name in the header is
deleted from the ASSM (TTPATHDCL).

+ Possible Semantic Errors

INS ERT mode

1. The element-name in the header is not of type VALIDATION PATH
(48 1-TTPATHKW). —

2. The element already has an associated STRUCTURE or PATH (422-
TTPATHKW).

3. The element-type-name in the <validation nodes does not match
the type of the following element-name (443-TTCHKELTYPE , TTCHKT YPE).

4. The element-type-name in the <validation node> is not legal for
PATHs (480-TTVALNODE) .

+

5. No <validation node> is specified (484-TTPATHDCL).

3-68

—

- +

REMOVE mode

1. The element—name in the header does not have an associatedVALIDATI ON_PATH (458-TTPATHKW). +
2. A <validation node> is specified (483—TTPATHDCL).

3. A comment is specified (202—ACTION).

3-69

_ _ _ _ _ _ _
•

• -,-- + • +

r
~~~~~~~~~~~~~~~~~ T ~~~~~~~~~~~~~~~~~~~~~~~~~~

~structure declaration>: :

STRUCTURE [{<node>}
’1 

END] [comment].

<node>: : =

<element node>

I <terminator>
<and node>

I <or node>

I <consider-or node>

I <for-each node>

I <select node>

Semantic Action

INSERT mode

1. A NET structure is begun (TTSTRDCL).

2. A node of type NET-AND-PATH-FIRST is created , and associated with
the element-name in the header (TTSTRKW).

3. Each succeeding <node> is linked to the preceding one (TTNODELINK) .

4. The comment following the END , if any , is associated with the
NET-AND-PATH-FIRST node (TTATTCOM).

5. If there are no syntactic or semantic errors, the structure is made
permanent (TTSTRDCL).

REMOVE mode

The R_NET or SUBNET structure associated v’ith the element—name in
the header is deleted from the ASSM (TTSTRDCL).

Possible Semantic Errors

INSERT mode

1. The element-name in the header is not of type R NET or SUBNET
(475 -TTSTRKW ). —

2. The element already has an associated STRUCTURE or PATH (422-
TTSTRKW).

3. There is no node other than an interface or <terminator> (473-
TTSTRDCL).

4. The final node is not an <element node> of type OUTPUT_INTERFACE
or a <terminator> (474-TTSTRDCL).

3-70

— + •--•-- —--• .-

~

- --- ~~-- + - - -  -,.-• •• ~~~~-
+ • - ~~--- -- --•

~~~~-


1.

5. A <node> follows a <termi nator> or OUTPUT INTERFACE (450-TTSTRNSN ,
TTCBRANCH). —

6. An <element node> of type INPUT_INTERFACE appears , and is not the
first <node> followi~~ STRUCTURE (436-TTSTRSN , TTCBRANCH).

7. The element-name in the header is of type SUBNET and no RETURN
node appears in the STRUCTURE (489-TTSTRDCL).

REMOVE mode +
1. The element in the header does not have an associated R NET or

SUBNET (460-TTSTRKW).

2. A <node> is specified (456-TTSTRDCL).

3 A comment is specified (202—ACTION).

3-71

• - • - ~~~~~ - - — ~~~~~~~~~~~~~~~~~~~ ~~
-. ,

~~~~



~w~ir ~~~~~~~~~~~~ —

<element node>::=
[element-type-name] element-name [comment]

Semantic Action

INSERT mode
1. A node of the appropriate type Is created and associated with theel ement-name (TTSTRKW ) - +

2. The comment , if any , is associated with the node (TTATTCOM).

Possible Semantic Errors

INSERT mode

1, The element-type-name does not match the type of the element-name(443-TTCHKELTYPE).

2. The element-name is not of a NET legal type (427-TTELNODE).

REMOVE mode

This production is not allowed (456-TTSTRDcL).

3-72

_ _ _ _  _ _ _ _ _ _ _ _ _ _ _  
--• — .-- ~~~~~



<termi nator> : :=
TERMINATE [comment]

I RETURN [comment]

Semantic Action

INSERT mode

A node is created of type TERMINATE or RETURN and the comment, if any ,
is associated wi th the node (TTERMINODE).

Possible Semanti c Errors

INSERT mode

1. A RETURN exists on an R NET (469-TTERMNODE).

2. More than one RETURN exists on a SUBNET (490-TTERMNODE).

REMOVE mode

This production is not allowed (456-TTSTRDCL),

3-73

- — —~~~~~~~~~~ -~~~~ — -•• •--~~ • ••••- + •~~ ~~~~~~~~~~~~~~ --~~~~~~—~~~~~~~~~ -~~-~~~~~~-—



<and node>::=
DO [comment] <branch> {AND <branch>)” END

Semantic Action

INSERT mode

1. A pair of AND-nodes is created in the ASSM (called the AND-head and
the AND-tail). For a terminating node , only the AND-head is
created (TTBEGA ND).

2. The comment , if any , is associated wi th the AND-head (TTATTCOM).

3. Each <branch> is linked as the successor of the AND-head and the
predecessor of the AND-tail , if present (TT NOOELINK) .

4. The AND-head will be linked to the predecessor of the <and node> , +

and the AND-tail , if present , will be linked to its successor +

(TTN ODEL INK).

Poss ib le Seman tic Errors
INSERT mode ;

Terminating and non-terminating branches are mi xed (478-ITCONAND). F
REMOVE mode

This production is not allowed (456—TTSTRDCL).

3- 74

-- 

-•-——~~~-~~~~~~~



<branch>: :

f
node

4~

Semantic Action

INSERT mode

1. Each <node> is linked to its successor (TTNODELINK).

2. The first node on the <branch> will be linked to the predecessor
of the <branch> , and the last node will be linked to the successor
of the <branch> (TTNODELINK) .

Possible Semantic Errors

INSERT mode

1. An INPUT_INTERFACE begins a <branch> (435-TTBBRANCH).

2. An INPUT INTERFACE follows another <node> on a <branch>
(436-TTC~RANCH, TTSTRSN).

3. A <node> follows a <terminator> or OUTPUT INTERFACE
(450-TTCBRANCH , TTSTRSN).

4. An INPUT_INTERFACE exists on a SUBMET (488-TTSTRSN ,TTSTRFN).
REMOVE mode

This production is not allowed (456-TTSTRDCL).



<or node>: :=
IF [coment] <conditional branch>{ OR <conditional branch> }~
OTHERWISE [<branch>] END

Semant ic Act ion

INSERT mode

1. A pair of OR-nodes is created in the ASSM (called the OR-head and
the OR-tail). For a terminating node, only the OR-head is created
(TTBEGOR ) -

+ 2. The comment , if any, is associated wi th the OR-head (TTATTCOM)+.

3. Each <conditional branch> is linked as the successor of the OR-head
and the predecessor of the OR-tail , if present (TTNODELINK).

4. The word OTHERWISE is associated with the followi ng <branch> as if
it were a <condition> (TTFINOR).

5. The OR-head will be linked to the predecessor of the <or node> , and
the OR—tail , if present, w ill be linked to its successor (TT NODELINK).

Possible Semantic Errors

INSERT mode

Terminating and non-terminating branches are mixed (478-TTCONOR ,TTFINOR).

REMOVE mode

This production Is not allowed (456-TTSTRDCL).

3-76

_ _ _ __ _ _ _ _  ---~~••-•~~~~~~- -~~~~~~~~~~~~~~ • --~~~~ .•— ~~~~+ - + .-- + - +- _



— ~~~~~~~~~~ •z~
-
~
-—- 

~~
- -

~~~~~~~~~
- - -

- +

<conditional branch>::=
[integer] <condition> <branch>

Semantic Action

INSERT mode

1. The integer (ordinal), if any , is associated wi th the <branch>
(TTBEGOR, TTCONOR).

2. The <condition> is associated wi th the <branch> (TTBEGOR ,
TTCONOR) -

3. Data-names in the condition are associated with the <branch >(TTASs DATA).

Poss ible Semantic Errors

INSERT mode

The integer is greater than four digits (406-TTCO NOR , TTBEGOR).
REMOVE mode

This production is not allowed (456-TTSTRDCL).

3—77

L ~~~~.-
_

~--- .--• __ + -~~~~---- - -- • • --•-- ~~~~~ - -~~~~-- - - - —• - -— • + + —

r r - —

AO—AO’ Ib 573 TRW DEFENSE APIO SPACE SYSTEMS GROUP HUNTSVILLE ALA F/s 9/2
REVS MAINTENANCE MANUAL. SREP FINAL REPORT. VC4.LJME III.CU)
AUG 77 W £ BENOIT . P N BERGSTRESSER DASG6O~ 75eC_OO22

UNCLASSIFIED TRW—27332—6921—026—VOL—3 ‘4.

U
1

_
_ _ _ _ _

_ _

£

~~

fl

~~

P

~~

fl! __
‘

UL•1

S .

10 2~~
1!25

::~
22

~~~F25 
~~~~ ~

NATIOI~AL BUREAU or STANDARDS
M~CAOC Opv

~ESO1uT,O.. ,~~

<consider-or node> : :=
<consi der-data>

<consider-data>: :=
CONSIDER [DATA] enumerated-data-name IF [comment]
<consider-data branch> {oR <consider—data branch>}~

I

END 1

Semantic Ac tion

INSERT mode

1. A pair of OR-nodes is created in the ASSM (called the OR-head and
the OR-tail). For a terminating node, only the OR-head is created
(TTBEGOR).

2. The coment, if any , is associated with the OR-head (TTBEGOR).

3. The enumerated-data-name is associated with the OR—head (ACTION).

4. Each <consider-data branch> is linked as the successor of the
OR-head and the predecessor of the OR-tail , if present (TTNODELINK).

5. The OR-head will be linked to the predecessor of the cconsider—or
node>, and the OR-tail , if present, will be linked to its successor
(TTNODEL INK).

Possible Semantic Errors

INSERT mode

1. The enumerated-data-name is not an element of type DATA (492-ACTION ,
TTCO NSIDER).

2. The enumerated-data-name has a value other than ENUMERATION for the
attribute TYPE (493-TTCONSIDER).

3. Termi nating and non-termi nating branches are mixed (478-TTCONOR ,
TTFINOR). I

3-78

4. The <consider-data> node has no non—eiipty branch (503—TTFINOR).

• 5. The <consider-data> node has more thanone empty branch (504-ITCONOR).

REMOVE mode
This production is not allowed (456-TTSTRDCL).

3-79

<consider-data branch>::=
(<enumeration-value—list>) <branch>

I (<enumeration—value—list>)

<enumeration—value—list> : :=
enumeration-value-name {oR enumeratlon_value_narTie}0

Semantic Action

INSERT mode

The <enumeration-value-list> , along with the surrounding parentheses,
is entered as an alphanumeric string associated wi th the arc from the
OR-head to the <branch>, if one is present, or associated with the arc
from the OR-head to the OR-tail , if the <branch> is empty (TTBEGOR,TTCONOR).

Possibl e Semantic Errors

INSERT mode

1. A name specified Is not an enumeration-value-name (495-TTASSEOR EVNAME).

2. A name is dupl icated in the cenumeration-value list’(505—
TTEOREV NAME).

3. The <enumeration -value—l i st> contains illegal ~blank~ c harac ters ,
i.e., coninas, colons , or semicolons (506—TTC HKCOND).

REMOV E mode
•

This production is not allowed (456-TTSTRDCL).

3-80

<cons ider—or node>:
<consider-enti ty-class>

<consider—entity—class>:: =

CONSIDE R [ENTITY_CLASS] entity-class-name IF [comment]
<consider-enti ty-class branch>{OR <consider-entity-class branch>}
END 1

Semantic Acti on

INSERT mode

1. A pair of OR-nodes is created in the ASSM (called the OR—head
and the OR-tail). For a terminati ng node, only the OR-head is
created (TIBEGOR) .

2. The comment, if any , is associated wti h the OR-head (TTBEGOR) .

3. The enti ty-class-name is associated wi th the OR-head (ACTION).

4. Each <consider—enti ty—class branch> Is linked as the successor
of the OR-head and the predecessor of the OR-tail , if present
(TTNODELINK).

5. The OR-head will be linked to the predecessor of the <consider-
entity-class> node, and the OR-tail , if present, will be linked
to its successor (TTNODELINK).

• Possible Semantic Errors

INSERT mode

1. The entity-class-name is not an element of type ENTITY CLASS
(492-ACTION, TTCONSIDER).

2. Terminating and non-terminating branches are mixed (478-TTCONOR ,
TTFINOR).

3. The <consider-entity-class> node has no non-empty branch (503-
TTF INOR).

4. The <consider-entity-class> node has more than one empty branch
(5O4-TTCONOR).

3-81

<consider—enti ty—class branch>:
(<entity—type-list>) <branch >

I (<entity—type—list >)
<enti ty-type—list>: :

entity-type-name ~OR entity-type-name ~0
Semantic Action

INSERT mode
The <entity—type-list >, along wi th the surrounding parentheses , is
entered as an alphanumeric string associated with the arc from the
OR-head to the <branch> , if one is present, or associated with the
arc from the OR-head to the OR-tail , if the <branch> is empty (TTBEGOR,
TTCONOR).

Possible Semantic Errors

INSERT mode

1. A name specified is of an element-type other than ENTITY TYPE
(494-TTASSEOREVNAtIE).

2. A name is duplicated in the <entity-type-list> (505—TTEOREVNAME).

3. The <entity-type—list > contains illegal “blank~ charac ters , i.c.,
commas, colons , or semi colons (5O6-TTCHKCOND).

3-82

<for-each node>::=
FOR EACH <for-each subject> [SUCH THAT <condition>]

• DO [comment] <for-each body node> END

Semantic Action

INSERT mode

1. A FOR-EACH-node is created in the ASSM (called the FOR-head)
(TTFOR EACH).

2. The coment, if any , is associated wi th the FOR-head (TTATTCOM).
3. The <condition> is associated with the branch from the FOR-head

to the <for-each body node> (TTFOREACH).

4. Data-names in the <condition> are associated wi th the branch from
the FOR-head to the <for-each body node> (TTASSDATA).

Possible Semantic Errors

REMOVE mode

This production is not allowed (456-TTSTRDCL).

3—83

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~ • •~~~~~~~ •~~~~~~~~~~~~•

I

H

<for-each subject>: :=
[FILE] file—name [RECORD]

I [ENTITY _TYPE] enti ty—type-name
[ENTITY_CLASS] enti ty-ci ass—name

Semanti c Action

INSERT mode

An element of the appropriate type is created , if not previously
defined , and associated with the FOR—head (TTCHKELTYPE , TTFOREACH).

Possible Semantic Errors

INSERT mode
1. The element—type-name does not match the type of the element-name

(443-TTCHKELTYPE).

2. The element-type-name is not FILE, ENTITY_TYPE , or ENTITY_CLASS
(433-TTFILENCHK).

3. The word RECORD is specified but the element-type-name is not
FILE (431-TTF ILENCHK) .

REMOVE mode

This production is not aflowed (456—TTSTRDCL).

3-84

<for-each body node>::=

• [ALPHA] alpha-name [comment]
[SUBNET] subnet-name [comment]

Semantic Action

INSERT mode

1. A node of the appropriate type is created and assoc iated wi th the
ALPHA or SUBNET name (TTELNODE).

2. The comment , if any , is associated with the node (TTEL NODE).

3. The node is attached as the successor of the FOR—head (TTNODELINK) .

Possible Semanti c Errors

1. The element-type-name does not match the type of the element-name
(433—TTCHKELTYPE).

2. The element-type-name is not ALPHA or SUBNET (432-TTFEBODY).

REMOVE mode

This production is not allowed (456-TTSTRDCL).

3-85

hI~ ~~ ~-— — —--
~~~~~~~~

--— •- --- — ~~—-—--~~ • - --• •- • - •
~~~~~~

••


~~~~
- 

~~w 
-

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

<select node>::=
SELECT <select subject> SUCH THAT <condition> [coment]

Semantic Action

INSERT mode

1. A SELECT-node is created in the ASSM (TTSELECT).

2. The comment, if any, is associated with the SELECT-node (TTSELECT).

3. The <condition> is associated wi th the branch from the SELECT—
node to its successor node (TTSELECT, TTNODELI NK).

Possible Semanti c Errors

REMOVE mode

This product is not allowed (456-TTSTROCL).

3-86

L _ •~~~~~~~~~~~~~~~ •~~~~~~~~~~ • -~~~~~~~~~~~~~~~ • • - -• - — •~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~ •-~~~~~~~~~~~~~~~~~~~



<select subject> :

[ENTITY_CLASS] entity-class-name
[ENTITY TYPE] enti ty—type-name

Semantic Action

INSERT mode

An element of the appropriate type is created , if not previously
defined , and associated with the SELECT—node (TTCHKELTYP E , TTSE LECT) .

Possible Semantic Errors

INSERT mode

1. The element-type—name does not match the type of the element-name
(443-TTCHKELTYPE).

2. The element-type—name is not ENTITY_TYPE or ENTITY_CLASS (486-
TTENTCHK).

REMOVE mode

This production is not allowed (456-TTSTRDCL).

I
I

1
3-87



<condition> :
(<Boo lean expression>)

<Boolean expression> :
<simple Boolean> {zB op> <simple Boolean>}0

<simple Boolean>::
In

<Boolean term> ~OR <Boolean term>>• J O
<Boolean term> ::=

<Boolean factor> {AND <Boolean factor>}~
<Boolean factor> :

<Boolean> [<re l op> <Boolean>]

I <arithmetic expression> <rel op> <arithmetic expression>

<Boolean> : :=
[NOT] <Boolean primary>

<Boolean primary> : :=
TRUE

I FALSE
data-name

• I (<Bo ol ean expression>)

<arithmetic expression>::
[<ad op>] <ari thmetic term>
<arithmetic expression > {<ad op> <arithmetic term>}0

<arithmetic term>: :
<arithmetic factor> ~zmu1 op> <arithmetic ~~~~~~~

J0
<arithmetic factor> : :=

number

I data-name

I (<arithmetic expression>)

<B op>::=
EQU XOR

<rel op>::=
—

<ad op>::=

<mu l op>::
* I / I DIV I MOD

3-88



-______

Semantic Action

INSERT mode

The <condition> is scanned , checked for syntactic validity , and
stored as an alphanumeri c string, including the surrounding paren-
theses (ACTION).

Possible Semantic Errors

INSERT mode

1. A data-name is not an element of type DATA (409-TTDATANAME).

2. The <condition> contains illegal “blank ” characters , i.e., commas ,
colons , or semicolons (506-TTCHKCOND).

REMOVE mode

This producti on is not allowed (456—TTSTRDCL).

3-89



- ~~~~~~~~
• -

3.2.5 Error Handling

Errors are of three types: lexical , 5yntactic and semantic. A
lexical error occurs during the processing of individual characters in
the input stream by the lexica l scanner , which is unable to combine them
i nto the termin~ symbol s of the grammar (reserved-words, identifiers ,
punctuation , real numbers , integers, comments , and strings). A syntactic
error occurs when l egal terminal symbols are juxtaposed in a way which is
not permitted by the grammar of RSL. A semantic error occurs when the
meaning of a syntactically correct RSL command conflicts wi th that of a
prev~ous one.

In the case of a lexical or semantic error, the parser can issue a
message and continue. However, recovery from a syntax error is complicated
by the presence in the parse stack of partially parsed RSL commands. Error
recovery is made by searching the input stream for a stop symbol , and
then discarding all symbols in the parse stack above a corresponding
continuing symbol . After this process is completed , an error recovery
message is issued , and parsing continues. All text between a syntactic
error and its recovery is ignored. In addition , some preceding text may
have been effectively ignored because of the discarding of a portion of
the parse stack. A list of stop and conti nuing symbols is given in
Table 3.2.

Emptying of the parse stack must be done with care, since there may
• be information in the ASSM corresponding to a symbol in the parse stack.

A CASE statement , indexed on the L-B CWS code for the symbol in the parse
stack , is executed and i nformation deleted from the ASSM in the appropriate
cases.

The parse stack is initialized to contain <command-list head> and
end-of-file as a stop symbol , so that recovery can always be made from a

• syntax error. The mechanism provided by the L-B CWS for cases when no
error recovery is possible has been left in the RSL translator to aid
in diagnosing any translator bugs , but is not expected to be executed.

3-90



Table 3.2 RSL Translation Stop and Continuing Symbols

Stop Symbol Continuing Symbol

<command>
<command-list head>

END <and-node header>

OTHERWISE <or-node header>

AND <and-node header>

OR <or-node header>

) (
end-of-file <command-list head>

3-91 

---—___ • _ _ _ _



Error messages are controlled by the value of ERROR LEVEL as follows :
0 - No error messages.

— Error number and pointer. (The default value is 1.)
2 - Dump of the parse stack when a syntax error is

encountered , and again when recovery is made.
3 - Dump of the parse stack whenever the lexical

scanner is called . (This should only be used in
extreme cases, as it produces a huge amount of
output.)

A pause stack dump will display the actual non-terminal and terminal
symbols used as input to the Lecarme-Bochmann Compiler Writing System
(L-B CWS) to define the syntax of the Requirements Statement Language (RSL).
The complete syntax of RSL as input to the 1-B CWS is contained on deck
RSLDEF of the CWS Source Program Library (SPL). This SPL is maintained as
file number fi fteen on the REVS Software Deliverable File (see Sections
7.1 and 7.3.1).

3-92



—

3.3 INTERACTIVE R-NET GENERATION (RNETGEN)

Description

Although REVS provides the user wi th the capability of defining an
R-Net structure via a one-dimensional RSL input text string , the R-Net
Seneration function provides the REVS user with an alterna te method of
creating and maintaining R-Nets and Subnets . This method fulfills the
need for creating/presenting a structure in a two-dimensiona l graphica l
representation . This is accomplished via an interactive graphics display
system, namely, the Data Disc Color Graphics Display System [4]. This
facility does not preclude , however , a structure declaration via the RSL
structure syntax in the batch operating mode . It, in fact, supports the
transformation of an RSL generated structure into its two-dimensiona l
graphical representation via the Successor Node Module. Once a struc ture
exists in this graphical form , it may be manipulated via the interactive
terminal . That is , nodes may be added , del eted, moved about , disconnected ,
commented , etc. The entire net may be scrolled , displaying selected por-
tions of the net as requested by the user. Modified structures may then
replace the origina l structures in the ASSM if the user so desires .

Input

MENU SELECTION - From a menu list , depicted in Figure
3-5, the user selects a menu entry
via the trackball input facility , an
input mechar,ism which allows the user
to input an x ,y screen position via
the placement of a cross-hair cursor
at any position on the screen.

• ASSM — The user specified structure declaration
for an R-Net/Subnet.

TRACKBALL/KEYBOARD ENTRY - Further inputs are required at the
appropriate module level s and are docu-
mented in their correspond i ng sections .

Output

NET/NODE DISPLAY - Net/nodes are displayed on the screen
as requested by the user via the module
level .

3-93

-



~ 
.w~~~~~~~~NII - — 1-II~~~W I I  

- ________-

ASSM - The R-Net/Subnet structure declaration
is saved or updated according to user
inputs at the module level.

Process ing

Figure 3-6 is a flow diagram for the R-Net Generation function . The
following comments further clarify the processing for the indicated steps.

[1] — Coordinates use of the graphics screen
area wi th the REVS Executive .

[2] — If REVS is in the off-line mode , an
error condition exists since RNETGEN
can be executed only in the on— ’ine
mode.

[3] - All flags used by RNETGEN are initial i zed .
The default color selection is set to
turquoise . All ASSM pointers required
by RNETGEN are retrieved for subsequent
access. The menu is displayed on the
CRT and color codes for zoomed-out
displays are appropriately initialized .

Procedure References

The following correlates the functiona l processing steps shown in
Figure 3-6, with the REVS procedures which perform the indicated processing .

[1] - XXREVSGRAPH

[3) — IINITIAL

[4) - IIMENUREAD, IINSGOUT , IICHKTYPNOD , II RESETM

[6] - XXREVSOUT

[7] — IISTRTYPE

[8] — IICRNODE

• [9] - IIMVNOD E

[10] - IIJNN ODE

[11 ] - IIDJNODE

[12] — IISAVE

[13] - IICOLOR

3-94 

-- - -
~ 

-- -



[14] - IIDENODE

[15] — IICMNOD E

[16] - IISUNODE

[17] — IISCROLL

[18] - IIZOOMIN

[19] - IIZOOMOUT

[20] - IIDSNODE

[21] - IICALCOM P

[22] - IIDSPBRN

[23] — II STOP

[24] - IIA UTOPLOT

[25] - IIMVSUBTREE

3-95

L •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •• •~~~~~~~~• • •  • •~~~~~~~~~~~~~ •~~~~ — - -



• ‘~~~~~- ••~~~~;~=~ ...... ~~.

MEN U

• STRUCTURE TYPES

• RNET
• SUBNET
• VAL PATH

• NODE TYPES

• INPUT • OR
• VALPT • FOR
• ALPHA • AND
• EVENT • FIRST
• SU~5NET • TERMINAL
• OUTPUT • RETURN
• SELECT • OTHER

• MOVE SUBTREE
• MOVE NODE
• CONNECT NODES
• DISCONNECT NODES
• DELETE NODE
• COMMENT NODE
• SUCCESSOR NODE
• DISPLAY NODE
• DISPLAY BRANCH
• SCROLL NET
• AUTOPLOT
• ZOOM-IN ON NET
• ZOOM-OUT ON NET
• CALCOMP
• SAVE NET
• STOP

~ 1II1ll~~ • ri~ ~~

Figure 3-5 RNETGEN Menu

3-96

• --~~~~~~~~~ ••-• •-~~~~



I

1
I DETERJ~LNE I/O I
I STATUS MD I

RESERV E SCREEN SP~~~j

4
I XIREVSOUT 1 2

OISP%.AY 
YES OFFL

1 T ~~~~
/ ERROR ~~s5AGz

J

~~ UIT~~~) 
~~~~~~ I

PMTGEN FUNd ION.

4
>~4

F IIMENUR EAO

F ACCEPT USER

I 1Q3(U SELECT 10t~~~]

IISTRTYPE

CTIO$
_______________________ 14
_______________________ ENOOE

START /RETRIEVE -}_I~;!il!~
__

I £CtI400EIICRNOOL

A STRUCTURE.

COI9IENT ENTER COIRIENT

I ISUNODE

10
~~V E SUCCESSOR

~ RETRIEVE NEXT NOOC. ~
IIJtUIODE ILSCROU.

FORM SUCC./PRED. _________________ ~~~NECT SCROL L

‘[MOVE NET ON SCRUN.}4
BETWLEN KU~ES. ~~~~~~~~~~~~~~~

~~NERATE DETAILED I —

hL
RELAIIONSNIP II 18

(IIZOOMIN I

~~
*)VE 5UCC./PREU. ~~Qj~~9~~ECT ZOOM 1i~ ___________________

‘9NET UtSPt.AY . j
~ IIZ OOMOUT 1IISAVE [~~~~~~ES. J _______________ _______________

ZOOM OUT
___________________ GENERATE

____________________ 20 I COLOR.CODED
______________________ IIOSN O OC L NET DISPLAY . J

~~. Il~UTOPL~L1 _J f
SELECT COLOR. j i~ COLOR - _QL LftY~ OI

~~
t
~~ ISL~~(NTj . zr

WITH NOOL. IICALCOMP
AUTOPLOT CALCOHP

PLOT .STRUCTURE.
-i—-i GENERATE GPJ~PHIC5

DSPBRN

1

DISPLAY ~~F DISPLAY BRANCH ~~ BRANCH SUBTREE
MOV E SUBTR(E

INFORMATION . ON NET.

STOP
23 ______

• I IISTOP Ir CLENUP MD 1
TERMINATE.

FIgure 3-6 R-Net Generation (RNETGEN)

p.--,.-

3.3.1 Begin Structure (IISTRTYPE)

Description

Upon input of the structure type and associated element name , this
module will determine the existence of such a structure in the ASSM. If It
does exist , it will be retrieved and displayed on the CRT , otherwise an
entry node will be created for it and displayed at the top center of the
CRT. The user may then add to or alter the structure via other menu
selections .

Input

STRUCTURE TYPE - Desired structure type as selected from
the available structure types in the
menu •

ELEMENT NAME - El ement name of ASSM el ement owning
the structure .

Output

ASSM - Temporary copy of structure if one already
existed in ASSM .

NET DISPLAY - Display of the structure on the CR1.

SCREEN MATRIX - As nodes are displayed on the CRT, their
corresponding ASSM pointers are entered
into the corresponding screen matrix
element .

COORDINATE TRANSFORMATION - x ,y transformation parameters required
PARAMETERS to translate from the current screen

position to the initial screen position
are initialized to zero.

Processi~g.

The flow diagram for this module is presented in Figure 3-7. Following
is a further description of selected processing steps in the flow diagram .

[6,7] - A message, requesting the user to key-in
via the keyboard the element name owning
the desi red structure, is disp l ayed.

[8] - RSL element names must begin with an
alphabetic character and can only con-
tain alphanumeric characters with the
exception of the underscore.

3-98

~

•- •

~

- - -~~~~~~~~- - -,-- ~~~~~~~~~~~ - - -- -~~~~~~~~~~~~~~~~~~~~~~~~~~ - ---

[9—18] - If the element name which was keyed In
is not found in the ASSM , the user is
gi ven the opti on to allow RNETGEN to
enter it in the ASSM or to completely
ignore the menu operation , in which
case the module returns control back
to the function level.

[19, 20, 24, 25) - If the element name Is found to already
exist in the ASSM, then the user is
given the option to allow RNETGEN to
retrieve its associated structure or
to completely ignore the menu operation ,
in which case the module returns con-
trol back to the function level .

[26, 27, 33, 34, 36) - If the selected element has an asso-
ciated structure, it is copied to the
ASSM temporary structure area, otherwise,
the first node is created in the ASSM
and displayed at the top center of the
screen display area.

[28, 29, 30, 31 , 35] - If the selected structure has no graphics
data associated with it, the user is
given the option to allow the graphics
data to be automatically generated via
IIAUTOPLOT or to use the prompting
capability via SUCCESSOR node menu
entry .

[32, 37, 38] — If the structure has graphics data asso-
ciated with it , the user is given the
option to display the structure in ei ther
its zoomed-in or its zoomed-out mode.

3-99

•
—.——.

•

Procedure Refe rences

The following correlates the functi onal processing steps shown in
Figure 3—7 wi th the REVS procedures which perform the indicated processing .

[4] - IICLEARSCREEN

[5] - JICLEARMATRIX

[6] - IIMSGOUT

[7) — IIMSGIN

[8) - IICHKNAME

[10, 12 , 13] — IIMSGOUT

[14] - IIMSGIN

[18] - IIDISFRST

[20, 21 , 22, 23] - IIMSGOUT

[24) - IIMSGEN

[29] — IIMSGOUT

[31] — XXCNET

[33, 35] - IIMSGOUT

[36) — IIDISFRST

[37) - IIZOOMOUT

[38] - IIDISNET

3-100

IIST RT YPE A/i

13
1 DISPLAY

TRUCTUR MESSAGE.
NO IN TEMPORARY

AREA ASSN
I

YES 14
INPUT

RESPONSE.
2

HAS USER NOBEEN WARNED
7 1 2

YES
ADD NO DISPLAYTO ASSM

3 7 MESSAGE.

CLEAhUP ASSH DISPLAY
TEMPORARY WARNING YES

STRUCTURE AREA . MESSAGE.

16 2ELEMENT

CLEAR
T YPE IN NO DISPLAY

ASSM ERROR
MESSAGE.SCREEN

DRAWING RESET WARNING FLAG. 7

AREA. YES
ASSM 17

5 A D ~ ELEMENT AND

IN ITIALIZE EXIT FIRST NODE
TO ASSM .

SCREEN MA TRIX.

5
-‘ DISPLAY

DISPLAY FIRST NODE
ELEMENT ON SCREEN.
REQUEST.

7 EXIT
INPUT

ELE MENT NAME.

8/i

8 12
SYNTAX y

~S
DISPLAY 1 2

ERROR ERROR
7 MESSAGE . CORRECT NO DISPLAY

TYP E ERROR
ASSM 7 MESSAGE.

NO
YES

9 EXIT
ELEMENT YES

2 EXIT
IN ASS$ DTSPLN

ASSN 7 MESSAG E .

NO 8/i

A/i A/2

Figure 3-7 Begin Structure (IISTRTYPE)

3-101

A/2

24
INPUT

DESIRE .

2
NO DESI RED

ELEMENT

YES

26

__________/ DISPLAY ND STRUCTURE
MESSAGE. Pi~ESENT

YES
27

COPY STRUCTURE
TO ASSM

TEMPOI~ARY AREA. AS SM

28
CREATE FI~~~~~~D~~~1.I.~~~~~~~~~

R C
YES

FOR STR
~~~~

E J P 1 A
~~~) 

AVAILABLE

NO

29~~ ~~/ DISP LAY \
(M E NU I
\~~~~~ T I~~~J

• ~~

CCI~(T
(~CNERAT E

GR~PIl IC5 DATA .

LDISP
~

Y C

~~~
CCOE D ~~~~~~~~~~~~~~~~~~~~~ ZO~~~IN 

DISPL AV NE T

C~D
FIgure 3-7 Begin Structure (IISTRTYPE) (Continued)

3-102



w - . •__-
~~~~

---—-• ---_
~
- - . -

~~~~~~~~~~~~~~~
-
_
-- ----—

3.3.2 Create Node (IICRNODE)

Description

Upon input of the node type, associated element name , color , and

screen position provided by the user , this module will display the node
at the indicated x ,y screen position. Input checks are performed to
insure legality of the selected x ,y position . An ASSM node record is
created and the internal screen matrix is updated accordingly.

Input

NODE COLOR - The user may specify node color for
• display from a displayed list of

available colors . The selection is
made at the function level .

NODE POSITION - This input is provided by the user via
a trackball entry indicating the
desired x ,y position for the node on
the screen.

SCREEN MATRIX - Screen positiona l matrix and ASSM
correlation matrix.

NODE DESCRIPTION — Node physical characteristics.

SCREEN LIMITS - Defines screen drawing area .

NODE TYPE - Desired node type as sel ected from the
menu .

ELEMENT NAME - Asso ciated ASSM el ement, if applicable.

Output

ASSM - Node record containing node type , color ,
and x ,y position.

NODE DISPLAY - Visual representation of the node at
the selected x ,y position on the screen.

SCREEN MATRIX - Node record pointer is entered into
the appropriate screen matrix element.

Processi ng

The flow diagram for this module is given in Figure 3-8. Following is
a description of selected processing steps in the flow diagram .

3-103



• •  
— -—- - -— - • • • •

[2] - Checks are performed to insure that the
node will fit on the screen at the

• selected position and tha t it will not
overlap existing nodes on the structure .

[3] - A check is performed to Insure that the
selected node is legal for the current
structure type.

[4, 20] - If the node is an ‘OR ’ node , the user
is given the option to associate it to
a data el ement .

[5, 21] — If the node is a ‘ FOR EACH’ node , the
user must specify its associated el ement
type.

[7] — The associated element name is keyed in
via the keyboard.

[8] - The keyed in element name must begin
with an alphabetic character and can
only contain alphanumeric characters
with exception of the underscore ,
otherwise the menu operation is ignored.

[10-13] - If the specified el ement name is not to
be found in the ASSM, the user is given
the option to allow RNETGEN to enter it
or to completely ignore the menu operation.

[22-25] - If the specified el ement name is already
in the ASSM , the user is given the option
to al low RNETGEN to associate the node

• with it or to completely ignore the
menu operation .

Procedure Refe1’ences

The following correlates the functional processing steps shown in
Figure 3-8 with the REVS procedures which perform the indicated processing.

[1] - IICMPMAT

[2] — IIMATCHK , IICHKNODESEL

[3] - IICHKNODTYP

[7] — IIMSGIN

[8] - IICHKNAME

3-104



-F :  -
~~~

[10] - IIMSGOUT

[11] - I1MSGIN

[16] — I I NOD I S

[19] - IIDISNAM

[23] - IIMSGOUT

[24) - IIMSGIN

[26) - IIMSGOUT

3-105

- -.— -~~ • - - • ----~~~~~~~~~~~
-

I ICRr400E

POSt lION
SELLCTION.

2 NEC
S N ERROR

POSiT ION

GOOD

~
~~~~ ERROR
TYPE

GOOD C/2

4 200R, YES CONSIDERNODE DATA7 7

rES 0/2

S
F0R YES 21 

NPUTNODE CLEMENT7 
TYPE.

NO

6
AAELE REF NONODE 0/2

YES

INPLrI
ELEMENT

NAME.

8
SYNTAX Y ESERROR

NO

ELEME
IN YEs

$511 &~SM

NO

io 2
DISPLAY CORRECT NOMESSAGL . 7

YES

A/2 8/2

FIgure 3-8 Create Node (IICRNODE )

3-106



~ -• -- •~~ •~ -••~-• -

_ _  

~~~~~~~~~~

T CREATE I ~~~~~~~~~~~ <
,‘ RIGHT

_ _ _ _ _ _ _ _ _ _ _ _ _

A5514 ELEMENT. ~~~~~~
‘—~~ ~

14

~~~~S

CREATE ASSM
ASSM NOUC RECORD .

IS 4,
UPDATE MATRIX.

4,
/ SPLA~i\( NUDE ON
\.~~~CREEN.

ATTACH ELEMENT
ASSI4

I9~~~f W ISPLAY
( ELEMENT

NAME.

(~~~~XIT 9

Figure 3-8 Create Node (IICRNODE) (Continued)

3—107



i
~

- 
3.3.3 Delete Node (IIDENOOE)

Descripti on

The Indicated screen selection is verified after which the selected
node is removed from the screen , together with all its associated arcs.
The node is subsequently removed from the ASSM structure and the internal
screen matrix is updated accordingly.

Input

NODE SELECTION - The user specifies the node to be
deleted from the net via the trackball
input facility .

ASSM - Node record data and associated - •

successor /predecessor record data for
the selected node.

SCREEN MATRIX - Node positiona l and ASSM correlation
data .

SCREEN LIMITS - Defines screen drawing area .

NODE DESCRIPTIONS - Node physical characteristics.

Outputs

ASSM - Corresponding ASSM node record is
removed from the ASSM structure . Also ,
any associated successor/predecessor
records are removed.

SCREEN MATRIX - Updated accord ingly.

DISPLAY - The selected node is removed from the
screen.

Processing

A flow diagram of this module is presented in Figure 3-9. The follow-
ing coments apply to the indicated boxes of the flow diagram.

[2] - An i nput check is performed to insure
an existing node was selected.

[3] - The selected node is removed from the
screen along with all its associated
arcs.

3-108



pp~~~ 
- 

• ~~~~~~~~~~~~~~~~~~~~~~~ 
- -

• 
• . 

~~~~~~~~ 
. —

[4] - The ASSM structure is updated to reflect
the node deletion. Any successor /prede-
cessor relationships with this node are
removed. The node/ASSM element relation-
ship i s also removed , if one exists .
Finally, the node record , itself , is
removed from the ASSM .

Procedure References

The following correlates the functiona l processing steps shown in
Figure 3-9 with the REVS procedures which perform the indicated processing .

[1] - IICMPMAT

[2] - IIMATCHK

[3] — IISETNODE , I I N O D I S

[6] - IIMSGOUT

3-109

_ _ __ • • • -~~~~~ -- -~~~~~~~~~-~~~~~~~~~~ ---

- .

1
SELECT IO~I

21

~~~~~~~~~~~~~ ERROR

GOOD

REMOVE NODE 

L 

PROCESS LRROR.

4

IJPL)ATE ASSM
ASSM STkULTURc~.

5

UP DATE
SC~EEiI 1IAThIX.

Figure 3-9 Delete Node (IIDENODE)

3-110



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • ~~_,.

3.3.4 Move Node (IIMVNODE)

Description

Upon verification of a selected node and the ‘to ’ x ,y screen position ,
the indicated node and all its associated arcs are removed from its current
position on the screen and subsequently redrawn at the desired ‘to’ screen
position. The ASSM node and connector records are updated to refl ect the
new screen position of the node.

Input

NOD E SELECTION - The user specifies the node to be
moved via an x ,y screen position using
the trackball entry key .

ASSM - Node record data and associated suc-
cessor/predecessor record(s).

SCREEN MATRIX - Node positi onal and ASSM correlation
data .

SCREEN LIMITS - Defines screen drawing area.

NODE DESCRIPTIONS - Node physical characteristics.

SCREEN SELECTION - The user specifi es the x ,y ‘to ’ position
on the screen to which the node will be
moved .

Output

ASSM - Node record data and associated suc-
cessor /predecessor record(s) data .

NODE DISPLAY - Removal of selected node at current
screen position and displ ay of node at
newly selected screen position .

SCREEN MATRIX - ‘)pdated screen matrix.

Processing

Figure 3-10 Is a flow diagram for this module. The following comnents
further clarify the processing for the indicated steps .

[1) - The user inputs the desired node on the
screen to be moved via an x ,y screen
position selection using the trackbal l
facility .

3—111

_ _ -•• •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-•

it ~~~~~, :T: -~-

[2] - A validity check on input is performed.
Fi rs t , to determine whether the selected
x ,y position is within the screen draw-
ing limits ; and , secondly, to determi ne
if a node exists at the selected x ,y
position.

[3] - The user inputs the desired x ,y screen
position to which the node selected in
Step [1] is to be moved . This again
is accomplished via the trackball
facility.

[4] - An input check is performed to insure
that the sel ected x ,y position is wi thin
the screen limits . A check is also made
to insure against node overlap of
existing nodes on the screen .

[7) - Internal screen matrix is updated to
reflect the new x ,y position of the node .

[8] - The ASSM node record and associated
successor/predecessor records are up-
dated accordingly.

[9) - The node is redrawn on the screen at
its new x~y position and control isreturned to the function level .

Procedure References

The following correlates the functiona l processing steps shown in
Figure 3-10 wi th the REVS procedures which perform the indicated processing .

[1] - IICMPMAT

[2] - IIMATCHK

[3) - IICMPMAT

[4] - IIMATCHK , IICH KNODESEL

[5) - JISETNODE

[6] — IINODIS , IISCNCHK , IILI NE

[7, 8] - IICMPINT

[9] - II NODIS, IIDISNAM , IISCNCHK , IILINE

[10) — IIMSGOIJT

3-112

_~~~~~~~~~~~~~

I IMY~EODE

NOOE SELECTION
ZUP UT.

2
INPUT
ERROR Y S

2

140

3

SELECT SCREEN
LOCATLOI4 .

4
INPUT y
ERROR

NO

DETE~ I IN E
NODE TYPE .

ASSM 6 10

RE~~YE
NODE AND ARCS I PROCESS ERROR.

RON SCREEN
— ____________

7

UPDATE
SCR.EU4 MATRIX .

~~~~~~~~~

HPDA;E

srRuc:uRE

t

~~

Figure 3-10 Move Node (IIMYNODE)

3-113

L ~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - •~~~—-—~~~~~~ ~~~~~~~~~~~~~~ 
. - • •



- • 
- -

3.3.5 Join Nodes (IIJNNODE)

Description

Upon iden t i f i ca t ion  of the ‘ from’ and ‘to ’ nodes on the screen , checks
are performed to determine the legality of the selections . If errors are
detected , theinput selection sequence must be repeated. Node intersection
points are computed and a node connector record containing these intersec-
tion points is created and entered in the ASSM. The directed arc is sub-
sequently displayed on the screen. In the case of an out-branching ‘OR/FOR ’
node, the user must specify a branching condition which will also be
entered in the ASSM. •

Input

NODE SELECTIONS - The user spec ifies the nodes to be
connected via the trackball facility .
The node selection sequence also implies
the direction for the directed arc .

ASSM - Node record data for the selected nodes .

CONDITIONAL - In the event of an ‘OR/FOR ’ node , the
user must provide the condi tional branch
data via the Anagraph keyboard.

SCREEN MATRIX - Node positional and ASSM correlation
data .

NODE DESCRIPTIONS - Node physica l characteristics .

SCREEN LIMITS - Defines screen drawing area .

Output

ASSM - A node connector record is entered into
the ASSM , together with appropriate
branching condition , if the node is a
branch node of an ‘OR/FOR ’ node.

DISPLAY - The directed arc between the two nodes
is displayed on the screen.

Processing

Figure 3-11 presents a flow diagram of the processing for this module.
Fol lowing are convuents which apply to selected boxes in the flow diagram .

3—1 14

_  -•-. • • • -- ~~ •- -• - •• - - ~~~~~~~ - - -
~~~~~~~ •- -- - -• • -~~

• --- - . - - - -
~~~~~~~



[2] - Checks are made to insure that a node
does exist at the selected screen
position and that it may legally be
used as a predecessor node.

[4] - Checks are made to insure that a node
does indeed exist at the selected
screen position and that it may legally
be used as a successor to the previously
selected predecessor node.

[7-15] — If the predecessor node is an ‘OR/FOR
EACH’ node, then the user enters the
associated conditional expression and
ordinal , if applicable.

[9] - A syntax check is performed on the con-
ditional expression.

Procedure References

The following correlates the functional processing steps shown in
Figure 3-11 wi th the REVS procedures which perform the indicated processing .

[1] — IICMPMAT

[2] - IIMATCHK, IICHKPRED

[3] - IICMPMAT

[4] - IICHKNODESEL , IIMATCHK , IICHKSUC

(8] - IICONDIN

[9] - IICHKSYNTAX

[13] - ILORDIN

[16] - IICMPINT

[17] — IILI NE

[181 - I IMSGOUT



________________ ________________ ___ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - ——- •-•---•—— - -- - — -•--- -——

~~~~~~~~
N D E

r~~~~~~~~T
PREDECESSOR i SYNTAX

N(X~E . 
ERROR

NO
2 II

YES LNI
7 COI~D I T I O ~AL EXP R .

AS~M INTO AS SM.

NO

INPUT
SU SOR 

NO

YES

YES 13 
INPUT

7 ORDINAL
VALUE.

NO
ASSM

NO 

1 
ILLE YES

YES
6 15

ENTER SUCC/P RED ORDiNA LRELATI ONSH T P ASSM INTO ASSM . 
DI SPLAY

16 M (SSA’~(

Figure 3-11 Join Nodes (IIJNNODE)

3-116



-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3.3.6 Disjoin Nodes (IIDJNODE)

Description

Upon verification of the node selections , thi s module removes successor/
predecessor relationships between the indicated nodes , both in the ASSM
structure and visually on the screen .

Input

NODE SELECTION - The user selects the two nodes to be
disconnected via the trackball inpu t
facility .

SCREEN MATRIX - Node positiona l and ASSM correlation
data .

SCREEN LIMITS - Defines screen drawi ng area.

Outputs

ASSM - The successor/predecessor record data
is removed from the ASSM structure for
the indicated nodes.

DISPLAY - The directed arc between the two nodes
is removed from the screen.

Processing

Figure 3-12 is a flow diagram of the processing for this module.

• Procedure References

The following correlates the functional processing steps shown in
Figure 3—12 wi th the REVS procedures which perform the indicated processing .

[1] - IICMPMAT

[2] - IIMATCHK

• [3] - IICMPMAT

[4] - IIMATCHK , IICHKNODESEL

[5] — IILINE

[7] - IIMSGOUT

3— 117



—- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
—

~~~~
• •- -.-- .---

IIDJNODE

NODE SELECTION
I~ PUT .

2
INPUT ERROR
CHECK

ASSM

GOOD

3
NODE SELECTION

INPUT.

4
ERROR

GOOD

DI ECTED 
[ 

PROCESS ERROR.
ASSM ARC. 

__________ _______

6

UPDATE
ASSM STRUCTURE.

EXIT

Figure 3—12 Disjoin Nodes (IIDJNODE)

3-118



r w

3.3.7 Comment Node (IICMNODE)

Des cr1 pti on

This module provides a mechanism for allowi ng the user to insert , dis-
play, or remove a comment with any node on a net structure. This is accom-
plished by selecting the applicable node via the trackball input facility and
subsequently selecting the desired operation via the trackball.

Input

NODE SELECTION - The user selects the applicable node
on the screen via the trackball.

COMMENT - Textual data is input by the user via
the Anagraph keyboard.

SCREEN MATRIX - Node positional and ASSM correlation
data.

SCREEN LIMITS — Defines screen drawing area.

OPERATION SELECTION - The user selects the desired operation
using the trackball input facility.

Output

ASSM - Comment is added/removed/displayed
from the applicable node in the ASSM
structure .

Processing

The processing perfo rmed by this module is shown in  Figure 3-13. In
Step 2, an input check is performed to determine whether the selected x ,y
screen position is wi thin the screen drawing area. A further check is made
to insure that a node does, indeed , exist at the selected x,y position.

Procedure References

The following correlates the functi onal processing steps shown In
Figure 3-13 wi th the REVS procedures which perform the indicated processing.

[1] — IICMPMAT

[2] - IIMATCHK

[7] - IICOMENTIN

[11 , 13, 14, 15] - IIMSGOUT

3-119



- -  — - - ~~~~~~~~~~~~ 
-- — —

IIC$NOOE

1 
NODE

SE LECTION
INPUT.

2
INPUT YESERROR
I

NO

3 DISPLAYINPUT ERR~~CONMDIT ME SSA GE.

4

REMOVE 
SPECIFIE D DISPLAY

7

ENTER
AS SM ASSM

9 1

~~ EXISTI NG EXISTI NG Nn EXISTING
CCR~4ENT C~~ 4ENT CCPII4ENT

7 7 7

YES Y ES YES
10 6 

1
REMOVE COPI~ NT REMOVE CO*IENT DISPLAY

FRON *5514 . FROM *5514. COI$4ENT.

ENTER
ASSM WIMLNT. 

~~
\ME

~
SAGE

>
/

8

ENTER CCP~IENT
INTO *5514.

EN IT

Figure 3-13 Comment Node (IICMNOOE)

3-120



• • __~_NJI x . . 
~~~- T T  — —

3.3.8 Successor Node (IISUNODE)

Description

This module is used to disp lay on the screen a structure which was
created in the batch (off-line) mode via the RSL translator. Such nodes
have no graphics coordinate data or color associated wi th them. After
hav ing requested such a structure via the menu , the entry node will be dis-
played at the top center portion of the structure display area. The user
should then select the Successor Node Modul e, via the menu , followed by succes-
sive trackball selections of the nodes for which successors are not displayed .
The type of the successor node is identified and its desired position on the
screen is then selected by the user.

Input

NODE SELECTION - The user selects the appl icable node
for which he wishes to display its
successor.

ASSM - The entire ASSM net structure.

SCREEN POSITION - The user selects an x ,y screen position
at which the successor node is to be
displayed (trackball input).

• SCREEN MATRIX - Node positional and ASSM correlation
data .

F SCREEN LIMITS - Defines screen drawing area.

NODE DESCRIPTION - Node physical characteristics.

Outputs

ASSM - x ,y screen positions are added to the
ASSM .

DISPLAY - Node is displayed on the screen.

SCREEN MATRIX - Screen matrix is updated accordingly .

Processing

The processing performed by this module is shown in Figure 3-14. The
following comments clarify the indicated processing step.

3—121

_ _ _ _ _

- •~~~~~~~~~~ . - - - -

- -

[2] - An input check is performed to determine
whether the x,y input coordinate is
within the screen drawing area and also
to i nsure that a node does, indeed ,
exist at the selected x ,y position.

[4] — A check i s made to determine if more
successors exist at the selected node.

[5] - The user is informed of the node type
for the next successor.

[6] - An x ,y screen position at which the node
is to be displayed is selected by the
user.

[7) - A check is performed to insure that the
selected x ,y position is wi thin the screen

• drawing area and that the entire node
will fit within the screen limits . A
check is also made to insure against node
overlap with existing nodes on the screen.

Procedure References

The following correlates the functional processing steps shown in
Figure 3-14 with the REVS procedures which perform the indicated processing .

[1) - IICMPMAT

[2] - IIMATCHK

[6] - IICMPMAT

[7] — IICHKNODESEL , IIMATC HK

[10] - IINOD IS, IIDISNAM

[11] — IICMPINT , IISCNCHK, IILINE

[12, 13] - IIMSGOUT

3—122

-

8

I~~r ELECTIO14 f UPDATE SCREEN
INPUT. MATRIX.

9
2 ENTER NODE COLOR

ERROR INPUT ASSM AND NODE POSITION.

G:T N0DE F:oM

SUCCESSORS YES
DISPLAYE D

2

DIS PLAY 12
SUCCESSOR
NODE T Y PE

OR USER. DISPLAY NESSA~iE.

6 13
SCREEN POSITION

II4PUT . ______________4[
~~~~~~~~~~ RROR

j

ERROR CHECK 
(~~~~X IT )

GOOD

8/1

Figure 3-14 Successor Node (IISUNODE )

3—123



- • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -. •

3.3.9 Scrol l Net (IISCROLL)

Description

This module provides a wi ndowing capability for building and displaying
nets which outgrow the screen drawing limits . The ‘FROM ’ and ‘TO’ x y screen
selections are Input by the user indicati ng an x,y ‘FROM ’ position on the
net to be moved to an x ,y ‘TO’ position on the screen. This coordinate
translation Is performed on the enti re net and the net is removed from the
screen and redrawn at its new position on the screen. The coordinate trans-
lation parameters are maintained internally so that the net can be
continuously moved about.

Input

SCREEN SELECTION - The user inputs the ‘FROM ’ and ‘TO’
x ,y screen positions via the trackball
facility .

ASSM - Entire ASSM net structure.

SCREEN MATRIX - Node positional and ASSM correlation
data .

SCREEN LIMITS - Defines screen drawing area.

NODE DESCRIPTIONS - Node physica l characteristics.

Output

SCREEN MATRIX - Node positional and ASSM correlation
data.

DISPLAY - Entire net is removed from screen and
redrawn at new x ,y position.

COORDINATE TRANSLATION - See Section 3.3.1.
PARAMETERS

Processing

A flow diagram of this module is shown in Figure 3-15. Selected pro-
cessing steps are further clarified below.

[2] - A check is performed on the ‘FROM ’ x,y
screen position to insure that this
position is , indeed , contained wi thin
the screen drawing area as defined by
the SCREEN LIMITS .

3—124



• -- 
. . 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[6) — Coord inate transla tion parameters are
computed from the x ,y screen position
input in Step 1 and 5.

Procedure References

The follow ing correlates the functional processi ng steps shown in
Figure 3—15 with the REVS procedures which perform the indicated processing .

[2) — IICHKNODESEL

[4] - IIMSGOUT

[7] - IICL EARSCREEN

[8] - LICLEARMATRIX

[9] — IIDISNET

3—125



I ISCROLL

INPUT ‘FROM’
POSITION.

2
WITHINNO DISPLA Y

AREA

YES

IDENTIFY
‘FROM ’

PO S ITION
ON SCREEN

4
DISPLAY
MESSAGE
TO USER.

S
INPUT ‘TO’
POSITION.

6
[C0?l’UTE COORDIMTE 1
[j~~~ SLATION PARAMETERS.J

7
/ REMOVE NET \

8 

FROM SCREEN.

r CLEAR
SCREEN MATRIX.

9
IIDISNIT

DISPLAY NET
AT FlEW POSITION.

~~~~~~~~ 

EXIT~~~)

FIgure 3-15 Scroll Net (IISCROLL)

3—126

S

-- ~~-,-- .-—--- — -


~~~~~ ~~~~~~~~~~~~~~~

3.3.10 Save Net (IISAVE)

Description

As an R-Net/Subnet is being built by the user, its structure is main-
tam ed in a temporary working area of the ASSM. If the structure Is to be
saved permanently in the ASSM, an explicit command must be issued by the
user requesting such, as the structure will be lost when processing flow
returns to the function level . No user inputs are required within this
module level ; however, structure analysis is performed prior to inserting
the structure permanently in the ASSM and if errors exist, appropriate
messages will be displayed to the user i nforming him that he must make
appropriate structure changes before the structure can be put into the
ASSM permanently.

Input

ASSM - The temporary structure of the net to
be saved .

COORDINATE TRANSLATION - See Section 3.3.1.
PARAMETERS

STRUCTURE STATUS FLAG - Error condition resulting from a
structure analysis.

Output

ASSM - Permanent net structure.

Processing

The processing for this module is shown in the flow diagram of
Figure 3-16. Selected processing steps are further described below.

[1] - The structure is checked for complete-
ness and correctness. If it is found
to be either incomplete or incorrect,
it will not be saved . However, it
is retained in temporary storage and
the user may correct the indicated
error and attempt to save again.

3—127

• • . • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •



Procedure References

The following correlates the functional processing steps shown in

Figure 3—16 wi th the REVS procedures which perform the indicated processing .

[1] - IIGRACHK , IICOMCHK , IILOOPCHK ,
IIANDORMATCHCHK , IICHKOTHERWISE

[4] — II CLEARSCREEN

[5) - IICLEARMATRIX

[6] - IIMSGOUT, IIDENTIFY

I

3-128

- . _ - ----- _. .— . -- -.-- - - -



- -~~~~~~~
.-- -- - -  -~~~~~~~~~~

II SAVE

CHECK FOR
LEGAL STRUCTU RE .

2
ST RUC T URE NO____________________

000U
ASSM

YES
3

SAVE STRUCTURE .

S A  PROCESS ERROR .

INITIALIZE
SCREEN MATRIX.

Figure 3-16 Save Net ( IISAVE )

3—129

-

~

-

~

- ——~~~~~~~ •---- .—---- .-~~~~- - - _  -..-- •~~~~~~~~ . ,.- - - • —- .-~~~~~~~~~-—-~~



3.3.11 Zoom-Ou t On Net (IIZOOMOUT)

Descri pti on

As described in Section 3.3.9, the user ilay create a net structure ,
using the scroll net facility , which extends beyond the limits of the

screen. IIZOOMOUT reduces the net structure suc h that it can be displayed

in its entirety within the screen draw i ng area .

ASSM — The en ti re net structure .

Output

ASSM - Updated x ,y positional data for the
entire net.

DISPLAY — The entire net is di sp layed in a
color-co ded , zoomed-out mode.

Local Data

COORDINATE TRANSFORMATION - x ,y transformation parameters required
PPIP.AMETERS to translate from the zoomed-in net

structure to the zoomed—out net struc-
ture .

Processing

The processing performed by this module is shown in Figure 3-17. The

following comments elaborate on the indicated processing for selected boxes .

F [3) - The x ,y translation and scal ing param-
eters required to transform the net
structure to a zoomed-out s tructure are
computed.

Procedure References

The following correlates the functional processing steps shown in

Figure 3-17 with the REVS procedures which perform the indicated processing .

[1] - IICL~ARSCREEN

[2] - IICLEARMATRIX

L 

[3] —

[4) — IIDISZOUT
3-130 

- -—-~~~~~~~~~~~ - . - -
~~~~~~

- . --~~~~~~~~~~~~~~~

EJ~
OOMOUT
)

1

CLEAR SCREEi~DISPLAY AREA.

INITIALIZE
SCREEN MATRIX .

COMPUTE
TRANSFORMATION

PARAMETERS

ASSM
IIDISZ OUT

DISPLAY
ZOOMED-OUT NET.

EXIT

FIgu re 3-17 Zoom-Out On Net (IIZOOMOUT)

3—131

I.. . -- --- ~~~~~—.- - . —-- - .
•~~~~~~~~~— .- -_ - - —--—— --- - - -C — ~~ —_ _

3.3.12 Zoom-In On Net (IIZOOM IN)

Description

As indicated in Section 3.3.9 , the user may create a net structure
wh ich extends beyond the limits of the screen. A capability exists for him

to zoom-out on suc h a structure so that the entire structure , regard less of
size , can be tutally contained wi thin the screen display limits . When the

net structure has been displayed in this ‘zoomed—out’ mode , the user may use
the Zoom—In On Net module to selec t any point on the screen to be ‘zoomed-in ’

on. The selected point is centered at the top of the screen and the net is
displayed downward in a zoomed-in ’ mode to the screen limits .

~nput

SCREEN SELECTION - The user selects an x ,y point on the
screen around which ‘zooming-in ’ will
take place.

ASSM — Entire net structure (zoomed-out) .

SCREEN LIMITS - Defines screen drawing area .

NODE DESCRIPTIONS — Node physica l descriptions .

Output

ASSM - Screen positional data for entire net
structure .

SCREEN MATRIX - Node positional and ASSM correl ation
data .

DISPLAY — The zoomed—out net is removed from the
screen and the zoomed-in net is subse-
quently displayed .

Processing

Figure 3-18 is a flow diagram of this module and the following coninents

apply to the indicated processing boxes .

[1] - A check is performed to insure that a
zoomed-out net does , i ndeed , exist.

[2] - Coordinate translation parameters are
computed and the net x ,y positiona l data
is transformed from the zoomed-ou t mode
to the zoomed-in mode centered about the
sel ected x,y screen positions.

3-132

~~~~~~~~~~~~~~~~~~~~



[5] - The net is displayed at its new positionr 
on the screen.

Procedure References

The fol lowing correlates the functional processing steps shown in
Figure 3-18 with the REVS procedures which perform the indicated processing .

[3] - IICLEARMATR IX

[4] - IICLEARSCREEN

[5] — I I D I S N E T

[6] - IIMSGOUT

3—133

IL • - - -~~~~-~~~~~~~~~~~~~~~ - • -



IZZOOMIN

IS NET
ZOOMED-OUT N

YES

r
2

COMPUTE COORDINATE
ASSM TRANSFORM PARAMETER S.

3 6 
_ _

INI T I AL IZE 1
SCR EEN MATRIX. PROCESS ERROR.

4

CLEAR SCREEN
L) ISPLAY AREA.

5

E~—. IIUISi4[T

DISPLAY NETASSM ON ANAURA PH.

C EXIT

FIgure 3—1 8 Zoom-In On Net (IIZOOMIN)

3-134



3.3.13 Generate CALCOMP Plot (IICALCOMP)

Description

This module generates a CALCOMP hard copy plot of any structure
which has had graphics information entered through RNETGEN. Standard 8—1/2
by 11 document size output will be generated unless otherwise specified by
the user. If necessary, the structure will be reduced in size such that
the entire structure is contained wi thin the selected document size.

Input

ASSM — The entire net structure and associated
elements.

DOCUMENT SIZE - Width and height (inches ) with default
being 8-1/2 x 11 .

Output

NET DISPLAY - CALCO MP plot of current net structure.
Processin9

The following descriptions provide additiona l clarify ing i nformation
for selected processing steps presented in Figure 3-19.

[1] - Standard document size of 8-1/2 x 11
inches is set up for CALCOMP output.

[2-5] - The user is given the option to accept
• standard document size or to specify

optional width and height (inches).

[7] - Th is box represents a set of procedures
(see Section 3.3.20) which produce the
CALCO~ plot of a given structure .

Procedure References

• The following correlates the functional processing steps shown in
Figure 3-19 with the REVS procedures which perform the indicated processing .
[2] - IIMSGOUT

• [3] - IIMSGIN

• [5] — IIVAL IN

[7] - CCNET

[9, 10] - IIMSGOUT
3—135



I I C .ALCONP

SET~ P FOR STA.~DARD
DOCUME1~T SIZE.

2
DISPLAY
~~ SSAGE
TO USER .

3

INPUT DESIRE .

4
yrc STA.~DAR D

DOCu E:iT
SL~E

NO

5
KEY IN HUGHT

AkO ~Iur ~ .

6
INPUT

7 
PROCESS ERROR.

NO

7
CC~~~T

GENE RATE
ASSM CALCOMP PLOT.

8
PLOT

ERROR
7

10
NO

P~~CES5 ERROR.

EXIT

Figure 3-19 Generate CALCOMP Plot (IICALCOMP)

3-136

____________________



p

~~~~~~ .

3.3.14 Set Color (IICOLOR)

* Description

This module shown in Figure 3-20 determines the particular color
selected from a menu of available colors to be used during net creation or
modification . The selected color is used for displaying all subsequent
nodes entered. The color attri bute is added to the description of each node
as it is entered and maintained in the ASSM. The color of an existing node
may be changed by selecting the desired node via the trackbal l immediately
following the color selection.

Input

COLOR MENU SELECTION — The user provides a color selection via
the trackba ll input facil i ty . The
following colors are ava i l a b le i n the
menu:
• red • purple
• green • turquoise
• blue • whi te.
• yellow

NODE SELECTION - The user selects the a pp l i cable node
for which he wishes the selec ted color
to apply.

Ou tpu t

NODE COLOR - The selected color is maintained
internally (color code is preset to
turquoise).

Processing~
The processing for this module is presented in the flow diagram of

Figure 3-20.

• Procedur? Reference

TI
’he following correlates the functi onal processing steps shown in

Figure 3-20 with the resul ting REVS procedures which perform the indicated
processing.

[3] - IISETCCOL
[4) - IICMPMAT
[5] - I IM ATCHK
r6] — I ISETN ODE
[7, 8] - IINODIS
[9] - I IMSGOUT

3—137

-
— -~~

—
• ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ --.~~~~~~~~

(~~~~ OLOR

YES COLOR

2

sEuc:ioN

D ETER MIN E NOO E
SELECTED COLOR. SELECTION

LSELE~~
U
~OLCR.

6

<

~~~
I:

~~~~~

I)

~~~~

I ENTER NODE COLOR DISPLAY

INTO ASSM . 
~~~~~GE .

7 -\
REMOV E

NODE FRON
ASSM SCREEN .

ISPLAY N(X) E
IN NEW COLOR

ON SCREEN.

(~~~
ExIT

~~~)

Figure 3-20 Set Color (IICOLOR)

3—138



_________________________________-

3.3.15 Display Branch (IIDSPBRN)

Description

Upon input of the predecessor and successor node for the desired
branch , this module will optionally display the branch ordinal value , if
one exists , and the conditional expression , if one exists . The selected
branch must be an ‘OR/FOR ’ branch; otherwise , the input is ri~jected.

Inpu t

NOD E POSITIONS - This input is provided by the user via
trackball se lections of the predeces-
sor/successor nodes.

SCREEN MATRIX - Screen positiona l and ASSM correlation
matrix.

ASSM - Structure data.

SCREEN LIM ITS - Defines screen drawing area .

Outpu t

D ISPLAY - D i s p lay of o rd ina l v a l u e , if  a p p l i c a b le ,
and conditional expression .

Processing

Figure 3-21 presents a flow diagram of the processing steps wi thin
this module. Following is further clarifying i nformation for the indicated
processing steps.

[2] — Checks are made to insure that the
selected node does indeed exist and that
it is either an ‘OR ’ or a ‘FOR EACH’
node.

[4] - Checks are made to determi ne the existence
of the selected node and to insure that it
is i ndeed a successor to the previously
selected node.

[5] - The user is given the option to have the
ordinal displayed for the indicated
branch , if indeed , one exists.

[6] - Again , the user is given the option to
have the conditional expression displayed ,
if one exists .

3-139

_ _  _  
-— —~~~~~~~~~~~



— —~~~~ ‘~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~ 
-— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Procedure References

The following correlates the functional processing steps shown in
Figure 3-21 with the REVS procedures which perform the :fldjcated processing.

[1) - IICMPMAT

[2] - IIMATCHK

[3] — IICMPMAT

[4] - IICHKNODESEL , I IMATCHK

[5] — IIMSGOUT , I I M S G I N

[6) - IIMSGOU T , I IMSG IN

[7] - IIMSGOUT

3-140

• • • • •—-- ---- — --• - -~~~~-~~~~~~ - -_ - . - — .— — -

IIDSPBRN

1
REDECESSOR

NODE
SELECTION.

2
I NPUT
cMECK ERROR
1

GOOD

3
SUCCESSOR

NODE
SELECTION .

4
INPUT
ChECK ERROR
?

GOOD

5 7
_ _ _ _ _

DISPLAY
ORDINAL IF PROCESS ERROR.

PU CABLE

6
DISPLA Y

CO:~DITIONAI.
XPRESS ION.

EXI T

FIgure 3-21 Display Branch (IIDSPBRN)

3-141

- -

~

--- ---

~

- -

~

- _ - - - -- ~
• - -4


~~~~~~ ~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~ ~~~~~~~~~~~~~

3.3.16 Display Node (IIDSNODE)

Description

Upon inp~ of the desired node , this module will display the full
RSL name of the element associated with the node, if applicable.

Inpu t

NODE POSITION - The inpu t is provided by the user via
a trackball selection of the desired
node.

SCREEN MATRIX - Screen positional and ASSM correlation
ma tr ix.

ASSM - Structure related data .

SCREEN LIMITS - Defines screen drawing area .

Output

DISPLAY - RSL element name of associated element ,
if applicable.

Processi n~
Figure 3-22 presents a flow diagram of the processing steps within

this module. Following is further clarifying information for the indicated
processing Steps .

[2] — Checks are made to insure that the
selected node does i ndeed exist on the
screen.

[3) - A further check is made to determi ne
whether the selected node is associated
to an element in the ASSM .

[4] - The full RSL element name is retrieved
from the ASSM and displayed on the
screen.

3—142

-

L • • ----—• • - — - •— . ~— - —  — - - - •



_- _— .-

~~

,- _—-,--- -- •— --- .__-•--

Procedure References 
-

~

The following correlates the functional processing steps of Figure 3-22
with the REVS procedures which perform the indicated processing .

[1] - IICMPMAT

[2] — I ICHKNODES EL

[4, 5) - IIMSGOUT

3—143



Procedure References

The following correlates the functional processing steps of Figure 3-22
with the REVS procedures which perform the indicated processing .

[1] - IICMPMAT

[2] — I I C HKN ODESE L

[4, 5] - II MSGOU T

f ~-143

—--4
• _— ----- -~~~~~~~~~~~ —-••---~~~~~~~~~~ -• - - - - -_ - -• •• ~~~~~~ - - - .-- --- -~~~------

_----- • -- -_ _-- •--•— - - - -  - -



_ -•~~-
--

~-=~~~~~.• •  
—

~
-

• 
—

~ • —---: • -; ~~~~~~~~~~~~~~~~~~~~~~~~ 
- - , - -—-  -_--— ----.---•- -_ • •

I IDSNODE

NODE
SE LECT ION

INPUT.

2
INPUT
CHEC K

7

GOOD

~ NODE
ASSOC IATED NO

TO
ELEMENT

7

YES
SSM 5

DISPL A Y
ELEMENT PROCESS ERROR.

NANE.

EXIT

Figure 3—22 Display Node (IIDSNODE)

3-144



3.3.17 Display Net CIIDISNETI

Description

This module is used to display an R—Net/Subnet in the ‘zoomed-in ’
mode. Each node on the net is interrogated to determine if it will fit
within the screen display limi ts and if it does not fit , the node is
ignored and processing continues at the next node .

Input

ASSM - The entire net structure .

SCREEN LIMITS - Defines screen drawi ng area .

NODE DESCR IPTIONS - Node physical descriptions .

NODE COLOR - Sel ected by the user.

Output

DISPLAY - Net display on the screen.

SCREEN MATR iX - Node pos i t i ona l and ASSM co r r e l a t i on
data.

Process ing

The processing for this module is shown in Figure 3-23. The fol low-
ing provides additiona l processing descriptions for the indicated boxes.

[1] - Node record data and successo r/predeces-
sor data is retrieved from the ASSM .

[2] - The x ,y positio nal data is translated ,
if required , u s i n g  the coord i nate  tran s-
lational parameters compu ted by the
Scro ll Net module.

[3] - A check is performed to insure that the
node wi ll fit on the screen . if the
node does not fit on the screen , process-
ing is continued at the next node on
the net.

[4] - The appropriate node color is set up
for subsequent display .

[5] - The node is displayed on the screen at
the appropriate x ,y position .

3-145

•_-

~

--- - - . - - -• - _-- - - • - . -- •— - ___



~~~•——•~~~---~~~~~

[6] - The internal screen matrix is updated
to reflect the node screen position.

[7] - All directed arcs from/to this node
are displayed and processing returns
to step [1] unti l all nodes on the
net have been processed .

Procedure References

The following correlates the functional processing steps shown in
Figure 3-23 wi th the REVS procedures which perform the indicated processing.

[3) - IICMPMA T , IICHKNODESEL

[4] - IISETNODE

[5] - IT NODIS , IIDISNAM

• [7] — I I D S P L I N E S

3-146

—~~—~~~~ - - ---- --V — .-~~~~~~~~~~~-— • -. • - - ~~~-- - • - - -.-•-• .-—

IIDISNET

FOR EACH ——NODE ON NET.

ASSM 2

TRANSFORM I
NODE COORUINATE.

SCREEN DOESN’ T
CHECK

7

FITS
4

SET UP COLOR. I

5 I
DISPLAY
NODE ON

AS5M SCREEN.

6 I
UPDAT E

SCREEN MATRIX. I

7
DISPLAY

DIRECTED
ARCS.

EXIT

Figure 3—23 Display Net (IIDISNET)

3-147

~~~~~~~~~~~~~~~~~~~~~



3.3.18 Display Zoomed-Out Net (IIDISZOUT)

Description

This module is used to display a color—coded miniature display of the
current structure. This provides a capability for displaying the entire
structure , regardless of size, within the structure display area of the
CRT . T he x ,y scaling factors to translate from the nominal (zoomed-in)
structure mode to the zoomed-out mode are computed and all connecting arcs
on the structure are first displayed from node-center to node-center .
The nodes are subsequently displayed in color-coded form .

Input

ASSM - The entire net structure .

SCREEN LIMITS - Defines screen drawing area.

NODE CHARACTERISTICS - Color codes and physical descriptions .

Output

DISPLAY — Miniature color-coded display of
Structure.

SCREEN MATRIX - Zeroed out.

Processing

Figure 3-24 presents a fl ow diagram for the processing in this module.

Procedure Reference

• The following correlates the functiona l processing steps shown in
Figure 3-24 wIth the REVS procedures which perform the indicated
processing .

[8] - IISETNODE

3.148

-— — - —— -  — •- •.-** —- -- • - _--- •- -- - - -—-,-~~~~~~~~~~~~~~ -- • — •—



- -

~~~~~~~~~~~~~~~~~~~~

I IDI SZO iJT

FOR EACH
NODE ON NET. —

2

TRANSLATE NODE
ASSM CENTER POSIT IO~.

3

FOR EACH
SUCC ESs~R NODE. T

I I
T RANSLATE SUCCES SOR
NODE CENTER POSITION .

ASSM
DISPLAY
A~C TO

SUCCESSOR
NuDE.

6

FOR EACH
NODE ON NET. —

7

TRANSLATE
ASSM NODE CENTER.

8

DISPLAY NODE.

EXIT

FI gure 3—24 DIsplay Zoomed—Out Net (IIDISZOUT)

• 3-149

-- _— - —--~~~~~~~~~~~~ -~~~~~~~~~

- - - - _ _ _ _ _ _ _ _ _ _ _ _

3.3.19 Menu Read (IIMENUREAD)

Description

This modul e provides menu selection capability via the trackball
input facility . The selected x ,y screen coordinate is translated to a
menu line entry. Appropriate indicators are set and control is returned

to the function level .

Input

MENU LIMITS - Defines menu limits .

MENU LINES - Defines menu line entries .

SCREEN SELECTION — x ,y screen coordinate value as input
via the trackball facility .

Output

M ENU SE LEC T ION - Selected menu line entry.

Processing

The processing for this module is presented in Figure 3-25. The follow-
ing comments provide additional clarify ing information for the indicated

processing boxes.

[3] - A determination is made as to whether
- the selected x ,y screen position indi-

cates a menu line entry.

[4] - A check is made to insure that the
selected menu entry is indeed legal .

[5] — If a structure type was selected in
the menu , a determ i nation is made as
to what type (i.e., RNET , SUBNET,
VAL PATH) .

[6] — If a node type was selected in the
menu , a determination is made as to
what type (i.e., ALPHA , EVENT , OR , AND ,
etc.).

[7] - If neither a structure type or node
type was selected , then the appropriate
menu entry is determ i ned and so indi-
cated (i.e., move node , scroll , net ,
etc.).

3—150

I

r~ ~~~~~~

_

~~~~~~ ~~

-— _ ——

~~~~ 
—

Procedure References

The following correlates the functiona l processing steps shown in
Figure 3-25 with the REVS procedures ‘vhich perform the indicated
processing .

[10] - IICHKNODESEL

[ii , 12] - IIMSGOUT

3-151

• • • - • - • • • • —- • _———- --- -~ • • _ - •-- ---- . —-- — - - - ~~~ - - - • • . -—- - - _ • •

- - ---- --- . - --—-- -- - - ---- - - - - - - - - - -- - -—— .---- --.- - --—-

11 (~~NENURE~~~)

PROCESS ERROR .
~~~~

-

INPUT
SELECTION.

9 1  
_

[SET APPROPRIATE FLAGS. J L ~~~~~~~~~~~

-_-_< IIIII~III::1:> 
~ y~~~~~~~ U~~ RE 

12 

PROCESS ERROR .

SET MENU
STRUCTURE TYPE. ]

6
YES

14
NO

SET ~~NU NODE TYPE.

SET MENU TYPE.

8

SET APPROPRIATE FLAGS.

EXIT

FIgure 3-25 Menu Read (IIMENUREAD)

3—152

_ _  ~~~~~~~
• --

~~~~~

-- •-

3.3.20 CALCOMP Net Display (CCIIET)

Description

This module will plot a selected structure in the ASSM which has
associated graphics coordinate data. Its output is recorded on a CALCOMP
compatible tape for plotting on 30-inch paper. The plot size is provided
via the argument list along wi th the ASSM pointer to the element to which
the structure is attached .

Input

ASSM - The entire net structure and associated
elements .

DOCUMENT SIZE - Desired width and height (inches) of
the plotted output.

FL AG — First pass flag.

Output

DISPLAY - CALCOMP plots of the sel ected structure .

Process ing

The fol lowing information is presented for clarification of selected

processing steps appearing in Figure 3—26.

[1] - If the selected ASSM element has no
associated structure , an error flag is
set and control is returned to the
calling prog ram.

[2] - All required ASSM pointers to RSL
element types are retrieved for
subsequent use.

[3, 9) — If the selected structure is not
currently in temporary stora ge i t is
moved there.

[6] - x ,y scale factors to translate Anagraph
coordinate units to CALCOMP coordinate
units such that the entire structure
will be contained within the requested
document size are computed.

3—153

- ~~~ - - _ •- .•.-~~~• • . — —--. -•

[7, 8] - If this is the first execution of CCNET ,
the CALCOMP tape is initialized and the
TRW l ogo frame is generated.

[10] — If the structure contains no associated
graphics data , the graphics data will be
generated automatically and entered in
the ASSM .

[16, 21] — If a node is associated to an ASSM
element , the element is ret r ieved and
dis played at the node on the structure .

[20, 22] - If a conditional expression exists on
a node branch , ‘OR/FOR EACH ’ node ,
then the branch is numbered on tne
structure and the associ ated ordinal
and conditional expression is entered
in the branch legend of the structure .

[24] - If the structure was not already in
temporary storage upon entry into
CCNET , then ft is removed from
temporary storage.

Procedure Refe rences

The followi ng correlates the functional processing steps shown in
Figure 3-26 with the REVS procedures which perform the indicated processing.

[6] - CCF INDXY , CCAMSN , CCAMA X

[8) - CCTRWLOGO

[10] - CCAUTOPLT

[13] - CCSETNODE

[21] - CCPUTEXT

[22] - CCPRINTNOBR , CC PR I N TT BBR

3-154

- — — - — - - - -_ - - - _ ~~~ — -~~~- ----~~~-, - - —

CCNLT

STRiCTURE NQ
~~ •_•~

••

PRE~ L N T~,,
,

ASSM
2

INITIA LIZE
RECL InED

ASSM FOIN IE RS.

3
TRUC TV P

NO IN 1[Mr:’R AR
ASLA

9

MOVE STRUCTURE YES
TO TEMPORARY AREA.

4 11
__________RAPHIC

NO DATA I SET ERROR
ASSM AV A I L A B L E I RETURN FLAG .

10 L___

GENERATE YEGRAPH ICS DATA
AUT~~~TICA1LV .

CALCIYIP
PLOTS NO

DESIRED

YES
6

CCJI PUTE X . V
AS SM SCALE FACT ORS.

NO FIRST
PASS

YES
8

INIT IAL IZE
PLOT TAPE. EXIT

D ISPLAY TRW LOGO.

FOR EACH
NODE ON

THE STR UCTURE.

DETERMINE NODE TYPE.

A/2
~~~~

Figure 3-26 CALCOM P Net Display (CCNET)

3—155

_ _  _ _ _ _  •



- .T :~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

TRANSLATE X~ Y
A ~ C EN TERS

T O CALCOMP UNITS.

15

DISPLAY NODE
ON CALC~X4P.

ASSPI 16 NODE
YES ASSOCIATED

TO ELEMENT
21

DISPLAY ELEMENT NO
ASSM NN~E ON CALCOM P.

17
FOR EACH
SUCCESSOR —

NOOL.

18
TR.A.~SLAT E ARC X~ Y

COORDINATESASSN TO CALCOMP UNITS.

19

DISPLAY DIRECTED
ARC ON CALCOtIP .

2 I I
YES C OND.

EXPRESS ION

22 I I
ASS M UPDATE BRANCH L EGEND. NO

23

DRAW FRAMES
AROUND PLOTS.

24
REM OV E STRUCTURE

FR OM TUMnORA RY AREA .*594 IF N E C E SSARY .

EXIT

Figure 3-26 CALCOMP Net Display (CCNET) (Continued)

3—156

• •~~~~~ ••• • • • • • •• • •••• • • • ~~~~~~~~~~~~~~~ ._ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
-

~~~~~~~~~~
_

••

3.3.21 Autoplot (IIAUTOPLOT)

Description

This module provides the capability for the automatic generation of
graphics coordinate data for the current structure. All nodes on the
structure will also have their color changed to the currently selected
color in the menu. The resulting structure will in general , have a
neater and more pleasing appearance than one which is drawn manually
via RNETGEN.

Input

ASSM - The entire net structure and associated
elements

COLOR — Current color as indicated via the
menu .

Output

SCREEN MATRIX — Updated screen matrix.

ASSM - Graphics coordinate and color data for
each node on the current structure .

DISPLAY - The structure is displayed in either
its zoomed-out or zoomed-in mode.

Processing

The following information is presented for clarifica tion of selected

processing steps appearing in Fi gure 3-26.1.

[2] - The color on all nodes in the structure
is set to blank. This is required by
the automatic graphics coordinate data
generator program.

[3] — This procedure will automatically
generate grap hics coordinates for each
node on the structure .

[4] - All nodes on the structure is given
the color of that specified on the
menu.

[6, 7, 8, 9] — The user selects , via the trackball ,
to display the structure in either its
zoomed-out or its zoomed-in mode .

3—157

_ _ _ _ _ _ _ _ _ _ _ _ - . • • —•- --------• ---

Procedure References

[1) - IICLEARSCREEN

[2] - IIREMGRAPH

[3] - XXCNET

[4] - IIREMGR.APH

[5] - IIMATCLEAR

[8] - I IZOOMOU T

[9] - IIDISNET

3-158

_ _ _ _ _ _ _ _ _ _ _ _ •

-

~~~~~~~~~~~~~~~~~~~~~ 

— , .----— - —- -

~~~~~~~~~~~~~
- -- . :~.: • :.

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~ lw ,iI~~~

/ REP~VESTRUCTUR E
R OIl SCREEN

2

~~~~~~~~~~~~~~ REMOVE COLOR AND
COORD INATE DA TA
FR~ I STRUCT URE.

3
CC NE T

*594
GEN ER)~TE GRAPHICS

4

SET COLOR OF
ALL NODES TO
CURRENT COLOR.

5

CLEAR 5. REEN MATR IX.

?O~~-OUT ZO~~-IN

IIZOOIIOiT IIDISNET

DISPLAY ENTIRE DIS FLAY
STRUCTURE IN • • STRUCTURE IN

COLOR-CODED FORM . DETAILED FORM.

I
_ _

Figure 3-26.1 Autoplot (ITAUTOPIOT)

3-159

— - • __s_ -— -

- —
_ ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~ 
_ —

3.3.22 Move Subtree (IIMVSUBTREE)

Descripti on

This module allows the user to move portions of the currently dis-
played structure by selecting an existing node on the structure and speci-
fying a position on the screen to which the selected node is to be moved .
The selected node and all nodes on the structure below it are moved
accordingly.

Input

ASSM - The entire net structure and associated
elements .

NODE SELEC TION - The user specifies the subtree to be
moved via a node selection usin g the
track ball.

SCREEN MATRIX — Node positional and ASSM correlation
data .

SCREEN LIMITS - Defines screen drawing area.

NODE DESCRIPTIONS - Node physical characteristics

SCREEN SELECTION - The user specifies the x ,y ‘to ’ position
on the screen to which the node will be
moved.

Output

ASSM - Coordinate data for selected node and
associated successor /predecessor nodes
in the subtree which was moved .

DISPLA Y - Removal of selected subtree at current
screen position and display of subtree
at newly selected screen position.

SCREEN MATRIX - Updated screen matrix.

Processing

The following information Is presented for clarification of selected

• processing steps appearing in Figure 3—26.2.

• [1] - The user identifies a subtree on the
currently displayed structure by
selecting the leading node of the
desired subtree to be moved.

3-160

_ _  - - --- - • - • . - • -- —-~~~- —- -- -~~~-— -— - - - . —---- - .



Pu— -w —

[2] - A validity check on i nput is performed.
First, to determi ne whether the selected
x ,y position is within the screen drawing
limi ts; and , secondly, to determine if a
node exists at the selected x ,y position .

[3] - The user inputs the desi red x ,y screen
position to which the node selected in
Step [1] is to be moved.

[4] — An input check is performed to insure
that the selected x ,y position is within
the screen limi ts.

[7) — The identified subtree structure is
removed from the screen and its new
coord inates are computed and entered
into ASSM .

[10] - The i dentified subtree structure is
dis played at its new position on the
screen.

Procedure References

The following correlates the functional processing steps shown in
Figure 3—26.2 with the REVS procedures which perform the in dicated processing.

[1) - 1ICMPMAT

[2] - IIMATCHK

[4] - IICHKNODESEL

[6] - IIDETNOD

[7] — IIPROCBRNCH

[9] - IIDETNOD

[10] - IIPROCBRNCH

[11] - IIMSGOUT

3-161



IIIYVS4J BTRE E

INPUT
DESIRED NODE.

2
INP UT YESERROR —
7

NO

INP UT T0
P05 II ION

ON SCREEN.

4
INPUT YESERROR

• 
T F ~~~

SAVE NODE POINTER . \Y ~~SAGE~~J
I

6

DETERMINE
NODE TYPE.

*594 7 U O V C
B ANCH AT

CuRRENT
POSTT ION ON

SCRL LN .

B
FIRST NO
PA S

YES
9

RESET NODE
PO INTER.

DETERMINE NODE TYPE.

ASSM 1 
DISP LAY

B R AN C H  AT
NLW POS ITI ON
ON SCR ILY .

Figure 3-26.2 Move Subtree (IIMVSUBTREE)

3-162

- . .
•- -- - . . • .  p-.- __•——

~~~~

_ _ _

-- -- ‘- ---- - - - - - - - - - — --— ------ ---- - - - - —~~~~~- - ------ -

3.4 REQUIREMENTS ANALYSIS AND DATA EXTRACTION (RADX)

Description

The Requirements Analysis and Data Extraction function provides a
variety of capabilities to aid in the development of requirements specifi-
cations. These include a generalized ASSM query and data extraction
facility , an RSL documentation capability , and a static analysis capability
to identify simple and complex anomalies in the requirements specifications .

The query and data extraction facility uses the concept of a SET , a
co llection of ASSM elements , to prov ide flexible and powerful user control
for the interrogation and documentation of the contents of the ASSM . Docu-
mentation is selectively generated in either RSL text or a hierarchical
map form. There are two types of SETs -- predefined and user defi ned. The

predefi ned SETs are :

• The universal set which is referred to as ALL_SET contains

all the elements in the ASSM .

• Element-type sets which are referred to by the element-type

name contain all the element3 that are of the named element-
type.

• Element sets which are referred to by the element name
contain the named element.

A user defined set is a collection of elements defined by the user
in one of the followi ng ways :

• The elements in a list of SETs

• The logical combination of two SETs

• The elements in a SET that satisfy a qualification criteri on .

The RSL documentation capability allows all or part of the currently

legal definition of RSL to be displayed. This includes the description of

element-types , relations , and attributes .

The static analysis capability diagnoses anomalies in the flow-oriented
portion of the requirements . Such things as loops in a data or structure

3—163

hierarchy, illegal combinations of relationships or attributes , and data
flow errors are identified .

USER RCL - RADX control statement that defines
operations to be performed.

ASSM — Any part of the ASSM can be retrieved
by RADX .

TYPE ACTIVATION - In addition to the normal interface with
the user , RADX interfaces wi th the
SIMGEN function (see Section 3.5) to
perform static analysis and data collec-
tion for that function.

Output

DIAGNOSTIC MESSAGE - Input control statement not processed
due to error dur ing statement translation.

Other outputs from RADX are made from the various modules that compose RADX.

Local Data

The fol lowing information is generated by translating user RCL.

TYPE_COMMAND - Ind i cates operation to be performed by
RADX. Operations are : DEFINE SET;
QUALIFY SET; COMBINE SETS; DEFTNE
HIER.ARC1TY; DEFINE APVEND ; LIST SET;

• LIST HIERARCHY; LTST RSL; ANALYZE;
LIST_PERMISSION ; PLOT

WIDTH - Width of PLOT.

HEIGHT - Height of PLOT.

PERMISSION_ID - Identifier of the CONTROL_PERMISSION
to be dis played .

MEMBER_LIST - List of SETs for defining a new set.

NEW_SET_NAME - The name of the new set that results
from performing a DEFINE SET, QUALIFY
SET or COMBINE_SET operation.

TYPE_QUALIFY - Indicates the technique used to qualify
the members ef an existing set to form

3-164

_ _ _

a new set. Legal techniques are
BY ATTRIBUTE , BY RE LATION , and
BY HIERARCHY .

—

QUALIFYING_ATTRIBUTE - Attribute used to qualify a set.

QUALIFYING VALUE — The value of an attribute used to
qualify a set.

QUALIFYING_RELATION - Relation used to qualify a set.

QUALIFYING_OBJECT_SET - Collection of elements used when quali-
fying BY_RELATION .

FIRST INDEPENDENT SET - The first set of a COMBINE SETS
operation.

SECOND_INDEPENDENT_SET — The second set of a COMBINE_SETS
operation .

TYPE_COMBINATION - Indicates how sets are to be log i cally
combined . The combination can be
UNION, INTERSECTION , or DIFFERENCE.

HIERARCHY _NAME - The name of a user defined hierarchy .

HIERARCHY_ENTRIES - A list of one or more triplets which
define how to trace direct and indirec t
relationships between elements in the
ASSM . The triplet is (SUBJECT TYPE,
BINDING RELATION , OBJECT TYPEI

SELECTED_APPEND_TYPE - Indicates the element type that has
• been selected to have its APPEND_OPTION

changed.

• APPEND ITEM LIST - Lis t of associated information such as
re la tions a nd a t t r ibutes to be d isplayed
when an element of a particular type is
displayed .

INDEPENDENT SET — Col l ection of elements to be listed ,
qua li f i ed , or ana lyzed .

SELECTED_H I E R A R C H Y - Identifier of a previously defined
hierarchy that is to be used for listing
or qualifyin g a set.

HIER DISPLAY FORM - Indicates format to be used for dis-play i ng hierarchy . Legal values areMAP , SEQUENCE , and GROUP.

3-165

-,

RSL LIST_OPTION - Indicates what portion of RSL definition
has been selected to be displayed. Legal
selections are ALL, TYPES , RELATIONS,
ATTRIBUTES , SUMMARY , ONE TYPE , ONE
RELATION, ONE ATTRIBUTE , and ONE_TYPE_
SUMMARY .

DATA_FLOW_OPTION - Indicates that option to perform data
flow analysis has been selected.

Figure 3-27 illustrates the data structures used by RADX for the
management of SElsand their related i nformation. •The following further
explains these data structures:

• SET_LIST_ARRAY - An entry is made into this array for
each set known to RADX . The entry con-
tains the location of the SET DESCRIPTION_
RECORD . The first entry conta i ns the
location of ALL SET which is the uni-
versal set of aT’l elements in the ASSM .
Entri es 2 through n+l contain the loca-
tions for the n predefined sets. The
remainder of the entries are reserved
for user defined sets.

SET DESCR IPTION RECORD - Contai ns the name of the set, the loca-
tion of the first APPEND_OPTION_RECORD ,
and the location of the first
SET MEMBER RECORD

APPEND OPTION RECORD - Conta i ns one type of information to be
displayed when an element that is a
subset of the owning SET_DESCRIPTION_
RECORD is displayed.

SET MEMBER_RECORD - Contains i ndexes into the ASSM_ELEMENT
ARRAY which identify the members of
the set.

ASSM_ELEMENT_ARRAY - An entry, which contains the location
of the element , is made in this array
for each element in the ASSM . The
array is ordered alphabetically by
element type.

3-166

-

Processing

Figure 3—28 contains the functional fl ow diagram for this module.

Procedure References

The follow ing correlates the functional processi ng elements in
Figure 3-28 with the REVS procedures which perform the indicated processing .

[1] - QQINIT

[3, 5] - QQTRDXM

[10-20] - QQDXM

[21, 22) - QQDXM , QQLISTSET

I

3-167

_ _ _ _ _ _ _

- •- •.•• • ___

- I.__-_ I
S _J
• ~~,_I _4. p_~~~ .~J.J-

— L~J
>-

~~ I ’t~~3~~~ I

‘IL~J .J ~C

-4).c
~~~,< -,

___ I-. 
~~~~

4.)
I- — C

~?r~ ‘-

)C .u~ I L..g I~~
a o I—. ON

~~ I Z ~~ I- ..) v ‘5o -4 ..z — ~~ C

~~~~~~L~J .5

4- I-
-4 ~~~-1 . ..J -. ~J ~~ V)
o I L.J I L.J

~~~~ ~~~ .- cc

~~~o~~r 
_ _= —— 4)

‘o~.u

~~~~~ ~~~~~~~ JLI.V)

~ 5 i i r 1
Q.~~. I ~ IcD ~~~I Ia~~~I I I 4.)

L4J L4J i~. I I~~~~~.I 1 1 I I
_ _ I i— I I ,.- I I I

~~ I-_
,(

OL I

a
(11

z

0 0 0

*
...

I ~~. ~.a

I
I ;~

)

~~ 0

~~ I..) ~~
~-In -4 —
‘-I O X
.J I- IJ

In
I- I&~j t a(6~ I

0I L.J I
F. ~

‘1

I ca In I
L,4

3-168

_ _ _ _ _ _ ~~~~~~~~~-~~~~~~--_-

RADX

INITIALIZE PREDEFINED
SETS At40

CONTROL PARAJIETERS.

A/i
2

USER TYPE SI~~EH
ACTIVATION .

6
_ _ _ _

GET USER COI~VlAND. I N I T I A L I Z E FOR SIN GEN

L DATA COLLECTION.

4 5 7

OF PUT NO TRANSLATE QQANALYZE
REACHED INPUT COMMAND. PERFORM STATIC

DATA COLLECTION.
YES

8 ERROR
EXIT

CO~IAND
NO

A/2 EXIT

YES
9
INFORM USER THAT

REQUES~ED COMMAND
NOT PROCESSED.

A/l

FIgure 3-28 RequIrements Analysis and Data Extraction (RADX)

3-169

_ _ _ _ _ • -- ~~ ~~~~~~~~~ • - -• • - —_ ~~~-•~~~~~ -~~~~~~~

A12

10
TYPE

COM tAI4D.

fl 15

~ ~J~UALSET QQDEFINESET
DEF!~~~~~w~~~T AS QUALIFY SET DEFINE SET

~ DEFINE A SET FROM
SATI~ F Y C~IITLR1ON . I A LIST OF SETS.

12 16

~~u~.FHI~.A Q~.COMBINESET

ENTER DESCRI ION DEF INE HIERARCHY _ sEL... ._.fF1~ E A ~~~~~~ T A s ~~~._ ..

13 17
.~.ILSTRSL Q~DEFAPP E~D

I LIST RSL DEFINE APPEND 1

1 LIST ALL OR -I 9 ENTLA NEW APPEND
PARTS OF R~.. 1OPTIONS ON ELEMENT TYPE

14 18
.~ ANALYZE

~~DOH IER

~~~~~~~~~~ 

ANALUE _ !:
~

LHIERARcHY Y~~L~~~~~~~~ j ._.

19 20( QQPLO T 1 _____________________

—1 PLOT PLOT LIST PERMISSION LIST CONTROL
STRUCTURES. 

] 

PERMISSION .

21 
_________I FOR EACH

ELEME;~T IN SET —

LTD BE LISTED.

22
L
I LIST LLLML ;,T

APP LY IT~G
AP PEN~ O~TIO ~S.

A/I

Figure 3-28 Requirements Analysis and Data Extraction (RADX ) (Continued)

3-170



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~—~~~~~~~~ • - _

3.4.1 Define Set (QQDEFINESET)

Description

This module defines a new set as the union of a list of previously
defined sets.

• Input

MEMBER_LIST - List of sets used to defi ne a set.

NEW SET_NAME - The name of the new set that results
from performing a DEFINE SET ,

F QUALIFY SET , or COMBINE ~ET operation.

COUNT_OPTION - Opt ion to disp lay number of member s
in newly defined set.

Output

SET_DESCRIPTION_RECORD - Contains the name of the set, the l oca-
tion of the first APPEND OPTION_RECORD ,
and the location of the ~flrstSET_MEMBER_RECORD .

SET_MEMBER_RECORD - Contains indexes into the ASSM_ELEMENT_
ARRAY which identify the members of
the set.

SET_LIST_ARRAY - An entry is made into this array for
each set known to RADX . The entry con-
tains the location of the SET DESCRIPTION
RECORD.

Process i ng

Figure 3—29 contains the functional flow diagram for this module.

Procedure References

The follow i ng correlates the functi onal processing elements in Figure
3-29 with the REVS procedures which perform the indicated processing.

[1] - QQSTARTSET

[2-4] — QQSETDEF

[5-8] - QQENDSET

3-171

- . --- ~~~
-
~~~~~~~~~

- -
~~~~~~

~~~
DE

~
INESETI

~

ALLOCATE
5QDESCRLPTIOM~RECORD;STORE LOCATI ON

IN SET_LIST _APHA Y;
NEW_S El lAME
IN THE RECORD.

2

I FOR EACHI SET 1N —~~~~~L MEMBER_LIST.

_ _ _ _I FOR EACl~~~ \_._ _[ ELEMENT IN SET. 
j
/’
~~

•

4

ADD ELEMENT TO
~ET_DESCRIPTION_RECORDS.

EW S E
NO N4.ME SAM~

AS PREVIOUS
SET
2

YES
6[ DELETE PREVIOUS SET.

7
NO COUNT OPT 10

S EL E CT : o

8 4

[~~SPLAY NUMBER OF

/ 

MEMBERS IN SET.

~~~~~~~~ I T)

FIgure 3-29 Define Set (QQDEFINESET)

3—17 2

_ _ _ _ _ _ _ _

- - - • - — - - -— ~~~~~~~~~~~ — •-• - - -~~~~~~ ---

I!.
-

~~

— _______

AO—AQ$6 573 TRW DEFENSE AND SPACE SYSTEMS GROUP HUNTSVILLE ALA F/S 9/2
REVS MAINTENANCE MANUAL. SREP FINAL REPORT. VO4.UME III.(U)
AUG 77 W £ BENOIT . P N BERGSTRESSER DASG6O— 75—C—0022

UNCLASSIFIED TRW—27332—6921—0 26—VOL—3 Nt

_ _ _ _ _

P!NIU
_ _ _

Ii
_ _ _ _ _ _~~~

uuuNis

S .
.

•~~.

2 R

: : ~1•1

• .

~~ ~~~~
—

NATIONAL BUREAU OF STANDARDS
MICROC OPY RESOLUTION RUT CHOP!

3.4.2 Combine Sets (QQC OMBINESE] 1

Description

This module derives the collection of members to be incl uded m a new
set as the logical combination of two independent sets. The logical combi-
nation can be INTERSECTION, UNION , or DIFFERENCE.

Input

FIRST_INDEPENDENT_SET - The first set of a COMBINE_SETS operation.

SECOND INDEPENDENT SET - The second set of a COMBINE_SETS
operati on.

TYPE COMBINATION - Indicates how sets are to be logically
combined. The combination can be
UNION , INTERSECTION , or DIFFERENCE.

NEW_SET_NAME - The name of the new set that results
from performing a DEFINE_SET,
QUALIFY_SET, or COMBINE_SET operation.

COUNT_OPTION - Option to display number of members
in a new set that results from the
COMBINE SETS operation .

Output

SET_DESCRIPTION_RECORD - Contains the name of the set, the l oca-
tion of the first APPEND OPTION RECORD ,
and the location of the ~flrst S~~MEMBER_RECORD .

SET_LIST_ARRAY - An entry is made into this array for
each SET known to RADX. The entry
contains the location of the SET
DESCRIPTION_RECORD.

SET MEMBER RECORD - Contains i ndexes into the ASSN-ELEMENT_
ARRA Y which identify the members of
the set.

Processing

Figure 3-30 contains the functional flow diag ram for this module.

3—173

‘MF ’ j~~~ ~~~ ~~rw

Procedure References

The follow ing correla tes the functional process ing elements in Figure
3-30 with the REVS procedures which perform the indicated processing.

[1] - QQSTARTSET
[3-5] - QQORSET

[6-8] - QQDIFFSET

[9-12] - QQANDSET

[13—16) — QQENDSET

3-U4


~~~~~~~~~~ L~~~~~ —.•

QQCONS I NE SET

ALLOCATE
SET _ D E SCR I PT IOd RECORD :

STOR E LO~JST!U~ IN
T_LI~ T_A~.~.AV ~,~c~.~_SLT •.AM~IN THE R~CUMU.

2 9

wao’~ 
TVPE_ OR EACH ELEMENTINTERSECTION OF FIRSTCOI~ INAT ION
I INDEPENDEN T ~ET. 

~~

•—.—

~

O IFFERENCE 10
3 

________ 6 OR EACH ELEMENT
COPY 

INDEPENDENT SET INDEPEz~Dg~dT ~ET. 1co~ OF SECOND
FIRST INDEPENDENT SET FIRST
I~~SEY_MEMBER_REC~RD.] TO STM [M8E R RLC~R D.  

—

4 1  i ir OR EACH ELEMENT A~ _ OR EACH ELEMENT NO ELEP~ NT
OF SECOND ~~~ OF SECOND — j

INDEPENDENT IET INDEPU4OENT3ET. I I

1’ ES

ADO ELEMENT I DELETE ELEMENT .1 ADO E*KT II FROMTO SET_MEMBER_RECORD . SET_MEMBER_RECORD . TO SET_MEIWER RECORD.

I I i i

N9c~’~ NAIIEThAME ‘
~~~~

~~~ PREY IOJ~.#’~

14 
~,

YES

~ 
PREV IOUS 5E1

J

sq,4~~NT OPTI
~~~~SEL~~TED~~TED

16 1.I DISPLAY NUMB ER OF // MEMBERS IN NE~LSETJ

(~~~ XIT D
FIgure 3-30 Combine Sets (QQCOI4BINESET)

3— US

F— ~~~~W~ T

3.4.3 Qualify Set (QQQUALSET)

Description

This module determines the collection of elements to be included in
NEW_SET as those elements in a subject set which satisfy a qualification
criterion which can be one of the following :

• BY_ATTRIBUTE

• BY_RELATION

• BY HIERARC HY.

Input

ASSM - Attribute and relationship instances .

COUNT_OPTION - Option to di splay number of members
in the new set that results from the
QUALIFY _SET operation.

NEW_SET_NAME - The name of the new set that results
from performing a DEFINE _SET,
QUALIFY_SET, or COMBINE_SET operation .

TYPE_QUALIFY - Indicates the technique used to
qualify the members of an existing
set to form a new set. Legal techniques
are BY ATTRIBUTE , BY RELATION , and
BY HIEkARCHY .

—

QUALI FYING_ATTRIBUTE - Attribute used to qualify a set.

QUALIFYING_VALUE - The value of an attribute used to
qualify a set.

QUALIFYING_RELATION - Relation used to qualify a set.

QUALIFYING_OBJECT_SET - Collec tion of elements used when
qualifying BY_RELATION .

INDEPENDENT SET - Col lection of elements to be listed ,
qualified , or analyzed .

SELECTED_HIERARCHY - Identifier of a previously defined
hierarchy that is to be used for
listing or qualifying a set.

3—176

-4

-s

Output

SET_DESCRIPTION_RECORD - Contains the name of the set, the
locati on of the fi rst APPEND OPTION
RECORD , and the l ocation of the first
SET_MEMBER_RECORD .

SET_LIST_ARRAY — An entry is made into this array for
each set known to RADX . The entry
contains the location of the
SET_DESCRIPTION_RECORD .

SET_MEMBER_RECORD - Contains indexes into the
ASSM_ELEMENT_ARRAY which identify
the members of the set.

Processi ng

Figure 3-31 contains the functional flow diagram for this module.

Procedure References

The fol l owing correlates the functiona l processing elements in
Figure 3-31 with the REVS procedures which perform the indicated processing .

[1) - QQSTARTSET

[3] - QQDOHIER

[4, 53 - QQENDSET

[8-14] - QQBYATT

[15-25] - QQBYRSLREL , QQBYIMPREL

.

3- 177

-

-

FOR EACH
ALLOCATE ELEMENT IN — —

SET DESCRI PTIOM_RECORD; INDEPENDENT_SET.
STORE LOCATIO~ IN

SET LIST _ARR .AY;
PLACE NE4_Sfl~jvlME

IN THE RECORD. 9 Is__ —T- __
NO UAL I FY ING

:II—__—.o

ATTRIBUTE
IN ASSM

2 7

BY ATTRIBUTE BY RELATION YES
— TYPE _QUALIFY. — A/2

10 S
ARTICULA o

BY HIERARCH Y ASSM NEEDED TO
UAL IF

Q aCH IER 7

QUAL IFY SET
BY HIERARCHY. I £

~SM
NO ALUE SATISF

~UALI FYI~G
VALUE

4 EW 7
SET NP.ME ES

AIIE AS PREVIDU
SET

7
01 OPT IO YES
SEEECTED

S 7

REL EASE PREVIOUS SET. NO

6
<

~~~~ O~~ ON YES 

~ ~~~~~~~~~~~~~~~~~~~ 1
NO OUN T_OPT ION

SELEC TED I

YES _ _ _ _ I
7

DISPLAY UJMBER
OF MENBERS
IN Ni~ SET.

EXI T

Figure 3-31 Qualify Set (QQQUALSET)

3-178

--

~



I

I
15 -~ t~M8~~

_ I FOR EACH \
~-‘öF MEMUER~~.... I ELEMENT I IN )— — — — -,

,‘IN INDEPENDENT~~... ~~ I IND EPE N DEN T_SET ./
~ NUM&ER OF MEMBER~ .—~-—.-4( B/2)
IN QUALIFYING

BJECT SE
7 E MENT J IN

Y ES QUALIFYING
OBJECT SET

16 
IN 

I I
I~U IFYING 21 EOBJECT SE 1~ U A L I F Y I N

RELATION EX I~T NO

17 I ASSM BETWEEN I

ADD THOSE ELEMENTS YESWHICH ARE OEJECTS
OF CURRENT ELEMENT 22

A~~CM 
VIA COMPLEMENT OF

QUALIFYI~G_RELATION I ADD I TO
TO WORKING SET I. WORKING SET 5.

I INDEPE~~ENT SET 

24 

~~~2<b
0PT b0

~~~~~
Es

NEW SET.
NEW_SET • S INDEPENDENT SET

Figure 3—31 Qualify Set (QQQUALSET) (Continued)

3—179



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ : .~~~~~~~~~~~~~~~~ . 
.

-:

3.4.4 Define Hierarchy (QQDEFHIERJ

Description

This module accepts a translated hierarchy definition and stores it
wi th hierarchy connectivity i nformation such that it can be used later for
qualifyi ng or listing a set in a hierarchical manner.

Input

HIERARCHY_NAME - Name used to apply hierarchy in a list
set or qualify set comand.

HIERARCHY_ENTRIES - Each entry contains the triplet
(SUBJECT TYPE , BINDIN G RELATION ,
OBJ ECT TYPE) which is used to trace
elements through the ASSM from
SUBJECT TYPE to OBJ ECT TYPE via the
BINDING~RELATION .

Output

HIERARCHY _DESCRIPTION_RECORD - Storage of a user defined hierarchy
which contains the following:

• NAME_OF_HIERARCHY • Name given to hierarchy by user.

• TOP_TYPE • Type of elements that can begin
hierarchy .

• HIERARCHY_START_POINTS • Entries in hierarchy where
hierarchy tracing can begin.

• HIERARCHY_OPERATIONS • A list of ordered triplets that
direct the tracing of relation-
ships between elements in the ASSM .
The triplet is (SUBJECT TYPE ,
BINDING_RELATION , OBJEC1~_TYPE).

• FROM , TO S Two arrays that specify the order
in whi ch HIERARCHY_OPERATIONS are
to be applied .

Processing

Figure 3—32 contains the functional flow diagram for this module.

Procedure Reference

The follow i ng correlates the functi onal processing elements in Figure
3—32 with the REVS procedures which perform the ind icated processing.

[3] - QQHIERMATCH

3-180

~

— QQDEFHIER

h f • .~ C i Y
A.~ L.~ U.S IN

I1IL,~
,
~ ~.rtY

DESCRIPTI~~ KLi ORD.

2
TOP TYPE .TYPE OF

SUbJECT TYPE (1).

3 NEW 4
HIERARCHY rsNAME SAME AS - DELETE

FOR I • I TO
NUMBER OF —— — — — — —HIERARCHY 1ENTRIES.

YES ~~~~~~~~~~~TYPE START HIERARCHY.

NO
8

F O R J — I TO
NUHUER OF
HIERARCHY

YES

10
PLACE CONNECTION 0

• OBJEC[F~ .LOuS I IN THE FROM .
TYP E(J — TO ARRAYS.

NO

I

EXIT

FIgure 3—32 DefIne Hierarchy (QQDEFHIER)

3-181

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~~~~~~~
-_

~~—-~~~~~~~~~

I

3.4.5 List or Qualify Set by Hierarchy (QQDOHIER)

Description

This module either lists or qualifies a set of elements accord i ng to
a defined hierarchy. Those elements which are listed or placed in the new
set must be in the origina l independent set and they must also be encountered
while traversing the hierarchy .

Input

LIST OR QUALIFY OPTION - Indicates whether to list or qualify
set.

HIER DISPLAY FORM - Indicates format for listing hierarchy .

INDEPENDENT SET - Collection of elements to be listed ,
qualified , or analyzed .

QUALIFYIN G_HIERARCHY - Hierarchy used to qualify a set con-
taining the followi ng :

• NAME OF HIERARCHY • Name given to hierarchy by user.

• TOP_TYPE o Type of elements that can begin
hierarchy .

• HIERA RCHY_START_POINTS • Entries in hierarchy where hierarchy
tracing can begin.

• HIERARCHY _OPERATIONS • A list of ordered triplets that
direct the tracing of relationships
between elements in the ASSM . The
tri plet is (SUBJECT TYPE ,
BINDING RELAT ION , O~JECT TYPE).

• FROM , TO • Two arrays that specify the order in
which HIERARCHY OPERATIONS are to be
applied .

Output

SET_MEMBER_RECORD — Contains indexes into the ASSM ELEMENT
ARRAY which identify the members of the
set.

Processi ng

Figure 3-33 contains the functional flow diagram for this module.

3-182

- . - - - ---~~- - -.-

Procedure References

The following correlates the functional processing elements in
Figure 3-33 with the REVS procedures which pervorm the indicated processing.

[2, 12-18] - QQCONTHIER

[4-11] — QQINCLUDE

4

4

3— 183

-- _ _ , ..- - _-_~~~~~~~- ---,- - ~~~~~~~ --~~~~-_ .-- - - . , -

_
-~~~—- --—- - ---_

t (
~~~D~~IER9

[ CURRENT_SET.
I INDEPENDENT SET;
I CURRENT_ENTRY.

FIRST ENTRY .

I FOR EACH ELEMENT\~_
[IN CURRENT_SET

J
/~~ 

— — — — — -I—— — —

ELEMENT
EN INDEPENDEN

SET?

YES

5

_____J PLACE ELEMENT L QUALIFY LIST OR
IN NEW _SET . — 

~~‘TION

LIST

7 6

I~ -/~~ LIST 4 ~~ DISPLAY SE UENCE

/ ELEMENT NAME. / FORM

G~~UP

‘ H I  

8 CUPREN
PLACE ELEMENT L~ 

NO _ S ET

IN TEP4’_ SET . [ • INU.PENDEN

ES
10

ALLOCATE
TE~ _SET. J

11
QQLS YE IT

LIST ELEMENT
AND APPEND
INFORMATION.

A
Figure 3-33 List or Qualify ~ t by Hierarchy (QQDOHIER)

3-184

L -~~~~ -- —~~~~~~~~~~_  ~~~~~~~~~~~~~~~~~~~



—

FOR EACH HIER
ENTRY REACHED
F~~M CURRENT — — — 

~1ENTRY . I I
13 I I

NEXT_SET
CLEMENTS IN CURRENT

OBJECT_SET W ITH BINDING
ELATION WITH ELEMENT. I

‘4 
I

NEXT_SET Y ES Itid y ? I
16 

HO 

I
LIST ILIST BINDING YES BY MAP

~~ .ATION . OPTION? I I
NC

NEXT_ENTRY.ENTRY
ThAT STARTS
W ITh OBJECT

PART OF CURRENT_ENTRY.

18 4. 1 I
PROCESSING FROM J I
TO (

~
) ~CURREN I ISET S NEXT_SET. CURRENT

ENTRY • NEXT ENTRY;.

i I
C/2 I

— --J
20 19 I

QQLSTELT YES L IST BY
LIST HE*ERS OF GROUP OPTION

TEMP_SET.

NO

— - - -— — —— — - - I

E XIT

FIgure 3-33 LIst or Qualify Set by Hierarchy (QQDOHIER ) (Continued )

3-185

~



• ~~~~~~~~~~~~~~~~~ 
-. --.--— • .- ..- 

•- —
:•:

---

3.4.6 Define Append Options (QO~EFAPPEND )

Description

This module updates the append options that are attached to a
SELECTED_APPEND_TYPE. The append options for all TYPE_SETs or for one
selected TYPE_SET can be updated . The update consists of deleting the
current options , making  a copy of the new opt ions , and a t t a c h i n g  the copy
to the SELECTED_APPEND_TY PE.

Inpu t

SELECTED_APPEND TYPE - Indica tes the element type that has
been sel ected to have its APPEND
OPTION changed .

APPEND ITEM LIST — List of associated i nformation such
as relations and attributes to be
displayed when an element of a particu-
lar type is displayed .

Output

SET DESCRIPTION RECORD — Contains the name of the set, the loca-
tion of the first APPEND OPTION_RECORD ,
and the location of the Tirst
S ET MEMB ER RECO RD

APPEND_OPTION_RECORD - Conta ins  one type of i nformation to be
displayed when an element that is a
su bse t of the ow ni ng SET DESCRIPT ION_
RECORD is displayed .

Process ing

Figure 3-34 contains the functional flow diagram for this module.

Procedure References

The following correlates the functional processing elements in Figure
3-34 with the REVS procedures which perform the indicated processing.

[2, 3] - QQDISPAPL IST

[4 , 5] - QQCOPYAPLIST

[7 , 8] - QQDISPAPLIST

[9 , 10] - QQCOPYAPLIST

3-186



ELECT ENO APPE .J YES
TYPE ALL

EXISTING OPTION\ 

6 

EACH

SELECTED APPEND/ 
1 TYPE_SET.

_____ I _ _ _ _  

I
FOR EJ~H \ I

DELETE OPTION . EXISTIN... CPTION 
~ON ELE .T TYPE. I

I I _ _ _ _ _  

I
‘—1.—f. DELETE OPTION. I

FOR EACH I
ARP END ITEM US~j~~~~ 

I 

— — —

5 l1~ I [ FOR UCH I
I . FNTQ Y I r~ c %-~~~~ .- —

COPY AND ATTAC H APPEND ITEM LIST .J~~ I
O~TION TO I — i

SELECTED_APPEND_TYPE. I t I i_I. 
10 

COPY AN3 ATTAC aI I I
~~~~~~~~~~~

_

OPTI3N TO
— — J TYPE SET. I I

C
EXITj

C~~~~~D

Figure 3-34 Define Append Options (QQDEFAPPEND)

3—187

— ~~~~~~~~~~~~~~~~~~~~~~~
. ___. —.-_ —. .———— .— —

3.4.7 List Element (QQLISTELT)

Description

This module displays an element and its associated relations , attri-
butes , and structural information according to the append option that is
in effect for the type of the element.

Input

ELEMENT - Element to be displayed .

ASSM - Any part of ASSM that contains i nfor-
mation associated wi th element.

APPEND_OPTION_RECORD - List of associated informati on to be
displayed with the element.

Output

RSL TEXT — All displays made by this module are
legal RSL .

Processina

Figure 3-35 contains the functional flow diagram for this module.

Procedure References

The following correlates the functional processing elements in
Figure 3-35 with the REVS procedures which perform the indicated processing .

[1] - QQENDL INE, QQPUTELT , QQPUTCMT
[2] - QQRET S
[5-8] - QQLAPREL , QQLA CREL

[9-11] . - QQLAT
[12, 13] - QQLALLPREL , QQLALLCREL
[14, 15] - QQLALLAT
[16-18] - QQLSTR

[19-22] - QQLREFS

[23-27] - QQLREFBY

3-188

- . ~~~—
--

~~~~~~~
-—

~~~~~~~~~
- - — - —

~~
-

~~~~~
-
~~
-

~~~
- . -

(ZI
~~~~~~~~~) 

B/I PART ICLLAR REi. RELATIOH

ISPLA Y ELEMENT TYP E S OE
ELEMENT ~4)IE 0~ NSTAN C
AND COIBIENT. RtLAT ION NO

UI~ T FOR
LINEN

a 7
YESBASED ON ELEMENT

TYPE DETERMINE S
APPEND OPTIONS. DISPLAY

RELATION NAME.
3

FOR EACH ASSM 7APPEND OPTION. — —
I FOR EACH INSTANCE 

—OF RELAT ION.

8
TYPE OPTION I DISPLAY

I OBJECT ELEMENT
AND CO~ViENT.

PARTICULAR
RSL RELATION______ — — . ‘
PARTICULAR IATTRIBUTE 

~
(
~

) I C/i

ALL INFORMATIO~~~.,~~~~~ I
ALL RS1. RELATIONS 

All

ALL ATTRIBUTES 

~
(
~E~

1) I 0/I PARTICULAR ATTRIBUTE

_ _ _ _ _ _ _ _ _  
I 9 £STRUCTURE 

~~~~~ I OF All RI LSU TE NO
NSTN~C

EXIST FUR
REFERS RELATION Ø(:~I:EI~)

LEMENT
7

REFERRED RELATION .(~) DISPLAY
ATTRIBUTE NAME.

PRIMARY RELATIONS

~~~ 
I

COMPLEMENTARY I DISPLAY
ATTRIBUTE VALUE.RELATIONS INONE

(/1

Wi

FIgure 3—35 List Element (QQLISTELT)

3-189

_________________



_______________
P— - —~—-~~~~~~r~~~~~~~~~~ 

— — ‘ _—— —
~~

_ .-- •-- --

6/2 REFERS RELATION

12 

(
~
) ALL RSL RELATIONS

__________________ 
19

L FOR EACH 
— 

ELEMENTS STRUCTURE.

RETRIEiE FIRST
NODE FPC~4LEGAL RELATION

13 

OF ELEMENT. I
F~~~~~FopJl PROCESSING 1 20 

FIRST
~~~WEEN (

~~
) AND

~~~~ PRESENT
NODE NO

7

ES
21— — 

DISPLAY REFERS.

22

(~
) AS 

TRAVERSE STRUCTURE
A .D JISPLAY

SN ELEME .TS ASSOCIATE
WITh N 0

14 

(
~::) ALL ATTRIBUTES H/2

OF ELEM ENT.~~~~~~~I FOR EACH
LEGAL ATTRIBUT E — A/l

15
PERFOUi PRUCLSSING ~ 112 REFERRED RELATION

~ ETWEEN ~~~ AND (
~j .J I

23 LE MEN
AS sC:~,\rEo

WITh AASSM NuDE
7

24

(
~
) DISPLAY REFERRED.

25
FOR EACH

C/2 STRUCTURE NODE ASSOCIAT ED —
WITH ELEMENT.

16 26
RETRIEVE FIRST

RETRIEVE SUCCESSORS OFNODE FRUM NUOE (HElL FIRST(LIME-NT STRUCTURE. ASSN NODE REACHE C.

27
17 FIRST DISPLA Y ELEMENT

NODE NO ASSOCIATED WIT H
P RESENT FIRST NODE.

7

YES
18 — ——_ —J

LIST STRUCTURE.

.312

0/2

A/i
A/i

Figure 3-35 List Element (QQLISTELT ) (Continued )

3-190



- ~~~~~~ . 
. - -  - ~~ - —--------- • - -  - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

28

(
~!)

ALL INFORMATION

T

ALL PRIMARY

ALL ATTRIBUTES BY
~ PERFORMING PROCE~

SlND I FOP EACH LEGAl.

[BETWEEN €2)
AND

PRIMARY RELATION

29~~~~~~~~
_ _ _ _

1~~ ORIIIN& PROCESSING PERFORM PROCESSIIG I I
j
BETWEEN

~2) AND 9
~ L €~~zLJ ~

LIST REFERS RELAT 104 BY
PERFORMING PROCESSI NG

— — -J
BENEEN €) AND

31

Li~r REFERREJ RELATION B
PERIOiUIING PROCESSING

BETWEEN AND

STRUCTURE BY
PERFOR MING ?P~~F5S ING

BETWEEN AND
~~~~~~~ 1 P~~\ ALL COI4PLDIENTARYI RELATIONS

35~~~~~~~
FOR EACH LEGAL

COMPLIMENTARY \___ —
RELATION OF I

ELIMENt ~~
36

PERFORM PROCESSI NG
BETWEEN IL€ ~*~~ iI

FIgure 3-35 LIst Element (QQL ISTELT) (Continued )

3-191

a



3.4.8 List RSL (QQ LSTRSL )

Description

This module displays the descriptions of the basic components of RSL
(i.e., ELEMENT_TYPEs , RELATIONs , and ATTRIBUTEs ) contained in the ASSM .

Input

RSL LIST OPTION - Indicates portion of RSL description
to list.

ASSM - That part which contains RSL descrip-
ti on.

Output

RSL Description

Processing

Figure 3-36 contains the functional flow diagram for this module.

Procedure References

The following correlates the functional processi lig elements in
Figure 3-36 wi th the REVS procedures which perform the indica ted processing .

[1— 5] - QQLSTRSL

[6,10] - QQRSLAETP

[7,11] — QQRSLAREL
[8,12] - QQRSLAATT
[9] - QQRSLSUM
[13-15] - QQRSLTYPE

[16-23] - QQRSLREL

[24-29] - QQRSL AlT

[30-38] - QQRSLSELT

3—192



- -..-

~~~~~~

-

~~~~

---_—

~~~~~~

QQLSTRS L

2

LIST OPTION

6

CO PROCESSING FROM 00 PROCESSING FROM
(
~

) TO FOR
~

ONE_TYPE TYPES (
~) TO FOR

SELECTED ELEMENT TYPE . AU. ELEMENT TYPES .

3 7
DO P ROCESS I NG FROM ONE DO PROCESSING FROM

(
~) TO (~) FOR 1RELATION RELATIONS

~ (:
~E~1)

TO FOR

SELECTED RELATION . ALL RELATIONS .

4 8
00 PROCESSING FROM 1 ONE DO PROCESSING FROM

TO (
~

) FOR ~~ .±~~~~
BUTE ATTRIBUTES

1 (
~) TO (~

) FOR p
SELECTED ATTRIBUTE . ALL ATTRIBUTES.

5 9
DO PROCESSIIJ O FROM DO PROCESSING FRO M(
~
) TO (

~) FOR 19~~~~~~RY S UWARY , TO (
~

) FOR

SELECTED ELEMENT TYPE. ALL ELEMENT TYPES.
ALL

10

00 PROCESSING FROM

TO (
~

) FOR

ALL ELEMENT TYPES .

Ii
DO PROCESSING FROM

(2~~) TO FOR

ALL RELATIONS.

12
DO PROCESSING FROM

(
~) TO (~) FOR

ALL ATTRIBUTES.

Figure 3-36 List RSL (QQLSTRSL)

3-193

_ _

p.—-- - ——- ——-.-- -—-- ---- .-

13 ~~
ELEMENT_TYPE

24

(
~I~
) ATTRIBUTE

/ DISPLAY ELEMENT / / ATTRIBUTE NAME, /
14 25

/ DISPLAY ELEMENT 1 / DISPLAY

/ TYPE CCH9€NT. / L ATTRIBUTE CO*IEHT.

15 YIP 26 41
/ DISPLAY NET / I DISPLAY
/ AND PA TH / / APPLICABLE
/ APPL ICA,SILITY . / ELEMENT TYPES.

2 7 4 1

(~i~) FOR EACH
VALUE.

RELATIONSHIP 28 41
I DISPLAY

16 .j , / LEGAL VALUE.

I DISPLAY 7
/ RELATION NAME. / 29 41

I I DISPLAY LEGAL
17 $ I VALUE COFBIENT.

F DISPLAY /
/ OPTIONAL WORK.

18

/ DIS PLAY /
/ RELATION COMMENT./ F/2

19

1 DISPLAYI COMPLEMENTARY
RELATION .

2 0 4
I// RELATIC OPTIONAL

j

21 41
I/

/ RLUTIC’~ COMMENT.

22 41
/ DISPLAY /
/ SUBJECT ELEMENTS. /

23 41
/ DIS PLAY 7
/ OBJECT ELEMENTS. / f

FIgure 3—36 LIst RSL (Q QLSTRSL) (Continued)

3-194

~

- - ~~
. . - —

~~~~~~~~~~~ - - —  ~~~~ —-~~~~~ -- . . - . -. . --—--— .- --. -
~~~~~~~~~

-- - — - . -

~,.
-

A/3 ELEMENT_TYPE SLflIARY

30
/ DISPLAY
/ ELEMENT

/ TYPE NAME .

31 41
I FOR EACH LEGAL~

’
\[RELAT I ON SHIP. — — — —

~~1
3 2 4 1
/ DISPLAY

RELATIONSHIP

3 3 4 1
FOR EACM RELAT

’
\ _ _ _ _

ELEMENT TYPE. / 1

_ _ _

/ DISPLAY // ELEMENT I
/ TYPE NAME. / I

FOR EACH LEGAL~~~~~_ — — —A TTRIBUTE .

3 6 4 1

/ DISPLA Y /
/ ATTRIBUTE NAME. /

fl

b R E A C H
LEGAL VALUE. / ~1

3 8 4 1
1

/ DISPLAY / I
/ LEGAL VPLUE. / I

8/3

Figure 3—36 List RSL (QQLSTRSL) (Continued)

3—195

3.4.9 Requirements Analysis (QQANALYZE)

Descr ip t ion

This module serves the dual purpose of selecting el ements from the ASSM

for simulation/analysis and staticall y analyzing the elements to identify

anomalies in the requirements speci fications. The selection of el ements is

based on a set of R-Nets provided by the user (through either RADX or SIMGEN),

the type of simulation/analysis (BETA or GAMMA) to be performed , and the

contents of the ASSM . The analysis consists of testing for the follow i ng :

• Loops in a data or structure hierarchy .

• Data having membership in more than one repetitive data set
(e.g., F ILE , ENTITY _CLASS).

• Illegal specification of the USE attribute in a data
hierarchy.

• LOCALITY of a repetitive data set arid its members is not
the same.

• Sequential data flow errors

- Reference to unassigned data values
- Assigned data values that are never referenced .

• Concurrent data flow errors

— The same data values concurrently assigned
— The same data values concurrently assigned and referenced .

Input

ASSM - That portion of ASSM pertaining to flow-
oriented requirements.

DATA_FLOW OPTION - Indicates whether data flow analysis
should or should not be performed.

TYPE OF ACTIVATIO N - Indi cates whether RADX was ac ti va ted
by the SIMGEN function or by the user.

INDEPENDENT SET - The col lection of R-Nets to be
analyzed /simulated.

TYPE OF SIMULATION/ANALYSIS - Indicates whether data with USE BETA
or data with USE GAMMA is to be
analyzed/simulated.

3-196

i~
- .-~

.-=_•_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ 1~~

Output

SIMGEN TRANSLATION LIST - A list of elements used by the SIMGEN
function to determine what elements to
translate and consol ida te into a
simulator (Section 3.5).

DIAGNOSTIC MESSAGES - Identification of structural errors.

Local Data

INFORMATION NETWORK - A linked list illustrated in Figure 3-37
which contains the elements to be
analyzed/simulated and the relationships
that exist between the elements.

TOKEN - An information container that is moved .4
along the structure of an R—Net when
data flow analysis is performed. The
TOKEN provides the status of data
accessible to a node when it is
traversed .

Process i ng

Figure 3-38 contains the functional flow diagram for this module.

Procedure References

The following correlates the functional processing elements in
Figure 3-38 wi th the REVS procedures which perform the indicated processing .

[1] - QQZINIT

[2] - QQINFOGEN

[3] - QQZSUBSET

[4-14] - QQMEMTEST

[15-17] - QQZATTSET

[18-33] - QQLOCTEST

[40] - QQSIMINIT

3-197



-

t~~~~ 

-

~~
‘i1 Thi “F

! ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ =
iir ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.~‘S.-
4 0

I I I
a a aIa s

~~~~~~~~aIa~~~~~~I I I Z

_ _ _ L _ _ _ Ir r ~~i 0
~~ LI LI C~ LI LI
LI La ILI ~GF

I~I’!J1! ~~~

-

~~~~~~~~~~~~~~~

-

-

~~~~~~~~~~~~~~

-

-

~~~~~~~~~~~~~~~

-- 
-

w l< c~~~8 LI-. LI I ~.J —. _j .~~
~~~~~~~~~~ ~~~~~~~~~~ .- ~~

~~ = I-~~~~~~ ~~~~ ~~~~~~~
~~~~ ~~

lI__ z
La 

-.~ 
LI LI

~ 
I— I ~~Z f ~-

~~~~~~~ ii--

~~LI C)~
LI

0 ca
a .-.

~~~~

3-198 

—.. -



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- —

~~

-

~~

-—--- -.

EI~D
/ DISPLA V MLMBERS /HILMAAL HY TO IN ERROR _SET.

A~ lER ING.

ASSM 
Gt YE~A tE I f fO~MA TION

N~r~OR~~~ASLI.) ON
INDEPL;IOL,~T LT OF
R NETS A .J ~‘YP E OF

P

3
bORN S - ITS FROM J
I j ~_ MPT [ O~ ,IT.JII~

~~ LA.~ri ~LI1L J
• -L iN I C  ~~~~~~~

GENERATE SUBSET OF

1 LOCAL SIMPLE DATA IN
~~~ j-4 I \ INFORMATION NETWOR K.

A M1~M~~’~ Cf fh~ \
T I l l C~A~S . F L E . — — — 16R M S ~~~ ~J BS ETS I GENERATE SUBSET OF

~ $ GLO~AL SIMP LE DP.TA IN
1 FOk T~CN J SM INFORMATION NET~~RK.
I A MEMSEK OF 1’NE
I ENTITY CLASS
10s FILE ~~UB$E GENERATE SUBSET OF

LOCAL SIMPLE LATA
W ITH INITIAL _VALU E IN

______ I
*/2

RDSI .THOSE 1 1
MEMBERS WY4ICrS[ARE PART OF I .

e Ir RDSJ .THOSE
MEMBERS WHICH

L ARE PART OF J. I

I I
1

IN ROSI YES

FERI&OR_SET. INTERSECT ION
[OF RSOI MU RS~DJ. I

<~~~~7ES I
i

I ER VOR~ I II REPETITIVI DATA /SETS CO ITAIN
I COM~4I’4 VS

FIgure 3-38 Requirements Analysis (QQA NALYZE)
3—199

. ——.- - -— -..- ,-.-. - -

- -

- —~~~~~ ~~~ ~~ -ir r-~-i-—— _
— -

FOR EACI4 — —MESSADF.. 1
19 MESSAGE

NO DE BY GLOB
NFORMAT ION

7 I
YES

20

DISPLAY ERRO R IMESSAGE.

2~
MAKE INFORMATION

LOCAL FOR ANALYSIS
PURPOSES.

— — — - J
22

FOR EACH — —ENTITY _CLASS.

23 IS
LOG-ILNO INFO~C.AT ION

PART OF THE
CLASS

2~
I

DISPLAY
ERRO R MESSAGE.

25

MAKE INFORMATION
GLOBAL

FOR ANALYSIS PURPOSES.

___ 1

*13

Figure 3-38 Requirements Analysis (QQANALYZE) (Continued)

3-200

~

— ~ -- - -- -“.~~~-— .— - .. - . —~~- - ~~~~~~~~~~ -—--- ._ _

I

*13

L~r
LOCAL. ~~~~~~~~~ GLOBAL

J~~~~~~~~~~~~~~~~~~~~E I I
I I I

31~~~~~~ I
..— FILE “-

~~ ,‘ FILE ‘N.
CONTAIN GLOBAL CONTAIN LOCAL

~~~~~ORM~TIO 

_
f DISPLAY / /~~~ DISPLAY / I
/ ERROR MESSAGE. / / ERROR MESSAGE. / I
30 Jr 33~~~~~~~~r I

MAKE INFORMATION MAKE INFORMATION
LOCAL. FOR ANALYSIS GLO6AL FOR ANALYSIS

PURPOSES . PURPOSES. I

_ 
_  I

*/4

Figure 3—38 RequIrements Analysis (QQANALYZE) (Continued )

3-201

I..- - - . - -  - --—-,- . - - -—~~~~ - - — ~~~~- ---~~-~~~~~~~- - -‘ —--,-— - - . --- -- - -.  _ _ _ _ _ _ _ _ _ _



_ _ _ _ _ _ _ _ _ _ _ _  — _ _ _ _ _ _ _ _ _  - -  - -~

*/4

TA FL
~~ ANAC~VSIS ~~L _ _

REQUESTED
7

YES

FOR EACH R_NET
TO BE ANALYZED. 1

36
INITIALIZE TOKEN

WITH LOCAL DATA THAT
HAS INITIAL VALUE.

37
CURRENT_NODE • FIRST

NODE OF NET.

38 
______

QQDATAFLOW 1 I
DO DATA FLO4 AaALYSISTARTING FROM

CURRENT _NOLIt .

P.40*
, CALLED BY ~~~SIMUEN

7

YES
40

TRANSFER DATA FROM
INFORMATION NETWORK AND

SUBSETS TO SIMGEN
TRANSLATION LIST.

EXIT

Figure 3-38 RequIrements Analysis (QQA NALYZE) (Continued)

3-202

~

--- ----- -

~

--- --- - - - -~~~~~- _—-_~~~~ 
— . .  —.- -- - ---



3.4.10 Data Flow Analysis (QQDATAFLOW)

Descri ption

This module detects errors in the requirements specifications by per-
forming a data flow analysis for a given R-Net. The errors that are detected
include the reference to unassigned data , the assignment of data that cannot
be reference d , the assignment of the same data from more than one parallel
path , and the ass ignme nt and re ference of the s ame data from differe nt
parallel paths.

The analysis is performed by moving a TOKEN from the CURRENT_NODE in
a structure to all successors of the CURRENT NODE. The TOKEN contains th~
status of data accessible by a node. The test for data flow errors consists
of determining whether the contents of the TOKEN is consistent or inconsistent
with the data requirements of the CURRENT NODE. The data requirements are
obtai ned from the relationships of the elements associated with the CURRENT
NODE and from the data referenced by OR nodes and FOR EACH nodes. Af ter
the test for data flow errors, the TOKEN is upda ted to reflect the data
requirements of the CURRENT_NODE.

Input

ASSM - Structures , elements associated wi th
nodes and node branches , and relation-
ships .

CURRENT_NODE - Node in a structure to analyze.

TOKEN - Status of data accessible to CURRENT
NODE .

Output

DIAGNOSTIC MESSAGES Identification of sequential and con-
current data flow errors.

TOKEN - Status of data accessible to successors
of CURRENT_NODE.

Processing

Figure 3—39 conta i ns the functional flow diagram for this module.

3—203

_ _ _ _ _ __ _ _ _ _ _ _ _  _ _ _ _ _ _ _  _ _  ~~~-- —-



— 
— r w~~~ r~~~ ~~~~~~~ ~~~ -‘ .~~~~~~~~4~~Øi i.4I~Lf, V~~~~~~~ *I~ ~~H’~ JI~~~ ~~~~~~~~~~

Procedure References

The fol low i ng correla tes the func tional process i ng elemen ts in Figure
3-39 with the REVS procedures which perform the indicated processing.

[1 , 10-12] - QQTRAVERSE

[2-6] - QQFLWALVP , QQFLWEVT

[7—9] - QQFLWSNT

[13-27] - QQFLOWOR

[28-37] - QQFLOWAND

[38, 42] - QQFLOWFOR , QQFLOWSLT

3-204

_ _ _ _  _ _ _



- ~~~~ ~~~~~~L_. ~~~~~~~~~~ ~~~~~~ 
—i-- ~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~ OW (
~

) SUBNET
PLACE CURRENT NODE

N CURRENT NODE REFERENCE STACK .

ALPMA.EVENTO R 8
VAL IOATION POIN~~~~~~~~ CURRENT NODE . FIRST

SUBNET SU8NET STRUCTURE S

SPLIT OR/AN D ISf LIES P(~j)
ThE PIRST NODE IN SPLIT ORN OR/AND CONSTRUCT. _ QQDATAFLOW

SPLIT AND USING TOKEN.

FOR EACH. SEL ECT I
*13

ORETURN

RETURN

B/ i ALPHA . VALI DATION_POINT. OR EVENT 10
2 CURRENT_NODE

FOR £LE~~~T~~~~OC i.ATaD
SUCCESSOR OF LAST ENTRY

*5511 WITs CURRL ,T .lO E. REFERENCE STACK.

SE~JLAIIAL uATA
11

DISPLAY GI.-~~3STi CS

UPDATL TOv.CN
~~ ITS 12CUf c~.~T ~~I. -T L AID

DATA RE~LI~~o1~;,TS QQDATAFLOW
OF CURR~ ,T~~.J.C.

USING TOKEN .

ICURRENT NODE • SUCCESSOR
OF ~LI~~~ T_NOLI~.

6 */1
[Q~,DATA FLOW

USING TOKEN .

Figure 3-39 Data Flow Analysis (QQDATAFLOW)

3-205

. _

~ .

•1~

13

OR NODE (
~)

26

CURRENT NODE .
GET DATA I SUCCE�~OR OF

USED BY OR_NODE. REJOIN OR_NODE. I
14

27

USING TOKEN .DATA FLOW L~ P~RS IFOR SE~ .~E~ TIAL]

ND DISPLA Y OLA. .:1~..STICSI _____________________

IF MICCSSIHV . I
~s

POAT~~TOK[N
BASES ON ITS CURR~~~lSTATE ANL) DATA IUSED BY OR_NUDE.
16 C/?

FOR EACH 28OUT BRANCH~~~/ I FOR EACH
OUT BRANCH.17

[
NEW BRANCH I

___ NEW BRANCH
TOKEN • TOKEN.

r TOKEN • TOKEN.
18 I

GET DATA
USED BY BRANCH. r ~~~ NODE .

____________________ SUCCESSOR NODE OF
19 I CURRENT BRANCH.

~ TEST FOR Sc~)UE1TIM. 1I DATA FLOW ERr ORS I
31

QDATAFL OWDISPLAY DIAL.NOSTICS I
IF NECESSARY . I_________________________ USING

20 I BRANC ; TOKEN.

I UPDATE BRA iCH TOKE~U1
[BASED ON ITS CURRL~4T I

STAT E AIlO GAlA I
USED BY DRANCP4 . j —

21

I
CURRENT NODE

_
~

TEST FOR COUCURRENT
DAT A FLO.l EIIRORS AND

SUCCESS~R NODE I

IF NECESSARY.OF CURRENT BRANCH. I DISPLAY DIAuNOSTICS

____ 33
QQOATAFLOW i I UPDATE TOKEN

BASED OH ThE STATE

r~~
SING BRANCH TOKE~~~J I OF EACH BRANCH TO~~~.

34

23

NONE TYPE COPPI.ETEOF

REJOIN

[

~~~~ATE TOKEN BASED 1 7

(~ > 
NONE 

ON STATE OF EACH I PARTIAL
BRANCH TOKEN .

ERROR:
PARTIALLY REJOINING

_________ 
COP~ LETE 

AND CONSTRUCT.
.‘ TYPE “‘.

OF

CURRENT NODE •PARTIAL SUCCESSOR OF REJOIN

PARTIALLY REJOINING 1 37

AND MD_NODE.

Z ERROR:

OR CONSTRUC~~~~/
” 

(
_______________ USING TOKEN.

411

Figure 3-39 Data Flow Analysis (QQDATAFLOW) (Continued)

3-2 06

.

~

-. .  • -



r ~~~~~~~~~~~~~~~~~~

()~ 
FOR EACH. SELECT

~~~~~~~~~~~~~~~~~~~~~~~~ GET INFORMATION
ASSOCIATED WITH

*5511 ELEMENTS RE FERENCED

3 9 1 ~TEST FOR
SEQUENTIAL DATA FLOW
ERRORS AND DISPLAY

DIAGNOSTICS IF NECESSARY .

40
TIFOATE TOKE N BASED ON

CURRENT STATE OF TOKEN
MD DATA ASSOCIATED

WITH NODE.

41

[CU!R(NT NODE • SUCCESSOR
OF CURRENT NODE.

42

L
USING TOKEN.

FIgure 3-39 Data Flow Analysis (QQDATAFLOW) (Continued)

3-207

L ~~~~~~~~~ ~~~~~~~~~~~~~~~~
-- .

~~--~~~~~
--- -_ --—--_

3.4.11 List Permission (QQLPERM)

Description

Gi ven a CONTRO L_PERMISSION iden t i f i e r, this module produces the RSL
statements for the identi f ier and all other CONTROL_PERMISSION and EXTENSION_
PERMISSION identi fiers in the ASSM.

Input

PERMISSION_ID - Identifier of CONTROL_PERMISSION to
be displayed .

ASSM - CONTROL PERMISSION s and EXTENSION
PERMISSIONs.

Output J
RSL TEXT - List of permissions.

Process ing 4
Figure 3-39.1 contains the functional flow diagram for this module.

.3-208

_ _ - -~~~~~~~~ -. -- - -~~~~~~~~~~~~~~~ ~~~~~~
.

~~~.- - -



QQLPERM

1 2
TYPE OF OTHER ERROR: ILLEGAL

PERMISSION ID PERMISSION
— SPECIFIED.

CONTROL
3

DISPLAY EXIT
PERMISSION_ID

4

FOR EACH
PERMISSION —— — i

IN ASSN.

5 URRE N I
YES PERMISSION— I

ERIIISSION_ID

NO
6
DISPLAY TYPE
OF CURRENT
PERMISSION.

7
DISPLAY CURRENT
PERMISSION
IDENTIFIER. i

-J

EXIT

Figure 3-39.1 List Permission (QQLPERM )

3-209

,

~~~~~~~~~~~~~~~~

. _ _ _ _

.
~

----- - - -,— - . - , -, - -~~~- - -~~~~~~~~
-,--

~~~~~
--

~~~~~~~~~~~
- -

~~
--- -,

~~~—--- - --- -
~~

- - -- - . ----—

3.4.12 Plot Structures (QQPLOT)

Description

This module generates a CALCOMP plot for each element in the user
specified independent set that has a structure .

Input

INDEPENDENT SET Collection of elements to be plotted.

ASSM — Element structures.

WIDTH - Width of plot.

HEIGHT - Height of plot.

Output

CALCOMP PLOT - Plot of each element wi th a structure.

PLOT COUNT - Display of number of generated plots .

Process i ng

Figure 3—39.2 contains the functional flow diagram for this module.

Procedure References

The following correlates the functional processing elements in Figure
3-39.2 wi th the REVS procedures which perform the indicated processing.

[3] - XXCNET

3-210 

-~~~ -,- — 



— . 

— ----- -
~ . . ., ‘ 

-
. 

. 

1

QQPLOT

FOR EACH
ELEMENT IN —, — —

INDEPENDENT_SET. 1

DOES
NO ELEMENT HAVE

A STRUCTU
7

YES I3

PLOT STR UCTURE I
WITH WIDTH
AND HEIGHT.

4
YES PLOT

ERROR
7 I

NO
5 I

INCREMENT IPLOT COUNT. 

J

6

DISPLAY
PLOT COUNT.

EXIT

Figure 3-39.2 Plot Structures (QQPLOT)

3-2 )1

I. ---~~~~~~ --- ... ---- - -  -~~~~ ---~~— ---~- --~~--~~--— -
~~~~ 

-- . -.

3.5 SIMULATOR GENERATION (SIMGEN)

Description

The Simulator Generation functi on constructs a Simulator Program which
models the software requirements specified in the ASSM . The organizati on
of the Simulator Program source code is shown in Section 3.5.6. The
functional components of the Simulator Program and their interrelationships
are detailed in Section 4.0. The Simulator Generation function also

constructs a Simulator Post Processor Program If an analytic simulator is

constructed. The Simulator Post Processor Program is described in Section 5.0.

The Simulator Program components can be separated into three basic
groups on the basis of their functions :

a) System Environment and Threat Simulation (SETS)

b) Requirements Modeling

R_NET Model Procedu res
SUBNET Model Procedures
ALPHA Model Procedures

c) Simulation Support

Simulator Executive
Simulator Event Management
Simulator Data Management
Simulator Initialization

SETS is the driver for the software requirements models. The produc- :1
tion of the source code for the SETS functions is performed i ndependently
of the Simulator Generation function and externally to REVS.

The components that perforni the requirements modeling functions are
termed requirements dependent since these procedures are intended to simulate
the behavior of software which meets the requirements specified in the ASSM.
The requirements modeling procedures must be created in accordance with the
ASSM contents and , consequently, involve a translation from the informati on
content of the ASSM to executable source code.

3—212

-.

The simulation support functions are composed of a mix of requ i rements
• i ncI~nendent (since they do not depend directly on the contents of the ASSM)

and requirements dependent source code. The framework of the Simulator
Execu tive i s i ndependent of the ASSM content, while the detailed scheduling
and invocation of requirements models is requirements dependent. Likewise ,
the framework for the Simulator Data Manager and Simulator Initialization
remain constant for any ASSM. There is , however , a cons iderable amount of
source code which must be tailored to the ASSM content for each of these
functions . The Simulator Event Manager , in contrast , is entirely require-
ments i ndependent.

The primary functions of Simulator Generation then are to:

• Translate necessary ASSH elements , attributes , and relation-
ships into the requirements modeling procedures and require-
ments dependent portions of the simulation support functions.

• Consol idate the generated requirements dependent source code
with the requirements independent SETS and simulation support
components into a compilable source program .

• Compile the simulator source program and linkage edit the
object to form a Simulator Program load module.

• Compile the simulator post processor source program and linkage
edi t the object to form a Simulator Post Processor Program
load module.

The Simulator Generation function is performed in five processing
phases:

• User Input Control Processing - parses the user i nput RCL.

• Requirements Analysis - checks for requirements data base
consistency and generates linked lists of ASSM el ements
required in Translation.

• Translation - generates PDL 2 source statements representing
the requirements specifications in the ASSM .

• Consolidation - combi nes the requirements dependent PDL 2
source statements and the requirements independent source
modules for input to the PDL 2 compiler .

3-213

—--.-•----- --- -- - - - - - - - - .- - - - - -“-.

Compilation — calls a REVS Executi ve ut~lity which invokes the
PDL 2 compiler and linkage editor to generate load modules for
the S imula tor Prog ram and S imul ator Pos t Processor Program.
In the current implementation , the Executive utility sets a
JSL variable which causes the compiler and linkage editor to
be executed after completion of REVS execution (see Section
6.3).

Input

ASSM - Simulator Generation accesses elements ,
attribu tes, and relations hips as well
as R NET and SUBNET structures .

REQUIREMENTS INDEPENDENT - The RISF contains source code needed
SOURCE FILE (RISF) to build components of the Simulator

Program that are i ndependent of the
particular requirements model being
generated (See Section 7.2.3).

SETS DEFINITION FILE (Soy) - The SUE contains the SETS source
code (See Section 7.2.3).

USER RCL - Simulator Generation control state-
ments . These statements spec ify what
type of simulator is to be generated
(BETA or GANMA) and which R_NETs are
to be included in the simulator .

Output

EVENT/ENABLEMENT DEFINITION - The EEDF contains the information
FILE (EEDF) necessary to initialize enablement

control tables that are used by the
Simulator Program to associate proce-
dure enablements with EVENTs ,
INPUT INTERFACEs , and OUTPUT INTERFACEs .
The EEDF contains an Event Definition
Record for each EVENT , INPUT INTERFACE ,
and OUTPUT_INTERFACE referenced by the
software requirements model . The EEDF
also contains the data and time SI~TGEtI
was executed , the ID given by the user
and names of the PERFORMANCE_REQUIRE-
MENTs.

3—214

_

-
• - - ‘~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~ __.-_ --—-__-_ . — -— .•-

Event Definition Record

Event Number

Event Name
Event Type (Imediate, Delayed , Input
Interface , Output Interface)
Del ay
Po i nter to Fi rst Dependent Procedure
Pointer to Last Dependent Procedure

LOAD MODULE FILE (LNF) - Object load module for the Simulator
Program.

PERFORMANCE REQUIREMENT SOURCE - A PDL 2 tex t fil e contai ning the source
FILE (PRSF) code for the Simulator Post Processor

Program.

Local Data

CONSTANT DECLARATION FILE (CDF) - A PDL 2 text fil e containing source
code for the requirements dependent
constant declarations to be included
in the Simulator Program.

COMPILE FILE (CF) — A PDL 2 text file containing the
source code for the entire Simulator
Program. The CF is input to the PDL 2
compiler. Duri ng SIMGEN execution , the
CF is also used as a scratch file.

PROCEDURE DECLARATION SOURCE - A PDL 2 text file containing the source
FILE (PDSF) code for requirements dependent

procedures.

PROCEDURE SCHEDULER SOURCE - A PDL 2 text file containing procedure
FILE (PSSF) enablement source code to be inserted

in the Procedure Scheduler procedure
of the Simulator Program.

SIMULATOR TRANSLATION LIST - A multi-level linked list of ASSM pointers
(STL) that define and describe the ASSM data to

be translated by SIMGEN. The STL contains
the follow i ng sublists :

• ALPHA (ALFALI ST)

• ENTITY_CLASS (C LSSLIST)
• EVENT (EVNTL IST)

• FILE (FILELIST)

• INPUT_INTERFACE (INLIST)

• OUTPUT_ INTERF~~E (OUTL IST)

• R_NET (RNETL IST)

3-215



— ----—-- ----- —~~- - - • - - --~~~~ - .---•- _ - --- ----- . -~~~~~~~ —- - - -

• SIJBNET (SNETLIST)

• Simple DATA (SDATLIST)

• VALIDATION_POINT (VALLIST)

• PERFORMANCE_REQUIREMENT (PRLIST )

The structure of STL and its sublists
are shown in Figures 3-40 through 3-47.

TYPE DECLARATION SOURCE FILE - A PDL 2 text file containing source
(TDSF) code for the requirements dependent

type declarations to be included in
the Simulator Program .

VARIABLE DECLARATION SOURCE - A PDL 2 text file containing source
FILE (VDSF) code for the requirements dependent

variable declarations to be included
in the Simulator Program .

Process i ng

Simulator Generation processing is shown in Figure 3-48. Add itional
commentary for some of the processing steps is given below.

[1] - Necessary control variables are
initialized . No values for simulator
type (BETA or GAMMA) or the scope of
the simulator (which R NETs are to be
included ) are assumed .

[2] - The user input RCL is parsed. (See
the REVS Users Manual [3] for the
definition of the SIMGEN RCL.) Both
the simulator type (BETA or GAMMA )
and the scope of the simulator (which
R NETs to include or exclude) are
required inpu ts.

[9-10] - The Requirements Analysis and Data
Extraction Function (RADX) is called
through the REVS Executive interface
procedure XXRADX to perform an analysis
of the R NETs to be included in the
simulator build. The RADX function also
constructs the Simulator Translation
List (STL), a linked list of ASSM
element pointers , which is used to
control the phases of translation .

3-216

~



- _ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- j f l~~~

r.I11 - The date and time of the SIMGENI. execution , along wi th the ID supplied
by the user and the names of PERFORMANCE

REQUIREMENTs include d In the simula tor
5~uild are recorded on the EEDF for
later use by SIMDA and by the Simulator
Program.

[12—19] - The steps of translating the ASSM
content into executable PDL 2 source
code are executed . Each of these
steps is further described in the fol-
lowi ng sections.

[20] - To conserve memory space, the space
occupied by the Simulator Translation
List (SIL ) is released .

[21—23] - If no fatal errors were encountered in
any of the translation steps, the con-
sol idation phase will combine all of
the requirements dependent source code
built during translation with the re-
quirements independent source code and
SETS modules to construct a compile
file (CE).

Procedure References

The following list correlates the functional processing steps shown
in Figure 3—48. with the REVS procedures in which the processing is per-
formed .

[2] - GGPARSER

[9] — XXRADX

[11] - GGPRIMEDF

[12] - GGTRDATA

[13] - GGTREVNT

[15] - GGTRVP

[16] - GGTRPR

[17] - GGTRVAL

[18] - GGTRALFA

3-217



[19] - GGTRRNET

[20] — GG8DISPOSE

[21] - GGCONSOL
[22] — GGCOMPIL

3-218

- - -



- - - . 
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~ ~~. ~~~~~~~- _--- _ —.. •

POINTER TO STL (GGARGU)
POINTER TO SUBLIST ALFALIST (FRSTALFA) Fig. 3—41.

0
POI~TER TO SUdLIST CLSSLIST (FRSTCLSS) FIg. 3—42.

0
POINTER TO SUBLIST EVNTLIST (FRSTEVNT) Fig. 3—43.

0
POINTER TO SUBLIST FILELIST (FRSTFILE) Fig. 3—44.

0
POINTER TO SUBLIST INLIST (FIRSTIN) Fig. 3—45,

0
POINTER TO SUBLIST OUTLIST (FRSTOUT) FIg. 3—45.

0
POINTER TO SUBLIST RNETLIST (FRSTRDAT) Fig. 3—46.

0
POINTER TO SUBLIST SNETLIST (FRSTSHET) Fig. 3.46,

0
POINTER TO SUBLIST SDATLIST (FRSTSDAT) Fig. 3—46.

0
POINTER TO SUBLIST VALLIST (FRSTVAL) Fig. 3—47..
NIL

0
POINTER TO SUBLIST PRLIST (FRSTPR) Fig. 3—46.
NIL

Figure 3—40 Overview of Simulator Translation List (STL)

3-219

- _ _ _ _ _ _ _-

.Lr~Z . .- -
~~~~~~

_ -
~; 

-

FRSTAIJA-~~-—;__ A~~H POI-~T LR TO REF EP.E NC U ) ALF’~A
A~~M PUINT~’~ TO L~T IO~~riI~ CRC.ATES

A , ‘~ I~ T~~ TO ~RJ.TZ.~ L~T ITY _CLASS
N IL

ASSM POINTER TO CRLAT ED ENTITY _CLASS

n— NIL
NIL

ASSM POINTER TO RELATIONSrU P DESTROYS
A~Sl POINTLi ~ To ~TkUYLJ L.~TITY_CLASS
NIl.

14fJ..__ ASSM POINTER TO DESTROYED ENTITY CLASS
U-NIL
U— NIL

ASSM POINTER TO RELATIONSHIP INPUTS
ASSM POINTER TO A LOWEST LEVEL SIMPLE INPUT DATA

~ IL

‘4r1~ ASSM POINTER TO A LOWEST LEVEl. SIMPLE INPUT DATA

fr-NIL

ASSN POINTER TO A LOWEST LEVEl. SIMPLE DATA CONTAINED IN AN INPUT FILE
NIL

ASSM POINTER TO A LOW EST LEVEl. SIMPLE DATA CONTAINED IN AN INPUT FILE
U— NIL
U—NIL

b’uLNkI( lu MtLAILut()flW UUirui~

C 

ASSM POINtER TO A LOWEST LEVEL SIMPLE OUTPUT DATA
NIL

~~~~~~~ ASSM POINTER TO A LO.IEST LEVEL SIMPLE OUTPUT DATA
NIL

ASSM POINTER TO A LOWEST LEVEl. SIMPLE DATA CONTAINED IN All OUTPUT FILE
NIL

ASSM POINTER TO A LOWEST LEVEL SIMPLE DATA CONTAINED IN AN OUTPUT FILE

ASSM POINTER TO RELATIONSHIP SETS
ASSM POINTER TO E.~TIIY _TY PE

NIL

191J—_ ASSM POINTER TO ENTITY TYPE
~~~~— NIL
U— NIL

ASSM POINTER TO REFERENCED ALPHA
(SUBSTRUCTURE FOLLOWING ~~ IS REPEATED FOR EACH ALPHA)

NIL

Figure 3-41 ALPHA List (ALFAL IST)

3-220



-
~

FRSTCLSS ASSM POINTER TO REIERL ~CEU EN TITY CLASS
A~~M P U I4 T J  TO KELATIU ,I~HLP COMPOSES

- AY. 4 ~‘JL ~TL~ TJ L~ T I1Y TY l~E
A~ .. -1 ~~L,~T LR TO RELATIONSHIP ASSOC IAT ES

A~~~1 Pul;1TLR TO SIMPLE LOWEST LEVEL ASSOC I.ATE3 DATA
NIL

ASSM POINT 1R TO SIMPLE LOWEST LEVEL ASSOCIAT ED DATA

ASSM POINTER TO RELATIONSHIP ASSOCIAT ES
ASSII POI;ITER TO ASSOCIATED FILE
NIL

ASSM POINTER TO ASSOCIATED FILE
fl— NIL
U— NIL

P.5514 POINTER TO ENTITY TYPE
ASSM POI STER TO RELATIONSHIP ASSOCIATES

NIL ASSM POI NT ER TO SIMPLE LOWEST LEVEL ASSOCIATED DATA

ASS M POINTER TO SIMPLE LOWEST LEVEL ASSOCIATED DATA

ASSN POINTER TO RELATIONSHIP ASSOCIATES

~~~~~~~~~~~~~~~~~~~~~~~ 

. ASSN PI)INTER TO ASSOCIAT ED FILE

~~~~~~~~~~~ NIL

~~~~~~ POINTER TO ASSOCIATED FILE

ASS M POINTER TO RELATIONSHIP ASSOCIATES
ASS M POINTER TO ASSOCIATED FILE
NIL

ASSM POINTER TO ASSOCIATED FILE

P.5511 POINTER TO RELATIONSHIP ASSOCIATES
AS~M POINTER TO SIMPLE LOWEST LEVEL ASSOC IATED DATA
NIL

~~~ 

ASSN POINTER TO SIMPLE LOWEST LEVEL ASSOCIATED DATA
NIL
NIL

ASSII POI :gTER TO REFERENCED ENTITY _CLAS S
(SUBSTRUCTUR E FOLLOWIi~C. U” IS REPEATED FOR EACH ENTITY_CLASS)

NIt.

Figure 3-42 ENTITY_CLASS List (CLSSLIST)

3—221



FRSTEVNT_*T—
~_AssM POINTER TO REFERENCED EVENT

~~~~~ NIL

ASSM POINTER TO REFERENCED EVENT
NIL

ASSM POINTER TO REFERENCED EVENT
~~~~

— NIL
NIL

Figure 3—43 STL Sublist (EVNTLIST)

FRSTFILE_+I__l
~
_
~~SM POINTER TO REFERENCED FILE

ASSM POINTER TO RELATIONSHIP CONTAINS
ASSM POINTER TO SIMPLE LOWEST LEVEL CONTAINED DATA

19EJ— ASSM POINTER TO SIMPLE LOWEST LEVEL CONTAINED DATA
~~~~

— NIL
NIL

ASSII POINTER TO RELAT IONSHIP ORDERS
ASS!I POINTER TO A SIMPLE LOWEST LEVEL CONTAINED DATA

ASSM POINTER TO REFERENCED FILE
tSUBS TRUCTURE FOLLOWING ~*“ IS REPEATED FOR EACH FILE)

NIL

Figure 3-44 FILE List (FILELIST)

3-222

FRS’T!N (FRSTOUT)~$~_.j.~_ ASSM POZ ,~TER TO REFERENCED iNPUT_INTERFACE (OUTPUT_INTERFACE)

E1—~—br1—— ASSM POI~ TER TO RELATIO NSHIP PASSES...1J ~j—.—~1~J-— Ass: 1 ~OINTER TO MESSAOE
ASSM P Oi ,~TEr’~ T~) RELATIONSHIP MAKES

ASSM POI .TER TO DATA

~~~~~~~~~~~~~ ASS M POINTER TO DATA

ASSM POINTER TO RELATIONSHIP MAKES
ASSM POINTER TO FILE

LØ~~~~~ASS M POINTER TO FILE

ASSM POINTER TO MESSAGE
ASSM POINTER TO RELATIONSHIP MAKES

~~~ 
I.. POI;.TER TO OAT~

L4D~~ASSM POINTER TO DATA

ASS.M POINTER TO RELATIONSHIP MAKES
ASSM POINTER TO FILE

ASSM POINTER TO FILE
NIL

U.— NIL

ASSM POINTER TO REFERENCED INPUT_ INTERFACE (OUTPUT_INTERFACE)
(S’JBSTWUCT URE FOLLOWIN G “ “ IS REPEATED FOR EACH INPUT_INTERFACE/OUT PUT_INTERFACE)

NIL

FIgure 3-45 INPUT and OUTPUT_INTERFACE List (INLIST , OUTLIST)

3—223

- — .—-—-- . -— -—--_—-- . ~~~~~~~~~~~~~~~

- FRSTSIIET
S~IBNET

J~~ AT] ASSM POINTER TO REFERENCED
{

NET

NIL PCRFORI4ANCE_REQUIREI~ NT
SIMPLE LOWEST LEVEL DATA

ASSM POINTER TO REFERENCED

[

I NET
SUBNET
SIMPLE LOWEST LEVEL DATANIL PERFORItANCE_REQUIREI(NT

[
* NET
Si~BNETLøri— ASSM POINTER TO REFERENCED SIMPLE LOWEST LEVEL DATA

NIL PERFORIIANCE_REQUIREP(NT
NIL

Figure 3-46 R NET, SUBNET, and SImple DATA List
(~ 4ETLI5T , SNETLIST and SOATLIST)

POINTER TO REFERENCED VALIDATION POINT
ASSM POINTER TO RELATIONSHIP I PUTS

ASSM POINTER TO SIMPLE LOWEST LEVEL INPUT DATA

~~~~~~~~~~~~~~~~~~~~~~ 

NIL

ASSM POINTER TO SIMPLE LOWEST LEVEL INPUT DATA
NIL

ASSM POINTER TO RELATIONSHIP INPUTS
ASSM POINTER TO INPUT FILE

ASSN POINTER TO RELATIONSHIP CONTAINS
ASSM POINTER TO SIMPLE LOWEST LEVEL CONTAINED DATA
NIL

L

~~~~~

ASSM POINTER TO SIMPLE LOWEST LEVEL CONTAINED OATA
NIL
NIL

POINTER TO INPUT FILE
CINTER TO RELATIONSHIP CONTAINS
ASSM POINTER TO SIMPLE LOWEST LEVEL CONTAINED DATA
ML

L
I~

ASSM POINTER TO SIMPLE LOWEST LEVEL CONTAINED DATA
NIL

L

~~~

ASsM POINTER TO REFERENCED VALIDATION POINT

NIL

(SUSSTRuCTURE FOLLOWING “*“ IS REPEATED FOR EACH VALIDATION_POINT)
NIL

Figure 3-47 VALIDATION_POINT Li st (VALL IST)

3-224

L .~ .—-_ _ _ _  _ _ _



SI)&N AJ~ TDSF

ST 
12

CGTROATA

ZNZTIALIZE

~ NTROL VARIABLES. DATA CONSTRUCTS.
PDS F

AS
GGTRIVNT

PARSE USER INPUT RCL. TRANSLATE EVENTS PSSF
AND ENABLEME NTS.

Sit. CD

14
y~~ 

IPIJIATO SI MULATOR EE DF
S:~PE TYPE — BETA

DUI~4ED

NO 
PlO VDS F15

GOT RVP
XXAE VSO UT ASSM TP~NSLATE TDSF

OUTPUT OIAWIOS TIC VALIDATION POINTS
MESSAGE . Sit 16

5 GGTRPR POSF

SET TRANSLATION ASSM 
P ~SL

~~FLAG TO FALSE. U REME S p F

GGTRVAI.

~ L TRA;ISLATE
IPtJLATO VALIDATION _POINTS .

TYPE
DEFINED 18

7 ASSM
GGT RA LF A

NO
7 TRANsLATE ALPHAS. PDSF

X.X?.EVSOUT
OUTPUT DIA U4OSTI C STL 19

GGTRR NET
TRA~SLATE

ELUF R_NET STRUCTURES.
TRMSLATE

SUBIIU STRUCTURES.
RANSLATI ~ ASSIl PDSF
FLAG TRUE

7 SIL
YES EXIT DiSPOSE OF

9 LINKED LISTS.

RADX
AHALY ZE ASSII AND

CONSIRUCI L1NFL~, LISTS.

STI. -

TDSF ~ ONSOLIDATI N
FLAG TRUEATAI. 2

10 ERROR
DETECTED IN 

YES VDSF
AMLYSI S YES

7
NO EXIT PDSF 22 EXIT

11
CONSTRUCT

GOPRIMEOF PSSF CONPILE FILE.
RE c :RJ SLPOE N

TE T~~i I~ . P.140 CF
CDF

23
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

RISF COMPILE MO
LINK EDIT.

*11
SDF

EXIT

Figure 3-48 Simulator Generation (SIMGEN)

3-225

- — -j_-- -. -~~~~~~~~ _ _

3.5.1 Data Translation (GGTRDATA)

Description

The Data Translation module of the Simulator Generation function
examines the repetitive and simple data i tems in it~ input lists and
generates the PDL 2 declaration statements to define Data Management
structures of the required nature and POL 2 procedures to access those
Data Management structures. Section 4.4 gives a complete description of
the Data Management functions that are provided .

Figure 3-49 illustrates the functional linkages used to model the

Repetitive Data Sets (RDS) structure and used to access i t from the
R NETs and ALPHAs . RDS ’s are stratified into four level s of complexity -

class , data—set , instance , and data-item . These levels are generalized
to cover the many special cases of data objects that REVS supports . A
class is a generalization of ENTITY_CLASS and is defined as a collection
of data-sets. Every data-set bel ongs to one and only one class. A

data-set is a general ization of FILE and is defined as a collection of

instances . A FILE , and INTERFACE , and an ENTITY_TYPE are all data-sets
each belonging to a class. Two special pseudo-classes are generated ,

one containing all FILEs and the other containing all INTERFACEs. An

instance is an occurrence of a collection of DATA and/or FILES bel onging
to a data-set. In the case of FILEs and ENTITY TYPEs , all instances
belong i ng to a data-set are identical but an INTERFACE may pass different

MESSAGEs (i.e., own different kinds of instances). Since the number of
instances belong ing to a particular data-set is variable , instance storage
is dynamically allocated and released and instance access is via doubly
linked list structures . The R NET or ALPHA requests data manager action
on instances wi th a number of different high level statements such as
CREATE , DESTROY , and SELECT . Finally, at the l owest level , individual
data items are the smallest quantum of information and may be ‘simple ’

(unattached to a Repetitive Data Set) or may be a member of an instance .
If DATA is associated with an RDS , the R_NET or ALPHA model gains access
to it via the SELECT or FOR EACH high level commands if an instance is
located . If two instances cannot be selected at once , DATA may belong
to both -- as in the case of Instances of two ENTITY_TYPEs owned by the
same ENTITY_CLASS.

3-226

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
-- - - — - -

~~
—— 



-~~~~ - -~~~ ~~~~~~~~~~~~~~~ -~~~~‘ —-~~ - - - - -  — — -~~---‘-- ~ —-—--~~~~~~~~~~-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

These generalized data elements are translated into three different
PDL 2 cons tructions —- type declarations , variable declarations , and
executable procedures . These constitu te the three outputs of the Data
Translation module.

Each data-set and class is declared in a PDL 2 type declaration as
one element of an enumerated type, EE7DSLST. This enumerated type is
declared as the index into the Data-Set/Class Description Array (EE9DS)
which , at simulator execution time , describes all data-sets and classes.
The elements of the Data—Set /Class Description Array are two variants of

one type, EE7DSTYP. One variant is generically named a Data-Set Descrip— - 
-

tion Block because such an entry contains an execution time description
of a data-set and points to the linked list of dynamically allocated
instances which the data-set owns. The other variant is called a Class
Description Bloc k because it contains , at simulator execution time , a
description of a class and in dicates which data-sets are owned by the Class.

Section 4.4 contains a detailed breakdown of all data fields in these two

entry types.

Each instance is declared in a PDL 2 type declaration as one element
of an enumerated type, EE7INLST and as a variant of a ‘super ’ record descrip-
tion , EE7INTYP. Each data i tem of an instance is declared as a field within
the instance variant of EE7INTYP. Thus all dynamically al l ocated instance

records are of the same PDL 2 type with variants depending on the instance

type. A static var iable of type specified in the ASSM is declared for

every data i tem (simple or repetitive). The user accesses a data item by

operatin g on the c ~respond i ng stati c variable using POL 2 statements . For
a repeti tive data item , an instance must be selected (data values transferred

from the dynami c instance record to the static variables ) before the static
variables contain val id information .

Most of the PDL 2 procedures which are created during Data Translation

manipulate the dynamically allocated instance records and/or static variables
in accordance with higher l evel Data Management requests . These procedures

create a dynamic instance record of a requested variant type (EE8NEWI),

destroy a dynamic instance record of a requested variant type (EE8DISI),

transfer data items to and from a dynamic instance record (EE8XIO and EE8XII) ,

3—227

~ 

. -
~~~~~~~~~~~~~~~~~~~~ --~~ ~~~~~~~

-
~~~~~~~ - ---~~~~~~~ ~~~~~~~~~~~~



-
~

-__ ----_ - —-- - --~ -

~~~~~~~~

-

~~

-— -

~

— - .

~~~~~~~~

-- —  -— -I’

order dynami c instance records in a data-set (EE8KYCMP), and transfer data
i tems between dynamic instance records (EE8CPYIN) . The remaining generated

PDL 2 procedures initializ e the static instance variables (EE8ININ , EE8INCL ,
EE8IIFAC , and EE8LOCAL) or initialize the Data-Set Description Blocks

(EE8SETUP and EE8FORM).

The Data Translation module , in the course of performing its functions

as described above , generates a series of linked lists which are used by

other modules in the SIMGEN functi on. The lists which are generated are as

follows : A list of all files used in the simulati on (headed by GG9LFILST),

a list of all data items used in the simulator (headed by GG9DECLST), a list
of all types used in the simulator (headed by GG9TYPLST), a list of all

initial values used in the simulator (headed by GG9IVLST), a list of all

enumerated types wi th sublists of enumerated values used in the simulator

(headed by GG9ENMLST), and a list of all owners of data or files in the

simulator (headed by GG9OWNRL).

Input

ASSM - A ll data element names .

SIMPLE DATA LIST (SDATLIST) — A simple linked list of all simple
(non-repetitive) DATA items to be
include d in the Simulator Program
(See Fi qure 3-46).

FILE LIST (FILEL IST) - A complex (multi-level ) linked list of
all FILEs to be included in the Simu-
la tor Program with sublists of DATA
i tems CONTAINED IN each FILE (See
Figure 3-44).

INPUT_INTERFACE LIST (INLIST) - A complex (mult i-level ) linked list
of all INPUT INTERFACEs to he
inclu ded witE sublists of MESSAGEs
wh ich are PASSED THROUGH each INTERFAC E
(See Figure 3-45).

OUTPUT_INTERFACE LIST (OUTLIST) - A complex (multi-level ) linked list of
all OUTPUT INTERFACEs to he included
with sublists of MESSAGEs which are
PASSED THROUGH each INTERFACE (See
Fiqure 3-45).

ENTITY_CLASS LIST (CLSSLIST) - A complex (multi-level ) linked list of
all ENTITY CLASSes to be included in
the Simulator Program (See Figure 3-42).

3-228 

- - - -  - - - - ~~~~-- -~~~_ 



— — —- - jtc~~ *.~~— ’ ~
- -

~~~
- - ‘

~ ~~~~~~~~~~~~~~

— - — - - - — -

Output

PROCEDURE DECLARATION SOURCE - A text file containing the PDL 2
FILE (PDSF) source sta tements for the procedures

generated by Data Translation. The
procedures appear on the file in the
followi ng order : EE8XIO, EE8XII ,
EE8ININ, EE8SETUP , EE8NEWI , EE8DISI ,
EE8INCL, EE8KYCMP , EE8FORM, EE8CPYIN ,
EE8IIFAC , and EE8LOCAL.

TYPE DECLARATION SOURCE FILE - A text file containing the PDL 2 source
(TDSF) statements for declari ng the type of

structures used to model the RDS. The
type declarations appear in the follow-
ing order: EE7DSLST, EE7INLST , user
enumerated type declarations (if any),
EE7DSTYP , and EE7INTYP .

VARIABLE DECLARATION SOURCE - A text file containing the PDL 2
sourc e statements for declar ing the
array and variables used to model the
RDS. The variable declarations appear
in the following order: EE9DS (Data-
Set/Class Description Array), and DATA
i tem variable declarations.

FILE LIST (headed by GG9LFILST) - A linked list of all FILES processed
by the data translation module. Each
entry of the list has a sub--list of all
the FILE ’s owners (ENTITY CLASS or
ENTITY TYPES), the FILE’ s name (an
AASTRIEG), the FILE’s ASSM address, a
LOCAL ITY flag (BOOLEAN) indicating
whether the FILE is LOCAL (FALSE) or
GLOBAL (T RUE) , and an owner-check id
(INTEGER) identifying the FILE’ s owner—
check procedure.

DATA LIST (headed by GG9DECLST) - A linked list of all DATA processed by
the Data Translation module. Each
entry of the list has a sub— list of
all the DATA ’ s owners (FILEs , ENTITY_
CLASS, or ENTITY TYPES), the DATA’s
name (an AASTRIN~), the DATA ’s ASSM
address , a pointer into the DATA-TYPE
LIST indicating the DATA ’s PDL2 TYPE,
a pointer into the DATA-INITIAL-VALUE
LIST indicating the DATA ’s INITIAL-
VAL UE , an INITIAL VALUE status flag
(INTEGER) indicating that the DATA ’s

3-229

~~~~- - - -~~~~~~~-



- INITIAL_VALUE has been looked for in
the ASSM (1) or not (0), and an owner-
check id (INTEGER) identi fying the
DATA ’s owner-check procedure.

DATA-TYPE LIST - A linked list of all the DATA-TYPES
(headed by GG9TYPLST) (PDL 2) processed by the Data Trans-

lation module. Each entry of the list
has the DATA-TYPE’s name (an AASTRING),
the DATA-TYPE ’ s ordinal (INTEGER), and
a scratch flag (BOOLEAN) used in other
modules to indicate whether the DATA-
TYPE is used or not.

DATA-INITIAL-VAL UE LIST - A linked list of all the INITIAL_VALUES
(headed by GG9I VLSI) of DATA processed by the Data Translation

module. Each entry of the list has
value of the INITIAL_VALUE as an AASTRING.

DATA-ENUMERATED-TYPE LIST - A linked list defining all the
(headed by GG9ENMLST) ENUMERATED—TYPES of DATA processed by

the Data Translati on module. Each entry
of the list has a pointer to the
ENUMERATED-TYPE ’s entry in the DATA-
TYPE LIST , a sublist of values compos ing
the ENUMERATED-TYPE’s RANGE , and a
countered giving the number of values
composing the ENUMERATED-TYPE’s RANGE.

ØWNERS LIST (headed by GG9OWNRL)- A linked list of all the DATA and FILE
owners processed by the Data Translation
module. Each entry of the list has the
owner ’s name (an AASTRING), the owner ’s
ASSM address, and the owner ’s type
(enumerated type designati ng no type,
MESSAGE , FILE , ENTITY TYPE , and ENTITY-
CLASS).

Processing

Processing performed in the Data Translation module is shown in the

flow di agram of Figure 3-50. The following comments refer to processing

steps in the flow diagram.

[1] - Includes such operations as assigning
values to variables and arrays for
use throughout the Data Translation
module , obtaining ASSM addresses for
attri butes , and generating PDL 2
procedure headers .

3-230



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - —-- — . -- — — —,---——--- - ------- - — — --------- - -

1

[8] - Implies that the DATA i tem will be
initialized only once at the beginning
of simulator execution.

[9] - Implies that the DATA i tem will be
initialized at the beginning of each
R_NET executive.

[10] — Includes such operations as initializ-
ing first data—set of class name and
last data-set of class name.

Procedure References

—
The followi ng correlates the functional processing elements shown in

Figure 3-49 wi th the REVS procedures which perform the indicated processing.

[1] - GG8DXINI

[2—9] - GG8SIMPLE

[10-35] - GG8FILES

[36] - GG8ICLASS

[37-63, 64-65] - GG8INTRFACES —

(66,67] - GG8ECLASS

[68-109] - GG8CLASSES

[110] - GG8DXEND

3-231

---~~~~~ - - ~~~~~~~~~~ -—-- -~~~~~~~~~--. -—

— - -- —-
—F—-- - —

~~~~~~~ —‘--; ~zr~—---

CUSS 1 DATA-SET 1 INSTANCE 1
DESCRIPTION BLOCK DESCRIPTIO I BLOC K OF DATA-SET I
FIRST DATA-SET 

___________ _______
FIRST INSTANCE P PREVIOUS INSTANCEOF CLASS

________________________ 
OF u,-’~TA- StJ I

CURRE NTLY SELECTE CUR~(EI4TLY SELECTED NEXT INSTANCEDATA SET OF CLASS
_______________________ 

IUSTA~CE OF DATA SET 1 —

LAST DATA-SET LAST INSTA~CE DATA XOF CLASS I OF DATA-SET 1

DATA Y

ILE Z DESCRIPTIO N BLOCK

CLASS j DATA-SET k INSTANCE £
DESCRIPTION BLOCK DESCRIPTION BLOCK OF DATA-SET I

I FIRST DATA-SET 
________

_______________________ OF_ DATA-SET _ k
I CURRENTLY SELECTED

OF CLASS j  
_._..91

~ 

FIRST INSTANCE -—a PREVIOUS INSTANCE 
_______

CU RRE ~TLY SELECTED NEXT INSTANCEDATA SE T OF CLASS j INSTA~CE OF DATA-SET k
LAST DATA-SET LAST INSTANCE DATA X(~C T A..~~c r  ~.(iF CLASS j1~ 

- -. - -
DATA Y

FILE Z DESCRIPTION BLOCK

DATA-SET fl INSTANCE m
DESCRIPTION BLOCK OF DATA-SET 1

p FIRST INSTANCE I PREVIOUS INSTANCE 
_______OF DATA-SET n

CURRENTLY SELECTED NEXT INSTANCEINSTANCE OF DATA-SET n

LAST INSTA~CE DATA XOF DATA-SET n

DATA Y

ILE Z DESCRIP TION BLOCK

3.— ~1 ____________________
FIXED ALLOCATIO N IN ARRAY ACCESS DYNAMIC ALLOCATION

(DATA—SET/CLAS S DESCRI PTION ARRAY) IN LINKED LIST ACCESS

Figure 3-49 RDS Al l ocation and Access

3—232

— --



- ~~~~~~~~~~~~~~~~~~~~~ __J—
~~

-—-—.— -—.
~

.-- — — -

6GTRDATA *11

11
INITIALL ..L FOR FOR EACH FILE

DATA TkA*~LATIOl4 lid THE FILE —

PR~)CLSSI.4G. LINi~k.O LIST.

2 12
A
~~TA ITIi~ IN GE’.ERATE UECLARATION
SIMPLE DA TA — — F~A FILE IN THE

- TDSF LIST OF DATA—SETS.

__________ 13—- .~ 1 I~ LE —
T

&~- A ~.AT IC~ FOR I GENERATE CODE TO
1k IT 1.~~IlEVDSF O..T~ ITEM ~F ~OT I

L?.4)Y CLA A.E~. I I R FILE DESCRIPTION BLOCK.

I 14
(

__
_••

~ ~~~T!O[TV ~~PZ1 ACCESS FILE S
NOT A(,p~ J~ i.~~. P. 1C A~E 

I 

A~SM ATTRIBUTE OF LOCALITY.

BCCES$ DATA ITEM 5 1
~~~~~~~~~~~~~~~ RL8UTE OF LO~~~ITY. I FOUND~ 

LOCAL ITY
7

YES

YES LOCALITY I
7 1FOUND

I ~~ LOCALITY
• LOCAI.

7
Loc*~.iiy

~o
HO I

LOCAL

[~~~
RATE COU

~
T
~~1..4~~~~~~

I

YES

YES ADD FILE TOTREAT DAT LOCAL FILE LIST.ITEM AS GLObAL .

I 18
GENERATE CODE TO 4 $t’.t..

TREAT D..TA I EiCLAR.ATION F3R
F ILt I.,~TA~CEITEM AS Lc~cAL.

I 19

T DSF IN I;i~TAk~L ~~Rp

— — — — GENERATE COOE TO
CREATE FILE LNSTAU CE

G A LI4A MIC RECORD.

10
20INITIALIZE FOR

CLASS OF FILES. GENERATE CODE TO
DEST~3Y FILE INSTANCE-

C~NAMIC RECORO .

A/I *12 (
~

)

Figure 3-50 Data Translation (GGTRDATA)

3-233

FOR EACH FILE (~~)

21
GENERATE SKELETON
CO~E TO ~1A~ LPULA TE

NO QES DA TR FILE INSTANCE. OLER FILE

1
22

YESFOR EACH DATA
ITEM IN —- 31

FILE SUBL IST.
PICK UP DATA ITEM

WHICH ORDERS FILE .
23 IVA~.IA~LE

OEC LARA TI~ N 32FOR DATA ITINI IFVDSF READY DECLARED. GENERATE CODE TO
ORDER FILE INSTANCES

24 G R DY DATA ITEII.

DECLAI (ATLUN IF TYPE IS 33TDSF L UAL ~ AT ED A ND I GENER.ATE CLOS ING CODE

MANIPULATE TIlE25 r RD-DATA I EM
DECLA RAT Iii

F TO FILL I ,SiA~CETDS RECORD DECLARATION. — — _j

26

~~~~~~~~~~~ -
l k I T &.i ~ E ~ATA ITEM

R A R i A ~LE W4 c. 4 FILE GEIdERATE DECLARATIONINSTANCE A~ INITIALIZED. TDSF FOR FILE CLASS.

27 IGE kEPA TE COD E TO 35
TRA.~Si-LR O,~TA ITEM 

GENERATE CODE TOF,Iti l DY. 
~~ ~ INITIALIZE FILL CLASS

BLOCK.

28
GENEkATE C...LE U 36
T iSI~ R ~A TA IT EM

R FR ...-: ~TA~ I C ~~~~~~ INITIALIZE FORTO G Y ’~A~ IC 4 LCORD . CLASS OF INTERFACES.

CuOL TO 7C~ Pi -~ IA ~T_ M TO
R ~~~ ..‘ - -‘~ I’. R~ LURU INTERFACE IN TIlEFI JI ~Ir- L~ . INPUT INTERFALEI Th

0/2

38
8/2 GENERAT E DECLARAT ION

FUR IkTLR ~ACE IN THE
TDSF LIST OF DATA -SETS.

*13 (
~3

Figure 3-50 Data Translation (GGTRDATA) (Continued )

3—234 



~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
—

~~~ 
—

FOR EACH iNTERFACE ’
FOR EACH MESSAGE

3~ ~~~ 

~~t~~~-rv~~ ~~i I I
GENERATE CODE r “

~ I n :— - TF •~ p I
TO ii~T IA LI Lt. 1...____._ 1.—I . . - .. - - .

~~ 
‘~~~ I

DESCRI~T IO.3 BLOCK. ¼..ia~f_
) I NC ,~ :i .JtL • D .  I

40 ~~~~F I I I
Elk. SI~L L L S  N 0 ~~J ITLM
TO INITI,,LLCL ALL

N MESSAJE~ ~HL 4 INTERFACE F ~
I~ INITIAL IZED . TOS ~ ~~~~~~~~~~~~~~~ I I I

41 52 1 1 I
FOR EACH I.:T :~~ l~~ A T A ITEM -

INTERFACE SUBLIST G A ~~ ~~~~~ -
42 I 

- , 

I I I
GEt,ERATE Sk.ELETON A.47L ~3JL . i

L~.CLAI~AT i. 4 FOR T~. ,,F E~ 2~.TA ITEM
TO MESSAGE INSTANCE A F - ~~ 31 ~.MIC RU~~AD

IN INSTANCE LIST . i. ~TAT :~ YARIA~.~.. I I
43 5 I IGENERATE CODE TO 

~~~~~~~~~~~~~MES~,AGE F . 
- -

~ • EN iNST~~iI.L UYNPJIIC RECORD. A T D ~~~~~ C ~~~~~~

44 I I I I
GENERATE CODE TO — — J I IDESTROY MESSAGE -

~~~~~~~~ ~~~~~~~

~~~TTII~~~~
I N H

GLNER.ATE SKELE TON I V~~~~~ E~~~~~IME .
ML~SAGE I~STAhCt . I

46 FOR EACM FILi I I

-. N

~~~~~~~~~~~~~~~~~~~~~~~~ 

~1
— 

T~~~~~~ :NFILE

I TH~~~~~~
F
~~ E

F
~~~T. 

I I
L~~~J ~~~~~ ~~~LARED.] I I I

I 60 H I
C/4 I ~~~~~~~~~~~~~~ I ‘9 X P R

1J4

Figure 3-50 Data Translation (GGTRDATA) (Continued)

3-235

-- —--- —-- - . - --- -~~~~~~~~ --- - . — - - --- ---- - - -—-- -- .

I
FOR EACH ENTITYJ LASS

1

R1 I I I
I I I

NITI-~LIZE FILE INSTAIIC I I INI T IAL I ZE FOR
VARI ~~~ES WrEN MESSAGE THE £i~T ITY CLASS.

4STN ~iCE hITIALICED. I I I —

__ j ((70 I
I I INITIAE~ZE DATA ITEMS I~ L

A AND ~1LES W ITH
OWNLl~. ~ T ITY CLASS.

62 I I 71•GENE CLOS N
CF SKELETON TO
~tANIP UL.,TE THE I I tM IN

~~SSAGC I NSTANC . ENTITY CLASS 1 1
— — — J f 72 I I

3: E ODE TO
~INITIALIZE DATA ITEM

~~~~~~~~~~~

(GENERATE CLOSING CODE 
CLASS I~ IT . IR 4.UYIASi.E wHEN ENTIT Y

OF SKELETON TO I
INITIALIZE ALL I I

M G  I ——
I IF/4 FOR EACH FILE

IN ENTITY CLASS
u ~~~~~ 1 I

FOR E.ACH I IINTERFACE IN
THE OoTPUT — 

1 74 IS INTERFA FRE ON I
LOCAL FILEI LIST I I

PERFORM PROCESS iNG
FROM ( YES f I0/2 TO F/4 .  I RD(IYE FILE FRON I I

LOCAL FILE LIST. I I
76 I I6 EN U N AL
ZE FILE & FILE I S TA.4 C I

GENERATE DECLARATION VARIASLES NrIEN LI T h R  I I
FOR INTERFACE CLASS. R CLASS IS It IIT IALIZED. 

i
67 J I

GENERATE CODE TO
INITIALIZE INTERFACE

LASS DESCRIPTIO N BLOCK

B
ENTITY CLASS IN I

THE (NITTY _CLASS — 
1

U4~~~~~~~~~~~~~~~~

Figure 3-50 Data Translati on (GGTRDATA) (Continued)

3—2 36

______________ —-



—. - - -~~~~- .-~~—- --~~~— — -
~ .- — -

~~~~~~~~~~
- - - — - .—

FDA EACH ENT ITY CLASS
FOR EACH ENTITY TYPE

(*15

~P I I
17 88

I IENTITY TYPE IN I N IT I A L IZE DATA ITEM
ENTITY_CLASS —

N AR IA IYLE ,~hEN ENTITYJYP I I

I I 1STA;,CE IS INITIALI ZEU I I I

7$ I I I
GE~E TE OJE I

NERATE DECLARATION FO I TRAN SFER DATA ITEM I I ItNTITY TYPi. IN THE g FRuM STATIC VARYA ~LE
ITDSF LIST OF DATA—SET S. I TO UY *AMI C RLCu~u I

79 I
GENERATE CODE TO GE NERATE CODE TO I

iNIT iALIZE ENTITY ...TYPE TRA~SFLR DATA ITEM I
TO STATIC VARIABLE. I I IR DESCRIPTION BLOCK. 0 N FR OM DY4 A III C RECORD I I

$0 I I I I
N E S X .ELE ON I I

DECLARATION FOR — I I
ENTITY TYPE INSTANCE I I IF IN THE iNSTANCE LIST I

91 I I
1 I FOR EACH FILE

GENERATE CODE TO IN ENTITY TYPE
CREAT E ENTITY TYPE I SUBL IST. 1N INSTANCE DYF4AMI CThE CORO I I I

92 I
GENERATE COJE CRE IFILL DESCRIPT iON BLOCGE~ERATL ‘ODE TO I - . -

~UAr ~4 I ‘•-‘.~ “ ‘S I~~ ~~~~~~~ IDESTROY EM~iTI TYPE TYPE INSTA.4LE REL..44 L’ . I I
NSTA.NCE DYNAM iC ~ECORD . I I I I

83 I ~~~~IS I
~~ FILE ON I I

GENERATE SKELETON CODE THE LOCAL FILE I 1 I
TO MANIPuLATE I LISTENTITN_T~PI. INSTANCE. 7 1 I

YES I$4 I I I
DATA ITEM IN REMOVE FILE I I I

FRON THE LOCAL I IENTITY TYPE 1 I FILE LIST. II
‘ I I

85 I
N E VAR IL I U I I
~ELLA PATlDN FOR I I I N I T I A L IZ E FILE I

YDS F DATA ITE M IF IT IS I W HL~ EN IT Y TYPE
MElT AL~~A3Y DECLARED. NSTA .*CE IS INITIALIZED. I I‘4 I

so I 96 I I
EN ~ I (UERAT [CODE TO INITIAL

OE CL~A .ATION I I IZ~ FILE t N..TAUCE ~RRI— I
TDSF TYPE IS EN UMERATED AND I I 9 ‘4 ALLE S w,~EN E..TITY TYPE I I I

NOT ALRLA..JY LCLARED. I - - I

87 I i
ADD DATA ITEM E RA. I

~ I I
lION TO THE ENTITY I I

TDSF TYPE INSTA NCE OYI-4AIITC I I IA E R A

B/S A/B (
~

) (~
)

Figure 3-50 Data Translation (GGTRDATA) (Continued)

3—23 7

—_-— - -

~

—_ - -_-“ -— —- . _ -~~~~--“

_______________________________________ - T- ~~~~~~~~~

0/6

*14 8/6 C/6

105
‘4 £ H i., N C CUuSiN~ DOE

DATA ITEM IN OF LKLLLT..,I
ENTIT Y CLASS —

N TO , .~LATE TPE
SUIT I ENTITY TYi’E I ISIANCE.

98 I I I
OLCLAr.ATION FOR — —

DATA ITE M IF IT IS
READ Y E RED

I 106

C N GENERATE DECLARATION
DEGLAI1.AT IJN IF TYPE TDSF FOR ENTITY _CLASS.

DS I~ E.,~:lZRATEO AID
NOT ALREADY DECLARED.

107
100 - TO i:iIT IAL IZE

DESCRIPTION YL OCK .

101..—. i
TRA~ISFER uATA ITEM FROM

9 R

I FOR EACH FILE
102 IN LOCAL —

E N E C 0 FILL LIST.
TPA~SFER DATA ITEM

G N FR ..I ~TRTIC VA S1~~LL.ID DYNAMIC RECO50 . 109

I GENERAT E COD E TO
INITIALI ZE FILE ONR ENTRY TO EVERY R_NET.

103
FOR EACH FILE

IN ENTITY CLASS —

SIJBLI~~. I 110

CO4~LET E PROCESSING
104 FOR DATA TRANSLATION .

L.J pIt .
FI LL DESC~IPTIO’I 2LOC

A D ~J-~K IT T O ENTITY
Y PE INDT ~~.CE REGORDT -

——J EXIT

11/6

Figure 3-50 Data Translation (GGTRDATA) (Continued)

3-238

- _ - - - --

3.5.2 Event /Enablement Translation (GGTREVNT I

Event/Enablement Translation retrieves ASSM i nformati on related to

EVENTs and INTERFACEs and uses it

• to define the i nput values and length of procedure enablement
control tables used by the Simulator Program , and

• to generate source code for the Simulator Program ’s Procedure
Scheduler (EESCHED) .

The control table inputs are stored in the Event/Enablement Definition

File (EEDF) which is used by EEINITIAL , the Simulator Initialization proce-
dure , to load the EEVLIST table described below. The control table lengths

are output on the Constant Declaration File (CDF) and the Procedure

Scheduler source code is output on the Procedure Scheduler Source File

(PSSF). The contents of both of these files are copied directly t— . the
Compile File during the consolidation phase of Simu l ator Generation.

The procedure eriablement contro l tables consist of the Even t List ,

EEVLIST , and the Event Dependency List , EEDEPLST. EEVLIST is an array of
records each of which describes an EVENT or INTERFACE to be included in
the Simulator. Each record also includes EEOEPLST indices for the first
element and the last element in the group of EEDEPLST elements enabled

by this EVENT (or INTERFACE). The EEVLIST structure is illustra ted in the

example bel ow.

EEDEPLST is an array of log ical enablement variables each of which is

associated with an R NET , special procedure or SETS module . As illustrated

in the example below , the elements of EEDEPLST are grouped accord i ng to
EVENT (INTERFACE), with each element in the group correspond ing to an R NET
or special procedure (SETS module) dependent on that EVENT (INTERFACE) for

enablement. Note that more than one EEDEPLST element may be associated with
a given R NET if the R_NET is enabled by one of several EVENTs . The logical
variables in EEDEPLST are set TRUE by the Simulator Executive to effect

enablement of the corresponding R_NET , special procedure or SETS module.

The genera ted Procedure Scheduler source code calls enabled procedures

and resets to FALSE the enablement variables in EEDEPLST .

3—239

-- —- --

Input

ASSM

EVENT LIST (EVNTLIST) - A multi-level linked list of EVENTs
referenced by the Simulator Program
(See Figure 3-43). EVNTL IST is a
sublist of the Simulator Transla ti on
List .

INPUT_INTERFACE LIST (INLIST) - A multi-level linked list of INPUT
INTERFACEs referenced by the Simulator
Program (See Fi gure 3-45). INLIST is
a sublist of the STL .

OUTPUT_INTERFACE LIST (OUTLIST) — A multi-level linked list of OUTPUT
INTERFACEs referenced by the Simulator
Program (See Figure 3-45). OUTLIST is
a sublist of the STL .

R NET LIST (RNETLIST) — P~ simpl e linked list of R NETs ref~rence d
by the Simulator Program fSee Figure
3-46). RNETLIST is a sublist of the
STL .

Output

EVENT/ENABLEMENT DEFINITION - The EEDF conta i ns the i nformation
FILE (EEDF) necessary to initialize enablement con-

trol tables which associate EVENTs
and procedure enablenients . It conta i ns
an Event Definition Record for every
EVENT or INTERFACE referenced by the
requirements model . The content of
these records is defined in Section 3.5.

PROCEDURE SCHEDULER SOURCE - - A PDL 2 text file containing procedure
FILE (PSSF) enab lem~mt source code , defined bel ow,

that is inserted in the Procedure
Scheduler procedure EESCHED .

CONSTANT DECLARATION FILE (CDF) - A PDL 2 t ext file containing constant
declarations for EEVMAX (leng th of
EEVLIST) and for EEMAXDEP (length of
EEDEPLST).

Processing

Event/Enablecnent iranslation processing is illus trated by the follow-
ing example. Assume RSL relat i onships as follows :

3-240

_ _ _ _

—
- -~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-

INPUTFACE ENABLES R_NET1 .
EVENTI ENABLES R_NET2.
EVENT1 ENABLES R_NET3.
DATA1 DELAYS EVENT1 .
EVENT2 ENABLES R_NET2.
EVENT2 ENABLES R_NET4.

OUTPUTFACE CONNECTS RADAR .

These relationships would result in the EEVLIST and EEDEPLST structures
shown in Figure 3—51 . -

Processing is shown in the flow diagram of Figure 3-52. The followi ng
c~~~ents refer to processing steps in the flow diagram .

[14, 22 , 26] - For R NEIl , for example , the generated
code would be:

IF EEDEPLST (5) THEN BEGIN
EEDEPLST (5): FALSE; RNET1

END;
The dispatch code for SETS modules and
special procedures has the same form.

[16, 21 , 25] — The Event Definition Record for EVENT1 ,
for example , is contained in line
of the EEVLIST illustration in Figure
3-50. Event Definiti on Records for
special ev nts and interfaces are shown
in lines a and ~~ respectively.

[27] — For this example , the declarations
would be

EEVMAX = 7;
EEMAXDEP = 10;

3-24 1

- - — -- —-- - -~~~~~~~~~~~~~~~~~~~~~~~ - — - ~~~~ - -~ - - - -

Procedure References

In the flow diagram of Figure 3-52 , procedures are called to perform
the indicated processing steps as follows :

[14] - GGPSSF

[16] - GGEDFVAR

[21] - GGEDFVA R

[22] - GGPSSF

[25] — GGEDF VAR

[26] - GGPSSF

3—242

h
I.~ —

~~~~-_- - .—— -- -  -- - ---_ -



- - - - ----.-
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

- I

EXAMPLE FORMAT FOR EEVLIST

EVENT EVENT EVENT EEDEPLST INDEX EEDEPLST INDEX
DELAY TO FIRST DEPEN- TO LAST DEPEN-NO. NAME TYPE DENT PROCEDURE DENT PROCEDURE

0 EENGAGE EEIMMED 0.0 7 7

1 EESTOP EEIMMED 0.0 8 8

2 EEDEBUG EEIMMED 0.0 9 9
3 EEVA LID EEIMMED 0.0 10 10
4 EVENT1 EEDELA Y DATA1 1 2
5 EVEN T2 EEIMMED 0.0 3 4
6 INPUTFACE EEINFACE 0.0 5 5

7 1 OUTPUTFACE EEOUTFAC E 0.0 6 6

EXAMPLE FORMAT FOR EEDEPLST

ENABLING PROCE-
EVENT/IN— i DURE(S) EEDEPLST
TERFACE I ENABLED 

________

EVENT1 __—{ 
R NET2 P FALSE
RThET3 —P FALSE

EVENT2H 
R NET2 P FALSE
R NET4 —1 FALSE

INPUTFACE R NET1 P FALSE
OUTPUTFACE RADAR - P FALSE
EENGAGE EENGAGE P FALSE
EESTOP EESTOP P FALSE
EEDEBUG EEDEBIJG I FALSE
EEVALID EEVALID P FALSE

FIgure 3-51 Example Fonnats for EEVLIST and EEDEPLST

I
3-243



_ _.._ __..__________ ._ ..___ ____ ___ •___ _— — — -—-—— — ——

GGIREVNT A/I

V1(TUS 1
ENLIST ~~ . •.~3LC5INITIALIZE POINTER ANi) RL LATtO..~r iI- ’

COUNTER VARIADL.ES. MYING TrI~S LITU*T
AS SUtI t.CI

&SSM
2

FOR EACH EVENT RETR IEVE R NET
AND INPUT ~,UJ4L T~~rIsINTERFACE . 

ASSN OBJECT OF ‘ENANLES .

11

EVENT I LI ST OrT~OSE
OR INTERFACE I S TO SE INCLU DED

INTERFACE - MLJLATION .

7 
IEVENT 1 

ISI R NET TO NO
BE iNCLUDED

SET EVEN T TYPE TO i 7
EEII4ED AND
DELAY TO 0.0. I 13 

YES

S L I.

SET EVENT TYPE TO I *1411/OR EEDEPLST i ILEINFACE AND POINTt.R 2.
DELAY TO 0.0.

6 I GENERATE N NET
DISPATCH CO~~ FOR

DETERMINE IF EVENT IS
OBJECT OF ‘DE LAYS’ I 

PS SF PRUCtDURE SCHEDULER .
RELATIONSHIP.

N I
7 I —

‘DELAYS’ NRELAT IONSHIP 0 
SIGN YE N NU
AND I~CREMiNT

EVC 4T O~FI’ *~ TL ON
YES I RECORD COD ITLA.

a I 16
S EVENT TYPE

TO EEDLAY . I GENERATE EVENT
ASSM SET DELAY TO NA!4E OF I

RELATIONSHIP SUBJE~LJ 
I 

E EDF DEFINITION RECORD.

I — — — —  I(
~j ) *12

FIgure 3-52 Event/Enablement Translation (GGTREVNT)

3-244

--— 
---



- — —- ~ ~~~~~~~~~~~~~~~~~~~~~~ -— -
—

.~~~~~~~~~~ :.. -;-.- -

HERF
~~~~)-1

t r - ~ i I SET Dt~J~
1
~~~O.O. I

INCREJ4ENT ELDEPEST
N V OIJEC PO1N1L~S.

(SUBSYSTEM) OF
CONNECTS ’

RLLATIONSNIP HAVING 25
THIS 1 *TIR~ACLAS S~~ LCT. GENERATE EVENT

ELOF DLI INhIjt Rx C.j RD.
20 

EVENT 4UM ~~ER. 1 I
I 

~~~~~~~~~~~~~~ ~~~~~ 
I

INCRU~~ T E ~
’E’~T I -“-—-.—.—-‘ ~~~~~~~~~~~~~~~~~~~

— —
utFI. I I IJN RECORD.

22
GENERATE SUBSYSTEM ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ST LENGTH.
DISPATCH CODE FORPSSF PROCEDURE SCHEDULER.

c~D

FIgure 3-52 Event/Enablenient Translation (GGTREVNT) (Continued)

3-245

____ _ _ _ ~-~~~~~-

3.5.3 Functional Simulator Validation Translation LGGTRVALI

Description

The Validation Translation module analyzes all VALIDATION POINTs to
be included in the simulator build. It determines the data to be collec ted
at run time and generates the source code to implement record ing of the

data .

The source code generated for a VALIDATION POINT consists of calls
to Simulator Data Management routines to access instances of repetitive
data sets (FILEs), and of PDL 2 output procedure calls to write out the
contents of both the FILEs and simple DATA which are RECORDED BY the

VALIDATION_POINT.

The generated recording source code for each VALIDATION POINT is

written as a procedure on the PDSF file6 During R_NET and SUBNET transla-

tion , a call to the appropriate procedure is then generated whenever a

VALIDATION POINT is referenced .

Input

VALIDATION POINT LIST - Linked list of VALIDATION POINTs
(VALLISTJ with sublists of INPUT simple DATA

and FILEs . The FILE lists also have
sublists of the DATA CONTAINED in
the FILEs (See Fi gure 3—47).

Output —

PROCEDURE DECLARATION SOURCE - Record i ng procedure source code for
FILE (PDSF) each VALIDATION _POINT.

Processing

Processing for the Validation Translation module is shown in Fi gure

3-53. Additional coments which reference the processing block numbers in

that flow diagram are:

[2] - The header written consists of the
PDL 2 procedure and l ocal variable
declarations.

[4] — The source code is a series of PDL 2
WRITELN calls to output data names and
values to the file EEVALDAT .

3-246

- ~~~~~~~~~~~~~~~~~~~~~~~ _________
- — - - -

[6] - The source code wri tten consists of
a call to a Data Management routine
which saves the current file environ-
ment.

[7-9] - The source code uses Data Management
routines necessary to sequentially
access the instances of the FILE. For
each instance , code is generated to
write the data names and values to
the file EEVALDAT.

[10] - The source code written consists of
a call to a Data Management routine
which restores the previously saved
file environment.

Procedure References

The software procedures which accomplish the processing shown in the
blocks of Figure 3-53 are as follows :

[2] - GGTRVAL

[4] - GGVALDATA

[6-9] - GGVALBODY , GGVALFILE

[10] - GGVALBODY

[11] — GGTRVAL

3—247

~~~~~~~~~- . -- ~~- -- -
~~ ~~~~~~~~~~~~



~ --~ --~ --~~~ ~~~~ 
_

FOR EACH WR ITE SOURCE CODE IVAL IDATION — — TO LOO PALLIS POINT. PDSF THROUGH ALL INSTANCES. I
2 I 8 I I

WRITE VALIDATI ON FOR EACH
PDSF PROCEDURE HEADER. It4STMCE.

I I I3 9
FOR EACH WRITE RECORDING ISIMPLE — SOURCE CODEDATA INPUT . I POSF FOR CONTAINED O TA. I

4 I I  I I I
WRITE RECORDING —

PDSF SOURCE CODE.

I I ~° I I
WRITE DATA MA~AGEMENT

CALL 10 RESTORE— — POS F CURRENT INSTk~CE.

5

FOR EACH
FILE INPUT . — I I

11
6 IWRITE VAL I DATION

P4ANAG[MENT CALL. TO PDSF PROCEDURE CLOSING CODE. IPC~F SAVE CURRENT INSTA~CE.

wi (
~9(~)

- 

EXIT

Figure 3-53 ValIdation Translation (GGTRVAL)

3-248

L - --



3.5.4 Alpha Translation (GGTRALFI~j

Description

For each ALPHA in ALFALIST , the Alpha Translation module retrieves
the executable description (either BETA or GAMMA) from the ASSM and trans-
lates it into ALPHA procedure source code , which is written on the Procedure
Declaration Source File (PDSF). The executable description statements are
expressed in either the base language (PDL 2) or in RSL. The base language
statements are written unchanged to the PDSF. RSL statements, identified
by scanning the BETA or GAMMA text for RSL keywords , are translated into
the base language statements necessary to accomplish the specified RSL
operation. The translated base language statements consist primarily of
a call or sequence of calls to the vari ous Data Management procedures . The
RSL keywords recognized by GGTR.ALFA are CREATE , DESTROY , SELECT , FOR , and
ENDFOREACH .

The CREATE , DESTROY , SELECT and FOR EACH operations that appear in

BETA ( GAMMA) text may legally apply only to FILEs; they may not be applied
to ENTITY CLASSes or to ENTITY TYPEs. When GGTRALFA encounters these opera-
tions during translation , the operand is checked to ensure that it is a FILE .
If not , an error diagnostic is issued via XXREVSOUT .

During the translation of an ALPHA ’s BETA (GAMMA) text, GGTRALFA checks
for consistency wi th the requirements that have been specified for that ALPHA .
The text is checked to determine if the INPUTS and OUTPUTS relationships that
have been specified for the ALPHA are actually implemented. GGTR.ALFA
establishes keywords for each DATA name that is the object of an INPUTS or
OUTPUTS relationship having the current ALPHA as subject. Duri ng transla-

tion, GGTRALFA searches for and consistency-checks the use of declared I/O

DATA names. Statements in the BETA or GAMMA text that  are not consistent

with specified I/O requirements result in error messages to the user , but
are transl ated nevertheless.

In additi on to translati ng BETA (GAMMA) text, GGTRALFA also produces
source code to implement all CREATES , DESTROYS , SETS AND FORMS relationships

that have been specified. The source code corresponding to CREATES and
SETS relationships Is inserted at the beginning of ALPHA procedures , just

3-249

--— ~~~~~~~~~~~ 
._. — --- —— ~

— -
~~~~~~~~~~~~


—- --- ----- - -~~~~~~~ -----~~ - - - - . - - - -~~----- -~~~~~ -- ---- -—-- ~~~~-

after the Initial ‘BEGIN’ . The source code corresponding to DESTROYS and
FORMS relationships is inserted at the end of ALPHA procedures , just prior
to the final’END; ’.

Input

ASSM

ALPHA LIST (ALFALIST) — Linked list of ASSM pointers to ALPHAs
that are to be included in the Simula-
tor Program , wi th sublists of ALPHA
rel ationship pointers and relationship
object pointers. ALFALIST is a sublist
of the Simulator Translation List (See
Figures 3-40 , 3-4 1).

Output 4

PROCEDURE DECLARATION - A PDL 2 text file containing ALPHA
SOURCE FILE (PDSF) procedure source code .

Local Data

KEYARRAY - An array of pointers , each pointing to
the first record in a linked list of
keyword records . Each list contains
records for non-PDL 2 keywords whose
length equals the value of the asso-
ciated KEYARRAY index. For example ,
KEYARRA Y [5] points to the first
record in the list of records for key-
words of length 5. The keyword record
structure is shown in Figure 3—54.

PDL2ARRAY - An array of pointers , each pointing to
the first in a linked list of PDL 2
keywords. Each list contains PDL 2
keywords whose length equals the value
of the associated PDL2ARR.AY index. For
example , PDL2ARRAY [5] points to the
fi rst in the list of PDL 2 keywords of
length 5.

SAVARRAY - An array of records containing informa-
t ion saved during translation of an RSL
FOR EACH statement for use at the end
of the statement. SAVARRA Y provides
for nested FOR EACH statements . The
index of SAVARRA Y corresponds to the
nesting level of the statement. For
example, SAVARRAY [3] corresponds to a
FOR EACH statement nested at the 3rd

3—250

_ _ ------~~~~~~ - - -~~ ---- ~ -- -~ -~ - - -

-

level down. The SAVARRAY records con-
tain the operand of the statement and
a local variable name that is a required
parameter in a Data Manager procedure
call generated when the end of the
statement (ENDFOREACH) is encountered .

SAVARRAY Record
Local Variable Name
Operand Name
Operand Length

CRITARRAY - An array of records containing informa-
tion saved durin g translation of an RSL
FOR EACH statement for use at the end of
the statement. CRITARRAY corresponds
to the nesting level of the statement.
For example , CRITA RRA Y [3] corresponds
to a FOR EACH statement nested at the
3rd level down. The CRITARRAY records
contain the information necessary for
retrieval of the criterion portion of
a FOR EACH statement when the end of
the statement is reached .
CRITARRA Y Record
Text Line Containing Beginnin g of

Criterion
Length of Line
Pointer to First Word of Criterion

in Line
ASSM Pointer to Next Segment of Text

Processing

Processing performed in the Alpha Translation module is shown in the
flow diagram of Figure 3—55. The following coments refer to processing
steps in the flow diagram.

[2, 8, 9] - The content of keyword records is
defined in Figure 3-54.

[21, 25, 26] - The syntax of a CREATE statement Is:

CREATE operand RECORD END
ELSE 1

3—251

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-
~~~~~~~~~~~~~~ Fi~~ij~~~-.üiii ~~ LJ 1.

[22] - A CREATE operation in BETA(GAMMA ) text
may l egally apply only to FILEs ; it
may not be applied to an ENTITY _CLASS .

[28, 32, 33] - The syntax of a DESTROY statement is:

DESTROY operand RECORD END
ELSE 1

[29] - A DESTROY operation in BETA(G AMM A ) text
may le gal l y app ly only to FILEs ; i t
may not be applied to an ENTITY CLASS.

[35, 37, 43, 44] — The syntax of a SELECT statemer~t is:
SELECT ~ RECORD FROM

operand [SUCH THAT (criterion)]

END 
~ 1

ELSE 
~

[40] - A SELECT operation in BETA(GAMMA) text
may l egally apply only to FILEs; it
may not be applied to an ENTITY CLASS
or to an ENTITY TYPE. —

[42] - If the statement is a “SELECT FIRST...” ,
the generated source code is:

BEGIN
EE8UPDATE(operand);
EE8FIRST(operand);

If the statement is a “SELECT NEXT...” ,
the generated source code is:

BEGIN
EE8UPDATE(operand);
EE8NEXT (operand);

[43] - A SELECT statement may be terminated
with a ‘ ;‘ , ‘ END ’ or ~ELSE ’ followi ng
the operand ; the criterion portion of
the statement is optional .

3—252

I. . -  - -  -- ---- —----~~~- - - - -— - -——~ - -- - -- - --- 
~~~ —~~~~~~-


[47, 50, 51, 56] — The following source code is generated
if the statement includes a cri terion:

IF(NOT EE8ENDS(operand)) THEN
WHILE(NOT(criterion)) AND
(NOT EE8ENDS(operand))
DO EE8NEXT(operand);

[49, 52, 53, 54] — If a variable in the criterion is an
input/output keyword, then its use is
tested for consistency with INPUTS and
OUTPUTS relationships specified for
this ALPHA . If consistent , the occur—
rence of the variable is recorded by
incrementin g the Incidence Counter in
the keyword record ; if not cons i s t en t ,
the user is notified via a message
through XXREVSOUT . Keyword use iS

—
interpreted as output if followed by
‘ :~~‘ ; otherwise, it is interpreted
as input .

[58] - The occurrence of ‘RECORD FOUND ’ as an
ALPHA output is recorded Ey creating a
keyword record for RECORD FOUND ’ and
incrementing the Incidence Counter.

[59] - If the SELECT statement is terminated
by ‘ ;‘ or ‘ ELSE’ , then this is iimiiediately
written on the PDSF . If it is terminated
by ‘END ’, then the processing shown in
steps 100 through 102 is required and
is enabled by setting NEEDWORD:=FALSE.

[61, 64, 71, 73, 74] - The syntax of a FOR EACH statement is:
FOR EACH operand RECORD
[SUCH THAT (criterion)] DO

user-code ENDFOREACH END -

ELSE ç 1

[61 , 62] — ‘FOR ’ is both a PDL 2 word and an RSL
word. When ~FOR ‘ is encountered ,
GGTRALFA tests the succeedin g word to
determine If ‘ FOR’ is to be inter preted
as RSL or PDL 2. If the succeeding
word is ‘EACH’, then ‘FOR’ Is Inter—
preted as the beginning of an RSL
FOR EACH statement.

3—253

— -- - —-‘-, -

- -
~~~~~~

[65] A FOR EACH operation in BETA (GAMMA) text
may legally apply only to FILEs; it may
not be applied to an ENTITY_CLASS or to
an ENTITY _TYPE.

[68] - Operand name and length are stored in
SAVARR AY.

t69] - The generated source code is:

BEGIN
EE8UPDATE(operand);
EE8FIRST (operand);.

[77] - Information necessary to retrieve the
criterion is stored in CRITARRAY .

[78, 81, 82, 86] - — The following source code is generated
if the statement inclu des a criterion :

IF(NOT EEBENDS(operand)) TI-lEN
WHILE(NOT EE8ENDS(operand))
AND(NOT(criterion)) DO
EE8NEXT(operand);

[80, 83, 84, 85] - If a variable in the criterion is an
input /output keyword , then its use is
tested for consistency with INPUTS and
OUTPUTS relationships specified for
this ALPHA . If consistent , the occur-
rence of the var iable is recorded by
incrementing the Incidence Counter in
the keyword record ; if not consistent ,
the user is notified via a message
through XXREVSOUT. Keyword use is
interpreted as output if fo l lowed  by
‘ :~~‘ ; otherwise , it is interpreted as
input.

[87] - The fol lowi ng source code is generated :
RECORD FOUND : EE8FOUND ~operand);
WHILE ~~CORD FOUND DO
BEGIN

EE8SAVDS(operand , local variable);
The l ocal variable is obtained from
SAVARRAY .

[88] - The occurrence of ‘1~ECOR D FOUND ’ as an
ALPHA output is recorded B~y creating a
keyword record for ‘RE CORD FOUND ’ and
incrementing the Incidence Counter.

3-254

- -~~~~~~~ — - ~~~~~~~ -- - -  -— -- ---  —- 
~~~

----— —-_- —-- -
~~~~~

——— - —— ~
- -—

~~
____



[89, 96] - The level counter FORECHNUM identifies
the nesting level of tie FOR EACH state-
ment being processed . For example ,
FORECHNUM=3 corresponds to a FOR EACH
statement nested at the third level down.

[90] - The generated source code is:
EE8UPDATE(operand);
EE8RESDS(operand , local varia ble);
EE8NEXT(operand);

The operand and local var iable are
obtained from SAVARRAY .

[92, 93, 94] - The following source code is generated
i f  the statement includes a cr i ter ion:

IF(NOT EE8ENDS(operand))
THEN WHILE (NOT EE8ENDS(operand))
AND (NOT(criterion)) DO
EE8NEXT(operand);

The operand is re t r ieved from SAVAR R AY;
informat ion necessary to retrieve the
criter ion is obtained from CRITARRAY.

[99] - For SETS relationships , the generate d
source code is:

EE8SETYP (operand);

For CREATES relationships , the generate d
code is:

EE8CREATE(operand);

[101] - For FORMS relationships the generated
source code is:

EE8FORM(operand );

For DESTROYS relationships the generated
source code is:

EE8DESTROY (operand);

[104] - Keyword use is interpreted as output if
following by ‘ : ‘ ; otherwise , it is
interpreted as input.

[1O5~ — Consistency is tested by comparing key-
word use with the keyword type that
is listed in the keyword record .

The Incidence Counter of the keyword
record is incremented .

3—255

--— ~~~~~~~~~~



[109-111] — Input/Output consistency is tested by
examining the Incidence Counter values
in  each of the input / out put keyword
records . For each Incidence Counter
that is equal to zero , the user is
notifi ed via XXREVSOUT that there is
an INPUTS or OUTPUTS relationshi p that
is not im plemented in the BETA (or
GAMMA) text.

Proc edure References

The following list correlates the functional processing steps shown
In Figure 3-55 with the REVS procedures in which the processing is performed .

[1] - GGALFREL
[2] - GGKEYPDL
[8] - GGKEYWRD
[9] - GGKEYWRD - -

[13] — GGLINGEN
[17] - GGWRDGEN
[19] - GGCOMPAR , GGTRR SL
[21 - 27] - GGCREATE

[2fl - GGGETOPR

[22] - GGOPRCHK

[25] - GGGETOPR
[26] - GGCOMPAR
[28 - 34) - GGDSTROY
[28) - - GGGETOPR

[29] - GGOPRCHK

[32] - GGGETOPR

[33] - GGCOMPAR

[35 — 59] — GGSELECT
[35, 37] - GGGETOPR

[36] - GGCOMPAR
[40] - GG OPRCHK
[43] - GGENDSELECT
[44] - GGGETOPR
[45] - GGCOMPAR
[48] - GGLINGEN , GGWRDGE N, GGCOMTST

3-256



[49] - GGCOMPAR
[51 - 54] - GGINO IJ T
[55] - GGENDSELECT
[58] - GGFOUND

[60 - 88] - GGFORECH

[60] - GGGETOPR

[61] - GGCOMPAR

[63] - GGGETOPR

[65] - GG OPRCHK

[70, 74) - GGGETOPR

[71 , 73, 75] - GGCOMPAR
[79] - GGLINGEN , GGWRD GEN , GGCOMTST

[80] - GGCOMPAR
[82 - 85] - GGINOUT
[88] - GGFOUND

[89 - 96] - GGENDECH

[93] - GGLINGEN , GGWR D GEN , GGCOMTST

[97 — 102] - GGPDL2

[99, 101] - GGDATAMGMT
[103 - 107] - GGINOUT

[108] - GGCOMTST
[109 - 111] - GGRSLTST

[112] - GGDISPOS

3-257

—--

~ 

~-- - ----— - - _ . -----——- ----- -- -_-~~~~
--—--~~ — - ---- —--- --



________________________  

—fl—--.- - 
~
- —-- —

_~ T--i~ 
-

KEYARR AY

0 1 60
POINTER TO FIR ST f~ / POINTER TO FIRST

NIL RECOR3 FOR / “1 RECORD FOR
L KEYWO~ S OF L~~GTH 1 /~ / KEYWORDS OF LE;~GTH 63

KEYWORD J . . .
O r E  ____

CREAT E, ETC.)

POINTER TO 
*OPERAND SUBLIST. ASSM POINTER

KEYWORD TO OPERAND’
INC1uENCE 

~CUU~TER. TO NEXT *
POINTER TO OPERAND RECORD

NEXT KEYWORD
RECORD.

*NOT USED IN CURRENT VERSION OF GGTRALFA.

FIgure 3-54 Keyword Record Structure

3-258 

- - - ~~~~ -_---- ~~~~~~ 
-



- T-~~~~.~- -~~~-

TRALFA~~~ Ni
\~~~~_ _ _J FO~ U.OI ALPN~.

~~N EAOU.INE j

TO ThE ELEMENT TYPES , NEED NO

~~~~~~~~~~H 

RETR IEVE ASSH POiNTERS

ATTRIBUTES AND WO RD
RELATION SH:Ps NEE DED 2 ‘

FOR TRMSLATI ON . j I
2 I f

INITI AL IZE KEYWORD 12 DOES

~~CORD FOR P11. 2 ALPHA HAVE NO
NE SERVE D WORDS A BElA

(‘BEGIN’ . ‘END’).

— — —
E;;;

~~.._~
,1
__

RETRI E VE LIN E

4 I C 14

WR ITE ALPHA I I j c~~~~~7PROCE DURE HEADE R . I

ALFALIS

FOR EACH WORD \ I I
S DOES J OF LINE . f~~

—

~1ALPHA HA VE y~~ ______________/
A BETA I
I

NO
_________ INEED NO

WOR D
XXREV SOUT I

NOTIFY j IR THAT ERROR ES
EXISTS. II RE TRIEVE NEXT

7 I [~~~~WORD OF TEXT . I
INITI AL IZE POINTER ,

__________________ I ICOUN TER AN D FLAG
VAR IABLES FOR

TRANSLATION OF AL PHA
TE XT . I

YES
$
_ _ _ _ _ I STRING IINI TIA LI ZE KEYWOR D I

RE CORD FOR RSL RESERVED
WORDS (CREAT E . NO

‘DESTROY’ SELEC T’
‘FOR ’. ‘ENO FOREAC H’) . 19

KEY WORD I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

WRI TE WO RD f
1~~~~~CH L IN E OF 

ON POSE . i
$ETA (GNf~A) TE ~~~~~~ 1 l

*11 P/a

FIgure 3-55 Alpha Translation (GGTRALFA)

3-259

-_

~

- - ----

~

---- — ------—----—--- -~~ - - - -- ~- - -.~~- -- - -



20$ EAEM ALPHAW2 
R u ’ • P0$ (Ac$ LINE

21
GET OPERAMO OF ‘ I‘CREATE ’ STATE MEN T. I

IS 
I 

~22 OPERAND MO
A F I LE

7 I I
23 

YES 

I I
WRITE :

‘EE8CREATE (operand) ; ’ . I

24 
__________ IJ XXREVS OUT 7/ NOTIFY U SER ThAT / I

/ ERROR EXISTS . / I
25

READ NEX T WORD
OF STATEMENT.

• ‘RE CORD YES

27 I ~XX RE Y SOUT
NOTIFY USER ThAT

SYNTAX ERROR EX ISTS. I

$/8 I
~~YWORO — ‘DE ST R I

GET OPERAND OF
‘DESTR OY’ STATEMEN T.

I I
N IS I~~ OPERAN D ~~

A FILE

I IWRITE :
‘[EBDESTROY (operand) ; ’. I I

(.~~ 
$/3 C/3

Figure 3-55 Alpha Translation (GGTRALFA) (Continued )

3-260



______________ - -~~ ~~~~~~- —-~~~~~~~~~~ - ~- -~ -

FOR EAC1~ Al.
FOR CA04 LINE

___________________ 
1 ‘

~!i 
XXR VSOUT 

~j
/ NOTIFY USER ThAT /

32 
/ ERROR EXISTS. /

READ NEX T WORD
OF STATEMENT.

WO RD
— ‘R ECORD ’ YES

7
NO

34
XXRE VSOUT

NOTIFY USER THAT I
SYNTAX ERROR EXISTS.

6/8 I I
KEYWORD . SELE CT .

{~~~~TI RE CORD FRO M . I
33 SYNTAX YES IE RRO R

NO
37

GET OPERAND OF
‘SELECT’ STATE MENT . II I
~~ OP E RAN D NO

FOUND

YES / XX REVSOUT I II NOTIFY USER THAT I
/

SVNTAX ERROR EX I ST$ ./ f
40 OPERAN D NO

A FILE

YES 41 +
XXREYS O%J T

A/A 
tNO

~~~ R
U
~~ S~~~

T 7/
Figure 3-55 Alpha Translation (GGTRALFA) (Continued)

3—26 1

—-- -.- - - —-.-——-—- —

_ _ _ _ _ _ _ _ _ _ _ _ ----~~~~~--~~~~- —~~~~-~~~~~

A/A

FOR EACH ALPHA
FOP EACH LI N E

41 I I
WRITE SOURCE STATEMENT S I

FOR CALLS TO DATA
WI4AGER NODULES. I I

OS I I I
END I I I
OF YES 1/5 I

STATEMENT I
44 I I I

READ : ‘ I I‘SUCH THAT’ .

I I I
45 SYNTAX YES

ERROR I I
XXREVSOUT

NO NO T IFY USER ThAT
SYNTAX ERROR EXISTS .

47 I
I NI TIATE SOURC E CODE E/S IFOR ‘SELECT’ CRITERIO N .

FO* EACN WORD OF
— — ——

1
‘SELECT’ CRITERION. — — 1 I

IS I
WORD AN NOINPUT/OUT P UT
KEYWORD 50

7 WRI TE WORD ON
YES PDSF . ISi I

WRITE WORD ON
PDSF. I I

2 PDSF
RE CORD USE OF

INPUT/OUTPUT
KE Y WORD. I I

SUS I I I
3 ONSI STEN

~~ IW ITH SPECIFIED IRE LIR E -

Figure 3-55 Alpha Translation (GGTRALFA) (Continued)

3-262

-.---- -- —-- ---—-~*-- -——

- -~~~~~ - - — - - ~~~~~~~ - -~~~~~~~~~~~~

FOP EACH AL~~
FOP EACH LI N E

~~~LA~~~ PD I

N 
~~

ZXREVSOUT I I
NOTI FY USER THAT

ERROR E XISTS.

I
II I

TEST FOR END
Of STATEMENT.

_ _ _ _ _ _
~~1 I IN I

TERM INATE SOURCE
CODE FOR ‘SELECT’

CRI TERION. I I115
WRI TE:

‘RECORDJOUNO :. EE8F OUND
(operand) END’.

OS
2/5 I I58

RECORD OCCURRENCE OF I‘RECORD_ FOUND ’ AS
OUTPUT. I

5; ITERMINATE TR.PN SLATION OF I‘SELECT’ STATEMENT. IDSF ) I
I/B I

KETWORD • ‘FOR ’ I I
I I

READ NEXT WORD I(WO RDSTOR ) OF STATEMENT. I I
wordstor NO I— ‘EACH ’ 62 

WR ITE: I I
ES ‘FOR words tor’. I I

GET OPERA?40 0F 

~ I I
‘FOR EACH’ STATEMENT. 1/7 OS I
~4 OPER AN D NO I

FOUND i I I
*/6

Figure 3-55 Al pha Translation (GGTRALFA ) (Continued)

3-263

-- -

~

- ~~~~ - - - ~~~ - -.  -- - - -- --



—~~~----- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- .-- -.- --
~~~~~~ 

---~~
--
~~~~~~

FOP (ACM AL~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

:I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~IAO4 LI NL I

~~

r~~ u I I
~~~~~~~~~~~~~~~~ E RROR ~~A FILE

~ 
I

NO

SYNTAX E RRO R EX ISTh /SYNTAX ER ROREI ISTS J 

~ I I

I ~f à ~~~~7XXREV SOUT

__  ~ I I
t~~~~~~~~~~~~~~ A~1-9( ~~7NOTIFY USER ThAT 0/7 ____

i l l
NF O R M AT I O N FOR USE IINCREMENT ‘FOR EACH ’ I SAVE CRITERIO N

U VEL COUNTER. I

r 

[ AT END OF STATEMENT. I

SAVE OPERAND FOR I 7$
151 AT END OF I 

~ NIT IATE SOURCE CODE FOR I ISTATEMENT.

69 

I CR I TE RION OF ‘ FOR EACH I I
79

WRI TE SOU RCE STATEMENTS FOR EACH WORD OF I I IFOR CAL LS TO DATA ‘FO R EA CH ’
NAUCER NODULES . CRITERION. 

— — — 1 I I I
70 

U 

I I
READ NEXT WORD ~~ IS
OF STATE ME NT. ORB AN I I I

INPUT/OUTP UT
KE YWORD 31 I i I I7 W R ITE WORD I I

TI WORD 
YES ON PDSF. I I I

.‘RE CORD’ $2 I I I I7 WRITE WORD
MO O#I PDSF . I I I I72

XXRE V SO UT $3 l i i iNOTIFY USER ThAT RECORD USE OF
SYNTAX ERROR EXISTS. INPUT/OUTP U T IKE Y WORD.

I I I I
I I I I73 ~sThERE A NO N C ON SI Si EN YES

CRITERION ITH SPECIFIE  I I IQMTS.
C/7 7

YES NO

XXREVSOUT I I 
~ 

I74
READ :

‘SUCH THAT’. NOTIFY USER THAT i f I
E RROR EXISTS.  I

C,’

Fi gure 3-55 Al pha Translation (GGTRALFA ) (Continued)

3-264

- -



~ 1

P17 (~T) FOR EACH ALPHA
F O R (ACH LIN E IN LYWORD • ‘BEGIN’

FOR EADI WORO I ITE RM INATE SOURCE CODE 97
FOR C RITERION O F WRITE: I

‘FO R EACH ’. ‘BEGIN’ . i I I
(/7 I i

87 I I
WRITE DATA MANAGEMENT IST H I ISOURCE CODE . A IRST ’SEGI N NO

M8E TA ( GAJ4IA I
0/7 TE X T

I I I
YESRECORD OCCURR ENC E OF

‘RE CORD_FOUND’ I I 1
AS OUTPUT. 99 WRITE SOURCE I

CODE THAT 1t4’LEMENTS THE I I‘SETS’ AND ‘CREATES’ I
RE LATIONSHIPS FOR I I

ThIS ALP H A . I I

KEYWORD I I• ‘E DFO REA CH’ I8/8 I I
FOR I

N CM ’ LEV E L NO KEYWORD — ‘E N D’ 
i ICOUN TER • 0

7 1~~~~~
1

I S T H  IYES FINAL ‘ E N D ’  NO I I
N 8ETA (GAIViA I iTE X T

WRITE SOURCE STATEMENTS 7 I IFOR CALLS TO DATA YES I
MANAGER NODULES. L S

101 WRITE SOURCE CODE THAT I IP INP LEMEN T S THE ‘FORIG ’ I
AND DESTROYS’

RE LATIONSHIPS FOR I IIS THIS ALPHA .
91 ThERE A NO I

CRITERIO N I i I
I - -  ‘ I

YES OS I I
92

I N I T I A T E  SOURCE CODE I
302 I I

FOR C R I T E R I O N  WRITE:  ‘ I
OF ‘F O R E A CH ’. ‘END’ . I93 I 

IRETRIEVE C R I T E R I O N  AND
TRANSLATE INTO ISOUR CE CODE . 8/8 i I

~~~TE RM INATE SOURCE CO
FOR CRITERION IOF ‘ FOR EACH’ .

- I I I
I WR ITE: ’RECORD FOUND:. (~~

1’

~~)

END END’ I ~
£E 8FOUN O (~per and)

DECR E MENT ‘FOR EACH ’
LEVEL COUN TER.

118

Figure 3-55 Al pha Translation (GGTRALFA) (Continued’)

3—265

- -- --- - _ ~~- - - -.—-- - - - - - _ - - - -—_ ~~~~~~ _ - . --

V -
~~~

- - - —----—---- - ~~~~~~~~~~ -_-- 
-
. 

________

v_I, FOR EACH AL~~INPUT OUTPUT KE YW ORD I
103 FOR EACH LIME

WRI TE WORD 
FOR EACH WORD,

ON PDSF. I I
104 I I I

DETERMINE USE OF WORD I I
(I NPUT OR OUTPUT). I I

105 CONSY~~EN T NO I i i
IN SPECIFIE

RE~iTS 
106

XXR EVSO UT I
YES NOT IFY USER OF I i I

iNCONS iSTE NCY. I I107 ________

RECORD ThAT KEYWORD IS I I IUSED AS DECLARED. I
8/8 I

108 I I
SET FLAGS TO INDICATE IBEG I NNING OR END OF
cOIMENT OR STRING.  I

C/8 ------

~~~~~~~~~ I I
0/8

109 I
TEST FOR CONSISTENCY
OF BETA (GA!tIA)TEXT

WITH SPECIFIED INPUT/
OUTPUT RE LATIONS HIPS.

110 CONSISTENT NO
111

XXREVSOIJE
YES NOTIFY USER OF

INCO NSISTE NCY .

112
DISPOSE OF LIST OF
KEYWORD RECORDS.

C/B

EXIT

Figure 3-55 Alpha Translation (GGTRA LFA) (Continued)

3-266

_ _ _ _ _ _ _ _ _ _ _ _ --

3.5,5 R—Net/Subnet Translation (GGTRRNETJ

Description

R-Net /Subnet Translation generates executable R NET and SUBNET source
code procedures for consolidation into the Simulator Program . The R-Net/

Subnet Translation module obtains retrieval information for those R NETs
and S(JBNETs to be translated from RNETLIST and SNETLIST. Structura l
information for these R_NETs and SUBNETs is obtained from the ASSM . This

structura l information includes node types , element types , element names ,
successor—predecessor relati onships among nodes , and association relation-
ships between elements and nodes. The only additional source of informa-
tion required by R—Net/Subnet Translation is the Event Definition File ,

EEDF. The EEDF provides an event number parameter which is assigned to

each EVENT , INPUT INTERFACE and OUTPUT _INTERFAC E by Event /Ena b le rnent Trans-
lation .

These sources provide all the requirements dependent information

necessary for R-Net/Subnet Translation to generate executable source code

R NET and SUBNET procedures in the base language. The SUBNET and R_NET
procedures are written on the Procedures Declaration Source File (PDSF).
Consol idation inserts the procedures into the Simulator Program by copying
from this file to the Compile File (CF).

Input

ASSM - R NET and SUBNET names , structures
and relationships .

R NET LIST (RNETLIST) - List of R_NETs to be included in
Simulator Program .

SUBNET LIST (SNETLIST) - List of SUBNETs to be included in
Simulator Program .

EVENT/ENABLEMENT DEFINITION - File that contains an Event Definition
FILE (EEDF) Record for every EVENT , INPUT INTERFACE ,

and OUPTUT_INTERFACE referenced by the
requirements model . The event number
parameter is used in R—Net /Subr,et
Translation. The content of an event
Definition Record is defined in
Section 3.5 ,

3-267

—-- -- - - -~~~~~~~~~~~~~~~~~~- - ~~~~~~~~~~- - -
_ - - - . — _ - - -

~~~~~~~~~~~
-

~~



Output

PROCEDURE DECLARATION SOURCE - File containing executable SUBNET and
FILE (PDSF) R_NET source code procedures for those

SUBNETs and R NETs referenced by the
req ui rements model .

Local Files

COMPILE FILE (CE) - Scratch file used to contain main
body code for the procedure bein g
generated.

VARIABLES FILE (yE) - File used to contain variable
declarations for the procedure
being generated .

Processing

Processing is shown by the functional flow diagram of Figure 3-56.
The following c xnments refer to processing steps in the flow diagram .

[3-20] - A label is allocated for the main
branch of the R NET or SUBNET .
Labels are requTred at branch ends.
Execut ion is to be t ransferred to
the branch end when a te rmina t ion
w i t h i n  a SUBNET is encountere d along
the branch .

[8-34] - The main branch label is written at
the procedure end .

[17] - If there are no ordina ls , the RSL
ordering of the OR branches is main-
tained in the generated code.

[18] - A label is allocated for elch OR
branch and written at the branch end .

[22] — A label is allocated for each AND
branch. It is written at the branch
end .

Procedure References

In the flow diagram of Figure 3-56, the processin g steps correspond
to code in GGTRRNET procedures as follows :

3-268



AL. SREP FINAL
r!

5fl TRw !N

~~~

A

~~~~~~

E sYsTEMs 6Ro

~~~~~

ThvILL!A Ffl ,/2

N BERSSTRESSER
uNcLA55Zfl 7 9 2 1 O26 VOL 3

4 5 T h ___

_ fl

1’ 0 2 8 ‘ 2 5

3 15

1•1 ~ :: ~
• ‘ IIII~~

25

~~~~~
NATIONAL BUREAU OF STANDARDS

t.IICRQCOPY RESOLUT ION T EST CHART



[1] - GGTRRNET

[2] - GGTRRNET

[3] - GGTRRNET , GGETNEXTRNET

[4-6] - GGBRANCHPROS

[7,8] - GGMERGE

[10] - GGALPHA

[11] — GGINPUT

[12] - GGVALID

[13] - GGSUBNET

[14] — GGEVENT

[15] - GGOUTFACE

[16-19] - GGOR , GGCNSOR

[20-22] - GGAND

[23] - GGFOR

[24-28] - GGFOR

[29—31] - GGTRSUBN

[32] - GGBRANCHPROS

[33, 34] - GGSMERGE

[35] - GGSELCT

3-269



U~TkRs4CT

N ~~~~~~ ~)I~ -

~~~~~~ A O
~~~~~~~ f~ji~WUET T~~ISLATION. ~~~~~~~Pv

2
S~~T FOR £ACN SJN(T.
L S T

3 I 4
~~~~ETE C0DE F0R

ALPHA CALL.
CO~~T~RS A..D I

Vèi ’~4L~S
IN ?.S SUo,n.i. I GENERATE CODE FORINTERrAcE4

FOR CACN NOO(.

~~~~~~~~~~~~~~I I VALIDATIOR 
12

- GENERATE CODE FOR

5 i 
PO INT 

V IDAT IOt4_P OINT CPL

NODE TYPE. ~ I

_ _

I RATE CODE FOR

ENTRY NODE I I 14

[LEIENT NODE 

~j~) 
I I

OR NODE ouTput

~~ —~3 1  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~RATE CODE FOR

FOR EACI4 NODE ,/ )  J I
8/1

SELECT NODE •E?.~ 
I I

TERM INATION/ IRETURN NODE

IMNCH END. I I 1 S NODE

_ 

<
~~~~~~~~~~~ ESE PROCESS NET OR J

I I—
OR
I_ _ J I NO

(~~)
i-_ — —

I SET UP LIST OF
11

_______________________ SUCCESSOR NODES
GENERATE SURNET 1 I ORDERED ACCORDING

TO QRDI,~ 1 VALUE. IPROCEDURE HEADER I
AND DECL.ARATZONS. I

P _ _ _ _ _

COPY V~IN BODY 1 I PROCESS NANCH END.

OF SUBNET PROCEDURE.

9~~~
9

~~~~J
0/I

FIgur e 3-56 R-Net /Subnet Tr~ns ’~at Ion (GGTRRNET)

3—270



~~~~~KN~~~~~~
NO

PROCESS END OF EXECUTE PROCESSING
MW BRANCH. STEPS 4-6 FOR

EACH BRANCH. -
FOR EACH R NET . —

0 1 iNITIALIZE POINTERS.
VARIABLES AND
ERS FOR THIS R_NET.

EXECUT E
23 PROCESSING STEPS 4-6.

YES

NODE GENERATE R NET
NO VF PROCLOURE ~ThA DER

24 AND DECLAM IONS.
GENERATE CODE W HICH

C~~~ESPO~OS JO PDSF
FOR EACH NODE.

COPY MAIN BOO ~YF

2 CF
OF R NET PROCEDURE.

ALPHA ASSOCIATED SUBNET
—

GENERATE CODE FOR TGLNERATE SUBNET FOR EXIT
ALPHA CALL. SUBNET CALL.

I I
28

EEH—
GENERATE CODE FOR

FINAL PART OF
CF FOR EACH NODE.

o
GENERATE CODE

FOR SELECT NODE
0/1 1

FIgure 3—56 R-Net/Subnet Translation (GGTR RNET) (Continued)

3—271

_ ~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3.5.6 Consolidation (GGCONSOL)

Description

The Consol idation module assembles the source components of the
Simulator Program for i nput to the PDL 2 compiler. The components that
must be assembled include:

• Data Declarations

• Simulati on Support Procedures

• SETS Procedures

• R NET , SUBNET , VALIDATION _POINT, and ALPHA Procedu res

The Consol idation module merges the source code produced by the
SIMGEN translator modules wi th the source code for SETS procedures
and simulation support procedures which are Input to SIMGEN via the
SDF and RISF , respectively. The simulation support procedures include

•
the Initialization , Executive , Event Management, Procedure Scheduler ,
Data Management , and Data Recording procedures.

Figure 3-57 defines the organization of the source code to be sent
to the PDL 2 compiler and shows the input text files from which the code
is obtained . The Data Management procedures include requirements
dependent procedures contai ned on the PDSF file and requi rements inde-
pendent procedures contained on the RISF. The Procedure Scheduler proce-
dure (EESCHED) is contained partially on the RISF and partially on the
PSSF. As indicated , GGCONSOL inserts the PSSF text between the beginning
and end texts for EESCHED obtai ned from the RISF. Because each i tem
(variable , procedure , etc.) in the program must be defined before it can
be referenced in the program , the source code sent to the compiler must be
in the order depicted in Figure 3-57.

Input

REQUIREMENTS INDEPENDENT SOURCE - The RISF contains Simu lator Program
FILE (RISF) source code that is independent of

the particular requirements model
bei ng generated.

3—272

L

-w

SETS DEFINITION FILE (SDF) - The SDF contains SETS procedure source
code.

CONSTANT DECLARATIONS FILE (CDFY)
TYPE DECLARATIONS SOURCE

FILE (TDSF)
VARIABLE DECLARATIONS SOURCE Requirements dependent text fi les con-

FILE (VDSF) con tain i ng the Simula tor Program source
PROCEDURE DECLARATION SOURCE code generated during the translation

FILE (PDSF) phases of SIMGEN.

PROCEDURE SCHEDULER SOURCE
FILE (PSSF)

Oulput

COMPILE FILE (CF) - A PDL 2 text fi le containi ng source
code for the entire Simulator Program.

Processing

Processing performed by the Consolidation module is shown in the fl ow
diagram of Figure 3-58. The fol l owing conrients refer to processing steps in
the flow diagram .

[2—4, 6-8] - Information from the various input files
is copied to the Compile File unti l
either the character $ or an end—of-file
is reached.

Procedure Referenc e

GGCONSOL calls REVS procedures as indi cated below to perform the pro-
cessing steps shown in Figure 3—58.

[2—16] - GGCOPIER

3—273

—— - . -

PROGRAM HEADER RISF

LABEL DECLARATIONS TRISF 1
CONSTANT DECLARATIO~S r R11

1
E RISF

TYPE DECLARATION S 10SF
SUE

E RISF
VARIABLE DECLARATIO~S SDF

VUSF

DATA MANAGEMENT PROCEDURES [11j~ 1
DATA RECORDING PROCEDURES

[~~RISF 1
EVENT MANAGEMENT PROCEDURES RISF

SETS PROCEDURES SDF

SU!JLATOR INITIALIZATION PROCEDURES [I~
RISF

ALPHA PROCEDURES PDSF

VALIDATION AND SUBNET PKOCEUURES
[

PDSF

R_NET PROCEDURES POSE

SIMULATOR EXE CUTI VE UT ILITY RISFPROC ED URES

[~ RISE
PROCEDURE SCHEDULER PROCEDURE PSSF

RISE

S IMULATOR EXECUTIVE PROCEDURE RISE

SIMULATOR PROGRAM BODY [RISF I

Figure 3-57 Simulator Program Organization

3-274

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~



GGCONSOL A/i

~~ 
[ RESET INPUT SUE PROCEDURES .

CF

\ [
CONSTA~T UECLARATIONS C~~ I COPY ALPHA

I L.POS~.J’] PROCEDURES.

10L. TDS~SF) 
~~~~~] COPY TYPE I

~cm J DECLARATIONS. N ~~~~~~~~~~~~~~~ COPY

‘..._

~~~
...‘ ( SUBHET PROCEDURES.

E~3~4 PROaD~1R~~. CF

S COPY SIMULATIONg~~ j C
~~

Y
PE~~~~~

E
~~

N
A
TS RISE UTILITY PROCEDURES.

~~~~~ PROCtDURLS.
13

COPY BCOIN;~ING OF
RISE PRUCLD Ui4E

COPY REQUIREMENTS SCHEDULER PROCEDURE.
INDEPENDE~T DATA

MANAGEMENT PROCEDURES .
RISE DATA RECORoI;~G CF 14

PROCEDURES, AND EVEN T -~MANAGEMENT PROCEDURES. SETS DISPATCH CODE
PSSF FOR PRO~~.UURE CF

CHEUU ER PRUCEOUR

15
A/I COPY ENO OF

RI F PROCEDURE
SCHEDULER PROCEDURE.

16
COPY S IMULATION

EXECU TIVE PROCEDURE
RISE AND SIMULATOR CF

I

EXIT

FIgure 3-58 Consolidation (GGCONSOL)

3—275

—

3.5.7 Analytic Simulator Valid ation Translation (GGIRVP)

Descri ption

The Analytic Simulator Validation Translation module (ASVT) analyzes
all VALIDATION POINTs to be included in the simulator build. It determi nes
the data to be collected at simulator run time and generates the source code
to implement recording of the data.

The source code generated for a VALIDATION_POINT consists of calls to
owner-check procedures which guarantee that owned data has a proper owner
selected , of calls to Simulator Data Management routines to access instances
of FILEs , and of PDL 2 output procedure calls to write to the VALIDATION
POINT recording file the contents of FILEs and DATA which are RECORDed by the
VALIDATION _POINT.

The generated recording and owner-check procedure declarations are
written to the VALIDATION _POINT PROCEDURE DECLARATION SOURCE FILE (PDSF).
During R_NET and SUBNET translation , an invocation of the appropriate
procedure is then generated whenever a VALIDATION_POINT is referenced .

Input

ASSM - Names of all VALIDATION POINTs.

VAL IDATION_POINT LIST - Li nked l i st of VAL IDATION POINTs
(VALLIST) with sublists of RECORDed simple

and FILE DAT A and RECORDe d FILEs
(See Figure 3-47).

FILE LIST (headed by GG9LFILST) - A linked list of all FILEs processed
by the Data Translation module. Each
entry of the list has a sub—l ist of
all the FILE ’s owners (ENTITY_CLASS or
ENTITY_TYPEs), the FILE’s name (an
AASTRING), the FILE ’s ASSM address, a
LOCALITY flag (BOOLEAN) ind icating
whether the FILE is LOCAL (FALSE) or
GLOBAL (TRUE), and an owner-check ID
(INTEGER) Identifying the FILE’ s
owner-check procedure.

3-276

IL _ - - - --~~~- —---- . —--~~~~~
. --_ ~- - - - - - . - - — .--------.~~~

_ _ _ - -~~~ -~~~~~~~~

DATA LIST (headed by GG9DECLST) - A linked list of all DATA processed by
the Data Translation module. Each
entry of the list has a sub-list of all
the DATA ’s owners (FILEs, ENTITY CLASS,
or ENTITY TYPEs), the DATA ’s name (an
AASTRING) , the DATA ’s ASSM address , a
pointer into the DATA_TYPE LIST ind i-
cating the DATA ’s PDL 2 TYPE , a pointer
into the DATA_INITIAL _VALUE LIST ind i-
cating the DATA ’s INITIAL VALUE , an
INITIAL VALUE status flag (INTEGER)
indicatTng that the DATA ’s INITIAL VALu E
has been looked for in the ASSM (lJ or
not (0), and an owner-check ID (INTEGER)
identifying the DATA ’s owner-check
procedure.

DATA TYPE LIST (headed by - A linked list of all the DATA_TYPEs
GG9TVPLST) (PDL 2) processed by the Data Translation

Module. Each entry of the list has
the DATA TYPE ’s name (an AASTRING), the
DATA TYPE’s ordinal (INTEGER), and a
scratch fl ag (BOOLEAN) used in other
modules to indicate whether the DATA_TYPE
is used or not.

OWNERS LIST (headed by GG9OWNRL)- A linked list of all the DATA and FILE
owners processed by the Data Translation
module. Each entry of the list has the
owner ’s name (an AASTRING), the owner ’s
ASSM address , and the owner ’s type
(enumerated type designating no type,
MESSAGE , FILE , ENTITY TYPE , and ENTITY
CLASS).

Outputs

VALIDATION POINT PROCEDURE - A text file containing the PDL 2 source
DECLARATION SOURCE FILE (PDSF) statements declaring the owner-check

procedures for all DATA and FILEs pro-
cessed by the Analytic Simulator Valida-
tion Translation module. In addition ,
the file contains the PDL 2 source state-
ments declaring the VALIDATION_POINT
recording procedures.

VALIDATION POINT TYPE - A text file containing the PDL 2 source
DECLA RATIOTi SOURCE FILE (TDSF) statements declaring the type used in

declaring the VALIDATION_POINT recording
f i l e ’s variants.

VALIDATION_POINT VARIABLE - A text f i l e conta in ing the PDL 2 source
DECLARATION SOURCE FILE (VDSF) statements declaring the VALIDATION_POINT

recordIng file.

- -~~~~~~-- -~~~~- ---- ~---- - - --- -~ --- -~~~- ---_—

VALIDATION POINT INTERNAL LIST - A linked list of all VALIDATION POINTs
(headed by~GG9VPL) processed by the Analytic Simulitor

Validation Translat ion Module. Each
entry of the list has a sub-list of all
the VAL IDATION POINT ’s RECORDed FILEs ,
the VAL IDATIONi~OINT ’s name (an AASTRING) ,
the VALIDATION POINT ’s ASSM address , and
the VALIDATION POINT ’s ordinal (INTEGER).

Process i ng

Processing performed in the Analytic Simulator Validation Translation

module is shown in the flow diagram of Figure 3-58.1. The following coments

refer to processing steps in the flow diagram .

[1] — Includes such operations as assigning
initial values to variables and arrays
for use throughout the Analyti c Simula-
tor Val ida t ion Trans la t ion module .

[32] - Includes writing out to file TDSF the
PDL 2 source statements to declare the
type of the VALIDATION_POINT recording
f i l e ’s variant and writing out to file
VDSF the PDL 2 source statements to
declare the VALIDATION _POINT recording
f i l e .

Procedure References

The followi ng correlates the functional processing elements shown in

Figure 3-58.1 with the REVS procedures which perform the indicated processing.
[1] - G G4VPINI

[2] - GG4VPROC

[3-4] - GG4PREAMB

[5-10] - GG4DICNT

[11-1 6] - GG4FLCNT

[17] - GG4VPROC

[18-19] - GG4RECSD

[20-30] - GG4RECFD

[31] - GG4VPROC

[32] - GG4VPEND

3—278

_ _ _ _ _ _ _ _ _ _
. .

~~~~~~~~~~~ --~~~~~~~ --



— - -.- . — —-  - -
~~~~~~

~GTRVP

INITIALIZE FOR
VALIDATION TRANSLATION.

2
FOR EACH VALIDATION

POINT IN THE — — — — — — — —
VAI.I&A ION POINT

~~1

ADO VALIDATION POINT
TO INTERNAL LIST OF
VALIDATION_POINTS. I

4
WRITE DUT

VALIDATION POI NT
POSE PROCE DLRE OPENING

STAT EMENTS.

S I
FOR EACH RECORDED
DATA NOT IN A
RECORD ED FILE . I

b
IS INO DATA OWNm I

WN ER CFEC p
~)

PROCEDURE BEEN
GENERATED

7 8 I
YES ~~ITE aliT THE OWNER ICHECK PROCEDUR E

D ECL ARATI ON. POSE

9 I
WITE OUT THE OWNER

I ICHECK PROCEDURE
INVOCAT ION. USE I I

0 I I
HC.RD1ENT THE MUMBER I

OF DATA
ITDIS B Y J . I I

I I

*12

Figure 3-58.1 Analytic Simula tor Valida tion Translation (GGTRVP)

3-279

_ _ _ _ _ _

— .
- - .- ~~~ ~~~~~~~~~

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— -- —. -------—---—----- -

~~~

*12

11
FOR_EACH

*EcORDED FILE.

~2 I~NO FILE YES
OWNED

7

13 S
WNER C HEC NO
OCEDURE BEEN

ENERA T ED

YES 14
WRITE OUT THE

OWNER_CHECK PROC EDURE
DECLARATION . POSE

15

WR ITE Oil THE
DWNER CHECK PROCEDURE

I I INVOCATION. POSE
16 4

INCREMENT MUMB~~~~1OF RECORDED FILES
BY ONE .

17
WRIT E aliT POL 2 SOURCE

STA T EMENT S TO RECORD
IIJI BER OF DATA ITE MS
*1(1 ICIMBER OF FILES. POSE

Figure 3-58.1 Analytic Simulator Val idation Translation (GGTRVP) (Continued)

3-280

--~~~~~~~~~~~~~~~ _~~~~ - --— --- -- -~~~~~~~~~~~~--- _ “ .

*/3

18
FOR EACH RECORDED
DATA ITEM NOT IN A — — — — —
RECORDED FILE. 1

19 I
WRITE OUT P01 2 SOURCE I

STATEMENTS TO RECORD
THIS DATA ITEM .

—
_j

20

FOR_EACH
RECORDED FILE.

21
WRITE OUT P01 2 SOURCE

STATEMENTS TO RECORD THIS
FILE~S ID AND CURR ENT

OF INSTANCES.

22
FOR_EACH RECORDED

DATA ITEM IN
THIS FILE. I

23 I
INCREMENT THE MJMBER
OF DATA ITEMS BY 1. I

-_ ---__ - -J

9._

~

W RIT E OUT P012 SOURCE
STATEMENTS TO RECORD

HE NUMBER OF DATA ITEM
PER INSTA NC E OF

THIS FILE.

Figure 3-58.1 Ana lytIc Simulator Validat ion Translation (GGTRVP) (Continued)

3-281

_ _ _ _ _ _ _ ~~~~~ --

-
~~~~-~~~~~~

i- r’~~-. 
— 

~~~~~~~~~~~~~ 
—-

~ —fl IL$ ~~~~~~~~~~~~~~
~~ J~

-
~~~~~~~~~~~~~~~~~~~~~~~~ 

—_--._ -

25
WRIT E OUT P01 2 SOURCE I I
STATEMENTS TO SAVE THE
RECORDED FILE S STATE I I
(POSITION. DATA

~~ I I
I I

THE FIRST INSTANCE OF I IWRITE OUT CODE TO SELECT

THE RECORDED FILE A~4D TOBEGI N A LUOP WHICH WILL I ICONTINU E UNTIL ALL IINSTA NCES ARE RECORDED.

27 4 I
DATA ITE M IN — _1F0R EACH RECORDED)._ I

THIS FILE. 1 I
28 I

WRITE OUT PDL 2 SOURCE I I
STATEMENTS TO RECORD

THIS DATA ITEM. I I I

9

~~~~~RITE OUT PDL 2~~~~~ E
STAT EM ENTS TO SELECT I

THE NEXT INSTANCE OF THE
RECORDED FILE AND TO
TERMINATE THE REPEAT I I
_UNTIL _DONE LOOP. I I

30

E;;
~
4I WRITE OUT PIlL 2 SOURCE I I

STA T E? ENTS TO RESTORE
JHE R FC CRDED FILES STATE I I
~POSITION DATA VALUES .•E C I I

I I

31
~~~~~~~~~ION 

I
WRITE OUT VALI

POINT PROCEDURE
CLOSING STATEMENTS.

—

CONPL~~E PROCESSING FOR 

— — 
V

VALIDATION P0

EXIT 

INTS.

11SF

Figure 3-58.1 Analyt Ic Simulator Validation Translat ion (GGTRVP) (Continued)

3-282



3.5.8 Performance-Requirement Translation (GGTRPR)

Description

The PERFORMANCE REQUIREMENT Translation converts the executable descrip-
tion (TEST) of each PERFORMANCE REQUIREMENT specified in the PRLIST into PDL 2
source statements in such a way that the user can sel ect the test to be run
and can access within the test the data recorded at VALIDATION POINTs during
simulator execution. The three basic translation steps are data manager
genera tion , TEST translation , and executive generation.

During data manager generation , the PERFORMANCE REQUIREMENT translation

module generates the procedures and data structures which allow access to the

recorded data . In general one procedure and one array entry is created for
each VALIDATION _POINT and for each FILE recorded at each VALIDATION _PO I NT .

Dur i ng TE ST t rans la t ion , the PERFORMANCE_REQUIREMENT translation module

writes all PDL 2 source statements directly to the TEST procedure file with

no change but converts all RSL statements (RETRIEV E, SELECT , and FOR EACH )
to data manager procedure invocations as required to perform the requested

funct ion .

Finally, during executive generation , the PERFORMANCE_REQUIREMENT trans-
lation module constructs a main program to optionally invoke the TEST proce-

dures and print their pass/fail results.

Input

ASSM - Names of a l l  PERFORMANCE REQUIREMENTs .

PERFORMANCE REQUIREMENT LIST - Linked list of PERFORMANCE REQUIREMENTs
(PRLIST ) to be included in the Simulator Post-

Processor Program .

VALIDATION POINT INTERNA L LIST - A linked list of all VALIDATION_POINTs
(headed by~GG9VPL ) processed by the Analytic Simulator

Val ida tion Transla tion Module .  Each
entry of the list has a sub-l i st of all
the VALIDATION POINT ’s RECC~Ded FILEs ,the VALIDATIOtfl’OINT’s nai ? (an AASTRING),
the VALIDATION POINT ’s ASSM address , and
the VALIDATION1’OINT ’s ordinal (INTEGER).

3-283 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -

DATA LIST (headed by GG9DECLST) - A linked list of all DATA processed by
the Data Translation Module. Each
entry of the list has a sub-list of all
the DATA ’s owners (FILEs , ENTITY_CLASS ,
or ENTITY TYPEs), the DATA ’s name (an
A.ASTRING), the DATA ’s ASSM address , a
pointer into the DATA_TYPE LIST indicating
the DATA ’s PDL 2 TYPE , a pointer into
the DATA INITIAL VALUE LIST indicating
the DATAT5 INITIAL VALUE , an INITIAL
VALUE status flag TINTEGER) indicating
that the DATA ’s INITIAL VALUE has been
looked for in the ASSII ~fl) or not (0),and an owner-c heck ID (INTEGER) identify-
in g the DATA ’s owner-check procedure.

FILE LIST (headed by GG9LFILST) - A linked list of all FILEs processed by
the Data Translat ion module. Each entry
of the list has a sub -list of a l l the
FILE’ s owners (ENTITY_CLASS or ENTITY
TYPEs), the FILE’ s name (an AASTR ING),
the FILE’ s ASSM address , a LOCALITY flag
(BOOLEAN) indicating whether the FILE is
LOCAL (FALSE) or GLOBAL (TRUE), an d an
owner-check ID (INTEGER) identif ying the
FILE’ s owner-check procedure.

DATA_TYPE LIST (headed by — A linked list of all the DATA TYPEs
GG9TYPLST) (PDL 2) processed by the Data Translation

module. Each entry of the list has the
DATA TYPE ’s name (an AASTR ING), the
DATA TYPE ’s ord i n.si (INTEGER), an d a
scratc h flag (BOOLEAN) used in other
modules to indicate whether the DATA_TYPE
is used or not.

DATA ENUMERATED TYPE LIST - A linked list defining all the ENUMERATED_
(headed by GG9ENHLST) TYPEs of DATA processed by the Data

Translation module. Each entry of the
list has a pointer to the ENUMERATED
TYPE ’s entry in the DATA_TYPE LIST , a
sub-list of values composing the
ENUMERATED TYPE’ s RANGE , and a counter
giving the number of values composing
the ENUMERATED TYPE’ s RAN GE.

VALIDATION _POINT LIST (VALLIST) — Linked list of VALIDATION POINTs with
sub-l ists of RECORDed simple data and
of RECORDed FILE data (see Figure 3-47).

3-284

- --- -- ~~- - -~~~- - ~~~
_ - - -~~~~~~~~~

‘
Outputs

PERFORMANCE_REQUIREMENT - A text file containing the PDL 2 source
SOURCE FILE (PRSF) statements declarin g the Simulator Post

Processor Program . This includes data
declarations for DATA and FILEs RECORDED
by VALIDATION POrNTs , procedure declara-
tions for the data manager , procedure
declarations for PERFORMANCE REQUIREMENTs ’
executabl e descriptions , and a procedure
for the Simulator Post Processor executive .

ProcessJ~y

Processing performed in Performance Requirement Translation module is
shown in the flow diagram of Figure 3-58.2. The followi ng comments refer to
processing steps in the flow diagram .

[1] — Includes such operations as assigning
initial values to variabl es and arrays
for use throughout the Performance Re-
quirement Translation module.

Procedure References

The fol l owing correlates the functiona l processing elements shown in

Figure 3-58.2 with the REVS procedures which perform the indicated processing .

[1—5] - GG5PRBGN

[6—8] - GG5VVP V

[9-il] - GG5VVSD

[12] - GG5VVPV

[13-18] - GG5VVFL

[19] - GG5VVPV

[20-22] - GG5PRPR

[23-96] - GG5PRTST

[97-98] - GG5PREND

3—285

I

F ~~~~~~~
--

~~~
--

~~~ 

I
_ _ _ _ _

C~!D ~~~~~~~
[

INITIALIZE FOR —
~1 — — IPøFO~~ANCE_RCQUIREMENT (

TRANSLATION. J 12

2 ~~~~~~~~~~~~~~~~ WRI TE OUT P01 2 SOURCE 1 I
______________________ STATE MINTS TO END THE I

~~~~~~~~~
_1

WR rT E OUT P01 2 SC LJRC(1 VALIDA T ION POINT DATA I ISTATEMENTS DECLARING ACCESS PROCEDURET EST INDEPENDENT I
PROCED URES . j DECLARATION. j

3 13 I

STATEMEN TS DECLARING i FOR_EACH
PROC EDURES TO ACCESS I I RECORDED FILE.~~~~~ ~~~ 

I

~~~~~~~~~~~~

WR ITE OUT PIlL 2 SOURCE 1

___ IRE~ JIRED POL 2 TYPES I __________________

OF DATA. J I
__

I14
______________________ WRITE OUT P01 2 SOURCE J I

~~~~~~~~~~~

WRITE OUT P01 2 SOURCE ~z: :i~1~. STATEMENTS TO BEGIN
STATEMENTS DECLARING THE FILE DATA ACCESS

ENUMERATED TYPES PROCEDURE DECLARATION .] IAM) TEST I NDEP END E NT 
~~~~~~~~~~~~~~~ i ITYPES

~~~ T PDL 2 WURc1 
1~~~~~~~~RE CO~~~\I D~TA ITEM IN ~~~~~ 

I
~~~~~~~~ 4~_ 1STA TEYEN TS DECLARINGTES11 L !~.L1.~i~

E
~___/ I I I

! I I‘....f!~ ...J [INDEPENDENT VARIABLES .
16

-

I I IWRITE OUT POL 2 SOURCE I
T S TO ACCES S

_
~~~~~~

Afi ON

~~~

I

~-

I I IIN THE VP LIST. I
WR ITE OUT P01 2 SOURCE I

ATA ITEM DECLARATION TO I
STATEM ENTS TO BEGIN

VALIDATION _POINT IDATA AR EA DECLARATION.

STATEMENTS TO ADD THE I
WR ITE OUT P01 2 SOURCE I PRYD

TH~ VAL IDATION POINT

—

j i I
8 1

~H WRITE OUT PDL 2 SOIJRCI1 I — —
ISTRTEI’ENTS TO BEGIN I

VALI DAT IO N POINT DATA I I ______________________
DECLARATION. j I STATEMENTS TO END THE

ACCESS P*OC EOURE I

~~~~~ 
WRITE OUT P01 2 SOURCE I

I F ILE DA TA ACC ESS IPROCEDURE DECLARATION .FOR EACH RECORD ED
DATA ITEM NOT IN _

~~ 

I I IA RECORD ED FILE.

I I
19 

~~~~~._

~~~

HWRflE OUT P01 2 SOURCE I
STA TEMENTS TO ADO THE _____________________

ThZ VAL IDAT ION POINT STATEMENTS TO I’M) THE

DATA ITEM DECLARATION TO I I ~~~~~~~~
4_{

WRITE OUT P01 2 SOJ RC~~

] 

I
DATA DECLARAI’ ION. I VALIDATION POINT DATA IECLARAT ION.

11 1
STA T EM ENTS TO ACCESS

WRITE OUT P01 2 SOURCE
__ _J

THE DATA ITEM .

AREA D 

I

Figure 3-58.2 Performa nce-Requirement Translation (GGTRPR)

3-286

-- _ _



-I

FOR EACHFTEST/ PE OR~~~~~
\

IN —

THE PR L IST .

21 I
ADD THE PETFOR ~ R~(E I

~ _REOU IREMENT TO THE
INTER NAL LSIT CF I IERFORMA NC E RE~ J IREMENT~j

22

~~~~~~~~~~~~~

IT C OUT PCI 2 SOURCE
STATEYEMTSTO BEGIN THE I

TEST PROCEDURE I
DECIMATION. I

23 I
INITIALIZE YALUES FOR
EXT TRANSLATIO N.RETURN JTHE NEXT IDENTIFIER

WITH PREY b U S AND I
FOLLOWING DELIMITERS. I

24 ~‘
.
~;:iii—

~
25

I
./PREV TOUS ” .. R ETURN THE NEXT 1.—‘DELT MITER A N._______________

IDENTIFIER WITH PREY

ly

~~

I
ND FOLLOWI NG OELI M I TER S .J I

~~~~~~~ _ I
OF ~~~~~ YES

TRUE

~ IS YESFOR EACH
WRITE THE PREYICNJS

]

27 

TACN EMPTY 

R TO

EL 1MITER.

__________ 
ISSUE A SYNTAX tRIEDND ~‘IDEN IFIE~~N- 
THE USER AM) UNSTACKS.

ONE SET OF DATA .

31~~k
_ _  _

—‘ NEAT ~~ 
33 IS

~{ IDENTIFIER ‘
~~J~-~ 

THIS
• FIRST S .._~~ 

— I DE NT IFIER
— ‘NEX T ~

32 
______________ 34

SET FIRST FLAG. 1 W~ NEXT FlAG.

(.~~

Figure 3-58.2 Performance-Requirement Trans lation (GGTRPR) (Continued )

3—287



— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

*13

35 IS
IRST OR

NEXT FLAG
SET
7

YES

~z R
NEXT

IDENTIFIERS
— REC ORDING

OR ’?

YES

37 N T
DENTIFIER 

~VAL I DATION
POINT

£
YES

R 39
NEXT

!TEN T I F !ER S NO SET SUCH T1II1T
‘SiCK THAI’ FLAG TO NG.

2

YES
40

PICK UP CONDITION.

IS
OM) ITION N
SYNTAX
CORRECT

7

YES
42

SET SUCH_THAT
FLAG TO YES .

UCH THA
FLAG Sfl TO WRITE OUT A SYNTAX

YES OR NO ERROR TO USER.

YES
45
WR ITE OUT P01 2 SOURCE

STATEMENTS TO ACCESS
PRPO IRST OR NEXT VAL IDAT ION

_POINT RECORDING WHICH
MEETS THE SPECIFIED
CONDIT ION IF AN Y .

B’s

Figure 3-58.2 Performance-Re quIrement Translat ion (GGTRPR ) (Continued)

3-288

L -- - - - — - - - -——- -~-----~~~~-‘



- ~~~~~~~~~~~~~~~~~~~~~ --~~~

*14

44 15
£NTIFI ~• FORE

7

YES
48

47 IS I WRITE OUT ~FOR ’
NEXT NO I FOLLOWED BY PREV IOUS

IDENTIF IER —4~ DELIMITER FOLLOWED
• EACH’ I BY THE

7 Ct~RENI IDENTIFIER.
YES

NEXT
I D E N T I F I E R  ND

A VALIDATION
POIN T

YES

URRE
5° NEX T 51 DENTIFIER A

IDENTIFIER ~ lIE NAM E OF THIS 14)
RECORD ING S VALIDATION POINT

7 PRECEEDED BY

YES 
A .

SET RECORDING FLAG
TO TRUE. 52 NEXT RIO

I SET RECORDING FLAG

L TO FALSE.

(6ENT~~ TE RS~~~~~
O
~, -

•°SUCH THA
?

ff-S

A/S S/S
e

FIgure 3-58.2 Performance-Requirement Translation (GGTRPR) (Continued)

3-289

_ - _

~

----_.-- _-
- ~~~~~~~~~~~ - --_ _ _ -~~~ - ---- --~~~- - --_-“ - - _ ~~~~~~~~~~~~~~~~~



A/S (
~)

51

PICK UP CONDITION. 61
____  

NEXT
~~ IDENTIFIER )

~
‘N~_• ‘OO’ ,.”

SYNTAX 62014)111 NO 
______________________

DJRRENT 

[ 
SET SUCH THAT

1 FLAG TO M).
YES ______  ______

59 IS
NEXT NO 

_________________IDENTIFIER
• ‘DO ,

7
YES

60

SET SUCH THAT FLAG
TO YES.

I —

1

1

63 IS 64 
_____________

CH THA T NO WRITE OUT SYNTAXFLAG S~~ TO YES
OR NO ERROR TO USER .

7
YES

65 S
EC ORO IN G NO

LAG
TRUE
7

YES
66 67

WR ITE OUT P01 2 SOURCE IWR~ E OUT P01 2 SOURCE I
STATEMENTS TO BEGIN A I STATEMENTS TO BEGIN A I

I FOR EACH ON VALIDATIONOR_EACH ON FILE RECORD I POINT RECORDINGS WHICH IICH ME ET THE SPECIFIED MEET THE SPECIFIEDCONDITION LI’ ANY . 
L CONDITION IF ANY.

SAVE FOR EAC H INFORMAl ION

WI

Figure 3-58.2 Performance-Requirement Translation (GGTRPR) (Continued)

3-290

-- -- -~



.
~

iT ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

A”

69 IS
D EK TIFI 10
• ‘SELECT ’

7

YES

70 IS fl

IDE NT IF IER NO -~~~~~ENT~FIER~~)!~9
• ‘p~g~~’ 

12

[ SET FIRST FLAG. J [ SET NEXT FLAG.

11 ‘4

FIRST OR 10
NEXT FLAG

SET
7

YES

NEXT
IDENTIFIER S NO

— ‘RECORD
FR~I

YES

76 N I
DENTIF IER NO

ALIDATIDN j’OI
MIl E

YES

IS
NEX T

D ENTIFIER A
FILE NAM E OF THIS MD
ALIDATION POINT AM)

ECEED ED BY
A ’ . ’

YES

79
78 F

IDENTI FIERS NO ,J SET SUCH_THAT
• ‘SUCH I FLAG TO IC.
THAT’ L

YES
so

PICK UP CONDITION. 1

Figure 3-58.2 Performance-Requirement Translation (GGTRPR ) (Continu ed)

3-291

---_--- --_ 
~~~~~- - -~~~~~--


-~ --~ -~ -— - - - -~~~~~ - - - --- -~~~~ -

,‘t0M)ITI0~
’N. IC

SYNTAX

SET SUCH_THAT
FLAG ~~ YES.

FIgure 3-58.2 Performance-RequIrement Translation (GGTRPR) (Continued)

3—292

~

_ _ _ _ _

(~

~~~~~~~~~~~

E R N O
87
I WRITE OUT IDENTIFIERIDENTI

0 PROCEDURE SOURC

~
1._____ 

—

ENDFOREACH’ FILE.

YES 

~j T

REMOVE FOR EACH
1IW ORI4ATION FROk THE TOP,

T~C FOR_EAC H STACK. I
‘9

90

~4TACK ACCES?~ .
ND ITt OUT A SYNTAX ERROR

TO THE USER .
~~~~. SUCCESSFUL.—’

YES
,— REC ORD -~

~‘...fLA GTRUE F05.-’
OR

92

TR1k,F _ .,~ACFI

~ WRITE OUT P01 2 SOURCE WRITE OUT POL 2 SOURCE 1
STATEMENTS TO END A STATEMENTS TO £14) A I

FOR EAC H ON VAL IDATION IFOR EACH ON FILE
POINT RECORD INGS I4HLCH

LRECORDS WHICH MEET THE
SPECIFIED CONDITION EET THE SPECIFIED

IF ANY.
N
CONDITION IF ANY. I

DEL 1M b __________________________

“
~~~~ A DOUBL E 7

RETURN THE NEXT I I .

IDENTIFIER I I SET END_OF_TESTI WITH PREVIOUS AM) I I FLAG TO TRUE.FOLLOWING DELIMITERS.

‘-4

Figure 3-58.2 Performance-Reuqlrement Translation (GGTRPR ) (Continued )

3-293



~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘I’

4/9

97

COMPLETE PROCESSING OF
ERFORMA NC E_RE QUIREM EWrS

PRPO BY WRIT ING A OUT THE
EXECUTIVE WHICH CALLS

THE TEST IN RESPONS E
TO USER INPUTS.

I

~:~1~~~~~

E

~?SR?J H—~~PRPD
EXIT 1)

Figure 3-58.2 Performance-RequIrement Translation (GGTRPR) (Continued)

3-294

---- ---— -- -~~~~~~---- ~~~~~~~~~ - - - - -~~~~~~~~~ --~~~~~ ~-- —~~~~~--- .

3.6 SIMULATOR EXE CUTION (SIMXQT)

Description

The Simulator Execution function processes the simulation run-time
control parameters input by the user and builds a parameter file to be
read by the Simulator Program generated by Simulato r Generation . The
currently defined control parameters are simulation start and end times ,
and an identifying name for the simulator execution .

Input

USER RCL - Simulator Execution control statements.

Out put

SIMULATOR USER INPUT FILE - Used to communicate the user inputs
(EESUIF) from SIMXQT to the Simulator Program .

Contains desired simulation start and
stop times , and a run identification.

Processing

Processing f~r the Simulator Execution function is shown in Figure 3—59 .

Additional comments which reference the processing box numbers in the flow
diagram are :

[1] - Initialize parser keywords and set default
run identification.

[3] Parsing is done by a keyword driven
parser .

[4-6] — Invalid statements are reported back
to the user and rejected . Valid state-
ment informati on is stored in internal
form.

[7] - Both START and END times must be
specified .

[9] - START time must be less than END time.

[11) - Valid inputs are written to the Simu-
lator User Input Fil e (EES UIF).

3-295

Procedure References

The software procedures whi ch accomplish the processing shown in the
blocks of Figure 3-59 are as follows :

[1] — RRINITIAL
[2-6] - RRPARSER

[7— 1 1] - RRWRITER

~~~~~~~~I291



__ -

I PERFORM
INITIAL IZATION .

2[ USER INPUT.~~~~~~~ 
—

~~~~~~~~~~

3 4 ,

[~~PARSE USER INPUT.

_ _ _ _ _ _ _ _ _ _ 1.

I STORE INPUT I—~[INFORMATION. I REPORT ERROR.

7 x 8
START

O (Nu TIME NO
REPORT ERROR.

YES

START
10

TIME :ND ~O REPORT ERROR.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 3-59 Simulator Execution (SIMXQT)

3—297

—j — .-  ——----.--.---- ----- ------~~~~~ -—



-. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3.7 SIMULATION DATA ANALYSIS (SIMDA)

Description

The Simulation Data Analysis function processes the simulation post-
processor run-time control parameters input by the user and constructs a
parameter file to be read by the Simulator Post-Processor Program
generated by Simulator Generation. The parameter file contains the names
of the PERFORMANCE REQtJIREMENTs which are to be tested by the Simulator
Post-Processor Program, the time and data at which Simu l ator Generation was
exec uted , and the simulation identification that the user suppl ied as an
input to Simulator Generation.

Input

USER RCL - Simulator Post-Processor control state-
ments.

EVENT DEFINITION FILE (EEDF) - Information describing the Simulator
and Post Processor constructed by
SIMGEN. Of importance to SIMDA are
the records containing the PERFORMANCE
REQUIREMENT names testabl e by the Post
Processor and the time , date , and
identification for the SIMGEN execution.

Output

VERIFICATION AND VALIDATION - Used to communicate the user inputs
INFORMATION FILE (VVIF) and SIMGEN time , data , and identifica-

- tion from SIMDA to the Simulator Post-
Processor Program .

Processing

Processing for the Simulation Data Analysis function is shown in Figure 3—60.
Additional coments which reference box numbers in the flow diagram are:

[1] - The EEDF file outpu t by SIMGEN is read
to obtain the time and date SIMGEN was
exec uted , the simulation identification ,
and the names of PERFORMANCE REQUIREMENTs
which can be tested by the Simulation
Post-Processor Program .

[2—3] - If the EEDF file contains no PERFORMANC E
REQUIREMENT name, SIMDA reports that fact
and exits .

3—298

j — -- ---—. -~~~~~~~~~~ - - -. -

~ __ _ _ _ _ _ _ __ _ _ _

[5—9] - Inval Id statements are reported bac k to
the user and rejected. Va lid statements
are stored in internal form.

[10]
- The VV IF file will contain the time , date,

and ID read from the EEDF plus the names
of PERFORMANCE_REQUIREMENTS to be tested.

3-299

I

~

SIMDA

EED F
READ EEDF.

2 FOR~.ANCE_ NO
REç~ I~~~’~~:1TS

ON EE~F
3

?
REPORT ERROR.

PERFORM INITIALIZATION .

EXIT

5

FOR EACH
USER INPUT.

6

PARSE USER INPUT.

7 ERROR
YES

PARSING 8
7

NO
REPORT ERROR.

9
STORE

INPUT INFORMATION.

———— -- J
10

RECORD USER INPUTS
AND SIMO EN TIME.

DATE AND ID .
V IF

EXIT

Figure 3-60 Simulation Data Analysis (SIMDA)

3-300

.-

~

- -~~~~~ - --_ _- --~~~~~~~~~~~~ - - . ~~~~~~~~~~ .------

4.0 COMPUTER PROGRAM DESCRIPTION - REVS GENERATED SIMULATOR PROGRAM

Descri pti on

The Simulator Program (EEPROGRPIM) is a PDL 2 main program constructed
by the Simulator Generation function . Once the Simulator Program is con-
structed and the necessary user inputs are suppl ied through Simulator Exe-
cution , the program is completely executable outside the control of REVS.
The Simulator Program is a discrete event type simulator. It is composed
of the following major processing elements as shown in Figure 4— 1.

• R_NET Procedures

• System Environment and Threat Simulator (SETS)

• Simulator Executive

• Simulator Event Management

• Simulator Data Management

Additional processors , provided externally to REVS , will generate attack
descriptions compatible with the SETS model program .

The Simulator Program is designed to interface the R_NET procedures
wi th a simulation driver such as SETS. The overall simulator control and

the engagement clock resides in the Simulator Executive. SETS i nterfaces

with the R_,NET procedures through Simulator Data Management and Simulator
Event Management utilities.

An R NET is the only element in RSL which can be scheduled to execute .
An R NET is scheduled to execute whenever flow passes through an EVENT
which ENABLES the R NET or when a MESSAGE is PASSED THROUGH an INPUT INTERFACE
which CONNECTs to the Data Processing Subsystem . SETS is scheduled to
execu te whenever a MESSAGE i s PASSED THROUGH an OUTPUT_INTERFACE which con-
nects to a SUBSYSTEM model ed by SETS. SETS may also enabl e itsel f through
a special exogenous event. Simulator Event Management provides the utilities
to schedule the execution of both R_NET s and SETS. Simulator Data Manage-
ment controls and provides access to the MESSAGEs which are PASSED THROUGH
the interfaces , as well as managing all other RSL DATA constructs. The
Simulator Executive controls the execution of the simulator by causing the
control flow to pass to SETS and the R_NETs at the scheduled times .

4-1

Input

SIMULATOR USER INPUT FILE - User input controls processed by
(EESUIF) SIMXQT (See Section 3.6).

EVENT DESCRIPTION FILE (EEDF) - Definitions of the events and interfaces ,
and the SIMGEN time , date , and identi-
fication.

ATTAC K SCENARIO FILE - Attack Scenario Definition (inpu t to
SETS).

Output

VALIDATION DATA FILE (EEVALDAT) - Validation data recorded during a BETA
simulation.

VALIDATION POINT RECORDING FILE - Val idation data recorded during a
(EE9VPRF[) GAMMA simulation .

Processing

The control flow through the Simulator Program is shown in Figure 4-2.
As shown in the flow diagram , control is transferred first to Simulator
Initialization (EEINITIAL) and then to the Simulator Executive (EEXEC)
which controls the sequencing and execution of all processing . These two
functions as well as the Simulator Data Management and Event Management
utilities are described in the followi ng sections .

Procedure Reference

The processing depicted in the blocks of Figure 4-2 is performed by
the following software procedures in the Simulator Program.

[1] - EEINITIAL
[2] - EEXEC

4-2

- — - - — —- — -~~~~— --~~~~~=~~—- ,-~~~ ----
— : — -_

4.1 SIMULATO R INITIALIZATI ON (EEIN ITIAL)
Description

The purpose of Simulator Initialization is to perform all initializa-

tion required for the execution of the simulator program .

Inpu t

SIMULATOR USER INPUT FILE - Contains simulation start and end times ,
(EESUIF) and an identifying name for the run.

EVENT DESCRIPTION FILE (EEDF) - Event and interface description records
constructed by SIMGEN and used to
initialize Event Management control
tables . Al so the time and data SIMGEN
was executed , and the identifying name
for the simulator .

Processing

The processing flow for Simulator Initialization is shown in Figure
4-3. The following comments further describe the processing of the ind i-
cated boxes.

[1] - Information read from the EEDF is used
to initialize the event list (EEVLIST).
The date and time SIMGEN generated the
simulator program and the simulator
identification are also read .

[2) - The Da ta Ma nagement Da ta-Set /Class
Description Array is init ialized and
all globa l RSL data i tems are assigned
their initial values .

[3] - The user input controls (simulation
start and end times and run identifica-
tion) are read from the EESUIF.

[4-5] - Information read from the EEDF is com-
pared with simulator program values.
If the i nformation does not match ,
the EEDF and simulator program were not
constructed by the same SIMGEN execution.

[6-7] - Both start time and end time must be
input.

[8] - if the FEDE does not match the simulator
program rr if both start and end times
were not input , the simulator cannot
be executed.

4-3

[9] - The simulator start-up event is posted
to occur at a large negative time
(- l .O E+4). The SETS-supp lied procedure
SSSTARTUP will execute at that time ,
allowing for any required SETS initial iza-
tion.

[10] — The simulator shut—down event is posted
to occur at simulation end time . The
standard procedure EESTOP w ill execute
at that time , resulting in program
termination.

Procedure Reference

The software modules in which the processing shown in the blocks of

Figure 4—3 is implemented are as follows :

[1-4] — EEINITIAL

[2] - EE8SETUP

[9-10] - EECAUS E

4-4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~--~~- - - -  - - _ --~~~~



_ _ _ _  

-

~~~~~ v’

I-

~ ~~~~~~~~~~~~~~~ ~j~~~~~~4
I I-

_I .
~ I I.-

I-. I L.J-. L~~
., -

~1) .- V)

~/~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
“

a-
I~~~-j

4-5 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



EEPROGRA M

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~RF~~~

EX IT

Figure 4-2 SImulator Program (EEPROGRAM )

4-6

_ _ _ _ _  ____ ____________________ ---—--4



- ~~~~~~~~~ —~~~~~~~~~~ r -~~~

LEINIT IAL

ACCESS E VENT ANt)
INTERFACE DESCRIPTIONS .

F 
AND 5!MGEN DAT E,

- - . .  1- .~2
EE8SET UP

DATA MANAGm-IENT
INITIALIZATION .

3

ACCESS USER INPUT
CONTROLS.

Slit

DOES S
EDF MATCH ~S IMULATO R REPORT ERROR.
PRO AM

ES

STAR 7
6 

TIME INPU T 
NO REPORT ERROR .

YES

8 ERROR YES
DETECTED

NO
9

SET E V E NT

POST START EVENT .

10
SET EV ENT

POST EM) EVENT.

EXIT

Figure 4-3 Simulator Initial ization 
~EINITIAL )

4-7 



4.2 SIMULATOR EXECUTIVE (EEXEC)

Description

The Simulator Executive controls the sequence of execution of R_NET
and SETS model s and maintains the engagement clock. The execution sequence
is determined by the order of events on the event calendar and by the
enablement conditions for the models. The event calendar is a time-ordered

linked list constructed and accessed using the Simulator Event Management

utilities (see Section 4.3). The Simulator Executive removes one event

at a time from the linked list , updates the engagement time to the event
time , and invokes any and all R_NETs or SETS models which are fully enabled .

cycling through the event lis t continues until the termination flag is set.

This flag is set true when the standard “pseudo ” R_NET EESTOP executes at
engagement end time or in case the event list becomes empty .

Input

EVENT LIST (EEVLIST) - A matrix describing each event ii, the
simulation. The content is the same as
an event definition record on the EEDF.

EVENT CALENDAR - A time-ordered linked list of events
which are scheduled to occur.

EVENT/ENABLEMENT DEPENDENCY - A matrix describing the dependency of
LIST (EEDEPLST) R NET enablements on events .

Output

EVENT/ENABLEMENT DEPENDENCY - A matrix describing the dependency of
LIST (EEDEPLST ) R_NET enablements on events .

EVENT CALENDAR — A time-ordered linked list of events
whic h are scheduled to occur.

Local Data

TERMINATION FLAG - A flag which -is set true by EESTOP at
engagement end time or is set true when
the event calendar is empty.

4-8



r— —
~
—- — ___ .__)~~

__ 
~~~~~~~~~~~~~~ ~- -

Processing

The processing performed by the Simulator Executive is shown in
Figure 4-4. Additional comments referencing these boxes are given below.

[1] - Termination flag will be set by proce-
dure EESTOP at simulati on end time.

[2, 3) - An empty event calendar will cause the
termination flag to be set.

[4] - Engagement time is set equal to the
event time .

[5] - The Event List (EEVLIST) entry for the
current event is used to update the
Event/Enablement Dependency List
(EEDEPLST) .

[6-9] - This code is constructed by the Event
Translation phase of Simulator
Generation.

Procedure Reference

The software procedures which accomplish the processing shown in the
blocks of Figure 4-4 are as follows :

[1] - EEXEC
[2—4] - EERTOPE

[5] — EESETDEP

[6—9] - EESCHED

4-9

— - .—-- -- ------ .

~1

EEXEC

ERM I NATLO YES
FLAG S~ T

7

NO EXIT

, 3
EVENT
IN THE NO

SET TERMINATION FLAG.

RE~~~~~ vEN; FR~~~~~

ENGAGEMENT TIME.

UPDATE DEPENDE NCY LIST
j

6
FOR EAC H R NET

ENABLEMENT — —
EQUAT ION.

7 I
EVALU ATE

ENABLEMENT EQUATION .

8 I
R NET YESENABLED I

NO
9 I
RESET DEPENDENCY LIST.

INVO K E R_NET.

Figure 4-4 Simulator Executive (EEXEC)

4-10

- - . - -

4.3 SIMULATOR EVENT MANAGEMENT

The Simulator Event Manager provides the utilities necessary to
correctly mai ntain the event calendar , which is a time-ordered linked list
of events scheduled to occur. Two conceptual operations are permitted upon
the event calendar , insertion of an event (in its proper time-determi ned
position) and removal of the top or next event to occur in time order. The
insertion of an event is accomplished by the SETEVENT utility which has
three callable interfaces ; EESETEV , EECAUSE , and EECAUSED . The removal of
the next event is accomplished by the REMOV E utility which is i nvoked by
calling the procedure EERTOPE. These utilities are described in the fol low-
ing sections.

4.3.1 SETEVENT

Description

As stated above , the SETEVENT utility can be invoked through three
procedures , EESETEV , EECAUSE , and EECAUSED . EESETEV is the standard procedure
used by the requirements dependent code constructed by Simulator Generation.
The EESETEV procedure is thus called whenever control flow passes through an
EVENT or OUTPUT INTERFACE . The EECA USE and EECAUSED procedures are provided
mainly for use by SETS models. They provide a simpler calling sequence while
maintaining the capability for setting events at the current engagement
time (EECAUSE) or at some delayed time (EECAUSED).

Input

EVENT CALENDAR - Time-ordered linked list of scheduled
events . Each record in the list con-
tains an event number , an event time ,
and a link to the next record .

EVENT NAME - RSL name for the EVENT or INTERFACE.

EVENT NUMBER - Number assigned by SIMGEN to the event.
(Not supplied for EECAUSE or EECAUSED.)

EVENT TIME - Time at which the event is to occur.

4- 11

_ _ _ _ -~~~~~~~~-- ~~~~~~~~~-.--- -- - . -

Local Data

FIRST EVENT - Pointer to top of the event calendar.
LAST EVENT - Pointer to last event on the calendar.

Output

EVENT CALENDAR - Time-ordered linked list of scheduled
events .

Processing

The processing performed by the SETEVENT util ity is shown in Figure
4-5. Additi onal comments concerning selected boxes on the flow diagram are
provided bel ow .

[1 ,2] - Unknown events or events which wou ld cause
engagement time to back up canno t be
scheduled .

[8-10] - The event is placed after any other event
on the calendar with the same time . Thus,
events at a partic ular time are treated
in a FIFO (First—In—First —Out) manner .

4- 12

— -—----——-.. .-----.----
i

~
‘
~~~TEVENT~~~

~~~~~~~~E~
M
T
E

TIME YES REPORT ERROR.

CREATE EV .
CALE~IDAR

1 5
SET FIRST EVENT

,‘ CALE NDAR ‘~~Y~ S
~J TO EVENT.

EMPTY ‘1 SET LAST EVENT
TO EVENT.

NO

7
6 EVENT I LINK E~E~T TO

FIRS YES ~J FIRST EVENT.
EVENT TIME “1 SET FIRST EVENT

7 I TO

NO

9B EVEN I LiNK LAST EVENTIME ~ LAS YES .J TO EVENT.
EVENT TIME ‘I SET LAST EVENT

7 L TO EVE~t.
—

NO
10
F INSERT EVENT IN[CORRECT TIME ORDER.

~~
EXI T~~~~~~~~~~~

Figure 4-5 SETEVENT

4-13

4 . 3 . 2 Remove Event (EERTOPE)

Descr ip t ion
The Remove Event utility is used by the Event Manager to retrieve the next

scheduled event from the event calendar and update the engagement clock to
the time of this event. This utility is only used by the Simulator Executive

and is accomplished by the procedure EERTOPE.

Input/Output

ENGAGEMENT TIME (EECLOCK) - Current engagement time.

EVENT CALENDAR - Time-ordered linked list of scheduled
events.

FIRST EVENT - Pointer to first event on calendar.

CURRENT EVENT - Pointer to current event.

Local Data

TERMINATION FLAG - Flag which is set true if the event
calendar is empty .

Process i ng
The processing performed by the REMOVE utility is shown in Figure 4-6.

4-14

EERTOPF

1 is 2
EVE.~T

cALEN DAR SET TERMIt~ATIOU FLAG.
EMPTY

7

NO

LUNLINK FIRST EVEI~T.

4

T RESET FIRST EVENT

j
AND CUfl RE~ff EV~ i~T .

UPDATE L~GAGEMENT TIME.

EXIT

4 Figure 4-6 Renove Even t (LERTOP E)

4-15

—.— -~~ - - - ------- - -_

-
~~~~

4.4 SIMULATOR DATA MANAGEMENT

The Simulator Data Manager provides the service requests specified in
the ALPHA model s and R_NETS translated from RSL. Specifically, it supports
INTERFACE , FILE , and ENTITY accesses using list processing techniques in
either First-In-First-Out (FIFO) order or Rank High order (FILEs only).

The service requests supported are :

• creation of an instance

• destruction of an instance

• transformation of an instance of one type to an instance of
another type (ENTITY TYPE only)

• formation of a MESSAGE instance for INTERFACE transmission

• access to first ins tance

• access to next instance

• access all instances successivel y.

The Simulator Data Manager is actually a library of procedures which
implement the required service requests by manipulating linked list struc-
tures in dynamic memory and the corresponding simple variables in static
memory. The name of each data-set (FILE , INTERFACE , or ENTITY_TYPE) and
class (ENTITY_CLASS) is declared by the S imula tor Genera ti on func tion as
an index to a Data-Set or Class Description Block. The Data-Set Description
Block forms the header for the linked list of instances owned by the data —
set. Data Management service calls are translated into procedure invocations
which pass the data-set name as a parameter and which access the linked lists
via the indexed Data-Set Description Block.

A user can only access a DATA value after it has been transferred
from the dynamic record (linked in a l ist) to a static variable by a Data
Management service call .  The user can mod ify the DATA values in the static
variables as long as the instance is selec ted . The selection of another
instance or the creation of a new instance will cause the currently
selected instance to be updated . That is , the static variables (containing
possibly altered DATA values) will be transferred back to the dynamic
record in the linked list. For ENTITY _TYPEs an instance may also own FILEs

4-• 16



r .~~~ — ~~~~~~~~~~
- - 

~~~~~~~~~ — ---=--~——--- -~~ -—---~~ .- .

as well as DATA va l ues . An owned FILE can only be acce ssed whi le the own ing
instance is selected . This is accomplished by transferring the FILE descrip-
tion block to and from the dynamic instance record just as a DATA value .

When a user creates an instance of a data-set or class , the Data
Manager will initialize each contained data i tem to the initial value
assigned in the ASSM or to a default initial value determined by the data
i tem ’s type. A dynamic record is not created and linked into the data-set
list until the instance is updated . A status flag in the Data—Set Descrip-
tion Block indicates whether the currently selected instance is new or
old and tells the UPDATE module what actions to take on the instance .

When a user destroys an instance of a data-set or class , the Data
Manager will initialize each conta i ned data i tem to the ini tial value
assigned in the ASSM or to a default initia l value determined by the data
i tem ’s type. The dynamic record , if one exists , is marked for deletion
at a later time .

The components of the Data Ma nager are shown in Figure 4—7. In
general those components correspond wi th service requests with the excep-
tion of the UPDATE component. This component is called by other components
to store the current data-item val ues into a dynamically allocated instance
record. The user is never required to make an UPDATE service request.

The following data structures are used by the Data Manager to represent
and manipulate the user ’s data base. The Data-Set/Class Description Array
(EE9DS) contains an execution time description of all data-sets and classes .
Some of its characteristics are :

• declaration generated by the Data Translation module of the
Simulator Genera tion func ti on.

• array elements are Data—Set and Class Description Blocks.

• data fields of Data-Set /Class Description Array are set at
simulation initialization by a procedure generated by the
Data Translation module of the Simu l ator Generation function .

• data-sets owned by the same class have description blocks
which are contiguous in the Data-Set /Class Description Array .

4-17

SIMULATION DATA MANAGER

CHANGE CONTEiff

_ _
UPDATE 1CREAT E DESTROY

_ _

CREAT E AND INITIALIZE A REPETITIVE 1A REPETITIVE DESTROY A REPETITIVE I UPDATE
DATA SET INSTANCE . DATA SET INSTANCE. L DATA SET INSTANCE .

SET FORM

CHANGE AN ENTITY TYPE INDICAT E THE TYPE
INSTANCE TO A~UTHER OF MESSAGE TO PASS

ENTITY _TYPE INSTANCE . A~i INTERFACE.

OBTAIN CONTENT

FIRST NEXT 1 FOR EACH

COPY COt4TENTS OF COPY CONTENT OF SUCCESSIVELY RETURN
FIRST IN STANCE TO NEXT INSTANCE TO I ALL INSTANCESINSTANCE VARIABL ES INSTANCE VA RIABLES

FROM DYNAMIC RECORD. FROM DYNAMIC RECORD. ONE AT A TIME.

Figure 4-7 Simulation Da ta Manager Components

4-18

— —-

• the Class Description Block inviediately follows the Data-Set
Description Blocks which it owns .

• the Data-Set Description Blocks and Class Description Blocks
are of the same type record (EE7DSTYP) wi th variants declared
to distinguish the two different sets of DATA fields. The
DATA field DSKIND establishes the type of variant (data-set
or class).

The following identifies the data fields contained in a Data-Set
Description Block in the Data-Set/Class Description Array :

DATA-SET /CLASS FLAG (DSKIND) - Set to ‘Data-Set ’ for a Data-Set
Description Block in the Data-Set!
Class Description Array .

INDEX TO DATA-SET (DSTYP) - Index into the Da ta-Set/Class
Descripti on Array for this data-set
entry .

POINTER TO FIRST INSTANCE - Set to ‘NIL’ if data-set is empty .
OF DATA-SET (BOl)

POINTER TO CURRENTLY - Set to ‘NIL’ if no instance is
SELECTED INSTANCE (CIN) selected .

POINTER TO LAST INSTANCE - Set to ‘NIL’ i-f data-set Is empty.
OF DATA-SET (EOI) Set to same value as 801 for one

instance in data-set.

DATA-SET STATUS (INSTT) - Set to ‘ old’ if old instance selected .
Set to ‘new ’ if newly created instance.
Set to ‘ null’ if no instance Is
selected .

INDEX TO CLASS OWNING THIS - Index into the Data-Set/Class Descri p-
DATA SET (CLASS) tion Array entry for the owning

class.

INSTANCE TYPE (INTYP) - Element from the list of i nstances
which this data-set contains . Used
to indicate which MESSAGE was FORMed
for an INTERFACE.

DATA-SET LINK (NXTDS) - (Not used for Data-Set Description
Blocks in Data-Set /Class Description
Array.)

4—19

_ _ ~~~- —.-~~~~~

- .-, . - --- - . ---- ,~~ —- —~~~~
-..-- --~~~

.

The following data fields are conta i ned in a Class Des~riptio n Block
in the Data-Set/Class Description Array :

DATA—SET /CLASS FLAG (OSK IND) - Set to ‘Class ’ for a Class Description
Block.

INDEX TO CLASS (DSTYP) - Index into the Data-Set/Class Descrip-
tion Array for this class entry .

INDEX TO FIRST DATA-SET OF - Index into the Data-Set/Class Descrip-
THIS CLASS (BOC) tion Arr ay.

INDEX TO THE CURRENTLY - Index into the Data-Set/Class Descrip—
SELECTED DATA-SET OF THIS tion Array .
CLASS (CDS)

INDEX TO THE LAST DATA-SET - Index into the Data-Set/Class Descrip-
OF THIS CLASS (EOC) tion Array .

NEW CLASS INSTANCE FLAG (NEW) - Set ‘true ’ for a newly created
instance which has had no type set for
it. Set ‘false ’ otherwise.

The dynamic instance record hol ds the DATA va lues for the i nstance
during those times when the instance is not selected . All dynamic ins tance
records are of the same POL 2 type wi th a variant declared for each distinct
instance type. In order to accommodate the same DATA i tem in more than one
instance (variant), each variant is declared further to be a record itself.
The data fields which are common to all instance types are described below:

FORWARD INSTANCE LINK (FLNK) - Points to the next instance in a data-
set. Set to ‘NIL’ for the last
instance of a data-set.

REVERSE INSTANCE LINK (RLNK) - Points to the previous instance in a
data-set. Set to ‘NIL’ for the first
instance of a data-set.

DATA-SET LINK (DSLNK) - Points to the first Data-Set Descrip-
tion Block of a data-set owned by the
instance . The data field NXTDS is
used to link subsequent Data-Set
Description Blocks together.

INSTA i~1CE TYPE (INTYP) - Contains the type of instance that
this record represents .

4-20

-q

DATA—SET TYPE (D S T Y P) - Index into the Data-Set/Class Descrip-
tion Array for the data-set which owns
the instance.

FOR EACH EXAMINATION - Holds the number of FOR EACH executions
COUNTER (CNTR) which are currently examining the

instance. A dynamic record cannot b~delinked and disposed until CNTR equals
zero .

DELETED FLAG (DLTD) — Indicates that the dynamic record is
logically deleted from the linked list.
The dynamic record cannot be removed
from the list unti l no FOR EACH
executi on is examining the instance.

4-21

— —- — —. .~ — ---- ,. _— , ~~~~~~~~~~~~~~~~ - --~~ ~~~~~~~~~~~~

4.4.1 CREATE (EE8CREATE)

Description

The CREATE module of the Data Manager is called during simulator
execution by a user service request to establish a new instance of a FILE
or ENTITY _CLASS. First , any previously selected or newly created instance
is updated (see the UPDATE module , Section 4.4.8), then the static
variables associated with the new instance are set to their initial values .
In addition , for ENTITY CLASSes , all FILEs associated with the class have
the static variables associated with the FILE instance set to their initial
values. Finally the FILE or ENTITY _CLASS status flag will be set to ‘new ’
to indicate that a new instance must be processed at UPDATE time .

Input

Input to the CREATE module of the Data Manager is an element of the
list of data-set3 /c lasses . The input element acts as an index to the
desired data-set (FILE or ENTITY _TYPE) or class (ENTITY _CLASS) entry in the

Data-Set /Class Description Array . See Section 4.4 for a description of
t ue Data-Set /Class Description Array .

Processing

Processing performed in the CREATE module is shown in the flow diagram
of Figure 4—8. The following comments refer to processing box numbers.

[1] - See UPDATE module (Section 4.4.8) for
detailed description .

Procedure Reference

[1] - EE8UPDATE

[4] - EE8 ININ

[7] - EE8 ININ

[8] — EE8INCL

4-22

~ -,. —— .~~~--— - --- -- . - --—-—— --— -- -.

~ .: ~~~~~~~ ------—-—- - — - — - - ~~~~~~~~~~~~

1

Qi8CRE~~~)

EE8UPDATE
UPDATE I IPUT

DATA-SET OR CLASS.

NO INPUT AN

3 j 5

~~~~~~LZ~~~~~

S

SET STATUS OF SET NEW STATUS
DATA-SET TO NEW. OF CLASS TO TRUE.

4 ~Ir 6
INITIALIZE ALL FILES

THE DATA-SET IiISTAi~CE.. SELECTED TO NONE.

7
INITIALIZE ALL FILES
AND VARIABLES FOR

ALL ENTITY TYPES OF
Tills ENTIT’I’_CLASS.

8
I N I T I A L I Z E  ALL FILES

AND VARIABLES
OF THIS ENTITY_CLASS.

Figure 4—8 CREATE (EE8CREATE )

4—23

L~~ . “ _ - -. .--- . . - .- - -~~~~~——~~~ - --- ~~~ - — .. - - —~~~~~~



4.4 .2  DESTRoY: (EE8DESTROYI

Description

The DESTROY modu le of the Data Manager i s ca l led dur i ng s imulator
execution by a user service request to dispose of the cu rrently sel ected
instance of a FILE or ENTITY _CLASS. If a DESTROY is attempted with no
valid Instance selected , a diagnostic message will be issued . A DESTROY
marks as deleted the currently selected instance ’s dynamic record ( if one
exists ) and initializes all instance static variables . For ENTITY CLASS
instances , all FILEs owned will have all instances disposed and their corre-
sponding instance static variables initialized. The status of the data-set
which has had a DESTROY opera ti on done on it , will have a value of null.

Input

Input to the DESTROY module of the Data Manager is an element of the
list of data-sets /classes. The input elemen t ac ts as an index to the des ired
data-set (FILE) or class (ENTITY _CLASS ) entry in the Data-Set /Class Descrip-
tion Array . See Section 4.4 for a description of the Data-Set /Class
Description Array .

Processing

Processing performed in the DESTROY module is shown in the flow diagram
of Figure 4-9. The followi ng comments refer to processing box numbers.

[6, 15] - Diagnostic message is written to external
file OUTPUT.

[8] - Input to this call to the DESTROY module
is the data-set (ENTITY TYPE) which is
currently selected on th~e originallyi nput ENTITY _CLASS .

Procedure Reference

[5] - EE8ININ

[6] - EE8LSTDIAG

[8] - EE8DESTROY

[9, 13]  - EE8ININ

[10, 14] - EE8INCL

4-24 

-.~~~~~~~~~~~~~~~ -_ -. ~~~~~~~. _ - _ ~~~_ - _



£L8CESTROY

IS
NO INPUT AN YES

lIlY CLAS
7—

2 ~s ~ EURRENIL YES LASS HAYSELELhD A DATA SET
SELEcTEDVA LiD? 7

(0 NO

3 6
EF SU ESTP DY 11 ISERROR -MARK CURRENTLY NO VALID INSTANCE ~~ ~~~~ LV THE NEW NO5ELEc rED I:.sTA ~CE STATUS OFSELECTED SELECTED ON OF C~RA~..~TLV CLASS THUINSTANCE DELETED. 

A DESTROY. SELECTED DATA SET.

YES
15

INITIAL IZE ALL.
MARK DATA-SET FILES AND VAR I A D L E SET NEW STAT J S ERROR —

FOR ALL NO VALIDSTATUS AS NULL. 
ENT ITY_TYPES OF OF CLASS TO rALSE. 

INSTANCE SELECTED.
ThIS ENTITY CLASS .

S 10 13
NI ALIZ E ALLINITIA LI ZE ALL INITIALIZE ALL ILES A.~J VAHt A ~LEILLS AND VARIABLE ILLS AND VARIfl~BLLS F C~ ALLOF CURRENTLY OF THE ENTITY TY P ES OFSELECTED INSTANCE. £NTITY CLASS. THIS ENTITY CLA SS.

14
INITIAL IZE AL l.

ILLS AND VARIAB LE
OF THE

EN TITY _CL ASS.

UIT

Figure 4-9 DESTROY (EE8DESTROY)

4-25

L ___________________



4.4.3 FORM (EE8FORM)

Description

The FORM module of the Data Manager is called during simulator
execution by a user service request to establish the MESSAGE that will
pass an INTERFACE when that INTERFACE is encountered . If many FORMs are
executed for different MESSAGEs passing the same INTERFACE , only the last
one executed before encountering the INTERFACE will be effective . An
INTERFACE which is encountered wi th no MESSAGE FORMed on it will cause an
execution time diagnostic.

Input

Input to the FORM module of the Data Manager is an element of the
list of instances . The inpu t element causes the associated data-set
(INTERFACE) to have its instance type set to the input element and its
status to be set to new .

Processing

Processing performed in the FORM module is shown in the flow diagram
of Figure 4-10. The following comments refer to processing box numbers.

[1 , 2] - Processing described in these boxes
uses the Data-Set/Class Description
Array (see Section 4.4).

L :.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_ _ _ _ _



c E ~8FORM~)

1

SET STATUS OF THE
Ii~TERF,.~C[ PASSI NG THE
INPUT MESSAGE TO NEW.

~~~~~THE~~NST~~cE

Figure 4-10 FORM (EE8FORM)

4-27

-

~

- - -— -

~

-__

~

- -- ._ . —- -—_ -— ---— -_- —— .- ---- -._— - - -


~~~~~_— --~~~~~_ -_ ~~~~~~ _ - ~- .—  -~~~~- _ - —~~~~~-.-- — --

4.4.4 FOR EACH

Description

The FOR EACH module of the Data Manager is called during simulator
execution by a user serv ice request to gain access in a data-set or class
to every instance or to every instance meeting some specified criterion .
For each instance which is found (or found to meet the criterion), a sec tion
of user supplied code is executed . The user suppl ied code may include other
Data Manager serv ice requests suc h as FOR EACH , SELECT FIRST , DESTROY , etc .
The FOR EACH criterion may be any valid Boolean expression but usually con-
tains one or more DATA i tems of the data—set or class instance .

Input

Input to the FOR EACH module of the Data Manager are listed below :

a) An element of the list of data-sets/classes generated by the
Data Translation module of the Simulator Generation function.
The input element corresponds to a data—set (FILE or
ENTITY TYPE) or class (ENTITY CLASS) and i s an i ndex to the
desire~ entry in the Data-Set7Class Descri pti on Array . See
Section 4.4 for a description of the Data-Set/Class Descrip-
tion Array .

b) An optional criterion (called a ‘SUCH THAT ’ clause) used to
qualify which instances are to be selected . Any Boolean
expression is acceptable.

c) A section of user PDL 2 source code which may contain Data
Manager service requests .

Process i ng
Processing performed in the FOR EACH module is shown in the flow

diagram of Figure 4-11. The follow i ng comments refer to processing box
numbers .

[1] - See SELECT FIRST module (Section 4.4.5)
for detailed description . Inputs are
inputs a) and b) for the FOR EACH
module.

[2] - Test is made on global DATA i tem
FOUND.

4-28



imr w .~~~~~
—.-—- ~~~~~~~~~~~~~~~~~~ _

[3] - Currently-selec ted-insCance—po inter
within data-set is saved and the
currently-selected-data-set within
class is saved .

[4] - User suppl ied PDL 2 statements in an
ALPHA (BETA or GAMMA ) or SUBNET
processing .

[5] - See UPDATE module for detailed descrip-
tion. Input is input a) for the FOR
EACH module. The UPDATE module is
called to save any newly created or
selected instances of the FOR EACH
input data—set or class.

[6] - Saved currently-selected-instance-
pointer is stored in the saved currently—
selected—data—set. The saved currently—
selected-data-set is stored in its class
currently-selected-data-set index .

[7] - See SELECT NEXT module for detailed
description . Inputs are inputs a) and
b) for the FOR EACH module.

Procedure Reference

[1 ] - EE8UPDATE , EE8FIRST , EE8FOUND

[3] - EE8SAUOS

[5] - EE8UPDATE

[6] - EE8RESDS

[7] - EE8NEXT , EE8FOUND

4-29

I

_ _ _ _ _ _ _  -4



..JILifJ ~~~~~~~~~~~~~~~~~~~~~~~ —

(
FOR

_
EACH
)

SELECT FIRST
INPUT FOR_EACH DATA_

[~~T/CLASS AND CiilTERION .

SAVE DATA_SET/CLAS S
CURREi~T POINTERS

Ai~D L~DEXES.

4

USER CODE.

5
EE8UPDATE

.IPOATE ANY ~IEW SELECTION
I~ DATA_SET/CLASS.

6
RESTORE DATA SET/CLASS

CURRENT POINTERS
A LD INDEXES.

7
SELECT NEX1~

INPUT FUR EACH DATA EXIT
SET/CLASS IL~u CRITERION.

Figure 4-11 FOR EACH

4-30

k --.---~~ -. _ -  —• - - —- _



4.4.5 SELECT FIRST

Description

The SELECT FIRST module of the Data Manager is called during simula-
tor execution by a user service request to gain access in a data-set or
class to the first instance (or to the first instance meeting some specified
criterion). If an instance is not found (or not found to meet the criterion),
the global DATA item FOUND is set to a value of FALSE , otherwise FOUND is
set to TRUE. The criterion may be any valid Boolea n expression but usually
contains one or more DATA i tems of the data-set class instance.

Input

Inputs to the SELECT FIRST module of the Data Manager are listed
below :

• An element of the list of data-sets/classes generated by the
Data Translation module of the Simulator Generation function .
The input element corresponds to a data-set (FILE or ENTITY
TYPE) or class (ENTITY CLASS) and is an index to the desire~entry in the Data-Set/class Description Array . See Section
4.4 for a description of the Data-Set/Class Description Array .

• An optional criterion (called a ‘SUCH THAT ’ cl ause) used to
qualify which instances are to be selected . Any Boolean
expression is acceptable.

Process ing

Processing performed in the SELECT FIRST module is shown in the flow
diag ram of Figure 4-12. The followi ng comments refer to processing box
numbers.
[1] - See UPDATE module (Section 4.4.8) for

detailed description .

[6, 15] — If the currently selec ted instance is
marked as deleted and has ~ ‘FOR EACH ’
examination count of zero, it will be
delinked from its owning list and
disposed .

[16] - This decision is implemented In the
user ’s BETA or GAMMA by the presence
(YES) or absence (NO) of the source
code to perform the operations [17]
through [23].

4-31 

--..---.-.- --— .— . - -- - . --“.- _-. 
~~~~~~~~~ 

--_

.— - -—. — - -- - , .——_ —
~~~~~~~~~~~~~~ 

. - - — —.—-- - - . — —_ _———- .

[17-23] - This is an in—line ‘wh ile loop ’ which
calls EE8NEXT until the ‘SUCH THAT ’
clause is satisfied or the end of the
data-set or class is reached .

Procedure Referenc e
[1] - EE8UPDATE

[2-15] - EE8FIRST

[24—31] - EE8FOUND

4-32

L ~~. _—~~. . —- -_-— ..-— •~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _



~~ E~LECT ~~~~~

‘Ir

I UP~~ c~T c c
~~~~

TL.Y
~ iSELECTF.D I~ STANCE

I. OF Jtp .. I .PUT.

NO INP UT ON ‘VES
ITY _CLAS

8
SET THE SEL~~TEO ISET THE SELECT ED ENTITY TY PE OFINSTA~sCE POI.~dTCR TO I INPUT E:LTTTY CLASS TO 1THE FiRST hSTANCE i mz FIRST ENTITY TYPE IOF DATA_S&T . I OF THE CLASS7 i

A/l

INSTAN CE YES
9 ISELECTE

~~~~~~~~ ED E~~~~~~~~~~~~~~_YES
~~ TYPY BEYOND LAST >-OINTER &EYO N

TA SE ~‘...[NTITY TYPE ~~~r
NO

107 I SET THE SELECTED
IS TRANSFER CURRENTLY I INSTANCE POINTER

SELECTED YES SE LECT ED DATA _SET TO THE FIRST
INSTANCE INST ,4C E DATA TO I INSTANCE OF THE

VAL ID VARiABL ES FROM J SELECTED ENTITY TYPE. -

11 IS

6 

L ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

12 

ENTITY TYPE OF THE QINTER BEVOFY
EkE Ci ISELECT THE NEXT YES I.,srA i~cE

INPUT ~~T ITY _CLASS. TA SE
f—r SELECT THE NEXT I NO

INSTANCE OF __________ _____________

TRANS FEH CUNR ENTLY 1 IS
__________________________ SELECT ED ENT ITY TYPE YES SELECTED

INSTANCE CATA TO I LSTANCL

THE DAIA-SLI .

V~PIA 3LES FAO~N 
VAL iD

DY,~ANIC RECORD. 7
NO

E/i
C/i 15

SELECT THE NEXT
I~STA.4CE UP THE

SELICTEU ENTITY _TYPE

FIgure 4—12 SELECT FIRST

4-33



0/2

NO
~~~~~~~~~~~~~~ T , YES

SuE H
CR ~~[R ION

17 IS
NO THE L’~PUT YES

7

18 SEL ECTED
_______ NTITY TY~ E BEYON _______

8E~ J 4 U t.NJ OF LAST L TITY TYPE
NO NSTA~CE F U IN TE YES YES

OF ~IAS~DA TA SET

19
IS

_______________________ _______________________...—

~

CRITERION
SA TZ SF ILD

7

CRITERION YES YES

0 NO
20 23

ERFORJ4 PROCESSING STEPS
~ERFORM PROCESSING STEPSI

BEGINNING AT
~~~ 

}_4~~~~ ~~~~4—_f 0 TOO T O ~~~~~ BEGINNI NG AT ~~ I

LAST ENT
NO

___________________ 

[ SET USER DATA FLAG 1 
OF 

ITY TYPE 

SET USE R DATASET USER DATA FLAG
- FOWI D -— FOUND - — FOUND

TO TRUE: JTO FALSE .TO TRUE.

____________________ 31 
T~~NSFE R ~ URRENTLYTRANSFER CURRENTLY SELECTED ENTITY TYPESELECTELI I~4STANCE FILE I 4STA4CI FILlDESCRIPTIO N LILOCI(.S DESCR IPTIO ,1 BLOCKS

FROM DYNAIIIC RECORD. FROM DYNAflIC RECORD.

Figure 4-12 SELECT FIRST (Continued )

4-34

___________________ 
~~~~~~~~~~—~~~~~~~~~~~~ - - ~~~

4.4.6 SELECT NEXT

Description

The SELECT NEXT module of the Data Manager is called during simula-
tor execution by a user service request to gain access in a data-set or
class to the next instance (or to the next instance meeting some specified
criterion). If an ins tance is not found (or not found to meet the
criterion), the global DATA item FOUND is set to a va ue of FALSE , other-
wise FOUND Is set to TRUE. The criterion may be any valid Boolean expres-
sion but usually contains one or more DATA items of the data-set/class
instance . If no valid instance is currently selected when the SELECT NEXT
module is invoked , a diagnostic message will be issued and no operation
performed.

Input

Input to the SELECT NEXT module of the Data Manager are li sted below :

• An element of the list of data-sets/classes genera ted by the
Data Translation module of the Simulation Generation function.
The input element corresponds to a data-set (FILE or ENTITY
CLASS) and is an index to the desired entry in the Data-Set7
Class Description Array . See Section 4.4 for a description
of the Data—Set/Class Description Array .

• An optional criterion (called a ‘SUCH THAT ’ clause) used to
qualify which instances are to be selected . Any Boolean
expression is acceptable.

Processing

Processing performed in the SELECT NEXT module is shown in the flow
diagram of Figure 4-13. The followi ng comments refer to processing box

numbers .

[1] - See UPDATE module for detailed
descri ption.

[7, 17] - If the currently selected instance is
marked as deleted and has a ‘ FOR EACH ’
examination count of zero, it will be
delinked from its owning list and
disposed .

4-35

_ _ _ ~~~~-,-—~~~~~_
-~~~~~~~~~~~~ .-- _ -~~~~~~~~~~-~~~~~

[18] - This decision is irnple Lnted in the
users BETA or GAMVA by the presence
(YES bra nch) or absence (NO branch) of
the source code to perforni the opera-
tions boxes 19 through 25.

[19—25] — This is an in lin e ‘while l oop ’ ~ h~~c b
calls EE8NEXT until the ‘S.C~ .~~~T
clause is satisfied or t~~e er~~

rf the
data—set or class is ~~~~~~~~~~~

Procedure Reference

[1] — EE8UPDATE

[2—17] - EE8NEXT

[26—33] - EE8FOUND

4-36

L .. --- _
~~.

—_- ---. -.---_— -~~~~~—.,- -- --—~~~-~~~~~

. ..
~~~

_ — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- __________________ _____

(~~~~ CT NUT”3

‘—_ _~
_J

1
L_ EESUPOATE

~~I UPDATE THE CU LN TLi]
I SELECT ELI I~~TAJ ~E€
L_ OF THE INPUT.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ AN YES
I ENTITY CLASS

~~~~~ T!~~

;

~~~

ER No

_L ED INEcE J._4
~

z
~~~~

J
L

A 
NOT SELECTE~ JON SELECT _NEXT. ON SELECT_NEXT.

*/1 0/1

IS 11 ISSELECTED EcTED ENTI
INSTAN CE POINTER YES TYPE BEYO N D LAST YES
BEYOND END OF ENTIT Y_T Y PE OF

DATA SET CLASS
NO NO

8 12
6 IS TRANSFER CURRENTL~~~1 SET THE SELECTED

SELECTED YES SELECTED DATA_SET INSTANCE POI NTER
INSb~ EE ~~~~~~~~~~~~ u~ L~ iv TO T HE HWS T
VALTD V4R~A0LES Fi~J.M INSTANCE OF TYE

7 DYNAMIC RECORD. SELECTED ENTITY TYPE.

NO 14
1 S—, r SELECTEDB/i . YES INSTANCE POINTEENTITY _TYPE OF THE BEYOND EYD OF

7 IN PUT ENTITY _CLASS . DATA _SET

SELECT THE NEXT NO
INSTANCE OF 16

THE DATA SET. TRANSF ER CURRENTL Y 1 IS— SELECTED ENTITY TYPE YES SELECTED
iNSTAN CE DATA TO INSTANCE
VARIABLES FROII VALID
DYNAMI’ RECORD 7

NO

(c1i) Eli

T 17 3
I SELECT THE NEXT
I INSTANCE OF THE

SELECTED ENTITY _TYPE.

A/2

Figure 4-13 SELECT NEXT

4-37 

~~~~~— -—.~~~~~ -— --~~~. - ~~~. —- --—~~~~~~~~~~ - . ~~~~~~~~~~~~~ _ _ _


- .

~~~~~~~~~~~ L~
_

~~~~~~r .~~~~ 
— — --. . . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~ . ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~

.
~~~~~~~~~ -

A/2 8/2

NO ‘ THERE A 
~~~~~~~ YES I

SUCH THAT
CRITERION

19 is
NO THE INPUT YES

ENT I IY CLASS

20 SELECTED 2
SELECTED

NO NSTAT CE POINTE YES YES NTITY TYPE BEVON NO
BEYOND END OF LAST ~~T ITY TYPE

DATA SET OF C~LAS

2 IS 24 IS
CRITERION YES YES CRITERION
SATISFIED SATISFIED

7 P

NO NO
22 25

~‘ERFORM PROCESS ING STEPS !
— ERFORM PROCESSING STEPS!

€3’
TO 8/2 8/2

€3’ 0
BEGINNING AT I BEGINNING AT (~)

26 IS
THE

IN PUT
ENTITY _CLASS

27 S S
SELECTED SELECTED

NO INSTANCE POINTER YES YES NTITY TYPE BEYON NO
BEYUY D END OF LAST ENTITY TYPEDATA_SET OF CLASS

28
_________ __________

SET USER DATA FLAG SET USES DATA FLAG SET USER DATA FLAG— FOUND . — FJU ID - — FOUND —
TO TRUE. TO FALSE. TO TRUE.

Figure 4-13 SELECT NEXT (Continued)

4-38

L.~. ~~~~~~~~
. .~~~~~~. . ~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _

4.4.7 SET (EE8SETYP)

Description

The SET module of the Data Manager is called during simulator execu-
tion by a user service request to establish the type of a previously
selected or newly created ENTITY _CLASS. When a user creates an instance
of an ENTITY CLASS , no type is specified and no ENTITY _TYPE FILEs or DATA
values can be created -- only ENTITY _CLASS FILEs and DATA values . The user
must perform a SET service request to establish the ENTITY_TYPE of the
instance before any ENTITY_TYPE FILEs and DATA values can be created. If
the user fails to SET ENTITY _TYPE before the next select or create operation
on the ENTITY _CLASS , a diagnostic message is issued and the instance is
destroyed . A SET service request may be used to transform a selected
ENTITY TYPE instance to an instance of another ENTITY _TYPE in the same
ENTITY CLASS . A ll ENTITY _CLASS and common FILEs and DATA will be pre-
served while all non—comon FILEs and DATA will be initial i zed .

Input

Input to the SET module of the Data Manager is an element of the list
of data-sets/classes . The input element corresponds to an ENTITY_TYPE and
indexes the desired data-set entry in the Data-Set/Class Description Array .
See Section 4.4 for a description of the Data-Set/Class Description Array.

Process i ng

Processing performed in the SET module is shown in the flow diagram
of Figure 4-14. The followi ng comments refer to processing box numbers in
the diagram.

[2, 3] - An ENTITY_CLASS w ith no ENTITY_TYPE
selected and with a true value for new
status has a newly created instance
which has no ENTITY_TYPE yet assigned
i t .

[8, 9, 27] - The diagnostic message is written to
external file OUTPUT.

[9] - A valid instance may be described as
in existence (currently-selected-
instance pointer is not NIL) and not
marked as deleted .

4-39

1k. —..—-- . - ~ .~~ -—~~—---- . -_~~—- . - _--~~~~~~~ . .--— . .- . .

Procedure Reference
[7] — EE8ININ
[8, 10, 27] - EE8LSTDIAG

[12, 18] — EE8XIO
[13, 19) - EE8XFO

[14, 20) - EE8ININ

[15 , 21] - EE8XII

[16 , 22] - EE8XFI
[17] — EE8NEWI

[23] - EE8DISI

4-40

EE8SETYP

13
1 IS SL L LL T ~.. L~IFI~~Y l i r E I

27
fl ,

~

“~~:. Y ~~ ~1LY

INPUT ON NO ERROR — INST ~~CE F I LLSET WITH LNPJT THAT
~~~~~~~~~ TO ~~~~~~~~~~~ENTITY _TYPE 

IS i~OT Ui ENTITY _TYPE. 14 4
~~I,ITIAL;Z~ ALL FLLES 1ES ANLI ~.~IAULLS ~OR

ALL EI.TITY _TYP ES OF I
THIS C .TITY_CLASS. j2 £ _ _ _ _ _ _ _ _ _ _

LASS O 15 
- —INPUT hAVE YES 1 TVA~~F~~ ~~~~~~ 1

ELECT 
I,YSTA CE DY~Y~ TC

ENTITY TYP 

( 
SELECTL5 ENT.TY TYPE

1 RECORD TO VARi~ sLE.S~ JNO 
16

TRANS FER CUPRENTLY
SELELT~~ E~T I T Y_TYPE I3 S NE 

~~~Tk.CE PILt DES. BLOCKSINO ST ATUS 
RON DYNAMIC RECORD. IOF CLASS __________________________

17 ‘1!7 1 CREATE A NE- DY;4APIC IYES RECORD I iSTANCE OF THE I8

4 INPUT EN TITY _TYPE. II SET WITH NO NEW OR OLD ______________________
ERROR -

] SET NEW STATUS 18
OF CLASS TO FALSE. I TRAI.SFER INPUTENTITY_TYPE SELECTED.

ENTITY T Y PE I ~STANCEI VARIA~LES TO NEi~ I5 L..~ DYNk IC RECO RD. ISE HE SEL
19ENTITY _TYPE OF I TRANSFER IiPUT ENT ITY _ iTHIS E~t ITY CLASS

TYPE I ,STkiC E FILE I
I DESCRIPTION BLOC KS TO I6 L_ NEW DY .s~lIC RECORD.

SET THE STATUS OF 20 4THE SELECTED [INITIAL IZE ALL FILES 1ENTITY_TYPE TO NEW . AND VA RIAE L ES FOR ALL I
I ENTITY _ TY H ES OF THIS I

7 _____________________________[___ E~~UiY _ LLASS.
~jIN I L E LI. IL 21 4AND VA RIAB LES OR A LL I TR.ANSFCR INPUTENTITY_TYPES OF THIS EN TIT Y_ TYPE INSTANCE]HillY CLASS.

DY tMIC RECORD
i DAT A TO YARIAI LL~.
22 4.
I TRkIDFER 1~ PuT9 S TM I ENTITY TYPE I ~STAN CECURRE N TL YES I DYNANg RECORD FILE

ELECTED INSTANC DESCRIPTI ON BLOCKS TOHAL It) IDATA.JET DEFINITION ARRAY .7
23NO i ~~~~~ THE NEW I

NA.’- IC RECORD IINSTANCE OF THEERROR - INPUT ENTITY TYP E.SET WITH ~O VALID —
INSTANCE SELECTED.

~
L__

CURRENTLYI SEUCTED ENTITY TYPE
INSTANC E AS DELiTED~~j11 S I N 25 IIS LEChD I SET TnE ~ELECTEO 1YES NT ITY TYPE SAM I ENTITY_ TYPE OF THIS IA� INPUT

[_~~~NTITY _ CL.ASS
J

7 0 THE
4

INPUT.
NO 2612

J NAR K THE NEWL Y 1
S LEETL J E,dITY TYPE

STAT iS AS NEW .I sTt t~E V. IA ~tE S ________________________

NN’ E Lu~
p.LN L

i SELECT ED ENTITY TYPE I
To DY;.AJIIC

8/)

Figure 4-14 SET (EE8SETYP)

4-41

_-—-.— _ — — —

4.4.8 UPDATE (EE8UPDATEJ~
Description

The UPDATE module of the Data Manager is called during simulator
execution by other Data Manager modules to store modified data values from
the static variables of an instance into a dynamic record linked on an
ordered list (either FIFO or Ranked High). This operation is done to
prepare for the next operation on this data-set which will selec t or create
a new instance of the data-set. In the case of a Ranked High data-set in
which the ordering variable has been changed in such a way as to force the
current instance into a new position , a new dynamic record must be created
and linked into the new position before the data values can be moved . The
old instance will be marked for deletion. For a newly created instance,
a new dynamic record must also be created and linked into its proper posi-
tion (based on the ranking scheme for this data-set) before the data can
be transferred into the dynamic record .

Input

Input to the UPDATE module of the Data Manager is an element of the
list of data-sets/classes. The input element acts as an index to the
desired data-set (FILE or ENTITY_TYPE) or c lass (ENTITY_CLASS) entry in
the Data-Set/Class Description Array. See Section 4.4 for a description
of the Data-Set/Class Description Array .

Processing

Processing performed in the UPDATE module is shown in the flow dia-
gram of Figure 4-15. The following comments refer to processing box
numbers.

[15, 35, 39] Diagnostic message is written to
external file OUTPUT.

[36) - Processing is done on the selected
ENTIT Y TYPE of the ENTITY CLASS to
which The Input ENTITY_TY~E belongs.In other words, the processed
ENTITY _TYPE is not necessarily the
input ENTITY_TYPE.

4-42

.— ---

[14] - A valid instance may be described as
in existence (currently-selected-
instance pointer is non-NIL) and not
marked as deleted .

[26] - If the saved-current-instance is the
same as the present-current—instance ,
the instance has not changed position
in the linked list even though the
ordering variable has changed value.

[9, 25] - If the currently-selected-instance is
marked as deleted and has a ‘FOR EACH ’
exami nation count of zero, it will be
delinked from its owning list and
disposed .

Procedure Referen ce

[35, 39] - EE8LSTDIAG

[3—32] - EECUDSS

4-43

-_- _-—~~~ - - _ - - - -. - - — - . _ .- _-- - - _ . — -

- ___

~~~~~~~~T)~~~

IS INPUT

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EN t l

°

TY TY
~~j ~~~i::z :~1~ii

S T F YES CRLATE ENflTY CI.ASS }-.I cREATE TY CI.ASS

STAT uS.~1D

I ERROR -I ~ TA_SET STAT US • OLD II BUT SELECTED
INSTANCE INVALID.

Figure 4-15 UPDATE (EE8LJPDATE)

4-44

_ _

- - - -1

~~~~~~~~~~~~~~~

-

~20

.
‘..~. VA R~~ ULE -,

18 

~~~~ 

_ _ _ _

TRAN SFER INSTANCE

21 1
SAVE A POI ITER 1

VAR IA~t .ES
TO DY~~MIC VEO O~~

1

TO THE CURRL.T LY I
SELECTED IN~TANCE.J

19 22 4.
TRANSFER INSTANCE IRESET DATA SET CURRENT]

FILE DESCRIPT ON BLOCKS I INSTANCE POINTER
TO DY~AMIC RECORD. [TO THE FIRST INSTANCE. 8/2

URR EN2

INSTAt CE NO
POINTE R

KIN

16

E/2 ES 24 IS

YES A R’ ko .~~ Ir~________________________ DATA 11CM IN
(JR INST

SET DA!V SET 26 IS 7
NO SAV ED LUR._______________________ NC[STADUS TO~~ULL . j 32__________________________ __________________________ 25

ALPJANCE DATA SET
~PERFORII PROCESSIN G ~~~

C/2 THROUGH 0/2
27

~~~~~~~~~~~

> 

THE NEXT INSTANCE.

CURRENT INSTANCE
PO INT ER TO

CREATE A NEW 1
E DYNAMIC RECORD FOR I

INSTANCE OF DATA_S ET. J 8/2

28 4.
LINK NEIl INSTANCE

I:4T0 DATA SET IIN FRONT t~F PRESENTCURRENT INSTANCE. j

29

~‘ERFORM PROCESSING STEPS1

[ 

C/2 THROUGH 0/2

30 4.

SET DATA SET
I CURRENT INSTANCE TO I

SAVED IJINTER. j
31 4.r MARK DATA SE

CURRENT I;1~iN

FIgure 4-15 UPDATE (EE8UPDATE) (Con tinued )
4-45 



SAV E A POINTER
TO TrIL CUR’: ...iTLY

SELECTED INSTANCE.

6 4.

RESET DATA SET
CURRCNT INST~~CE
POI NTER EQ TIE
FIRST INSTANCE.

YES
OINT E R — U j

NO

8 K I N ADVANCE DATA_SETAR . C RAMKIN MO CURKENT INSTANCE

10 

DATA ITEM IN POINTER TO

I CREATE A NEW 1DYNN4 IC PRCOR O F’JR
INSTANCE CF DAT A_SET .

~1I LINK NEW INSTANCE
INTO DATA_SET

IN FRONT OF PRESENT
CURRENT INSTANCE.

12

~ERFORN PROCESSING STEP~

O T O ]~~~~~~~~~

13

SET DATA SET
STATUS TO HILL.

8/3

FIgure 4-15 UPDATE (EE8IJPDATE ) (Continued)

4-46



~~~-
-

5.0 COMPUTER PROGRAM DESCR I PTION - REVS GENERATED
SIMULATOR POST-PROCESSOR PROGRAM

Description

The Simulator Post—Processor Program (VVEXEC) is a PDL2 main prog ram

constructed by the Simulator Generation function . Once the Simulator Post-
Processor Program is constructed and the necessary user inputs are suppl ied
through the Simulator Post-Processor Execution (SIMDA), the program is

completely executable outside the control of REVS. The Simulator Post-
Processor Program is composed of the fol l owi ng major processing elements

as shown in Figure 5-1.

• TEST Procedures

• Simulator Post-Processor Initialization

• Simulator Post—Processor Executive

• Simulator Post-Processor Data Management

The Simulator Post-Processor Program is designed to provide an env i ron-

ment for the selective execution 0f PERFORMANCE_REQUIREMENT TEST s allowing
access to all DATA and FILES recorded at VALIDATION POINTS duri ng the

Simulator Execution.

Input

VALIDATION INFORMATION FILE - Text file of user requests of tests to
(VVIF) be executed .

RECORDING DATABASE - A DBCS database of all DATA and FILES
recorded at VALIDATION_POINTS during
an execution of the simulator .

Output

TEST RESULT FILE (OUTPUT) - Text file indicating whether an executed
test passed or failed .

DIAGNOSTIC FILE (OUTPUT) - A text file informing the user of any
errors detected during the Simulator
Post-Processor Program.

5—1

- ~~~~~~~
.--.---—-.—-,- .-.-~~ -—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. - - .

Process ing

The control flow through the Simulator Program is shown in Figure 5—2 .

As shown in the flow diagram , control is transferred first to Simulator
Post-Processor Initialization (VVINITL) and then to the Simulator Executive
(VVMAIN) which controls the execution of TESTS depend i ng upon user requests .
These two functions as well as the Simu l ator Post-Processor Data Manager
are described in the followi ng sections.

Procedure Reference

The processing depicted in the blocks of Figure 5-2 is performed by
the following software procedures in the Simulator Post-Processor Program .

[1) - VVINITL
[2] - VVMA IN

5-2

. -

~

-. --

~

- -

~

.-

~

-- -- .- -—_ _ _ _ _ _ _ _



_ _  

-I’

USER INPUT CONTROL
SIMU LATOR POS PROCESSOR PROGRAM

S IMULATOR
POST_PROCESSOR INITIALIZATION • RECORD ING DATA BASE

SIMULATION POST_PROCESSOR EXECUT IVE .~q....,~

USER INPUT CONTROL
TEST PROCEDURES .

SIMULATOR 
______

POST_PROCESSOR DATA MNA GEMEN T.

RECORDING DATABASE

Figure 5-1 Simulator Post-Processor Overview

5-3

~

- - -

~

— — . - - . - - -~~ - - - — --— ~ 



._ --- -_- ~---

YVEXEC

1 

VVIN ITL

PERFORM GLOBAL
INITIALIZATION.

2 RECORDING DATA BASE

PERFORM TESTS AS YVIF
REQUESTED BY USER .

___________ 
RECORDING DATABASE

~~ EXIT

FIgure 5-2 Simulator Post-Processor Program (VVEXEC )

5-4



5.1 SIMULATOR POST-PROCESSOR INITIALIZATION (VV INITL)
Description

The purpose of the Simulator Post-Processor Initialization Function is
to perform all initialization of variables and arrays required for the
execution of the Simulator Post-Processor Program . In addition , the Simu-
lator Post-Processor Initialization Function insures that program inputs
are matched to the program. This means that the recording database is

generated by the Simulator which was built at the same time as the Simulator
Post-Processor and that the Validation In put File was generated by a

Simulator Post—Processor Execution request for this Simulator .

Input

VALIDATION INFORMATION FILE - Text file of user requests for tests
(VVIF) to be executed . The Simulator Post-

Processor Initialization Function
accesses only the identification in-
formation on this file . It includes
the date and time of Simulator creation
and the user assigned Simulator ID

RECORDING DATABASE - A DB CS database of all DATA and FILES
recorded at VALIDATION POINTS during
an execution of the simulator . The
simu l ator Post—Processor Initialization
Funct ion accesses the identification
information (Simulator creation time
and da te , Simulator user assigned ID)
and the VALIDATION POINTS .

Output

DIAGNOSTIC FILE (OUTPUT) - A text file informing the user of any
errors detected during the Simulator
Post-Processor Initial ization Function.

CONTENTS OF THE VAL IDATION - An array of records each of which
POINT ARRAY (VV9VP) give the DBC S address of a VALIDPITION_
INITIALIZED POINT and the DBCS address of the

currently selected RECORDING of the
VAL IDATION_POINT.

CONTENTS OF THE FILE ARRAY - An array of records each of which give
(~~/9FL) INITIALIZED the DBCS address of a VALIDATION_POINT

FILE and the DBCS address of the
curren tly selected RECORD of the
VALIDATION _POINT FILE .

5-5



r ______

Process ing

The control flow through the Simulator Post-Processor Initialization

Function is shown in Figure 5-3. The following conuients refer to processing

steps shown in the flow diagram .

[3] - Matching lOs include creation date ,
creation time , and user suppl ied ID.

[7] - Same as [3] above.

Procedure References

The followi ng correlates the functional processing elements shown in

Figure 5-3 with the Simulator Post-Processor Initialization procedures which

perform the indicated processing .

[1-16] — VVIN ITL

5-6 

~~ —_--~~~~~~~~~~~~ - --~ --



---~ _ —---~ __ _

DIAGNOSTIC
VVINI T I . FILE

2
IS FOR EACH FILE OF~\_~

RECORDING NO ISSU E AN ERROR MESSAGE 

15

EACH VALW AT ION
OINT.DATA BASE ID AND HALT.

PRES ENT
16

YES DIAG NOSTIC 
~ 

IN I T IALIZ E FILE S~~
.
] I

F ILE ~RECOR~ ING ~ATAL. SL AODRES~

_____________________ 

~~~~~~~~~~ TO ZERO ANO It,IT IALIZE
DOES 4 FILE INSTA NC E ’S

HE RECORD IN RECOR ft ~G DATABASE

DATA BASE ID HATCH NO ISSU E AN ERROR MESSAGE
ADDRESS TO ZERO.

HE SIMULATOR POST AND MALT.
PROCESSOR _________________________

ID?

YES DIAGNOSTIC
FILE

6
HE VAL

DAT ION INFOR- NO ISSU E AN ERROR
TI DNFXLE MESSAGE AND HALT.

EXIT)
ESEN

YES DLAGNOSTIC
FIL E.

7 OC 8
THE

VA !. IDAT ION
NFORHATIUN F I L E I NO ISSUE AN ERROR MESSAGE
TCH THE SIMULATOR AIC HALT.

ST_PROC E S SO
ID?

YES

9
ACCESS A VALIDATION

POINT IN THE RECORDZNO
DATA BA SE

10 S A STORE THE VALIDATIONVALIDATION V
POINT _POINTS DATABASE ADDRESS
FOUNO IN THE VALIDATION POINT

ARRAY INDEXED BY IT S
NO ORDI NAL.

12
FOR_EACH

VALIDATION _POINT. — —
DIAGNOSTIC

FILE
14

___13 IS
THERE AT
LEAST ONE ISSUE AN

AECOROIHCFORTHIS INFORMATIVE MESSAGE.
VAL IDAT ION

POINT

YES

— — -- - -_J

A/i

Figure 5-3 Simulator Post-Processor Initial ization (VVINITL)

5-7

- .— .~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -T~~~—— .~~~~~~~~~ — -

5.2 SIMULATOR POST-PROCESSOR EXECUTIVE (VVMAI~i)

Descri.pti ~
The purpose of the Simulator Post-Processor Executive Function is to

invoke the executable description of PERFORMANCE_REQUIREMENTS on a selective

basis. The user TEST requests are read from the Validation Information File
and acted on as they are read . If the user requests a TEST which is not
in the Simulator Post—Processor Program , a diagnostic is issued informing
him of his error.

I np~u t
VALIDATION INFORMATION FILE - Text file of user requests of tests to

be executed.

Outpu t

TEST RESULT FILE (OUTPUT ) - Text file indicating whether an exe-
cuted test passed or failed .

DIAGNOSTIC FILE (OUTPUT) - Text file informing the user of TESTs
which could not be located.

Process thg~
The control flow diagram through the Simulator Post-Processor Executive

Function is shown in Figure 5-4. The following coments refer to processing
steps shown in the flow diagram.

[5) - Results are PASS or FAIL only.

[6] - If all TESTs have been requested , no
messages are issued for TESTs not
found .

Procedure References

The following correlates the functional processing elements shown in

Figure 5-4 with the Simulator Post-Processor Executive procedures which per-

form the indicated processing .

[1) - VV 8RFVV

[2-4] - VVMA IN

[5] - VV8PRPF

[6-7] - VVMA IN

~ 

~~~~__T . J


VYMA IN

ACCESS A USER RE(3JE51
FOR TEST EXECUTION.

VYIF

2
ENO OF

USER YES
INPUTS

NO

3
TEST FOUNO NO

V

YES
4

INVOKE THE
RE!~JESTED TEST.

S

I~ ITE OUT THE OUTPUT
RESULT OF THE USER.

TEST RESULT
FILE

6 NAVE
YES ALL TESTS

BEEN
E!~J EST

7
NO

ISSUE AN ERROR MESSAGE

D T I C

CD~D

FIgure 5-4 SImulator Post-Processor Executive (VVMA IN)

5-9

I.. -

5.3 SIMULATOR POST PROCESSOR DATA MANAGEMENT

The Simulator Post-Processor Data Manager provides the services re-

quested in the executable description (TEST) of PERFORMANCE REQUIREMENTs.

Specifically, it supports RECORDING and RECORD access using a DBCS data-
base system.

The service requests supported are:

• access first or next instance of a VALIDATION POINT ’s
RECORDINGs.

• access all instances of a VA..IDATJON POIPIT ’s RECORDINGs.

• access first or next instance of a FILE (RECORDED at a
VALIDATION POINT).

• access all instances of a FILE (RECORDED at a VALIDATION
POINT).

The Simulator Data Manager is actually a set of procedures which

implement the required service requests by calling DBCS routines to manipu-

late the recording database. Each VALIDATION_POINT is assigned an entry

i n the VALI DATION_POINT array, VV9VP , and each VALIDATION_POINT FILE i s
assigned an entry in the FILE array , VV9FL. The entries of both these
arrays contain the same basic data -- f i r s t is the DBCS address of the
FILE or the VALIDATIO N_POINT and second is the DBCS address of the current
instance (RECORD/RECORDING) of the FILE or VALIDATION _POINT . Data Manage-
ment service calls are translated into procedure invocat ions which pass a

control parameter to ind i cate what type of operation is requested (FIRST or

NEXT). A unique procedure is invoked for each VALIDATION _POINT and each
FILE .

A user can only access a DATA value or selec t a FILE after a

successfu l selection of a VALIDATION _POINT RECORDING . Similarly, FILE DATA
can only be accessed after successfu l selection of a FILE. All DATA is
qualified by the VALIDATION_POINT name .

5-10

-~~~~~

S IMIJLATOR POST_PROCESSOR DATA MANAGER

ACCESS VALIDATION _POINT DATA AND FILES

FIRST/ NEXT FOR EACH

ACCESS VALIDATION POINT FILE DATA

FIRST/NEXT

[

FOR EACH

j

Figure 5-5 Simulator Post-Processor Data Manager Components

5—i l

-— -~.---. —--
~ A

5.3.1 SELECT FIRST/NEXT VALIDATION_POINT RECORDING (SFNVPR)

Description

The SELECT FIRST/NEXT VALIDATION POINT RECORDING (SFNVPR) module of
the Data Manager’ is calle d during Simulator Post Processor execution by a

user service request to gain access in a VALIDATION_POINT to the fi rst/next
RECORDING (or to the first/next RECORDING meeting some user specified
criterion). If such a RECORDING is not found , the unqualified DATA item
RECORDING_FOUND is set to a value of FALSE , otherwise RECORDING_FOUND i s
set to TRUE . The user specified criterion may be any valid Bool ean expression
but usually would contain one or more DATA items RECORDED at the VALIDATION_
POINT . Note that all DATA items RECORDED at a VALIDATION _POINT , are declared
as PDL 2 fields of a record with the same name as the VALIDATION _POINT (thus

the user must reference DATA i tem X at VALIDATION _POINT V as Y.X).

Input

Inputs to the SELECT FIRST/NEXT VALIDATION_POINT RECORDING module are
listed below :

• A parameter specifying fi rst or next RECORDING .

• An optional criterion (called a ‘SUCH THAT ’ clause) used to
qualify which RECORDINGs are to be selected. Any boolean
expression is acceptable.

Processing

Processing performed in SFNVPR module is shown in the flow diagram of
Figure 5-6. The followi ng comments refer to processing box numbers :

[1] - A DBCS address of zero for a VALIDATION
POINT implies that there are no
RECORDINGs for it in the Recording
Database.

[5] - This is implemented by one DBCS pro-
cedure invocat ion per DATA item read in.

[6] - This decision is implemented in the user’s
TEST by the presence (YES) or absence (NO)
of the code to perform the operations
[7-9].

[7-9) - This is an in-line ‘while loop ’ which
invokes the SFNVPR module with input
parameter ‘NEXT ’ until the end of
RECORDINGs or the ‘SUCH THAT ’ clause i s
satisf led.
5-12

- --- -- . -~~.-.—. - - ~~~~~~~~~ ~ -- . . ~~~~~~~--~~~ -~ -- - . - ~~ --—

Procedure Reference

[1-5] - VVVXXXX

[10-13] - VV8FOUND

Note that XX XX i s the VA LIDATION_POINT ordinal assigned by the VALIDATION
POINT Translation Module of the SIMGEN function . There is one procedure
(with name of the form VVVXXXX) for each VALIDATION_POINT corresponding to
processing steps [1) through [5).

5-13

- - .-~~

C~ D
1 E

THIS
ALIDATION_POI YES

NAVE A ZERO OBCS
ADDRESS

7

NO
3

2 IS
THIS A YES [SET THE DBC S ADDRESS

FIRST ~ OF CURRENT RECOROINO
PERATIO TO ZERO.

V
NO

THIS A
‘FIRST’ OP ER—

T IONOR TH E L] BCSADD NO
SS OF CUR ~ ENTR E C-

DING NOT EC7J
O ZER

YES
S

CALL DOC S PROCEDUR~~~~1COPY DATA ITE M S INTO I
PROPER FIELDS OF THE I

VA LIOATEON_POINT 1
RECORD .

~
IS

HERE A
NO ‘SUCH THAT

CRITERION

YES

S THEP
YES ND O FRF CO RDINC

TAlU S (DBCS UF CURRENT
ECORDI NG E (1,AL

ZERO?

NO

S8
IS

YES CRITERION
~~ J SET INPUT PARM4ETER

SAT IS* IW TO ‘NEXT’.
V

FIgure 5-6 Select First/Next Validation -Point Recording (SFNVPR)

5-14

_ _

~

.. -

AJ2

12 10 IS 11

HERE EN

SET RECOPDING_FOW4) NO TATU S (C S ADDRESS YES SET RECORDINGJOUIC TO

TO TRUE. OFCUPRENTRECORD IN FALSE.
(7JAL ZERO

V

13

CALL DBCS PROCEDURES
TO READ IN D9C S

ADDRESSES OF FILES
INTO THE FILE ARMY.

YV~~L.

EX1T.

Figure 5-6 Select First/Next Validat ion-Point Recording (SFNVPR) (Continued)

5-15

-~ -—--- •- . -

5.3.2 FOR EACH VALIDATION_POINT RECORDING (FEVPR)

Description

The FOR EACH VALIDATION_POINT RECORDING (FEVPR) module of the Data
Manager is called during Simulator Post Processor execution by a user service
request to gain access in a VALIDATION_POINT to every RECORDING, or to every
RECORDING meeting some user specified criterion. For each RECORDING which

is found (or found to meet the criteri on), a section of user suppl ied code

is executed. The user supplied code may include other Data Manager service
requests suc h as SELECT , FOR EACH , etc. The FOR EACH criterion ..~~‘ be any
valid boolean expression but usually would contain one or more DATA items
RECORDED at a VALIDATION POINT. All DATA items RECORDED at a VAL iDATION_POINT
must be referenced as “VALIDAT ION_POINT name . DATA item name” .

Input

I nputs to the FOR EACH VALIDATION _POINT RECORDING module are listed
below:

• An optional criterion (called a ‘SUCH THAT ’ clause) used to
qualify which RECORDINGs are to be selected . Any boolean expres-
sion is acceptable .

• A section of user PDL 2 source statements which may contain Data
Manager service requests.

Processing

Processing performed in the FEVPR module is shown in the flow diagram

of Figure 5-7. The following coments refer to processing box numbers.

[l],[6] - See the SELECT FIRST/NEXT VALIDATION
POINT RECORDING module (Section 5.3.1)
for a detailed description .

[2] - Test is made on unqualified DATA item ,
RECORDING FOUND.

Procedure Reference

In-line code is generated except for calls to the SELECT FIRST/NEXT
VAL I DATION _POINT RECORDING module which are of the form VVVXXXX (XXXX is
the ordinal of the VAL IDATION_POINT).

5— 16

. - - ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~.

_

- .— --

Q~~
PRD

1 4,
SELECT F14ST /~EXT
V .~L EAT I~ . F 1~ T
REI~O~ 3I..G ~~~~~~

INPUT PARAMETER — ‘FIRST’
CRITERION — FOR EACH
cRITERION (IF ANY).

2
RECORD 1:0 NO

SAV E THE CURRENT

[
~ ECORDING DBC S ADDRESS.

USER CODE. J
RESTORE THE CURRENT

RECORDING OBC S ADDRESS.

6

SELECT FIRST/NEXT
VALIDATION POINT
RECORDING MODULE.

INPUT PARAMETER • ‘NEXT’
CRITERION • FOR EACH
CRITERIO N (IF ANY) .

EXIT

Figure 5-7 For Each Validation -Point Record1~g (P VPR)

5-17

—-- . ---- --~~~~~~~~ - .-— - - —_-——~~~~-— -~~~-

5.3.3 SELECT FIRST/NEXT FILE RECORD (SFNFR) -

Descri pti on

The SELECT FIRST/NEXT FILE RECORD (SFNFR) module 0f the Data Manager

is called during Simulator Post Processor execution by a user service request
to gain access in a VALIDATION_POINT FILE to the fi rst/next instance (RECORD)

or to the first/next instance meeting some user specified criterion. If

such a RECORD is not found , the unqualified DATA item RECORD_FOUND is set to
a value of FALSE , otherwise RECORD_FOUND is set to true. The user specified
criterion may be any valid Boolean expression but usually would contain one
or more DATA items in the FILE. Note that a VALIDATION POINT FILE cannot be
SELECTed until a RECORDING of the VAL IDATION_POINT has been SELECTed. All
DATA i tems including those of FILEs must be qualified by the VALIDATION_POINT

a name at which they were RECORDed .

Inputs

Inputs to the SELECT FIRST/NEXT FILE RECORD module are listed below :

• A parameter specifying ‘FIRST ’ or ‘NEXT ’ RECORD.

• An optional criter ion (called a ‘SUCH THAT clause) used to
qualify which RECORDs are to be selected. Ary boolean expression
is acceptable.

Processing

Processing performed in the SELECT FIRST/NEXT FILE RECORD module is
shown in the flow diagram of Figure 5-8. The following comments refer to

processing box numbers.

[1] - A DBCS Address of zero for a FILE
implies that there are no RECORDs for
it in the Record i ng Database.

[5] - This is implemented by one DBCS proce-
dure invocation per DATA item .

[6] - This decision is implemented in the
user ’s TEST by the presence (YES) or
absence (NO) of the code to the
operations [7-9].

[7-9] - This is implemented as an in-line ‘while
l oop ’ which invokes the SELECT FIRST/NEXT
RECORD module with input parameter ‘NEXT ’
until the end of RECORDs or the ‘SUCH
THAT ’ clause is satisfied .
5-18

-- .--. -~~~~—— -,—a~~~~~~~~-~— - --. - - - ..—--~~~ .- j -— -

-~~~ _ - -

~~~~~

AQ—A01th 573 TRW DEFENSE AND SPACE SYSTEMS 6RO~W HUNTSVILLE ALA F/S 9/2
F. REVS MAINTENANCE MANUAL. SREP FINAL REPORT. VOLUME 111.0.1)

Ails 77 W £ SENOIT, P N BZRGSTRESSER DASS6O—75—C—0022
UNCLASSIFIED TRW—2 7332—6921—026— VO L—3 It.

5 ;
A l .

- 4657a

•
I

_ _

_

I
I

END
DA~ (

F11~~10

abc

a .



1’O
_______ ~~~~

• 5

NATIONAL BUREAU OF STANDARDS
VlCROCOP~ RESOUJTION TES’~ C$*!T



Procedure Reference

[1-5] - VVYYYYY

Note that YYYYY is the ordi nal of the VALID~4TION POINT FILE assigned
by the VALIDATION POINT Translation module of the SIMGEN function. FILE ‘A’
RECORDED at VALIDATION_POINT ‘B ’ will have a different ordinal (and access
procedure) from FILE ‘A ’ RECORDED at VALIDAT ION_POINT ‘C’ . There i s one
access procedure (with name of the form VVYYYYY) for each FILE RECORDED at
each VALIDATION POINT .

5-19



(I~~
sRl

~
R )

~~~

DOES
THIS FILE

MVE A z~o oacs ____________________________________
ADDRESS

1

~ IS
THIS A I SET THE DBCS ADDRESS
‘FIRST ’ ~ OF CURRENT RECORD

OPERATION [TO ZERO.

NO I
S TH I S

A FIR ST
OPERATION OR THE

DBCS ADDR ESS OF CURRENT
ECORD NOT E~ JAL

TO ZERO
t

S

CALL NECESSARY DBC S
PROCEDURES TO COPY DA TA

ITEMS INTO PROPER
FIELD S OF THE

VALIDATION POINT
RECORD-:

HERE A
‘~ JCH T~~T’
CRITERION

YES

7 IS
HER E F

F RECORD STATT)
(DBC S OF CURRENT

RECORD E(~JAL
ZERO)

7
NO

IS

i
YES CRITERION NO J SET INPUT PARAMETER

SATISFIED TO ‘NEXT’ .

___________ Jr

FIgure 5-8 Select First/Next File Record (SFNFR)

5-20

—

Alt

10 IS H
H ER F EtC 0

NO (D ? ~~OVE~~ OF YES SET RECORD FOWQ TO
RRENT RECORD E(~JA FALSE.

ZERO)
I

12

SET RECORD_FOUtC TO
ThUE.

EXIT

FIgure 5-8 Select First/Next File Record (SFNFR) (Continued)

5— 21

5.3.4 FOR EACH FILE RECORD (FEFR)

Description

The FOR EACH FILE RECORD module of the Data Manager i s called during
Simula tor Post Processor execution by a user service request to gain access
In a VALIDATION_POINT FILE to every instance (RECORD) or to every instance
meeting some user specified criterion. For each RECORD which is found (or
found to meet the criterion) a section of user suppl ied code is executed.
The user suppl ied code may inclu de other Data Manager service requests
such as SELECT or FOR EACH. The FOR EACH criterion may be any val id Boolean
expression but usually would contain one or more DATA items RECORDed in the
FILE at a VALIDATION_POINT. Al l DATA items RECORDed in a VALIDATION_POINT
FILE must be referenced as “VALIDATION_POINT name. DATA item name” .

Input

Inputs to the FOR EACH FILE RECORD module are l i sted below:

• An optional criteri on (call ed a ‘SUCH THAT ’ clause) used to
qualify which RECORDs are to be selected. Any Boolean expression
is acceptable.

• A section of user PDL 2 source statements which may contain Data
Manager service requests .

Processing

Processing performed in the FOR EACH FILE RECORD module is shown in the flow
diagram of Figure 5-9. The following conrents refer to processing box numbers .

[l],[6] - See the SELECT FIRST/NEXT FILE RECORD
module (Section 5.3.3) for a detailed
description.

[2] - Test is made on unqualified DATA item ,
RECORD_FOUND.

Procedure Reference

In-l ine code except for calls to the SELECT FIRST/NEXT FILE RECORD
module whi ch are of the form VVYYYYY (YVYVY Is the ordi nal of the VALIDATION_
POINT FILE).

5-22

_ _ _ _ _
~~~~~~~~- .~~—, -~~~--- . --~~~~-—- 



FEFR

1

SELECT FIRST/NEXT
FILE RECORD MODULE.

INPUT PARAMETER — ‘FIRST ’
CRITERION — FOR EACH
CRITERION (IF ANY).

2 
RECORD NO

TYES

SAVE THE CURRENT
RECORD DBCS ADDRESS.

4 ‘1~

USER CODE.

5

RESTORE THE CURRENT
RECORD DBCS ADDRESS.

6

SELECT FIRST/NEXT
FILE RECORD MODULE.

INPUT PARAMETER • ‘NEXT ’
CRITERION • FOR EACH
CRITERION (IF ANY).

EXIT

FIgure 5-9 For Each File Record (FEFR)

5-23

_ _ _ _ _ _ _ _



—

6.0 INSTALLATION PROCEDURES

This section describes how to install and execute REVS on the ASC from
the Software Deliverables File (SDF) delivered to the ARC , how to compile and
reconstruct a new REVS load module , how to understand the macros used to
invoke REV S, and what files are needed for execution . Comparable i nformation
is provided in Appendix B for installation of REVS on the CDC-7600 at the ARC .

6.1 SYSTEM INSTALLATION

REVS is designed to operate on the ASC , which requires that all files
needed by a job be disk resident or staged from tape to disk prior to use.
REVS has been delivered to the ARC on a Software Deliverables File tape
(SDF) in accordance with BMD~4TC Software Standards [18] and is executable
directly from this tape with the REVS macros only on disk or on cards . The
installation procedures are therefore very simple in that no catalogued

disk files are required at all.

In normal practice , the macros would likely be catalogued on disk as

a minimum in order to avoid reproducin g the cards in each run deck. The

installer of REVS would add the REVS macros to the ASC macro file to make

them availa ble to all users. These macros are stored in source form in the
REVS li brary REVSLIB which is the fi rst file on the SDF tape. The macros

are each flagged wi th the PDS 2 flag MACRO . Once the macros are included

in the system macro li brary~ REVS i s fully usable from the SDF tape .

As documented in the REVS Users Manua l [3], the REVS tape is spec if ie d

on the REVSPREP macro with the tagged parameter REVSEFID. Therefore the

following setup would be sufficient to run REVS from the SDF tape.

/1 JOB SAMPLE REVS SETUP FROM TAPE
/1 LIMIT BAND=150

/1 REVSPREP REVSEFID=SDF

In order to obtain the REVS macros from the SDF tape,the job displayed

in Figure 6—1 may be used to list and punch all REVS macros.

6.2 PROGRAM CONSTRUCTT~ 1

REVS is a program described as a process in the PDS 2 [2] nomencla-

ture. The library which contains REVS source is described in Section 7.1.

6-1
Revision A



/ /  J (~ J 
~~~~~ ~~~~~~~~ ~~ 1~r.1 ‘~ j ‘~ ~~~~ • .~‘D~

/ / I T~~T T ‘~“ i D~ ‘ ‘)U. ’~’ r N~~—,
/ / \4~~ (:~~ sr~ ~.1jS~~~C~ T /1 ~~~~~~~ t / / ~~~C~V~

(
,, c r 4
/, C)~ i L’)A’~ ~~~ 1 Il _ f t- ~~~~ ~~~~ T A P r
/ / rflM
// ~~~~ 1S’.’ ,”rP ‘~- V ’ l J p Y ..~~~. F I n) ~~~CI) f

/, f~~~ ’~4

/ / N)4 F c 1C”~
t.~~, r (~~) “)~~~C~)~~ � U .~ ~~~~~~~~~~~~~ ~ -, j t~~; c LMS

I, (‘fl~~
/1 ~~~~~
~ F’TC ’4 -~~ V S L t r ’ (‘/~~~F ~

)
~~~ T f ~ 1 ‘- v’~ T~ ’ ~~~~~~ V S X ’ T )  :

~~ T r — ’  ~~~~ ~~~ 
4 C J’ih~,~~~, t )  :

-.‘~~- V S L  it’ ~~ I~ ’L()~~’ ):)~ v ;  I~ •
./~- \ . S I J ’  ~‘~ !~ ‘S~~ ’ r I ;

*FETCH REVSIIB (ASGASSM);
*FETCH REVSIIB (TESTRUN);
/ /  (.i~~ A

/ / CP’.’ L I ~ I .‘~~~ ~ i-~ ~‘C~’ •‘ I.C”’’’-
/ 1  r t ~”~
1/ i~~’ ‘It~~F ~

. T ’ ) ~~ H ~
/ /  ~~~~~~~~~ . f ~~~~

. .,
~~~ ~~~

— (W)
/ / ~~~~~ Y ~ A~. ~ l y ~~~~~~
.1/ ~~~~~~~

I,, rni ’.’
/ / ~~~~~

Figure 6-1 Sample Job to Punch REVS Macros

6-2

The main program is named REVS , as can be seen by listing the configuration
index . The job setup shown in Figure 6—2 Is sufficient to compile and link edit a
new version of REVS. The example will generate a load module wi th each

functi on as an overlay and static memory buffers to permi t up to 8 data
base pages in memory . Changes to the Executi ve message XX 000 whi ch defi nes
the version number mus t be made in module XXUINIT. The REVS module has a

NOLIST statement to suppress this module listi ng when partial compilations
are performed. REVS is organized so that all functions (incl uding the
Executive) are at level 2 or lower in the process so that only the modules
being changed require recompilation. Recompiling at the REVS level generates
over 500 pages of compiler output. The PDS 2 feature of partial compilations
is therefore of important value in such a large process. However , since the

REVS module contains so many global declarations, the NOLIST statement
suppresses the 700 lines of static declarations which otherwise result. The
REVS module can be listed separately or the NOLIST can be changed to a LIST
by a simple edit statement as is done in the example job shown in Figure 6—2.

6.3 JSL MACROS

There are 8 Job Specification Language (JSL) [4] macros in REVS
which practically elimi nate the need for user defined JSL when using REVS.
These macros generate all necessary JSL statements needed to use REVS , in-
cludi ng file acquisition, file saving, program execution , simulator building ,
and simulator execution. Only five of these macros are used directly by

the REVS user (REVSPREP , REVSXQT , SIMRUN , TESTRUN , and ASGASSM) while the other

three (SIMBUILD , SIMLOAD , and SIMSAVE) are lower level macros used by the

three user macros . The user macros , includin g their parameters , are docu-

mented in the REVS Users Manual [3]. Additionally, each macro and its logic

is more fully defined in this section .

Macro REVSPREP

This macro acqui res all files needed to run REVS and/or a REVS simula-
tor and is used only once at the beginning of a job deck. It assigns and
prints the default parame ters , assigns system disk resident libraries .
and then determines if REVS Is running from tape, or the TRW development
files on disk, as specified by the presence or absence of the REVSEFID
parameter. If on tape , all necessary file definitions are generated and

6-3

1/ i~~’ “EV ’~ C”.~ ’fl F ~~~ L J ”~’ ~ (
~ J I TO rnr ’l,T ~ iIi I ‘ u -W L C) a l) ~~1P1lI F

/ / I 1 4 1 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~

ii •‘ h CA S r “,t J S f r -~CI~ t / T w 4 / , .’t~ ~I S / ~”,C4~ni S
// ‘~~)M
// (~(H4 Lf l A) ~4F A L~.~Y I- IL’ S t-~~f~4 S~)F I ‘~-‘E
If r (r4
1/ ~~~~~~~~~~~~~ r~f V S L J Y F~~.~~EV ~~’~ - ID’~S i F

If r)~ C (M~’TL~. ~‘. ‘~ C LIN’cFt) I l ~~ vs ‘IS~~
N(, ~

/ / f’ fl ’4
/ / or i c ~ CO~~ r$1 •‘~~~~~~~~ ‘~~~ • ~~~~~ ~~~~~~~~~~~~ :

, ~~‘M~ ’T T a ’- to ,co~~~~~A~ lr,~~’,c I’.~O / — , •
, O4 J ’~ ‘~~t r~~ ~ , ‘~~ J~’r~T N~~ • ~~~~~ r i — 7~),

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
L I~~~~ ’~1 ~ ‘-“S L T ’ ~.
11SF ~~~~~~~~ ~‘f
M(1r~ j~~ ~‘

* C A T ~~~_ i l :  ~~ V S :

~ c~’ ’ ’ —It ~ •~~ V S A ~~ t
S~’ T I C~4 Y~~ i c c’~~~~~ ~~~~~~~~~~~~~~~~/ / ci”

//  rip’ S Ay  ~~ —~ ~~~‘- o n  1 A 1’l ,~-Mu Jw r s ~LL 13 ,~ ~ ‘,‘‘C I (Ill U f- ILEc
/ /  C ) ~
/ /  ~4f -‘ ~‘F’~V ~ I A~~~ •( ( 

~~i — I / P I  k ’/U r ~‘
/ /  ~~( i J  ~)~~ ‘ 1 _ f ~ 1 ’
/ /  F(~T S Y Z . .t “ (~~)

/ /  n j  U5LD1C1
/ / F () 7  fl ’~p’.~ f
/1 ~ U T  ~~ISF
1/ ~-~~T L\’~~T ’ 1
//  F~ir F T O ~~~( I f l 1
//  F ’ ~ T F T ( I ’~~f l(fl
1/ ~ ( ‘ T  r)-i v~’.
(/ ~ OT J U’~i~ Ii

If FOT VVLIBE
/1 FOT NULLVVDR
/1 FOT FT11FOO1
/ /  U4 ~~J~
//  C(!”I
/ /  ( ‘P.i

/ /  F t ,J

FIgure 6-2 Sample Job to Reconstruct REVS Load Module

6-4



i~~~~~~ L~~ . ~~~LIL ~~~~~~~~~ 
-
~~

then the REVS files are staged onto disk from the specified tape. If the
files are the default TRW development disk files , these are assigned to
the job and copies of REVSLIB and the ASSM are made. The REVSLIB parameter
specifies whether or not the software devel opment file is needed , which is
the REVS source/object library REVSLIB. If this parameter is set to YES
(by default or specification ) these files are included . These files are
only needed when making use of the REVS source library and are not acqu ired
otherwise since they use a vast amount of disk storage.

The default ASSM is staged from the SOF tape but if a user selected
ASSM is specified , another stage is generated to retrieve the specified
ASSM. In addition (or instead , as the case may be), a load of a REVS
simulator can be specified in which case the SIMLOAD macro is called to
generate the JSL to stage the simulator from tape. Finally, the standard
ARC libraries for graphics plotting and the PUS 2 macros are assigned .

It may be noted that the macro is really REVPREP wi th a synonym of
REVSPREP. The former is used by the REVS software developers because it
has defaults more appropriate for their use. The self documenti ng features
of the macro clearly show the defaults for either macro name. The REVSPREP
synonym only is documented in the Users Manual and the parameters that are
relevant to the software developer are omitted from the macro to avoid con-
fusion with production users. However, although the macro is programed
to execute differently for each name , it is the same macro and all param-
eters are effective wi th either macro even if they are not apparent in the
default documentation (REVPREP reveals all parameters and default values).

Macro REVSXQT

This macro is used any number of times in a job to execute REVS. The
REVS program must have been acqui red by the REVSPREP macro and will have an
access name of REVSABS. The macro generates the file definition statements
needed duri ng the REVS execution and the XQT statement. The PASCAL files
INPUT and OUTPUT are nullified by the REVS Executi ve and are replaced wi th
files REVSIN and REVSOUT in order to allow dynami c simulation building
followi ng SIMGEN concurrently with REVS execution. Since simulation buildi ng
involves use of the PDL 2 compi ler whi ch is also a PASCAL program using the

6-5



“~~~~=~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

same file names , REVS must not use these files simultaneously. After execu-
tion the macro generates ‘he JSL statements for file disposition including
printing of the REVS output files.

The macro is programed to sense execution time conditions from the
REVS Executive. If the Executive sets the JSL variabl e C to a non-zero
value , then the macro will cause a Calcomp plot tape to be saved if given
the option by the macro parameter CALCOM P (a non-zero value means at least
one R_NET was plotted).

Likewise , if JSL variable B is set non-zero , it means SIMGEN has
completed building a simulator and validator and they are ready to be
compiled and link edited . Following REVS execution , the ASSM is saved if
requested on the macro . Then macro SIMBUILD is called if a simulator has
been built , and macro SIMSAV E called to save it on tape if specified by
parameter SIMSAVE.

In addition to the default parameters available , all parameters
defined for the PDL 2 compiler and linkage editor can be specified on the
REVSX QT macro if necessary for the generated simulator.

Macro SIMRUN

This macro is used to execute a REVS simulator built by SIMGEN in a
REVS execution. It calls the standard PDS 2 macro PXQT but provides self
documenting defaults that are appropriate for a simu l ator. If recording
data is generated , the va lidator data base is initialized .

Macro SIMBUILD

This macro genera tes the JSL to construct an absolute simulator and
va lidator from the PA SCAL source generated by SIMGEN. This macro is only
used i nternally by the REVSXQT macro . SIMBUILD takes the simulator source
file and passes it through the next utility of PUS 2 (unl ess suppressed by
the parameter NEST ) using the PX QT macro , then cal ls the POL 2 compiler to
compile the result. Following compilation , the PDL 2 object library is
assigned and the linkage editor called using the ASC macro LNK. The
necessary linkage editor directives are provided by the REVSPREP macro.
After linkage editing , the access name of the simulator is SIMULATR unless
modified by the parameter SIMNAME . Both the simulator source and object files
are discarded by this macro in order to maintain the integrity of the simulator

6-6 

-. _ _



and are not available for user manipulation. This macro is called a second
time to produce the validator (simulator post processor ) using linkage
editor directives suppl ied by the REVS Executive.

Macro SIMLOAD

Thi s macro generates JSL to load a simulator from tape and requires
that REVSPREP precede it. It is in fact called by REVSPREP when SIMLOAD
is YES and therefore not a user macro . A simulator always has an associated
file (EEDF) that is unique to it and thi s is staged from tape with the
simulator , along with the ASSM , validator , and validator data base.

Macro SIMSAVE

Thi s macro generates the JSL to save a simulator on tape a t ier
creation by the SIMGEN function. In addition to the simu l ator and its
associated file EEDF , the valida tor and validator data base are saved .
SIMSAVE appends the three additional files on the tape which were used to
generate the simulator: the ASSM from the simulator was generated (FTO2FOO1),
the Requirements Independent Source File (RISF), and the SETS Definition
File (SOF). These files are provided at this time in order to support future
configuration control procedures. This macro is internally called by the
REVSXQT macro or SIMRUN macro if the parameter SIMSAVE is YES.

Macro TESTRUN

This macro is used to execute a validator program (simulator post
processor) built by SIMGEN in a REVS execution. It calls the standard PDS 2
macro PXQT but provides self-documenting defaults tha t are appropriate for
a validator.

Macro ASGASSM

This macro is provided to allow convenient acquisition of more than one
ASSM in a job. This is not normally done in a batch environment , but is
comon when using REVS on the ASC at NRL. It assigns an ASSM from disk or
tape depend i ng on the parameters used , and creates a nul l ASSM if none are
provided (with a warning note).

6.4 FILES

REVS requires a variety of files to be availabl e depending on which
functions are selected by a user. In order to simplify the file allocatio n ,

6-7 

~~~~~~~~ 
.‘ , .

- ~~~

and to avoid runtime errors in case of mis-specification , U ~ REVSPREP macro
acquires all files that might be used by REVS. Since these files are not
large this does not cause any significant resource contention. The files
that may be required on a run are files 2 through 13 of the Software
Del iverables File (SDF) and are described in Section 7.1. These files are
always acquired by the REVSPREP macro for REVS use. File 1 Is only required
to recreate REVS and is acquired only if REVSLIB = YES is specified on the
REVSPREP macro. New versions of REVS must therefore conform to thi s fi le
organization and save all 13 files as previously described in Section 6.2.

6-8

-4

- - - - - --- ---—_- - ~~~

7.0 D ETAILED DATA

Prev ious Sections of this document describe the functional organiLo-
tion and operation of REVS and the installation of REV S from the Software
Deliverables File. Thi s section provides additi onal detailed information
necessary for a maintenance activity on the ASC . Described are the organiza-
tion of the REVS Software Deliverables File , the externa l files required for
REVS execution and the use of the Lecarme-Bochmann Compiler Writing System
and the ISDOS Data Base Control System . Comparable i nformation is provided
in Appendix B for REVS on the CDC-7600 Computer System .

7.1 SOFTWARE DELIVERABLES FILE

The tape constructed for del i very of the REVS software contains not
only the source and data files in the format as required by the BMDATC
standards [18], but also all relocatable arid absolute modules correspond-
ing to the source in order to facilitate the orderly use of the delivered
system. The format of the tape is described in Figure 7-1. The content
of each file of the tape follows (* denotes required fi l es):

1 * REVSLIB This is the PUS 2 source and object library which
contains REVS . The modules are flagged according
to the 17 flags shown in Figure 7-2. The PUS 2
library name is RE VSL IS . The REVS process name
is REVSYS. There are over 900 module names in
this libra ry which includes besides the PUS 2
source for REVS , the REVS macros , the SIMGLN card
image files , and the ASSM data definition language
schema .

2 REVSABS This is the executable load module of REVS and
contains all REVS functions , using inter- and
intra-function overlays .

3 * RSLDICT This is the dictionary file required by the RSL
Translator function. It is a text file generated
by the Lecarme-Bochmann Compiler Wri ting System
(CWS).

4 * DONNEES This is the productions file required by the RSL
Translator function. It is a PASCAL structured
file generated by the CWS .

5 * R1SF This is the requirements independent source file
requi red by the Simulator Generation function .
It is included in REVSL1B as source module GGRISF.

6 LNKSIM This is the Linkage Editor input file used to con-
struct simulators . It is incl uded in REVSLIB as
source module LNKSIM.

7-1 Revi sion A

r

—
__ —I - F- F- I-

L~ L) L) L)
W UJ Lii Lii

-~~~ L/) U) U) U)
— -5- — .5-

LU ~~~
•

~~~
. 

~~
. .

~~~U) U) ~O ‘.0 ‘.0 ‘.0 -i
.5- _ —., .5, -~~ ~~~~ U)

D C~J .— 0 ‘~-0 —.. — 0 ‘~~~ ~~ ,— r 0 0
~~ C’4 0 — ~~~~ ~~~ ~~ 0 ~~~ ~~-. ~~— - ‘-. ~~~

‘ “- 0 .- —
~~~~ ‘.0 -.. . 0 ‘.0 ‘.0 o ‘.0 0 0 0 0 ‘.0 U) ~~.CO Q ~~~ U) — 5 ~~~~ C’.) ~~ - 

-
~~ C’.) .. U) CO

o C’.) -
~~~ ~~~~ ~~~

.
~~~
. 

~~~~ ~~~. ~~~ 
S—~ ~~~ ~~~ ~~~ 0

.- .- r— . ‘.0 ‘.0 C’.) ‘.0 .— -. ~~ ‘.0 C”J U) 0

‘.O
I-

-~~
U

is
(D I—
~~ U) L/) U) U) U) U) U) U) Cl) U) U) U) (/) 0 o U)o o o 0 0 Q~LL

a,

LL,

U,
U) U) a)

Li.. CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO
L) LI.. Li.. U.. Li- Li- L&~ LL ~~. Li- Li- Li- U.. ~~~. IJ U. U. .0

a)

I-
a)

L) ‘.0 0 0 ‘.0 0 0 ‘.0 0 0 Q D ‘.0 0 ‘.0 ‘.0 C~ 0
LU U) CO CO C’) CO CO O~ 0 CO CO CO O~ 0 U) U) CO
~~ C’.) 0 0 0 0 C’.) C’.) a)
-
~ ~‘2

NI ~~ 0 0 0 0 0 .
~~‘ 0 Q 0 0 .

~~‘ 0 0 0 0 Cl)
CO ~~ 0 CO 0 0 CO ~~ ~~ CO ~~ ~~ ~

~~ C’) CO 0 O’i 0 0 C’) CO CO CO CO C’) CO CO CO CO Lii
CO ‘.0 C’) C.) i ‘.0 C’) C’) C’) C’) ‘.0 C’) C’) CV) C’)

I- — I-
4-
0
4-’

(0 G) (0 (0 0
i_ i— a) 4) %,. i,. I- a) U..

-~~ ~~ .0 .0 -~~4) .
~ ‘

~~~ ( 0 ( 0  ,
~~ 

,
~~~~

.- (0
0. _I 0 E E i _J ..-J —J —I E
>) ~~ >, >, — — >1 >~ >) >~ 0- 0- ‘-I $
I— (‘4 ~. I... S.. S.. S. ~~ I.. S.- S.. U) L/) N-

-
~~~ ( 0 ( 0  ‘~~ ~~ ( 0 ( 0  a,~~~~~ 4) 10 o s u ~~U) (0 ~~ C i .  i -C  ~~~~‘e- V) 4-’ C C U) U) I.. a)

0 0 — ~.- 0 10 ‘. - ‘. - ‘.- 0 (0 1..
0- _J CO CO L) L) CO CO 0- C.) CO CO U) U) C.)

U-

CO L/) I— i 11)
4) CO C.) LU E CO LU
E ._.i < — u-i ‘—i — CO P Lii
10 (1) U) 0 ~~ Li- U) U) ,j CO -i

~~~ ~~~
. _J ~~ U) ~~ F- C.) CO —.1 ~~ -~ ...J U) C.)

LU LU U) Q — ~~ CO CO CO 0 > > • 0. ~~0 ~~ .-J 0 0 0 -, ~~ ~~ . -~~ Cl) C..) ~~

4).
.— 0 .— C’.) C”) ~~ U’) ‘.0 N- CO a~ 0 ,— (‘.1 CV) ~~ U) ‘.0
— I- — ~- ~- — — —U-

7-2

--

~

-—-- ~- ~~~~-- ~~~~~~ - ~ - - ~~ --~~~~ -~~~-- - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -~~~~~~-

~. - ~ ~- --~~~~~

FLAG ASSIGNMENT

01 PERM PERMANENT MODULE
02 PDL PDL MODULE
03 COMMON COMMON MODULE
04 FORTRAN FORTRAN MODULE
05 ALC ASSEMBLER MODULE
06 PROCESS PROCESS CONFIGURATION
07 REVSCON REVS CONSTRUCT OPTIONS
08 RSL RSL TRANSLATOR
09 ASSMDMP ASSM DUMPER
10 TESTER ASSM ACCESS TEST DRIVER
11 RNETGEN INTERACTiVE RNET GENERATOR
12 RADX REQ ’MENTS ANALYSIS & DATA EXTRACTOR
13 SIMGEN SIMULATION GENERATION
14 SIMXQT SIMULATION EXECUTION
15 MACRO REVS ASC JSL MACROS
16 DDL ASSM DATA DEFINITION LANG UAGE (DDL SCHEMA)
17 CALCOMP CALCOMP FUNCTION FOR PLOTTING STRUCTURES
18 SIMDA SIMULATION DATA A NALY SIS
1 9 NRLPLOT NRL PLOT INTERFAC E
20 UPDSMS CHARACTER SET/LIBRARY FORMAT CONVERSION UTILITY
21 VALIDATR VALIDATIO N POST PROCESSORS

Figure 7-2 REVSLIB Module Flags

7-3

7 * DB This is the direct access ASSM file which is named
FTO2FOO1 during execution of REVS . It contains the
RSL nucleus definition only. it i~ created by theuse of the DBCS utilities in JOBLIB , and the REVS
function RSLXTND.

8 * DBT This is the binary data base table file required by
the ASSM access procedures of REVS and is named
FTO3FOO1 during execution .

9 DBCS This is the object module library for the Data Base
Control System (DBCS) which is required for REVS .

10 JOBLIB This is the absolute program library for the DBCS
and contains the utilities for initializing data
bases for REVS use, and programs to support SIMGE~4and post processing.

11 VVLIBE Thi s is the object module library for the validators
(simulation post processors) generated by REVS.

12 * VVDB This is the direct access record i ng file which Is
named FT1OFOO1 during execution of REVS. It con-
tains the recordings obtained from a simulator
execution . It is initially built by the DBCS
utilities in JOBLIB.

13 * VVDBT This is the binary data base tabl e file required
by the Validator data base builder in JOBLIB and
any valldator program .

14 * SPL This is the FORTRAN source library for the DBCS
used by REVS . This library must be compiled by
the ASC NX compi l er as the FX compil er generates
incorrect code. There are 176 modules i n thi s
library .

15 * CWS This is the compiler writi ng system used to generate
the REVS RSL Translator functi on and its two re-
quired files. It is all in PASCAL and contains
ii modules.

16 NUCLEUS This is the card image file which defi nes RSL . It
was used as input to RSLXTND to create the initial
ASSM (DB).

7.2 REVS EXTERNAL FILES

REVS is designed to maintain a software requirements data base, the
Abstract System Semantic Model (ASSM). In addition to the ASSM , five exter-
nal files are input to REVS . This section describes the structure of the
ASSM and the contents and source of the additional input files . In addition

7-4

--~~~~~~~~~~~~~~~~~~~~~~

to print files and the ASSM, REVS can generate two additional output files :

a Simulator Program file (See Sections 3.5 and 6.3) and a CALCOMP file

(See Section 3.3).

7.2.1 Abstract System Semanti c Model (ASSM)

The ASSM is a data base system designed to support the Requirements

Statement Language (RSL) which allows the requirements engineer to state
requirements specifications over a period of time as they are developed and
to do so in a non-procedural manner. It provides a central repository
wherein requirements are collected and maintained in an abstract , relati onal

model. The RSL statements that the requirements engineer inputs to REVS
are analyzed and a representati on of the semantics are placed in the ASSM.

The ASSM is specifically designed to be initialized and controlled by
the ISDO S Data Base Control System (DBCS) (See Secti on 7.3.2). The struc-
tural organization of the ASSM is shown in Figure 7-3. Logical records ,
which are the basic building blocks of the ASSM , are represented as annotated
ovals. In DBCS termi nology , records may be members of a group of records
owned by some other record. Such a group of member records, along with its
owner record , is referred to as a set. A set is illustrated in Figure 7-3
via the annotated directed arcs connecting various ASSM records. The owner
record in the set is at the tail of the arc while member records are at its
head. The ASSM set is given by the annotation along the arc. Note that
records may be owners in more than one set and/or members of more than one
set. However, any given record can be a member of only one instance of any
given set. ASSM records and sets are organized to reflect and support the
RSL primi tives (elements , relationships , attributes , and structures).

Fol lowing is a description of each ASSM record identified in the ASSM
structure (Figure 7-3).

SYSTEM - This is a unique record in the ASSM which is
automati cally generated by the DBCS at data base
initialization time . There is only one instance
of this record in the data base and it may be an
owner for any number of sets , but can never be a
member record (owned record) of any set. It con-
tains no data other than the appropriate record
pointers generated by DBCS for each of the sets
for which it is an owner.

7-5

_ _

SYSTEM

~ r~~~
.5

PRICOM
PRLREI. U.TY PE ATTMM RL~~RD

/ I- I-— U ,
~~ 1”/(‘

~
/~ \ ,~

i~
~~~~~~~~~~ I\-’j \-.

‘

~~ 

,%1’ DEFML.$ COML~T/TxT5TR /

/ C

ACTSU8
J ACTO8J 

AACTWJB CTELT

TXT~ I$ $ BRNNUB ArT VAJJTXTSTR

I-.

\~~~

NODE SUCSET PRESET $ODC

CONREC/TXTSTR

OPTNUB

—~~~~
• ‘CI-,
• - n.

PT~R~

FIgure 7-3 ASSM Configuration

7-6

.. -

~

- .



— ---- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~~~~~ ~~~

ELTYPE - For each RSL element type defined by the user,
an ELTYPE record containing the element type
name is created in the ASSM.

ATTNAM - For each RSL attribute defined by the user, an
ATTNAM record containing the attribute name is
created in the ASSM.

PRIREL - For each RSL relationship defined by the user,
a PRIREL record containing the primary rela-
tionship name is created in the ASSM.

COMREL — For each RSL rel ationship i n the ASSM, the user
may define a complementary relationshi p which
wi ll resul t in the creati on of a COMREL record
containing the complementary relationship name .

ELTNAM - For each RSL element defined by the user, an ELTNAM
record containing the element name is created in the
ASSM.

OPTWRD - For each RSL opti onal word defined via an attribute
definition or relationship definition , an OPTWRD record
containing the optional word is created in the ASSM.

RESWRD - For each reserved word defined in the Requirements
Statement Language , a RESWRD record con ta i n i ng the
applicable reserved keyword will be created in the
ASSM.

NODE - For each node appearing in the structure declaration
of an R NET, SUBNET, or VALIDATION PATH element, a
node record is created in the ASSM. The node record
will provide for at least the followi ng data items -
node type, node color , an d x , y screen position , if
applicable.

CONECT - This record is created to provide for successor/pre—
decessor relationships between nodes in a structure .
The record will provide for the x , y screen positions
of the end points of the directed arc when displayed
on the Anagraph .

CONREC - Thi s record, or group of records, will contain the
conditi onal expression for the branch of an OR/FOR
node in an R NET/SUBNET structure.

COMENT - Thi s record, or group of records, will contain coninents
consisting of textual data supplied by the user at any
level of RSL definition.

7—7

.—--- — -----. —-- —

-~ -~ --—~ ~— - -~~~~.- V~~~~~~~ - - - -— — - —~~~~~~~~~~~~~~~~~ . - - .

BRNNUB These are arti fici al records requi red by the DBCS for
DEFNUB defining and maintaining m by n relationships in the
ACTNUB ASSM. Their contents consist of record pointer infor—
OPTNUB mation generated by DBCS as set i nstances are created

In the ASSM.

ATTVAL - As attribute instances are defined by the user , this
record, or group of records (each record contai ns an
actual attribute value), is created in the ASSM.

TXTOWN - As arbitrary text stri ngs are entered by the user, this
record is created temporarily as the owner of the text
string. The record is subsequently discarded when the
text string is attached to some existi ng record in the
AS SM.

TXTSTR - This record , or group of records, offers an additional
technique of entering textual data in the ASSM. The
record(s) will contain textual data such as coments
or attributes with value of TEXT.

STAT - This record is created upon the first call to each of
the ASSM access procedures . Its contents, usage count,
is updated on each subsequent call to an ASSM access
procedure.

Following is a description of each of the sets identi fied in the ASSM
structure (Figure 7—3).

ALLNAM - This set consists of an alphabeti cal list of all cur-
rently defined RSL words. Its owner is the DBCS SYSTEM
record and its member records are element type names
(ELTYPE), attribute names (ATTNAM), relationship names
(PRIREL , COMREL), element names (ELTNAM), optional
words (OPTWRD), and reserved keywords (RESWRD).

ALLPR I - The ALLPRI set consists of an alphabetical list of all
currently defined RSL relati onships in the ASSM. It
is owned by the DBCS SYSTEM record wi th members con-
sisting of all primary relationship names (PRIREL
records).

ALLCOM - The ALLCOM set consists of an alphabeti cal list of all
currently defined complementary relationships in the
ASSM. It is owned by the DBCS SYSTEM record wi th
menters consisting of all complementary relationship
names (COMREL records).

SUBLEG These sets are used to define the legal subject element
OBJLEG types and legal object element types for a particular
LEGSUB relationship in the ASSM.
LEGOBJ

7-8

_ _ _ _ _ _

—

SUBACT These sets are used to define an instance of a rela-
OBJACT tionship in use in the ASSM.
ACTSUB
ACTOBJ

PRICOM — This set is used to correlate a primary relationship
with its corresponding complementary relationship.

OPTPRI) These sets are used to relate optional words wi th
PRIOPT !~ primary and complimentary relationships as defined
OPTCOM

~
by the user.

COMOPT ,!

ALLATT — This set consists of an alphabeti cal list of all
currently defined RSL attributes in the ASSM. It
is owned by the DBCS SYSTEM record with members
consisting of all attribute names (ATTNAM records).

APPELT These sets are used to define the legal applicable
APPATT element types ana legal values for a particular
LEGVAL attribute name in the ASSM .

ACTATT ~ These sets are used to defi ne an instance of an
ACTELT ~ attribute for a given element in the ASSM.
ACTVAL !
ATTOPT i, These sets are used to associate opti onal words with
OPTATT ~ an attribute name as defined by the user.

COMSET - This set provides for coninents to be associated with
RSL elements, element types, attribute defini tions ,
relati onship definiti ons , structure nodes , attribute
instances , and relationship instances .

ALLELT - The ALLELT set consists of an alphabeti cal list of
all currently defined RSL elements in the ASSM. It
is owned by the DBCS SYSTEM record wi th member records
consisti ng of all element names (ELTNAM records).

TYPSET - This set defines the element type for each RSL element
as specified by the user via RSL.

ALLTYP - The ALLTYP set consists of an alphabeti cal list of
all currently defined RSL element types in the ASSM.
It is owned by the DBCS SYSTEM record wi th member
records consisting of all element type names (ELTYPE
records).

INSTAN - When app l icable , this set specifies the ASSM element
referenced at a node on the structure declaration of
an R NET, SUBNET, or VAL IDATION_PATH. The set is
owne~

’ by the ASSM element name record (ELTNAM) and
has as Its members al l node records (NODE) for any
and all structures in the ASSM which reference the
ASSM element.

7-9

- - .-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - -

--

SUCSET 1, These sets provide the successor/predecessor relation-
PRESET ~ ship between nodes on a structure declaration .

BRANCH - This set i s used to associate a conditi onal expression
wi th each branch of an OR node. The set is owned by
the connector record (CONEd) and has as its member
a conditional expression record or group of records
(the CONREC record).

TEMP - This set is used for constructing structures. Once
the structure is complete and has been saved , the TEMP
set is deleted.

STATS - This set contains all the STAT records which contain
a tally of the usage of each of the ASSM access pro-
cedures .

NETYPE - This set specifies an alphabeti cal list of all the
element types which are allowed on the structure of
an R_NET or SUBNET.

PATYPE — This set speci fies an alphabetical list of all the
element types which are al lowed on the structure of
a VALIDATION_PATH .

TXTEMP - This set is used for temporarily constructing a text string .

ELTBRN ‘~~ These sets are used to provide the association between RSL
BRNELT 5 elements and their reference by conditional expressions

on an OR/FOR branch within a structure.

7.2.2 RSL Translator Input Files

The RSL Translator requi res two standard PDL 2 input fi l es, both of
which are constructed during the generation of the translator (see Section

7.3.1) and read in duri ng the initialization phase of each translator invo-
cation . The file DONNEES is created by the syntacti c analysis generation
(SYNTGEN) and lexi cal analysis generation (LEXIGEN) phases of the Lecarme-

Bochmann Compiler Wri ting System (L-B CWS). This file is a P01. 2 struc-

tured binary (non-text) file and contains the i nformation necessary to

ini tialize the lexical and syntactic analysis tables used by the translator.

The second required input file is the text file RSLDICT , which con-

tains a dictionary of RSL keywords recognized by the lexical analyzer and

the syntacti c symbols used by the syntax analyzer. This file is constructed

by the syntactic analysis generation (SYNTGEN) program of the 1.—B CWS.

7-10

RSLDICT is used by the translator to initialize a dictionary array. The
array in turn is used to provide an intelligible display of the contents
of the parse stack and window whenever a dump of the stack is requested
(see Section 3.2).

7.2.3 Simulato r Generation Input Files

The Simulator Generation function uses two P01 2 text files as
input . They are:

a) the Requirements Independent Source File (RISF),and

b) the SETS Definition File (SDF) .

The RISF contai ns source code for components of the Simulator Program
that are i ndependent of the particular requirements model being generated.
It is included in REVSLIB as source module GGRISF (see Section 7.1). The
text of the RISF is separated into segments by the character ‘$ “ . Each
segment is inserted into its proper place in the Simulator Program during
the consolidation phase of Simulator Generation . The SIMGEN Consolidation
module uses the “$“ characters to recognize the ends of segments . Figure
7-4 shows the format of the RISF and identi fies the content of each segment.

The SDF contains the source code for the components of the Simulato r
Program that represent SETS. This file is constructed externally to REVS
and , like the RISF , is separated i,ito segments by the character 11 $h1

• Each
segment of the SDF is inserted into its proper place in the Simulator
Program during the consol idation phase of Simulator Generation. Figure 7-5
shows the format of the SDF and identi fies the content of each segment.
Note that the PDL 2 keywords LABEL , CONST, TYPE , and VAR wh ich are supplied
as part of the RISF (see Figure 7-4) are not repeated for the segments com-
posing the SDF.

7.3 SUPPORT SOFTWARE/UTILITIES

Two generally available software packages , the Lecarme-Bochmann
Compiler Wri ti ng System and the Data Base Control System, are used to
support the operation and maintenance of REVS . This section details the
manner in wh ich these packages are employed.

7—11

PROGRAM EEPROGRAM (OUTPUT);
LABEL
LABEL DECLARATIONS
CONST
CONSTANT DECLARATIONS
$
TYPE
TYPE DECLARATIONS
$
VAR
VARIABLE DECLARATIONS
$
DATA MANAGEMENT PROCEDURES
$
DATA RECORDING PROCEDURES
$
EVENT MANAGEMENT PROCEDURES
$
SIMULATOR INITIALIZATION PROCEDURES
$
SIMULATOR EXECUTIVE UTILITY PROCEDURES
$
PROCEDURE SCHEDULER BEGINNING CODE
$
PROCEDURE SCHEDULER END CODE
$
SIMULATOR EXECUTIVE PROCEDURE
$
SIMULATOR PROGRAM BODY
$

Figure 7-4 Format of RISF

7—12

—~~~~~~~~

r”— -
~~

— ~~~~~~~ ~~~

CONSTANT DECLARATIONS
$
TYPE DECLARATIONS
$
VARIABL E DECLARATIONS
$
INITIALIZATION PROCEDURES
$
MODEL PROCEDURES
$

Figure 7-5 Format of SDF

7-13

-

~~
-_ _

~w
•

7.3.1 Lecarme—Bochmann Compiler Wri ting System

The RSL Translation function of REVS has been constructed using the
facilities provided by the Lecarme-Bochmann Compiler Writing System (L-B
CWS) [16, 173. The L-B CWS accepts an integrated description of the syntax
and semantics of a language and produces a compi ler or translator, wri tten
i n PASCAL, for that language . The lexical analyzer, syntactic anal yzer
(parser), and error handling procedures are automatically supplied by the
L-B CWS, freeing the language designer to concentrate on the area he i s
responsible for, the semantics or meaning of the language . The use of the
L—B CWS has greatly simplified the construction of the RSL translator and
provides for the relatively easy modificati on and evolution of RSL.

The use of the L—B CWS to construct the RSL translator is shown in
Figure 7-6, whi ch is a listing of a sample deck. The only requi red modi-
fication of this sample deck is the substitution of an appropriate JOB card
and the substi tution of the actual REVS Software Deliverables File tape num-
ber for the mnemonic designation of SDF on the fourth and eighth cards in
the listing.

The following comments are keyed to the annotations on the figure.
Note, however, that familiarity is assumed with JSL on the ASC [4] as wel l
as the SMS [9] and PDS [2] utilities used by the run stream. Familiari ty
is also assumed wi th the general construction of the 1.-B CWS and its use
[17, 19].

[1] - Acquire system resources. The necessary macros are
assumed to exist on a disk file.

[23 - The REVPREP macro call causes standard REVS files to
be brought in from the SDF and performs necessary
initializations. The RSL translator input files DONNEES
and RSLDICT are released as they will be reconstructed
by this run.

[3] - Access the SMS SPL file containing the source of the 1.—B
CWS and all its input files . Also access the NUCLEUS
file which contai ns the pre-defined RSL element types,
attributes , and relationships . This file will be used
in the last step of the run to test the generated trans-
lator and construct a baseline ASSM.

[4] - Assign the standard PDL 2 library file.

[5] - Obtain the SEMAGEN program source, compile and link edit
the program, name the load module SEMALMOD.

7-14

[1] ii Jn~ PJN —I4 — q L J ILII ,P TLI JJ ,GU ~ TP1 I~
1/ t. T~’1T R4N~” 7Ofl.MP4 =3O
// M ACAS(. M A c~eos .usEs~cAT ,Tk~ /NEvs /M Acpos

- -[2) i~ ~~~~~ vs~~~Iu~ snP
/ / PFL ~~~~~~~~~~~~~~~~~~~~~

[3] // Fr~ ~~~
// Fr~ NtJ CL~~tj 5, SZ 4Q,LPEC O ,~’CFM Fb .FOR ~~ P), fafl~~ /S/1
/ / MF~d Fj L E 5 . L A ,4 L j / N L , E F 1() 5U~
// F f1 S~ L .LA W L= IS /N L
// F IT NU CL E~JS ,LA t3 L 16/NL
// MFt~~[4] / / AS(, PLId. ~~

[5] / / S~ S COM ?ILE= 80
Sn ~~~~~~~
S.EO IT ~~M A GF~
/ / ~ F~IAr4 ~ CO~~PILE.SfMALiEN
// Pfl 12 IN~ UT SEUA ~ F~4
II LNr ~ L~~Kj. ’ T = (,A , Y , 5 , E. L)

LP4~~A’~Y I)L IR
P~CI IftDE MAI P~SSS

1/ ~.FL SEM A (,FN
/ / RF N A .~~ SYS.LMOD , SEMA LMc ~)[6] ii s~ s (‘(~~~~ILF~~ SO
51) ~~~~~~~
1~~) I T ~1SLSYN
/1 ~) FNAM ~ C1)~~P IL ,-~SL SY N
/ / Px (~T j NPIi T=~~S LSYP . .O~~T (Z) ,ST ,cSfZF MOOO,A ~juM ~ M = 2 O,(,GO=S EMA ~ MO~
/ / I~~ L ~SLSY~[7) /i Se’S COM °LLF= 80
SI)
SF~~I T SYNT .,EN
1/ ~ F~.4~4 F CO~,PI L~~.SYN Tr ,~~
/1 PIIL~~ ~~~~~~~~~~~~~~~~~~~~~~~~~
// L~i’~ I~~K OPT I M . A , Y , S , E.L)
LI~~~~~1Y P L I 4
I - ’d CL UDF M A I N S S

/ / e~FL SYNT .EN
// ~. F N A M~ SYS .LM1)fl,SYNTL ’~Ofl[8],, P~~)T ~~~
// Ffl n 4 N ~ Fc.pos~ Mno

[9] / / S’~S CI)Up)TLF ~~8O
so ~.tT.A
SF r ’IT L P R I , I •,

~
/ / .~F~J A Uf CO~4PT L t .LFXtG€ ~
// ~~~~ IN~ tIT~ LE K IGL ,1
/1 L~JK .~ J 1~~) P T : (M , A , Y , S , ~~ ,L)
I I ” P ~~w’r PLf~~
I~~C t I I ~M~T M A I ’ I~SS

/1 ~1FL L r X I (i E N
/ / 1~F N A U t~ Sv s .LMrW .LEEIIM O P

[10] // S~’S COM?IL I ~=ef l
51)
SFI)I T ~I)YALP~X
1/ ~~FP.4 ’~~ C r).4 ’)IL~ ,N0 YA L E *
/ / ~~~~ rP 1=(Z) ,~~TI1 S 17E= 12OvO ,AO DM EM :2OK ,G L IL,,4O0

[U] 1/ c”s
SI) P. E.R
Sr~i)II COMPL ,~ N
I, ~~~~~~~ C O M P I L r ,C fl .4P C.EN
// P~ L~ t~1~ tJT:C O-4~~ F.4
II LP~~ LN~1OP T (M.A,V,S ,1 ,LP

L I H ~~A~~Y P L I M
INCLU ~~ M A IN SS

// P FL Cfl~ PI,FN
1/ R F N *P 4~ SYS .LM OO ,COM ~LM OO

Figure 7-6 Sampl e Job for RSL Translator Construction

7—1 5

- -

[12) /1 S”S COM?ILF = 8o
SI) ~~~
SFOI T PçLGLO
// RENAM E COM ~’IL~ ,6LO8AUX . - —
/1 SY S CUM.’T L F=80
SI) ~~~~~~
~~~~~ N OVA SYN
II fIFNA~~E CO~PILE.NOYA SYN
‘/ S’~S COM PILE~~~O
SC) ~~~~~ . . - . . . . 

. 
.. .‘

‘F!.1T ERNEUPS
/ /  P~~rj~~M~ COMPILE,EkRE URS

113] ii ‘) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[14) / /  Px1)1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

/ /  P~~NA.j ~ C 1)MP IL E ,TT~ISL
[15] 1/ S’S CI)M)~ILE SO - - - .. — .  - -

SO ~~~~~~
SEOIT Pf~OGGEN
1/ 4Fr..a~if Cfl~4 PIL E.~~ -O6GEN
// POL2 INPUT :P~ OG6E~
II ’ L’~~ LP.(r)PT= (M .4,Y.S ,E ,L )
LI F1QA~ Y PLI~
INCL UDE MAIN ~ S

// P~ I P~ Ot GEN
1/ PFNAM ~ SYS .L MOD,~~~OI3LMOD

[16) ~/ ASI’ S P L I T P f l L .J S C A F / T T A A M U A / i ~O S / P A S C A L / S e ’ ~L IT ~’O L , LJ S E=S i .lR
II F~ ~UNC~~.L~~EC O , - ~KS Z 4 O O O , . ~CFM FH. t ~AN ’ )~~f / ]  5/1
1/ ~X QI  GO=S ” L IT ~~~L . S T K S I 7 E = 1 O O O O ,  INPUt =T T ~~ L.CPT IM€L~~ oO

[17] /1 F TT L l i 4  TT L I BE
II  Cr’NFII, C IF”4 F~~~~3O.CON FR SAP 3O ,Cn~1F T IME 2SO
•4 U110 PPOC ES’, TTS Y S I
°TNt T 1~~~1Z~ LT~~~A ’I v TT LI~ FI
OL I A~~Y TTL IP E
•O.~T T O N S  N) L IST M I
°AI)’) SONS TT4SL ;
•S~~ITCN PUNCHI
CAT A LO (, P.~OCESS risy s ;
*..fl~ST TT .~SL ( A L L ) . O E C L A N A t f O N (4 . e O ) . I ~3O Dy~~(~~,O)

[18) // PUS? Ci Fi.EA ’=~ O .CuN SAP= ~ O ,cONFTI~’E=2 OO ,;
CO M PMtAP 1:,,S
flA J T r , . o ~ jp .4F.~D~ In . ORJ PN sa P=? o ,oR JPT IME= 12n,;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
°L I P P A - Y ~ E V S L I H $
•~IS~ PW1)c.ES5 PEVS ’V S$
*Mt IUZE ~~~CESS T ISY S .L IBrIAPY ITL IRE
•CATAL O I ; P~ ocEss;
*c.i f~ I,, x x LMK C’4o .L1c~~AN y~ N EJ SL1F ~;[19] ii
1/ N~’NA’~’t. SYS .LM 1)O,PFVSL MOO[20) /1 F~~3T ~O=O PIN
// N ’vS X oT ~O=PFVS L~ Ofl ,c~ TIMEr9 OO

[21] RSL * T NO .
AflI)F ’TLE TRAr1 SP 4R~ NT NUCLEUS.

L I S T PSI ALL.
LIST ALL.
cE’40.
STOP.

Figure 7-6 Sample Job for RSL Translator Construction (Continued)

7-16

~
. -.--.- .- -~

[6] - Obtain the integrated description of RSL (RSLSYN),
execute the SEMAGEN program using RSLSYN as the input file.

[7) - Obtain the SYNTGEN program source , compile and link edit
the program , name the load module SYNTLMOD.

[8] - Execute the SYNTGEN program. The only input files are
those constructed by SEMAGEN. Note that the output file
DONNEES must be left positioned at the end (POS MOD) so
that the next program (LEXIGEN) can also wri te on It.

[9] - Obtain the LEXIGEN program source, compile and link edit
the program , name the load module LEXILMOD.

[10) - - Obtai.~. th~ standard lexical nucleus file NOYALEX and
execute the LEXIGEN program.

[11) — Obtain the COMPGEN program source, compile and link edit
the program, name the load module COMPLMOD.

[12] - Obtain the file of RSL global semantic acti ons (called
RSLGLO on the SPL, known as GLOBAUX by the L-B CWS).
Also obtain the syntax nucleus file NOYASYN and the
standard error nucleus file ERREURS .

[13) - The program COMPGEN constructs the generated translator
on the file named COMPILE . The FD insures that suffi-
cient space is allocated for the file.

[14] — Execute the COMPGEN program, rename the generated trans-
lator TTRSL.

[15] - Obtain the PROGGEN program source, compile and link edit
the program , name the load module PROGLMOD . Note that
this program is not executed in this run ; this sequence
is only included to indicate how the load module may be
constructed. The PROGGEN program is useful in checking
out proposed syntax changes to the language and in
building test inputs for the translator. In actual use
the file RSLDEF , a deck on this SPL which contains a
syntax description of RSL but no semantics , is used in
place of RSLSYN as the input to the SEMAGEN program,
which must be run, along with SYNTGEN and LEXIGEN , before
PROGGEN can be executed . (See the L-B CWS User’s Manual
[17] for a discussion of the use of PROGGEN.)

[16) - Obtain and execute the SPLITPDL program on the translator
file (TTRSL). This program converts the standard PASCAL
program TTRSL into a PDS 2 compatible format.

[17] - Execute the PDS 2 Configuration Processor to construct
a PDS 2 process named TTSYS and a PDS 2 l ib rary named
TTLIBE.

7-17

_ _ - -

[18] - Execute the PUS 2 system to merge TTSYS with the REVS
process RLVSYS. The commands on XXLNKCMU Ld~se coippi-
lation and linkage editing of the REVS program.

[19] - Reposition the f i le DONNEES to the begiiuii ng (PUS—NEW)
so that it can be read by the RSL translator.

[20] - Execute the REVS utility program DBIN to construct an
empty data base (ASSM). Then execute the constructed
REVS loa d modu le startin g from this data base .

[21] - The RSL trar~s1a tor is used to input the RSL N1~CLLUS ñì&.,then th~ ke uirer~ents Analysis and Ddtd Extract ion ~-unc-
t ion (RAU X) is usea to l ist out the contents of the ASSM .

7.3.2 Data Base Contro l ~ysteni

The Data Base Control Syst cn (DI3CS) is the FURTt~.AN data nase sys tem
used by REVS to mainta in the ASSM , and is document ed j r ISDOS Working Paper
num ber 88 from the University c t Mich i gan [15]. The entire source for the
DBCS is contained in the ~M5 prog au i library on fil€ ~ 14 of the Soft war e
Del i verables Fil e (SUF) (see Section 7.1). The NX compiled relocatable
object libra ry is on file 9 and the absolute utilities are in the JOBLIB
on file 10. The JOBLIB and object libra ry are automatically provided by
use of the REVSPREP -~acro .

Two DBCS utilities are used to prepare an initial data base for use
by REVS . The fi rst utility , the Data Definit ion Language Analyzer (DOLA),
translates the data base schema (OUL) into the data base dictionary , the Data
Base Tab le file (DBT), for ~u~ s~-qu eri t use by the DBCS. The second ut i lit ~
the Data Base In itialization (DIilN) ~rograni , crea tes a n u l l Da ta Base f i l e

(08) based on the OUT created by DULA . These two files are then used by

REVS to build and maintai n an ASSM. The DB file is FORTRAN unit 2 and the

DBT file is FORTRAN unit 3. The DBIN program can be executed on an existing
data base in which case it wi l l st i l l cre ate a null UB f i le over the ex i s t ing
f ile. The DBT is a read only t i le for UBIN and REVS and is f i le nui Der 8 on
the SDF. The data base on fi le 7 of the SDF is an ASSM which contains only

the RSL def inition as documented in the REV S Users Manual . UBIN can be used
to generate a completely null data base.

The deck setup shown in Figure 7-7 illustrates the process of building
the nominal ASSM whic h is on file 7 of the SUF. The DDL is obta i ned from

REVS LIB (module XXDDL), the uti l i t ies are in the JOBLIB , REV S is the a b so—
lute program and the RSL definition is on file 16 of the SDF .

7-18 RevIsion A


~~~~~~~~~

- __ _
w ~~~~~~

—
- 

~~~~

. ..— -------—--- --

~~~

- -

~~~~~~~ 

— .

/ / ii 1~ ’ •~ C C • : _ 1 - i • -
~ ~

• .
~
,

~ •
- , - —,

/ / (~~~~~ ~ A i i ~~ ~~~~~~~~~~~~~

/ / ~A (~a-;~— - i.. I~~ - — ç ~~~~~~~~~~~~~~~~
~~

, • .
~~~

/ /  r I ) ..
// r~~~•4 L’)” .‘ • —,, 

~~~~~~
/ . L~-

~~.- -~ r i -~
,...l~ ~i

’
~’~ P 1

ii ~~~~~ ~~~~~~~~~~~~~ -. • .
~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

/ 1 T 1~ •~4 ’~L”’ •
~ .L~~~’ 16’ ~~~~

/ / :‘~~-
~ ~- p c

~~ ~) -~

/ , -. - i A ~~ - I fl - . - ~
/ / C ~ ~

- ‘T C, ~. r~ I - j, - / . •-~ . •-.
•
, — - 4 ~~ • . ‘ - ‘ C () -l • (~ ~

— F
/ / 11• ~ ~~~ • ‘ •,~~ -~~ -: ‘~~ , . ..~~ - ; ~~~~~~

•I .1 •-~~~
,1 I~~f ’ ’~
// I

~~~~~~4 ~~~~~~~~~ ‘ - ‘ ‘ ~ ~~~~~~~~~ ~ t 4 ~
// ~~~
,‘ c L ’ ~~
~- F ~ T C - ~ -~~~ 1 f t ‘ ‘

/ /  ~~ ‘~~~~“r ~~T j .,, r ’~”
,,,  ,— (‘p~• ~ 

~~~~~~~~ - ~ ~ -~~1 : ‘. i~ I ) - ~ ~~ 
C ;,n I,, r f l f t

~ x ~ r ,,~ -~ . • ~ r A
// C ’I’ ~
/ / • .

‘
• •

. i - I - - -
~- ~ 14 1 ~ • ‘ -

~ ~ Ii) ,)4.
~ () ~/ 1 ~~~~

/ x -~ r ~~~~~~~
If (••fl~~,,

~ i . v • ~J ‘.. j :‘ ~~~~~~~ ‘ - - . (.. 4. ~ ~~~~~~~~ (N 11 -~~V~- f ~// Ci~~~i

•‘/ ‘~‘t I T
// il

I
• ~ - • - 1 f

A1’s’F h F - .,
~~~ • 

- : - ~~~‘ T~~~~ —’~~~~~~ - — I f  I 6
• L I — I I 1 4 1

I icr ~~~~~ ~~ . I - -,I 
~

S’ in-~. ‘)c f — C .  • J ‘~~1 i  -

~~~
// C (\M (1)-U ~ ~~~ ~~ 1~~ •~~~~~~ A V ~ ~~~~~I, ~~~~
// •).i F r - , ~ r, - ‘ -

~~~~~~ 4’-. ‘ S -~~ 
• - ‘

/ / C •.‘ F 1 ~
‘ ~ r • ‘~ ;- ‘ p - ’ - c ;  ‘-

~ ~
. 4 1 I

// Th~~’
// r e - p
I I  CU’ ’.’

/ /  f’ (4~~’

II ~~~

FIgure 7-7 Sample Job to Initialize ASSM

7—19
Revision A



r~ w - - - -

~~~~~~~ 

--- -

The deck setup shown in Figure 7-8 illustrates the process of building
a null recording data base for the REVS post processor programs. The DDL
is obtained from REVSLIB (module VVDDL), the utilities are in the JOBLIB.
The resulting VV data base (FT1OFOO1) and data base tabl es (FT1 1FOO1) refl ect
those which are on files 12 and 13 , respectively, of the SDF.

7-20

II JOB DBCS UTILITIES TO INITIALIZE VV DATA BASE
II LIMIT BAND=200, MIN=1 5
1/ £4ACASG M, USERCAT/TRW/REVS/MACROS
II COM
II COM LOAD FILES FROM SDF TAPE
// COM
II REVSPREP REVSLIB=YES , REVSEFID=SDF
II REL FTO2FOO 1
II REL FTO3FOO1
II FD FTO2FOO1, BAND=1/30/l , FORG=DS, BKSZ=l6384, LREC=4O96, RCFM=FB
1/ FD FTO3FOO1, BAND=1/30/l , BKSZ=3840, LREC=l 0000, RCFM=VBS
If COM
// COM EXTRACT DDL FROM REVSLIB
// COM
1/ SLMS
*F~~CH REVSLIB (VVDDL);If RENAME FTO8FOO1, DDL
// COM
// COil EXECUTE DDLA USING DDL ; CREATE DBT ON FTO3FOO1
/1 COM
If FXQT GO=DDLA , DATA=DDL
f/ CON
If COM INITIALIZE VV DATA BASE ON FTO2FOO1 USING DBIN
// CON
If FXQT GO=DBIN
// REL FTl l FOOl
// COM
If CON THE DATA BASE AND DATA BASE TABLES MUST BE ON
If COM FORTRAN UNITS FT1 OFO O1 and FT 11FO O1 , RESPECTIVELY
If COM
If RENAME FTO 2FOO 1 , FT1OFO O1
1/ RENAM E FTO3FOO1 , Fill FOOl
/1 EOJ

FI gure 7-8 Sample Job to Initiali ze VV Data Base

7—21

8.0 CHANGE CONSIDERATIONS

REVS is designed to be independent of the defini tion of RSL where
possible. The degree of independence varies for the different functions
which compose REVS. Should any changes be made to the definition of RSL,
an evalua tion of the dependent REVS functions must be made to determine the
necessary modification that should be reflected in the function. Table 8.1
sumarizes i n matrix form those functions whi ch can be impacted by changes
to the RSL components label i ng the rows of the matrix. The remai nder of
this section identi fies by REVS function the concepts and keywords of RSL
that the function requires.

8.1 REVS EXECUTIVE CHANGE CONSIDERATIONS

The REVS Executive is not dependent on any of the keywords or concepts
which define RSL.

8.2 RSL TRANSLATOR CHANGE CONSIDERATIONS

The following RSL names receive special handling by the RSL Translator.
If any of them are changed In extension mode , the translator code must be
modified to reflect the change.

Va l ue name~: BOOLEAN
ENUMERATION
NAMED
NUMER IC
TE XT

El ernent-type-names: ALPHA
DATA
ENTITY CLASS
ENTITY~~YPEF ILE
INPUT INTERFACE
OUTPUT INTERFACE
R NET
SLTBNET
SYN ON YM
VAL IDAT ION PATH

Rela tion-names: EQUATES

Attribute-names: TYPE

8-1

. - . - -if

I

Table 8.1 RSL Dependency of REVS Functions

DEPE ND E NT REVS
UH CTLON RSL I N TERACT I VE DATA REQUIRE P (N T S SIMULATOR

RSL MS~~TOR R 14ET GENERAT I ON EKTPJI CTOR AftA LY ZEI (GEHERATIGN
CONCEPT/KEYWORD (RSL. R SLX TND) (RN ET GEN) (RADX) (RAO K) (SIMGEN)

ELEP(NT -TYPES

SYNONYM X K
ALPHA I X K x
EVENT K K x
R K E T K K K K x
SUBM ET X K K K x
DATA K K K x
ENTITY CL.ASS K K x
ENTITY _TYPE K K K x
FILE K K K
INPUT_INTERFACE K K K x
MESSAGE K x
DUIPUT_INTER FAC K K K x
VALIDATION _PATH K K K I
VAL I DATION_POI N K *

RELATI ONS

COI~’OSES K
CONNECTS K
CONTAINS K x
CREATE S K x
OEI.AYS K
DESTROYS K *
E NABLES K
EQUATES K X
FORMS K x
INCLUDES K
INPUTS K x
MAKE S K
ORDERS K
OUTPUTS K
PASSES K x
SE TS K x

ATTRIBUTES

BETA x
GAIQ4A x
INITI AL. _VAL I J E K
LOCAL I T Y K K
RANGE x
TYPE K * x
US E K

STRUCTURE K x N K

8-2

— - —---—--— -- — --- --—- — —-— - ---- --— --- --- -——-•--—----

I

8.3 RNETGEN CHANGE CONSIDERATIONS

The RNETGEN software is totally dependent upon the structure concepts

as documented in the REVS Users Manual . It will support the three structure

types, R_NET, SUBNET, and VALIDATION_PATH, If their corresponding RSL element

types exist in the ASSM. The following node types can be entered via RNETGEN

if their corresponding RSL element types already exist in the ASSM.

Node Types RSL Element Type

INPUT INPUT_INTERFACE
OUTPUT OUTPUT_INTERFACE
ALPHA ALPHA
OR DATA, ENTITY_CLASS
FOR EACH FILE , ENTITY_TYPE, ENTITY_CLASS
EVENT EVENT
SELECT ENTITY_TYPE, ENTITY_CLASS
SUBNET SUBNET
VALPT VA [.IDATION_POINT
AND , TERMINAL , RETURN N/A

There are other RSL definitions which are expected to have been pre-
viously entered in the ASSM but which , if absent, would not have any sig-
nifi cant impact on RNETGEN. These are the relationship EQUATES, the element
type SYNONYM, and the attribute TYPE.

8.4 RADX CHANGE CONSIDERATIONS

The data extraction portion of the RADX function is dependent on the
structures of an R_NET, SUBNET I and VALIDATION PATH. Should any changes be
made to the types of nodes that appear on these structures or to the types
of elements associated wi th the nodes , an assessment must be made of RADX
to determine the effect of the change . There is also a dependency on the
manner that named attribute-values are defined in RSL and processed by the
RSL Translator.

The static analysis portion of RADX is highly dependent on the key-
words used in RSL and also on the meaning of the keywords. The followi ng
lists them according to RSL primi ti ves.

8-3


~~~~~~~~~~~~~~ - 
-- 

~
‘
~L JJN~~~ iiL-i -~~~~~~~~~~~ ~~~~~

Element Types

ALPHA MESSAGE
DATA OUTPUT_I NTERFACE
ENTITY_CLASS R_NET
ENTITY_TYPE SUBNET
EVENT VALIDATION_PATH
FILE VALIDATION_POINT
INPUT_INTERFACE

Relations

ASSOCIATES INCLUDES
COMPOSES INPUTS
CONNECTS MAKES
CONTAINS ORDERS
CREATES OUTPUTS
DELAYS PASSES
DESTROYS SELECTS
ENABLES SETS
FORMS

Attributes

INITIAL VALU E
LOCALITY
USE

In addition to the explicitly defined RSL relations , RADX rel ies on
the implicit relations REFERS and REFERRED. A REFERS relation exists
between an element which has a structure and an element that is associated
with a node on the structure. The REFERRED relati on is the complement of
REFERS.

8.5 SIMGEN CHANGE CONSIDERATIONS

The SIMGEN functi on is dependent on several RSL concepts and keywords,
on the structure of R_NET5 and SUBNETs , and on the syntax of special RSL
statements which can appear in ALPHA models. The keywords for these special

8-4

I— -~~~~ - -~~~~~~~ -- -~~~~~~~~~~~~ -- -_ ---- -—-.--- --_- --~~ ~~- - - -- _ _ _



• - - • .,,ff • _-• ~•~-••••~•~• -
- -

statements are: CREATE, DESTROY , SELECT , FOR , and ENDFOREACH; statement
syntax is defined in SectIon 3.5.4.

The concepts and keywords that SIMGEN requires are suninarized below
by the SIMGEN module which needs them .

EVENT TRANSLATION
CONNECTS
DATA
DELAYS
ENABLES
EVENT
INPUT_INTERFACE
OUTPUT INTERFACE
R NET
SI’ BSYSTEM

ALPHA TRANSLATION
ALPHA
BETA
CR EAT ES
DATA
DESTROYS
ENTITY CLASS
ENTITY _TY PE
FILE
FORM S
GAMMA
INPUTS
MESSAGE
OUTPUTS
RECORD FOUND
SETS

8-5



- _ __~~~~~~
;_ •_ •

~~~~~~ 
- ,

~~~

R_NETISUBNET IRA NSLAT ION
ALPHA
DATA
ENTITY_CLASS
EVENT
INPUT INTERFACE
OUTPUT_INTERFACE
R NET
SIJBNET
VALIDATION POINT

VALIDATION TRANSLATION
CONTAINS
DATA
FILE
RE CORD S
VALIDATION POINT

DATA TRANSLATION
ASSOC IATES
COMPOSES
CONTA INS
DATA
ENTITY_CLASS
ENTITY_TYPE
FILE
I NCLUDES
INITIAL_VALUE
INPUT_INTERFACE
LOCALITY
MAKES
MESSAGE
ORDER S
OIJTPLJT I  NTERFAC E
PASSES
RANGE
TYPE

8-6 

l i t : .. ::: .~~-r - - .



~ .,. .:, .  
-

PERFORMANC E_REQUIREMENT TRANSLATION
CONSTRA INS
F ILE
PERFORMANCE_REQUIREMENT
TEST
VALIDATION_PATH
VAL IDATION_PO INT

8.6 SIMXQT CHANGE CONSIDERATIONS

The SIMXQT func tion is currently independent of RSL concepts and
keywords .

8.7 SIMDA CHANGE CONSIDERATIONS

The SIMOA function is only dependent upon the RSL concepts and keyword
PERFORFIANCE REQU IREMENT .

8-7



9.0 REFERENCES

1. “Software Design Specification — SREP Methodology” , TRW Report No. -

27332—6921—014, 1 October 1975.

2. “Process Design Methodology Design System Specification ”, Volumes t-V ,
Texas Instruments Incorporated, Document No. H750502-1B, September 1976.

3. •- “REVS Users Manu al” , SREP Fin al Report - Volume It , TRW Report No.
27332—6921—026, 1 August 1977.

4. “ASC Job Specification Languag e Reference Manual” , Texas Instruments
Incorporated , Document No. 930038.

5. “ASC Job Stream Utilities ” , Texas Instruments Incorporated , Document
No. 930064.

6. “ASC FORTRAN Reference Manual ” , Texas Instruments Incorporated ,
Document No. 930044.

7. “ASC Linkage Editor User ’s Guide ”, Texas Instruments Incorporated ,
Document No. 93005?.

8. “ASC Supervisor Service Calls ” , Texas Instruments Incorporated ,
Document No. 930035.

9. “ASC Source Management System User ’s Gu ide” , Texas Instruments Incor-
porated , Document No. 931485.

10. “ASC Card Image File Editor User ’s Guide ” , Texas Instruments Incor-
porated , Document No. 930032.

11,. “ASC Partitioned Direct Secondary Access Method Utilities ” , Tex as
Instruments Incorporated , Document No. 931487.

12. “BMDATC Data Processing Standards, Volume III , ARC Data Processi ng
Use r ’s Guide ” , BMD Advanced Technology Center, Report No. TM-HU-
212/003/00, July 1976.

13. “Interactive Graphics System Basic Functional Routines User’s Manual” ,
System Development Corporation , Report No. TM-HU-l43f003/O1 ,
28 June 1974.

14. “Inter3ctive Graphics System Keyboardflrackball Routines User’s Manual” ,
System Development Corporation , Report No. TM-HU-l43/OO6/OO,
20 December 1973 (Preliminary Draft).

15. E. A. Hershey III , “A Data Base Management System for PSA Based on
DBTG 71 ” , ISDOS Working Paper No. 88, University of Michigan , Depart-
ment of Industrial and Operati ons Engineeri ng , September 1973.

16. 0. Lecarme and G. V. Bochmann , “A (Truly) Usable and Portable Trans-
lator Wri ting System” , in: Rosenfeld , 3. 1. (ed.), Information Pro-
cesslng 74, Amsterdam , North-Holland , 1974.

9-1 



17. 0. Lecarme and G. V. Bochniann , “A Compiler Writin g System User ’ s
Manual” , University de Montreal , Department d’ Informatique , Document
de Travail # 57 , December 1974.

18. “BMDATC Data Processing Standard s, Volume I , Research an d Develo pment
Documentation ” , BMD Advanced Technology Center , Report No. TM-FlU --
212/001/00 , January 1976 .

19. 0. Lecarme, “A Compiler Writing System Installation Manual” , Un i vers i t y
de Montreal , Department d’ Informatique , Document de Travail # 58,
January 1975.

20. “Scope 2.1 Reference Manual” , Con trol Data Corporation , Pu b l icat ion
No. 60342600.

21. “FORTRAN Extended Reference Manual” , Control Data Cor pora ti on , Pu b l ica-
tion No. 60305600.

22. “Update Reference Manua l” , Contro l Da ta Corporation , Publication No.
60342500 .

23. “Loader Reference Manual ” , Contro l Data Corporation , Publ ication No.
60344200.

24. “Compass Reference Manual ” , Control Data Cor poration , Publ ica t ion
No. 60360900.

25. K. Jensen and N. Wirth , “PASCAL : User Ma nual and Report” , Second
Edit ion , Springer-Verlag New York Inc., New York , N.Y ., 1975.

- 

Revision A



17. 0. Lecarme and G. V. Bochmann , “A Compiler Wri ting System User ’s
Manual” , Un iversity de Montreal , Department d’ Informatique , Document
de Travail # 57 , December 1974.

18. “BMDATC Data Processing Standards , Volume I, Research and Development
Documentation”, BMD Advanced Technology Center, Report No. TM-HU-
212/001/00, January 1976.

19. 0. Lecarme, “A Compiler Writing System Installation Manual” , University
de Montreal , Department ci’ Informatique , Document de Travai l # 58,
January 1975.

9-2



- 
~~~~~••

APPENDIX A

RSL TRANSLATOR ERROR MNEMONICS

A-i
Revis ion A

•:~~~~~~~~~ -
. ..•—=C•- —-— -

~~
----- —•-------—-- •-• ----- —----— —•--—--• —

Li ..4 Ct
CC C) CC 1 Li ~~

— _J ~~ >. ~-. Li 0 i.— —.4 Li > —J - CC
~~ Li C’ C— ~~ ~~ CC ~~ iC CC CC ...J ~~ ,.J t i C
C) ~~ . - Li C) ...i Li CC ~~ Li t— .C C) ~~. C)

~) .r~
.-. - -

~~ Li t~~ CC CC 0. LU Li i— t : ...j . , ci) F— ../ - . CD - -
LU)— F-- ‘- — C..) i.— F-. 0.. Ci. I— U) ,~~ ~_: .Li 0.. .C ~~ ...j — .: ...j ~~

~~ C’ C) ~~ .< CD C) C) ~~ C) C) CD C) —i . •— C--’) C.) 1) CD
> ~~ LU C_.) CD .C _.i Ci) L-) ‘-.‘ — -C ~~ Li Cf

CC CC CC CC Cf CC CC CC CC Cf CC C.. Cf CC CC 0 CC CC Cf Cf Cf Cf
LU Li LU LU LU LU LU LU LU LU Li LU LU Li LU C LU LU Li LU LU LU LU

0•.a..
o • C’.J (‘) ~~- U) ‘.0 N. C) C’ C) .- C’i ~~ ~i- L4~ ‘.0 C) .- C’-) C~)
Cf C) 0) 0) 0) 0) 0. 0) 0. 0) 0 C) C) C) CD C) C) I C.) C) C . Ci : t , it

~~~~~~~~~~~~ .~ .~
- 

~~~ 
.~ - U) ‘.ft It) ‘.4) ‘.rC U) U) N-. ‘.0 ‘0 ‘.0 CC. ‘.0 C3 ‘it

LU C)
~.4)

Li
Li ~~ F— LU 0.

- -—. b— b- C) Cf Cl) LU LU = L) C)
;~

U) >< L... ~~ LU b— I— CD Li F— Li >< ~~ C) I—. Li _J C > F— 2 F— C
~

-
LU LU F- _4 ..J “ F- Li .—. U) — CD 3. Cr I— Li C..) -...
C) ‘.1) CC U) Li LU CD C) CD) CD)i a. U) ir C Li .—

~
.. .-

~~ CD C) ...J .J 1— ~~ CX) CC) ...C CX C.) i—- cii ..) ._J ..j ~~~~~;: Ct. F - 3_ - - : r..C) z: LU Li Li .—. CD U) I— I— F— CD >- ; .x ~-t .: cii - - - -
C) CD Cf Cf CC Cf Cf CX ‘I) U) U) U) cC) - CD ci. i~

.
~ . t-. -~ LU CD ..‘.).

• CC CX CC CC Ot CC CX CC CC CC Cf CC CC CC CC CC CC CC CC C. CC CC Cf Cf Cf CC
LU LU LU Li Li LU LU LU LU Li Li LU LU LU U Li Li LU LU Li Li Li

~~~ 
Ct) ‘.0 f’.. C) 0) C) .—. C’-) C’) .a. LI) CO r—.. a) 0) CD ,— C’- ~~ U) )4) I— cc) it’. ci • - -

Cf ~~ ‘.0 ‘.0 ‘.0 ‘.0 ‘.4) N. N- N- N. N- N- N- N.. N. N- 3) 3) )) Di C) U) C) CC CD C.) 0) C)
Ui ~~ ~~~ ~~ ~~ ‘.4. ~~ ~~

- .~ ‘. Si 4. ‘.i~ ~~ Si

— -

C.) F-- C)
.—. 3.. C) LU CC C CC I— U) .i < I— F —

X C) ~~ 0.. F- Li I— ..i .i Li LU cC) Cf ..J ~~ _J CC Ci LU F - C-
C) C) Li ~~ C) U) >- F-— ..J _J LU Lt. .Jt F— C) ._j F-— ~~ _j .C: LI.. F - Cf CC t )  - -C
~~ C.) CC CC CC CC F— < LU LU CC C) 1’. .J ..j CC F--~ ~~ ) LU CC .i ‘— ,-- >- • - J - .4-
Li ..J ..J —4 ...i _i -.4 C’ i. ). :-~ ... C) 

~~ C-C CC Cf Ci) F-. CC• C -  - -
~~ ~J -.j — ‘ -.~‘ - -‘ —~

- ‘.‘ —. ~C’ CD CD
CC CC CX CC CC Cf CC CC CC CX CC CC C) CC CC CC CC Cr CC CD CC CC CCC • - — - - -
LU LU LU LU LU Li Li Li LU Li Cli Li Li LU LU Li Li Li LU Li Li Li Li Li - - - Li

0) C C) — (‘4 C’) ~~~ LI) CC N- C) C) C) (\~ 
,.) 

~~ - ‘.4) ‘0 N- C) C)) C) C C
CC CD C’) C’) ~~~ ‘4. ~~ ‘.7 ‘7 ‘7 ‘7 ‘7 ‘4. If) CC) It) I f)  Ct) U) CC) If)  U) LI) CC) ‘.0 ,it
CC ~~ ~ ‘7 ‘7 ‘4 ‘7 ‘7 ‘7 ‘4. ‘7 ‘7 ‘Ct ‘7 ‘7 ‘.4. ‘.4. ‘7 ‘7 ‘.4 ‘7 ‘7 .S ..J ‘7 ‘7 ~) ~LU

LU
C..) F- 0.. F— F— L _J Cr4
-. F-- ti1 CC >- Z C) U) Li U) F -  Li CC) -J

F- F- ..~J ‘.~ CC) .-.i 0 Cf -i LU LU F- C-.) Li C)) L~ >— F - CC) C) SiC) LU C) ~—‘ F-- J F— ..J Cf Li C) CD F— .- C) Ut ...J CC Li CC- Li CD C) ; C)
~~~ 

). /) ~~) Li Li Li CD CC ‘./) CC I)) I- ~- .. Li C’ C) .‘ tii ; C) Li C) .1) .J
LU .4 ~ 0. 0._ CI. Q_ CC 0.. Cl. ~ 0. 0. C-.) C. C r. F- F- — F — Li CX) CC _i LI_

LU CD CD CD CD CD CD CD CD CD C)) ..J .J ..J - J _.J _.) _4 U) LU • C)
~~ C) 4) C) C) C) CD C) C) LCD -‘ C) C) C) Li Cr) LU ..J LU Li LU Cf Li LU ~~~CC 0 CC CC CIt CC CC Cf CC C CC CXC CI) Cf Cf CC • CX Cf CI) Cf CC Cf CC C. CC

LU C Li Li LU LU Cli LU Li C Li LU LU LU LU Li Li LU LU LU Li LU Li Li tU) U)

(‘.4 () ‘7 4) ‘.0 N.. C) 0~’ C) —. CD C’) •t U) 0 ?—.. CC 0~ ID .~— C”) • D ‘7 CC) ‘.0
CC C) ~~~ CD (‘-.4 CS-i CD C CD CD CS-i CD C\J C’) C’) C’) :-) C’) C. C’) -
CC ~~ ‘7 ‘7 ‘7 ‘7 ‘.1• ‘7 ‘7 ‘7 ‘7 ‘7 ‘7 ‘7 ‘7 ‘.4. ‘7 ‘4 ‘7 ‘4 ‘7 ‘7 ‘7 ‘7 •~ ‘7 Si ‘4 Si

—
-4

Li LU U)
Li Li CC

C..) C) —4 CC CX CD >- F— CC F-- CC “C
CX .~~ Li LU CC If) U) >— Li ii.. ~~ CC C) ~~ C..
C) C) C) ..J ~~~ Cf Cr4 Cr. ...I U) ~~ I— C) F-— Li Li C)).(

0 C) C) Li F— -‘ LU C) CC). ~~ .~ ‘-. ~-‘ C~ F-— ._I CD -.4 CC) U) CC LU C .
LU ~fl ..J ~~ U) LU U) LU C) C.. ’ . • Cf ~I)

U) LU .) LU Cf If C) CD • - . -
Li C) D ..J Li —‘ Cf C) Li - Cf C). D 3.. C’•~) F- ~

—_ F— (.tX .4:-’ - —
Li .-. U) C.) U) Li LU C) CD Li CD ‘-. CC C’) F— F— F— C) CC ‘7

~~ —4 4) CC CD LU C) *-~ C) CX Li 0. - ii 4) .4. ‘.7 - ii ‘.4. ‘.7 .7 C) C.)) C
— 0 ~~ CC CC CC 0 CC 0) CC Cf CC CC 0 CC Cl) C CC CC Cf CC Cl) • CC C)
CC C C.) C) 0. C) C F— I LU ~ C LU Cli Cli C Cli LU .-.J LU LU LU LU CU C) Cli ..i

0) 0)
CC 0 (N C”O ‘4 _.— .— C) (~

S.J C’) ‘7 C’) CD (‘.4 C’) ‘7 ‘.tF ‘.0 N. ‘7’
CC C) C) .— ‘ It) ‘.0 N- C) — F 0 CD C) C) C) , C)) CC C) C’ C) C) C) CC) C C C)

CD C) (‘.4 CD CD CD CD NJ LI) ‘7 ‘7 ‘4’ ‘7 ‘4’ ‘7 ‘7 ‘ 7 . 7 ‘4. ‘4.
Li — C)

(‘.4

A 2 Revision A

APPENDIX B

REVS INSTALL A TION A ND MAINTENANC E
ON COC 7600 AT THE ARC

B-i
Revi sion A

F,- — —- — - -.--- - - - — - —----- —- - — -- - - - - -— -

INSTALLATION AND MAINTENANC E PROCEDURES

This section descr ibes how to ins ta l l and m a i n t a i n the many d i f f e r e t
com ponents of RE~S from the Software Deliverable Fil e (SDF) delivered on
tape to the ARC . Included are deck setups and correspond i ng descriptions
for performing the followi ng procedures:

1) Create an UPDATE source file from the delivered SDF tape.

2) Create the RSL translator and its required externa l input
f i l es , RSLD I CT and DONNEES .

3) Construct the DBCS li brary which is subsequently used to
create new loa d modules of REVS , VVDBLDR , and VV post-
processor.

4) Construct a new REVS load module.

5) Construct the VV library (VVLIBE) and the VV database
builder (VVDBLDR).

6) Create null ASSM and VV database.

7) Create the RISF file.

8) Construct the ASC JSL Emulators.

9) Construct the REVSLIB li brary .

10) Create a nominal ASSM database.

There is a job dependency associated with the jobs listed above as
presented by the Job Dependency Cha rt in Figure B-l . The numbers listed

along the X and V axis in the chart correspond to the jobs as listed above.

It should be noted that job (1) above must be run prior to running any of
the other jobs in the l i s t .

The Software Deliverable File contains source in UPDATE format for
all REVS components required for installing REVS from scratch as follows :

• Lecarme-Boc hmann Comp iler Writing System (LB-CWS)

• Data Base Control System (DBCS)

• REVS
C

• PASCAL Compiler , Library, Utilities

• RISF

B-2
Rev ision A

,- -—.-~~~~--— --~~~~~~~~~~ -- ~~~~-~~~~~~~~~~~~~~~~ -


~~~~~~—-------—- ~~-.. - -~-- - -- -—-- - -~~~~~~

4 X X X
5 X X X

0 6 X X X
R 7 X

8 X

9 X  X x  X X

10 X X X X X X X X X
1 2 3 4 5 6 7 8 9 111

DEPENDENT JOBS

Figure B-l Job Dependency Chart

8-3
Revision A

.— -

~ 

— -  - ~~~~ - — ~~~~~~~~~~~~~~~~~~~~~~~~~



~~
)_

~
•_

~ ~~~~~~~~~~~~~~~~~~~~~ -CC - -
~ -: 

— —-- ----— . - -- —- — - .---.— - .- - -—---- —--- — .  — -- -‘11’

• RSL Nucleus

• DDL for ASSM and VV data bases (XXDDL , VVDDL )

• SEGLOAD Overl ay Commands (OVERLAY)

I-

B-4
Revision A 

-

I 

--- - - —~~~~~~~~~- .- ~~~
, - . --- -~~- - - - - -~~~- - - - -~~~~~~~~~~~~~~~



CREAT E UPDATE SOURCE FILE OF SOF

The job setup shown in Figure B-2 creates an UPDATE source file using
the Software Deliverable File (SDF) as delivered on tape to the ARC . This
job must be run prior to running any of the other jobs identified in the
previous section since all other jobs access the permanent file generated
by this job. The job produces a complete UPDA TE listing of the SO F for
future reference.

8-5 
RevIsion A

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


JOBND,STMFZ,T77,sáTl . CREATE SOF FILE YOUR NAME
REQUEST ,NEWPL, *fV •
FILE,OLDPL,RT=w.BT=I.
STAGE, OLDPL, VSN=SDFTAPENO.
COMMFN T . LIST SEW
UPDAT E ‘L F, C=O ,F, N.
COM MENT. CATALOG SOF UNDER YOU RID
CA T A L O G . ~ iEW PL , RE~iSOEL IVE R PL , IL) =y OU~~ID.

7/ q /9 CARD
•LT S00000

6/7 /R /9 CARD

Figure B-2 Deck Setup to Create SDF UPDATE File

B-6
Revision A

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

CREATE RSL TRANSLATOR

The RSL translator is constructed using the Lecarme-Bochmann Compiler
Writing System (L-B CWS) as described in Section 7.3.1 of this manual .
Two files are created during this process (see Section 7.2.2) which are
subsequently used as input files when executing the RSL translation function
within REVS. These files are named RSLDICT and DONNEES. Figure B-3 pro-
vides the deck setup used to construct a new RSL translator and its corres-
pond ing RSLDICT and DONNEES files. The setup also provides for updatin g the
REVS source code of the SDF with the newly constructed translator .

B- 7
Revision A

- —~~- — --—-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~ —- -- -~~- - - - —- - -“—-- - - -

JOBNO ,ST MFZ ,T77. C~~~A TE RSL TPANS LA T ’JR YOUR N AME
REQUF ’ST ,t)QNNEES , *Pf •
REQ (JFST ,PSLDICT , Dp F ,
COM M~ W T , GET SOF FILE
AT TA r H ,PL ,~~EV SDEL IVE RPL. ID=YOUR ID.
COM M FNT . UP DAT E CWS INPUT /PRO GRAM OEC~~SUPO A TL.F ,p~ pL ,N=oLD p L ,C=o .
RETU P N ,PL ,
CO MM FNT . UP~ A T FO CWS PL IS ON FILE OL)PL
CO M MENT , O~3TA IN CWS INPU T FILES FR OM OL.OPL.
UPDATE .Q,D , R .CZR SLSYN. L= 1.
UPO AT E ,Q,D ,R ,C= GLOBAUX ,L=).
UPDATE .O.D.A ,C=w~)YAL F ’ (,L~~1.
UPDA IF ,Q .0. 8, C r J ~ YA SvN , L= 1.
UPDA TE ,Q, 0 ,R, C=ER~ EUR S ,L~~1.
COI4MFN T . O 9TA IN CW S RP O G RAM FILES FRO~4 OLDPL
UPD ATE , 0, 0.8, C S ~ MA .1 1.
UPOAIE ,Q ,D ,13 ,C Sy N f ,L = 1 .
UPDA TE ,Q,fl ,4.C= LE xJ ,L =1.
UPDA TE ,Q,D ,F3 ,C= C)MP,L=1.
PETUR N.OLOPL .
RFL ,~~OOO0 ,
COM M FNT. AT TACH PASCAL COMf ~ILE P/LJARA .n’
ATTACH ,PLIB ,PA SCALLli~PA RY ,IU SYSLL).
LTR P AP Y ,PL IB .
COMME NT. CO~ P1LE AND EXE CUTE SEM AG EN ~~O GRAM
PASCAL , SFMA • OUTPJT • SEMA (..EN.
SE M A (‘, F “.~~. RSL S
COMM~NT . CD~4P1LE AW ~.) E XECUTE SYNTG EN ~~OG RAM
PASC AL • S YNT , OUTP JI , S YN T GEN .
Sv NT c~FN.
COMM ENT. CO ’ .4PILE AND EXECU TE L F X I G F N ~ RU(~~ A M
PA SC AL ,IEX I ,r)I)T p .J7 ,LEXIGEN .
LE X Ir~EN.
COM MENT. CO FA P IL F A ND EXECUTE COMPGF N ~~ UG~~A M
PA SCA L ,COM P ,OUT PI T ,COM PG FN .
COMP (EN .
COMM ENT. RSL TRA N SLA TO w SOURCE IS ON ILE COMPILE
REW I ND ,CO ,1PjL1 .-.
~ED UrE .S.
COM MENT. CA TALO C , NEW OONN F.ES AND P~SLD IC T F ILE S
CAT AL .OG ,0O~ NEES ,YOUF .NAME FORDONNEE S , ID= Y OU RI ~~.
CATA iO G ,PSLD ICT ,YOuH~4AMEF0RRS LDI C T , ID~ Y OURL D .
COMMENT. GET Sr-F ’ r~L~
A TTA C H ,OLD PL ,WEV cOEI TV ER PL ,10 y OU R Ifl.
PEOUF ST ,M EW ,*PF .
CO MMENT. PUR I FL EX ISTIN (, CJMOECI(TTHSL
UPDATE .N OLD ,L A3 2,C~ O .
COM IWM T. A D r N~~’ CO MO EC~c 1 TTRSL
UPDA TE ,E ,PzOLD ,N :NFW ,L A12 ,C 0.
COM M EN T . CAT ALOG REVS CDC P1 WTT H UPDAT FI) RSL TR *NSL A TO ’ .4
CA TA L O G ,N E w ,REVS~)ELIvERPL , ID= YOUR IO .

Figure B-3 Dec k Setu p for Creating the RSL Translator

B-8
Revision A

7/8/9 CA RD
‘IDE WI YOU~ MOD S
‘I PUT AN Y MO O S TO CW S PR OGRA MS OR IN PUT FIL E S HERE
‘IDE NT 1M INU S
‘I THESE MODS TU~ ’.4 OFF THE PASCAL COMP ILE LISTING FOR ALL CwS PROGR A M S
•I COM PGEN .1
(*SL— •)
*1 LFX IGEN. 1
(*SL— •)
‘I PPOGG FN.1
(*51-. 4)

‘I SFM 4GEN .1
(*SL— 4)

*1 SYNTGEN .1
(~~SL - •)

7 / 4/ 9 CA RD
‘I RSLS YM CONTAI N S THE SYN TA CT IC DEFINITION OF NSL
‘COM PILE RSLSYN

7/8/9 CARD
‘/ RSLGLO CONT 41t~S THE SEM ANTIC ROUTINES FO~ RSL
‘/ THIS FILE IS KNOwN AS SLOBAU * BY THE CWS
•CO M P ILF RSLC ,LO

7/9/9 CARD
•/ NOYAL E X CONTAINS THE STA N DARD PARTS OF THE LEX I C A L A N ALYZE R
‘CO MPILE NOYALE X

1/4/ 9 CAR D
‘I N OYA ~ YN CONTAINS THE STANDAR D PARTS OF THE SY~JTA C TI C A NAL Y /E R
‘COMP ILE N OYASYN

7/8/9 CA RD
*/ EPREURS CONTAINS THE sTANDA P I) PARTS OF T IE ERR OR TREATMENT
‘COMPILE ERPEURS

1/8/9 CARD
‘I SEMAGEN READS THE PSLSYN F I L E
‘CO MPI LE SEMACP EN

7/8/9 CA ~ D
‘I SYNT (FN GENERAT ES THE SYNTACTIC A N ALY ZE R P O R PSL
‘COMP ILE SYNTGEN

7/8/ 9 CARD
‘I LFXIGEN GENERATE S THE LEX I C A L AWA LYZ E~ FOR ~SL
‘CO MPILE LEX IGEN

7/8 /9 CARD
‘/ COMPC,EN COMB INES ALL PARTS OF THE GENERAT ED RSL TRANSLATO R
‘COMPILE COMPGEN

7/8/9 CARD
‘I PURGE THE OLD COMOECK TTRSL AND THE IDENT TTRSL
‘PIJRC1E TTRSL
‘PURDECic TTRSL

7/8/9 CAR D
•/ REA D IN THE NE W COMOEC K TTW SL
•ADD F ILF IMP UT ,TE STER
‘CO MOECK TTRSL
•RE*!) COMPILE

7/4/9 C A RD
~,/7/8/Q CAR D

Figure 8-3 Deck Setup for Creating the RSL Translator (Continued)

B- 9 Revisi on A

—c-- — -—-- ~~-- - —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ j _ _ z ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CONSTRUCT DBCS LIBRARY

The Data Base Control System (DBCS) used to maintain the ASSM (see

Section 7.3.2) must be constructed in library format to be used in con-

structing load modules of REVS , VV data base builder , and Simulator post-
processor. One Øf severa l different versions of DBCS can be generated by
means of DEFINE parameters sel ected during the UPDATE process. These

DEFINE parameters provide for data base pages to reside either in LCM ,

SCM , or both and to invoke optimization capabilities for improving cp

run time . Fol lowing is a l i st of the al lowable combinations of DEFINE
pa rameters and a description of the resulting DBCS:

DEFINE Parameters DBCS Descri ption

(1) LCM , OPTIMIZE - opt imized version of DBCS wi th
data base pages residing in LCM
onl y (NOM INAL)

(2) LCMSCM , OPTIMIZE - opt imize d vers i on of DBCS wi th da ta
base pages residing both in LCM and
SCM .

(3) OPTIMIZE - optimized version of DBCS with data
base pages residing in SCM only.

(4) LCM - unoptirnized version of DBCS with
data base pa ges res id in g in LCM
only.

(5) LCMSCM - unoptiniized version of DBCS with
data base pages residing both in
LCM and SCM .

(6) no pa rameters - unoptimized version of DBCS with
specified data base pages residing in SCM

onl y (stock version).

Figure B-4 presents the dec k setup for creating the nom i nal DBCS
libra ry , i.e., optimized version with data base pages residing in LCM

only. The setup also provides for constructing new load modules for

the data base utility programs , DDLA , DBIN , and DBUT1 . These utilities

are used in defining , initializing , and dumping data bases (see Section
7.3.2).

B-b
Revision A

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - —— - - - - - -

JOBNO ,STM FZ ,T77. CREATE DBCS LIB RA R Y YOUR NAME
REQUES T ,NE .DRCS , OPF.
COMM ENT. ~ET SOF FILE
A TTACH.O LD PL ,REVSDEL IVERPL , ID YOUR IO .
UPOATE ,Q,L~~1A .
COM MEN I COMPILE OBCS SOURCE
FTN , I.
CO MMENT. CREATI. TEMPORA RY LIBRARY
LIREnT .
L IBRAf1 V ,Da CS.
COMMc MT . CO~~ST PUCT DBI N LOAD MODULE
I 1RLOAD .DBCS ,f l8 I ’4.
SLOAfl , D~3CS ,NO~l INL ,N OMINL .
SLOAr),O’ lcS/ p 1C2 ,p 1c2.
NOGO~~I ~DPI N.
COMM ENT. CO~1S1RUCT OBuT) LOAD MODULE
L I A L O A D . D B C S . D B U T 1 .
SLOA D,DRCS ,MOM INL,N0MINL.
S LOA D,O BCS/P IC2 , 2 !C2 .
NOGO .F2sO8uT1.
COMM ENT. CO~ ST PUCT DOLA LOAD MODULE
LIB LOAO .DBCS .DDLA.
SLOAD, DPCS/N QM INL ,NO MINL . .
NOGO ,F3 ,00LA .
COMMENT . ADD LO AD MODULES TO DRCS LI BRARY
LIBEO T .
CATALOG ,NEWDRCS .PEVSD RCSL IBE ,ID :YOUR IO.

7/8/9 CARD
• ID TEMP
•OF LCM ,OPT IMIZE
•C H ISSSSS ,ORUTI.C TOI ,BLicFIX ,ULK PRO 2 .CLO SE 4S , INITS .LLEFT ,LLEFT I
‘C LRI ’HT ,LRIG HI ,LS~ OV E ,SS M OV E ,LSCOMP,BLKPR32 ,~~LpcPR64
‘C BLX PR 12B ,RLKPR1 00 ,RL ,cPP200 ,L~~PAGE, LCM ~ C’4,CM2L CM

7/8/9 CARD
1IRRA RY (O8 CS .NEW ~ 4 0flQ)
RE M IND (LGO)
AOO(’.L GO~
FINISH.
ENOPUN.

7/8/9 CARD
LI B RARY (OBCS ,OLO)
DELETE (O~~INt
DELETE (r)BuTI)
DELE TE U~OI~~)
DELETE (D B I N S B)
DELETE (D D L A S B)
DFLETE (D~RUT S8~REW IPJO (F I I
PEW IND(F2)
REM IP~n (F 3)AD i)(o ,F~~)
A DD (* ,E2)
~DD (•,F3)
FINIS H .
L I+ 3RAHY (NE ~DRCS ,NEW :4O00)
0101 lB (DBCS)
FINISH.
ENDRUN.

6/7/8/9 CARD

Figure B-4 Deck Setup for Constructing OBCS Library

B~li Revision A

CONSTRUCT REV S LOAD MODULE

The deck setup to compi le the entire REV S program and constru ct a
new REVS load module is presented in Figure B-5. The same deck setup may
be used for compilation of selective REVS functions to create updated ver-
sions of the load module. This is accomplished by inserting an ATTACH card
at the appropriate place in the dec k (see COMMENT cards in Figure 8-5) for
a previously saved version of REVSLGO . Inputs to the second UPDATE must
be provided accordingly. The fol l owi ng tabl e lists availabl e DEFINE

parameters for sel ective compilation of REVS.

*DEFINE NAME SOURCE CODE TO BE COMPILED
AAPROC All ASSM ACCESS Procedures
CCNET A l l CA LCOMP plotting procedures
QQRADX QQ RADX procedure only
RADX RADX and all lower level procedures
RNETGEN RNETGEN and a l l l ower level procedures
RSL RSL procedure only
RSLXTND RSLXTND procedure only
TTRSL TTRSL and a ll lower level procedures
SIMDA SIMDA and all l ower l evel procedures
SIMGEN SIMGEN an d a l l l ower l evel procedures
SIMXQT SIMXQT and all lower level procedures
TEST ER TESTER and al l l ower level p rocedures
XXREVS Al l XX procedures

To compile all of REVS , the user must provide al l of the *DEF It~E names
given above.

B-b 2 Revisio n A

_ _ _

_ _ _ _ - - -

JOBNO.ST MF Z ,T777. CREATE REVS LOAD MODULE YOUR NAME
COMMENT. GET PASCAL LIBRARY FROM SYSTEM
A TTACH .PLIB ,PAS C ALL IBRA R Y, ID=SYS ID ,
COMMENT. GET DBCS LIBR AR Y
A TT AC H ,DBCS.RE V SOBCSL IBE , IO=YOUR ID ,
COMMENT. GET A N AGRAP H LIBRA R Y
ATTAC H ,A RCLIB, ID~ PRDL IB.
COMMENT. GET SOF FILE
ATT A CH ,OL O PL ,REV SDE L IvER PL , ID YOURIO .
L IB MA RY, DB CS .PL IB ,A R CL IB .
COMM ENT. GET AND COMPILE FORTRAN SOURCE
UPDA TE.Q .L=1A .
FTN ,I.L=O ,B= REvS FTN.
CO MMENT. GET AND COMPILE PASCAL SOURCE
RETURN ,COMP lIE .
UPDAT E ,Q.L= 1 A.
RFL .I10000 .
PASC AL ,COM PILE ,R 0UT.
REDUCE.
COMMENT. DISPLAY PASCAL COMPILE ERRORS, IF ANY
FI NERR ,ROUT.
COMMENT. INSERT CARD HERt. TO ATTA CH PREVIOUSLY CATALOGGED
COMMENT. V ER SION OF RCVSLGO , IF APPLICA B LE
REQ U FST ,NEWLGO . oPF .
REW IND .LG O. REV SLGO .
COMM ENT. MEPGE NEW 160 WI TH OLD 160, iF APPLICABLE
MERGEL ,REVSLGO ,LGO ,NEWLGO .
RETU RN, REVSLGO.
COMME NT. SAVE NEWLGO FOR FUTURE USE
CA TALO G ,NEWLGO,RE V SLGO , ID=YOUHI O .
COMMENT. COPY PIC200 TO SEQUENTIAL FILE
LIBEOT.
REQUEST ,REVSA RS , *PF.
COMM EN T. GET SEQLOAO OVE R LAY COMMANDS
UPDATE ,Q.L~ lA, C :OVL Y CM D.
COMMEN T. CO~iSTRU CT REVS LOAD MODULE
SEOLOAD. I=0V LYCMD ,B~ REVSA BS.
IDSET ,ERR=NONE ,M A P=/REV SHAP,PR ESE T=ZERO .
LOAD, RE VSF TN
LOAD ,DBCSP IC.
LOAD , NE ML GO
N000.
CATALO G ,REVS A FI S ,REV SABS, ID~ YOUR ID .

7/8/9 CARD
‘ID TEMP
‘C REV SFTN

7/8/9 CARD
‘ID TEMP
‘OF AAPROC ,CCNET ,QQ PA DX,RA O~~,RNETGEN ,RSL ,TTRSL,RSLxTN0
‘OF SIMDA ,S I MXQT, SIMr,EN , TE STE R ,XX REVS
‘I PUT ANY MOOS TO REVS FUNCTIONS HERE
‘C OPTION S,REVS

7/8/9 CARD
L I AR A R Y (OBCS .OLD
PCOPY (PIC200 .DBCSP IC
FINISH.
EP4DRUN.

7/8/9 CARD
•Ifl TEMP
‘C OVE RLAY

6 / 7 / 8 / 9 CARD

Figure B-5 Deck Setup for Constructing REV S load Module

B— i 3
Revision A

CONSTRUCT VV LIBRARY

The dec k setup presented in Figure 8-6 is used to bui ld a new VV
library (VVLIBE). The generated library is then used to construct a

loa d module of the VV data base builder (VVDBLDR). The VV library is also

later used in constr ucting a load module of the VV post—pr ocessor. The

l atter is an automated process which occurs during the execution of REVS.

B- 14
Revision A

_ _ _ -—.-- - - - - — - ~~~~~—.-~~~~~~~~~ ~~~~~~~~~~~~-- -- --~~--

—~~—
—-- - —-“--- -- -

JOBN O ,ST M FZ ,T 7 7 . C R EATE VV L I I3F ,VVDBLD R YOU R NAME
REQU EST , VV Dt~LDR, ~‘PF.
REQUEST. VV L IRE ,
COMM ENT . G ET SOF F ILE
A TTAC H,OLDPL , R EVS D EL IVEHPL , ID=Y OUR IO.
COMM ENT. GET AND COMPILE FO RTRA N SOURCE FDR VVL I BE
UPOAT E ,Q , L = 1A .
FTN, T ,L~~o , B = v v FT N .
RETUPN,COM PIL F .
COMM ENT. GET PASCAL AND 044CS L IBRARIES
AT TA r~1,PL I B , P A S C A L L I B R A R Y , ID=SYSI D.
ATTAC H , O R CS , R EVS OB CSL I H E , I D=YOU RI D.
LI~~R A R Y . P L IB.
CO P4 P4FP4T. GET AN D COMP ILE PA SCAL SOURCE FO~ V VLIBE
UPD A T E , Q , L = 1 A .
PA SCA I ,CO M P I L E,VVO UT .
COMMEN T. DISPL A Y PASCAL ERRORS , IF A NY
R ESET ,VVOUT.
F INEPR ,V v0 J T .
COMM FN T. CON STRUCT VV L IB R A R Y
LII~EOT.
RE TUPN ,COMPILE ,L 0 ,VvOUT .
COM MENT. GET AND COMPILE VVD B LO R
UPDA TE ,Q,L= 1A.
PAS CA L ,rOM P ILE ,vvou T .
COMM EN T. DI SPLAY PASCA L ER RORS , IF ANY
RESET , Vv OU T.
F I NE Pi~. V VO UT
COMMENT . CON STRUCT VV Ot ~LL)R LOAD MODULE
LI~~R ARY ,V V L I~~F ,DRcS .PL TB.
L IBL OAO ,VVL IR E ,FvV b L !~R .
SL0Afl ,VVL IBE /~4OMI NL ,N OM INL .
SL OA D, DB CS ,P IC3? .P IC I? .
LOAD. L GO
I4000.VV 1)BLDR .
CA TAI OG ,VV DB LOR , VV D HL DR , ID=YO URID.
C A T A L O G ,V V L I B E , VV L I f E , ID~~YO URID ,

7f~ /9 CARD
‘ID TEMP
•C V V F T N

h R/ c CA RD
* 10 TE MP
aC VV E~ €C

7/4/9 CARD
LI’3RARY (VVLIME,NEW=2 000)
PEW IPIL) (V V F T N)
ADD (‘. V VET N
REWI ND (160)
ADD (’.L.GO)
F INISH,
ENORUN.

7/9 / (,~ CA Rt)
‘ID TE MP
*~~ VV DB L DR

6/7 /9/9 CAWi)

Figure B-6 Dec k Setup for Creating VV Library
815 Revision A

_ _ _

CREATE NULL DATA BASES

The deck setup shown in Figure B-7 is used to create both a null
ASSM data base and a null VV recording data base (see Section 7.3.2).
These data bases and their Corresponding data base tables are catalogued
for use by subsequent Installa tion and execution jobs of REVS .

I

8-16
Revision A

- - - - —
~

-

JOBNO.STMF Z ,T77. CREATE A SSM AND VV DA TA3A SES YOUR NAME
REQU EST , TAPE2 , *PF .
REQUEST ,TAPE3 , *PF .
REQUEST , I APE 10 ~ *PF
REQUFST ,TAPE1I ,*PF .
COMM E NT . GET SDF FILE
ATTA C H ,OLD PL .REVSD IL IVER PL ,ID=YOURID .
COM I”FN T. GET DbCS UTIL i TIES
A TTA C tI ,lThCS,REVSDt3CSL THE , ID=YOU R IO .
LIHR ARY ,DBCS.
COMME NT. GET 001 E0k ASSM DATARASE
UPDATE ,Q,L= 1A ,D , Bt C DDL .
ODLA ,DDL .
DRIN .
CATALOG ,TAPE2 ,ASSM DB , ID= YOU RIL).
CATALOG ,T A PE3 ,ASSMDBT, ID=YOUR ID.
RETU PP~,ODL .
COM MENT. GET L)DL FOR Vv DATABASE
UPDATE .0. L= 1A .0, , C=ODL .
ODLA ,00L .,TA PE11.
DBI N , TAPE 10 ,TA PE I1.
CATA L OG ,TAPEI 0 ,VV DB , ID=YO URID.
CA T 4LOG ,TAPE 11 ,VVD B T ,ID YOUHIO .

7/R/9 CARL)
‘U) TEMP
‘C XXDDL

7/B/9 CARD
‘If) TEM P
‘C VVDDt..

6/7/8/9 CARL)

I

Figure B-7 Dec k Setu p for Creating Nu ll REVS Data Base

8-17
Revision A

CREATE RISF FILE
P

The deck setup given in Figure B-8 is used to generate the Require-

ments Independent Source File (see Section 7.2.3) which is used during the
execution of the SIMGEN function in REVS .

B-18 Revision A

I-—- - - -~ - - -~~~~ ---—— — --~~--- -- -- .- - - - - --- - - -~~~ -~~~~~~ —“ -~~~~ -—-

- -~ - --- ~~~~~- -~~~~~~~~~~ - - - ~~---- -- -- -—~~~~~~~~--~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

JO8NO ,STMFZ ,T77. CREATE 41SF YOUR NA M E
RE QUEST ,RISF ,*PF.
CO MM ENT , GET SL’)F FILE
ATT AC H ,OLDPL ,REVSD € LIVER PL , ID=YOUR IO .
UPDATE ,Q,L 1A ,D ,R ,C RISF .
CATA LOG ,PISF ,RIS~~. ID YOURID.

7/B/9 CARD
‘ID TEMP
‘C GGRISF

6/7/8/9 CARL)

Figure B-8 Deck Setu p to Create RISF

B 1 9 Revision A

_

- ~~~~~~~~~~~~~~~~ —- .- —----- —

CONSTRUCT JSL EMULATOR LOAD MODULE

The deck setup give n In Figure B—9 is used to assemble and construct
the load module for the JSL emulators . The generated load module is

catalogued for subsequent i nclusion in the REVSLIB libra ry , see fol l owi ng
paragraph .

B-20
Revision A

~

- -~~~~~

-
~ --- ~~~

-- -

~~~

.

~~~

- - - -

JOBNO.STMFZ,T77. CREATE JSL EMULATORS YOU R NAM E
COM MENT. GET SOF FILE
AT TACH ,OLDPL ,REVSDE L IVERPL , ID= YOUR ID .
COM MENT. GET AND ASSEMBLE EMU LATOR SOURCE
UPDATE ,Q.
COMP A SS ,D ,S=SY STEXT ,S=LOR TEXT ,5=PFMTEX T , I.
COMMEN T . CON STRUCT JSL EMULATORS LOAD MOD ULE
LOAD . L GO.
NOGO.E MULAT R ,REv SPRI ,REVSX Q T ,SIMBU IL ,SIMR UN ,TES TRUN ,S IML OAD ,STM SAVE .
REQUEST • RE V s “ AC , *PF
LIREOT.
CA TAL OC ,,REV SMA C, IO YOURID.

7/~~/9 CARD
‘ID TE MP
‘C REVS M A C

7/’~/9 CARD
LIBR ARY (PEV SMAC , %4Ew)
RE WIN D (EM ULATR)
RE PLA CE (‘,EM IJLAT ~~)
FINISH.

6/7/8/9 CARD

Figure B-9 Deck Setup for Constructing JSL Emulator Load Module

B-21
Revision A

- - --

~
- -.~~~~~~~~~~~~ .-‘~~~~~

---- ;~
— ---

~~
— — —.----

~ ~~~~~
——

CONSTRUCT REVSLIB

The deck setup given in Figure B-b provides for the construction of
a library cal l ed REVSL IB which is a consol idation of the pr eviously
generated libraries , DBCS and VVLIB E . It w i l l also contain the JSL
emulators described in the previous paragraph. REVSLIB Is subsequently
used in the REVS execution deck setup as indicated in the following paragraph.

B-22 Revision A

- --~~~-~~ - -- - ----—~~~~~ -— -~~~~~~~ - -~~~~~~~~~~~~~~ -“~~~ -—— -- —~~- - - ---- - -~~~~~~~~~~~~~~~~~~~~~~~~ ----- — -——- -

— -
~~

- ~~~ - --— —--
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

J08k0,STMFI,T77. CREATE REVSL IB YOUR NAME
RE QUE STeREV SL IB ,*PF.
COMMENT. GET DE~CS A ND VVL IBE AND JSL EMULATORS
AT TAC H ,DBCS ,REVSOBCSLIHE , IO YUUNI O ,
A TTACH ,VV LII jE.VVLIBE , ID=YOU RI O.
ATTAC H ,REVSMAC , ID YOU R ID .
COMMENT. CONSTRUCT REVSLI H LIBRARY
LIREDI .
CATA LOG .REV SLIB ,REVSL IB . ID YOURID,

7/~ /9 CARD
LIBRARY (RE VSL IB .NEW 4000)
OLOL IB (D~SCS)
REPL A CE (* ,REVSMAC)
RE PLACE (‘,VVL IBE ,L lB)
FINI SH.
ENDR I)N .

6/7/8/9 CARL)

FIgure 8-10 Deck Setu p to Construct REVSLTB

B-23
Revision A


~~~~~

-,-- - 
~~~~~~~~

--- -

~~~~

-
,—

~~~~~~~~~~~~~~~~~~~~

_ - -- - - - - - -

~~

-- —-

~~

- - —- - - - --

~~~~~

-- - - - - --

~~~~~~~~~~~~~~

--

~~~~~~~~ 

- —-- -

~~~~~~~~~~ 

—-- - - - — -

CREATE NOMINA L ASSM

The dec k setup shown in Figure B-li is the nominal deck setup for
executing REVS , with the exception of the ca rd s Indicated . These additional
cards were inserted in order to access a null ASSM , since the nominal ASSM
(RSL nucleus) does not as yet , exist . RSL inputs for defining the ASSM

nucleus are retrieved from the SDF file via an UPDATE step, as Indicated .

The resulting data base on file TAPE2 is catalogued for future REVS executions.

8-24
Revis Ion A

_ _ _ _ _ __ _ _ _ _ _ _ _ -~~~~~~-.- -- - - - _ _ _ _

— - -- - - - - --- - ~ -—-~~ — -- ~~~—- —- - — - -

JOB NO ,STMFZ .T77. CREAT E NOMINAL ASSM YOUR NAME
ATTAC H ,PEV SL I~~. IO YOUR ID .
COMM ENT. GET PA SCAL LIBRARY
A TTA C H ,PLIB ,PA SCA LL IBRARY , ID=SYS ID .
L IBRA R Y .REVSL IB .°LIB.
CO MMENT . PERFO RM REYSPREP MAC R O
REV SPRE .
COM MENT. GET NULL DATABASE. THE FOLLO w ING FIVE CARDS
COMMENT. SHDULD BE REMOV ED FOR NOM INAL REVS EXECUTION.
RETUPN , TAPE2.
REQUEST .TAPE2 ,’PF.
GETPF , TAPE 2.ASSMDB . ID=YOUR ID .
ATTACI4,OLD PL .REVSDEL. IVERPL ,ID YOIJR1D .
UPOA TE.Q,L 1A ,D ,°,C NUCLEUS.
EXIT ,U .
REVS XQT.
CATALOG , TA PE2 ,ASSMOt ~RSLNUCLEU s , ID=YOUR ID,

7/3/9 CAR L)
‘ID TEMP
‘I THIS INPUT SECTIO N ALONG W ITH CORRE SPOND ING U PDATE
‘I COMMAND SHOULD ~E RE MOVED FOR NOMINAL P~EV S EXECUTIO N
‘C NUCLEUS

7/8/9 CARD
RSLXTNO.
AODF ILE NUCLEUS.
STOP.

6/7/8/9 CARD

Figure B-i l Deck Setup for Creating Nomina l ASSM

B— 25
Revision A

--~~ —-—~~ -~~~~~~——~~~~~~~~~ —- - - - - - - - - - - -

