
AD—Afl6 572 TRW D€FEHSE A S SPACE SYSTEMS GROUP HUNTSVILLE ALA F/S 9/2
REVS USERS MA*IAL. SREP FINAl. REPORT. VOLUME II.IU)
AUG 77 N E DYER. I. J GUNTHER, R W SMITH OASG6O—75—C—0022

UNCLASSIFIED TRW—27332—6921—026—VOL—2

__I

U

I 0 ~IID2_~ 2~

22
~: ~

I .1 ~
~~~

• ~ L8

• (1111’ 25 (ff (f~ QIll~
M ~ ~LSOLU1ION 1 (

N ~L~Pf



~ TT~ ”~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

27332-6921-026

REVS USERS MANUAL
SREP FINAL REPORT - VOLUME II

CDRL C005 1 AUGUST 1917

?~iD D C~
~4Q~1 18 191?

Prepared For (~~,JJUbL~
)L

~~
U

.
BALLISTIC MISSILE DEFENSE ~~~ADVANCED T ECHNOLOGY CENTER

D A S G 6 O • 7 5 - C - 0 0 2 2

4
0-
C-,

TRW
DEFENSE AND SPACE SYSTEMS GROUP

IIUN1SVIL L E . ALABAMA

I~ ____- . _~~~• ~~~~~ 2 .__S_

IA ~~~/

TITLE: REV S USERS MANUAL DATE: 30 SEPTEM9ER 1977

DOCUMENT NO: 27332-6921-026

REVISION : A

REASON FOR CHAUGE:

This revision documents the ARC CDC 7600 installation of REVS.

INSTRUCTIONS:

To update this manual make the following changes.

AFFECTED PAGES:

lv , x, xi, xii i
1—1
2-13
2—1 5 (delete)
4 ...9
5-1
6-25 , 6-42
7—5, 7-21
9—1 , 9-3 through 9-15
9-16 through 9-18 (add) F
10—1 through 10—6 (add)
D-4
D-8
R-1

NOV 18 ~~~
H

. ~~~‘.

. 4

SYSqMS GROuP OF T R , I INC

ARMY SUP.ORT FACILITY • 7702 CO~ ~~~~ DR IVE WEST . HUNT SVILLE , ALABAMA 35805 I2~ 4 837 2400

UNCLASSIFIED
SECURITY CLASS IFICAT ION OF THIS PAGE (IP?,.,, Oat. EnI.u.d ~

REPORT DOCUMENTATION PAGE BEFORE COMPLET ING FORM
I. REPOR T NUMBER 2. GOVT ACCESSION P40 3. RECIP S C A T A L O G NUMBER

CDRL C005 (Volume II) ___________________________
1. TITLE (ond £ubtIU.) 5. TYP & PERIOD ~lV~~FO

~ REV S Users Manual •
—_

~
i.
,

—
~~~~ 

Final Technical ~~~~~~ (
,$— I ( jQ.L _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-: (SREP Final Report s Vol ume 
~~~ I ‘

~TI~ri~w ~27332-692i -,ø26 —~~~ j .,_~~~
7. AUTHOR(.) __________________ ______ . CONTRACT OR GRANT NUMBE~~)7

M E JDye,~ e A . /G~~th 9 1) W./5m st~~~~~ ~~~G6~~~-c4i~J
W PL~~r,., n r~ ,~~~~ u lQN NAM E A 0 ADDRESS 10. PROGRAM ELEMENT . PROJE CT . T A S K

TRW Defense and Space Systems Group .
~J

AREA S WORK UNIT NUMBERS

7702 Governors Drive , West 6 33 04 AHuntsville , Alabama 35805 -

II. CONTROLLING OFFICE NAM E AND ADDRESS I 3Z~~~~~~~~~~~~
T OAt& ...7

Ballistic Missile Defense Advanced Technolog~~//~ 1 Aug~~ l$77JCenter , P.O. Box 1500, Huntsv il l e, AL 35807 ‘ iL NUMB ER O F PAGES

432

14. MONITORING AGENC ME U.r.n i from Controlling Ofl ic.) IS. SECURITY CLASS. (of iN. report)

~
)
~~) ,(J~p _j UNCLASSIFIED

~
.-
~

‘-— ---
~~

J J IS.. OECLASS IFICAT ION/ DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (.1 tAle J8.~ort)

Cleared for public rel ease - distr ibution unl imited .
Reference BMDSC-CRS letter dated 8 March 1 977 .

)

Il. DISTRIBUTION STATEMENT (.1 A. .b.tracf entered in Bloc k 20. If dllf.r.ni from Report)

IS. SUPPLEMENTARY NOTES

IL KEY WORDS (Continu. on r.. .r.. .id. ii n.c..ony end identIty by block number)

Requirements Engineering and Validation System
Requirements Specification Language
Automated Simulation Generation Language Processors
Automated Documentation Software Requirements Engineering

2~bl,4 A BSTRACT (Conrtnma. en r.vat.. .id* St n.c.. .ary end Identity by block nomb.r)

~~rhis manual describes and provides instructions for using the Requirements
Statement Language (RSL) and the Requirements Engineering and Validation System
(REVS). RSL Is a f low oriented language for stating software requirements in a
clear , non-ambibiguous form . REV S includes a translator for RSL , a data base
for maintaining the description of a system’s software requirements , an inter-
active graphics input and display system, and a set of tools for analyz ing the

4 requirements data base for consistency , compl eteness , and logical integrity.
REV S a lso Includes an automated simulation generation capability which (cont’d ~~~~~~~~

DD I~~ 2 ’ ~)
1473 ED,TION OF I NOV SI IS ODSOLET E

UNCLASSIFIED

4<0 7 SECURITY CLASSIFICAT ION TwS PAGE T: Date Fn~~~~~

-
..—

~~~~~~~
. 

~~~~~~~~ ~~~ ‘ ‘w~~ ~~~~‘ 
— -

~
-
~~

-—
~~

-
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

“

~~~~~~~~~~~~~~~~~~~
_ _  -~~~~~~~~~~ 

-
~~~~~~~~~~ 

-
~~~~~~

-
~ ~~~~~~~~ 

-
~~~-~~~~~~~~~ -~~~— --—~~~~ ~~~

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAOE(WI~on Data Znt.r.d)

20. (Cont’d)

—~al1ows simulations to be genera ted directly from the statement of requirements .‘,
as written In RSL.

a t’

I

H

UNCLASSIFIED
SECURITY CLASS IF ICA TION OF THIS PAGE(W1. .n Data EnI.red)

—
— -

27332—6921-026

It

REVS USERS MANUAL

SREP FINAL REPORT — VOLUME II

CDRL COO5 1 AUGUST 1977

CLEARED FOR PUBLIC RELEASE — DISTRIBUTION THE FINDINGS OF T)lhS REPORT ARE
UNLIMITED. REFERENCE BMDSC—CRS LETTER NOT TO BE CONSTRUED AS AN OFFICIAL
DATED 8 MARCH 1977. DEPARTMENT OF THE ARMY POSITION ,

Prepared For

BALLISTIC MISSILE DEFENSE
ADVANCED TECHNOLOGY CENTER [) ~~

)
~

DASG6O-75-C—0022 f~1.~L .rft~ -.
NOV 1 ~971

l~IJU ~~~~~~~~~~
.

-
~
------• A~ —

TRI$f
DEFENSE AND SPACE SYSTEMS GROUP

Huntsville, Alabama

41 27 332-6921 -026

REVS USERS MANUAL

SREP FINAL REPORT - VOLUME II

CORL C005 1 AUGUST 1977

Principal Authors : Approved By:
M. E. Dyer
L. J . Gunther
R. W . Smith

~: ~: Bergstresser
_____________________________EJ• ~~~.

~
X

k~~r L. . rker , Manager
C Mitt Software Requirements

D. E: ~~~een (AIC) Engineering Program

El. E. Dyer, anager Ja s - Long, Manager
SREP Software and Language Huntsville Facility
Development

Prepared For - -~

BALLISTIC MISSILE DEFENSE .. -
-

~~‘

ADVANC ED TECHNOLOGY CENTER
hi ~~~~~~~

DASG6O-75-C-0022
.. -

- I _
~

‘
~~~~~~I -

~~k ,Ai L~~
- ~, - 13131 - 

.4I~i - 
-

‘
~: ~; 7RII~~~ F 1A I A A O S P A C E S V S T IM SI M O~~ I T  I /

Huntsvill e, Alabama ~_L!.J
lii

- - 
-

~~~~~


IT~~~T
•1

RECORD OF REViSiONS
REVISION DATE DESCRIPTION

A 8/30/77 Documents the ARC CDC 7600 installation of REVS.

lv
Rev ision A

-.-~— — .-,-
~~~~ -~ ..-.-.--~~~~~~~- .



-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

TABLE OF CONTENTS
‘4,

Section Titl e Page

1.0 INTRODUCTION 1-1

2.0 OVERVIEW OF RSL AND REVS 2-1
2.1 REQUIREMENTS NETWORKS (R_NETS) 2-3
2.2 REQUIREMENTS STATEMENT LANGUAGE (RSL) 2-7
2.3 REQUIREMENTS ENGINEERING AND VALIDATION SYSTEM (REVS) 2-9

3.0 REQUIREMENTS STATEMENT LANGUAGE 3-1
3.1 DATA SEGMENT 3-3

3.1.1 Data and Hierarchies 3-3
3.1.2 Files 3— 4
3.1.3 Interfaces and Messages 3-5
3.1.4 Entity Types and Entity Classes 3— 6
3.1.5 Data and File Uniqueness 3—7
3.1 .6 Locality 3-10
3.1.7 Typing and Usage 3—11
3.l.8 Values 3-12
3.1.9 Sumary of Data Segment Concepts 3-12

3.2 ALPHA SEGMENT 3-21
3.2.1 Executabl e Descriptions 3-21
3.2.2 Referencing Data 3-21
3.2.3 Accessing Files 3-22
3.2.4 Accessing Entities 3-24
3.2.5 Operations on Entitles and Messages 3-24
3.2.6 Sumary of Alp ha Segment Concepts 3-24

3.3 REQUIREMENTS NETWORK SEGMENT 3-27
3.3.1 Top—Down Fl ow Specification 3—27
3.3.2 Enabl ement 3-27
3.3.3 Structure 3—28
3.3.4 Suni~ary of Requ irements Network Segment

Concepts 3-34
3.4 VALIDATION SEGMENT 3-37

3.4.1 Validation Points 3—37
3.4.2 Validation Paths 3-38
3.4.3 Stimulus-Response Timing Requirements 3-38
3.4.4 Ana lytic Performance and Non-Stimulus-

Response-Timing Requirements 3-40
3.4.5 Sumary of Validation Segment Concepts . . 3-41

V

/

TABLE OF CONTENTS (Continued)

Section Titl e Page

3.5 MANAGEMENT SEGMENT 3-43
3.5.1 Configuration Ma nagement 3-43
3.5 .2 Traceability 3-43
3.5.3 Decisions 3-44
3.5.4 Source Material 3-44
3.5 .5 Synonyms 3-45
3.5.6 Unstructured Information 3-45
3.5.7 Sun~iary of Management Segment Concepts . . 3-45

4.0 CONTROLLING REVS 4-1
4.1 SELECTING A REVS FUNCTION 4-5
4.2 CONTROLLING INPUT 4-7

4.2.1 Avoiding Executive/ Function Statement Conflicts 4-7
4 .2.2 Designating an Al ternate Input Source 4-7

4.3 SELECTING REVS OPERATING MODE 4-9
4.4 CONTROLLING OUTPUT 4-13

4.4 .1 Controlling the Logging Resolution 4- 13
4.4 .2 Controlling the Routing of Function Output 4-13
4.4.3 Controlling Pagination 4- 15
4.4.4 Displaying Information On-Line 4- 15

4.5 TERM INATING EXECUTION OF REVS 4-18

5.0 BUILDING A RE QUIREMENTS DATA BASE 5-1
5.1 ENTERING REQUIREMENTS IN RSL (RSL FUNCTION) 5-3

5.1.1 Defining a New Element 5—4
5.1.1.1 Declaring a New Element 5-5
5.1.1.2 Declaring an Attribute Value 5-6
5.1.1.3 Declaring a Relationship Instance 5—7
5.1.1.4 Declaring a Net Structure 5-9
5.1.1.5 Declaring a Path 5—24
5.1.1.6 Implicit El ement Declarations . . 5-25

5.1.2 Modify i ng an Element Definition 5-26
5.1.2 .1 Declaring the El ement to be Modified . 5-27
5.1 .2.2 Declaring an Attribute Value 5-28
5.1 .2.3 RemovIng an Attribute Value 5-28
5.1.2.4 Declaring a Relationship Instance 5-29
5.1.2 .5 Removing a Relationship Instance. 5-29
5.1 .2.6 Declaring a Net Structure 5—30
5.1.2.7 Removing a Net Structure 5-31
5.1.2.8 Declaring a Path 5-31
5.1.2.9 Removing a Path 5-32

vi

_ _ _ _ _ _ _ _ _ _ _ _ _ _
..-.-


~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~“1

TABLE OF CONTENTS (Continued )

Section Titl e Page

5.1 .3 Del eting an El ement 5-32
5.1.3.1 Del eting an El ement with Attribute

- Values 5-34
5.1 .3.2 Deleting an El ement wi th

Relationships 5-34
5.1.3.3 Deleting an El ement with a Path or

Structure 5-35
5.1 .3.4 Del eting an Element Referenc ed on a

Path or Structure 5-36
5.1.4 Renaming an Element 5-38
5.1.5 Retyping an El ement 5-39
5.1 .6 Using Synonyms 5-40

5.2 GENERATING STRUCTURE GRAPHICS INTERACTIVELY (RNETGEN
FUNCTION) 5-43

— 5.2.1 Identifying the Structure 5-45
5.2.2 Creating/Modify i ng a Structure 5-46

5.2.2.1 Adding a Node 5-47
5.2.2.2 Removing a Node 5-48
5.2 .2 .3 Connecting Nodes 5—48
5.2 .2.4 Disconnecting Nodes 5- 51
5.2 .2 .5 Coninenting a Node 5-5 1
5.2 .2.6 Moving a Node 5-52
5.2.2 .7 Moving a Subtree 5-52
5.2.2 .8 Sel ecting a Color 5-52
5 .2 .2.9 Saving a Structure 5-53

5.2.3 Displaying a Structure and Its El ements. . . . 5-53
5.2.3.1 Scrolling a Structure 5-54
5 .2 .3 .2 Zooming-Out on a Structure 5-54
5.2 .3 .3 Zooming-In on a Structure 5-55
5 .2.3 .4 Displaying a Node Element 5-55
5.2.3.5 Displ aying a Branch 5-56
5.2 .3 .6 Displaying a Structure on CALCOMP   5-56
5.2.3 .7 Displaying a Structure in the

Prompting Mode 5-57
5.2 .3 .8 Automatic Displaying 5-60

5.2.4 Terminating the RNETGEN Function 5-60

6.0 ANALYZING AND DISPLAYING REQUIREMENTS (RADX FUNCTION). .  6-1
6.1 SUBSETTING A REQU IREMENTS DATA BASE 6-5

6.1.1 Defining Sets by Enumeration 6-7
6. 1.2 Defining Sets by Combination 6— 8
6.1.3 Defining Sets by Attribute Qualification .   6-8
6.1 .4 Defining Sets by Relationship Qualification  6-10
6. 1.5 Defining Sets by Structure Qualification .   6-12

vii

_



TABLE OF CONTENTS (Continued)

F Section Titl e Page

6.1.6 Defining Hierarchies 6-12
6.1.7 Defining Sets by Hierarchy Qualification . . . 6-15
6.1.8 Using Sets to Analyze a Requirements Data Base 6-17

6.2 LISTING REQUIREMENTS 6-25
6.2 .1 Listing Sets 6-25
6.2.2 Sel ectIng Associated Information to be

Disp layed 6-26
6.2.3 Listing by Hierarchies 6-28
6.2.4 Plotting Structures 6—34
6.2 .5 Listing RSL Descriptions 6-37
6.2 .6 Listing Control and Extension Permissions .   6-42
6.2 .7 Punching the ASSM 6—42

6.3 USING AUTOMAT ED STATIC ANALYSIS 6-45
6.3.1 Consistency Analysis 6-45
6 .3.2 Data Flow Analysis 6—49

7.0 SIMULATING REQUIREMENTS 7-1
7.1 PREPARING AN ASSM FOR SIMULATION 7-5

7.1.1 Writing Beta and Gamma Model s for Al pha s .   7-6
7.1.2 Writing Performance Requirements Tests . .   7-11

7.2 INTERFACING A DRIVER 7-1 5
7.2.1 Representing Subsystems 7-15
7.2.2 Sending Messages to the Simulated Data

Processing Subsystem 7— 15
7.2 .3 Obtaining Messages from the Simulated Data

Processing Subsystem 7— 16
7.2 .4 Referenc ing Data 7-17
7.2 .5 Schedul Thg Driver Events 7—17
7.2.6 Obtaining Simulation Time 7-18
7.2.7 Initializing a Driver 7-18
7.2.8 Organization of the Simulation Driver

Definition File 7-18
7.2.9 Naming Conventions 7-19

7.3 GENERATING A SIMULATOR AND POST PROCESSOR (SIMGEN
FUNCTION ) 7-2 1
7.3.1 Defining the Scope o~ the Simulator 7-21
7.3.2 Defining the Type of Simulator 7-22
7.3.3 Identifying the Simulator 7—23

7.4 EXECUTING A SIMULATOR (SIMXQT FUNCTION) 7-25
7.4.1 Controlling Simulation Start and End Times . . 7-25
7.4.2 Identifying the Execution of the Simulator . . 7-26
7.4.3 Simulator Output 7-26

vi i i

-— . --——.-~~~“~~~~~~~ -~~. — — - - .- — - -



- . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

TABLE OF CONTENTS (Continued)

Section Titl e Pa’e

7.5 EXECUTING A POST PROCESSOR (SIMDA FUNCTION) 7-29
7.5.1 Controlling Performance Requirement Test

Selection 7—29
7.5 .2 Post Processor Output 7-30

8.0 EXTENDING THE LANGUAGE (RSLXTND FUNCTION) 8-1
8.1 CONTROLLING LANGUAGE EXTENSIONS 8-3

8.1.1 Establishing Control Permissions 8—3
8.1.2 Establishing Extension Permissions 8-4
8.1.3 Identifying the User 8—4
8.1.4 Resc inding Permissions 8-6

8.2 DEFINING NEW RSL CONCEPTS 8-7
8.2 .1 Defining a New El ement Type 8— 7
8.2 .2 Defining a New Attribute 8-8
8.2.3 DefIning a New Relationship 8-11

8.3 MODIFYING RSL CONCEPTS 8-15
8.3.1 ModIfying an Element Type Definition 8- 15
8.3.2 Modifying an Attribute Definition 8-16

8.3.2.1 Declaring New Applicabl e Types for
an Attribute 8- 17

8.3 .2 .2 Removing Existing A ppl icable Types
for an Attribute 8-18

8.3 .2 .3 Declaring New Legal Values for an
Attribute 8- 19

8.3.2.4 Removing Existing Legal Values for
an Attribute 8—20

8.3.3 Modifying a Relationship Definition 8-2 1
8.3.3.1 Declaring a New Compl ementary

Relation Name for a Relationship. . . 8-22
8.3.3.2 Removing a Complementary Relation

Name for a Relationship 8-23
8.3.3.3 Declaring New Subj ec t El ement Types

for a Relationship 8-24
8.3 .3.4 Removing Subject El ement Types for

a Relationship 8-25
8.3.3.5 Declaring New Objec t El ement Types

for a Relationship 8-26
8.3.3.6 Removing Object El ement Types for

a Relationship 8-27
8.4 DELETING RSL CONCEPTS 8-29

8.4.1 Del eting an El ement Type 8—29
8.4 .2 DeletIng an Attribute 8—30
8.4 .3 Deleting a Relationship 8—3 1

-1~.

F 1

TABLE OF CONTENTS (Continued)

Section Title Page

9.0 REVS JOB CONTROL 9-1

9.1 TI-ASC JOB CONTROL 9-3
9.1.1 REVSPREP Macro 9-3
9.1.2 REVSX QT Macro 9-5
9.1 .3 SIMRUN Macro 9-5
9.1 .4 TESTRUN Macro 9-5
9.1 .5 Sampl e REVS TI-ASC Job Decks 9-9

9.2 COC 7600 JOB CONTROL 9-13
9.2.1 REVSPRE Program 9-14
9.2 .2 REVSX QT Program 9-14
9.2 .3 SIMRUN Program 9-15
9.2.4 TESTRUN Program 9-15
9.2.5 SIMSAVE Program 9— 15
9.2 .6 SIMLOAD Program 9—16
9.2.7 Sampl e REVS CDC 7600 Job Decks 9-16

9.2.7.1 Nominal Execution 9-16
9.2 .7 .2 Building an Initial Data Base. . 9—17
9.2. 7.3 Updating a Data Base 9-17
9.2 .7. 4 Executing and Saving a Simulator!

Post Processor 9-18
9.2 .7.5 Loading and Executing a Simulator 9-18

10.0 INSTALLATION DEPENDENCIES 10-1
10.1 T I-ASC DEPENDENCIES 10-3

10.1.1 Character Set 10— 3
10.1.2 CALCOMP Plotting Symbol s 10—3
10.1.3 Operating Modes 10-3
10.1. 4 TI-PDL 2 Compiler 10—3
10.1.5 Linkage Editor 10-3

10.2 CDC 7600 DEPENDENC IES 10-5
10.2.1 Cha racter Set 10—5
10.2.2 CALCOMP Plotting Symbols 10-5
10.2.3 Operating Modes 10—5 J10.2.4 TRW PASCAL Compiler 10-5
10.2.5 SCOPE Loader 10-6

APPENDICES

A EXTENDED BNF NOTAT ION . A-I

B GENERAL SYNTAX RULES • B-l

)

x
Revision A

~

- —,----

~

-

~

-—. . — .~~~~~~~ -

F

...

~~~~~~~~~~~~~~~~~~~~~~~~ 

“~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — .~~ 
. 

~~- ~~~~~~~~~~~—--~~~~-

TABLE OF CONTENTS (Continued )

Section Titl e Page
C REV S EXECUTIVE S U M M A R Y . . . . . . . . . . . . . . . . , . C - i

C,1 EXEC IJTIVE RCL S Y N T A X . . . . . . . . . . . . . . . . . C — 1
C.2 EXECIJTIVE MESSAGES . . . . . . . . . . . . . C—5

D RSL SUMMARY . . . . . . . . . . . . . .
D.1 RSL SYNTA X . . . . . . . . . a • . • . . D—1
D.2 RSL CONCEPT CROSS-REFERENCE . . . . . . a . . . . . . D 1 3
D.3 DEFINITION OF RSL ELEMENT TYPES, RELATIONSHIPS,

AND ATTRIBUTES . . . . . . . . . . D — 1 5
0.4 SUMMARY OF RSL RELATIONSHIPS AND ATTR IBUTES BY

ELEMENT TYP E . .  0—33
0.5 RSL TRANSLATION DIAGNOSTICS . . .  D—55

— 

E RNETGEN MESSAGES . . . . . . .. . . . . . . E —l

— F R.ADX SUMMARY . . . . . . . .  . .  . . . .  . . . . . . F—i
F.1 R.ADX RCL SYNTAX  . . . ..  F—i
F.2 R.ADX DIAGNOSTIC MESSAGES . . .  . . . . . . 1L9

G SIMGEN SUMMARY 

G.1 SIMGEN RCL SYNTA X . . . . . . . . G — i
G.2 BETA/GAMMA FILE ACCESS SYNTAX  .  . . . . . • . . . G-5
G.3 TEST RECORDING ACCESS SYNTAX  -  . . . . . . . . . G-9
GA SIMGEN DIAGNOSTIC MESSAGES . . . . . . . . G—13

H SIMXQT S U M M A R Y . . . . . . . . . . . . . . . . . . . . . . H — 1
H.1 SIMXQT RCL S Y N T A X . . . . . . . . . . . . . . . . . . H — i
H.2 SIMXQT DIAGNOSTIC MESSAGES . . . . . . . . . . . . . . 11—5
H.3 SIMULATOR PROGRAM D IAGNOSTIC MESSAGES . . . . . . . . H-i

I SIMDA SUMMARY • . . . . . . . . . . . . I—i
I.1 SIMDA RCL SYNTAX . . .. . . . .. . . . . I— 1
1.2 SIMDA DIAGNOSTIC MESSAGES . . . . . . . . 1—5
1.3 SIMULATION POST PROCESSOR D IAGNOSTIC MESSAGES - . . - 1— 7

RSLXTND SUMMARY . . . . . . . . . .. . . . J— 1
J.1 RSL EXTENSION SYNTAX . . . . a a - . . . . . a . . .  -

J.2 RSLXTND DIAGNOSTIC MESSAGES . . . . . . . . - . . . . J—i

REFERENCES . . . . - . . . . . . . . . . . . . R—1
x i

Revision A 

~~~~~~--- ~~~~~-~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-
~~. - —.----— - -- — -

~~
-
~~~~~

LIST OF ILLUSTRATIONS

Fi gure Titl e Page

2—i An Elementary R_NET  . . . . . . a . . • . . 2—4

2—2 Use of AND Nodes ln R_NETs - . . . a a  a s . • . s . .  . . 2—4

2—3 Use of OR Nodes in R_NETs . . . . . . - . . a . . 2—5

2—4 REV S Functional Organization .  . . . . . . . . . . . . . 2-14

3—1 Data Relationship Hierarchies. . . . . a a a . s . . . • 3 9
3—2 Sample R N ET Structure in RSL and Graphical Form . . . . . 3—29
3—3 Illustration of Validation Paths . . . . . . . . . . . . . 3-39

4—i Information Flow of User Inputs. . . . . . • . . . a . . a 4 3
4—2 Nomina l REVS Displa y . . . . . a a . . a . a a . . a a . • 411
4—3 REVS.L OG Example Listlng ... .......... .... 4—1 4

4—4 REVSIOUT Example Listing . . . . . . . . . . . . a a a 416

5—i RNETGEN Displ ay . . . a . - . - a a • . . • . 5 4 4
5—2 Node Dis play Symbols . . . . . . . . . . . a a . . • • 5~49
5—3 CALCOMP Disp lay. a a . . a a . . . . a a . . . a . a • . 5 5 8

6-1 Sample Outpu t From Standard LIST SET Comand . . . . . . . 6—27
6—2 Sample Use of APPEND and LIST Ccmands .  . . . . . . . . 6—29
6-3 Samp1e LIST By MAP .  . . . . . . . .  6—32
6—4 Samp1e LIST By SEQUENCE. . . . . . . . . . .  . . . . . . . 6—33
6—5 Samp1e LIST By GROUP . . . . . . .  . . . . . .  6—35
6—6 Sample LlST RSL Deflni tion . ...  ........ 6—39
6—7 Samp1e LIST RSL SUMMARY. .  . . . .  . . . .  6—40
6—8 Samp1e LIST PERMISSION .. .  . - s

-
s . . . .  6—43

6-9 Sample Analysis Information Network . . . . . . . 6—47
6-10 Sample Partially Rejoining AND-Construct  . . . - . . - . 6—52

7—1 SImula tor Functional Components. . . . . . . . . . . . . . 7—3
7-2 Sample Simul ation Trace Output . . . . * - . . . . - - . . 7—27
7—3 Sample Simulat ion Validation Point 0ut~..t. . . . • • • a 7 2 8

9-1 REVS TI-ASC Job Deck-Sample l . . . . . . . . .  . . . . .  9 10
9—2 REVS TI-ASC Job Deck-Samp le2. . . . . . . . . . . . ..  9-11 

4

x l i i Revision A

~~? ____

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



: 1  LIST OF ILLUSTRATIONS (Continued)

Figure Title Pag~e

C-~ Executive RCL Syntax Diagrams C-3
D—1 RSL Syntax Diagrams D—5
F— i RADX RCL Syntax Diagrams F—4
G-1 SIMGEN RCL Syntax Diagrams G—3

G-2 Syntax Diagrams for BETA/GA~11A FILE Access G-7
G-3 Syntax Diagrams for Recording Access G-ll
H-l SIMXQT RCL Syntax Diagram 11-3
I-i SIMDA RCL Syntax Diagram 1-3
J-l RSL Extension Syntax Diagrams J-4

xlv



_ _ _  ~~—. ~~~~~~ ---.- . -~~~~~~~~~-~~~~-~~~ 
-
~~~~~~-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

-- —~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LIST OF TABLES

Table Titl e Page
6.1 Exampl es of RADX Commands for Requirements Analysis. * - - 6-18
6.2 HIERARCHY Display Summary 6-36

9.1 REVSPREP Macro Parameters 9-4
9.2 REVSXQT Macro Parameters 9-6
9.3 SIMRUN Macro Parameters 9-10
9.4 TESTRUN Macro Parameters 9-12

C.1 Executive RCL Index C-2
D.l RSL Index D-2
D.2 RSL Concept Cross-Reference Chart 0-14
F.l RADX RCL Index F-2
G.l SIMGEN RCL Index G-2
G.2 BETA/GAMMA FILE Access Index G-6
G.3 TEST Recording Access Index G-1O
H.1 SIMXQT RCL Index H-2
1.1 SIMDA RCL Index 1-2
J.l RSL Extension Index J—2

xv

1 .0 INTRODUCTION

This users manual provides the operating Instructions for the Require-
ments Engineering and Validation System (REVS) software and the defini tion
of the Requ irements Statement Language (RSL) which is processed by REVS.

— This software system and langua ge provide unique capabilities to write,
analyze, simulate , and document software requirements . Although they were
designed to meet the need s of Ballistic Missil e Defense (BMD) systems and
other large weapon systems with imbedded real-time software, they are
applicabl e to a broad range of appl ications. RSL and REVS provide a degree
of precision , automa tion , and confidence in software requirements develop-
ment unattaina bl e by conventional means.

This manual is organized into five parts to facilitate use by readers
at all level s of familiarity with the material beyond a basic understanding
of the underlying approac h :

• Part I (Section 2) provides an introduc tory overview of the
software and the language.

• Part II (Section 3)~describes the concepts of RSL .

• Part III (Sections 4 through 8) describes the RSL syntax
and the commands and operating instructions for each of the

- REVS funct ions.

• Part IV (Sections 9 and 10) describes the job control language
and the installation unique characteristics for REVS.

• Part V (Appendices) provides background and reference
material . This material includes an expl anation of the
extended Backus-Naur Form (BNF) used to define language
constructs and various summaries of RSL. The appendices also
contain the syntax of the REVS control language and explana—
tions of REV S messages and diagnostics. This material pro-
vides the quick reference needed by users of RSL who are already
familiar with the underl ying concepts and by users of REVS who
are familiar with the capabilities of each of the REVS functions. -

As with all software users ma nuals , this manual presents the instruc-

tions for using the software and language , but does not contain an explana-

tion of how to apply these capabilities to the development of software

requirements. The eng ineering application of these capabilities is described

in the Software Requirements Engineering Methodology, which is Volume I of

this report.

1 — 1
Revision A

-

L. ~

_ __ ~~~~~~~~~~~~~ -.- -. -I,

2.0 OVERVIEW OF RSL AND REV S

The Requirements Statement Language (RSL) provides the user with the
ability to define software requirements in a form which assures unambiguous
communication of ex plicit, testable requirements . RSL combines the reada-
bility of English wi th the rigor of a computer—readabl e language. The
Requirements Engineering and Validation System (REVS) provides facilities
for translating, storing , analyzing , simulating , and documenting require-
ments written in RSL . Through the use of RSL and REV S, the engineer can
verify the completeness and consistency f a software specification with a
high degree of confidence.

The common practice of organizing software requirements into a
hierarchy of functions , subfunctions , etc., while superficially appealing ,
leads to difficulties in both the expression and verification/validation

• of the requirements. This is due in part to the fact that such an organi-
zation does not fit the basic input-process-output nature of data pro-
cessing , and in part to the fact that a hierarchical tree of arbitrarily
defined “functions ” does not have a sufficiently rigorous mathematical
basis to allow automated analysis of compl eteness and consistency properties
of the resulting specification. To avoid these difficulties , RSL and REVS
are based on the concept of processing flow. Software requirements written
in RSL are formulated in terms of a mathematical network (graph model)
called a Requ irements Network (R-Net). This approach provides several

advantages:

• Describing the required processing in terms of a “logic
diagram ” of the system is natura l to most engineers.

• The mathematical properties of an R-Net allow automated
analysis for consistency and completeness through the
application of graph theory .

• The flow orientation of an R-Net allows automated generation
of simulations direc tly from the stated requirements .

The rema inder of thi s sec tion presen ts an overv i ew of the conc epts
of R-Nets, the concepts of RSL, and the capabilities of REVS.

2-1

- - --- - --- - -

~

~~- - - -~~~~~~~~~—-~~~~~ ~~~~~~
- - -~4

r~
__ -

~~~~

- •

~~~~~~~~~

- - -
--

2.1 REQUIREMENTS NETWORKS (R_NETS)

Fl ows through a system are specified in RSL as Requ irements Networks
called R NETs. R_NET fl ow structures cons i st of nodes whi c h spec ify requi red
process ing opera tions and conn~cting arcs. The basic nodes are INPUT_
INTERFACEs , OUTPUT_INTERFACEs , and required processing activities called
ALPHAs. Through the use of these basic nodes, the required paths of pro-
cessing can be specified . For exampl e, if data is to be input to the data
processor through an INPUT_INTERFACE called A , processed by a processing
step (ALPHA) called B, then processe d by an ALPHA cal led C , and the result
output through an OUTPUT INTERFAC E ca ll ed 0, then the required processing
path can be specified by listing the sequenc e of operations:

INPUT INTERFACE: A

ALPHA : B

ALPHA : C

OUTPUT INTERFACE: 0
—

Thi s simple R_NET is Illustrated graphically in Figure 2-1 .

In the above exampl e, the sequence B-C means that those processing
steps must be performed in the indicated sequence. In many cases, the actual
order of processing is immaterial . This is specified through the use of an
AND node as shown in Figure 2-2. This structure means that both B and C
must be performed after receipt of data through A and before the result is
output through D , but B and C are sequentially independent and may be per-

formed in any order (or in parallel).

Most systems also require the specification of decision (control)
points . Thus , in the above exam pl e, if B is to be performed under some
circumstances (depending on the value of the input data for example) and
C is to be performed otherwise, a decision point ana its attendant decision

criterion must be specified . This Is specified in an R_NET through the use

of an OR node as illustrated in Figure 2-3. The second OR node followi ng

B and C means that processing is to continue (i.e., output result through

0) If processing oh any input branch has been completed .

-. - - .

~

-~~~~~~~~~~~~ - -~~~~~~~~~~ ~~~~~~~~~~
--

~~~ 



-~ -,- -.~ -~~~--~~~~-c -~~-—- ~~~~~~~-“—~~~~~~~~ 

~~

- -
T -

~~~~ ~~~~~~~~~~~~~~~ I

9

~~~~~~~~~~~~~~~~~ INTERFAcE

~~~~~zNG
;

INTERFACE

FIgure 2-1 An Elementary R_NET

E s i I c
I~~~~~~~1

Figure 2-2 Use of AND Nodes in R_NETs

2-4

_ _ 11

~~~~~~

1

Figure 2-3 Use of OR Nodes In R_NETS

Through the use of the three bas ic nodes plus AND and OR nodes ,
complete, complex processing requirements can be readily specified . Other
nodes are provided to specify sel ection of data to be processed (SELECT,
FOR EACH), “test points” for specifyi ng performance requirements (VALIDA-
lION_POINTs ), internal controls (EVENTs), and detailed processing flows
(SUBNET5). These concepts are described in detail in Section 3.

2-5 

- - - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~



— -“

- 
- . - -~~~‘k---- -~-— - - --- -

. /

2.2 REQUIREMENTS STATEMENT LANGUAGE (RSL)

RSL is a machine-readabl e, English-l i ke language for stating software
requirements. The basic structure of RSL is very simpl e and is based on
four primitive language concepts: elements , attributes, relationships , and
structures.

El ements

Elements in RSL correspond roughly to nouns in English. They
are those objects and ideas which the requ irements analyst uses
as building blocks for his description of the system require-
ments. Each element has a uni que name and belongs to one of a
number of classes called element types. Some examples of standard
element types in RSL are ALPHA (the class of functiona l processing
steps), DATA (the class of conce ptual pi eces of data necessar y in
the system), and R_NET (the class of processing flow specifications).

Attributes

Attributes are modifiers of elements somewhat in the manner of
adjectives in English; they formal ize important properties of the
elements. Each attribute has associated with it a set of values
which may be mnemonic names , num bers , or text strings. Each
part icular element may have only one of these values for any
attribute. An exampl e of an attribute is INITIAL_VALUE which Is
applicabl e to elements of type DATA . It has values which specify
what the initial value for the data item must be in the impl emented
software and for simulations.

Relationships

The relationship (or relation ) in RSL may be compared with an English
verb. More properly, it corresponds to the mathematical definition
of a binary relation, a statement of an association of some type
between two elements. The RSL relationship is non—commutative; it
has a subject element and an object element which are distinct.
However, there exists a compl ementary rel ationship for each specified
relationship which is the converse of that specified relationship.
ALPHA INPUTS DATA Is one of the relat ionshtps in RSL; the complementary
relationshi p says that DATA is INPUT to an ALPHA .

2-7



— -~-

Structures

The final RSL primitive is the structure, the RSL representation
of the flow graph . Two distinc t types of structures have been
identified . The first is the R_NET (or SUBNET ) structure. It
identifies the flow through the functional processing steps (ALPHAs)
and is thus used to specify the system response to various stimuli.
The second structure type Is the VALIDATION_PATH, which is used to
specify performance of the system.

Through the use of these four primitive language concepts, a bas ic
requirements language is provided which includes concepts for specifying
process ing flows , data, process ing act ions , and timing and accuracy require-
ments. In addi tion, Informative and descriptive material , and management-
related information may be specified . The concepts of this basel ine
language, consisting of twenty-one element types, twenty—one attributes ,
twenty-three relationships , and two types of structures, are descr ibed
in detail in Section 3. Section 5.1 describes the syntax of the language.

RSL can be extended to include additiona l concepts by defining new
element types, attributes, or relationships . This allows the language to
be tailored to the needs of a specific probl em or project. The explana-
tion of how to extend the language is provided in Section 8.

2-8



-~~ ~~- .—-• ~~~~~~~~~~~~~~~~~~~~~~~~~~ - - 
~~~~~~~

-‘
~~~ 

p.

- - - I

2.3 REQUIREMENTS ENGINEERING AND VALIDATION SYSTEM (REVS)

The Requirements Eng i neering and Validation System (REVS) is an
integrated system of software which aids in the development , maintenance ,
validation , and documentation of software requirements . REVS Is designed
to allow the requirements eng i neer to state and mod ify requirements i nfor-
mation over a period of time as the requirements are developed . The RSL
statements that an engineer inputs to REVS are analyzed , and a representa .

t ion of the information is put into a centralized data base. This data base
is called the Abstract System Semantic Model (ASSM ) because It maintains
Information about the required data processing system (RSL semantics) in an
abstract , relational model . Onc e entered into the ASSM , the requirements are
ava i lable for subsequent ref i nement, extraction , and analysis by the REVS
software.

From a user point of view there are five major functional capabilities
which REVS provides:

• Processing of RSL.

• Interactive generation of Requirements Networks (R_NETs).

• Analysis of requirements and output of requirements in RSL
and/or in specially formatted reports .

• Generation ard execution of functional and analytic simula-
tors from functional requirements and model s or algorithms ,
and the generation and execution of simulation post processors
from analytic performance requirements .

• Processing of extensions to RSL .

REVS and RSL a l low the engi neer to en ter requ i rements into REV S as
they are developed , with REVS accumulating the information in the require-
ments data base and checking for consistency and completeness as new data
is entered . Consequently, although the REVS capabilities may be appl ied
in any order , In o~nera l , the user will initially enter RSL and request
var ious analyser to be performed . New entries will be made and analysis
repeated until the requirements have been developed sufficiently for a

simulation to be meaningful and useful . At that time a simulator and post
processor may be generated . The simulator may then be executed numerous
times and the data recorded and analyzed . Based on the results , this

sequenc e may be repeated , starting with the modification of requirements

2—9 

-~~~~~~~~ - —--- 



already input to REVS or the addition of new ones . The sequence will also
be repeated as system requirements change or new requirements are imposed .
When the user is satisfied that the requirements are correct, based upon the
resul ts of static and dynamic analysis , REVS will document the requirements
in a form directly usable in a software requirements specification .

Each of the major capabilities identified above is allocated to a
different functional component of REVS. The capabilities and the appropriate

— 
functions are described briefly below.

Processing of RSL

The analysis of RSL statements and the establishment of entries In
the ASSM corresponding to the meaning of the statements is performed by the
RSL translation function of REVS (see Section 5.1). The translation function
also processes the modifications and del etions from the data base commanded
by RSL statements spec ifying changes to already—existing entries in the data
base. For all types of input processing , the RSL translation function
references the ASSM to do simpl e consistency checks on the input. This
prevents disastrous errors such as the i ntroduction of an element with the
same name as a previously-existing element or an instance of a relationship
which is tied to an illegal type of element. Besides providing a measure
of protection for the data base , this type of checking catches , at an early
stage, some of the simple types of inconsistencies that are often founa in
requirements specifications , without restricting the order in which the user
adds to or alters the data base.

Interactive Generation of R-Nets

Graphics capabilities to interactively input , modify or display R_NET,
SUBNET, and VALIDATION _PATH structures are provided through the REVS Inter-
active R-Net Generation (RNETGEN) function. RNETGEN permits entry of
structures and referenced elements in a manner parallel to the RSL trans—
lator and thus provides an alternative to the RSL translator for the speci-
fication of the flow portion of the requirements . Using this function , the

user may develop (e ither automatica l ly or under di rec t user control ) a
graphical representation of a structure prev iously entered in RSL . Through
the use of the ASSM , the user may work with either the graphical or RSL -

language representation of a structure ; they are compl ete ly interchangeable.

2-10

A - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~

.
~~~~--



— - 
- -

The Interactive R-Net Generation facility contains full editing capa-
bilities. The user may input a new structure or he may modify one previously
entered. At the conclusion of the editing session , the user may elect to
replace the old structure wi th the modified one. The editing functions pro-
vide means to position, connect, and delete nodes , to move them, to disconnect
them from other nodes and to enter or change their ~ssoc1ated names and
conilientary. The size of a structure is not limited by the screen; zoom-in ,
zoom-out , and scroll functions are provided . Details of the RNETGEN capa-
bilities are presented in Section 5.2.

Analysis and Output of Requirements

The Requirements Ana lysis and Data Extraction (RADX ) function pro-
vides both static flow analysis capabilities and the capabilities of a
general ized extractor system to support both the checking for completeness
and consistency in the requirements specification and the development of
requirements documentation (see Section 6.0).

The static fl ow analysis deals with data flow through the R_NETs . -:
The analys i s uses the R_NET structure in much the same manner that data
flow analyzers for programming languages use the control flow of the pro-
gram to detect deficiencies in the flow of processing and data manipula-
tion stated in the requirements.

The generalized extractor system allows the user to perform additional - -

analysis and to extract information from the ASSM . The user can subset the
elements in the ASSM based on some conditi on (or combi nation of cond iti ons)
and display the el ements of the subset with any appended information he

selects.

Information to be retrieved is identified in terms of RSL concepts .

For exam ple , if the user wants a report listing all DATA elements wh ich are
not INPUT to any ALPHA (processing step), he enters the followi ng commands:

SET A = DATA THAT IS NOT INPUT.
LIST A.

By combining sets in var ious ways, he can detect the absence or presence of
data , trace references on the structures , and analyze interrelations hips

established In the ASSM . In analyz ing user requests and extracting infor-
mation from the ASSM , the extractor system uses the definition of the

2-11 1



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘1

;

language concepts contained in the ASSM . Thus , as RSL i s extended, the
extensions and their use in the requirements are availabl e for extraction.

Generation and Execution of Simulators and Post Processors

The automatic Simulation Generation (SIMGEN) function in REVS ta kes
the ASSM representat ion of the requ i rements of a data process i ng system
and generates from It discrete event simulators of the system. These
simulators are driven by externally generated stimuli ; the baseline system
generates simulators to be driven by a System Environment and Threat
Simulation (SETS) type of driver program which model s the threat, the
system env ironment, and the components of a ballistic missile defense
system external to the data processing system.

Two distinct types of simulators may be generated by REVS. The
first uses functional models of the processing steps and may employ simpli—
ficat ions to simulate the required processing . This type of simulation
serves as a means to validate the overall required flow of processing
against higher level system requirements .

The other type of simulator uses analytic models; I.e., model s that
use algorithms similar to those which will appear in the software to per-
form complex computations . This type of simulation may be used to define
a set of algorithnis which have the desired accuracy and stability . Real-
time feasibility of a system using this algorithm set is not established
for any impl ementation; instead the simulation provides an existence proof
of an analytic solution to the problem . Both types of simulations are used
to check dynamic system interactions .

The SIMGEN function transforms the ASSM representation of the require-
ments into simulation code in the programming language PASCAL . The flow
structure of each R_NET is used to develop a PASCAL procedure whose control
flow impl ements that of the R_NET structure. Each processing step (ALPHA)

on the R_NET becomes a call to a procedure consisting of the model or
algorittmi for the ALPHA . The model s or algorithm s are written in PASCAL .
The data definitions and structure for the simulation are synthesized from
the requirements data elements and their relationshi ps and attr i butes In

the ASSM .

2-1 2

- -

~

~~~~~~~~~~~~~~



‘~~~~~~~~~~i~~ —-rr ~~.~~~~~ - --  --.r -

By automaticall y generating simulators in this manner from the ASSM,
the simulations are insured to match and trace to the requirements. New
simulators can be generated readily as requirements change; all changes
are made to the requirements statements themselves , and are automatically
reflected in the next generation of the simulator .

For analytic simulations , SIMGEN also generates simu lation post pro-
cessors based on the statement of performance requirements in the ASSM .
Data collected from an analytic simulation can be evaluated using the
corresponding post processor to test that the set of algorithms meet the
required accuracies.

Both REV S generated simulators and post processors are accessed for
execution through REV S functions~ the Simulation Execution (SIMX QT) function
for simulators , and the Simulation Data Analys is (SIMDA) function for simu-
lation post processors. The REVS generation and execution of simulators and
post processors Is detailed in Section 7.

Processing Extensions to RSL -

[ An ASSM contains the RSL concepts used to express requirements as
well as the requirements . Extensions and modifications to the concepts
are processed by the RSL Extension translation (RSLXTND) function of REV S
as descr ibed in Section 8. The RSLXTND function is actually performed by
the same software as RSL translation but is accessed separately to control
extensions to the language through a loc k mechanism built into the software.

REVS Organization

The above discussion has identif led seven functions of REVS: RSL,

RNETGEH, RADX , SIMGEN, SIMXQT , SIMDA and RSLXTND. As shown in Figure 2—4,

these functions are under the control of a higher level function, the REVS
Executive. The Executive presents a unified interface between the user

and the different REV S functions . The organization of command inpu t to
REVS and the REVS controls available at the Executive level are described

in Section 4.

2-13
Revision



_ _ _- ~~~~~~~~~~~~—~~ --~--— -

~~~~~~~~~~~~~~

—---

~~

- - _

I-— ~- ? - ~. ~~~~~.~~~I-.
i— _~, ~~~~~~~~

~~~~

U.’
_J _J
.
~~-. ~~~ ,__ I-I. - — — —

I ‘n~~ •-~~~
I ~~8 .. ‘~~ .‘

‘- I-- 0
.r
4-)— w U

I -

r 1
‘U w

—

I ..i
c’J

S.-

‘I,

-I
In (

~ ¶~~~~ico~ . :1_~ —



Installation of REVS operates either from card input (termed off-l ine mode)
or Interactively (termed on-line mode) using the Data Disc Color Graphics
(ANAGRAPH) Display System Terminal . In the on-line mode , all of the functions
described above are available to the user and may be invoked in any order .
In the off-line mode, all functions except RNETGEN may be utilized in any
order. The NRL installation of REVS operates only in the off-line mode.
An explanation of the job control stream required to execute REVS on either
of these ASCs is doctinented in Section 9.~

1REV S wi l l be opera tiona l In Jul y 1977 on a Con trol Data Cor poration (CX)
7600 at the ARC . This machine also Interfaces with the ANAGRAPH terminal .
A supplement to this volume documenting REVS operation on the COC 7600 wIll
be published separately.

2-15



3.0 REQUIREMENTS STATEM ENT LANGUAGE

RSL is a concept-oriented language based on the four primitives of
elements, relationships , attributes , and structures as described in
Section 2. The unit for writing requirements in RSL is the element defini— - -

~

tion. An element definition is very similar to a paragraph in English.
It consists of one or more sentences , the first of which is a topic
sentence. The top ic sentence gi ves the element type and the name of the
element being defined . The other sentences in the definition give the
attr ibutes and values , relationships , and structures pertaining to the
subject element.

The characteristics of structures and the element types, relation-
ships , and attributes currently defined for writing requirements are
presented in this section. The presentation is divided into segments.
Loosel y, a segment consists of a group of el ement types, relationships ,
attributes, and struc tures whi c h ar i se from some underl yi ng issue of
requirements definition. Element definitions con ta inin g concepts from
different segments may be intermixed at wil l .  However , the presentation
of the predefined concepts of the language will be arranged by segments

in order to take advantage of the logical consistency afforded by this
v iew.

Thi s section presents only the concepts of RSL . The syntax for
writing RSL element definitions is provided in Section 5.1.

3—1



- .~~ 
— .- ‘ ,, _. . ,  

~~~~~~~~~~~~~ 
.- --.----.--,_,— .,—-——-—— .—.-.

~~~ 
- _ , _  —__ --~.—_—-----~~ —_— -_

~ .-- - 
— -

- -~~.~~~.._~-...——-__ - -— -. -

3.1 DATA SEGMENT

The concepts in the Data Segment of RSL address the logical relation-
ships among pieces of information and the interactions of thi s information
with the rest of the software system . Since RSL is used to describe
software requirements , not design , the Data Segment concepts address only
logical relationships, not physical ones such as access methods , f ile organi-
zations, etc . The emphasis is on concepts such as hierarchical relationshi ps,
use of data by various system components , and access to data us ing only
properties of that data.

3.1.1 Data and Hierarchies -

The RSL element type DATA is the class of conceptual pieces of infor-
mation necessary In the system and includes the meaning of “datum ” , “da ta
item ”, “da ta set” , and “data ” . DATA may have rather obv ious relationships
with other elements; It may be INPUT to and OUTPUT from ALPHA s (the basic
processing steps stated in requ i remen ts , see Sec t ion 3.2) and RECORDED by
VALIDATION_POINTs (the required software test points , see Section 3.4).

DATA may also be organized into hierarchies using the RSL relationship
INCLUDES between DATA . This simpl e data hierarchy is depicted pictorially
below .

DATA

INCLUDES

The requirements engineer might define A to be DATA and also define B to
be DATA . He might then define DATA C to INCLUDE both DATA A and DATA B.
If he did so, then obtaining C would be exactly equivalent to obtaining
both A and B, and we could say tha t A and B are parts of the hierarchy of C.

DATA C may also be INCLUDED in DATA 0. Thus by the INCLUDES rela-
tlonship,DATA A , B, and C are part of the hierarchy of 0. DATA may be
INCLUDED in other DATA In thi s manner to form any depth of hierarchy as
long as no DATA item is repeated (this would specify a loop In the

hierarchy , which is not meaningful). Clearly, the only DATA which assume

values and are thus required In the real-time software are the DATA c om-
prising the lowest level of a hierarchy (In our exampl e, DATA A and B). The

_ _ _ _  
llIasp

_  ~~~~~~~~~ - - ~~~~~~~~~~~~“



~~iI~~ 
—--

~~

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

DATA at higher level s are simply col l ective names used for clarity and
convenience.

Care should be taken In using INCLUDES in conjunction with other
relationships. Specifically, a rel ations hip between DATA and a par ticular
element should not be repeated at multiple level s of a hierarchy . To
i llus trate us ing our exam ple , if DATA C is INPUT to an ALPHA , the engineer
should not also state that DATA A and B are INPUT to the ALPHA . This
redundant information is unnecessary -- since inputting C means, by the
definiti on of INCLUDES,that A and B are input. Furthermore, the informa-
tion may be misleading and confusing to the reader.

3 .1.2 Fi les

In RSL, DATA does not include any repeating lower level s of DATA ; C
canno t INCLUDE A and n insta nces of B. Instead , this situation is repre-
sented as a DATA item named A and a FILE named D; D CONTAINS instances of

DATA B. An RSL FILE , therefore , i s a more gener al conce pt than a so ftware
file since a FILE also subsumes the concepts of arrays and sequences. The

relationships CONTAINS and INCLUDES form a hierarchy for defining the
cons tituents of a FILE:

F ILE

COSTA INS

DATA

I NCLUD ES

A FILE can CONTAIN any number of DATA; a single DATA , howev er , is
CONTAINED in only one FILE. Each DATA (and its hierarc hy) CONTAINED in a
FILE is repeated in each instance (record) of the FILE. The nu aber of

records in a FILE is not predetermined; instances are entered or removed
by the actions of ALPHAs.

A FILE can be INPUT to an ALPHA , implying that the entire FILE is
accessib le and that one or more instances are retr ieved from the FILE; a
FILE which Is only INPUT may not be altered . The accessing of a ILE can

be either:

3-4

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• ordered (because FILEs are ordered either first-in-first-
out —- the defaul t —- or ORDERED least to greatest on any
one lowest level DATA CONTAINED in the FILE), or

• associativel y (by SELECTIng the instances that meet some
criterion).

A FILE can al so be OUTPUT from an ALPHA ; such specification implies
that data have been added , del eted, or in some way modified . The rel a-
tionships INPUTS and OUTPUTS between anALPHA and DATA CONTAINED in a FILE
specify the particular DATA in the FILE records which are affected . The
details of the FILE access are specified within the description of the
ALPHA . -

A FILE can be RECORDED by a VALIDATION POINT identifying that the
entire FILE is to be made availabl e for validation purposes. The relation-
ship RECORDS between a VALIDATION _POINT and DATA CONTAINED in the FILE
specifies the particular DATA which are to be RECORDED from each record in
the FILE.

3.1 .3 Interfaces and Messages

interfaces exist in real-time software between the data processing
subsystem and other components of the system; these interfaces are re-
flected in two el ement types in RSL. An INPUT_INTERFACE in RSL deno tes an
interface through which DATA is communicated into the data processing sub-
system. An OUTPUT_INTERFACE is one through which DATA is communicated out
of the data processing subsystem. In RSL, each interface CONNECTS the
data processing subsystem to some other SUBSYSTEM . ~- 

-

MESSAGEs are the aggregation of DATA and FILEs that are communicated
as logical units across interfaces. DATA and FILEs MAKE up MESSAGEs; a - -

single DATA or FILE may MAKE several MESSAGEs. A single INPUT_INTERFACE
or OUTPUT_INTERFACE may PASS several different MESSAGEs to or from the —

data processing subsystem. A given MESSAGE may be PASSED through only one

interface. The DATA and FILEs that an INPUT_INTERFACE or OUTPUT_INTERFACE
communicates can be ascertained by reference to the definition of all
MESSAGEs that PASS through the Interface. These relationships , combined
w ith the FILE and DATA hierarchy relationships , form an additiona l

hierarchy for associating information :

3-5



-- - _-- ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
____ -_ -_ ‘-—_ ---.i—,-_-_.- _-,~~_‘ ~~~~~~~~ —.- - 

—
~~~~---.--_-. “ .., ~. 

•1~•~~~ ~~~—~
-:--~~

IuruT INTERFACE
OR

OUTPUT _INTERFACE

PASSES
MESSAGE

MAD E BY
MADE BY

DATA FILE

CONTAINS
INCL UDES

DATA

INCLUDES

An ALPHA on an R_NET path preceding an OUTPUT_INTERFACE FORMS one
of the MESSAGEs which the interface PASSES ; that is , it indica tes which
of the legal MESSAGEs the OUTPUT_INTERFACE will PASS when the path is
traversed and the interface encountered on an invocation of the R NET.

3.1.4 Entity Types and Entity Classes

In real-time control systems the software is generally required to
maintain information about objects external to the data processing system .
Thi s is represented in RSL using entities . One clear examp le of an entity
in a BMD system is an image -- the thing in space which the BMD system
detects , tracks , discriminates , and possibly intercepts . An ALPHA can
CREATE and DESTROY the knowl edge that an instance of an entity belonging
to a particular ENTITY _CLASS exists in the environment.

To refl ect the state of the data processing system ’s knowl edge about

the entity and thus the “status” of the entity , entities belong ing to an
ENTITY _CLASS are subsetted into ENTITY _TYPEs; an ENTITY_CLASS is COMPOSED

of ENTITY _TYPEs. As the data processing system gathers information about
an entity , it may first Identify the entity as being of one ENTITY TYPE ,
and then another . Ins tances of a class of entiti es thus evolve from one
type to another, but instances of one class (e.g., images) can never evolve
into another class (e.g., interceptors). Each ENTITY _TYPE therefore

COMPOSES jus t one ENTITY_CLASS; an ENTITY _CLASS i s COMPOSED of at lea st
one ENTITY_TYPE. An instance belongs to one ENTITY_CLASS after an ALPHA
has CREATED it , and It belongs to the last ENTITY _TYPE (wi thin that CLASS)
to which an ALPHA SET S it. Eventually, an ALPHA DESTROYS the instance.

3-6

- _

--
~

- • ~~~~,-~~~~ -.-~ —~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
L

ASSOC IATED with each ENTITY_CLASS may be DATA and/or FILEs wh ic h
are required to be set up whenever the knowledge about a new instance in
the ENTITY_CLASS Is CREATED by an ALPHA. These DATA and FILEs are main-
tained for the entity Instance through changes to the ENT ITY_TYPE until
the ins tanc e is DESTROYED by an ALPHA .

DATA and FILEs may also be ASSOCIATED with ENTITY_TYPEs. Thus , In

addition to the class ASSOCIATED i nformation , an entity instance may have
different DATA and FILEs ASSOCIATED with it as it changes ENTITY_TYPE.
DATA and FILEs ASSOC IATED with an ENTITY_TYPE may be unique to the type
or coninon to several types compos ing the same ENTITY _CLASS. As an ALPHA
SETS an ENTITY _TYPE for an insta nce, DATA and FILES common to the prev ious
and new ENTITY_TYPE retain their values through the change. These rela-
tionships , combined with INCLUDES and CONTAINS , form the final data related
hierarchy as depicted below:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
OF

ASSOC IATES 
________

_____ 

~/4
’
~SOCIATES 

~~~~~~~~~~~~~~~
FILE

_____ ,~~~~~ ATE~~~
ASS0

~~
ATES

CONTAINS
~~_ 7INCLUDES ~~~~~~~

(FILE) (DATA 1
DATA _____ _____

CONTAINS
INCLUDES

______ I NCLUDES
DATA

INCLUDES
3.1.5 Data and File Uniqueness

As described above, in addition to simpl e DATA hierarchies (DATA

INCLUDES DATA), RSL provides several compl ex hierarchies dealing with DATA :
FILEs , Interfaces and MESSAGEs , and ENTITY _TYPEs and ENTITY _CLASSes. When
DATA and FILEs are INPUT to or OUTPUT from an ALPH A , there mus t be a
unique identification of the DATA and FILEs in order for the specification
to be unambiguous. Consequently, certain conventions should be followed
in writing RSL in order to establ ish this uniqueness.

3:-i

The conventions dealing with the individual constructs have been
stated in the previous sections introducing the related concepts (e.g., a
single DATA item (or its hierarchy) is CONTAINED in only one FILE). in
addition there are conventions which appl y to all of the constructs and
between constructs.

As illustrated in Figure 3—1 , a s imple da ta hierarch y may be used as
a com ponen t of the compl ex hierarchies . To form com plex hierarc hi es the
def ining relat ionshi ps CONTAINS , MADE BY and ASSOC IATES should be used with
onl y two types of DATA :

• simpl e DATA - DATA which neither INCLUDES DATA nor is INCLUDED
in DATA , and

• DATA which forms the top of a hierarchy - DATA whi c h INCL UDES
DATA but which is not itself INCLUDED in DATA .

When DATA of the second type listed above is defined as part of a complex
hierarchy , all of its INCLUDED DATA (to all level s of inclusion) become
part of the hierarchy . The defining relationships are never associated
directl y with DATA at more than one level of inclusion .

In general , DATA may not appear in more than one complex hierarchy .
For exam ple , DATA CONTAINED in a FILE may not al so MAKE a MESSAGE nor may
it be ASSOCIATED with an entity (although the FILE may have either of
these two relationships). The two exceptions to this rule are 1) that DATA
(meaning both types of DATA described above) may MAKE more than one MESSAGE
and 2) that DATA may be ASSOC IATED with several ENTITY_TYPEs provided the
ENTITY TYPEs COMPOSE the same ENTITY CLASS.

The FILE hierarchy is a component of the Interface /MESSAGE and
ENTITY _CLASS /ENTITY TYPE hierarchies. Conventions similar to those for
DATA apply to FILEs . A FILE cannot appear in both an Interface/
MESSAGE hi erarch y and an ENTITY _CLASS /ENTITY _TYPE hierarc hy . A FILE may
MAKE several MESSAGEs . A FILE may be ASSOCIATED with several ENTITY_TYPEs

if the types COMPOSE a s ingle ENTITY_CLASS . F i nally, DATA and FILEs
- -

ASSOC IATED with an ENTITY_CLASS may not also be ASSOCIATED wi th any
ENTITY _TYPEs .

This near a bsolute sepa ration of the names in data defining
hierarchies assures uniqueness of the static DATA definitions . However,

3-8

~~~~~ - - ~~~~~~~ - -~~~_ -~~~~~~~~~~~~~~~~~~~
_ ._ .- -- ~

_ _-
~~~ - - -  _-


_ _ _ - —
-

-

/~~~~~~~~~~FACNs~

~~C.Y~NCLUDES L~~OUTPUT INTER FAC E~~..)

SIMPLE DATA HIERARCHY
MESSAGE

- MAD E BY
MADE BY

C~~~
)

~~7~~~ A !NS
DATA FILE

CONTAINS
DATA

-

INCLUDES
DATA

INCLUDES INCLUDES

FILE HIERARCHY Interface/MESSAGE HIERARCHY

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OF

ASSOCIATES 
_________

ASSOCIATES ENTITY TYPE

FILE DATA 
ASSOCIATES ASSOCIATES

CONTAINS INCLUDES 
______ _____

FILE DATA
DATA

CONTAINS
INCLUDES 

______ INCLUDES
DATA

INCLUDES

ENTITY_CLASS/ENTITY_TYPE HIERARCHY

Figure 3-1 Data Relationship Hierarchies

3-9



_-—
~

-—.--- _—- --_-—--__ ~~~~~~~~~~~~~~~~ 
- ~-“.—.-- ~-~- —~~~~~~ .- --~ - - - -_

•1 -~~

entity instances and records in FILEs are created and destroyed dynamically;
thus , these conventions do not address the identification of particular
insta nces of DATA . The identification of a particular entity instance is
accomplished on the R_NET s (see Sec ti on 3.3); identification of instances
in a FILE is done on the R_NETs and in ALPHA s (see Sections 3.3 and 3.2
respectively).

3.1.6 Locality

DATA and FILEs may have different required accessibilitfes andlifetimes
in the system. The range of accessibility of an item is denoted by the
attribute LOCALITY , which may have values of LOCAL or GLOBAL . Items of DATA
or FILEs which are LOCAL are associated with the R NETs in which they are
used and are unknown outside of these R_NETs . Implicit in this definition
is a concept of permanence: LOCAL DATA exists only during the i nvocation
of the R_NET to which it is LOCAL . It does not exist prior to R_NET ENABLE-

• ment and ceases to exist when the R_NET terminates .

Since ALP HA s whi ch use LOCAL DATA and FILEs may a ppear on more than
one R_NET , It is possibl e for a single DATA i tem or a FILE to be LOCAL to
more than one R NET. These are different instances of the DATA or FILE
which have no relation to each other; they have completely separate existences
which are controlled by the R_NETs in question.

GLOBAL DATA and FILEs are accessibl e by more than one R NET and exist
over a longer period of time tha n an R_NET invocation -- in fact they may
be permanently in the global data base and exist throughout the duration of
the system .

Certain DATA and FILEs have an intrinsic locality . DATA and FILEs
which are ASSOC IATED wi th an ENTITY _TYPE or an ENTITY_CLASS are tied to the
entity instances to which they belong . They are created when the instance
is CREATED and last until the instance is DESTROYED and are thus GLOBAL .
DATA and FILEs which MAKE a MESSAGE are LOCAL. They either are passed to
the R NET from an externa l source at R NET ENABLEment , or are established
during execution of the nets ; they either cease to exist or exit the da ta
processing subsystem when the R_NET terminates .



The l ife time al ternatives are therefor e:

MAKES a MESSAGE

Transient (during invocation of an R_NET )

ASSOC IATED with an ENTITY_TYPE or ENTITY _CLASS

Permanen t (defaul t)

Thus , It Is necessary to assign the LOCALITY attribute only to those LOCAL
DATA and FILEs which do not MAKE a MESSAGE. When assigning LOCALITY to a
FILE it is not necessary to also assign LOCALITY to the l owest level of
DATA CONTAINED in the FILE. However, if the DATA has LOCALITY it must match
that of the FILE.

3.1 .7 Typing and Usage

As descr ibed i n Sec tion 3.3, DATA are used in branching cri teria on

• R_NETs to determine the flow of processing. To understa nd these branching
cr i teria , TYPE information must be provided about the DATA . The attribute
TYPE may have values REAL , INTEGER, BOOLEA N, or ENUMERATION . A DATA item
with TYPE ENUMERATION has values which are denoted by identifiers given in
the RANGE attribute , which Is lega l onl y for DATA Items which are~ enumerated .
An exampl e of the use of the enumerated type follows :

DATA : COLOR .
TYPE : ENUMERATION .
RANGE: “RED , BLUE , YELLOW , GREEN” .

Clearly, for stating requirements the attribute TYPE is assigned to only
simpl e DATA or DATA at the lowest level of a hierarc hy (e.g., simpl e data ,
FILE , Interface/MESSAGE , or ENTITY _CLASS /ENTITY TYPE hierarchy).

TYPE Information must also be provided for simulation purposes . For
simulations , model s of the required processing steps are written. These
models may be either functional model s (termed BETAs) or analytic model s
(termed GAMMAs). An analytic simulation (one which uses GAMMAs) by defini-
tion simulates the lowest level of DATA ~

.- the requirements level. Thus ,
the TYPE attribute is always assigned for gamma simulations as It Is for
requirements -- on either simple DATA or DATA at the lowest level of a
hierarchy.

3-11

- - _~~~~ -- - ~~~~- - — — -~~~~~~~ 4



A functiona l simulation (using BETAs) may employ DATA only part way
down a hi erarchy . That is , the simu l3t ion may use one DATA to re presen t
all or a part of a hierarchy . For exampl e, a beta simulation may use the
DATA POSITION to represent the DATA X , Y , and Z INCL UDED in POSITION . ~~~
in order for the simulation to execute , the TYPE attribute must be assi ç ned
to DATA POSITION .

Qualification of the use of a DATA item in simulation and interpreta-
tion of TYPE is given by the attribute USE . The value of thi s attribute
may be BETA , GAMMA , or ROTH denoting that the DATA item is the lowest l evel
in the data hierarchy which will be used in the corresponding simulation.
The l owest level of DATA must always have either USE GAMMA or USE BOTH.
Thus in our exampl e, DATA POSITION would have USE BETA; DATA X , Y, arid Z
would have USE GAMMA; and DATA POSITION , X , Y , and Z would have specified TYPEs.

3.1.8 Values

In stating software requirements the engineer may specify the attributes
UNITS , MAX IMUM VALUE , MINIM UM_VALUE , INITIAL VAL UE, an d RESOLUTION at the
lowest level in a hierarchy of DATA . The attr ibute UNITS is given separately
to guarantee explicitness and consistency of units between the other
attrthutes. RESOLUTION specifies the required maximum value of the lea st
significant bit for the DATA in units described in the UNITS attribute.

For BETA level simulations , the attributes UNITS, MAXIM UM VALUE ,
MINIMUM _VALUE and INITIAL VALU E may be defined above the lowest level in
the hierarchy for those DATA with USE BETA . These specifications , however ,
are not meaningful as software requirements. -

Clearly the assigned values of the attributes INITIAL_VALUE , MINIMU M
VALUE , and MAX IMUM _VALUE should be consistent with the TYPE of the DATA .
They should have appropriate numeric values if the TYPE is REAL or INTEGER .
For DATA of TYPE ENUMERATION or BOOLEA N, only INITIAL_VALUE is meaningful .
For enumerated DATA , INITIAL _VALUE should be assigned a value identified as

legal in the RANGE attr ibute . For DATA of TYPE BOOLEAN, It shoul d have the
value TRUE or FALSE.

3.1.9 Summary of Data Segment Concepts

The element types, rel ationshi ps , and attributes defined below constitute
the Data Segment:

3-12 

~~~~~~ -


-

ELEMENT TYPES

ELEMEN TITYPE . DATA
(* A SINGLE PIECE OP IN PORMA T !ON OR s~ ~F

INFORMATION T HAT IS E ITHER REQUIR ED IN THE
IMP LEME NT ED SO F TWARE OR IS NEEDED FOR
DE SCR IPTIV E PURP OSES , e) ,

CLEMEN TITYPE, EN TITY CLAS S
(* A GENERAL CAT EG ORY OF OBJECTS OUT SIDE T HE DATA

PR OCESSING SUBSYSTEM , THE OB JECT S M AY BE REAL .
OR PERCEIVED AND ARE THOSE IN THE ENVI RONM ENT
ABOUT WHICH THE DATA PROCESSING SUBSYSTEM MUST
MAINTAIN INFORMATION . FOR EXAMP LE , AN
ENTITY _CLASS M IGHT BE TAR GE T OR IN TERCE PTOR .
WH EN THE EXISTENCE OF AN OB JECT IN AN
ENTIT Y_CLASS IS DETERMINED . FILES AND DA TA MAY
BE TEMPORARI LY CREATED TO MAINTAI N INFORMAT ION
ABOUT IT, *),

ZLEMENTITYPE$ (NTITY TVPE
(0 A SLJB5ET W ITH IN A GENERA L CLASS (ENTITY _CL ASS)

OP OBJECTS OUTSIDE THE DATA PROCESSING
SUBSYSTEM ABO UT WH ICH THE DATA PROCESSO R MUST
MA INTAIN INFORMA TION . FO R EXAMPLE ,
ENT ITY _ TY P ES W ITHI N THE EN T ITY _ CLA SS TAR GE T
M IGH T BE DETE CTI ON, PO TENT IA LLY , NON .
THREATENING, THR EA TENING , ETC . WHE N A
PARTI CUL AR OBJ E C T IN AN ENTIT Y _ CLA SS IS
DETE RMINED TO SE OP A SPECIFIC Ty pE , THE
OBJECT CAN BE 3E7 TO TH E TYPE AND DATA AND
FILES PERTINEN T TO OBJECTS OF THAy TY PE
TEMPORARILY CREATED TO MA I N TAIN INF O RM ATI O N
AB OUT THE OBJE CT , *),

ELEM EN T~ TYP EI F ILE
(* AM AGGR E GA TI ON OF INSTANC ES OF DA TA, EACH

INSTA N CE O~ WH ICH IS TREAT ED IN THE SAME
M ANNER . e),

ELEM EN TWT YPE t IN PUT !NTERFA CE
(* A PORT BETWEEN THE DATA PReCESSING SUBSYSTEM

AND ANOT HER SUBSYSTEM (E.G.. A RADAR) THROUGH
WHICH DATA IS PASSED TO THE DATA PROCESSING
SUB$Y~ T EM. AN INPUT_INTERFACE AP PEARS AS THE
FIRST NOD E OF ONE AND ONLY ONE R_ NET

STRUCTURE. 0) ,

~T RU~~TUR (A P P L IC A B X L I T ’1I N E T ,

ELEM ENT~~tYPE , ME SSAGE
(0 AN AGGREGATIO N OF DATA AN D FILES THAT PA SS

THR OU GH A N INT(R FAC E A S A L O GICA L UN IT , 0) ,

3— 13


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

ELEMEN TVY PEI OUTPUT~~XNTERF ACE -

Co A PORT BETW EEN THE DAT A PROCE SS INp SUBSYSTEM
AND ANOT HER PART OF THE SYsTEM (E.G., A RADAR ),
THR OUGH WH ICH DATA IS PASSED TO THE OTHER
SUBSY STEM . AN OUTPUT :INTER FAC E MA Y APPEAR ON
AN R_ NET OR SUBM E ? STRUCTUR E AS THE LAST NODE
OF A PATH . a)~STRU C TUR E A PPLICAB IL ITY, NET ,

ELEM EN T~ TYPE$ SUB SYSTEM
(* A PART OF THE sYST EM (E.G .. A RAD AR ) W HICH

COMMUNICATES WITH THE DA TA PROCE SSING
SUBSYSTEM . °) .

RELATIONSHI PS

RE LA TI ON SH IP I ASSOCIAT ES
Ce IDENTIF IES WH IC H DATA AND FILES COME INTO

EXISTENCE WHEN A DAT A PRO CE SSING sTEP (AN
A L PHA ) EITHER CREATES AN INST ANCE OF AN
ENTITY _CLASS OR SETS THE ENTITY _ TYPE OF AN
INSTANCE OF A N ENT ITY _ CLAS s . DATA AND FILES
CAM BE ASSOCIATED W ITH ONLY ONE ENTIT Y _CLASS ,
DATA A N D F ILES MAY BE ASSO C IA TED WI TH SEVER A L
ENTITY _ TYPES PRO V IDED THE EN TITY _ T Y P E S
CO MPO SE THE SAME EN TI TY CLA SS . DA TA AND FILES
THAT A RE ASSOC IA TED WI TH AN EN T ITY TYPE OR

• ENTITY _ CLASS MA Y NOT A L SO M AKE A M ESSAGE . DATA
THAT IS ASSOCIAT ED W ITH AN EN T ITYVT YP E OR
ENT ITY _ CLASS M AY NOT A LSO BE CON TAI N ED IN A
PILE . 0 )~~

CO MP L EMENT A RY R ELA TI ONS H IP , ASSOCIATED ~N W ITH~ )
’.

SUBJECT £LEMEN 1’. TY PE I (NTITY ~ CLASS
ENTIT Y~TYPE.

OBJECT ELEME NT TYPE s DATA
FILE .

RELA T !ONS H IP I COMPO SES
(0  IDENTIFIE S TO WHICH ENT I .’TYNCLASS AN ENT! ,Y :TYPE

BEL ON GS . AN EN T IT~ _ TYPE C OMPOSES ON LY ONE
ENTIT Y _ CLASS 1 AN ENTITY CLASS IS COM POSED OF AT
LEAST ONE ENT ITY _ TYPE, 0) ,

COMP LEME NT A RY RE LA T I ON SH IP I COMP OSED (“OF ”).
SUBJECT ELEMENT _ TYPE . EN T ITY .~TYPE ,
OBJECT ELEMENT_ TYPES CNT ITY . CLA SS .

BEST AVAILABLE COPY
£ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-
~~
-- -

~~~~~~~ -—~~~~~ 
- -•-

~~~~~~~ ~~~~~- 
.

-~~~~ -

RELATIO NSHIP. CONNE CTS (“TO”)
Ce IDENTIFIES W ITH WHICH 3UO5~ST E M T HE

INPU T~ INTERP A CE OR OU TPU T~ IN TERFA CE
C O M M U N I C A T E S , AN INTERFA CE CONN ECTS TO ONLY

- 
ONE SUBSYS TEM . e),

C O M P L E M E N T A R Y  RE LATIONSHIPS CONNECTE D (uyO”),
SUBJECT ELEMEP4T TYPEs INpUT :INTERFAcE

OUTPUTjINTERFACE I
OBJE CT ELEMENT _ TYPE S SUBSYSTEM .

REL ATIONSHIPS CONTAINS
(o I D E N T I F I E S  T HE M E M B E R S  OF EACH IN S TANCE IN A

FILE . DATA M AY BE CONTA INE D IN Owi .Y ONE FILE .
DATA THAT IS CO NTA INED IN A F ILE M AY NOT A L SO
M AKE A MES SAG E NOR MA Y  IT BE ASSO CIATED W ITH AN
ENTIT Y_ CLA SS OR ENTITY :TYpi . *) ,

COM PLEMENT A RY P’LAT I ONSPII p, C ONTAINE D CN IN ” ) .
SUBJECT Ei,EME~. TyPEs FILE .
OB JECT ELEMENT _ TYPE S DATA .

RELATIO N SHIP, CREATES
CO INDICA TES THAT T Il E A L PHA CREATES A N INSTA NCE OF

THE ENTITY CLASSC ES ). CR EA TION Op A N E N T I T Y
INS TAN CE IN A CLASS OCCUR S IMMED IAT E L Y AT THE
BEGIN NI NG OF AN ALPHA WH IC H CREA TE S THE
ENTITY _CLASS . ONLY ONE NEw ENT IT y INST AN CE IS
CRE ATED . *3,

COMP LEM ENT A RY RE LAT ION S I 4IPI CREATED (“BY”) .
SUBJEC T ELEMENT _TYPE S ALPHA 1
OBJE cT ELEMENT _ TYPE , ENT ITY ..~CLA5S .

RELAT IONS HIP, DESTR OYS
(* INDICA TE S T H AT THE A L PHA DE STROYS AN INS TANCE

(THE CURRENT LY SELECTED ONE ) OF THE
ENTITY_CLASS(ES). IDENT IFICATI ON OF THE
INSTANCE IS PERFORME D BY A SELECT OR FOR EACH
NODE ON A NET WORK , DESTR UC TION OF THE INSTANCE
OCCU R S IM M E D IA TEL Y BEFORE COM PLET ION OF

- 
PROCESSI N G IN THE ALP H A, .~~,COM P LEMEN TARY RE LATI ON SHIP , DESTR OYED (~~ Y”),

SUBJECT ELEMEN T .TYPE I ALPH A *OBJECT ELEME NT _ TYPES EN T ITY ....CLASS .

RELAT IONS HIP . FORMS
(* INDICA TES THAT THE ALPHA E STAB LISHE S THE

M ESSAGE AS THE ONE TO BE PASSED B y THE
CORRESPONDI NG OUT PUT .INTER FA CE (THE
OUTPU T _ INTERFACE WHICH PASSES THE MESSAGE)
WH EN THAT INT ER FACE IS EN COUNTERE D ON THE NET,
AN A LP HA M AY FO R M  SEVERAL MESSA GE S PROVI DED
THEY ARE PASSED BY DI FFER EN T
OUTPUT _ INT ERFA CES . e~,

COMP L EMENT A RY RE LA T IONSHIP S FORMED C”BY” ~~,
SUB JEC T EL EM ENT _ TYPE S A LPHA,
ODJE eT ELEMEN T_ TYP ES ME SSAG E .

3— 15



- ~~~~~ •~—~~--•—— -— .
~ ---— —~~ -~~-— ~•——-•.• - — __

~
•__•___7’•_ —- -

~
-•- -

~

RELATIO NSHIP, INCLUDES
Co INDICA TES A H IERARCH ICAL RELATIONSHIP BETWEEN

DATA, IF A INCLUDES B, THEN O BTA yNI N G A WILL
OBTA IN B , *),

COMP L EMENT A RY RELA TIONSHIP , IN CLUDED (“IN ”),
SUBJECT ELEMENT _ TYPE S DAT A ,
OBJECT ELE ME NT_ TYPEI DATA ,

RELA TION SH IP I INPUTS
(* IDENT IF IE S THE DATA AND FILES USED BY THE

ALPHA~. a) .
COMP LEMEN TARY RE LATIONSHIPS INPUT C”TO” ),
SUB JECT ELEMENT _ TYPE S A LP HA .
OB JECT ELEMENT _ TYPE S DATA

FILE .

RELATION SHIP . MAK E S
Ca IND ICA TES THAT THE DAT A OR FILE Is A LOG ICAL

COMPONENT OF THE MESS AGE , A DATA OR FILE MAY
M AKE SEVERAL MESSAGES , DA TA AND FILE S THAT
MA K E A M E SSAG E MAY NOT ALS O BE AS SOCIATED WITH
AM EN T ITY TYPE OR ENTITY :cLA sS , DA TA THA T
MA KES A MESSA GE MAY NOT AL SO BE C ONTAINED IN A
FILE , *3 ,

COMP LEM ENT A RY RELATIONSHIP S MADE (“BY”),
SUBJEC T ELEME NT ..TYPE, DATA

FIL E ,
OBJE CT ELEMENT _ TYPE S MESSAGE ,

RELATIONSHIP , ORDE RS
(* INDIC A TES THAT THE VA LUE or THE DAT A IS USED TO

ORDER THE INSTA N CE % OF THE FILE, A FILE MAY BE
ORDER ED BY ON LY ONE DATA, THE DAT A MAY NO T
INCLUDE OTHER DATA AND SHOULD BE CONTAI N E D IN
THE FILE , * ) ,

COM P LEMENTARY RE LATI ONSHIPS ORDERE D (“BY”),
SUBJECT ELEM ENT _ TYPE . DATA ,
OBJECT ELEMENT _ TYPE S FILE.

RELATIO NS HI P S OU TPUTS
(a IDENT IF IE S THE DATA AN D FILES WHO SE VA LUES OR

CONTENTS ARE M ODIFIED BY THE ALPHa , e) ,
COMPLEMENTARY RELATIONSHIP, OUTPUT (“FROM ”),
SUBJEC T E LEME NT _ TYPE S A L PHA .
OBJECT ELEMENT _ TYPE , DAT A

FILE .

R tLA T ION SH IP I PAS SES
(0 IDENT IF IES THE LOG ICAL UN I~ S OF INF ORM ATION

WH ICH ARE PA S 3ED THROUGH THE INTER FA CE , AN
INTE R FACE M AY PASS SEVERA L M E SSAGE3S A GIVEN
M ESS A GE MA Y BE PASSED THROUGH ONLy ONE
IN TERFACE. 0) ,

COMP L EMEN TARY RE LATIONSHIP , PASSED (“THROUGH”),
SUBJE CT ELEMENT :TYpE , INPU T IN TER FAC E

O U T P U T~ INTER F A CE ,
OB JEê T ELE MENT _ TYPE, MESSAGE ,

3-16

- - - -  -~~~~- - -  -~~-~~ - - - •  -~~~



_ _ _  —

~

, j
NELA ?IGNSP4!PI RECORDS

(e IDENTIFIES THE PARTI CULAR Q A T A AN D FILES WHICH
A R E T O BE MAD E AVAILAB L E AT THE
VA L ID ATI ON _ POI NT FOR PE R FO RMA N C E
EVA LUA T I O N , 0) ,

COMP LEME N TA R Y REL 4TI~ N SHIp~ REC O RDED (“BY ”),
SUBJECT (LEMENT TYPE, VA L I D A T I O N POIN T .
O5JE~ T ELEMENT _ TYPE . D ATA

FILE ,

RELAT IONSHIP , SETS
(a P4DICATES THAT THE ALPHA ESTABLISHES AN

I~ STAI .SCE (THE CURRENTLY SELECTED ONE) OF AN
ENTI TY _CL ASS TO BE OF THE ENT ITY yyP E ,
IDENT IF IC TI ON OF T HE INST * NCE IS PERFORM ED BY
A SELrCT ~~~l FM R EA C H “~ODE ~N A NE T WOR K . AN
A L P 4 A  M A Y  SU SE~ ER& L ~~~!T Y _ T Y P ES P R OV I DED THE
E~~TITv TYPES DO N~ T C~~M P O S E THE SAME
E N T I T y _C L A S S , T I E  S F T T I ~rn OF AN E M T I T ~’_ TY P E
~CCU P5 P~M E r I A T E L ~ ~~.I A ! ”  AL PHA SUR SE QU EN T TO
A ’4Y E N 1 ’ I T l  C~ E 4 T I O - ’13. a ) ,

COMP LEMENTA RY RELA T I~~4S’iIP~ SE T (~!~3Y ~~) ,
SU dJE CT ELEMEN T . TYP E I A L PHA 1
OB JE cT ELEME NT _ TY PES EN T ITY _ TYI’E ,

A TTRIBUTES

A T T RI b UT ES INIT IA L. VA LUE
(a TH E INI T IA L VALUE A DATA ITEM IS REQuIRED TO HAVE

IN THE IM PL EM EN TED SOFT WARE , THIS VALU E WI LL BE
AS SUMED BY THE DAT A ITEM WHEN IT CO M ES INTO
EXISTENCE IN A S I M U L A T I O N , *)~,

APP L jCABLE EIIIEMENT TY P E$  DAT A .
VA LUE , NAM ED ,
V A LUE , NUM ERIC .

A T TR IBU TES LO CAL ITY
(a THE ACC ES3IBILITY AND LIFETIME OF A DATA OR

PILE . •)~APPLICABLE ELEM ENT ....TYPE , DATA
FILE.

VA LUr S GLO BA L
(a GLOB A L DAT A A ND F I L E S  ARE A CCESS IBLE Bv M ORE THAN

ONE R. NET AND MAY EXI ST THROUGH OUT EXE CU T ION OF THE
SY S TE M 1 DATA AND FI LES WHI C H ARE ASSO C IAT E D WITH AN
ENTITY _ TYP E OR AN ENTIT Y C LAS s A R E BY D E F IN IT IO N
GLO BAL . a),

VALU E S L O CA L
(0 LOCA L DA TA AND F ILES A R E ASSOC IA TED W ITH THE R~ NET$

IN WH ICH THEY ARE USED AND EX IST ON LY DUR ING THE
INVOCAT ION OF THE RJNET TO WHICH THEY ARE LOCAL.
DATA AND FILES WH ICH MAKE A MESSAGE AR E BY
DE F INIT ION LOC A L. a) ,

3— 17



- -—--

~~~~~~~~~~~~~~ ~~~TT~~~ ~~~~ ~~~~~~~

A TTR IBUT E , MAX !M UM V A L U E
(a THE M AXIMU M VA L UE A DATA ITEM MAY ASSUME. THE

VALUE IS IN THE UNIT S STATED IN THE UNITS
ATTRIBUT E A N D SHOULD BE CONS ISTENT W IT H THE TYPE OP
THE DATA , a) ,

APP LICABLE ELIMENT TYP E, DA TA .
VA LUE S NUM ERIC,

A f TR IBUI ’t$ M INIM U M V A LU E
(a THE MIN IMUM VALUE A DATA ITEM MAY ASSUME, THE

VALUE IS IN THE UNITS STA TED ~N THE UNITS
ATTR IBUTE AND SHOULD BE CONSISTENT WITh THE TYPE OP
THE DATA , a) ,

APP LIC AB LE ELE M ENT _ TYPE , DAT A.
VA LU E , N UM E RIC,

A y TRIBU TEI RA NGE
(a THE NAME D VALUES THAT CAM BE ASSUMED BY A DATA WITH

TYPE ENUMERATI ON , a),
APP L iCABL E ELEM EN T .TYPEI DA TA.
VALUE , TEXT
(a THE A L L oW ED VA L UES A RE SEPARATED BY COM M AS , 0) ,

AtTRIBUiE 4 RESOLUTION
(a DESCRIBES THE REQUIRED MAXIMUM VALUE OF THE LEAST

SIGNIFICANT BIT FOR THE DATA 7N UNITS SPECIFIED IN
THE UNITS ATTRI BUTE , a),

APP L ICABLE ELCM !NT TVPE i DAT A.
VA LUE S NUM E RIC,

A TTRIB UT E, TYPE -(a THE TYPE FOR A DATA ITEM WHI CH IS E ITHER
REFERENCED ON AN R NET OR SUBNET OR 9 USED IN A
BETA OR GAMMA SIMULAT ION , a),,

APPIII~ CABLE ELEMENT TYPES DATA ,
VA LUES REAL .
VA LUE S E N UME RATION

(a THE DATA ITEM CAN ASSUME ONLY CERTA IN VALU ES
WHICH ARE NAMES , THE ALLOWED VALU ES FoR THE DATA
h E M AR E SPECIFIED IN THE RANG E ATTR IBUTE , a),

VALUE, BOOLEAN ,
VALU E S INT EGER ,

A TTRIBUTE S UNITS
(a THE ENGI NEE RING UNITS OF THE yA LUE Op A DATA ITEM

OR THE UNITS IN WHICH ‘THE MA XI M UM TIME AND/OR
MIM IMUPI_YIME FOR A VAL IDAT IOP4~PATM ARE

- SPECIFIED , a),
APP LICABLE ELEMENT TYPES DATA

V A L I D A T I O N _ PAT H .
VALU E S NAM ED

FOR INDIVI DU AL PRO JECT S IT MAY ~E DES I pABLE TO
RE STRICT THE UN ITS WH ICH CAN BE USED. IN THAT CASE ,
NA MED SHOULD BC REP LACED BY THE SPECIF IC LEGAL
V A LU E NAME S. a),

-~~~~~~

r~~~ ~~~
-

~~~~~~~~~

A T TN IBU iES USE
(a QUAL IFIES THE USC OF A DATA ITEM IN

SIM ULATI ON , a),
AP PLjCA SLE ELLMEN T.TYPE$ DATA,
VALU E , BE TA

Ce THE DATA ITEM IS TO BE USED IN pUNCTIONAL
- SIMULAT IONS ONLY. 0 ),

VA LU E S GAM MA
(a THE DATA It-EM IS TO APPEAR IN AN A LYTIC

SIMULAT ION S ONLY , a),
VA LUE , BOTH

(a THE DATA ITEM IS TO BE USED IN ROTH FUNCTIONAL AND
ANA LYT iC SIMULATIO NS, • ) ,

3-19

~ 

~~~~~ - -- -


- - ~~~~~~~~~~~~~~~~~~
-

——-— -— —--fl- - — - — —. -
-II LU J~~~ L~J ~II ~-_

~~~~~~~~~~~~~~~ rr . , - . - -... _ W .
~~~~ _—_-.~ —--~ ~~~~~‘ ‘~~~~ $ - -~~ - - ~~~~~~~~~~~~~~~~~~~ - -

3.2 ALPHA SEGMENT

The basic processing steps In the description of a set of functiona’
requirements are embodied In the RSL element type ALPHA . The neutral name
“ALPHA” is used in order to avoid any implication of a software implemen-
tation function (such as interrupt handling). ALPHA s are data processing
system requirements which may need to be implemented in several parts of
the data processing system for the sake of reliabilit y, because of the
need for separabi lity, or due to the prior existence of code.

3.2.1 Executable Descriptions

Within the ALPHA the actual requirement is represented for simula-
tion purposes with an “executable description ” , called a BETA or GAMMA .
The alternatives under investigation might be gross—l evel functional
model s of an ALPHA being evaluated with a functional simulation; these
functional models are called BETAs. The alternatives might al so involve
detailed analytic model s or algorithms in an analytic “test-bed ” being
evaluated with an analytic emulation; these latter model s are called
GAMMAs.

The BETA and GAMMA executable descriptions are written In the PDL 2
or PASCAL1 language. The executable descriptions look like PASCAL pro-
cedures with omission of the procedure heading and with augmenting statements
for that part of the requirement representing access to data hi erarchies.
All of the normal PASCAL progranliling features and facilities are available ,
except that all data that is not strictl y local to a BETA or GAMMA must be

declared via the RSL Data Segment (see Section 3.1). The REV S Simulation
Genera tion funct ion processes these executa ble descr ipt ions to produce
standard PASCAL procedures for incorporation into the BETA or GAMMA simu -
lation .

3.2.2 Referencing Data

Coninunication between BETAs or GAMMA s of several ALPHAs during simu-
lation is via the DATA described in the Data Segment (see Section 3.1). No

1 The Texas Instruments Process Design Language (PDL 2) (1] is a PASCAL—
based language supported on the TI ASC machines at the ARC and at NRL .
PDL 2 extends standard PASCAL (2] . On CDC installations of REV S, only
standard PASCAL will be available.

3.21
-
‘

~~~~~~~~~ PA~~ ~O7



nw’.. -- —~~ - - -‘.r ,~~~~ -~ - -- —~w’. ~~~~~~~~~~~~~~~~~~~~~ 
- r.c -~~~~~- r

direct co~miunication outside these defined DATA Is allowed , or the
executable code in the simulation would rapidly grow apart from the speci-
fled requirements . Since a simulation will either be a beta or a gamma,
communication between a BETA and a GAMMA is not meaningful .

As described in the Data Segment, an ALPHA INPUTS and OUTPUTS DATA
specifying the DATA which is used or generated by the ALPHA . - These rela-
tionshi ps reflect the processing required of the ALPHA and thus , to ensure
that the simulations refl ect the requi rements , remain valid fOr both BETAs
and GAMMAs. This means, for example , that if an ALPHA INPUTS DATA A and
B, then A and B are used in both the BETA and GAMMA executable descriptions.
In many cases it may be necessary In a functional simulation for the BETA to
use a representatron of A and B rather than the actual DATA Items. Thi s is
accomplished by us ing a data hierarchy. Another DATA item, say DATA C, is
defined which INCLUDES DATA A and B and which has USE BETA and an
appropriate TYPE. It is then specified that the ALPHA INPUTS DATA C rather
than DATA A and B. This means the same thing in a requirements sense as
inputting A and B (s ince obtaining DATA C obtains DATA A and B), but in a
functional simulation DATA A and B will not actually exist as var iables
but will be represented by a single item C.

DATA specified in RSL are represented in simula tions as var iables of
the types assigned by the RSL attribute TYPE. Thus, reference to DATA from
wi thi n a BETA or GAMMA is via the RSL name of the element cons istent with
the ordinary PASCAL reference conventions .

3.2.3 AccessIng Fi les

FILEs cons i st of mul tiple instances of their constituent parts . In
the executabl e code of the BETA and GAMMA, the analyst must be abl e to
specify clearly which instance he wishes to deal with. Further, he must
be abl e to create and destroy instances in a FILE. To accomplish these
manipulations , special operators have been made ava i la ble to be used In
writing the BETAs and GAMMAs. These operators are processed by the Simu-
la tlon Generation function to generate executable PASCAL code. These
extensions are described below; their syntax and more details are given
in Section 7.1.1.

The four special operators are CREATE, SELECT, FOR EACH, and
DESTROY. The CREATE and DESTROY statements both specify a FILE name.

3—22 



— -,-‘-- —- -— — — — — r

The CREATE statement designates that a new instance (record) is to be added
to the FILE. The DESTROY statement designates that the currently SELECTed
record for the FILE is to be destroyed. The SELECT Involves the selection
of desired Instances in a FILE by the appl ication of a subsetting condition ,
and further selection within this subset by a FIRST or NEXT criterion to
un iquel y identify an instance.

To expla in the operation of the FILE SELECT , one may v isual ize the
FILE as an ordered assemblage with a pointer which may be moved . The
SELECT statement first causes repositioning of the pointer: to the first
instance if the statement is a SELECT FIRST; or to the one following the
current pointer position for a SELECT NEXT. The condition (selection
-:riterion) is then evaluated using the DATA CONTAINED in the instance
designated by the pointer . If the expression evaluates to TRUE, the SELECT
has found the desired instance. Otherwise the pointer is moved to the
next instance and the process repeated . If the condition is omitted , an
instance will be SELECTed by positioning of the pointer only.

The search does not go end-around , it terminates when the last instance ,
as defined by the FILE ordering , i s reached . The predef ined LOCA L DATA item
RECORD_FOUND is set to TRUE if an instance is SELECTed and is set to FALSE if
an instance is not found .

After a particular record of a FILE has been SELECTed, all references
to DATA CONTAINED in the FILE are assumed to refer to the instance of that

DATA in the SELECTed record . Of course , another SELECTion on the FILE will change
the Instance that is assumed for all references . The SELECTed record in a FILE

remains SELECTed until a new SELECTion is made, even though the processing

fl ow may have passed from one ALPHA to another . The SELECTion is local
to an R NET ; no FILE instances are SELECTed on the invocation of an R_NET .

The CREATE and DESTROY accomplish implicit SELECTIon . After a CREATE,

the newly created record is SELECT.~. The DESTROY destroys the currently

SELECTed record and does not SELEC’r another record .

The final FILE operator , thE FOR EACH , allows the application of
processing repeatedly to several instances in a FILE. The FOR EACH specifies

a cond ition and the FILE name , a bloc k of PASCAL code to be executed for
records meeting the criterion , and an ENDFOREACH symbol . The embedded

PASCAL code will be executed for each record meeting the selection criterion .

3—23 



The FOR EACH searches through the FILE from first to last just as if a
SELECT FIRST followed by SELECT NEXTs had been wr itten. If no instances
are found the embedded code is never executed . Since the FOR EACH
cycles through all records in the FILE , there is no instance SELECTed
after completion of the FOR EACH. FOR EACHs may be nested wi thout affect—
ing the operation of any of the FOR EACHs.

3.2.4 Accessing Entities

ENTITY CLASSes , like FILEs , consist of multipl e instances. Instances
to be processed must be cl early specified . This is accomplished by
SELECTion and FOR EACH operations on the Requirements Networks and is
described in Section 3.3.

3.2.5 Operations on Entities and Messages

The RSL rel ati ons hip s CREATES , DESTROYS and SETS are between ALPHA s
and ENTITY CLASSes and ENTITY TYPEs. They indicate that an ALPHA determines
the ex i stence of an instance in an ENTITY_CLASS (CREATES and DESTROYS ) and
its spec if ic ENTITY_TYPE (SETS). The relationship FORMS between an ALPHA
and a MESSAGE indicates that the ALPHA designates tha t the MESSAGE will be
PASSED by the appropriate OUTPUT_INTERFACE when the interface is encountered
subsequently on the net.

To ensure consistent representation of the requirements in a simula-
tion , code representing these actions is automatically inserted in an
ALPHA ’ s exec utabl e description (BETA or GAMMA ) when a simulation is
generated. CREATES and SETS are performed immediatel y in the BETA or
GAMMA -- the CREATES being performed first. DESTROYS and FORMS are per-
formed immediately before exiting a BETA or GAMMA after any user specified
code.

3.2.6 Summary of Al pha Segment Concepts

The el ement type and attributes defined below constitute the Al pha

Segmen t:

3-24 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


ELEMENT TYPE

ELEMENT~~TVPE , A L PHA
(a A BASIC PROCESSING STEP IN THE FUwCT IONAL

REQU IREMENTS , a) .
STRU C TUR E AP PLICABIL ITY , NE T ,

ATTRIBUTES

A iTRI BU jE, BETA
Ce THE PROCEDURAL CODE (PASCAL) FOR FUNCT IONALLY

MODELING THE PROCESSING STEP . THE CODE IS NOT
PROCESSED BY TPIE RSL TRAN SLAT O R BUT rS PROCESSED
BY THE SIMULATION GENERATION FUNCTION AND THE
COMP ILER . A BETA MAY USE THE SPECIAL CREATE,
DE STROY , SELECT AND FOR EACH O PE RATI ONS ON
FILES . *~~ ,

APP L ICAB LE ELEM ENT 2TYPE~ A L PHA .
VALU E , TEXT .

A y TR IBUy E , G A M M A
Ce ‘THE PRO CEDU RA L CODE (PASC A L) FOR ANA LY T IC AL LY

MOD ELING A PROC ESSING STEP , THE CO DE IS NOT
PROCE SSED BY IME RSL TRAN SLAT OR BUT iS PROCESSED BY
THE SIMULATION GENERAT ION FUNCTION AND THE
CO MPILER . A GAMMA MAY USE THE SPECIAL CREATE,
DESTR OY , SELECT AND FOR EACH OPERAT IONS ON

- FILES . *~~ .
APP LI CAB LE ELE M ENT T YPE$ A L PHA .
VALU E s TEXT.

3-25

,,
~~~~~ --“——— 

- ..~~ ..—--- --—---- - . - 

-

3.3 REQUIREMENTS NETWORK SEGMENT

The specification of the flow of processing steps in RSL is called
a Requirements Network or R_NET . Each R_NET details the response of the
system to particular stimuli. It spec if ies the sequence of ALPHA s to be
followed to generate changes in system state and responses to the environ-
ment. When all of the required steps are compl eted, the R_NET processing
terminates. This sequenc e of ALPHA s is specified by giving a graph model
of the sequence in a structure declaration associated with the R_NET.

3.3.1 Top-Down Flow Specification

RSL has been designed to allow the top-down development of R_NETs.
The engineer may first specify system responses in terms of a few ALPHAs
which state the general idea of the processing necessary. At a later
time , each of these ALPHA s may be ex panded in terms of a fl ow graph of

• lower level ALPHAs. This expansion process changes the original ALPHA to
a SUBNET , a named processing net which exists as a part of a higher-l evel
net. Therefore, each SUBNET is a single entry-single exit fl ow ; i.e.,
there is one and only one point in the processing flow that RETURNs
to the higher level net. All paths either rejoin and RETURN at this
point or TERMINATE processing (alternately ending at an OUTPUT-INTERFACE).

An RSL SUBNET is analogous to a macro in a programming language.
The SUBNET is treated as though the flow path(s) in that SUBNET were
physically inserted into the higher level flow path . This means that the
da ta availabl e to ALPHAs in the R_NET and to ALPHAs in any level SUBNET
are identical .

3.3.2 Enablement

The relationship ENABLES provides the mechanism for defining the
stimuli which start processing on R_NETs. An R NET, which is the object
of the relationship, Is ENABLED for processing by the element which is
the subject of the relationship. Two element types are l egal as subjects
of ENABLES, correspond ing to two distinct situations which provide the
stimulus for processing .

The first situation Is enablement by a stimulus to an R NET some—
where In the data processing subsystem. The element type EVENT has been

3—27
~~~~nt~ç~ p~~ ~~ ____- j  

-

F ~ defined for this case. An EVENT must be specified in the structure
associated with an R_NET. The object R NET is ENABLED when control
passes through the EVENT node on the R_NET which contains it. An R_NET
may be enabled by an EVENT on its own structure. Also , the action of an
EVENT may be postponed by use of the DELAYS relation . The subject of the
relation is a DATA item which specifies how long ENABLEment is to be
DELAYED when the object EVENT is triggered . DELAYS and self-ENABLEment
allow the specification of functions which are to be performed periodically.
An R_NET may be ENABLED by more than one EVENT . The passage of control
through each EVENT will result in a separate ENABLEment of the object
R_NET . An EVENT may ENABLE more than one R_NET. -

The other ENABLEment situation concerns stimuli from outside the
data processing subsystem . In this case the subject element of ENABLES
i s an INPUT _INTERFACE. An INPUT INTERFACE , which is defined more
completely in the Data Segment portion of this document (Section 3.1), pro-
vides communication between the data processing system and some other
SUBSYSTEM. Data present at the INPUT INTERFACE Is defined to be the con-
diti on wh ich causes ENABLEment of an R_NET. An R_NET may be ENABLED by
only one INPUT_INTERFACE; an EVENT and an INPUT_INTERFACE may not ENABLE
the same R_NET ; and an INPUT_INTERFACE may ENABLE only one R_NET.

3.3.3 Structure

The flow structure of an R_NET cons i sts of two cl asses of nodes ,
primitive and complex , and the arcs which join them . Figure 3-2 shows
eac h of the RSL struc ture nodes ; al so il lustrated are the corres pondi ng

-

•
graphics syn*ols. As can be seen in this figure , the primitive nodes are
single entry and single exit; they are the ones that spec ify the processing
steps and related ideas. The complex nodes are multipl e entry or

multipl e exit and express information about the sequencing of the primitive
nodes .

Five types of primitive nodes may be pl aced at any point on the
structure except at the ends of the processing paths. They are:

1) ALPHAs (defined in Section 3.2 of this document) - the
primitive processing steps .

2) SUBNET s (defined above) - lower level flow structures .

3-28

~~~-~~~~~~ • - -— - -~~~~~~~~~~~ - • - -~~~~~~~~~~ - - - -



_ _ _ _ _ _ _ _ _ _  

- - -

~~~~~~~~~~~

“--

~~~~~ ~

4-

V

— 
La .~ .~

—

~~~~~ ).. I U-~~~~~ ~~~~ ~~~~~L~- ~ I -, -,~~~ Li..

— La

~~

•

~~~~~~~~~~~~ ~~~
~~ .~ _l La 0 0 ~0

Q La

N-
~~ v, ~ r

-o

-J(~)

C

La
I—

0 0
La 3 ... 4-)

U

•1~ )- ‘-.
, ;C

‘- ~~ 
\

‘-. ~/) La

~~ ~~~~
.

~ a. 
~ 

a.

3-29

_ _ _ _  

--



~~~~~~~~~~~~~
- -—-~

~w~
--

~~~
- 

~~‘I!~~~

3) VALIDATION POINTs (see Section 3.4) - data col lection points
for performance measurement.

4) EVENTs (defined above) - nodes which ENABLE other R_NETs.

5) SELECTs (defined below) - nodes which identify entity Instances.

The SELECT node identifies an entity instance to which the processing
subsequently specified on the R_NET is to be applied . The SELECT designates
an ENTITY_CLASS or ENTITY_TYPE from which an entity instance is to be chosen
and a condition (selection criterion ) involving DATA ASSOCIATED with the
entity . It specifies that the entity instance meeting the criterion is to
be used in subsequent processing . After an entity instance is SELECTed , It
remains SELECTed until either the R_NET terminates or another SELECT is per-
formed on the same ENTITY _CLASS or on any ENTITY_TYPE which COMPOSES the
class conta i ning the entity instance. Af ter a SELECT , there is at most one
entity selec ted from an ENTITY_CLASS even though the SELECT considered onl y

• one ENTITY_TYPE composing the class (i.e., a SELECTIon on one ENTITY_TYPE
negates any previous SELECTion on the same type or on a different type of
the same class).

The spec if ied cond ition is evalua ted for each entity in the class or
type. No order is specified; consequently, the SELECT Is used when only
one entity can meet the selection criterion or when any entity meeting the
cri terion is acceptable. On traversing a SELECT node , the predefined LOCAL
DATA item FOUND is assume d to be set to a value dependi ng on the resul t of
the SELECTion : if an entity meeting the criterion exists and thus a
SELECT ion has occurr ed , FOUND w ill have the value TRUE; if no SELECT ion i s
made , FOUND will have the value FALSE .

The condition appearing in the SELECT is a standard Bool ean expres-
sion. When SELECTing from an ENTITY_CLASS , the conditi on involves DATA
ASSOC IATED with the ENTITY_CLASS. When SELECTIng from an ENTITY_TYPE ,
DATA ASSOC IAT ED with either the ENTITY_TYPE or the ENTITY_CLASS whi ch Is
COMPOSED of the type is used .

The sixth type of primitive node is the i nterface , described in Sec-
tion 3.1. An interface marks the place in the R_NET where data and stimuli
are introduced from or comunicated to the outside world. Interfaces are
restricted to being at the beginning of an R_NET (for an INPUT_INTERFA CE) )
or at the ends of R_NET paths (for an OUTPUT_INTERFACE).

3-30 

~~~~~~~~~-— - - - -~~~~~~~~~~~~~ --“ •- - - -  ~~~~ - -~~~



~~~~~~~~~
-,- - - - -- - •---- -----—•.- --~~~~---—•-—-- - - • ~~•—- ———--~~~~•---- - - . - • - — -~~~-- —— .-‘~~~~—-—- - - -,

•~~~~~r - —-- - 

-

The seventh and eighth types of primitive nodes also signal the end of
a fl ow path; naturally, they may be placed only at the end of the structure
declaration or at the end of a flow path wi thin the structure . A TERMINATE
node means that all processing on that flow path is ended . It is not

— specified if an R_NET path finishes at an OUTPUT INTERFACE. The RETURN*
node means that the end of processing on the main path of a SUBNET structure
has been reached and that the fl ow continues on the higher level structure
which references the SUBNET.

The first of the three compl ex nodes , the FOR EACH node, specifies a repetitIve
data structure (an ENTITY CLASS , an ENTITY TYPE , or a FILE), an AL PHA or
SUBNET , and an optional condition involving DATA related to the structure.
The SUBNET or ALPHA is performed once for each instance in the structure
that meets the condition~* The order of evaluation is not specified , so
the different invocations of the ALPHA or SIJBNET may be assumed to be done

• in a ~don ’t care sequenc e~. Thus, the FOR EACH node may be looked upon as
an iterative operation (wi thout sequential impl ications) over the repetitive
structure with the application of the condition as a subsetting criter i on .
(It can also be considered as an AND structure , the second compl ex node to
be discussed next , with the number of branches known only at the time of
invocation of the FOR EACH.) As stated above the condition is optiona l,
if omitted , the ALPHA or SUBNET is performed for all instances in the
structure.

Again , the condition is a standard Boolean expression. When the
repetitive structure is an ENTITY CLASS , the criterion i nvo l ves DATA
ASSOC IATED with the ENTITY CLASS. For an ENT ITY TYPE , the DATA used in
the condition may be ASSOCIATED with either the ENTITY _TYPE or the
ENTITY _CLASS which the type COMPOSES. In the case of a FILE , the criterion
references DATA CONTAINED in the FILE.

*The graphic symbol for a RETURN is a ~ , that for a SUBNET start node is a V .

**In the graphical form of an R_NET structure , the FOR EACH node is repre-
sented by two symbols: one to designate the FOR EAC H and another for the
ALPHA or SUBNET in the scope of the FOR EACH (see Fi9ure 3-2). The ALPHA
or SUBNET symbol always Immediately follows the FOR EACH symbol .

3—31



Since the FOR EACH on an ENTITY_CLASS or ENTITY_TYPE evaluates the
condition for all entities in the specified class or type and functions as
a SELECT ion for the ALPHA or SUBNET, the FOR EACH node negates the result
of any prev ious SELECT node for the perti nent ENTITY_CLA SS or any ENT ITY
TYPE which COMPOSES the class -- i.e., after completion of a FOR EACH,
there is no entity SELECTed within the ENTITY_CLASS which is the subject
of the FOR EACH or which is COMPOSED of the subject ENTITY_TYPE. Similarly,
after a FOR EACH on a FILE , no instance is identified as SELECTe d for the
FILE. (FILE SELECT ions also occur w ithi n ALPHA s and are discussed in
Section 3.2).

The second type of compl ex node is the AND node. This node has one
entry arc and several exit arcs. The meaning is that all of the exit arcs
are followed but the order of processing of the paths is not rel evant in a
requirements sense -- in fact, the arcs may be followed in parallel as long
as the meaning of the data is mainta ined . Thus the parallel branches of the
flow graph followi ng this node are followed wi thout regard to order; they
form a “don ’t care set”. The requ i rements analyst may , by using AND nodes ,
specify that no order need be imposed on a group of ALPHAs .

There are two classes of AND structures. In the first class , the
parallel branches do not rejoin; each of them ends with a TERMINAT E or an
OUTPUT_INTERFACE. The branches for this split-off AND are Independent of
each other and have no mutual timing constraints. The other class is the
rejoining AND . In this structure , there is a virtual AND node with multiple
entries and a single exit which col l ects all of the parallel branches. This
virtual node will not be passed until all of the branches have been pro-
cesse d . In thi s sense , It acts as a synchronizing node. There is no
syntactic distinction between these two classes of AND structures; the
composition of the branches determines the class. Either all of the
branches terminate or none of them do; a mixed case is not allowed .

The third and final type of complex node Is the OR node. It also
has one entry and severa l ex its , but only one of the exit arcs is followed.
The choice is made based on a condition associated with each arc . The OR
node and its accompanying structure represent the folding together of
several paths of processing with structures which are identical to a point ,
but differ based on some choice criterion . If the paths differ from that

3-32

• ---~~~~~ -- • -—-~~~~•-~~~~~~-~~~~~~~~~~~~~~~~~~~ •~~~~
• • -

~~



~~— - - - - ~-.-.— r-

• ~~~~~~~~~ r~~ ’- — 
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - - — -

— - --•-• —•-—--- - --
- - • -- -- — - -

point on, the OR is a split-off OR. If the paths are again identical at
some later point , the branches may be collected at a virtual OR node wi th
several entries and one exit. This structure is a rejoining OR. Again ,
mixed rejoining and split-off OR branches are not allowed .

There are two types of OR nodes: the basic OR node and the CONSIDER
OR node. For the basic OR node the condition on each exit arc of the node
is a standard Boolean expression which may involve DATA elements and
constants . This condition is evaluated when the OR node is reached . With
general conditi ons such as this , it is important to assure that the choice
of branch is well—defined , since more than one condition may be true, or
possibly all of the conditions may be false. For the former case , the
analyst may specify an ordi nal for each condition. The ordinal gives the
position of that condition in an evaluation order . When the OR node is
reac hed , the conditions are evaluated in the specified order, and the first
condition which evaluates to TRUE specifies the branch to be followed . If
the ordi nals are not gi ven , the lexical ordering of the conditions (i.e.,
the order in which the conditions are entered) is taken as the order of
eva luation . To prevent problems if all conditions are false , an OTHERWISE

• clause is required for the basic OR node. This clause specifies a branch
which is fol l owed only if none of the conditions are true.

The second type of OR node, the CONSIDER OR node , allows branching
on the value of DATA which has TYPE ENUMERATION (see Section 3.1.7), or
branching on the ENTITY_TYPE of the currentl y SELECTed entity of a particu-
lar ENTITY CLASS. With each branch of the CONSIDER OR node is associated
a criterion. Each criterion consists of a single name or a list of names
separated by the word OR.

DATA wi th TYPE ENUMERATION have values which are names . The criteria
spec ify which branch is to be taken based on the value of the DATA under
CONSIDERation . The legal value names of the DATA are specified In the RANG E
attribute of DATA (see Section 3.1.7). All of the legal value names must
appear once and onl y once in the branching criteria of a CONSIDER OR. In
order to prevent confusion of the value names with DATA names which may
occur in the basic OR node branch conditions , DATA i tems with TYPE
ENUMERATION may be referenc ed on a structure only in CONSIDER OR nodes.

L

_
- -

—-
~

---—
~

~~~—- —----w--~~~~~~~~~~~ 
-- - #~~~~~~~~ • 

~

,— 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
P7’

__
~~~~

The branch cri teria when an ENTITY_CLASS Is being CONSIDERed con-
tain the names of the ENT ITY TY PEs whi ch COMPOSE the ENTITY CLASS. Eac h
type composing the class is referenced once and only once in the branch-
ing cri teria.

Since the criteria for a CONSIDER OR must be exhaustive , an
OTHERWISE branch is not allowed .

3.3.4 Summary of Requirements Network Segment Concepts

The element types and relationships defined below, along with the
structure declara tion, constitute the Requirements Network Segment.

ELEMENT TYPES

ELEP4ENT ITYPE$ EVENT
(* AN IDENT IFIED POINT ~W T~~ SEQUENCE OF

PRO CE SSI NG SPECIF IED BY ONE 5R MORE R.,N!TS (OR
SUBNE’rS) W H ICH CAUSES THE E NAB L EM E NT OF AN
R NET , AN EVE NT MAY BE USED TO SpECI FY A
VALIDATION _PATH . *)~ST RU~ ’URE A PP LI CA BI L ITY I NET ,

STRU cTURE A PPL ICAB IL ITY I PATH ,
E L EMEN y ~~Ty PE, R_ NET

(a THE ORDER OF LO GICA L PROCES SING THA T M UST BE
P E R FO R M ED BY THE DATA PROCESSING S UBSY $T EM IN
RESPO NS E TO EXTERNA L OR INTER NAL ST IMULI . THE
PROCE SS ING STEPS A RE AL. PHAS OR SUSNETS WH ICH
MAY BE EX PA N DED TO L OWER LEVELS Or DETAIL . IN
ADDI T ION TO PROCESSING STE PS , THE R_ NEt
STRUCTURE MAY C ONTAIN IN TER FACES , EV ENTS ,
VA LI D A TIO N PO INTS , AND$ , OR S , SELECTS , AN D FoR
EACH MO DE S~ IT MUST BE ENA B LE D AN D
TERM INAT ED . a),

ELEMEN T~ TYPE$ SUBME T
(a A SEQUENCE OF LOGI CA L PROCE SSING STEPS THAT

MUST BE PE R FORMED TO A CCOMPLI SH THE
RE QUIREMENTS OP THE NEX T HIGHER N ET W O R K
C SU BN E T OR R_ NET). a) ,

STRUCTURE A PPLICABIL ITY, NET 1

3—34 

-~~



RELATIONSHIPS

RELATIO NS H IP, DELAYS
(a THE ENABLEME NT OF R:NETs BY THE EVENT IS

POSTP ~ NED FOR THE A MOUNT OF TIME SPECIFIED IN
T HE DAT A , ON LY ONE DATA MA Y DELAy AN E V E N T J
TH IS DAT A MUST NOT INCLUDE OT HER DATA .  FOR
S IMU LATION PURPOSES, THE VA LUE OF T HIS DA TA
MUST BE IN UNITS OF SECONDS. a),

COMP LEMENT A RY RELATIONSHIP , DELAY ED ( M By i ) ,
SUB JECT ELEMENT . T YPEj  DA T A .
OB J ECT ELEMENT _ Ty PE ; EVENT ,

RELAT IONSHIP; ENABLES
(a INDICATES T HAT WHEN THE PROCE SSIN G CONTRO L F L O W

PASSES THROUGH THE EVENT ON AN R:NET , OR ~~~
DATA IS AV AILABLE AT THE INPUT ...INT (RFA CE , ‘HE
FUNCT IONAL PRO C ESSI NG SPECI FIED BY THE R~ NET
CAN BE BEGUN , AN R.NET MUST BE ENABLED ~~BE ENA BLED EIT HER BY ON~~ AN D ON LY ONE
INPUP J IN TE R FACE OR BY ONE ~R MOR E EVENTS , a) ,

CO MP L EMENT A R Y RE LA T IONS H IP , ENAB LED ~“fty ”),
SUBJEC T E LEMENT _ TYPE S EVE NT

INpuT :xN ,ERFA cE ,
OBJE CT ELEMENT _ TYPE S R_ NET ,

3—35



~~~~~~~~~~~~~

3.4 VALIDATION SEGMENT

The R_NETs, ALP UAs , and DATA concepts of RSL are used to describe the
functional requirements for processing. The concepts comprising the Vali-
dation Segment of RSL support the definition of the performance require-
ments to be met by the real-time software .

-

Two types of performance requirements are- expressed in RSL : response
time requirements for a path of processing , and accuracy and more complex
timing relationships . The response time requirements are stated separately
because they apply to single paths and are a common type of requirement.
In both cases , specific paths within R_NETs are identified .

3.4.1 Validation Points

R_NET paths are identified using VALIDATION POINTs. The po i nts u~~e~~
as nodes on R_NET or SUBNET structures and are somewhat analogous t~ test
points in a piece of el ectronic hardware. Conceptually, the VAL IDATION POI NT
transfers information to a recording system which records the rel evant in-
formation for post-test analysis to determine whether accuracy and timing
performance requirements have been satisfied by the process. Since the
system under test is a data processing system, the information transferred
consists of DATA and FILEs. A VALIDATION _POINT RECORDS DATA and FILEs;
these DATA an d FILEs are those necessary to describe and/or test a per-
formance requirement.

For DATA ASSOCIATED with ENTITY CLASSes and ENTITY TYPEs , only DATA
ASSOCIATED with the currently SELECTed entity may be RECORDED . To RECORD
DATA for more than one class , the VALIDATION _POINT is pl aced in the scope
of a FOR EACH on the ENTITY_CLASS or one of its ENTITY TYPEs .

For RECORDED DATA which is CONTAINED in a FILE , the DATA valu es i n
the currently SELECTed (by an ALPHA or a FOR EACH on a net) record in the
FI LE are RECORDED . If the FILE i s al so RECORDED , then the specified DATA
is RECORDED from each record of the FILE.

There Is no exp1icit output from a VALIDATION_POINT . As stated
above , a model for the use of the DATA is that they are recorded in a
datlA file to be used in a post-processing mode to determine whether the
performance requirements have been met. Thu s for each traversal of a
VALIDATION POINT , a record i ng Is generated which contains the DATA and
FILEs RECORDED by the VALIDATION _POINT .

3—3 7 ~~~

-j
- 1_f -~

3.4.2 Val idation Paths

The individual paths through an R_NET which are of interest in das-
cr ibi ng performance requi rements are stated in RSL ~s VALIDATION_PATHs.
The path structure of a VAL IDATION_PATH is primarily a sequence of
VALIDATION POINTs on a single R_NET. A path thus described must correspond
to a route through an R_NET ; it is illegal , for instance , to spec ify that
a path ex i sts between VALIDATION_POINTs wh ic h are on parallel branches of
an AND or OR structure . If all paths between two nodes are to be included
in the requirements , then the requirements engineer need merely refra i n
from noting any VALIDATION_POINTs between the nodes . Therefore , if all
paths through an R NET are included , just the starting and end ing VALIDA-
TION_POINTs need to be noted. For example , consider the R_NET struc tur e
shown in Figure 3-3. If both paths through the net are to be incl uded ,
then a VAL IDATION_PATH may be defined us ing only VALIDATION_POINTs Vl and
V3. Conversely, If only one path through a multipl e path R_NET is to be
considered , sufficient VALIDATION_POINTs must be specified so that the
desired path is uniquel y identified . In the exampl e, VAL IDATION POINT V2
would be included in the VALIDATION_PATH definition in order to designate
the path through ALPHA s A , C and D.

In many instances , timing and accuracy requirements span more than
one R_NET . RSL provides a mechanism to extend the VALIDATION _PATH to
cover more than one R_NET , if an EVENT on the first R NET ENABLES the
second R_NET . EVENTs are then placed ~n PATHs so that the fl ow of pro-
cessing to the R_NETs which are ENABLED by the EVENT may be followed.
Thus the PATH structure of a VALIDATION _PATH conta ins VALIDATION POINTs
an d EVENTs as nodes.

For performance requirements which appl y to processing performed by
more than one path in an R_NET in mul tip le exec utions or by paths on
different R_NETs , RSL allows the definition of the VALIDATION PATHs
separately and the definition of a relationship between the performance
requirements and the VALIDATION_PATHs as explained In SectIon 3.4.4.

3.4.3 Stimulus-Response Timing Requirements

T imi ng requi rements can be imposed along a VALIDATION_PATH through
use of the attributes MINIMUM_TIME and MAXIMUM_TIME. The points for
starting and stopping the stimulus-response timing measurement are the

3-38

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_______ - 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
—

~
—- - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
— -‘_ - 

~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~

Vl

~~~A

_  

I

_ _ _  

( c f

~~ V2

LoJ
( )

V3

Fi gure 3-3 Illustration of Validation Paths 
-

3—39 j
L A ______________________________________________________



start and termination of the R_NET path identified by the PATH structure
of the VALIDATION _PATH. If the VALIDATION _PATH specifies multipl e paths
through the R_NET, the timing requirements are interpreted to mean that
all of these R_NET paths must meet the timing constraints .

Al so associated with the stimulus-response timing is the attribute
UNITS , which specifies In what units of time the MINIMUM_TIME and MAXIMUM
TIME attributes are to be interpreted . The reason for separation of the
UNITs attribute from the two value attributes is the same in this segment
as it is in the Data Segment -- to guarantee the explicitness and con-
sistency of units between the minimum and maximum values.

3.4.4 Analytic Performance and Non-Stimulus-Response-Timing Requirements

Ana lytic performance requirements and certain timing requi rements
can not be stated as simply as stimulus-response ti;iing requirements . Two
reasons make this so: a combination of several DATA and a complex trans-
formation may be needed to state the requirements ; and the requirements
may be a function of DATA from more than one VALIDATION PATH . Therefore,
the requirement cannot be stated as a property of a VAL IDATION PATH but
i s stated as a PERFORMANCE_REQUIREMENT . A PERFORMANCE REQUIREMENT CON-
STRAINS one or more VALIDATION PATHs.

A PERFORMANCE_REQUIREMENT has an attribute TEST which defines the
requirement as an executable PASCAL function with a Boolean value. The in—
formation availab le in the TEST is all of the DATA and FILEs RECORDED by
the VALIDATION_POINTs appearing on the VALIDATION_PATHs CONSTRAINED by the
PERFORMANCE_REQUIREMENT . Special c otmiands in the TEST identify how the
data is to be extracted from the record i ng of the validation poi nt informa-
tion , and the .PASCAL code defines the computations necessary to test the
satisfaction of the requirement. The result of the TEST, which may examine
a number of individual DATA against several independent criteria , is the
va lue assigned by the TEST to the PERFORMANCE_REQUIREMENT function. The
name of thi s function is the PERFORMANCE_REQUIREMENT name .

A VALIDATION_POINT can appear only once on the nets but can a ppear
on many paths. Conceptually, each time the processing reaches a VALIDATION _
POINT on a net , a RECORDING is generated consisting of all DATA RECORDED
by the VALIDATION _POINT . A VALIDATION _POINT can RECORD a FILE; In which
case DATA is extracted for each record in the FILE. The same DATA and

FILES may be RECORDED by many VALIDATION _POINTs.

3-40 

— - -- -_-~~~~~~~~
rn - -- _- - - - - -- - _ -  —4



_~_~~~~~~~~~~v —  

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~

Thu s , DATA referenced in a TEST must be uniquely identified by
VALIDA T ION_POINT , by RECORDING , and by record in a FILE and a FILE must
be identified by VAL IDATION_POINT and RECORDING. The approach adopted to
establish uniqueness is analogous to that used in the remainder of RSL for
DATA and FILEs ASSOC IATED wi th entities and for DATA CONTAINED in FILEs .

— The main difference is that all DATA and FILE names appearing in the TEST
are prefixed by the name of the VALIDATION_POINT w hi c h RECORDED the DATA
or FILE to be used . The two names are separated by a decimal point. (Thus ,
to refer to DATA (or FILE) A RECORDED by VALIDATION _POINT V i , the identifie~
Vl .A is used in the TEST.)

The special operators availabl e in TESTs for identifying a particuia:
RECORDING are the RETRIEVE and FOR EACH. These have the identical niea~irg
as the SELECT and FOR EACH on FILEs written in BETA s and GAMMA s describe i
in Section 3.2.3. After a RETRIEVE operation , the Boolea ri variabl e
RECORDING_FOUND wil l have the value TRUE if a RECORDING which meets the
retrieval cr iter ion was loca ted ; otherw i se , RECORDING_FOUND will have the
value FALSE. The RECORDING RETR IEVEd remains availabl e unti l the next
RETRIEVE or FOR EACH is encountered on the same VALIDATION POINT . The
FOR EACH in a TEST has the same meaning as the FOR EAC H statement In BETA/GAMMA
cu~e; the code encompassed by the DO and ENDFOREACH in the FOR EACH opera-
tion is executed in sequence for each RECORDING meeting the retrieva l
criterion. A SELECT and FOR EACH on FILEs are also availabl e for writing
TESTs and have this same interpretation. The syntax for each of the
special TEST operators is presented in Section 7.1 .2.

3.4.5 Summary of Validation Segment Concepts

The element types, relationship, and attributes defined below constitute
the Validation Segment:

ELEMENT TYPES

ELEMENTjTYPE, PERFORMANC E _REQ UIREMENT
(a AN AN ALYT IC PERFORMANCE REQUIREMENT OP

NON.STIMULUS.RESPONSE TIM ING REQUIREMENT WHI CH
IS TO BE MET BY THE DATA PR O CESSING
SUBSYSTE M S a) ,

3-41

4 - - -  --~~~~~~--  _~~~~~~~~~~~~~~ - -~~~~~ - .-_--~~~~~~~~ . -  - - -~~ -- -



~
-.-

~- - ,~~
.-— •__ - 

~~~— ---.-,~— ~~~~~~~~~~~ - - -~ -~~~~---~~ ~“ 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . 

-
~~~~~r — .~~~: ~~--- - - - - ~~ ‘~~~~~~~~~~~~~~~~~~ _“

ELE M ENTV YPE, V A LI D ATIO N .Ø.PA IH
(a A PATH ØF PROCESSING OVER wHICH QUANTITATIVE

VA L IDATION TESTING WILL BE PERFORMED , A PATH —

IS SPECIFIED USING VA LIDAT ION _POINTS AND
EVENTS AND MUST CORRESPOND TO A R~UTE THR OUG H
AN R_NET OR THROUGH R.NETS CO NNE CTE D BY
EV E NTS, a),

ELEPlENT~ TYP E ; V A LX DA TIO N:PO I NT -
j

(a A L O G ICAL POINT IN THE PROCESSING SPECI F IED BY
AN P_ NE T OR SUB NET AT WHI C H DA TA MU ST BE
O B TAINABLE IN THE IMP LEM EN TED SOFT WARE IN ORDER
TO VA L ID AT E THAT THE PERFO RM A NCE RE QUIREMENTS
HAVE BEEN FULF ILLED, *)~

STRU C TURE AP PLICABILIT Y; NE T ,
STRU CTURE A P PLICABEL ITY S PATH,

RELATIONSHIP
-

—

REL A T IONS PIX P I CO N STRAINS
(a IDENT IF IE S TO WHICH vA L IDA T ION :PA THCS , THE

PERFORMANC E REQUIREMENT APPLIES, a),
COMP LE MENT A RY REL~ATIoN3HIp , CONSTRA INED ~NBYN), fl
SUBJECT ELEME N T .TYPE , PERF ORMAN CE :REQV IREM EN T ,
OBJECT ELEME NT _ TYPE S vALIDATION :PATH ,

ATTRIBUTES

A T TR IBU TE S M AXI M U M T IM E
(a THE MAX IMUM TIME THAT CAN BE ~AKEN T~ TRAVERSE T HE

vAL IDATION :PATM , THE TIME IS SPECIFIED IN THE UNIT S
STATED IN THE UNITS ATTRI BUTE ’ a),

APP L ,X CA BLE ELE M EN T TYPE , VA L ID AT I O N PATH
VA LUE ; NUM E RI C ,

A T T R IBUTE; MX NIMU M2T IME
(a THE MINIMUM T IME THAT CAN BE TAKEN To TRAVER SE THE

vAL IDATI O N:PATM , THE T IM E i~ SPECIF IED IN THE
UNITS DESIGNATED BY THE UNIT S ATTRIB UTE , a),

APP LI CAB LE ELE M ENT _ TYPE ; VA L ID AT I O N PAT H ’.
VA LU E ; NUM ERIC,

AITRIBUj’E; TEST
(a PR O CEDUR AL CODE (PASCAL) WHI CH DEFIN E S THE

COMPU TA YZONS NECESSARY TO TESy THE SATISFACTION OF
A PERFORMANcE :REQUIREMEM T USING DATA RECORDED BY
VA LIDA TI O N;PG INT5 , THE CODE I~

NOT PROCESSED
BY THE RSL TRA NS LA TOR BUT IS pROCES$ (D BY THE
SIMULATI O N GENERA TI ON FUNCTION AND THE COMP ILE R ,
A TEST C O NTA INS SP ECIAL RETR I (V E AND FOR EA CH
O PERATIO NS T O IDENT IFY VA L I DAT IO N. P0?N T RECORD INGS
AND MAY USE SELECT AND FOR EA CH OPER A TIO N S TO
AC CESS RECO RDED FIL ES , e)~ -

APP L,~ c AB L(EL EMENT T Y P ES PERFO RMAN CE ~IREQU Z REM ENT ,
VAL V E, TEX i ,

3-42

L. —~~~~- -__
~~~~~~~~ _____________________________



~~~~~~~_7__’__ __ _’~ 
—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- •_ _ -___-,-,____-/_

___ —‘F.- -F! - - - - - - 
. ,

4

3.5 MANAGEMENT SEGMENT

Concepts necessary to support the disciplined management of a require-
ments eng i neering project are contained in the Management Section of RSL .
These concepts are broadly defined and provide a framework of useful infor-
mation which can be adapted to many types of project management .

3.5.1 Configuration Management

The size of modern software projects dictates that close track be
kept of changes to the system at all level s, from requirements to code.
To support configura ti on ma na gemen t, information must be maintained abou t
the nature and author of each change to the system. In RSL , this informa-
tion can be maintained about each element of the requirements descriptio n .
Updates to each el ement in the ASSM provide the change history , includin 9
the individual ‘s identity , through the ENTERED_BY attribute ; and the ASSM
itself provides the current state of the el ement. The attribute
COMPLETENESS (which can be associated with any el ement) provides a means
for the requirements engineer to identify how close his entry is to its
final form. If he is merely noting initial ideas , he can give the
attribute the value INCOMPLETE. The other attribu te values (CHANGEABL E
and COMPLETE) indicate increasing finality of the requirements.

3.5 .2 Traceability

The output of the software requirements engineering effort should be
directly traceable upward to the originating requirements in the system
requirements documentation. Data on these originating requirements are
given in RSL through the use of the el ement type ORIGINATING _REQUIREMENT .
Elements which are traced from an ORIGINATING RE QUIREMENT are linked to
it by the TRACES relationship.

The TRACES relationshi p may be used to assess the impact of a change
to an ORIGINATING RE QUIREMENT . In many cases , though , the ORIGINATING

REQU IREMENTs are interrel a ted i n a hi erarch ical manner , such that l ower
level requirements add detail to more global higher level requirements.
This hierarchy is reflected by the relationship INCORPORATES between
ORIGINATING REQUIREMENTs.

The traceability downward to different versions of the system is
also facilitated by the el ement type VERSION and the relationship IMPLEM ENTS.

3—43

- ~~~~~~~~~~~~~~~~~~~~~~~ 
—- ---



r~ 

-

~~

- —--— . -,___ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -r 

———--  - ,

Any el ement of the requirements can thus be identified as being IMPLEMENTED
by only a few VERSIONs or by all of them .

Some requirements may need to be impl emented prec isely in the real-
time software in order that the data processing system will function
correctly, even though they are not directl y traceabl e to system require-
ments. The degree to which an el ement is artificial , therefore, is
associated with its degree of traceability, but not perfectly. For this
reason ARTIFICIALITY is a separate attribute that can be associated with
any el ement in the stated requirements.

3.5.3 Decisions

Although some ORIGINATING REQUIREMENTs can be directly alloca ted to
lower levels (and TRACED to those lower levels), many ORIGINATING REQUIRE-
MENTs must be combined with other information in order to take them to
lower levels. This may occur because the ORIGINATING_REQU IREMENT was
ambiguous or incomplete , because many alternative interpretations of the
requirement may exist and an assumption or choice must be made to proceed,
or because a literal interpretation of the ORIGINATING_REQUIREMENT would
cause conflict with other ORIGINATING REQU IREMENTs or with comon sense.
In eac h case , the requirements eng i neer must make some considered decision
about how to proceed; the decisions and the considerations (as wel l as the
initial problem) must be documented so that other requirements eng i neers
know why derived (as opposed to allocated ) decisions have been made. In
addition , an ORIGINAT ING_REQUIREMENT may change , and documented decisions
will need reconsideration; they can be reconsidered far more rapidly and
efficiently than undocumented decisions.

The el ement type DECISION is provided to enabl e the requirements
engi neer to note these der ived requirements. It is rel ated to one or more
ORIGINATING REQUIREMENT s or other DECISIONs and to the resulting require-
ments through the relationship TRACES. It has attri butes of PROBLEM ,
ALTERNATIVES , and CHOICE which provide the needed documentation.

3.5.4 Source Material

The el ement type ORIGINATIN G REQUIREMENT does not reflec t the or i , in
of the requirement ;i.e ., whether it appeared in a system specification , an
Interface specification or some other document . In addition to requ 4rements

3-44 



_
~~~

• -_ T•_
~~

__

derived from ORIGINATING REQUIREMENTs , there may be ~ me which arise from
conditions documented in background material. If this background infor-
mation changes , the requirements must also change; therefore, the background
source should appear in the requirements description and should be
expl icitly traceable to elements which it i nfluences. The element type
SOURCE exists to fill these needs. A SOURCE DOCUMENTS elements which
depend on material in the SOURCE.

3.5.5 Synonyms

Al ternative or shortened names for el ements of a requirements descrip-
tion may be entered by defining an element of type SYNONYM . The SYNONYM s
linked to the original el ement by the relationship EQUATES. An original
name may be EQUATED to any number of SYNONYMS , but each SYNONYM EQUATES to
one and onl y one el ement.

3.5.6 Unstructured Information

Additional commentary or descriptive information about an element
which does not fit i nto the context of the relationships or attributes
which are appl icabl e to that el ement may be included in the attr i bu te
DESCRIPTION . The value for DESCRIPTION is a text string which has no
predefined structure. A requirements engineer may , therefore , include in
DESCRIPTION an English language explanation or summary of the element.

In addition to the capability of including unstructured commentary
about the normally-structured requirements , RSL provides a means for

documenting requirements which do not fit i nto the patterns established
by the standard el ement types . This type of requirement , for exampl e

one which says that the impl ementation language shall be FORTRAN , may be

included as an UNSTRUCTURED REQu IREMENT in the requirements . Since an
UNSTRUCTURED_REQUIREMENT i s an element, all of the normal management
rela tions hip s suc h as TRACES or EQUATES are applica ble to it . T hi s allows
the inclusion of the unstructured information in the management process.

3.5.7 Sumary of Management Segment Concepts

The el ement types, relationships , and attributes In the Management

Segment are presented below;

3-45

ELEMENT TYP ES

ELEME N T~ TYPE S DECIS ION
(a A CHOICE OR INTERPRETA TI ON THAT HA S BEEN MADE

IN OR DER 10 EST AB L ISH FUNCTI ONAL A ND/OR
PERFO RMAN CE REQUIREMEN TS 8*SED ON ONE OR MORE
OR IGINAT ING _REQ UIREMENTS , THIS MEANS THAT THE
LOWER LEVEL REQUIREMENTS AR E A RESULT OF
DE RIVATION , NOT SIMPLY A LLO CATION ’. a),

ELEMENT~ TYPES ORIGI NAT 1MG_REQUIREMEN T
(a A HIGHER LEVE L RE QUIREMEN T FROM W HICH LOW E R

LEVEL REQUIREMENTS (THOSE EXPRESSED IN THE Ral,)
AR E TRACE A BLE , a),

ELEMEN TITYPE ; SOURCE
(a SOURCe OR AUX ILI ARY MATER IAL FOR pE QU IREM ENT $~

I.E., OR IG INAT ING PO INT FOR ONE OR M ORE
OR IGINA T ING _REQUIREM (NTS, DOCUMEN TATI ON OF
T RAD E~ 0FF S T U D I E S , OR BAC KG ROUND MATERIAL FOR
REQUIREMEN T S ELEMENTS, a)~

• EL EME N T~ TY PE I $Y NON YM
(a A SYN ONYM IS AN A LTER NATE N AME THA T CAN BE USED

IN PLACE OF THE PR IM E NAME OF AN ELEMENT . IT
IS USED AS AN AB BREVIA t IO N IN MOS T CASES , BUT
MA Y BE USED FOR OTHER REAS ONS . N O TE S IN THE
ROL DE FINITI ONS OF REL .AT IO WSHI P$ AND
A TTRIBUTES , “ALL” A LWAYS IMPLIES “ALL EXCEPT
SYNONYM ” , a),

ELEMENT~ TYPE $ VNSTRUCTURED REQUIREMENT
(a A REQ UI REMENT T HAT MUST BE PASSED TO THE

S O FT W A RE DESIG NER BUT THAT DOES NOT F IT INTO
THE STRUCTURED FRAMEWORK PROVIDED BY RSL, THI S
ELEMENT MI GHT BE USED BECA U SE THE
REQUI RE MEN T IN QUESTION IS TOO UN~OM MON TO
JUSTIFY DEFINITION OF A MEW TYPE OP ELEMENT, A
NEW RELAT IONSH IP, OR A NEW ATTR IBU TE , (AN
EXAMP LE OF AN UN STRU C TUR ED~RE QU IR EM EN T M IGHT
BE PRECL USION OF USING A M UL TIPRO CE SSOR W ITH
A S S O C IA T I V E M E M OR Y .) a),

ELEME N T~ TY PEI V ERS ION
(C THE AGGREGATION OF REQUIREM ENTS THA T ARE TO

APPLY AS A UNIT TO THE DAT A PROCE SSING
SUBSYSTEM AT A PARTI CUL AR T IME . LOOP _ I,
LOO P _2, ETC. , ARE VERSIONS . AS IS AN IOC
SY STEM. a),

3-46

_
-~~~~~ --- - - -- - - -~~~~~~~~ -

- - ~~~~~~~~~~~~~~~~ r.- ~~~~~~~~~~~~~~ r-.----. -.---. —~~ r

T7~~~~ ~~~~~~~~~~~~~

RELATIONSHIPS

REL ATION SH IP, DOCU MEN TS
(a THE SOURCE MAT E R IAL PROV IDE S AUXI LI ARY

INF O RM A T IO N A B OUT OR IS T~i~ OR IGI NA T ING PO INT
FOR T~.4E OB JE CT ELEMENT . a) ,

C OMP L EMENT A RY RELATIO NSHIP, DOCUMENTED (flBY”),
SUBJECT EL EMENT _TYPE S SOURCE .
OBJE CT ELEMENT _ TYPE S AL PHA

D A T A
DEC IS ION
EN T IT Y ,,,CLAS S
ENT ITY _TYPE
EVE N T
FILE
INPUT _ INTE RFACE
MESSAGE
O R IGI NA ING _ RE QU IREM ENT
OUTPUT _ INTERFAC E
PERFORMANCE _REQ UIREMENT
P_NET
SU8NET
S I~ S V STE H
UNSTPLJCTURED.REQUIREMENT
V A L I O A T X O N P A T H
V A L I D A T I O N _ POINT
V ER SION .

RELATI ONS H IP , EQUA TE5 (“TO”)
(a DEFINES AN A LTERNA TE NAME pOP AN ELEMENT . TP4E

OBJECT OF EQUATES IS CALLE D THE PRIME NAM E,
THE SUBJECT NA ME CAN BE USED FOR INPUT TO TW F
AS SM , 0~ T A LL R EL AT I0N SH IP~ , ATTR IBUT ES, AND
STRUCTURES 50 DEFINED ARE A CTUAL LY
CHA RA C TER ISTICS OF THE PR I ME NAM E~ a),

COMP LEMENTARY RELATIONSHIP, EQUATED (“TO”).
SUBJECT ELEMENT...TVPEI SYNONYM .
OBJE CT ELE MENT _ TYPE s ALPH A

DA T A
DECI SION
E N T I T Y _ CLASS
ENT ITY~ TYPE
EVENT
FILE
I NP UT _ INTERFACE
MES SAG E
ORIGINATING :REQUIREMENT
O UTPUT _ I N T E R F A C E
PERFOR M A NCE_ RE Q UI REM ENT
P_ NET
SOURCE
SUB NE T
SU~3 5 Y S T E M
UNSTRUCTURED REQUIRFMENT
V ALI D AT ION ~ P A T H
VALI D AT I O N _ PO IN T
V ER SION .

3-47

RELA TIONS HIP , IMP LEMEN TS
(a DEFIN E S THE V E RSION (S) TO WHICH TwE ELE M ENT

APP LIE S . C) ,

COMP LEMENTARY RELATIONSHIPS IMPLEMENTED ~‘BY”),
SUBJEC T ELEMEN T _ TYPE S A LP HA

DA TA
DE C ISION
EN TITY JCLASS
EN TI TY .aTYPE
EVE N T
FILE
IN PUT IN TER FA CE
M E SSAGE
OR X GI NAT ING:REQUIREMENT
OUTPUTJINTE RFACE
PERFORMANC E . REQUIREMENT
R NE T
SUB NE T
SUBSY STE M
uNST RU cTuRED :RE Qu IREMENT
VA L IDAT I O N PAT M
VA LI DA TI ON _ POINT ,

OB JE~~T ELEME NT _ TYPE S VERSION .

REL ATIO NSHIP, INC OR POR ATES
(a INDICATES A H IERA RCH ICAL RELA TION SHIP BETWEEN

ORIGIN AT ING _ RE QUIREMENTS , THE SCOPE OF THE
SUBJE CT (HIGHER LEVE L) ORX G INAT INC :RE QU IREMENT
INC LUD ES THE OBJECT (LOW ER LEVE L)
ORI GINATING :REQuIREMENT . *~~ ,

COMP L EME N TARY RELATIONSHIPS INC O RP ORATE D (“IN ”)~
SUBJeCT E LEM ENT TY PE S O R I G X N A T I N G ..RE QU IREM E N T ,
OBJE CT ELEMENT _ TYPE , O R IGIN A T IN G RE QU IREM EN T .

3-48

- - - • ~~~~~~~~--- _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~rT - - -
~~~~~

-
- - - - - - -

RE LATI ONSHIP, T RACE S (“ T O ”)
(a IDENTIFIES THE ELEMENTS (LOWER LEvEL

REQUIREMENTS) TO OR FROM WHICH THE HIGHER
LEVEL RE QU IR EMENT (O R IGINA T ING . . REQ U IREM E NT OR

- DECIS ION) HAVE BEEN A LLOCAT ED OR D ER IVED , a),
CO MP L EMENT A RY R E LAT ION SHIP , TRACED (“FROM ”).
SUBJECT ELEMENT _ TYPE, DE C ISION

OR IGINAT ING REQUIREMENT ,
OB JE cT ELE ME N T_ TYPE S A L P HA

DATA
DECISION
EN~’I TY CLAS S
ENT ITY ..:.TYPE
EVENT
FILE
INPUT _ INTERFACE
MESSAGE
OUTPUT.~INTER FA CE
PERFORMAN CE _REQUIREMENT
R_NET
SUB NE T
SUBS YST EM
UNSTRUCTURED _REQUIR EMENT
VA L IDA T ION . PA TH
V A LID A TI O N _ PO IN T
V.E A S I ON .

ATTRIBUTES

A TTRI BUj!I A L TER N A TIV E S
Ca THE A LTERNATI VE S THAT HAV E BEEN CONS IDERED TO

RESOLVE A PROBLEM RESULTING IN A DECISION , a) ,
APPL!CABLE ELEMENT TYPE$ DECISION ,
VALU E S TEX T ,

3-49

— -~—•,-—- —,--,•~ — —-~~~- .•— -••-— _
~~w-~—-- ~ - -—‘ —.---- ,-. •‘—,:

~~~~~~~~~ ~~~~~~~~~ ——— -————---- — -
~~~~

— - —
•

- ~~~~~~~~~~~~~~~~~~~~~~~~~ - -

A 1TRIBU jE , A RT IFICIALI TY
(a THE DEGREE OF FLEXIBILITY AL LO W ED IN IMPLEMENTING

THE ELEMENT IN THE SOFTWARE , a),
APP L iCABLE E LEM ENT ..TY PE S ALPHA

D A T A
ENT ITY CLAS S
ENT ITY _ TYPE
EVE NT
FILE
INPUT _ INTERFACE
M ESSAGE
OUTPUT :INTERFA cE
P_NET
S UB N E I
VA L ID AT IGN PATH
VA LI DA T ION PO INT ,

VALU E , AR TIFICIAL
(0 THE ELEME NT HAS BEEN DEFINED FOR EXP LA NATORY OR

SIMU LATI ON PURPOSES IN THE REQU !REMENTS STATEMENT
AND NEED NOT BE PRESENT IN THE SOFTWARE . a).

VALU E S VAL IDA TION
(a THE ELEMENT IS NECESSARY FOR PER FORMAN C E

RE QUIREME N TS EVALUATION BUT IS NOT RE QUI RED IN THE
OPERAT I ONAL SOF TW ARE . a),

VA LUE , IMP LEMENT .. PREC ISELY
(a THE ELEMENT MUST SE IMMP t.ENEN T r, IN TME SOFTWA RE

EX ACTLY AS DEF INED , a) .
VA LUE S IMP LCMEM T A P PRO X IMAT E L Y

C* THE E LEM EN T MUS T BE IMP LEMENTE D IN THE SOFTWARE,
BUT THE PRECI SE IMP LEMENT ATI ON jS LEFT TO ThE
PROCESS DESIGNER , a),

A TTR !BUI’EI CHOIC E
(a THE A LTERNATIVE SELECTED TO SOLVE A PROBLEM

LEAD IN G TO A DECISI ON . THE RA TIONAL E FOR THE
CHOI CE SHOU LD BE INCLUDED HERE , a) ,

APPL ICABLE ELEMEN-T TYPE, DECISION ,
V A LUE , TEXT.

~


~~~ -~~~~~~ r~~~~~~ — 

: ITT~~ ~~~~~ ~~~

A TTRIB UT E S COMP LE TENES S
(a THE DEGREE TO WH ICH THE DEFINITION Op AN ELEMENT IS

IN FINAL FORM , a),
APP LIC AB LE ELE M ENT _ T YPE S A L PHA

DATA
DECISI ON
ENT ITY CL ASS
ENT ITY _ T YPE
EVENT
FILE
INPUT_ I N T E R F A C E
M ESSAGE
O RIGI NA TI NG REQU IREMENT
OUTpUT INTERF A CE
PER FO RMAM CE REQU IREMENT
P_NET
SO URC E - 

-

S U&NET - -

SUBSYSTEM
A UC TURED:RE I R~ M~~ IVA L IDATI ON PAT H

VA LIDATION _POINT
VERSI ON ,

VALU E p CHANGEAB LE
(a AL THOUGH A LL RE LAT IONS H IPS, AT TR IBUTES . AND

$TRUC TURES MAY BE DEF INED FOR THE ELEM EN T , SO ME OF
THEM WILL PROBA BLY BE C HANG ED . INFORM AT ION ABO U T
THE ELEMENT IS BELIE VED TO BE cOR R E CT , BUT IS
SUBJECT TO CHANGE , a),

VALU ES INCOMPLETE
(a THE DEFINITIO N OF THE ELEMENT IS KNOWN TO BE

tNC0MPLETE~ THEREFORE, EVEN IF RELATIONSHIPS ,
ATT RIBUTES . AND STRUCTURES ARE 5TATED , THE ELEMENT
DEFINIT ION IS STILL INCOMPLETE , a ) ,

VALUE , COMPLETE
(a THE DEFINITIO N OF THE ELEMENT SHOULD BE A SSU M ED TO

BE COMPLETE AND WI LL PROBAB LY NOT CHANGE. a) ,

• 3—51 

_ _ _ _ _



- ~— ----—~--- —.- -
~~- -—-- ~

—
~~~---~- ~~~~~~~~ 

---~~
-- -‘~~-

~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
- - - ‘~ .—-- - ---——••—--—-• 

.
- /

A + TR IBU~ II DESCR IPTION
(a AMY FREE FORM TEXTUAL MATER IA L DESCR IBING THE

ELEMENT , a),
APP IPI CA B LE EL EM EN T TY PE I A LPHA

DATA
DECI SIO N
ENT ITY CLASS
ENT ITY _ TYPE
EV ENT
F ILE
INPUT _ INTE R FAC E
ME SSA GE
ORIGINAT ING :REQUIREHENT
CUTPuT :INTERFA cE
PE RF O RMANC E RE QU IREMEN Y
R_NET
SO URCE
S UB N E I
SUBSYSTEM
UNSTRUC IURED REQU IREM E NT
VA L ID AT ION . PAT H• V A L IDA TION _ POIN ~VE RS ION ,

VA LUE , TEXT.

A y TRI BU y E 5 EN TERED2BY
Ce THE IDEN TITY OP THE LAST PERS~ N TO EN TER

IN F O RMA T ION A BOUT THE ELEMEN T , a),
APP L! CABLE ELEM EN T TY PEI A LPHA

DATA
D E C I S I ~ N
ENT ITY W CLASS
ENTITY _ TYPE
EVENT
FILE
INPUT _ INTE RFA CE
MES SAGE
OR IGINAT ING ZREQ IJ IREME N T
O U T P U T I N T E R F A C E
PE R FORM AN C E REQ U IREMEN T
P_ NET
SOURCE -

SUBNET
SUBSYSTE M
UM5 TRU c ,URED :REQUIREME NT
VA L IDAT ION PAT H -
VA LI DATION _ POINT
VER SI ON ,

VALU ES TEXT.

A ITR IBU 1E S PR OB LEM
(a THE PROBLEM T HAT HAS LED TO THE NEED FOR A

DECI S ION , a),
APP LIC AB LE ELEM ENT 2TVP E S DE C ISION .
VALU E S TEXT.

3—52

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ -~~~~~~



~~~~~~~~

__
~~
__

~~~~~~~~ ~~~~~~~~~~~~~

4.0 CONTROLLING REVS

REVS is a unified collection of software composed of functions that
contribute in different ways to the development of requi rements. (T he
capabilities of REVS and the functions which provide them are summarized
in Section 2.0.) The user control s REV S using the REVS Control Language
(RCL). In general , the user input to REV S consists of a continuous stream
of RCL comands which activate the various functions and direc t them to
perform certain operations. The functions have individual RCL commands
for their control ; in the case of the RSL translation and RSL extension
(RSLXTND) functions these commands consist of RSL . Thus the input stream
to REVS can be depicted simply as the following :

Activation of function 1

-} Commands to function 1

Activation of function 2

- Coniiiands to function 2

S
S
S

Activation of function n

— Commands to func tion n

where functions 1 through n refer to any of the REVS functions.

Activation of a REVS function is controlled by the REVS Executive.
It is always active from initiation to termination of REV S execution
regardless of the individual REVS functlons which are activated throughout
an execution. The activation of a REV S function is requested by user
command to the Executive. Other commands to the REVS Executive are avail-
abl e to control the general operation of REVS. Most of these may appear
anywhere in the. input stream including within the input to individual
functions where they will be intercepted and executed by the Execut ive.
Thus the user Input commands to REVS can be categorized into the followi ng
types :

4-1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ -- -


- -~
-

~~Y ‘ -~~~~~~~W~~~~~~~~~~~~~~~~~~ . - —— r—-— ~~‘—
.
~~

--
~‘ -‘_---•. --- —•- - —~- —r - - - -

~~~~

S Executive Control Statements whi ch ac tiva te REV S functions
and direct the operational characteristics of REVS.

S Function Control Statements which are received by the
Executive and routed to the activated function which pro-
cesses each statement and performs the desired operations.

This organization, as illustrated in Figure 4-1, allows compl ete
flexibility In the type of operations that can be performed in a single
execution of REVS. The Executive Control Statements are described in this
section and permit the user to activate the REVS functions , to control the
input of information to REVS , cause mode changes in the operation of REV S,
control the content and disposition of REVS output, and terminate the
execution of REVS. The Function Control Statements and their use are
described in subsequent sections of this document (Sections 5 through 8).

REVS Operating Modes

REVS has two modes of operation , termed off—l ine and on-line. In
the off-line mode, the user inputs are made through the system inpu t stream
whic h usually originates on cards. In the on-l ine mode, communication
between the user and REVS is interactive through an ANAGRAPH keyboard-display
console.

Exec utive Control Input Format

The input format of the Executive Control Statements Is the same in
the off-l ine or on-l ine modes and requires that each statement be solely
contained on one line , that only one sta tement per line occur , and that
no other information precede the statement on the line . Any i nformation
following the statement on the same line is treated as comentary. The
syntax of each of the REV S Executive Control Statements is presented in
this section along with a description of the resulting action by REVS.
The syntax is presented in extended Backus-Naur Form (BNF). Readers
unfamiliar wi th BNF should read Appendix A before proceeding (the syntax
of all RCL and RSL is presented throughout the text in this notation).
Appendix C contains the compl ete syntax for the Executive Control Statements , —

In both BNF and in the form 0f syntax diagrams.

Executive Messages

The REVS Executive will output messages to the user containing

Information about actions of the Executiv e. These messages are documented

4-2

~ 

~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



___-_ ~r~~~
_ —- - -_ _ _  - - -

t 

‘

~ ___________ ________ __________ __________ __________ __________ __________

J _
~~. LU F- ~~ 

— ~~ ~-l -~ ~~ ~~ >-

<0  LU ~~ 
F- F- ~~~~ 0 I- I— C) ~~ —~ 

— ~~

F- LU -~ ~~ I- U~ 
<<~~~~ ‘~~~ <F- 0 .-~ 

— < ~~~ (I) F-

L~~(~~ W O  V) F- ~J~~~~~~~~~F- -i~~~~><F- ~~~~~~~~~~
(~ ‘-4 ~~~ ~~ V) LU ~D LU E L) =) L) ~~ (.) <<< — LU .J ~~

F- I— F- .~~ < ~~ 
— >~ >< ~~ 

— 
~~ 

~~~ w ‘-~~ ~ .-J c~ I- -~ I— V) ~~~

W Lj LLI L~ ~~~~~J < C~
~~~F- LL. 0<~~— < ~)~~~~~~~ U- L’) W- - u.  X F-~~~~~~~~

~-4~~~~~~~ LL ~~~~<~~~~~ —

I~~~0F-
F- F-

~~ — _j

~~~~~

1

~

_

L)
<

LULU ~~

~~~LU L)

LU 

~~~~~~~~


I~T~

~~~~

-

~~~~ 

--

in Appendix C. The onl y error diagnostic output by the Executive is when

Function Control Statements appear in the inpu t stream wher3 Executive
Control Statements are expected. This can occur when the user enters
Function Control Statements without a REVS function being active or when
a function terminates prematurely before processing all of its inputs.
There is no concept of a syntactic or semantic error in an Executive Control
Statement. If the Executive does not recognize a statement or the statement
is out of context, the Executive w ill assume it to be a Function Control
Statement.

1

~

T~~~~~ ~~~

~ I
4.1 SELECTING A REVS FUNCTION

At the start of a REVS execution no function is active. The FUNCTION
statement is used to specify to the REVS Executive which function to
activate . The syntax of the statement is:

[FUNCTION] function-name .

In the statement, function-name is defined as one of the following :

Func tion Name REVS Func tion —

RSL RSL Translation (requirements transla-
tion)

RNETGEN Interactive R-Net Generation
RADX Requirements Analysis and Data Extrac-

tion
SIMGEN Simulation Generation
SIMX QT Simulation Execution
SIMDA Simul ation Data Analysis
RSLXTND RSL Extens i on Transla tion

The FEND statement is used to explicitly terminate an activated REVS
function . The syntax of the statement is:

FEND .

An active REVS function may also be termina ted implicitly by entry
of another FUNCTION sta tement, by change of the operating mode (a GO state-
ment changes the mode , see Section 4.3), and by termination of REV S execu-
tion (see STOP statement , Section 4.5) .

Implicit termination applies to all of the REVS functions except
RNETGEN . The RNETGEN function has special features that are appl icable
only in the on-line operating mode and special control is required to
termi nate this function. This is described in Section 5.2.

4-5

-

~~~~~

~-



UL
~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

-

- -

;~~ -~~~~~~~~~~~~

4.2 CONTROLLING INPUT

The primary source of input for REV S is determined by the operating
mode. When operating on-line , the user communicates interactivel y with
REV S by way of the ANAGRAPH console keyboard and trackball. In the of f-
line mode, the user inputs are made through the system input stream . In
either mode, the user may control the filtering of the input for Executive
Control Statements and may direct the Executive to temporarily use an
alternate source of input.

4.2.1 Avoiding Executive/Function Statement Conflicts

Occas ionally, the content of a Function Control Statement might have
the appearance of an Executive Control Statement. (For exampl e, a line
image in an RSL text string might begin with keywords and punctuation which
form a legal Executive command.)

The user may direct the Executive to enter a transparent data mode,

thus avoiding misinterpretation of inpu t, for the current input medium by using
the TRANSPARENT statement. This statement has the form:

TRANSPARENT string .

where the string contains from one to eight characters. These may be any
characters except blank and period .

Upon entry of a TRANSPARENT statement, no further exam i nation for
Executive Control Statements In subsequent input is made until an image is
encountered which starts with the specified string . The termi nating image
is logged , but is not treated as inpu t by REVS.

If the TRANSPARENT statement is encountered in an alternate input
source (an ADDFILE , see below) the transparency will be observed until the
tra nsparency stri ng is encountered or until the end of file on the ADDFILE
is reached .

4.2.2 DesignatIng an Al ternate Input Source

The ADDFILE statement is used to cause REV S to accept input from a
specified file. The syntax of the statement is:

ADDFILE [TRANSPARENT] access-name .

The access name is the name of a file and is limited to eight alpha-
numeric characters on the ASC . The specified file is read In its entirety as

4-7 ~.- — ~~- - - —-- -

~~~~~~~ PA~~~ ~~D’Z 7LL~~~~~ 

- - - - - - -~~ ------ ~~ ~~~ --— - - ---~ ~~~
- =- -

-- 

~-_ : 
~~~~~~~


~

~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

though it were Inserted In the primary input stream in place of the ADDF ILE
statement.

All Executive commands are valid wi thin the file , except another
ADDFILE statement. Should a GO command (see Section 4.3) be pl aced in the
f i le, the GO operation is performed and the ADDFILE command stays in effect

until all inputs are read from the file. The TRANSPARENT option to the

ADDFILE statement causes suppress ion of the exam ination of the fi le for
Executive Control Statements.

4-8 



4.3 SELECTING REVS OPERATING MODE

As stated previously, REVS is either operated off—line or on—l ine via
the ANAGRAPH color console. When REVS is initially executed, the operating
mode is off-line. The GO comand , which has the following syntax, is used
to change the operating mode.

IONLINE 1
GOl OFFLINE [ONLY]. [displ ay-remark]
L OPPOSITEJ

An exampl e of this statement is:

GO ONLINE. JOE USER —— PHONE 837—2400.

The keywords within the GO command determi ne the new operating mode.
ONLINE means that the ANAGRAPH consol e will be enabl ed and the next input
to REVS will be from there. OFFLINE means that the ANAGRAPH will be
disa bled and the next input to REV S will be from the system input stream.

(Note: If a GO statement is entered requesting the same mode as the
current mode , this statement will be treated as a Function Control State-

ment by the Executive.) The OPPOSITE option causes the operating mode to
change from on-line to off-l ine , or from off-line to on-line , depending on
the current mode. The OPPOSITE option is assumed if no option is specified .
The ONLY option causes an irrevocabl e change to the specified mode. If
another GO statement is entered subsequent to the ONLY option , it will
terminate the execution of REVS (i.e., it will be Interpreted as a STOP
statement, see Section 4.5). See Section 50 for the Installati on

dependencies of this feature.

When entering the on-line mode , the displ ay remark portion of the GO
statement Is output as an on-line identification. It is displayed on the

ANAGRAPH with the TRW logo when a console is ready for use and should con-
tain sufficient information to identify and locate the user requesting the
console.

When operating in the on-line mode , the user communicates interactively
with REVS by way of the ANAGRAPH console keyboard and trackball. The key-
board consists of a panel containing a typical set of alphanumeric characters
which the user may key in when the keyboard has been enabled for input. A

4-9
Revision A

~

--

~

- -— —--—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--- - -



short red horizontal cursor will be displayed when the keyboard has been
enabled . The keyboard ENTER key is depressed to terminate each line of
input and transfer it to REVS. The trackball consists of a movable white
cursor operated by a hand-rotated ball and an entry key at the right of

the console. Thi s facility provides the user the capability to select
(input) any coordinate position on the face of the CRT. The trackball is
availabl e for inpu t when the white cursor is blinking . By rotating the
trac kball , thus moving the white blinking cursor to any desired position
on the CRT , and subsequently depressing the trackball entry key, the user
inputs the sel ected point to REVS.

When the logo appears on the screen wi th the user s on-line identifi-
cation , the enter key next to the trackball i s depressed to start operat ing
REVS. A display will then appear on the screen as depicted in Figure 4-2.
The lowest line of the screen i s the REV S input area , the line above it is
the echo of the last l ine entered and the third line is the REV S status
display . The uppermost part of the screen (with heavy green border) is the
area where output lines are displayed for viewing . As REV S generates out-
put, the page display will wrap over itself from top to bottom with a red
line underlining the last line displayed . This permits continual visibility
of portions of the previous output (except when interrupted by use of the

RNETGEN function).

The status line , annotated in blue by REV S, has five display fields
to show the current status of REVS. The first variabl e is the name of the

currently activated function or REVSEXEC if no function is activated . The
second variabl e displayed is the current REV S input file name. This will
be $ONLINE$ to Indicate the on-line keyboard , except when inpu t has been
diverted through an ADDFILE statement, in which case it will be the access
name of the file being read. The third variabl e displayed is the output
routing status which is set by the OUTPUT statement (see Section 4.4) and
ind icates whether output lines are being displayed on-line and/or off-l ine.
The fourth variabl e is the logging resolution status , and indi cates ALL
or EXECRCL accord ing to the last LOG statement (see Section 4.4). The
final field is the transparency indicator which displays the requ ired
transparency terminator string when in the transparent mode.

J



~~- -
~~ff~~~~~:;T: ~~~~~~~~~~~~~~~~~~ 

- -

- 
~~

- 

~: — —

— — —
I.- (I~ W O

L~J~~~~~~ 
LIJ F-

4-11

~

-—

~ 

~~~~~~~~~~~~~~~~~~ - -— --


v,—
7~~~~~

-

4.4 CONTROLLING OUTPUT

There are two primary output files generated by REVS. The first is
an Execution Log (REVS.LOG) of the activities that took place during the
execution of REVS. The second file contains the output generated by each
function that was executed and is identified as REVS.OUT.

4.4.1 Controlling the Logging Resolution

The type of information that is placed in REVS.LOG is controlled by
the LOG statement which has the following syntax:

LOG [~~ CRCL]~

The normal information output to REVS.LOG is Executive Control State-
ments. Thi s information is identical to that provided when the EXECRCL
option is selected or when a LOG statement with no option is input. The
ALL option causes both Executive Control Statements and Function Control
Statements to be l ogged .

An example of REVS.LOG is presented in Figure 4-3. Each line is
coded F , X , or M to respectively denote a Function Control Statement, an
Execu tive Control Statement, or a message i ssued by REVS. Also identifi ed
for each control statement is the input sourc e, either $ONLINE$ for the
ANAGRAPH , REVSIN for the system input stream , or the access name for an
ADDFILE.

4.4.2 Controlling the Routing of Function Output

The OUTPUT statement is used to control the routing of primary output
(file REVS.OUT) from the REVS functions. The syntax of the statement is:

r0NLINE 1
OUTPUT OFFLINE

LIMPL IEDJ

The initial routing is IMPLIED , i.e., output is sent to the off-line
printer when operating in the off—l ine mode and to the interactive consol e
when in the on-line mode. The OFFLINE option directs REVS to only use the
off-line printer regardless of the operating mode . The ONLINE option

~~~~~~~~~~~ ITI~TIITi Interactive cons~~e for subsequ~~t out~~~~~~~~~~~~~~~~



F’ -

~~~~ : ~~~~~~~~

U)

II

7
‘-4
S.-

~0

I,

5- 2
.4

—
5-

z— — . . . — a.-. 0 0 0 0 0 0 Q -~ 0 1
LU I- LU LU 5- LU LU 5- LU LU I- LU a

I, P—~ Z ‘— ‘— z s—~ p.— Z ‘—•- •— ~~ S~—• *1.a
4 LU LU 4 LU LU 4 LU LU 4 LU LU S.-z ~~~ ~~. . L 1 5 I. .) ‘4 ~L ~~~ P.4 ~~~

C 5- LU 0. S- LU 0. 5- Lii 0. S.- LU 0. ~J‘-s — ‘~ x ‘-‘ ~~~ ~~~ P.$ S.- ~~ ~-s 5- 1
U) Z4 -~~~ Z . 4~~~ 2 . 4~~~ Z . 4 C I 0.a ~~ i. ~ 5- LI ‘ I- LI ‘~4 ~~~ a E
LU U) U) U) U) C

2
0 0 0 0

LU LU Z LU Z 5- U 5- Iii CD
Z 5- LU 5- L&a 0•- 0 4 5 -4 0 0

4 4 C~ >6 4 > 6 0 4 0 LU
_i ia...s i az i ax T a x 5-
LU Cl) LU U) ‘-‘ Lii ~ •4 P.S U ‘-4 ‘-I IU I- ’ ~~~U) a 0. Cl) 2 (I) 0)2 Cl) U) 2 U) .J LU
4 LU LU LU Lii 0.
C Z l.~~ 7 Z -LD 2 2(D Z Z(, Z I

C~~~~ C •0~~~~ V •C~~~~~C C~~~~0 0
S.4 ‘- 2 ‘-‘ 5- ‘.4 . ‘-‘ ‘-~5- •5-~~~J5- . e5— ~~~~ 5— •5— 4 5- •5- •

U) •~~~~0~~~~~~~~L J 0 L I x L I o I Jo~~~IoC.I a. u)
> _1 2Z Z1Z Z2 1Z Z Z1 .Z Z Z0> W
LU U) -~~ LU ~~~ ‘-4 ..) LU LU ‘-4 ..~ LU ~~ 5- ~~
0 . 0 . LU LU Li. U) Li. Li. LU U) Si. LU LU U) LU LU LU Cl) 0.

.5-

U-
o -s flJ — C~j -~ f~ -. flJ P.-o 0 0 0 0 0 0 0 C C
o o o 0 0 0 0 0 0 0

X >6 >6 >6)C)C >6 >6)()C
>6 >6 >6 >6 >6 >6 >6 >6 >6 >6

2 Z 2 2 2 Z 2 2 Z
5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4
U) U) (I) U) U) U) U) U) U)

~~ ~~- ~~
.

~~
Ma LU LU LU LU sI~ Ma LU LU
0. 0. 0. 0. Ct 0. 0. 0. 0.

P . -O 0 0~~~~~~~~~~~~~~~ 0 0C 00 0 0 00 O 0
~~~~~5S a a a a a — S a . — . — a Se — .p... .~~- .~~- .~~IVLJ fLJ S’LJ Li C C U) C U) C 4)4)  U) 4 )4 )

e~i i~~ ,‘% i’L ~~
S S — a — a a — a S e e s  S a S — — S a a

•~~~~~~~ ø o ~~~~~ø o  O O ~~~~~O ~~~G~~O O ~~~~~O G O
0 0 0 0 0 0 0 00 00 00 0 00 0 0 0 0

>6 >6 >6 >6 >6 >6 >6 >6a. a. a. a. a. a. a a. a. a.

4-14

--

~

- - —-

~

- -

~

-- -

~

— ~~~~~~~~~
-- .- -- -



- -~~~~ - - - ~~~~~~~ ---- -- -- - - - -~~------ ~~~~~~~~ ~~~~~~~ - -P.-_ _ _ _
- - ~~~~~~~~~~~~ 

~~~
-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -
~~~~~~

-

the OUTPUT ONLINE option is selected when operating off-line , the user
will not receive any output from REVS. The BOTH option directs subsequent
output to be routed by REVS to both the interactive console (when in on-
line mode) and the off-line printer . An exampl e of a REVS.OUT listing as
it appears on the printer is shown in Figure 4-4.

4.4.3 Controlling Pagination

The user has the option to perform page control of the REVS.OVT file
with the NEWPAGE statement.

IOFFL I NE1
NEWPAGE ONLINE

. [offl ine-page-titl ing-remark]
LIMPL I EDJ

An example of this statement is:

NEWPAGE. START INPUTS FOR ENTITY CHANGES.

The selection of the OFFLINE option causes the printer to skip to the
top of the next page and to display the offl i ne—titl e (which is l imited to
60 characters). The ONLINE opti on causes the screen to be cleared and the
next output line to appear at the top of the screen. The offline-titl e has
no effect on the on-line display. The BOTH option makes both of the above
actions occur. When no option is specified or when the IMPLIED option is
specified , the action that is taken is determined by the current output
routing .

4.4.4 Displaying Information On-Line

When a page display is compl eted during on-l i ne operation , the user
is presented the following response prompting message at the bottom of the
screen:

CONTINU E, INTERRUPT , OUTPUT OFFLINE , NONSTOP.

One of the options contained in this statement is selected via a

trackball entry to control subsequent actions on the output displayed by

REVS. The CONTINU E option causes the next page of output to be displayed .
The INTERRUPT entry causes a long display to be truncated If the RADX
function Is activated . If input Is being read from an ADDFILE, an INTERRUPT
entry will terminate the reading of the ADDFILE. An OUTPUT OFFLINE selection

causes the current displ ay and subsequent displays to only be routed

4-15 —

~

— -------- ---- .--~~
—---- -

~~~~~~--- —-- ---~~~~~ -—--- ----



XX 0óO REV S BA SF:LI NE VERSI ON = to ,, (DATE :os ,13/77 , TIME :1O ,411t22 )
— RSL. -

XX Ooi FUNCTION RSt. IN ITI ATED . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MO D IFY PERF O R M AN CE REQ UI R EME NT RAD IA TED ... POA E R .
REM OV E TEST , -

IN SERT I
TE sTs
‘CO~IST
RAD!AT ED :p~ wER LIMIT=s .o s ~~ TEMPORAR Y R E PLACE MENT FOR (TBD) *)I
V A R -
R ADA R ..POMF R : RE A L S
I N T E R V A L I  R E A L ,  I
B E GIN
~~~~~~~~~~~~~~~~~~~~~~~~~~~
RE TRI E VE FIRST R EC O RD ING FOR S TA R T I N G -POIN T :
FOR EA CH RAD A R _ C O M M A N D ._ OUT PUT ..PO IN T RE C O R D I N G I
DO

R A D A R . POP,ER : O .O , -
IN TER v A L I = R A D A R :c O M M A N C OU TPU T

2
PO IN T , T R AN SMI T STAR T I I

FOR EACH R A D A R - c O M M A N D _ oUTPuT :POI N T R E CO R DI NG I
SUCH THAT ((R ADAR CO~ M A ND OU T PUT p O IN T ,T RA N S H IT STA R T c: I

INT E R V AL .I .O) A~ D i
cRAoAR :c oh~A ND :ouTpu T :pO IN T ,TRA NS M IT sTART): $
INT ER VA L fl -

DO -
SELEC T FIRST RE CO RD FR~ M S TA R T IN G IPOI NT ,W A V E F O R M _ TA B LE

SUCH T HAT (RAPAR C O M M A N O _ OUT P.UT , POINT , RA DA R _ TYPE :
ST A R T IN ~ _ POINT .vJ F_ N A ME)I I

IF REC~ RD FOU N1 ~ T HEM I
RADARj OW ER~ :RA DA R _ POP ~ER+

STARTI N G :PO I N T .W F CHARAC TE RIST IC S , I
E N O FO REAC H,

—
I

IF C R A DA R _ P O W E P > R A D I A T E D _ POwER :LIM IT , THEN I
R A D IATED POW E R S :FA LS L,

EN D FOR E AC H I
END ;” , I

M O D I F Y SUBSY STEN SSPE RM R L , I
RE M OVE TR A C Et ~ FR~~

i
~ I

TLS DPSPP ...SUBS F.C TI 3~~~~:5 F U N C T I O U 4 L R E Q U I R E M E N T S
DELETE SUB sY S TEM 5SPER~ RL I I
MO D IFY SU 3SY STE~1 SS FER’I FL .
IN$E RT T RA C E D FR~~~ns:oPsPR:subsEcT I~N_ 3~~ ’sLFuNcT IoNAL :REQuIREME NTs . I
MO D IFY DAT A DI _~~I D ~

5
~:nA TA . I

IN SERT IN PU T TO AL PHA SET LOSI . I
MO D IFY DAT A DI ..XM I T , I
INSERT ~NP IJT TO AL PHA SET ._LD ST ,
MO D IFY D AT A X M I T . S T A R T ,
IN SERT iNP u T 7~ AL PHA P!C?~~CO 1’~M A N D .
M OD IFY DATA D t R T N ...E RROR _ RE PORT . I
IN SER T USE b OT H ,
MO D IFY D AT A RA ~ cE :MA Rx IN F O R M A T I O N .
INSERT USE PETA ,
MO D IFY DA T A R EA SON JO R _ TR A NS MI SSI ON _ F A ILURE. I
IN SERT USE BOT H,
M O D I F Y D A T A R E C E I V E _ I N F O R M A T I O N , I
INSERT USE BE T A • i
XX 002 FU ,iC T ION R$L COMPL E TED . * * * e * * ee * e a***** ** * * * * * * * * * i * e****

STOP .

XX Ool REy S CO MP LETED : N O RMA L TER ~~lNA T I~~H,

Figure 4-4 REVS.OUT Example Listing

4-16 - -

- - — --------~ -.---- --- --- —----- ------------ ——- - - - ---- ——--.~-~—.——.------------------- --- ----- — - ~~~~-—--— —- —- S - —~~~~~-—-~~~ --- ———-- - -


~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

-

off-line until changed by an OUTPUT control statement. The NONSTOP option
-

causes continuous di splay of REVS output lines , without a pause after each
page is displayed . This process continues until the user is prompted for -

more input or unt i l the enter key on the trackball is pressed , in which
case the NONSTOP mod e is discontinued .

-

1~~

4-17

—-

- - — — — ~
-- - --..----- -——,

~
.,“--- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -.-~---~,———-- - —

~~~~~~~~

-

~~~~~~~~~~

-

~

~

--. - -- -—-
~~ ~‘

_ _ __
~

_
~.7’_ - -

I
-

4.5 TERMINATING EXECUTION OF REV S

The STOP statement is used to terminate the execution of REVS. The
statement has the follow ing syntax :

STOP
~~

. [display remark]

This statement can be entered either in the on-line or off-line mode .
When entered on-line , the display remark is written as a terminating message
on the final REV S ANAGRAPH display. If neither the JOB or STEP option is
specified , the STEP option is assumed . Also , an actual end of file on the REV S
primary i nput stream implies STOP STEP. The STEP option causes termination
of REVS and its job step, but allows normal execu tion of any remai ni ng
job steps . The JOB option causes the REVS step and all subsequent steps to
be cancel led .

4-18

- ~~~~~~~~~~~ -~~~~~~

- -

~~~~ 
‘ - ~~~~~~: _______ — - ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~ > 
-

~~

5.0 BUILDING A REQUIRE MENTS DATA BASE

REVS provides two functions for establishing and maintainin g a require-

ments data base. The primary one , the RSL translation function , accepts
RSL statements and enters , modifies , or del etes requirements data base in—
formation as specified by these statements. The RSL syntax for defining ,
modify ing , and deleting entries in the data base and examples illustrating
the use of RSL are presented in Section 5.1.

The Interactive R-Net Generation (RNETGEU) function augments the
capabilities of tne RSL translation function by allowing the user to enter
and modify data base structures in a two-dimensiona l graphic form . The
RNETGEN function also provides the capability to esta blish , either auto-
mat ically or under user control , graphics coordinate data for structures
entered in the form of RSL. TI~e opera tion and use of RNETGEN is described
In Section 5.2.

The basic unit of requirements as stated in RSL is the element. The
user designates elements by uniqu e name s and establishes their meaning ifl
the requirements by stating their attr i butes , rela tionships and structures .
REVS imposes certain restrictions on the sel ection of names for the require-
ments elements . The user should not use the keywords appearing in the RSL
and RCL syntax; in addition , if the re qui rements are to be simula ted , the
user should not use as element names the keywords of PASCAL. The keywords

for RSL, RCL , and PASCAL are listed in Appendix 13. When simulating

requirements , REVS also requires that certain el ement names be unique In a

limited number of characters . These restrictions are installation dependent

and are detailed in Section 10.

5— 1
Revision A



aiô 572 TRW UEFENSE Alt SPACE SYSTEMS GROIP HUNTSVILLE ALA FIG 912
REVS UStRS MAMJAL. SREP FINAL REPORT. VO4.U~C II.(U)
AUG 77 N E DYER. I. J GUNTHER. R W SMITH DASGeO—75—C—0022

IAICLASSIFIED TRW 27332 692l O26 VO~ —2 it

_ .9

I]DiWrct ~flP1 _ _ _ _



I . f ~~ ~~! ~ I~
2.2

I I 
~~°

• _________________

• 
~~~~~~~ ~IIQ~

MICROCOPY RISOLUIIO N TLS I ‘ H
• I N I 0 •

5.1 ENTERIN G REQU IREMENT S IN RSL (RSL FUNCTION)

This section describes the use of the RSL function to enter require-
ments stated in the Requ i rements Statement Language (RSL). There are three
types of statements , called RSL commands , which the user can input to
define new elements , modify existing elements , and delete elements. Two
additional commands allow for changing the name and the el ement type of
an element. These five commands are presented and illustrated in the
following subsections. The command syntax presented is expressed in the
extended Backus-Naur Form (BNF) explained in Appendix A. The complete RSL
syntax from which these rules were extracted Is presented in Appendix D~ in
both BNF and syntax diagram forms.

General information that applies to all commands inpu t to the RSL
function and an explanation of the outpu t from the RSL function are provid ud
below.

RSL Input Specifications

The fol lowi ng rules summarize the input format accepted by the RSL
function . These rules , some of which are given in greater detail in
Appendix B , together with the syntax summarized in Appendix C , give a
complete i nput specification for the RSL function.

• Each RSL statement is terminated by a period that is not con-
tained wi thin a comment or text string .

• Only the first 72 characters of each input line are significant .
all other characters are ignored .

• All names have a maximum length of 60 characters. The first
character in a word must be a letter or an underscore ; remain-
ing characters must be letter .,, underscores , or digits.

• All numbers are in standard PASCAL form (see Appendix B).

• All names and numbers are terminated by one or more blanks ,
or punctuation marks (an end of input record is equivalent
to a blank).

• A comment , a sequence of characters beginning with (* and
end i ng with *), may only be used where specified in the RSL
syntax.

• A text string , a sequence of characters beginning and ending
wi th double quotes , may only be used where specified in the
RSL syntax.

5-3 ..
~~~~~~~~

— - 
~~

-. 1~

( 
S
-
., ~~, MD’! !li W’~



• The comm a, colon , and semicolon are optional punctuation marks
that are equivalent to a blank.

• Relation optional words may appear anywhere in the i nput and
wi ll be ignored.

RSL Output Specifications

For each input line , the RSL function will output the fol lowi ng on
REV S.OUT:

• An echo of the 72 significant characters, a vertical bar
(“j”) , and the remai nin g characters of the input l ine (the
characters to the right of the vertical bar are ignored by
the RSL function).

• If an error was detected in the input line , an additional
line will be output. For each error detected an up-arrow
(“ + “), followed by ar~ error number will be output. These
error numbers and their associated meanings are l i sted i n
Section 5 of Appendi x D. If two or more errors are detected

• at a symbol , only one up-arrow will be output and the error
• numbers will be separated by commas.

In additi on to the standard output described above , if any errors
were detected by the RSL function, the followi ng message will be produced
on the REVS.LOG file:

IT 001 NUMBER OF TRANSLATION ERRORS = XX

where XX is the number of errors detected.

There are a few cases i n which the RSL function may not be able to
recover from an error. This will normally occur only If there are machine
errors or severe errors In the RSL input, or if the ASSM or required inpu t
files DONNEES and RSLDICT are missing or unusable. If any of these occur ,
the RSL function will output the words “FATAL ERROR ” followed by one of the
fatal error diagnostics given for error numbers 600 through 606 i n Section 5
of Appendix D. The following message will also be pl aced in the REVS.LOG
file:

TT 002 FATAL ERROR IN TRANSLATION.

5.1.1 DefinIng a New Element

The expl icit definiti on of a new el ement consists of a declarati on
of the element, optionally followed by a series of element definition
sentences which declare attribute values , relationshi ps, and a structure or
path for the element. The syntax for a new element definition is:

5-4



• ~~~~~~~~~~~~~~ -~-~~~~~~ —•-, -~~ • •~ .•~~~~~.— -~~~~~~~~ ~~-— •
~~~- -~~~~ ~-~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ,• -~~-—--- -••~• .. . -- •~~

F: • •

~~~~~~~~~~~~~~~~~~~~~~~ 

•

[DEFINE] el ement-type-name element-name [comment] .

{{INsERT] <el ement definition sentence>}~

As shown in the syntax , the word DEFINE is optional in a new el ement
definition. Its use is , however , recommended . If DEFINE is used and the
specified element name is currentl y defined in the ASSM an error will be
reported. If DEFINE is not used the existing element will be modified with-
out notification to the user . The word INSERT is also optional preceding
each element definition sentence and may be used to improve the readability
of the input . The omission of the word INSERT has no affect on the inter-
pretation of the input.

There are four types of el ement definition sentences: the attribute ,
rel ation , path, and structure declarations . These declarations are discussed
in subsections ~ low following the discussion of the new el ement declaration .r Another type of new element definition , termed an implicit definition , occurs
whenever a previously undefined element is Introduced wi thin a relation , path,

or structure declaration. This implicit declaration is discussed separately

in Section 5.1.1.6.

The top-level syntax for an explicit new element definition is:

<new element definition>:: =

[DEFINE] el ement-type-name element-name [comment].

[INSERT] <el ement definition sentence>}”

<element definition sentence> : :=
<attribute declaration>

I <relation declaration>
I <path declaration>

<structure declaration>

5.1.1.1 Declar ing a New El ement

A new element is declared by optionally specifying the word DEFINE ,
followed by an element type name for the el ement, an el ement name , and an
optional comment for the el ement.

[DEFINE] el ement-type-name element-name [comment].
5-5



- ‘‘‘~~~~.“~~ 
i,”• • • _ • -

—— _• -_v—--.,-•,—,—,—’ I.____• _•__-__ . -

For example, the followi ng are all val id declarations of new elements:

DEFINE ALPHA PROCESS_VALID_RETURNS.
DEFINE DATA OBJECT_ID (*IJNIQUE IDENTIFIER*).
DEFINE R_NET ALLOCATE_RESOURCES .

The first declaration above defines an element named PROCESS_VALID_RETURNS
of type ALPHA . The second declaration defines the element OBJECT_ID of
type DATA . The third declaration defines the element ALLOCATE RESOURCES of
type R_NET . Elements PROCESS_VALID_RETURNS and ALLOCATE_RESOURCES are
defined with no associated coments; OBJECT ID is defined wi th a coment.

The syntax for declaring a new element is the first part of the
complete syntax for a new element definition .

<new el ement definition>::=
[DEFINE] el ement-type-name element-name [comment).

5.1.1.2 Declaring an Attribute Value

As noted above, one of the types of sentences which may appear within
a new element definition is an attribute declaration , optionally preceded
by the word INSERT. An attribute declaration declares an attribute value
for the el ement by giving the name of the attribute followed by the
desired attribute value and an optional comment.

(value—name g
[INSERT] attribute-name ~number ~ [commen t].

~text-string )~
The fol lowing example declares several attribute values for the

el ement OBJECT_ID.

DATA OBJECT_ID.
TYPE INTEGER .
INITIAL_VALUE 0 (*PRESET VALUE*).
USE BOTH.
DESCRIPTION “IDENTIFIER FOR AN OBJECT”.

Any number, incl ud ing zero, of attribute declarations may be given
for an el ement; each one may be preceded by the word INSERT.

Note that once an element has a value for a particular attribute ,
it is always necessary to remove that value before a new value for the

5-6



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~------ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

same attribute can be declared . The process of modifying element defini-
tions is discussed in Section 5.1.2.3.

Forms of Attribute Values

An RSL attribute is defined in terms of an attribute name , a set of
one or more element types to which the attribute may apply, and a set of
allowa ble values. These allowabl e values are either particular value names
or one of the value class names NAMED , NUMERIC , or TEXT . The value class
names have the follow i ng i nterpretations:

NAMED - The value i n an attribute declaration may be any name
not used in a different context.

NUMERIC - The value in an attribute declaration may be any signed
or unsigned integer or real number (see Appendix B).

TEXT - The value in an attri bute declaration may be any text
string (a sequence of characters enclosed in double
quotes).

For example, attribute LOCALITY has legal values GLOBAL and LOCAL ,
meaning that the onl y values which may be specified for LOCALITY are the

names GLOBAL or LOCAL. The attribute INITIAL_VALUE has legal values NAMED
and NUMERIC indicating that any name or number may be specified .

The syntax’for declaring an attribute value is:

[INSERT) <attribute declaration>

<attribute declaration> ::

~value—n ame )1
attribute-name \ number ~ [comment] .

(text-str ing) 1

5.1 .1.3 Declaring a Relationship Instance

A relationship is established between the subject el ement of the new

element definition and some other object element by specifying a relation

declaration optionally preceded by the word INSERT . The relation declara-

tion gives the relationship name, perhaps followed by the appropriate

relation optiona l word , followed by the types and names of one or more
object elements and optional coments.

[INSERT] relation-name [relation-optional -word]

[el ement-type-name] el em:nt-name [comment)}~. 

~~~~-- -


- —---.‘—..—••—-----—

• •
~~

- ~- -—-•- --

The following example declares several relationships between DATA
STATE and other elements.

DATA STATE.
INPUT TO ALPHA UPDATE_STATE.
INCLUDES DATA X

DATA y (*NORTH*)
DATA Z (*up*)

CONTAINED IN FILE STATE_HISTORY (*RECORD OF STATE CHANGES*).

Each coninent specified in a relationship declaration is associated
wi th exactly one relationshi p instance. Thus the INCLUDES declaration
shown above establishes three instances of the INCLUDES relationship, only
two of which have cotiunents; i.e., relationship instances between DATA STATE
and each of the DATA el ements X, Y, and Z are established but only the
relationship instances to V and Z have associated comments.

On the assumption that the el ement named in a relationship declara-
tion has already been defined , the element type name need not be specified .
Thus ,

INPUT TO UPDATE_STATE.

is equivalent to

INPUT TO ALPHA UPDATE_STATE.

if an ALPHA with the name UPDATE_STATE has been previously defined .

As in other declarations about an element, the optional word INSERT
may be specified preceding the relationship name to improve the readability

of the input.

The appearance of an el ement type name and an element name in a
relationship declaration may serve as an impl icit declarat ion of the
element name . The reader is referred to SectIon 5.1.1.6 for a discussion

of thi s type of declaration.

Use of Relationship and Compl ementary Relationsh ip Names

A relationship In RSL is treated like a non-commutative binary re-

lation; that is, a statement of an association between a subject element
and an object el ement which are c’ ~t. For each relationship there Is

a defined set of element types which may serve as subjects and a defined

5-8

I

.
- set of element types which may serve as objects. For each relationshi p

there is also defined a compl ementary relationship which is the converse
of the relationship in the sense that the subject set of the relationship
is the object set of the compl ementary relationship and the object set of
the relationshi p is the subject set of the compl ementary relationship.

This duality of relationships-compl ementary relationships is important
in the statement of relationship declarations since the declaration i tself
specifies only the object element; the subject el ement is taken to be the
el ement declared in the preceding el ement declaration. If this subj ec t
element is in the subject set for a relationship, then the relationship
name should be used . Conversely, if this subject element is in the object
set for a relationship, then the compl ementary name should be used . For
example:

ALPHA UPDATE_STATE.
INPUTS DATA STATE.

establishes the same relationship instance as:

DATA STATE.
INPUT TO ALPHA UPDATE_STATE.

The syntax for declaring a relationship instance is:

[INSERT <relation declaration>

<relation declaration>::=
relation-name [relation-optional -word]

{ [element-type-name] el ement-name [coment]}~.

5.1.1.4 Declaring a Net Structure

A net structure may be declared for any RSL el ement which is of type
R_NET or SUBNET by specifyi ng a structure decl aration , optionally preceded

by the word INSERT . The structure declaration itsel f consists of the word

STRUCTURE fol lowed by two or more node constructs, the word END and an
optional comment :

[INSERT] STRUCTURE {<node>}~ END [comment].

5—9

There are two classes of node constructs , primitive and compl eA . The
primitive nodes are single entry and single exit constructs. The complex
nodes are mul tiple entry or mul tip le exit constructs and express information
about the sequencing of the nodes they contain.

The primitive nodes are of three types: the element node, the termi-
nator node, and the SELECT node. The compl ex nodes are of four types: the
FOR EACH node, the AND node, and two types of OR nodes. Each of these node
types is discussed below .

Formal ly, a node is defined as:

<node> : :
<element node>

I <terminator>
I <select node>
I <for—each node>

<and node>
I <or node>
I <consider-or node>

Rul es Regarding Structures

The fol lowing general rules are enforced for structure declarations.
Additional rules rel evant to particular node types are specified in the
discussions of the individual node types.

1. Each path through a structure must be terminated by a terminator
node or by an OUTPUT_INTERFACE el ement node.

2. The only place an INPUT_INTERFACE element node may appear is
as the first node on a structure for an R_NET.

3. A RETURN terminator node may only appear on a structure for a
SUBNET and exactly one RETURN must appear on each SUBNET
structure .

4. A structure may only be declared for an R_NET or a SUBNET.

5. No more than one structure may be declared for any R_NET or
SUBNET .

El ement Node

An el ement node consists of an el ement type name fol lowed by an
el ement name and an optional comment. If the element has been previously

5-10

defined , the element type name may be omitted. If the el ement has not been
defined , the el ement type name must be specified and the element is
implicitly defined as discussed in Section 5.1.1.6. In either case, the
comment is associated with the structure node, not wi th the element itself.
Element nodes may only be constructed from el ements of a type which is
defined with STRUCTURE APPLICABILITY NET . These types are ALPHA , EVENT ,
INPUT_INTERFACE , OUTPUT INTERFACE , SUBNET , and VAL IDATION POINT .

A simpl e two-node structure using only element nodes is illustrated
below.

R_NET ACCEPT_RETURN.
STRUCTURE

ALPHA CHECKER (*CHECK VALIDITY OF DATA*)
OUTPUT_INTERFACE POST_COMMAND

END .

Formally, an el ement node is defined as:

<element node>::=
[el ement-type-name] element-name [comment)

Rules for Element Nodes —

The follow i ng rules regardi ng element nodes are enforced.

1 . An INPUT INTERFACE element node may only appear as the first
node on an R_NET structure.

2. An INPUT_INTERFACE el ement node may not appear on a SUBNET
structure.

3. An OUTPUT_INTERFACE element node terminates a path of a
structure.

Termina tor Node

A termi nator node or OUTPUT_INTERFAC E is used as the fi nal node on
a path of a structure. Two types of terminator nodes are defined , the

RETURN node used on a structure for a SUBNET to indicate the point at

which the SUBNET returns to its calling structure, and the TERMINATE node
used to indicate the termination of a structure branch. The syntax of a

termi nator node is the word TERMINATE or RETURN , optionally followed by
a comment for the node:

TERMINATE [comment]
I RETURN [comment]

5-11

~~- -

•~• ‘.~~~~ W - ~~ T~.,r’w .r’)i? . ~~~~.. ~~~~ ••.—•—--—-,-“— •.• ~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~ - -~~.VT
• ~~

-_- -! T~
—’
~’7’ •

~
——‘—i

Two simple examples of structures using only element nodes and
terminator nodes are given below.

SUBNET SUB1 .
STRUCTURE

ALPHA CHECKER
SUBNET DOER
RETURN

END (*CHECK DATA AND PERFORM ACTIONS*).
R_NET NEIl .

STRUCTURE
SUBNET SUB1
TERMINATE (*END OF NET1*)

END .

Formal ly, a terminator node is defined as:

<terminator>::—
TERMINATE [comment)

I RETURN [comment]

Rules for Terminator Nodes

The foll owing rules are enforced for terminator nodes .

1. Exactly one RETURN node must appear on each SUBNET structure.

2. A RETURN node may not appear on an R_NET structure.

3. A TERMINATE or RETURN node terminates a path on a structure.

SELECT Node

A SELECT node is a primitive node which sel ects an entity based upon
the value of a Boolean expression . The syntax for a select node is:

SELECT J[ENTITY_CLASS] entity—class-nameI[ENTITY_TYPE] entity-type-name
~l

SUCH THAT <condition> [comment]

Thus, the basic form for a select node is one of the following :

SELECT ENTITY_CLASS entity-class-name
SUCH THAT (‘~Boolean expresslorn)

5-12

-~~~~~~~~~~~~~--~~~~~~~~ -— ~~~~~~~~~~~ - - -~~~~~- • --— -

- ---~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ -~~~~—r- - - --’ - ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

or

SELECT ENTITY_TYPE entity-type-name
SUCH THAT (.cBoolean expression>)

In addition , a comment may be placed after the (cBool ean expression>). Al so,
if the entity class name or entity type name is already defined , the pre-
ceding element type name may be omitted . For example , the following are
valid SELECT nodes .

SELECT ENTITY_CLASS LARGE SUCH THAT CX ERROR > ERROR_LIMIT)

SELECT ENTITY_TYPE SMALL SUCH THAT (X*Y < LIMIT) (*EXAMPL E*)

Assuming that ENTITY_CLASS LARGE and ENTITY_CLASS SMALL are defined ,
the foll owi ng two SELECT nodes are equ iva l ent to those above.

SELECT LARGE SUCH THAT (XE RROR >= ERROR LIMIT)

SELECT SMALL SUCH THAT (X*Y < LIMIT) (*EXAMPLE*)

Examples of structures i nclu di ng SELECT nodes are:

R NET RADAR_RETURN.
STRUCTURE

INPUT INTERFACE RETURN_BUFFER
ALPHA CHEC K_VALIDITY
SELECT ENTITY_CLA SS OBJECT SUCH THAT

(RANGE < PERIMETER RANGE + DELTA)
SUBNET UPDATE_THREAT_ESTIMATE

END .

SUBNET UPDATE_THREAT_ESTIMATE.
STRUCTURE

ALPHA RECORD_UPDATE (*KEEP A RUNNING ACCOUNT*)
SELECT OBJ ECT_THREATENING SUCH THAT

((XDOT *XDOT > XDOTL IM) AND (NOT DECOY))
(* IGNORE DECOYS*)

END .

Formall y, the syntax for a SELECT node is:

5— 13

F ~~~~~~~~~~~~~~~~~~~~~ ~~~

<select node>::=

SELECT ~[ENTITY_CLASS] entity—cl ass-named
• ~[ENTITY TYPE] entity-type-name 11

SUCH THAT <condition> [coment)

~~~~~~~~~~~
(800lean expression >)

Boolean Expression

A Bool ean expression is in a form designed to mirror acceptable PDL 2
Bool ean expressions with the exception that function references and set
inclusion (IN) are not allowed . The Bool ea n expression is a rule of coinpu-
tation that, upon execution , produces a value of TRUE or FALSE. Some
examples of typical Bool ean expressions are:

X + 3 0 = Y
(YDOT <= 1500 ) = (XDOT >= 1800 )
A OR ((NOT B) AND (NOT (C OR D ) ) )

The complete formal definiti on of a Boolean expressi on is presented
in Appendix 0. The typical user is expected to have littl e or no reason
to ever be concerned with this formal definition but should be aware of the
followi ng considerations :

1. If more than one operator occurs in a Boolean expressio n ,
the sequence of execution may be defined expl icitly with
parentheses or implicitl y by the rule of operator precedence.
Since the operator precedence may differ for different impl e-
mentations of POL 2 or PASCAL , the user is advised to fully
parenthesize all Boolean expressions.

2. The appearance of an undefined name in a Boolean expression
will result in an implicit definition of that name as an
element of type DATA as discussed in Section 5.1.1.6.

3. If a da ta name has a value BOOLEAN for the attribute TYPE it
will be treated as a <Boolean primary> (equivalent to a TRUE
or FALSE). Otherwi se, it will be treated as an <arithmetic
factor> (equivalent to a number). The lack of a value
BOOLEAN for the attribute TYPE in a context in which a
<Boolean primary> is required will result in the detection
of a syntax error by the RSL translator .

FOR EACH Node

A FOR EACH node consists of two physical nodes in a structure . The
first node, termed the FOR EACH subject, is similar to an element node

5-14

_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-


— ,•—- ~ -~~

- - -
. T

except that the el ement type name must be FILE , ENTITY TYPE, or ENTITY_CLASS
and the optiona l comment appears after the word DO in the syntax of the
FOR EACH node. The second node , termed the FOR EACH body, is also similar
to an element node , except that the element type name must be ALPHA or
SUBNET . An optional comment follows the element name , and the entire FOR
EACH body is bracketed by the words DO and END .

tEFILE] file-name [RECORD] 1
FOR EACH~~[ENTITY_TYPE] entity-type-name ~

[SUCH THAT <condition>]
~ [ENTITY_CLASS] entity-class-name ~1

DO [comment] {E~ ~~~~~~~ ~i~~~~me}~
[comment] END

Examples of simple FOR EACH nodes are:

FOR EACH FILE OBJECTS_IN_TRACK
DO ALPHA CHEC K_RANG E END

FOR EAC H ENTITY_TYPE THREAT
DO (*LOOK AT ALL THREATS *) SUBNET CHECK_RANGE END

Two additional options are ava ilabl e on a FOR EACH node. First , the
execution of the FOR EACH body may be rrdde conditional based upon the value
of some Boolean expression. This is accomplished by spec ifying the words
SUCH THAT and a Boolean expression enclosed in parentheses immedi ately
preceding the word DO. The second option is that if the FOR EACH subject
names a FILE , the optional word RECORD may follow the file name.

Examples include:

FOR EACH FILE OBJECTS_IN_TRAC K RECORD
DO ALPHA CHECK_RANG E END

FOR EACH ENTITY_CLASS RANGE_MARK
SUCH THAT (AMPLITUDE >= NOISE + AMP_DELTA)
DO SUBNET BULK_FILTER (*REMOVE SLOW OBJECTS*) END

As with other nodes on a struc ture, the element type name may be
omitted if the el ement is already defined . If the element has not been
defined , the element type name must be supplied and the element is
implicitly defined.

Formally, a FOR EACH node is def ined as:

5—1 5

L & _ • • _~~~~~~ _ •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _~~~~~~~~ ~~~ ~~~~~~~~~~~~

F ~~~

‘
r

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.———,.- - - - 

-
. . 

• 
-

/

c for-each node,.::
([FILE] file-name [RECORD]

FOR EACH ~[ENTITY_TYPE] entity—type-name ? [SUCH THAT <condition>)
([ENTITY_CLASS] entity—class-name )1

DO [comment] {E~ 
a 

~~;~~:me }~ 
[comment) END

AND node

The AND node is a compl ex node with one entry arc and several exit arcs
leadi ng to parallel branches. There are two classes of AND nodes, rejoining
and non-rejoining . In a rejoining AND node all of the branches rejoin at a
v irtual AND node with mul tiple entry arcs and a single exit arc . In a non-
rejoining AND node, the branches do not rejoin; each of them ends with a

— TERMINATE, RETURN, or OUTPUT_INTERFACE node and there is no virtual AND node .

An AND node is written as the word DO, with an optional comment for the
AND node, followed by two or more branches separated by the word AND ; the
entire construc t is terminated with the word END. A branc h is simpl y defined
to be a sequenc e of one or more nodes. The syntax for an AND node is:

DO [comment] <branch> {AND <branch>}~ END

Some simpl e rejoining AND nodes include the followi ng :

DO (*TwO BRANCH AND NODE*)
ALPHA ONE
SUBNET TWO

AND
FOR EACH FILE THREE

DO ALPHA FOUR END
END

DO (*THREE BRANCH AND NODE* )
SELECT ENTITY_CLASS EC_1 SUCH THAT (X <= Y + 5.0)

ALPHA CHECKER
ALPHA DOER

AND
SELECT ENT ITY_CLASS EC_l SUCH THAT (LARGE_BETA )

SUBMET CHECK_R_DOT

5— 16

~ 



- -  

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

AND

ALPHA RECORD_HISTORY
END

An exampl e of a non-rejoining AND node is the followi ng :

DO (*BOTH BRANCHES TERMINATE*)
ALPHA OUTPUT_HISTORY
TERMINATE

AND

SUBNET FORM_RADAR_REQUEST
OUTPUT_INTERFACE RADAR_ORDERS

END

Since a branch i s simply a sequence of nodes, AND nodes may be
• embedded within other AND nodes to any level desired . The fol lowing

exampl e embeds an AND node wi thin the scope of another AND node.

DO (*ILLUSTRATE EMBEDDING*)
ALPHA CHECKER
DO (*~~BEDDED AND NODE*)

ALPHA DOER
AND

SUBNET CHECK_RA NGE
AND

ALPHA UPDATE_HISTORY
END

AND

SUBNET SELECT_LARGEST
END

Formally, the syntax for an AND node is:

<and node>::=
DO [comment] <branch>~AND <branch>}’~ END

<branch>:

<<node>~)1

5-17

— -• —--- - -- • - - — - - -~ ---— -- - • - - ----— - - --~~~~~-

Rules Regarding AND Nodes

The fol lowing rules are enforced for AND nodes .

1. Each bra nch of an AND node must end in a TERMINATE , RETURN , or
OUTPUT_INTERFACE or they all must rejoin. A mixture of
terminating and non—terminating branches is not allowed .

2. There must be at least two bra nches , i.e., the word AND must
appear at least once.

3. The words DO and END completely bracket the AND node .

4. No node in a structure may follow a non-rejoining AND node
since all branches in a non-rejoining AND node terminate.

OR Node

Like the AND node, the OR node is a compl ex node with a single entry
arc and multiple exit arcs. The meaning , however , is that onl y one of the
exit branches is to be followed . The branch to be followed is determined
by the value of Boolea n expressions given for each branch. The order in
which the Boolean expressions are to be evaluated may be specified by
assigning ranking ordinals to the branches. In the absence of ordinals ,
the lexica l ordering of the input text is used to determine the evaluation
order . To cover the case where all Bool ean expressions may evaluate to
fal se , an otherwi se clause is used .

Again , like the AND node , the OR node may be rejoining or non-rejoining .
If the OR node is rejoining , all the branches rejoin at a virtual OR node.
If the OR node is non-rejoining , each branc h ends with a TERMINATE or RETURN
node or OUTPUT_INTERFACE el ement node and there Is no virtual OR node.

An OR node is written as the word IF, with an optional coninent for the
OR node , followed by one or more cond itional branches separated by the word
OR , in turn followed by the word OTHERWISE , an optiona l branch , and the word
END . A conditional branch consists of an optional unsigned integer repre-
senting an ordinal for the branch , followed by a Boolean expression enclosed
i n parentheses and a sequence of one or more nodes. The syntax for an OR
node Is:

IF [comment] [unsigned-integer] (cBoolean expression~){cnode4”

OR [unsigned-integer] (~Boolean expression~){<node41}

OTHERWISE j<node,~ END

~

: ~~~~~~
-

~~~~~~~

An exampl e of a rejoining OR node not using ord i nals is the following :

IF (*TWO BRANCHES* )
(x > Y) ALPHA X_LARGER

OR
(x < Y) ALPHA Y_LARGER

OTHER WISE
ALPHA X_Y_EQUAL

END

An exampl e of a non-rejoining OR node using ordinals is the followi ng :

IF (*Two BRANCHES, EMPTY OTHERWISE*)
• 2 (RANGE <= FAR_LIMIT)

ALPHA CONSIDER_OBJECT
SUBNET UPDATE_STATE
TERMINAT E

OR
1 (RANGE >= NEAR_LIM IT)
SUBNET DROP_OBJECT

TERMINATE
OTHERWISE

TERMINATE
END

Li ke AND nodes, OR nodes may be nested to any l evel . For example , the

fol lowing illustrates an OR node with a nested OR node.

IF

((X + Y) = 2 + 30)
IF (*NESTED OR node*)

( X > Z + 5 )
ALPHA ONE

ALPHA TWO
OR

(Z - 10 < 25)
ALPHA THREE

OTHERWI SE

END

5—19

~

•

~ •



OR (X > Y)
ALPHA FOUR

OTHER WI SE
END

Formally the syntax for an OR node is:

<or node>::= (
IF [comment] <conditional branch>~ OR <condit iona l branch>~

OTHERWISE [<branch>] END

<conditional branch>::=

[unsigned integer] <condition> <branch>

<branch>:: =

~<node>}

Ru les Regardi ng OR Nodes

The following rules regarding OR nodes are enforced .

1. Each branc h of an OR node must end in a TERMINATE , RETURN, or
OUTPUT INTERFACE or they all must rejoin. A mix ture of
termlniting and non-terminating branches Is not allowed .

2. There must be at least one branch plus an otherwise cl ause ,
i.e., the word OR is not required to appear but the word
OTHERWISE is required.

3. Ordinals must be unsigned integers between 1 and 9999
inc 1 us i ye.

4. No two branches can have the same ordinal .

5. Either all branches (except the OTHERWISE) must have ordinals
or none may have ordinals. A mixture of ord i nal and non-
ordina l branches is not allowed .

6. The words IF and END compl etely bracket the OR node.

7. No node may follow a non-rejoining OR node in a structure
since all branches in a non-rejoining OR node terminate .

CONSIDER OR Node

The CONSIDER OR node, like the OR node, is a complex node with a
single entry arc and mu l tipl e exit arcs. The intended meaning Is that only
one of the exit branches is to be fol lowed ; the correc t branch being

5-20

—

~

• - - •

~ 



—--- -—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~- -- - - — - g_ _ ~~~~~~~~~~~~~~~~~~~ — - -

determined by the element name being considered , termed the consider-
subject, and the names specified in the conditiona l expressions for each
branch. -

•

Again , like the OR node, the CONSIDER OR node may be rejoining or
non-rejoining . If the CONSIDER OR node is rejoining , all the branches
rejoin at a virtual OR node. If the CONSIDER OR node is non-rejoining ,
each branch ends with a TERMINATE , RETURN, or OUTPUT_INTERFACE node and
there Is no virtual OR node.

There are two types of CONSIDER OR nodes, the consider-data and the
consider-entity-class; distinguished by the el ement type of the element
used as the consider-subject. For either type, the CONSIDER OR node i s
written in the same manner : the word CONSIDER , an optiona l element type
name DATA or ENTITY_CLASS and a data or entity class name , fol l owed by the
word IF with an optional comment , fol lowed in turn by two or more consider
branches separated by the word OR , followed by the word END . Each consider
branch consists of a consider l ist enclosed in parentheses fol lowed by
zero or more nodes comprising the branch . The form of the consider lis t
is a sequence of one or more names separated by the word OR. If the
consider-subject is a data name , these names are assumed to be values in
its RANGE. If the consider-subject is an entity class name , these names
are assumed to be entity type names and implicit declarations will result
if they have not been previous ly defined .

The syntax for a consider-data node is:

CONSIDER [DATA] enumerated-data-name

IF [comment] (enumeration_value_ name {OR enumeration_value_name}0 )

{<node>}~

{OR (enumeration_value_name {oR enumerat ion_value_ name}~) {<node>I’11

END

5-21. 

~~- - - -



~~~‘
-• - - -

~~

-- -—-• — - - - —-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The syntax for a consider-entity-class node is:

CONSIDER [ENTITY_CLASS) entity-class-name

IF [comment) (entit~
_t
~Pe_name {oR entity_t~Pe_name } ) {cnocie }”

{oR (entitY_tYPe_name {oR entitY_type_name}~) fc
node~}’~}

END

Examples of a CONSIDER OR node are the following :

CONSIDER DATA OBJECT CLASSIFICATION

IF (*BRANCH ON CLASS* )
(UNKNOWN OR RV)

SUBNET CHECK_BETA

OR
(DECOY)

SUBNET CHEC K_BETA

ALPHA UPDATE_WEIGHT
OR

(JUNK)
END

CONSIDER ENTITY_CLASS OBJECT
IF (*BRANC H ON AGE OF OBJECT* )

(ANCIENT OR VERY_OLD OR OLD)
ALPHA UPDATE AGE
TERMINATE

OR
(YOUNG )
ALPHA CHECK_CHARACTERISTICS
SUBNET UPDATE_STATE

OUTPUT_INTERFACE TRACK_REQUEST

OR
(INFANT)
SU BNET UPDATE_STATE

OUTPUT_INTERFACE TRACK_REQUEST
END

5—22

A 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -


~
_ _ --

~~

.- - --

Differences Between OR Nodes and CONSIDER OR Nodes

Al though there are many similarities between OR nodes and CONSIDER OR
nodes, the fol lowi ng differences should be kept in mind .

1. An OTHERWISE branch is required on an OR node and not allowed
on a CONSIDER OR node. —

2. The only branch which may be empty on an OR node is the
OTHERWISE branch. Any one of the branches on a CONSIDER OR
node may be empty (but only one).

3. The branch conditions for an OR node must be Boolean expres- - -

sions. For a CONSIDER OR node, the branch condition must be
one or more value names or entity type names separated by
the word OR.

4. Ord inals are optional on OR node branches and not allowed on
CONSIDER OR node branches.

Formall y, the syntax for a CONSIDER OR node is:

<consider-or node> : :=
<consider-data>
<consider-entity-class>

<consider-da ta>: :
CONSIDER [DATA] enumerated-data-name
IF [comment] <consider-data branch>

OR <consider-data branch>”I
END

<consider-data-branch> : :=
(enumeration-value-name {OR enumeration-value name}~) [<branch’]

<consider—entity—class > : :=

CONSIDER [ENTITY_CLASS) entity-class-name
IF [comment] consider-entity-branch

\ f l

j OR <consider-entity-branch> ’1
END

<consider-entity-branch> : := —

(entity~type~name {OR entity_type_name}0)[cbranch>]

5—23

----- - - •~~~~~~ - - • - —-—~~~~~~~~~~~ — --— --~~~ • • - - • — - - — -~~~ - - ~~~~~~~~~~~~~~~~ - - -

V’,’ ~~~~~~~~~~~~~~

• - - -~~~~~~ ---~ - - — - - • - I

Rules Regarding CONSIDER OR Nodes

The following rules are enforced for CONSiDER OR nodes .

1. The consider-subject must be of type DATA or ENTITY_CLASS.

2. If the consider-subject is of type DATA , it must have the
value ENUMERATION for attribute TYPE or it must have no
value for attribute TYPE.

3. For a consider-data , the names in the consider-list must not
be known names. (Note: The RSL translator has no knowl edge
of names which were entered inside of text strings , such as
the value for attribute RANGE.) They are assumed to be value
names contained within the RANGE for the data.

4. For a consider—entity-class , if the names in the consider-list
are known names, they must be entity type names.

5. A CONSIDER OR node may have at most one empty branch and must
have at least one non-empty branch.

6. Each branc h of a CONSIDER OR node must end in a TERMINATE or RETURN
node or OUTPUT_INTERFACE element node or they all must rejoin.
A mixture of terminating and non—termi nating branches is not
al l owed .

5.1.1.5 Declari ng A Path

A path may be declared for any RSL element which is of type VALIDATION_

PATH, by spec ifying a path declaration optionally preceded by the word INSERT .
The path declaration itsel f consists of the word PATH followed by one or more
element nodes , the word END, and an optional comment. Formally, this is
shown as:

[INSERT] PATH {cel ement node>}~ END [comment] .

Each el ement node consists of an element type name followed by an
element name and an. optional comment . If the el ement has been previously
defined , the element type name may be omitted . If the element has not been

defined , the element type name must be specified and the element is
Impl icitl y defined (see Section 5.1.1.6). In either case, the comment is
associated with the path node and not with the element itself.

Element nodes on a path may be constructed only from elements of a

type defined with STRUCTURE APPLICABILITY PATH. The types so defined are

EVENT and VALIDATION_POINT.

5-24

- ~~~ - - . - -

-—~~~~~~~~
. —--— •.----- ~~ ~~

Examples of path declarations inc lude the fol l owing :

VALIDATION _PATH V P_l .
PATH

EVEN T TRIGGER_R_NET ONE
VALIDATION POINT RECORD_DATA
EVENT TRIGGER R NET TWO

END .

VALIDATION_PATH CHECK_TIMING .
PATH

VAL IDATION POINT RECORD_RADAR_RETURNS
EVENT SCHEDULE_PULSES (*ENABLE SCHEDULER*)
VAL IDATION_PO INT RECORD_RADAR_ORDERS

END (*CHECK TIMING*).

The syntax for declaring a path is:

[INSERT] <path decl aration>
<path declaration>::=

PATH ~<el ement node>~ END [comment].
‘1

<el ement node>: :=

[element-type-name) element-name [comment]

5.1.1.6 Implicit Element Declarations

An element may be declared either explicitly, by bei ng the subj ect
element of an el ement definition , or implicitly, by being referenced as
part of a relationship, structure, or path declarati on. For exampl e, the
el ement definition:

DEFINE R_NET Rl.
ENABLED BY EVENT El.
STRUCTURE

ALPHA Al
TERMINATE

END.

Implies the el ement declarations:

DEFINE EVENT El.
DEFINE ALPHA Al.

5—25

— .— -~~-•~~~~~~~ - -~~~~~~~~~-~--- ---rf l- - -~~~~~~~~~r~~~~r

‘- ~~~~~—~~----— - -
•

With two exceptions, an element type name must be explicitly stated
in order for an impl ied element declaration to be allowed . For exampl e,
if El and Al had not been previously declared , then the above exampl e would
be legal , but the following would not be l egal :

DEFINE R_NET Rl.
ENABLED BY El
STRUCTURE

Al

TERMINATE

END.

Note that an el ement type name applies only to the el ement name that
immediatel y follows it. For example , in the following , DATA applies only
to DAT1 and not to DAT2 or DAT3 :

ALPHA ALl .
INPUTS DATA DAT1 , DAT2 , DAT3 .

The two exceptions to the rule that an undefined element name must
always be preceded by an el ement type name occur in Bool ean expressions
and consider-lists. In a Bool ea n expression , undefined names encountered
are impl icitly defined to be of type DATA ; the el ement type name DATA must
not appear. In a consider-list for a consider-entity type of CONSIDER OR
node, undefined names encountered are implicitly defined to be of type
ENTITY_TYPE; the element type name ENTITY_TYPE must not appear.

5.1.2 Modifying an El ement Definition

Once an el ement has been defined , it is often necessary to ref ine or
modify that definition in some way. These modifications include the
insertion of new declarations and the removal of existing declarations.
Each of these types of modifications as they relate to the RSL concepts of

el ements, attributes , relationships , structures, and paths are d iscussed
below. In several cases the material would basically be a restatement of

material presented in previous sections of this document ; the user will be

referred to those sections.

The format used to modify the definition of an el ement closely

follows that used to define a new element. First a declaration must be
given of the subject element which Is to be modified . This declaration 3

5-26

F I~~~~~~~~~~~~~
-
~~~~~T~~~~~

is followed by the declarations of the desired changes for the subject
element. The syntax for an element modification is:

[MODIFY] element-type-name el ement-name [comment] .

[INSERT) <el ement definition sentence> n

<attribute declaration removal>
<relationship declaration removal>
<structure declaration removal>
<path declaration removal >

As shown in the syntax , the word MODIFY is optional in an el ement
modification. If the element to be modified exists in the ASSM then MODIFY
will be assumed and need not be stated . If, however , the el ement is not
defined in the ASSM, the RSL function assumes that this is a new element
definition. Because of this assumption , the user is safest if he always
uses the word MODIFY when modifyi ng an el ement.

The word INSERT is also optiona l before an element definition sentence.
Here, the use or omission of the word INSERT has no effect on the interpre-
tation of the input.

5.1.2.1 Declaring the El ement to be Modified

The declaration of the subject element to be modified is given by —

optionally specifying the word MODIFY , followed by the el ement type name ,
el ement name , and optional comment for the el ement .

[MODIFY] el ement-type-name el ement-name [comment] .

The main purpose of this declaration is to specify which element is to be
modified in the followi ng declarations. It also may serve to mod ify the
element definition itsel f since,if a comment is specified , it will replace

any existing comment associated wi th the element. If no coment is spec i-
fied, any exi sti ng comment for the element wi ll be retai ned . For exampl e,
the first exampl e below retains any existing comment for ALl while the

second associates the comment h’ (*NEW COMMENT*)~
I wi th the element AL2.

MODIFY ALPHA ALl .
MODIFY ALP HA AL2 (*NEW COMMENT*).

5—27 

-~~~~~~~~~~ -~~~~~~~~~~~~~~~ - -~~~ • • - •—~~~~~~~~—~~~~~~~~~~~~~~~~~~ -~~~~~~~ -- . - - - - -  - -~~~~~~~~ - -



~~~~ -~~~~~~~ ‘. “‘ -
~~~~~~~~r~~-—-—--- - rT ~~~~~ _ . ‘ ‘~~~~~~~~~~~~~~~~~ ‘~~ - - — — . ~,——- - ._w-~~~ --”~~ -~~ - .w, —-— -rr -~~ Tr ~~ - - ~~~~~-- - — - - - - -

The syntax used to declare the element to be modified is:

I

: <element modification> ::=
[MODIFY] element-type-name element-name [comment].

5.1.2.2 Declaring an Attribute Value

There is no difference between declaring attribute values for an
existing element and declaring attribu te values for a new element. The
reader is referred to Section 5.1 .1 .2 above for a discussion of declaring
attribute values.

5.1.2.3 Remov i ng an Attribute Value

An existing attr ibute value for an element is removed by specifying
the word REMOVE fol l owed by the name of the attribute . Notice that the
attr i bute value itself is not specified , nor is a comment .

REMOVE attn bute-nanie.

The following exampl e first defines an element DAT1 with several
attributes, then the element definition is modified to remove attributes
USE and INITIAL_VALUE , other attributes for DAT1 remaining intact. A new
value for attribute INITIAL_VALUE is then declared .

DEFINE DATA DAT1 .
TYPE INTEGER.
USE GAMMA .
INITIAL_VALUE 0 (*NOM INAL VAL UE*).
MAXIMUM VALUE 100.

MODIFY DATA DAT1 .
REMOV E USE.
REMOV E INIT IAL_VAL UE.
INSERT INITIAL_VALUE -1.

Rules Regard ing Removal of Attribute Values

The following rules are enforced on removal of attribute values .

1. The word REMOV E must be specified .

2. The attribute value must not be specified .

3. The removal of an attribute value also removes any comment
associated wi th the attribute value for the element .

5-28

-- - - ~~— -- , ~~~~~——~~~—•--• - - .  ~~~~~~~~ - ~~-— - - — -  - - - - -



4. If a comment is specified after the attribute name , an i nfor-
mative error diagnostic will be generated and the comment
ignored . The remova l will , however, still be accomplished .

Formally, the syntax for removing an attribute value is:

<attribute declaration removal>::=
REMOVE attribute-name.

5.1.2.4 Declaring a Relationship Instance

There is no difference between declaring a relationship instance for
an existing el ement and declaring a relationship instance for a new element.
The reader is referred to Section 5.1.1.3 above for a discussion of
declaring relationship instances.

5.1.2.5 Removing a Relationship Instance

A relationship between the subject element and one or more object
• elements is removed by specifying the word REMOVE , the relationship name

optionally followed by the appropriate relation optional word for the
relationship, followed by the names of the object elements . Each of these
object el ement names may be preceded by its el ement type name .

REMOVE relation-name [relation-optional-word]

{ [element-type-name] el ement_name}~.
Assume that DAT2 is defined as fol lows:

DEFINE DATA DAT2 (*DUMMY EXAMPLE*).
INPUT TO ALPHA AL2 (*DAT2 - AL2*),

ALPHA AL21,
ALPHA AL 22.

INCLUDES DATA DAT21 ,
DATA DAT22 (*DAT2 - DAT22*).

The following will remove the relationship INPUT between DAT2 and both AL21
and AL2 . It will also remove the relationship INCLUDES between DAT2 and

DAT22.

MODIFY DAT~\ DAT2.
REMOV E INPUT AL2 , ALPHA AL21.
REMOV E INCLUDES DATA DAT22.

5-29 

~~~~~~ -~~~~~~~~~~~ - - ~~~~~~~~~•


Since a relationship instance relates a subject to an object, it is always
possible to remove the relationship instance from either viewpoint . The
followi ng modifications accomplish exactly the same effect as those above.

MODIFY ALPHA AL2.
REMOVE INPUTS DATA DAT2.

MODIFY ALPHA AL21 .
REMOV E INPUTS DAT2.

MODIFY DATA DAT22.
REMOVES INCLUDED IN DAT2.

The net effect of either set of modifications is to leave DAT2 as if it
were defined:

DATA DAT2 (*DUMMY EXAMPLE*).
INPUT TO ALPHA AL22.
iNCLUDES DATA DAT21.

The f.rmal syntax for the removal of relationship instances is:

<relationshi p declaration removal>: :=
REMOV E relation-name (relation-optional -word]

{ Eel ement-type-name] el ement_name} ’.

Rules Regard ing Removal of Relationship Instances

The following rules are enforced on removal of relationship instances.

1. The word REMOV E must be specified .

2. The removal of a relationshi p instance also removes any
comment associated wi th that instance.

3. If a coninent is specified after an element name , an informa-
tive error diagnostic will be generated and the comment
ignored . The removal , however, will still be accomplished .

5.1.2.6 Declaring a Net Structure

There Is no d ifference between declari ng a structure for an exi sting
element and declaring a structure for a new el ement. The reader is referred
to Section 5.1 .1 .4 above for a discussion of declaring a structure for an

element .

5-30

• 5.1.2.7 Removing a Net Structure

A structure for an element is removed by specifying the word REMOVE
fol lowed by the word STRUCTURE. For exampl e, if SUB1 is defined as
follows :

DEFINE SUBNET SUB1 .
STRUCTURE

FOR EACH ENTITY_CLASS EC1
DO SUBNET SUB2 END

DO ALPHA ALl
AND ALPHA AL2
AND ALPHA AL3
END
RETURN

END (*ARBITRARY STRUCTURE*).

the text:

MODIFY SUBNET SUB1 .
REMOVE STRUCTURE.

will remove the structure associated with SUB1 and its comment .

Formall y, the syntax for removal of a structure is:

<structure declaration removal>: :=

REMOVE STRUCTURE.

Rules Regard ing Removal o” Structures

The fol lowing rul es are enforced for removal of structures.

1. The word REMOVE must be specified.

2. The removal of a structure al so removes any coniTlent associated
with the structure.

3. If a comment is specified after the word STRUCTURE,an informative
error diagnostic will be generated and the comment ignored. The
removal of the structure will still be accomplished.

5.1.2.8 Declaring a Path

Declaring a path for an existing element is no different from declaring
a path for a new element. The reader is referred to Section 5.1.1.5 for a
discussion of declaring a path for an element.

5-31

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—•-- 

~~
- -

~~~~~~~~~~

~

~‘1~~

5.1.2.9 Removing a Path

A path for an element is removed by specifying the word REMOV E
followed by the word PATH. For example , if VAL_1 is defined as fol lows:

DEFINE VALIDATION_PATH VAL_1.
PATH

VALIDATION_POINT VP_ONE
EVENT EVT_ONE
VALIDATION _POINT VP_TWO

END (*DUMMY PATH*).

the text:

MODIFY VALIDATION _PAT H VAL 1
REMOVE PATH .

will remove the path associated with VAL_l and its c omment.

Formal ly, the Syntax for removal of a path is:

<path declaration removal>::=
REMOV E PATH.

Rules Regarding Removal of Paths

The followi ng rules are enforced by the RSL translator for removal
of paths.

1. The word REMOVE must be specified .

2. The removal of a path also removes any comment associated
with the path .

3. If a comment is specified after the word PATH, an informative
error diagnostic will be generated and the comment ignored .
The removal of the path is still accomplished .

5.1.3 DeletIng an El ement

An element may be deleted only if it has no relationships to any

other elements, has no associated structure or path , and is not referenced

on any structure or path . An element is said to be referenced on a
structure or path If the element name is used in any of the tollowing

contexts i n a structure or path :

5-32

1) as an el ement node

2) within a Boolean expression

3) within a consider-entity-type list

4) as a consider-subject

5) as a for-each-subject

6) as a for-each-object

7) as a sel ect—subject

If an element has values for one or more attributes, it is not
necessary to remove these values before deleting the el ement. If an
element has relationships to other el ements, these relationships must
be removed by mod ifying either the element itself or the elements to
which it is related before the element may be del eted. If an element has
a path or structure , that path or structure must be removed by modifying
the el ement before the element may be deleted . If an element is
referenced on a path or structure , either the path or structure must be
changed using the Interactive R-Net Generation Function (see Section 5.2)
to remove the reference or the element with which the path or structure
is associated must be modified to remove the path or structure, before the
el ement may be del eted.

Once the necessary modifications have been performed , the el ement is
deleted by spec ifying the word DELETE followed by the element type name
and element name . Since this sentenc e results in the compl ete removal of
all information about the el ement deleted , it is meaningless to follow it
with any attribute , relationship, path , or structure declarati ons .

An element defined as:

DEFINE ALPHA DUMMY (*DUMMY COMMENT*).

may be simply deleted by:

DELETE ALPHA DUMMY .

Formall y, the syntax for del eting an element is:

<el ement del etion>::=
DELETE element-type-name element-name .

— 5-33


~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
- - - 

- •
~~~~~~~~~~~~~~~~~

__ /

A comment may be specified fol lowing the element name but it will result
in an informative diagnostic and the comment will be Ignored.

5.1.3.1 Deleting an El ement with Attribute Values

No special action need be taken to remove attribute values for an
el ement before the el ement may be del eted. This is true because attributes
are considered to be strictly local to an el ement, i.e., they affect no
other element, and therefore their automatic removal on deletion of the —

element does not in any way affect the definition of any other element.
The user is, of course , always free to explicitly remove any or all attri butes
of the element before deleting it. Section 5.1.2.3 of this document dis-
cussed the process of removing attribute values for an element.

For exam pl e, if DATA XYZ is defined as:

DEFINE DATA XYZ (*XYZ COMMENT*).
DESCR IPTION “STRICTLY FOR AN EXAMPLE” .
INITIAL_VALUE -37.3l5E-38.
MAX IMUM VALUE 0.0 (*MUST NOT BE > 0*).

then

MODIFY DATA XYZ .
REMOV E DESCRIPTION .
REMOV E INITIAL VALUE.
REMOVE MAX IMUM_VALUE.

DELET E DATA XYZ .

is exactly equ ivalent to:

DELETE DATA XYZ.

Both forms wi ll completely remove XYZ , its comment, and all of its
attr ibute values and thei r coments. The net result will be exactly
the same as if DATA XYZ was never defined.

5.1.3.2 Deleting an El ement with Relationships

Before an element may be deleted , all relationship s between that
element and all other elements must be explicitly removed. This may be
accomplished by modify ing the el ement to remove the relationships or by

• modifying the elements to which the element is related . The user Is

5—34

.
~~~~

-
~~~~

- - - •
~~-- ---

- - --- --
~~

- -

--T ~~•TT~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

referred to Section 5.1.2.5 for a discussion of the removal of relation-
ships between elements.

For example , if DATA XYZ is defined as follows :

DATA XYZ .
INCLUDES DATA X

DATA Y
DATA Z.

INPUT TO ALPHA ALF1 .

then the INCLUDES and INPUT relationships must be removed before DATA XYZ
may be del eted. The following modifies X , Y, Z and ALF 1 to remove these
relationshi ps and then del etes XYZ .

MODIFY DATA X.
REMOVE INCLUDED IN XYZ .

MODIFY DATA Y.
REMOV E INCLUDED IN XYZ.

MODIFY DATA Z.
REMOVE INCLUDED IN XYZ .

MODIFY ALPHA ALF1 .
REMOV E INPUTS XYZ .

DELETE DATA XYZ .

DATA XYZ coul d also have been modi fied di rectly to remove the relationship s
and then deleted :

MODIFY DATA XYZ.
REMOVE INCLUDES DATA X.
REMOV E INPUT TO ALF1 .
REMOVE INCLUDES Y,Z.

DELETE DATA XYZ .

In either case, the element XYZ, its comment and all relationship s to
other elements will be compl etely removed from the data base.

5.1.3.3 Deleting an El ement with a Path or Structure

if an element has an associated path or structure, the path or •

structure must be removed before the element may be del eted. This may only

be done by explicitly mod ifying the element to remove the path or structure

5—35
—

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - -
.

as described in Sections 5.1.2.7 and 5.1.2.8 of this document or by using
the RN~TGEN function (see Section 5.2).

For example, suppose that SLJB1 is defined:

SUBNET SUB) (*HAS A STRUCTURE*).
STRUCTURE

CONSIDER DATA DAT1

IF (*OR NODE*)
(VAL 1 OR VAL2) ALPHA ALl

OR
(VAL3) ALPHA AL2

SUBNET SUB3
END

RETURN (*~~cK TO CALLING STRUCTURE* )
END .

Then, the fol lowing RSL commands would del ete SUB):

MODIFY SUBNET SUB1 .
REMOVE STRUCTURE.

DELETE SUBNET SUB1 .

Again , suppose that VAL 1 is defined as:

VALIDATION_PATH VAIl (*HAS A PATH*).
PATH

EVENT EVTO 1
EVENT EVTO2
OUTPUT_INTERFACE RECORDER

END .

Then VAL 1 may be deleted by entering :

MODIFY VALIDATION_PATH VAL1 .
REMOV E PATH.

DELET E VALIDATION _PATH VAL 1 .

5.1.3.4 Deleting an Element Referenced ona Path or Structure

As long as at least one path or structure conta ins a reference to
a particular element, that element cannot be deleted. Therefore, in order
to delete an element referenced on a path or structure, it is first

5—36

-~~~~~ —---~~~~~~~ —- —~~~~~ -~~~~~~~~~~~~~ - - - - - •- ----—-• ~~~~~~~~~ -



necessary to remove that reference. A removal of the reference may be
accomplished by using the Interactive R-Net Generation function to physically
alter the structure or path, or by using RSL comands to remove the entire
referencing structure or path. The use of the Interactive R-Net Generation
function is detailed in Section 5.2.

In the exampl e below, RSL comands are used to remove the structure
and/or path which references the el ement to be del eted . Assume R_NET NETO1

and VALIDATION_PATH VALPATH_01 are defined as:

R_NET NETO1 .
STRUCTURE

EVENT EVTO1 (*TRIGGER NETO2* )
A LPHA ALF1
VALIDATION_POINT VALPOINT_01
TERMINATE

END.
VALIDATION_PATH VALPATH_01.

PATH
EVENT EVTOO
EVENT EVTO1 •

VAL IDATION_POINT VALPO INT_01
END .

If the del etion of ALF1 is desired then only the structure for NETO1 must
be removed:

MODIFY R_NET NETO1 .
REMOVE STRUCTURE.

DELETE ALPHA ALF1 .

If the deletion of EVTO 1 or V ALPOINT_01 were desired then both the structure
and the path would have to be removed . For example:

MODIFY R_NET NETO1 .
REMOVE STRUCTURE.

MODIFY VALIDATION_PATH VALPATH_Ol.
REMOVE PATH.

DELETE VALIDATION_POINT VALPOINT_01.

5—37 

--~~• -



—v.---,,--. -.— --~
----

~~ —~~~~
. 

~~~ ‘ ~~~~~~~~~~~ ~~~~~~~~~~ 
- ~~~~~~~~~~~~~~~~~~~~~~~ ‘ - ‘ “

5.1.4 RenamIng an Element

The name of any el ement may be changed to a new name as long as that
new name is not currently in use. The form of the statement is the word
RENAM E followed by the old element name , the word AS, the new element name
and an optiona l comment. Any existing conui~ent for the el ement will be
removed . If a new conmient is specified it will be associated wi th the new
element name .

For example , assume that OLD_ELT was declared as:

ALPHA OLD_ELT (*COMMENT FOR OLD_ELT*).

then

RENAME OLD_ELI AS NEW_ELT .

will result in the followi ng information content in the data base:

ALPHA NEW_ELT .

The rename command is equivalent to a modification of an existing
element definition. Thus the rename ccmim and should only be specified
between element definitions , not wi thin the declarations of any el ement
definition .

Formally, the syntax for a rename is:

<RSL command>::=
RENAME el ement-name AS new-element-name [comment] .

Cautions for Renaming

The user should be aware that renam i ng an element wi ll not change
the name in material which is stored in the data base in the form of
character strings. The following are stored in this form:

1. All comments, i.e., material enclosed within the comment
brackets (* and *)

2. All text string s, i.e., material enclosed within the text
brackets and “

. Note that this includes all code within
the executable description (BETA or GAMMA attribute value)
for an ALPHA as wel l as the code within a TEST attribute
value for a PERFORMANC E_REQUIREMENT.

3. All conditi onals in structures, i.e., material enclosed
within the conditiona l brackets (and).

5—38

5.1.5 Retyping an Element

The element type of any element may be changed as long as the new
type is compatibl e with all current uses of the element. This means that
the fol l owing must all be true:

1. All attributes for the element must be legal for the new
el ement type.

2. All rela tionship s the element has must be legal for the
new element type.

3. All references to the el ement on structures and paths must
be in a context which is al lowabl e for the new element type .

4. The el ement must not have an associated structure or path .

An element is retyped by specifying the word RETYPE, the element
name, the word AS , and the new element type name. Like a rename, the retype
comma nd is equivalent to a modification of an existing el ement definition
and should only be specified between el ement definitions , not wi thin the
declarations of any el ement definition.

Assume that the fol l owing element definitions exist:

ALPHA AL (*11.115 IS ALPHA AL*).
DESCRIPTION “GOOD_OLD AL” .

DATA DAT1 .
INITIAL_VALUE -5.0.

SUBNET SUB1 (*COMMENT FOR SUB1*).
STRUCTURE

ALPHA X
SUBNET Y
RETURN

END .

The following retype would be acceptable since the attribute DESCRIPTION is

legal for DATA .

RETYPE AL AS SUBNET .

The resulting definition of AL is:

SUBNET AL (*THIS IS ALPHA AL*).
DESCR IPTION “GOOD_OLD AL” .

5-39

--- —---—-—~~~
—---.------—--

~~
•- - - - - — --- -

~~~~ — —- — -  —~~



‘

~ 

~~
—
~~~

-
~~~~

—- -TT TT r~~ 
“~~~~

The following two retypes would not be acceptable; the first because a
FILE cannot have an INITIAL_VALUE and the second because SUB1 has an
associated structure.

RETYPE DAlI AS FILE.
RETYPE SUB1 AS R_NET .

Formally, the syntax for a retype is:

<RSL comand>::=
RETYPE element-name AS el ement-type-name .

5.1.6 Using Synonyms

The user may define an alternate name for an element by introducing
another element of type SYNONYM and the relationship EQUATES between the
two el ements. A synonym name EQUATES to at most one element name , termed
the prime name. However , a single el ement name may be EQUATED to any
number of synonym names . For example , the following EQUATES SYN1 and SYN2
to the prime name ALl :

DEFINE ALPHA ALl .
EQUATED TO SYNONYM SYN1 ,

SYNONYM SYN2.

Once a synonym name has been defined and EQUATES to a prime name , any
reference to the synonym name is interpreted as a referenc e to the prime
name . The one exception to this rule is when the element type name SYNONYM
is stated explicitly.

If the intended reference is to the prim name , the element type name
for the prime name should be used . Thus , given the definitions of ALl ,
SYN1 and SYN2 above, the fol l owing two structures are exactly equivalent.

SUBNET SUB1.
STRUCTURE

ALPHA SYN1
SUBNET SUB2
ALPHA ALl
RETURN

END .

5-40

- -

~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• -

SUBNET SUB1 .
STRUCTURE

ALPHA ALl
SUBNET SUB2
ALPHA SYN2
RETURN

END .

To declare a synonym name or EQUATES relationship, or to remove suc h
declara tions, the element type name SYNONYM must be used . Given the above
definitions of ALl , SYN1 , and SYN2, the EQUATES relationships may be
removed by stating .

MODIFY ALPHA Al.
REMOVE EQUATED TO SYNONYM SYN1

SYNONYM SYN2.

The synonym el ement SYN1 and SYN2 may then be deleted :

DELET E SYNONYM SYN1 .
DELETE SYNONYM SYN2.

Note that if the el ement type name SYNONYM had not been stated explicitly,
the modification above would have been interpreted as:

MODIFY ALPHA Al.
REMOVE EQUATED TO ALPHA Al

ALPHA Al.

which is illegal .

Cautions on the Use of Synonym s

Synonyms should not be used in any material which is stored in the
data base in the form of character strings. The followi ng are stored in
thi s form:

1. Comments, i.e., material enclosed wi thin (* and *) .

2. Text strings , i.e., material enclosed wi thin double quotes.
Thi s includes all BETA and GAMMA attribute values for ALPHA s
and TEST attribute values for PERFORMANCE_REQUIREMENTs.

3. Conditionals in structures , i.e., material enclosed within
(and).

5-41

- -


~~~I I ~~~~~T7ITT~~

5.2 GENERATING STRUCTURE GRAPHICS INTERACTIVELY (RNETGEN FUNCTION)

This section describes the Interactive R-Net Generation function
(RNETGEN) which provides an interactive (prompting) graphics method of
creating and storing into the ASSM the structures for R_NETs, SUBNETs, and
VALIDATION PATHs. This i nteractive graphics facility is only available
when REVS is operating in the on-line mode (see Section 4.3) and uses the
ANAGRAPH color graphics terminal for displaying and manipulating a graphical
representation of such structures. Figure 5-1 presents a typical SUBNET
structure as displayed on the screen.

The Interactive R-Net Generation function is invoked by issuing the
RCL statement , RNETGEN. REVS must be in the on-l i ne mode prior to issuing
thi s RCL statement. Should the RNETGEN statement be issued in the off-
l ine mode, an appropriate diagnostic message will be generated in the
REVS.OtJT file , and processing will continue wi th the next RCL statement.
Upon successful processing of the RNETGEN statement , the message “ENTER
TRACKBALL TO CONTINUE” is displ ayed on the screen.* The user must respond
by depressing the trackball entry key in order for RNETGEN to continue.
The screen is subsequently erased and redrawn with a menu appearinç1 along
its left side as depicted in Figure 5— 1 .

This menu list consists of the basic operations provided by the
RNETGEN function . Any one of these operations is invoked by selecting
the appropriate menu line entry via the trackbal l input facility (i.e.,
the trackball cursor is positioned on the menu line and the trackball
entry key depressed). The last selected menu line remains in force
(active) until overridden by a subsequent menu selection; the white bullet
marker appearing at the l eft edge of each menu line is colored red for the
currently active menu selection.

Depend ing upon the current status of RNETGEN , the sel ection of a
particular operation may be illegal and result In the message “ILLEGAL
MENU SELECTION ” . For exampl e, prior to building or retrieving a structure,
user selection of the MOVE NODE menu operation would be ille gal . In
such cases the diagnostic message is displayed , the input request is
ignored , and some other menu operation must be selected by the user.

*Al l of the messages displayed by RNETGEN are listed and described in
Appendix E.

5-43 — —I
• ._ . 

____  
____  I

1
-

~ 

~~~~~~~~
, - -

~~
--

~~~~~~~~~~~~~



— —. —-— —.-“——~,—-~—~
———•-• 

~~~~~~~~~~~~~~~~ 

.

~~~~
‘ .;_ ~

‘•1 ~~~~~~~~
_ _

— — — —

—U,
uJ I-U...... U,8 ~~L.J UJ 2 W ~~ W ~~I- 5 a a a <

~~ ~~ ~- U, ~~. ~- ,- ~~ a ~- a a a ~~ I— S aLU W <  LU ~~~~~~~~~~~~ Z~~~a5~~~ Z~~~ I.J a
LU ~~ I- S ~~. Q. ~~ O. 5 5 2  ~~. LU a LU 2 ~~~ S ~

.- ~- ~- - S
~~ LU ~~ .J  >- ~~. ~ j  o ~~~ ~— -~~ ~~~ 0 ~- S >- )- 05 ~~ ~~. w . LU

S~~~~~ ~~ Z~~~~~~~~~~~~~ UJ U , w~~~~~~~~~~~ J ..j -.0 s~~
~I ~~~~~~~ —~~~~~~W U, 0 V) 0~~~W J ~~~~ J O  I ,- ~~

~~ ~~ ~~~~~~~~~~0 0 0 0 — I—i C~ ~~ — — 0 0 < ~~ I— —
U) S SSc_) 0a _. ,U ,aaU ,~~~ r- ..,~~~ J U)U ,  

~
- • , 

~.U U I U U U• U U• U U~~~~~•b~~~ • 
v)

— — — —

5—44

L



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

- - 

~~~~

The color menu appearing below the menu list provides the capability
for specifying a color , of which there are seven, to be used in displaying
nodes on the structure . A more detailed description of color selection is
given in Section 5.2.2.8. The currently active color sel ection is indicated
with either a smal l solid or outlined black square located in the center of
the selected color square. Turquoise is the default col or selection pro-
vided by RNETGEN initiation.

5.2.1 Identify i ng the Structure

There are three types of structures which may be created and stored
or retrieved and modified by the RNETGEN function. As indicated in the
menu , these are R_NET, SUBNET , and VAL IDATION_PATH structures . Upon
selection of one of these menu entries , the message “KEYIN ELEMENT NAME OF
DESIRED ELEMENT” is displayed just below the color menu display. The user
responds to thi s message by typing in the name of the element to which the
desired structure is (or is to be) attached . If the name is illegal (i.e.,
the name does not begin wi th an alphabetic character and contains characters
other than al phanumeric or the underscore), then the message “ILLEGAL
SYNTA X , INPUT REJECTED” is displayed and the input is rejected. If the
name is already in use in the ASSM , but for some other purpose, then an
appropriate message is displ ayed and the user inpu t is rejected . In either
case , the user must re-issue a menu selection to continue.

However, if the i nput name already exists in the ASSM as an element
of the appropriate type (R_NET , SUBNET , or VALIDATION _PATH), then the
message “ELEMENT IN ASSM , IS IT THE ONE? KEYIN YES OR NO” i s di spl ayed .
The user responds with a keyboard entry of YES (Y) or NO (N). If the
response is NO then the inpu t name is ignored and another menu sel ection
must be issued to continue.

If the response is YES and a structure al ready exists in the ASSM ,
it will be copied to a temporary work area in the ASSM . The user will then
be given the option to display the structure in either its zoomed-in or
zoomed-out mode (see Section 5.2.3). The message “ZOOM-OUT OR ZOOM-IN ON
STRUCTURE , SELECT VIA TRACKBALL” is displayed . The user responds by using
the trackball to select the word ZOOM-OUT or the word ZOOM-IN in the ~
d4 spl ayed message. The structure will then be displ ayed accordingly.

L ~ -—

~ TT’~ ~~~~~~~~~~~~

If the structure contains no graphics coordinate data (i.e., the
structure was created and stored In the ASSM via the RSL translator), then
the user will be given the option to use either the autoplot capability or
the prompting capability for entering graphics coordinate data on the
structure . The message “NO GRA PHICS DATA ON STRUCTURE” is displayed followed
by the message “SELECT - PROMPTER OR AUTOPLOT - VIA TRAC KBALL” . The user
responds with a trackball selection of either PROMPTER or AUTOPLOT . If the
autoplot mode is selected , all graphics coordinates for each node on the
structure are generated automatically and the user is then given the option
to display the resulting structure in either its zoomed-out or its zoomed-in
mode. If the user selects the prompting mode for entering graphics coordinate
data , then the entry node of the structure is displayed at the top center of
the screen display area and the message “USE SUCCESSOR NODE MENU SELECTION
FOR PROMPTING” is displayed below the menu list. A detailed description of
this operation is given in Section 5.2.3.7.

F If the ASSM element does not contain an associated structure, then
an entry node for the structure is created and displayed at the top center
of the display area. The user conti nues by making some other menu selection
in order to add to the structure. The followi ng section describes these
operations in detail.

If the element input name does not exist in the ASSM the user will be
i nformed by the message “ELEMENT NOT IN ASSM, DO YOU WANT IT ENTERED?
KEYIN YES OR NO” . If the response is NO then the input name is ignored and
another menu sel ection must be issued to continue. If the user response is
YES then the element name is entered in the ASSM and an entry node for its
structure is created and displ ayed at the top center of the screen display
area. Again , the user continues by maki ng other menu selections in order
to add to the structure.

5.2.2 Creating/Modifying a Structure

Once a structure or any portion thereof has been displayed on the

screen in its zoomed-in mode , it may be altered through the use of any

of the menu operations described in the following subsections . It should

be poi nted out, however, that any changes made are only temporary. Once

the user has made all desired changes , the SAVE NET menu operation must

5-46

I

be selected in order for the altered structure to become permanent in
the ASSM .

5.2.2.1 Add ing a Node

To add a node to the currently displayed structure the user must
first select the desired node type from the list of availabl e node types
appearing in the menu . If the selected node type is illegal for the
current structure, the message “ILLEGAL NODE FOR CURRENT STRUCTURE” will
be displayed and the selection will be rejected. After successfully
selecting a node type, the node is positioned in the structure displ ay
area . Thi s is accomplished by sel ecting a point on the screen via the
trackba ll.

One of two errors may result from this operation . If the selected
point is too close to an already existing node , possibly causing a node
overlap, the message “NODE OVERLAP IN STRUCTURE, REPEAT SELECTION SEQUENCE ”

• will be displayed and another screen position must be selected by the user .
Al so , if the selected point is too close to the border of the screen display
area , the message “NODE WILL NOT FIT ON DRAWING AREA , TRY AGAIN ” may result
and a new positi on wi ll have to be selected .

If the selected node type references an element in the ASSM , the
message “KEYIN DESIRED ELEMENT NAME” will be displayed ; the user responds
with a keyboard inpu t of the appropriate name . If an input error is
detected (i.e., a name syntax error or the element is already in the ASSM
with inappropriate type), then the input is ignored , and the user must
restart the input sequence by re-selecting the node screen position . If
the element name is not in the ASSM , the user is given the option to
either enter it or not enter it in the ASSM . This is done by keyi ng in
YES (Y) or NO (N) in response to the message “ELEMENT NOT IN ASSM , DO
YOU WANT IT ENTERED? KEYIN YES OR NO” .

If the selected node type is an OR node, the message “CONSIDER - DATA ,
ENTITY_CLASS , NEITHER - SELECT VIA TRACKBALL ” Is di splayed and the user H
must respond by sel ecting one of the three entries in the message via the
trackball. If the selecti on i s either DATA or ENTITY_CLASS , the user will
be requ ired to enter the correspond i ng element name via the keyboard .
Again , checks are made to ensure error-free input. If the suppl i ed name

5-47

- -• --- ~~~~~~ •--- ---

- - • .- - _ --~ -—-~~~-
_

- - - - -r ~~~~~~~~~~
-

-

- • _
~
-

- - ~~ -~~--~-~-—- - - -

- does not exist in the ASSM , an option will be given to allow entry i nto
the ASSM .

If the selected node type isa FOR EACH node, the message “FOR EACH -
FILE , ENTITY TYPE , OR ENTITY_CLASS - SELECT VIA TB” is displayed . The user
must respond wi th a trackball selection of the appropriate el ement type
from the list within the message. The corresponding element name is then
keyed-in and similar processing is performed as wi th the OR node.

Once all required inputs have been suppl ied , error-free, the indicated
node type sym bol is displayed at the selected point on the screen. If the
node references an el ement, the first three (3) characters of the element
name are also displayed wi th the node symbol on the screen . Figure 5-2
gives a list of the avail - -

~ node types and their corresponding display
symbols.

5.2.2 .2 Removing a Node

Any node may be removed from the current Structure by first sel ecting
the DELETE NODE menu operation and subsequently using the trackball to
point to the desired node on the displ ayed structure. If the message “NON-
EXISTENT NODE SELECTED , RESTART SELECTION SEQUENCE” appears , the user has
not correctly specified a node on the structure. This condition can happen
if the trackball cursor is not properly positioned on the node , i.e., try
to pl ace it as close as possibl e to the node ’s center . When the node has
been properly identified , it will be erased from the screen along with all
of its connecting arcs. The corresponding i nformation will also be removed
from the ASSM and an appropriate message will be displayed to i nform the
user that the operation is complete.

5.2.2.3 Connecting Nodes

Node arcs are formed by first selecting the CONNECT NODES menu opera-
tion and subsequently using the trackball to indicate the predecessor node
and its correspond i ng successor node. Checks are performed to determine
if nodes do indeed exist at the selected points on the screen and , if so,

whether the indicated nodes can be legally connected . If an error condi-

tion exists, the message “ILLEGAL NODE SELECTION , RESTART SELECTION SEQUENCE”
is displ ayed. If either one of the selected nodes is found to be in error,
both nodes must be re-sel ected in order to continue. If the selected

5-48L.. -


~~~~~~~~~~~~~~~~~~~~~~~~ ~

NODE TYPE DISPLAY SYMBOL

ALPHA -

AND -

ENTRY NODE ON R_NET -

ENTRY NODE ON SUBNET -

EVENT -

FOR EACH -

INPUT INTERFACE -

OR -

OTHER - [ I
OUTPUT iNTERFACE -

SELECT -

SUBMET -

RETURN -

TERMINATE -

VALIDATION _POINT -

Figure 5-2 Node Displ ay Symbol s

5-49



-

- ~~~~~—-- ------- -

predecessor node is an OR node and an implicit determination cannot be
made as to its type (e.g., splitting or rejoining OR node), then the user
must respond YES (Y) or NO (N) to the displayed message “IS PREDECESSOR
NODE A REJOINING-OR-NODE , KEYIN YES OR NO” .

If the predecessor node is a splitting CONSIDER OR node, then one
of the two followi ng messages will be displayed :

1) KEVIN ENTITY TYPE ELEMENT(S) ASSOCIATED WITH THIS BRANCH
~~~or

2) KEVIN RA NGE VAL UE(S) ASSOCIATED WITH THIS BRANCH ().
The user responds by enter i ng , via the keyboard, the requested branch in-
formation enclosed wi thin parentheses. The branch conditions have the
same syntax as RSL branch conditions (see Section 5.1.1.4). Syntax and
semantic checks are performed on this i nput and if an error is detected ,
an appropriate diagnostic message is displayed and all inputs are ignored
inc l uding node selections. Node selections must be re-issued in order to
C ont I

If the predecessor node is a splitting non-CONSIDER OR node and the
branch requires an ord i nal , then the message “KEVIN ORDINAL VALUE ” is dis-
played . The user must then key in a four character (numeric) value to be
attached to the indicated branch. Checks are performed on the inpu t to
insure correctness. If an error is detected (i.e., non-numeric value or
duplicate ordinal), then an appropriate diagnostic is displayed and the
ordinal value must be keyed in again. Once the ordinal value has been
inpu t without error or if no ord i nal is requ ired for the indicated branc h ,
then the message “ENTER CONDITIONAL EXPRESSION SEGMENT” will be displayed .
The user must respond by typing in the conditional expression enclosed
wi thin parentheses. If the conditi onal expression i s the word OTHERWISE ,
then the parentheses are omitted on input.

If the predecessor node is a FOR EACH node, the user is given the
option to supply a conditional expression to be attached to the branch.

After successfully supplying all i nput requ ired to form the arc
between the selected nodes, a white directed arc is displayed on the
structure and the corresponding information is entered in the ASSM . An
appropriate message Is displayed to inform the user that the menu operation

has been successfully completed.
5-50

• .


~~~~nr ~~~~~~~ ~~~~~ - —~~~ -- - -.-—-..,—-,. --.,-- -. ?__•“ —_—t-.,• --•__ .__•_•_ __‘
~~~~ -

_ _
- - -

~~ •I’.
~~~ • •_  -

5.2.2.4 Disconnecting Nodes

Node arcs are removed from the structure via the DISCONNECT NODES
menu operation . Thi s is accomplished by using the trackball to identify
the two nodes on the structure whi ch are to be d i sconnected . Error checks
are performed to ensure that the selected nodes do i ndeed exi st on the
structure and that they do have arcs between them . If an error is detected ,
an appropriate message is displayed and the node selection sequence must be
restarted . It should be pointed out that the node selection sequence is
irrelevant (i.e., either the successor or predecessor node may be selected
first). Upon successful identification of the two nodes, the node arc is
erased from the screen and the correspond ing information is removed from
the ASSM . If the deleted branch was an OR or FOR EACH branch containing a
conditional expression then this information is also removed from the ASSM .
After successful completion of the operation , an appropriate message is
displayed to inform the user that he may continue with other operations .

5.2.2.5 Comenting a Node

The COMMEND NODE menu operation is mul tipurpose i n that it allows the L

user to enter, remove , or displ ay comments on a node in the structure. After

identifying the desired node using the trackball , the message “ENTER , REMOVE ,
OR DISPLAY COMMENT ON NODE, SELECT VIA TB” is displayed; the user responds
with a trackball sel ection of the desired operation to be performed on the
sel ected node.

If ENTER is selected , then the user is required to type in the desired
comment enclosed within (* and *). Upon compl etion of this input , an
appropriate message is displayed to inform the user that the operation has
been performed . -

If REMOVE is selected , the comment, if one exists , is detached from
the selected node and del eted from the ASSM .

If DISPLAY i s selected , the first line of the coni~ent is displayed ,
if one exists, and the message “ENTER TRAC KBALL TO CONTINUE” is displayed

if there are more l ines in the comment; otherwise, the message “ENTIRE
COMMENT ON SELECTED NODE HAS BEEN DISPLAYED” is di splayed . If the selected
node is not commented , an appropriate message is displayed to so inform

the user.

5-51 

_ -~~~~~~~ -~~~~------~~~~~ --~~~~~~~~--



_ 
- -— ,-

~
-

~~~~~ 
- . — ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

-- --- -

5 .2.2.6 Mov ing a Node

The user may move any node appearing on the screen by selecting the
MOV E NODE menu operation. The node to be moved is identified via a track-
ball selection . If the message “NON_EXISTENT NODE SELECTED , RESTART
SELECTION SEQUENCE” appears , the user must re-issue the trackball node
selection being more careful to locate the trackba ll cursor as near the
node center as possible. Once the desired node has been successf ully
identified, the message “SELECT -TO POSITION-VIA TRAC KBALL” is displayed ;
the user must respond using the trackbal l to select the point in the
screen display area to which the sel ected node is to be moved .

Thi s selecti on may also resul t i n an error message . For example ,
if the sel ected point is too close to an existing node on the structure
(i.e., it might resul t in a node overlap) or if the point is off the display
area or too close to the display border (i.e., the entire node could not
be displayed), an error condition exi sts and an appropriate diagnostic
message is displayed . If this happens the selection sequence must be
repeated beginning with the node selection.

After successfully identifying both the desired node and its new
screen position , the node along wi th any arcs extend ing from it will be
erased from its current location on the screen and will be redrawn with
its associated arcs at the new position on the screen . The ASSM will be
updated accord ingly and a message will be displayed to inform the user
that the operation has been successfull y completed.

5.2.2.7 Moving a Subtree

This operation is similar to the moving of a node except that the
entire portion of the structure below and including the selected node
is moved . It should be pointed out that node overlapping will not be
diagnosed in this operation as it is in the moving of a single node.

Depend ing on the extent of the subtree , this operation will be somewhat
slower to complete than any of the prev iously described operations. Once
the operation is complete , an appropriate message is displ ayed to inform

the user that he may continue further processing .

5.2.2.8 Selecting a Color

The color options ava i la bl e to the user appear as seven colored
squares just below the last line in the menu list (see Figure 5-1). The

5—52

.
~~~

/

selected color is used for displaying nodes on the screen as they are
created by the user. It may also be used for chang i ng a node color
appearing on the displayed structure. The desired col or is selected via
the trackball prior to selecting the node type to be created or prior to
sel ecting the node on the structure whose col or is to be changed . So
long as the selected col or in the menu is identified by a small black out-
lined square, the node col or change mode is in effect. However, as soon
as any other menu selection is made , the bl ack outl i ned square in the
color menu becomes a solid black square indicating that a color menu
selection is required to re-activate the node color change mode.

The selected color indicated in the menu is also used by the AUTOPLOT
operation as described in Section 5.2.3.8 below.

5.2.2.9 Saving a Structure

As stated earlier , the structure currently being built or modified
resides in a temporary work area of the ASSM. If the structure is to be
given a permanent status in the ASSM the user must do so explicitly by
selecting the SAVE NET menu operation . If this is not done prior to
terminating or beginning on another structure then a warning message will
be issued to inform the user that the current structure was not saved ;
the user may save the structure at this point.

Before the structure is actually saved , a struc ture analys i s i s
performed to determine whether there are any errors existing in the
structure. If an error is detected (i.e., an incompl ete or incorrect
structure), the structure is erased from the screen . It is redisplayed
with the node in error centered in the display area wi th a red , white ,
and blue square surroundi ng it . An appropriate error message is al so
displayed explaining the cause of the error. At this point the user must

correct the error before the structure can be saved .

Once the structure has been saved , and this may take several seconds
depending on the size of the structure , a message will be displayed to
inform the user that the structure was successfully saved .

5.2.3 Displaying a Structure and Its Elements

A structure may be displayed on the screen in one of two modes:
zoomed-in mode or zoomed-out mode. As stated previously, structures can

5-53 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-- ~ -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ••-—-.——-.-•—--.-—,•-——~—••“-•-• - ___,,__•.~~_— —•—-,~_/~

__•__ ‘_____ ‘___ ——- ..-.------
~~

—-,---
~~~~

-- --  •—

- -/

be created and modified only in the zoomed-in mode. The zoomed-out mod-~
has been provided so that the user may view a structure in its entirety
in a miniature color-coded form when the structure is too large t~ be
displayed in its zoomed-in mode.

5.2.3.1 Scrolling a Structure

An additional feature has been provided to display any portion of
large structures in the zoomed-in mode . This is accomplished using the
SCROLL NET menu operation. Although thi s operation has been categorized
as a display capability for structures or portions thereof , it would and
does also fit in the category of functions used and required in the build-
ing and modifying of structures. It provides a windowi ng capability for a
structure which is too large to fit on the screen in its zoomed-in mode.

UpoH selection of this menu operation , the user sel ects a “from” and
“to” position on the screen using the trackball. The “from” position
indicates a point on the structure which is to be moved across the screen
to the “to” position on the screen. Upon selection of the “from” position ,
a small blu e sol id circle i s di splayed servi ng as a reminder to the user
of the selected point. Note that this point must be l ocated in the screen
d isplay area; otherwise, a diagnostic message will be displayed and the
input will be rejected .

After successfully identify i ng the “from ” and “to” positions , the
structure is erased from the screen and redrawn with the “from ” position
now located at the “to” position on the screen. A message is then dis-
played to inform the user that the operation has been compl eted .

It should be noted that no changes are made to the ASSM as a result
of this operation. The user may now add to or mod ify the structure using
any of the previously described menu operations.

5.2.3.2 Zoomiflg-Out on a Structure

This menu operation may be used on any structure which is currently

displayed on the screen in its zoomed-in mode. The resulting display

presents the entire structure on the screen , regardless of its size, in
a color-coded form. Followi ng is a legend for the nodes and their color-

coded representations on a zoomed-out structure display:



~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~~~7~~~
’ .

~~~~~

ALPHA - green rectangle
SUBNET - green ellipse
EVENT - yellow circle
VALIDATION POINT - blue circle
AND - magenta circle
OR - white circle
RETURN - yellow square

ENTRY - white square
TERMINATE - white square
FOR EACH - turquo ise circle

- INPUT INTERFAC E - red circle
OUTPUT_INTERFACE - red circle
SELECT - red c ircle
Other - blue rectangle

Once a structure has been displayed in its zoomed-out mode , none of

the node manipula tion menu operations are allowed ; shoul d the user attempt
one of these operations , an error message will result and the menu selection
will be ignored .

5.2.3.3 Zooming-In on a Structure

This operation can be used only if a structure is currently displayed
in its zoomed-out mode (see the preced ing section); otherwi se, its selection
wi ll result i n an error message and the selection wi ll be ig nored .

If the selection is allowed , the user responds by selecting a point on
the zoomed-out structure. This point in the structure will be re-displayed
at the top center of the displ ay area . Below this will be displ ayed, in the
zoomed-in mode , the remaining portion of the structure bel ow the selected
point. The user may then continue to add to or modify the structure as

desired.

5.2.3.4 Displ aying a Node El ement

As indicated previously, only the first three characters of the name

of an element associated with a node are displ ayed on the structure. By

selecting the DISPLAY NODE menu operation and subsequently pointing to the

desired node via the trackball , the user i s able to see the entire element
name . It will be displayed just below the color menu line . If the sel ected

5-55

I L L  - - . - - - - —- -— --- —- ——-— -— -- —-~— --— — - - ~~-~ —~~~
- - - - - -—-- -- -—-“--—-.——•-- .-.————-—-•,- —--—--- - ---•-— - —-—--—— -



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - —---~,rr - .—~~~ ——

node has no element associated with it , such as an AND node, an appropriate
message will result and the node sel ection is ignored .

5.2.3.5 Displaying a Branch

Once the conditional expression on an OR/FOR EACH node branch has been
entered in the ASSM, it is no longer visibl e on the displayed structure .
When modifying a branch extending from an OR/FOR EACH node, it may be
necessary to know the associated conditional expression. By select-
ing the DISPLAY BRANC H menu operation , the user may at any time have the
conditional expression of any branch displayed . Following the menu selection ,
the user responds with trackball selections of the successor and predecessor
nodes of the desired branch on the displayed structure. If no conditional
expression exists for the selected branch , an appropriate message is dis-
played and the node selections are ignored . If the branch has an ordinal
associated with it , the ordina l value will be displayed ; the user will then
be required to respond with a trackball entry in order to continue. The
first line of the conditional expression will then be displayed . A track-
ball entry will again be required for display of each subsequent line of
the conditional expression . After all lines of the conditiona l expression
have been displayed , an appropriate message is di splayed to inform the user
that the operation is complete .

5.2.3.6 Displ aying a Structure on CALCOMP

Using the CALCOM P menu operation , the user can have the currently dis-
played structure plotted on the CALCOMP plotter . Upon selecting this opera-
tion, the message “DO YOU WANT STANDARD DOCUMENT SIZE , KEVIN YES OR NO”
will be displayed . The user responds by keying in YES (Y) or NO (N) via the
keyboard. If the response is YES, the generated CALCOM P plot will be
8-1/2 x 11 inches. If the response is NO, the user will then be asked to
keyin the desired document height and width via the keyboard . These values
may be keyed-in as either integers or real numbers. A maximum of 29 inches
for the document height and 50 inches for the width are allowed . Any values
larger than those will be rejected and replaced by their respective maximums .

The nodes on the plotted structure wi ll retai n the same relative
positi on on the structure as they appear on the screen. However, up to
thirty characters of the element names associated wi th each node wil l be

5-56

~

_

~

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-A



• displayed on the plotted structure. A legend page will also be generated
- ,

- for each structure which has branches with conditiona l expressions and/or
nodes with coments. These branches and nodes are numbered on the structure;
these numbers , wi th their corresponding conditional expressions and/or
comment, are displayed on the legend page (see Figure 5-3).

When the plotting is compl ete, an appropriate message is displayed to
inform the user that other processing may be continued .

5.2.3.7 Displaying a Structure in the Prompting Mode

Structures residing in the ASSM may or may not contain graphics coordi-
nate data for display on the ANAGRAPH console. If a structure without graphics
coordinates is retrieved , the user is given the option to either allow the
required coord inate data to be generated automatically or to use the prompting
capabilit , provided by the SUCCESSOR NODE menu operation. If the user sel ects
the prompting capability, the entry node for the structure is immediately

- • disp l ayed at the top center of the screen display area and the user is
adviced to use the SUCCESSOR NODE menu operation for displaying subsequent
nodes.

Upon selection of the SUCCESSOR NODE operation , the user responds by
pointing to the node on the structure for which the successor node has not
yet been displayed . If the identified node has no successor nodes to be
displayed , an appropriate message results and the node selection is ignored .
If the identified node has more than one successor node , all of which are
not displayed , the user will be informed as to the number of successors and
will be required to depress the trackball entry key to continue. The node
type of the first successor node , or the successor node if there is only one
successor, is displayed and the user is then required to use the trackball
to select a point on the screen at which the successor node is to be dis-
pl ayed . If the selected point is t~o close to an existing node on the screen
and might , therefore, cause a node overlap, then an appropriate message
results and the inputs are rejected. Al so, if the selected point is out-
side the screen display area or too close to the border such that the
node, if displayed , would extend outside the screen displ ay area , an
appropriate message is displayed and the inputs are rejected . In either
case , the user must re-issue the node selection in order to continue.

is repeated until 

5 5 7  

have b:en



—~---.--~~~~— ~~~~ - - - - _ -

~~~~~~~~~~~~
-— .. “-

~~~~~~~~

.- -
~~

_
~Tr ~~~~~~~~~~~~~~~~~~

?OR11JR~J~E

0
/

~~~~~~~~

Figure 5-3 CALCOMP Display

3EST AVAILABLE COPI

-
- ~~~~~~~~~~ ~~~~~~~ ~~~

— -

FOR
STRU CTJ RE E C€N O

NODE ORD~ NPL
10 VAL UE COP10~ 11ON~ L EXP RE551O ~;S D.~~R CCN~iE~~tS

- 1 (NOT QROPJ’ L~~G~2- - 3 (*NUST SUCC F~EID S (? ’~C~ 5E FCTEO ON C-ILL NG N ET S)
• 4 (1MPG EJD:•C PND (TE _~~~~~E J C)

• Figure 5-3 CALCOMP Display (Continued)
- 5 5 9 v’~rrT’~~ ,~~ 4RL[COPY

- - - - ~~ - -
~~~~~~~~~~~~~ ~ v—,-v---- - ~~~~~~~~~~~ ~~~~~~~~ - -  ~~~~~~~~~~~~~~~~~~~~~~~~ r—- n..r -r - - -

- - ~-~~~~- -•-•- - . i

5.2.3.8 Automatic Displaying

Structures which have been generated or modified via RNETGEN may not
appear to be quite as neat and wel l proportioned as one would like . By
using the AIJTOPLOT menu operation , one can automatically replace the
coordinate data such that the resulting structure display is much neater
and wel l proportioned. This is accompl ished by first retriev ing the desired
structure from the ASSM, if it is not currently displayed , and simply
selecting the AUTOPLOT menu operation. It should be pointed out that this
operation also replaces all existing node colors with the color identified
in the color menu . When the operation is complete, the user is given the
option to display the newly generated structure in either its zoomed-in or
zoomed-out mode. As described in Section 5.2.1, automatIc plotting may
be done for a structure entered through the RSL translator .

5.2.4 Terminating the RNETGEN Function

The user selects the STOP menu operation when ready to return to the
REVS Executive. If the currently displayed structure has not been saved
since it was created or retrieved , the followi ng message will be displayed :

WARNING ... PREVIOU S STRUCTURE WAS NOT SAVED, RE-SELECT MENU
The structure continues to reside in the temporary work area and the user
may, at this time , sel ect the SAVE NET menu operation. If the structure
has not undergone any changes since i t was last saved , then it need not
be saved again , since a permanent copy already resides in the ASSM . However,
to terminate, the user will be required to re-select the STOP operation.

5-60



- 
—••—. •--——-.-- 

~
•‘•••••

~ ~--—~~ ,— ~-•- ••_- — •-._ 
~~~~~~~~~~~~~~~~~ •-~ ‘••‘“3?~•~.—.-y..— —-— - ~ ••W’~•-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~ _•_—~

_
~_••_•• •____•_— ____ •‘_~_ _ • ~_•_ _~ . —— -•~~~,• — — - -

7
-U!’

6.0 ANALYZING AND DISPLAYING REQUIREMENTS (RADX FUNCTION)

The use of the Requirements Anal ysis and Data Extraction (RADX) func-
tion is described in thi s section. The three major areas of this generalized
tool are explained in detail in the fol lowi ng sections . The define set
facility which provides an ASSM query and interrogation capability and pro-
vides a technique for identifying subsets of information to be processed by
other RADX commands is described in Secti on 6.1. The various ways to
extract information from the ASSM and generate printed , punched , or plotted
output is presented in Section 6.2. A description of the automated static
analysis performed by RADX is contained in Section 6.3.

General i nformation that appl i es to all commands that are inpu t to the
RADX function and an explanation of RADX output messages are provided bel ow.

RADX Input Statements

As each RADX command is described in subsequent sections , the syntax
will be presented along with an expl anation of the meaning of the command .
The command syntax presented is expressed in the extended Backus-Naur Form
(BNF) explained in Appendix A. The compl ete syntax of the RADX command
statements is summarized in Appendix F.l.

There are some syntax and semantic rules which are not easily defined
in syntax diagrams or BNF notation and do not warrant repetition as
each command is described ; these rules are summarized below.

• A RADX statement is terminated by a period followed by a space
that is not conta i ned in a comment or text string .

• All RADX names (e.g., set name) must be 60 or less characters
in length . The first character can be an underscore or a
letter. The remaining characters can be an underscore , a
letter , or a digit.

• Al l numbers are in standard PASCAL form (See Appendix B).

• A comment, a sequence of characters beginning with (* and
ending with *), may be placed at any location in a statement.
For example , (* THIS IS A COMMENT *)•

• A text string , a sequence of characters beginning and ending
with doubl e quotes , may be used only where specified In the RADX
command syntax.

6-1

- - --
~~~ ~~~~~

-
~~

-
~~~~~~~~

- - -———-- -
~~~
- - -

~~~~~~
-- -- -.

- _ - - ~~~~~~ ~~
-
~~~~~~~~~~~~~~~~~~~~~

-—-- •-
~~~~~~~~~

- - -

• The characters coma , colon , and semicolon are optional
punctuation marks that can be used any place in a statement
wi thout chang i ng the meaning of the statement.

• Special processing is given to the SYNONYM el ement type . If
a SYNONYM el ement is named in a RADX command and it EQUATES
to another el ement , then the other element is used in place
of the SYNONYM element. For the case that the SYNO NYM is not
EQUATED , the SYNONYM el ement is used .

• An el ement name cannot be preceded by an element type name to
identify a single element. When an el ement type name is used
in a command , it is interpreted as a reference to all the
el ements of the el ement type .

Displ ay of User ’ s Command

A RADX command that is Input by the user and the displ ay that results
from the command are separa ted by preced ing the command with the header

[RADX COMMAND =

• and fol l owing the command with a line of underscores that is as long as
the longest line in the command . When RADX is being executed on-line , the —

header also serves as a prompter to indicate that an input from the user
is expected.

Error Messages

A sumary of the error messages that can be issued by RADX is given
in Appendix F.2. All error messages have a standard first line format
that has the following general form:

*ERROR XXXX description .

The XXXX isa unique four digit number that relates to the area of RADX that

detected the error and description Is an explanation of the error.

Error messages Issued by RADX can occur dur ing the translation of a

statement or during the processing of a statement after it Is successfully

translated. For errors tha t occur during translation , an output line is

displayed after the error message to identify the cause of the error. The

line will contain the keyword SYMBOL followed by the user ’s inpu t symbol

that caused the error . Error messages that occur during the processing of

a statement have supp l ementary information fol l owi ng the message when it

- - is needed to further ident if y the source of the error.

6-2

_
_
•

-_ -

~~
-

~~
- • - -

~~~~ ~~~~~~~~
-- -—-

_ — - 
~~~~~~~~~~~~~

- --
~

-_

~~~
- •—~ 

-  _
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -. 

-

~~~~~ ~~~~
- .---‘

~~ ~~
- -

~~~~~~~~ -
— -  —- ——— — - --——- •

~
--—-— - - - ~~~~~~~~~ -_ - -—- - - - -~~• • . .*_~_••__•__.•_____ ___ •_ _ -

- A summary of the number of error messages issued by RADX during a
— single execution of the function is also posted In the REVS.LOG file. This

appears as:

QQ 001 NUMBER OF ERROR MESSAGES ISSUED BY RADX = X X .

6-3

-4



- ~~~~ —-~~--~ -.--- ---- —~--—.—---— --•- - —__--~ ,-•-~~— ——-—-- 
-• ---

~~~~~~~~-—— - 
-

F-

-~~ ~~~~~ ~~~~~~~~~~~~ - -
~~~—~~~~~~~ E _. ~U!I~~ ~~~ -~•~~~~~~~-. - -t

6.1 SUBSETTING A REQUIREMENTS DATA BASE

The define set facility of RADX provides a mec hanism to subset an
ASSM for the purpose of user-directed analysis of the data base and user
selection of requirements i nformation to be subsequentl y processed by
other RADX commands such as LIST and PLOT.

Conceptually, a RADX set is a named collection of el ements in the
ASSM . There are two basic types of sets that can be used : predefined
sets and user defined sets.

Predefined Sets

The predefined sets provide a basic subsetting of the ASSM . They
are always defined and available for reference when RADX is activated and
cannot be redefined by the user . The predefined sets are:

• The universal set, which is referred to as ALL or ANY , con-
tains all the el ements in the ASSM.

• Element type sets, which are referred to by an el ement type
name, contain all the elements that are of the named element
type.

• El ement sets, which are referred to by an element name , con-
tain the named el ement.

To illustrate the predefined sets, assume that an ASSM contains only
the followi ng elements:

ALPHA : A.
DATA : X.
DATA : V.

When RADX is executed the fol l owi ng sets would immediately be ready for use:

SET ALL = (A, X , Y} SET A = {A}

SET ANY = IA , X , Y} SET X = (X}

SET ALPHA = (A} SET V = {Y}.
SET DATA = IX , Y }

User Defi ned Sets

Additiona l subsetting of the ASSM can be achieved by defining new
sets by one of the methods described in this section. These new sets are



referred to as user defined sets and they are specified using the follow-
ing general syntax:

SET name = description.

The name given to the set can be any word that is not conta ined in the
ASSM and that Is not one of the following keywords: ALL , ANY , SET , ELEMENT
TYPE , MULTIPLE , or RSL . Description specifies the condition for men~bershlp
in the new set.

After a set is defined, a displ ay is made by RADX that tells the
number of members that are contained in the new set. This will appear in
the output as:

SET COUNT = XX.

Referencing Sets

A RADX set is referenced in a command by the fol lowi ng <set Ident1f1er~.
syntax:

[SET] name

The name can be that of a predefined set or a user defined set.

The syntax of the various set description methods appearing in the
remainder of this section use the symbol <set identifier> to designate a
set identifier . In the explanations , different terms for the set identifier
are used to indicate the meaning of the command. The terms used are:
existing set, first independent set, second Independent set, subject set,
object set, and candidate set.

The following are examples of set identifiers that can be used in
RADX commands to reference sets:

ALL
SET ALL
DATA
SET DATA

X
SET X.

Redefini ng Sets

As previously mentioned , a predefined set cannot be redefined . How-

ever, user defined sets can be redefined at a user ’s convenience. It is
6-6 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~


- ‘ ‘~~~~~~~~~~ ‘ ‘ ~~~~~ .— ~~~~~~~~~~~~
‘~~~!W~~~~~~~ 1t ~~

- —•
- -

.~~ - -•--- •— s— -

permissible to use a set as an independent and dependent set in the same
command . For example:

SET X = SET X OR SET V.

In the command , the contents of the independent set X (i.e., the
one on the right side of the equal sign) remains constant during the pro-
cessing of the command . When the command is completed , the old contents
of the set are deleted and the new definition takes effect.

The foll owi ng is a list of the different ways that a set can be
defined by the user. They are described in the subsequent subsections.

• enumeration

• combination

• attribute qualification

• relationship qualification

• structure qualification

• hierarchy qualification

This section concludes wi th examples of how the definition of sets can be
employed to perform a user-d irected analysis of a requirements data base.

6.1 .1 Defining Sets By Enumeration

The members of a set can be defined as those conta ined in another
set or as the union of a list of sets by the followi ng syntax:

SET new-set-name =fset identifier>}’.

The set identifier designates either a predefined set or a set defined
by the user in a prev ious RADX statement.

The statements given below demonstrate the use of this technique for

defining sets.

SET A = ALPHA , FILE , INPUT INTERFACE.

SET B = SET A , STATE , FOUND.

In the first statement, set A will contain all the elements in the

ASSM that are members of the predefined el ement type sets ALPHA , FILE

~

-

~~~~~ TT ~~~~~~~~~

or INPUT INTERFACE. The set B will contain elements that are members of
the user defined set A plus the two predefined element sets STATE and FOUND .

6.1.2 Defining Sets By Combination

A set can be defined as the logical combination of two existing
independent sets by a statement using the fol l owi ng syntax:

(AND ~l
SET new-set-name = <set identif1er>~OR ~‘ <set identifier> .

~MINUSI1

The set identifiers designate a first independent set and a second independent
set, respectively. The type of combination performed is indicated by the
operation connecting the two independent sets. These operations are:

AND - Set i ntersection. The members of the new set are those
that are members of both the first independent set and
the second independent set.

OR - Set union. The members of the new set are those that are
members of either the first i ndependent set or the second
independent set.

MINUS - Set di fference. The members of the new set are those that
are members of the first independent set but not the
second independent set.

The following are examples of set definitions by combination .

SET ALPHA_DATA = ALPHA OR DATA .

SET NETS INX = R_NET AND SET X.

SET ALL_EXCEPT_DECISION = ALL MINU S DECISION.

6.1.3 Defining Sets By Attr ibute Qualification

The qualify by attribute statement provides the capability to define a
set of el ements that have or do not have certain attribute characteristics.

The syntax of the statement is:

SET new-set-name = <set identifier> 
~~~~~~~

<attribute cr4terIon> .

6-8

- - - - - - _ --- ~~~~ -~~~~~-•- ~~~~~~~~~~ --_

_ _ _ _

The attribute criterion can be specified by one of the followi ng
forms:

1) attribute-name

2) attribute-name [<relation operator>] <value> .

The members of the new set are those members of the subjec t set
(designated by the set identifier) that satisfy the attribute criterion
in the manner ind icated by the connector. When a positive connector is
used , the members of the new set are those in the subject set which have
the characteristics stated by the attribute criterion . If a negative
connector is used, then the members of the new set are those in the subject
set that do not have the attribu te criterion.

A variety of terms are allowed to be used as positive and negative
connectors to increase the readability of RADX statements. The allowabl e
terms are listed below:

positive connectors negative connectors
WITH <positive connector> NO
WHERE <positive connector> NOT
WHICH WITHOUT
WHICH IS
IN
FROM
SUC H
SUCH THAT
THAT
THAT IS
BY

Qualify By Attribute Instance

When the attribute criterion is specified as attribute name , the
condition for membership in the new set is independent of attribute values .
It depends only on an instance of the attribute being present in the ASSM
when a positi ve connector i s used and absent from the ASSM when a negati ve
connector is used . The next statements are valid exampl es of this type

of set definition.

SET INT_VAL = DATA WITH INITIAL_VALUE.

SET NO_LOCALITY = ALL WITHOUT LOCALITY .

6-9

~

—

~

—_

~

--
~~~~
-

~~
--- _

~~~~~~~~~~~~~~~~~~~~~~~ —
———- - -

~~.‘ ~~~~~~~~~~~~ —-~~~~~~~‘ ‘ S — —- — — — . —~ -— ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ —~ ~~~~~~~ ~~~~~ ~~~~~~ -r ’ !~~~~~
-

~~~~~~~~~~~~~~~~~~~~~ -

Qualify By Attribute Value

The second form of the attribute criterion , (I.e., attribute-name
krelatlonal operator>] value) allows the definition of the new set to be
based on attribute values. When a positive connector is used with this
form , the new set will contain members of the subject set that have an
attribute value which satisfies the relational operator . The use of a
negative connector will cause the new set to contain members of the subject
set that do not satisfy the relational operator. If the optional
relational operator is not specified , the equal sign (i.e., test for
equality) is assumed . A list of l egal relational operators is provided in
the fol l owing table.

Rela tion Operator Meani ng
> Grea ter than
>= Greater than or equal

Not equal
= Equal

Less than or equal
Less than

The value that is specified in the attri bute criterion can be an
integer or real number, a value name , or a text string that is not longer
than 60 characters. The rela ti onal operators = and <> are the only ones
that are l egal if the value is specified as a text string or as a value
name.

The next group of statements are examples of the definition of sets
based on attribute values .

SET INT_VAL_ZERO = DATA WITH INITIAL_VALU E 0.

SET INT_VAL_GT_ZERO = DATA WITH INITIAL_VALUE > 0.

SET GAMMA_DATA = DATA WITH USE = GAMMA.

SET MY ALP HA S = ALPHA SUCH THAT ENTERED_BY = “THIS IS MINE” .

6.1.4 Defining Sets By Relationship Quali fication

A set can be defined to contain el ements with or without certain

relationship characteristics with the qualify by relationship statement.
The syntax of the statement i s:

6-10

- - - - - - - --- -



- _~~~~~ ‘.‘ - 
—- .—--•_•_•-.‘--_ ~~~

——
~~~~~

‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- ~~~

__
~~~~ A’

SET new-set-name = <set identifier> 
~~~~~~

[MULTIPLE] relation-name {relation_o~tiona l _word}~
[<set identifier>].

The first set identifier selects a subject set of candida te members that
can be included in the new set. The l egal terms that can be used for
positive connector and negative connector are described in Section 6.1.3. The
MULTIPLE option is used to indicate that an element in the subject set must
have more than one instance of the specified relationship before it can be
incl uded in the new set. The relation name can be a primary relation or a
complementary relation. Any number of RSL relationa l optional words may
appea r after the relationship to increase the readability of the statement.
The optional object set (identified by the second set identifier) is used to
indicate that an el ement in the subject set must have a relationship instance
wi tP~ one or more of the el ements in the object set to satisfy the qualifi ca-
tion criterion. If the object set is not specified , an el ement in the
subject set is qualified for inclusion in the new set by having an instance
of the relationship with any element in the ASSM .

The following examples demonstrate uses of the qualify by relation-
ship statement. The RADX comment that appears with a statement describes
the contents of the set being defined .

SET USED_DATA = DATA THAT IS INPUT
(*DATA ELEMENTS WHICH HAVE AN INSTANCE OF THE INPUT

RELATION SHIP.*).

SET NOT_USED_DATA = DATA THAT IS NOT INPUT
(*DATA ELEMENTS WITHOUT AN INSTANCE OF THE INPUT

RELATIONSHIP. *).

SET USED_BY_ALPHA_UPDATE_STATE = DATA THAT IS INPUT TO UPDATE_STATE
(*DATA ELEMENTS THAT ARE INPUT TO UPDATE_STATE.*).

SET ERROR 1 = DATA THAT IS MULTIPL E CONTAINED
(*DATA ELEMENTS WITH MORE THAN ONE INSTANCE OF THE
CONTAINED RELATION SHIP.*).

SET SIMPLE = MESSAGE THAT IS NOT MULTIPLE MADE BY FILE
(*MESSAGE ELEMENTS THAT ARE NOT MADE BY MORE THAN ONE FILE.*).

6-11

~

-

-
-

-

-— —

6.1.5 Defining Sets By Structure Qualification

Impl icit relationships between structures and elements used in
structures may be used for defining a new set of el ements that have or do
not have certain structural characteristics. These implicit relationshi ps
are named REFERS and REFERRED . They cannot be explicitly input through the
RSL translator but they are implicitl y defined when a structure is entered
in the ASSM .

The REFERS relationship exists between an element with a structure
and the elements used on the structure . The REFERRED relationship is the
compl ement of the REFERS relationship. These implicit relationships are
used in the same manner as RSL relationships are used to define a set by
relationship qualification as explained in Section 6.1 .4. The syntax for
usi ng REFERS and REFERRED i s:

SET new-set-name = <set identifier>

~~~ 
~~~~~~~~~

[1~ULTIPLE] ~REFER~Eo}1
{rel ational -optional-word}~

[<set identifier>].

The following examples illustrate different uses of this statement.

SET R_NET_N0_STRUCTURE = R_NET WITHO UT REFERS.

SET R_NET_USING_UPDATE_STATE = R_NET WHICH REFERS TO UPDATE_STATE.

SET !‘LPHA S_NOT_USED = ALPHA THAT IS NOT REFERRED .

SET ALL NEEDED BY R NET RADAR SUMMARY = ALL THAT IS REFERRED TO
BY RADAR_SUMMARY.

6.1.6 Defining Hierarchies

There are several hierarchies that exist in the definition of RSL
such as data hierarchies and structure hierarchies that can be Identified
to RADX and used later as a “road map” to trace through the ASSM for the
purpose of defining a set or determining the order to extract and displ ay
information. A RADX hierarchy is defined using the followi ng syntax:

6—12

- - - - - - - -

5— — ~~~~~~~~~~~~~~~~~~~~
‘— —---5--,- ~~-,.-~-- 5., ,—.— —,--,-—-_-,- ----,—- 5-—~~~~—- ~~~~~~~~~~~~ •-5•.•’..~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

—.=-—---.
~~~~~~~~ ,.

~ ~~~ARCHY}’ hierarchy—name = {cset identifier> <bind ing relation>

{oPtional~word~
’ <set identifier>} .

In the statement, hierarchy name is a unique name that will be used to
reference the hierarchy , the set identifiers designate sets that must be
defined before the hierarchy is defined , and binding relation is any RSL
relation or an impl icit relation , REFERS or REFERRED .

For example , the followi ng graph illustrates an RSL i nformation
hierarchy that can exist in the requirements data base:

INPUT_INTERFACE

PASSES

MESSAGE

MADE BY MADE BY

CONTAINS DATA
FILE 

INCLUDES

The nodes in the graph represent sets (in this case predefined el ement
type sets) and the branches represent binding relationships between the
sets. This hierarchy can be named , say INFO_SOURCE , and input to RADX
for future use by defining the connectivity of the graph (i.e., hierarchy )
as follows :

HIER INFO SOURCE = INPUT INTERFACE PASSES MESSAGE;
MESSAGE MADE BY FILE ;
MESSAGE MADE BY DATA ;
FILE CONTAINS DATA ;
DATA INCLUDES DATA .

6-13

L A



L . — -  - _ _ -  —~~“.-‘ .-‘~~~~~ --— ‘—— .. .,.
~~ __ ,.-,_.,,,, - -.~~~~ — ,,-,_,- ,- ,,._

~~
..., . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.~~

,_,-—...., , .,.-. ~~ ,... _ •—., ‘~ -—..,.—...-— -~~~
_ _ - _...,-_- -.,-,,-—_

~~~
,,.,, ... t’- , , -

- - ~~ -~~~~‘—-.——— - -- -
‘ /

When this command is input to RADX , it is translated and stored for
future reference by other RADX commands. In addition to the connectivity
information between the hierarchy entries , a top-of-the-hierarchy is
implicitly defined as the first set that appears in the hierarchy descrip-
tion. For the above exampl e INPUT INTERFACE is the top-of-the-hierarchy .
This will be used to determine the starting point in the “road map” when a
trace through the ASSM is made following the hierarchy .

Whenever a trace is performed , it is done in a depth-first manner .
For the exampl e , the order of tracing would occur as fol lows : —

1) from INPUT INTERFACE to MESSAGE via PASSES.

2) from MESSAGE to FILE v ia MADE BY. -

3) from FILE to DATA via CONTAINS.

4) from DATA to DATA via INCLUDES repeated until a point is
reached where the set of DATA does not INCLUDE any other
DATA .

5) from MESSAGE to DATA via MAD E BY (a return back up the
hierarchy was made after reaching the maximum depth in
Step 4).

6) from DATA to DATA via INCLUDES repeated until the trace
Is exhaust~d as in Step 4.

The user is cautioned that duplicate entries in a hierarchy defini-
tion will cause duplicate tracing through the ASSM . For exampl e, suppose
that the above hierarchy had been written as:

HIER INFO SOURCE INPUT INTERFACE PASSES MESSAGE ;
MESSAGE MADE BY FILE ;
FILE CONTAINS DATA ;

- DATA INCLUDES DATA ;
MESSAGE MADE BY DATA ;
DATA INCLUDES DATA .

Si nce ‘ here are two entries for DATA INCLUDES DATA , lines 4 and 6 ,
many dupl ica te traces would occur. For example , after entry 3 traces from
FILE to DATA via CONTAINS , entry 4 would trace from DATA to DATA via
INCLUDES and later entry 6 would be processed causing a duplication of

what was done at entry 4 , tracing from DATA to DATA v ia INCLUDES. The

6— 14

— -

~

—--- -
~~~

~~~~~ 
-- - ‘_ - .- -, ..-

~~~~~~~~
. -,—- -

same type of activity would occur fol l owi ng the processing of entry 5 which
is a trace from MESSAGE to DATA via MADE BY.

6.1.7 Defining Sets By Hierarchy Qualification

This capability is used to define a set of el ements as those which
are members of a given set and are reached while tracing a hierarchy as
defined in Section 6.1.6. The syntax of this define set statement is:

SET new-set-name = <set identifier> <positive connector>

JHIERARCHYU
~HIER ç

hierarchy-name .

The set identifier sel ects a set which contains candidate members for
inclusion inthe new set,the positive connec-torisone of the terms defined in
Section 6.1.3, and hierarchy name is the name of a previously defined
hierarchy .

For an element to become a member of the new set, it must satisfy the
fol lowing criteria:

1) it must be a member of the candidate set

2) it must be encountered while traversing the hierarchy .

Some exampl es of how a hierarchy is used to define a set are given next
using the fol lowi ng hierarchy definition .

SET SOURC E_INT ERFACE = INPUT INTERFACE.

HIERARCHY INFO_SOURcE = SOURCE_INTERFACE PASSES MESSAGE;
MESSAGE MADE BY F ILE;
MESSAGE MADE BY DATA ;
FILE CONTAINS DATA ;
DATA INCLUDES DATA .

Notice that in this exampl e the user defined SET: SOURCE INTERFACE is the
top-of--the-hierarchy. It is required that the set be defined before the
hierarchy is defined but the set can be redefined as will be shown in one
of the examples that follows .

The following examples will describe the desired contents of a set
and the RADX commands that can be used to accomplish the obj ective.

6-15

--.-- —

~

—,- --— —.-,--.- -

~

~~~-- - — -.--— - - - .  -~~~~~~~~~~~~~~ - - - - -- - -



~~~~~‘-‘~5-~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

Example 1 

-

OBJECTIVE: A SET X whi ch contains all the INPUT INTERFACEs in the
A SSM, the MESSAGEs that PASS them, all the FILEs and DATA
that MAKE the MESSAGEs , and all the DATA that is CONTAINED
in the FILEs.

COMMAND :
SET X = ALL IN fl IER INFO_SOURCE.

Example 2

OBJECTIVE : A SET Y consisti ng of the INPUT INTERFACE : RADAR IN, the
MESSAGEs that PASS RADAR IN, th~ FILEs and DATA That MAKEthe MESSAGEs , and the DATA that is CONTAINED in the FILEs.

COMMANDS:
SET SOURCE_INTERFACE = RADAR_IN.
SET V = ALL IN fl IER INFO_SOURCE.

Example 3

OBJECTIVE : Same as Exampl e 2.

COMMANDS:
SET SOURCE_INTERFACE = INPUT_INTERFACE.
SET RADAR TRACE = RADAR_IN, MESSAGE, FILE , DATA .
SET V = RADAR_TRACE FROM HIERARCHY INFO_SOURCE.

Example 4

OBJECTIVE: A SET Z that contai ns only the DATA whi ch is a part of the
INPUT_INTERFACE because it MAKES a MESSAGE or is CONTAINED
in a FILE that MAKES a MESSAGE which PASSES the INPUT
INTERFACE.

COMMANDS :
SET SOURCE_INTERFACE = INPUT_INTERFACE.
SET SOURCE_TRACE = INPUT_INTERFACE OR DATA .
SET TEMP = SOURCE_TRACE IN HIER INFO_SOURCE.
SET Z = SET TEMP MINUS INPUT INTERFACE.

NOTE: When SET TEMP was defined it contained only el ement types INPUT_
INTERFACE and DATA . The set did not contain any MESSAGEs or FILEs
because they were not in SET: SOURCE TRACE whi ch was the original set
being qualified . Wi th the removal oT INPUT_INTERFACEs from SET TEMP,
the objective is satisfied for SET Z. The reason that INPUT_INTERFACE
needs to be in SOURCE_TRACE is to satisfy the requirement that the
candidate set being qualified must contain the starting points for the 

- 

-



-

~~~~~

6.1 .8 Using Sets to Analyze a Requirements Data Base

One of the primary purposes for the set definition facility of RADX
is to provide a technique that allows a user to analyze a requirements data
base. Tabl e 6.1 contains RADX commands that can be used to analyze a data
base for compl ianc e with the RSL conventions described in Section 3.0. The
commands are grouped according to the area of the requirements specifica-
tions that they analyze. Those sets which have a coniiient identify a viola-
tion of a convention if they are not empty. The comment describes the
violated convention. The sets without a coment are used in a temporary
manner for building the sets that identify errors. The tabl e also incl udes
the hierarchy definitions that are required to form the sets .

The LIST command that is described in Section 6.2 can be used to
displ ay the contents of the sets which identify errors in order to document
the anomalies that are present in an ASSM .

6-17

-5 - - --—

-—---- ,

Table 6.1 Exampl es of RADX Coninands For Requirements Analysis

COPt4ANDS TO TEST SUBSYSTEM AND INTERFACE SPECIFICATIONS

SET %JNC ’ NEC TFO _~ Lfr~~YSTEM SUBSYS TEM THAT A S ~oT CO~ N E C fFL D
(~ ALL SU’,SYSTE MS MUST ~~ CO~.JNEcT t.o, • .

SET T’4T~~~F A CE = IN~ UT _ IN T E i ~F ACE OR OJTP UT _ INT ~~-~I~ACE .
SET TN T ~~ ACE ..,M O T _ CC ,NNECT1D PITERFACE 1Ti001 CUN NECT S

(~ A~ INTERF A CE M UST C3~ NE CT TO A Su HSYST~~M . •) .
SET TOO _~ A NY ..CON~JECTS = INTE .~FA CE THAT ~4UL 1IP L E CONNECTS

- (* A N I~iT t .~~AC E CA NN OT CON ’~f.cI TO MU~ E TeIA N
O NE SUBSYSTEM . ~~~~.

S~ T T N Tc A CE _ N O _ME SSA GE = INTE~~FA CE W I T H O J I RA S~ ES
(* A~l INTL r ~F 4CE M UST PASS A T LEAST ONE ME SSAOE.).

SET nUT _ uSa = M~ 5S Ac-F THAT PASSED OU TRUt _ I’dER~~ACE .
SET nUT S~ _ NO T~~~O~ ’~~D OUT _MSt; THAT IS N3 T F3~ -~Eo

(~ ALL M~~SSAbES THAT RA ~~ A~i OUT~~UT _ INTE~~F A C E
MU ST ~3E FO RMED. •) .

SET US~ _ NOT _ P A SS~ D = MESSA GE THA T IS NUT PA SSE)
(* A ME SS AG E MUST HE PAS SE) ~Y EI TeI1~ A~ INPUT

O.~ OU TP’UT 1 N TEI-~F AC t. •).
SET MUL T I _ PAc SEO _ MESSA r.E = M ES SA GE T IAT IS ~,UL TI PLE PASS~~)

(* 4 MEsSA(,t~ CAN ONLY ~uSS ONE INI A C~~. •).
SET M UL TI _ US FO_ T~~’UT _ INF = I ?*W r _ INTE~~F A CE T~-4AT]S M J L TI~~LE ~EFr NR ED

AN INPUT _ INT ER F A cE CA -~N O T ft. ~E FF R~~N CEO
bY MORE THAN ONE R_ N~~T. *) ,

COMMANDS TO TEST STRUCTURE SPECIFICATIONS

SET (I N ENAR L Ef l _~~~’4~~T S = R _NET 1 141 IS NUT LN A ~~L~~O
(* ‘~~NEIS M IJ S T HE EN~ 8~~~iJ . ~)

SET ° _ IN ?UT IN~ P_ N E T T~iA1 ~EFE’~S To I U T _ l- ~TE~~FA cE .
SE T M 1 S S I N ~j _ 1NF ~~~N4 H L E RE~~_ 1NMUT _ pW i H A l IS ~~~ 1-NABLED

BY I r UT _ IH1 t~~FM C ~(. A N P_ NEI THAI R E F E ~~~~CES A ’ 1 INPU T _ INTE .~FA cE
MUST M t ENA ~3LEU HY T~ E ZNTt ~RF ACE . D)~~

SET PAD _ M ULT I _ EN Ak L F REF _ IN~ ’iT _ INF THAT 15 MJ L TIP L~ E~~4~~L~~D
(* AN P_ NE I ~HIC$-i Pt-F E~~M CE S AN

INPUT _ iN T E R F A C E CAN JNL Y HE (NA ’~LEI)
BY Tr i E I N T f R F A C F . *) •

SET NOT ~EF _ I~~PUT _ 1NF = R _IIET MINUS R~~F I N ~~J T INF.
SET RA TNT FAC ~ _~~ AH L EMFN T = !~iOT _ REF _ 1NPJ T _ 1~~F I H A T Is

E NAH LE () BY I PU T _ IN TC e4~~AC €
(* AN 4_ Nt T SHOULO NOT ~F ~~N6 t 1Lf) BY A N

I I°U1 _ 1N T F ~~~ACE UNLE.sS TIF JNT €. M F A C E
A~ PEMA ~ THE H _ N E r ~T~~U C i U ~ F .

SET ST~ffl CT J~~~.NO)ES AL P HA. SU -UNET. E v Lwr, VA .jI”At1O ~~~?O1 N T ,
1~~’~UT _ IrwT EPFA C E , OUI 3JT _ I NTERFA CE .

SET ~‘FT~ = R _ NET O~ SU -~NE T.
SET uNosEU ~~v)uES = STP’JcrW ~~_ NOflEs SUCH ThA I N)T FER~~EO TO .~Y NETS

(0 FO~ I’41- , MENUT ~~E M E N T S To ~~ C OMe ~I~ -T € ~, A LL
A LP HM , SU~4 P4 ET , E V E N T , V A L I t) A T I O N _ POINI .
1’~PUT _ L N T EHF AC E , A~~~.)

,~U T P lP T .I~1TI- ’- (FACI
ILIMEN1S MUST ‘4E USE) I~ F IT ’-IEM 4’ i H _ NET
o-~ sJ I3 ~~:T STPUCTU .~E. 0) ,

BEST MA1LAB~E COPY

- -~~~~
-
~

—-
~~~

—-- -~~~~~~ 
_ _
: 

- - - - 
-

Tabl e 6 .1 Exampl es of RADX Commands For Requirements Analysis (Continued)

COMMANDS TO TEST STRUCTURE SPECIFICATIONS (CONTINUED)

SET cT JCT -JwE EL~~~~r’TS = ~_~ E1. Su~ NET , V 4 l ~~A T I ) N _ P A T i .
SET ~‘TSSf _ ST~~u~~TU’. .~ = STPuC T~~-~E _ ELEM ENT5 a Z T N O U T  .~EFE~~5

(~ T~~E ~E G’JIHtM FN T S Ae (~ ‘i QT C !)MPLETE U~d I I L
ALL ~ _i’~F T ,  SU- )NET , AN D V A L L D A T I Q N _ p’AT H
ELE MENTS HAV E ~EEN S1V ~~N A STRU C IU ~ E . 0 )•

SET NO N _ E NA B LING _E V E N T  = E V E N T  WI THflJT ENA ~~_ tS
(0  AN EVE N T MU ST ENA ~3LE AT LEAST ONE 4_NET. ‘).

SET rOM PLE X _ rA TA  = ~ A T A  ThAT INCLUD E S DATA.
SET RA O _ r ) ELAY ED _ V EP. T = EV EN T ThAT IS OE LA Y ~~i, ~Y CO M~ LEX _OA 1 A

(~ AN E V~~NT CAN ONLY ~ E DE~~A Y E O  4 Y
LO~~f S T  LEVEL D A T A .  ~ ) .

SFT eInN _ FNAO L I~1r,_ DpuT _ I~w I- ’J~ uT _ INTE.-~F4:: w II.-4 UUT EN4H L ES
(0  4 .4  I 4Pu l _ I N T r I FA C E  W JST ENABLE A N H_NET. • ).

SET M U L TT _ L A Y E~ = EV E’.i T T’-’Al IS M u LTIP LE D EL AY E D
(* A N EV E ;~T CA NP ’ OT u3E J t LA Y t l  BY M OHE THAN ONE

D A T A  E L c M E N T .  0 ) ,

COMMANDS TO TEST INFORMATION MEMBERSHIP SPECIFICATIONS

SE T M(J L TT _ CON T AINEL )  = DAT A THA T IS M J L T IP L E  CON T 4 I N F 3
(~ A 0414 IT EM CAN ON LY ~~lE C’ )N TA INE u)

P. ONE IILE . *1 .
SET TN FO D A T A  14 FILE.
SFT MI, LTI _ A S S O C 1 A TE c _ cLASs = P’WO 4HTC’I IS W ’JLT IPLE AS S )C IA T tO

W I T H E N T I T Y _ C _ ASS
(0  A SI’~GiE D A T A  O’t FL E  CAN ONL Y RE Q SSOCIATED

W I T H  O!iE E N t T I Y _ C LA5 ~~. 0 ) ,

HIER EN T TTY TY~~E _ TM A CE = I N T I T Y _ F YPE A SSOCI A TE S FIL E ,
EN T i T Y _ TYPE A S S O C IA IE S  D A T A ,
DATA ]NCLU ’ut S D A T A .

HIE4 EN T ITY _ CLAS S_ Ip A CE = EI~.Ti TY _ CL A5 S A S S O C I A T E S  FILE ,
E N T I T Y _ CLMS S A S S O C I A T E S  1)414.
DAT A TN CLu UE S D A T A .

HIER SSAGLTHA E MESSAG E M AD E  BY FILE,
vFcSA&E MA I iE  M Y D A T A ,
D ATA INCLUOE S DA I A .

HIE~~ E I I E _ TP6CE F I L E  C O NTA I r I S DA TA.
DATA INCL UDE S D A T A .

SF T TY~ F _ IN F ) ALL IN H U P  E~~T I T Y ._ TYPE _ TH4. i ..
SET TY~~~_ 1N FD = T Y P E _ I NF O 4 1IUS E N T I T Y _ TY PE .

= A LL I~4 — iIF .~ t-~~T I T Y _ CL A SS _ T.4ACE.
C1A ~~S_ It 1FD = CLA SS _ I NF O M i N U S  E e - T L I Y _ C_ o~~S.

SET FIL~. _ INFO = ~LL IN HIEM F ILF _ TR A C~~.cry F ILF _ I NFt) 1L1 _ INFD MINej S F u r .
~~T TY PF A N D _ CL A S S _ INFO = TY ~~t _ I N F O  A N D CLAS S _ I N FO

(° A DATA ‘)~ FILE CA N N O I  ~E A SSO C IATE r ) w i T H BOTH
AN E N T I T Y _ CLA S S ANt ) A ’~ E N T I T Y _ TY PE . 0 ) ,

SET FN TI TY _ Ie -lFO = TY PF _ IMFO O’~ CLASS _ INFO.
SET F N T I 1 Y _ A Nfl _ F I L F INFO = L N I I T Y _ IN Ft) AN D F I L E _ j~1FO

(0  D A T A  CAN NOT RE BOT H C O N T A I N E D  IN A F I L E
~~ D A S SOC IAT FO ~ lT eI A V  E N T i T Y .  *1.

6-19 BEST AVA11~AB1.E WPi



Table 6. 1 Exampl es of RADX Coninands For Requirements Analysis (Continued)

COMMANDS TO TEST INFORMATION MEMBERSHIP SPECIFICATIONS (CONTINUED)

SFT M S(~_ JN FO = A _ )_ IN PlL~P ME~~SA GL _ TRA C i .
SET MS~ _ IN~ I) ‘l5 & _ INF() “1N ’JS 4P SSAC ,E .
S~~T F N T T T Y _ A Nu )_ e’S~~_ I NFO E :~T I T Y _ INFO A~1Q ~1SG _ INFO

(0  4 SINGLE DATA O~ FLE CA NNO T ~UTM -44’ E
A MESSAGE AND HE ASSO C I A T E D  *ITH AN E N T I T Y .  • ) .

SET USS_ F ILE _ INFO = MS G _ I NFU u J O  FIL E _ I~4FO
(0  A D A T A  ITEM CA NN OT ~D 1H M~~I~E A M LS SAG c

- 
AND HE CO N TAI NE D N A FILE . 0 ) .

SFT CL A SS _ ND _ T YPE = EN T I TY _CLA SS W IT H O U T  COM ?OSLO EN T I T Y _ TYPE
(0  A N ER T 1TY _ CL AS S MUST ~F C OM POSED OF uT

LE AST ONE E N T I T Y _ T Y~~.. 0)~~
SET TY~ F _N1_ CLASS = FN T ITY _ TY PE W I T H  NO C JN~~OSES

(0  AN ENT ITY _TYPE MUST ~ OM~~OsE AN ENTIT Y _CL ASS . • ) .
SF1 UtILTI _ COMP OS~~S = ENTITY _ T Y P E  T H A T  MULTI~~L E COM POSt S

AN E N T I T Y _ TYPE C A N N O T  COM POS E MO~ E THA N
ONE . E N T I T Y _ CLASS . 0 )~~

S~ T UULT I _ DROEREr ) = F ILE THAT IS MULTIPLE O~~:)E~~Er)
(0  A FILE C ANNOT BE ()R)E~~E) NY MO RE THAN ONE

D ATA ELEMENT. 0 ),

SET n~~DER !~~,_ i ) A T A  = DA T A  T H A T  O~ OE RS FILE.
SET ‘-JEE’~c_ TO _ PE _ IN _ F I L E  = OPOER1NC _ D A T A  T HA I  IS ~‘uOT C O N T A I N E D

(0 A D A T A  ELEMENT T H A T  DH) EHS A FILE MUST
HE CO N T A I N E D IN THE ~ I L .  *)~~

SET RAD _ ORDE~~I NG _ D A T A  = URUE9I~’N~_D A T A  T H A T  1 NCLUOES
(0  ONL Y LOWE ST LEVEL D A T A  CAN ORDER A FILE . • ) .

SET FM~~TY _~~IL F = F ILE W I T H O U T  C O N T A I N S
(0  A F I L E  M U S T CO N T A I N  AT LE aST ONE D A T A  ITEM. • ) .

SFT EMPTY _ MES SAGE = MESSA GE. THAT IS NOT M A D E
(~ A MFSS ~t1j E M UST B~ R A U F  3Y EITHE R D A T A  OR

FILE ELEM ENTS. ‘).
SET FM PT Y _ € N T I T Y _ TY PE = E N T I T Y _ TYPE W I T HOU T ASSOCIATES

(0 AN ENTITY _ TY PE MUST ASS O CIATE AT LEAST ONE
D A TA 0.4 F I L E  E LEME e. 11 . *)~~

COMMANDS TO TEST INFORMATION USAGE AND ASSIGFIMENT SPECIFICATIONS

HTE R SU~ 6YS _ TO _ D A T A  = S U 4 S Y S T ~- N  CONN ECT F’) iN~~UI _ INT E~~F A C E,
IN PUT _ INT LHF ACE ~ASS E S ME SSA (~E ,

SsAG E MA D E BY F I L E ,
METSS AGt: MAr) t BY D A TA ,
F IL E (:tJ~4T 1~INS D A T A ,
DAT A IN CLU UF S D A T A .

M IFH u )A TA _ T O _ SJ— ~SYS S U - 3 5y ’ .~~~~~ CONNECT E D J J T P J T _ 1 N T E B F A C E ,
OuJ T ~~UI _ I ’ J T F R F A C F  PA SSt ~ -‘F SSAt ,E.
MF~.SA (.E Mu! )E p~ y F I L E ,
MES SA GE M~~r~ NY DA ( A ,
F ILE  COr~T 4 1 N S  1) 414 ,
D A T A  I~~( L Uf uE~~ DA T A .

H J FR A L PHA _ IN A L P hA IN?UTS F lEt.
A L P HA IPI PU IS D A T A .  —

FIL E CU~~T - ~ I N S D A T A
D A T A  i ’ 4 t Lu ’ ) E S D A T A .

BEST AVAILABLE COP? 6-20
~~~~~~~ ‘-


Tabl e 6.1 Examples of RAOX Commands For Requirements Analysis (Continued)

COMMANDS TO TEST INFORMATION USAGE AND ASSIGNMENT SPECIFICATIONS (CONTINUED)

R TF P V -~_ T N ~ A L T 1 A T I O N _~~O I N T PECORI)S FILt.
V A L I U M I I O N _ POINT HECI1H)s DA T A ,
FILE CON TAIN S 04T4,
DATA IN CLUDES DATA.

F4IF u~ ALP HA _OUT ALP MA OUTPUTS FILE,
A L PHA OUT P UTS D A T A ,

- FILE CO NTAI NS D A T A ,
D A T A IN CLUDES D A T A .

SET cT4~~DA~~~_ DATA FOUND . PEC OHLJ _ FDUND, C ..JC~~_TIME.
SET S~~EC I F I E O _ D A T A D A T A MINUS S TA NDA kD _ O A T A .
S~~T cO J ~~CE _ I A _ C I~ HIER SUd SYS _ TO _D A T A .
SET SOJ-~CF _ 2 A _ L i N 9 1 r k A L PHA _ OUT.
SET cf l J~~CE _ 3 =) A T A W I T H I N I T I A L _V A L U E .
SET cDJ~~CES Si~~i~~~ _ i ’ SOJPCt _~~, SOUM C IE_ 3.
SET SOJ~ CES SOJ~ C€ S A N) SPEC IFIED _ DATA.
SET ‘iO _SOU~~CE ~~ EC I F I E D _ D A T A MI~1US SOt i R CE~~.SET ST N K _ l = A LL IN HTE ~ D A T A _ TO _SU RSYS.
SET S 1N’< _~ = ALL IN HIER AL PHA _ IN.
SET SI~~~_ 3 = ALL IN ~~~~~ V P _ N.
SET c T N ~~_ 4 = D A TA ThAT IS REF EMN ED .
SFT SINX _S = D A T A wh ICH DE LAYS EVENT.
SET SINK _ b = D A T A ~~~TCH ORDER S F ILE.
SF1 S IN K S = S INK _ i. S J N ~~_2. SINK _3, SINuc _4,~~S I NK _5. SINk _h.
SET SIs (S = S T N ~~S AE. ’) S P E C I F I t O _ D A T A .
SET MD _SINK = S~~~C IF I E D _ O A TA MI Nu JS SINKS .
SET D A T A _NO _)J.e~E _j~ g D _ S lNK = NO _SOuHCE AN) NO _ SINK

(0 A DA T A I TEM SHOUL D H A V E A SOURCE A Nf l
A c J ~~ K . 0) •

SF1 PAT A _ W I T H _ SO)R(E _ BUT _ NC)_ SI N,(= SOURCES M I NJ S SINK S
(0 IF A DATA ITEM HAS A s lN ~~, THEN IT MUST

HAVE A SINIc . *)~~
SET ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ SIN K S M I N u S SOURCES

(0 IF 4 DA T A I T E M HAS A S I N K . T HEN II MUST HAVE
A SOJR C E. *)~~

COMMANDS TO TEST ENTITY OPERATION SPECIFICATIONS

SET CI A SS _ NO T _ CRE A U D = F N T T T Y _ CLAS S THAT IS N O T CRE A T FO
(* ALL t N I 1 T Y _ CLA SSES M JST BE CR EAT FU . *)~~

SF1 rL4SS _ NO T _ D~ STR1 ’YEI) = E~u T l T Y _ CL A SS THAT IS ND T D ESTA OYEO
1 * ThE ANALYST SHOULD ~E V I E W THE REA SON wHY

A N E N T I T Y _ CLASS IS N JT)ESIROYED. 0) ,

SFT TY~ F _ NO T ._ SET = E N T I T Y _ TYR L THAT IS NO T ~~~T
EVE RY E N t I T Y _ TYPE M i ST ~€ sET, •),

SET ry~~~_u1T _ .~EF :ut~~cF r) = E~~T ITY _ TY PE THAT 15 NOT R EPRtD .
SET C I S _ Of _ uN~ E~~~~PFU = F~~T I T Y _ CLA SS SUCH T H A T COM ~~US E.O

OF 1VPE _ Nfl T _ 9FFE~~E 4CED .
SET CL ASS _ NOT _~ E:E~~1~FD CL A Ss _ UF _ LJNRE.FE~~RE) TH AT IS NOT RE FER RED

EAC H EN T i T Y _ CL ASS Mi~~T ~t U I R E C T L f U SED ON
A STRUCTURE 04 II.4 O i4~~(’T L. Y USE O BE C A U S E AN
E N T I T Y _ T Y P E W H I C H C O M PO SE S T HE C L A S S IS
US ID. 0) ,

~~~~~~~~~~~~~~~~~~~~ I I 

6— 2~ B ~T AVA1 LARL E CO~L 
I



—- --

- - ~~~~~~~~~~~~
— _ _

r

8
~~3T AV~~~E c0p144

Tabl e 6. 1 Examples of RADX Coniuiands For Requirements Analysis (Continued )

COMMANDS TO TEST INFORMATION LOCALITY SPECIFICATIONS

4 I F W A B C . y  FIL F _ T~~~C~. F I L E  C ) N T A I N S  D A T A
D A T A  P~CLUD ES D A T A .

N T E W A R C - 4 Y MESSA ’~~ _ T P A C E  = MESSA( iE MA OE MY ~ ILF;
M FSSAGE M A D E  ‘~Y D A T A ;
D A T A  IN CLUDE S D A T A .

HIE PA R C M Y  ENTITY _ TRA CE = E~.TITY _ CLASS ASSOCiAT E S F ILE ;
FILE CO’-~T A I N S  D A T A :
DA T A INCLUD ES D A T A ;
F N T I I Y _ C L A S S  A S S O C I A T E S  D A T A :
E N T I T Y _ CLA SS COM P OSED OF E N T I T Y _ TYP t;
EN T I T Y _ TY PE ASS O C IA 1ES F I L E ;
E N T i T Y _ TYPE ASSOCIATES DA T A.

SET Fr ’T T TY _ ME~~HE ’S = ALL I N HIE RAR C HY E N T 1 T Y _ T~~ACE .
SET LOC ,~L _~ N T T T Y _ M t M ~ EM S = E N T I T Y _ M EM B E M S  ,~ITH LOC ALITY LOC A L

(0  ThE LO C A L I T Y  OF ALL E N T I F Y  RELATED IN FORMATIO N
MUST B~. (‘LOHAL. 0)~~

SET M E SSA GE  AFM~~~~S = A LL IN .IIuP A RCH Y ME SSAGE _ TM A CE .
SET G L O ~~A L _ 4ESSA ~~E _~-’EMHE.4 S ‘4E SSAG F _uEMHE~~S WITH L O C A L I T Y  GLOBAL

(0 T HE L O C A L I T Y  OF ALL MESSA G E R E L A T E D  I N FO R MATION
M iST B~ LOCAL. 0),

SET F I L F S _ NuT T_ IN _ M I S SA SE  F I L E  W I T H O U T  M A K E S .
SET F IL FS _ NO T _ IN _ E N T T T Y  = FILE TH A T IS NOT A S S O C I A T E D .
Sri TN )~ OE NO rP4 T~~~TL E  = F ILES _ r-.DT _ I N _ MF SSAGL A N )  F ILES _ Nor _ IN _ENT I TY .
S~~T ~L~~_ DFF AI )L T ILf = I~~OERE~~i)E NT .~FILE w I T HOUT L O C A L I T Y .
SET ~L~~_ SPEC I~~LF) _~ I L E  = INL E~’ENDENTJ ILE w I l H  L O C A L I T Y  = GLO4AL .
SET GL~)uA LJ I L E  , I M _ DE FAULT FILE OR GL~ _ S~~EC IFI ED _ FILE .
SET IM CA L _ FI L E = IND E PEN D EN T _ F I L E  MINUS GLO~~A L _FIL E .
SF1 r.LR_ FiLE._ TMA ~~F D A T A  0— & ‘LO’SAL _ FIL E.
SFT I O C _ F ILE _ T~~A~~E D AT A  OR LOCAL _ F ILE.
SF1 rLO~~A L _FILE _~ EMPFRS = GLH _F I L E _T~~AC F. IN HIEr ( FILE _ T RA C E .
SET LOC A L _ D AT A _ IN _ GL ORAL _ F I L E  = GLOPA L _ F I L E _M E M r itRS W I TH

LOC A L I T Y  = LU CAL
(0 T HE L O C A L I T Y  OF THE MFM ~~ERS O F A GLOBAL

FILE MUS T NOT RE LO CAL. ).
SET L c)C~ L FILE _M~~~P~ ~S = LO C_ )- ILE _ TPACE iN HIE~ F ILE _ TRACE .
SFT f. IOUA L _ D AT A _ IN _ LO C A L _ F ILE LO CA L _ F I L E _ MFM ~ t PS W I T H

LOCAL i T Y = N LOR $L
(0  T-s F L O C A L I T Y  OF THE MEM~~EOS OF A LOCAL

FILE MU S1 NOT BE GLD~~4L. *)~~

COMMANDS TO TEST DATA TYPE AI~D USE SPECIFICATIONS

SET FNJ” = D A T A  .ITb TYPE E NU -i E PA T ION .
SET M I S S I N 5 _ .’ANG- ENU..’ oj T H  NO RAN ~~

( 0  A D A T A  W I T H  TYPE E N J M F R A T T O N  MUST .IAVF A N
I N STAN C F OF THE RA N ~,E A T T R IB U T E .  0 )~~

S~~T PNG 3A TA W T T ’i ~.‘ANGE .
S~~T ~‘O _ TYP~ = R’i .ITR r~j  T Y P~
SF1 -.,PO~~~_ IY PF = -iN(’ w ITH IYPr ~~ ENUM E RA T I D N .
Ss~T fl A I A _ NEE DIN (,~~TY frF _ E N J A E A A F t O N  ~,4Q’-~~_ IY ,’F (H NO _ IYP r

1 * ALL It A T A  W I T H A R A N ~~ A T T R I R U T E  4U ST R A V E
A TY?f. A ND THE TYPE M U S T RI E N U M E w A T I O N .  ).

6-22

—4



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

8~~~~~j~a C OP~
Table 6.1 Exampl es of RADX Conriands For Requirements Analysis (Continued)

COMMANDS TO TEST DATA TYPE AND USE SPECIFICATIONS (CONTINUED)

S FT I O~~~cT _ D A T A  = D A T A W I T H O U T  INCLU DES D A T A .
SFT MISS IN’ _ TY PE L O W F S T _~~~TA ~ITHOJ T T Y P E

(0 ALL RE JUI R EM EN TS LEVEL D A T A  MO ST HAVE A
S PECI F IED T Y P E .  *)~

SF1 ~ A M MA _ O A T A  = DAT A W I T H  USE = GAMMA .
SET P0TH _ DA TA = D A T A  W IT H USE = ROTH.
SET GAMML _~)A TA GAMM A _ u ) A T A  OR BOTH _ DA T A .
SET TN C0PRE CT _ GA~HA _OA T A = ‘~A M MA _OA TA THAT INC ’_ U-)ES DAT A

(0 D A T A  W I T H  USE GA M MA CA NN OT INCLU DE OT hER
• J A T A .  * ) •

SIT M ISSINS _ USE _ A TTP IBU TE = LOWEST _DATA W I T H O U T  USE
(~ ALL LOW EST LEVEL D A T A  SHOULD HAV E USE = GAMMA

O~ USE = RDTH .  0 ) ,
SET TN C O P R ECT _ RET A _DA T A  = LowE sT _DATA WITH J~ E BE TA

(* LOWEST LEVEL DATA CA N NO ) R A V E  USE BETA S ‘I.

COMMANDS TO TEST ORIGINATING_REQUIREMENTS AND VALIDATION SPECIFICATIONS

SET PED’IIREBF.NTS O R I G I N A T IN ~ _PE QU IREMEN T •OR )EC ISION .
SET NO T _ DECOM POSED = PEOUI~~~M ENTS WIT H NO TR A C E S

(~ ALL ORI iINA T ING _ RE OJZ REMENT S ANT) JECESZ ON S
MUST RE DECOMPOSE )) ~ Y T R A C I N E, TO OTHE R
ELEMENTS FOR T HE RE~~J IREMEN TS TO HE
CO MPLET E.  •).

SET NON_ C O P4 S T PA I N I N G_PER _ RFD PEB FOR MANCE _RFQJ NEM E NT w I T H O UT
C O N S T RA I N S  u / A L I ) A T I O N _PA T M

(0 A PERF ORM AW CE _RE IUIRERE’ .IT MUST CON STRAIN
A V A L . I U A I I O N _ PAT ,-4 . ‘) .

SET TNC0MP LFTE _P~~M _)
~F.Q = PERFOWMAN CF _REOUIR ~~M F NT WITHOUT TEST

(0 FOR A PERFORMA NCE R EOU IR E M E NT TO TO hE
COMPLETE IT M iST H A V E  A Ti—S T. *)~~

SET NETS = P_ NET OR SUI4NEI .
SET IINUSED _VA 1 _PT = V A L I D A T I O N _ POINT WH ICH IS NOT REFER RED TO

- BY V A L I u )A T I O W _ PA TH
(* A V A L I O A T I O N _ PO INT MUST HE USED ElY AT

L E A S T  ONE V A L I DA I I O N _PA Ir) . *)~~
S~~T “ t iLl! PRORIN~ V A L POINTS = V A L I n A T I O N _ ” JI NT T H A T  IS ~tJ LT IPLE

R E F E RRED TO r)Y NETS
A VA t. I DATI ON _~ O 1N T CA N ONLY OCCUR ON CE
iN A NET ST RUCTURE.  ‘).

L 

~~~ 


-
~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 

- -  ___

6.2 LISTING REQUIREMENTS

This section describes the various ways that RADX can be used to
produce requirements documentation. The disposition of the output produced
by RADX is determined by the fol lowing:

1) If a LIST ccxiimand is input by the user, then the output from
the statement is routed to the printer , ANA GRAPH , or both as
specified by the control selected via REVS EXECUTIVE RCL
(See Section 4).

2) If a PUNCH c ommand is used , the printed output from the
command is the same as that produced using the LIST command ,
and additionally, punched cards are generated tha t contain
all printed images except blank lines and RADX error messages .
The actual disposition of the punched cards is determined by
a parameter of the REVSX QT macro as described In Section 9.

3) If a PLOT comand Is used , the command produces graphic dis-
plays on the CALCO~-1P plotter of the STRUCTUREs of those
el ements being plotted .

The examples in this section will rely mostly on the LIST command to

illustrate the use of RADX to produce documentation , but the user is reminded
that the keywords LIST and PUNCH can be interchanged to vary the disposition

of the documentation.

6.2.1 Listing Sets

All LIST operations use one set as their operand . The simpl e syntax

of the command is: -

11{ 
~Lc 1 

cset

The set Identifier may designate any set that is defined prior to the use
of the LIST statement. As shown in the followi ng exampl es, set identifier
can designate the universal set ALL or ANY , an element type set, an element set,
or a user defined set.

LIST ALL .
LIST DATA.
LIST UPDATE_STATE.
LIST SET X.

6-25
Revision A 

-—-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— - - - ~~~- [ S~~ V~~~~~- --



When a set is LISTed the members are displayed alphabetically by
element type and within each el ement type by element name . After each
element is displayed , associated attri butes , relationships , and structures
are displ ayed . Should the user want to vary or el iminate the associated

i nformation displ ayed about an element , the APPEND statement, described in
Section 6.2.2, may be used .

The requirements i nformation produced using thi s LIST command is in
an indented format that contains legal RSL syntax . An exampl e output is
presented in Figure 6-1 .

6.2.2 Selecting Associated Information to be Displ ayed

The APPEND command is used to spe cify the associated attributes ,
relationships , and structures that should be displ aye~1 following the display
of an el ement. The syntax of the statement is:

APPEND <type identifier> {.caPPend i tem>} .

In the statement, type identifier is an RSL el ement type name , the
keyword ANY , or the keyword ALL and indicates the el ement type or
el ement types to which the append item list applies. When ALL or ANY is
specified , the list is app lied to all element types in the ASSM . The
fol l owi ng is a list of l egal append items and the i nformation that it
causes to be appended to an el ement that is a subset of type identifier .

r e l a t i o n— n a m e  - a particular RSL relationship.

attribute-name - a particular RSL attribute.

REFERS - elements that appear on the structure of the
subject el ement.

REFERRED - elements with structures that use the subject
element.

ALL - all attr i butes in alp habetical order, followed
by all primary relationships in alphabetical
order , followed by REFERs , followed alphabetically
by all compl ementary relationships , followed by
REFERRED , and finally the el ement STRUCTURE or
PATH.

NONE - no associated i nformation.

STRUCTURE - R NET , SUBNET , or VALIDATION PATH structure .

6-26

~ 

--- --——--- —-~~~ - — - V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —



-
~~~~~~~~~

—---
~~~ -~~~ - — - —-~~~~—~~

--- -~~~ 

~~~~~~~~~~~~

IRAOX C~~MMA~~
LIST DATA 1
• S_ _ p S S S S S S

DA TAS A CCE PTANC E_ THRESHOLD .
LOC AL ITY S LOCAL.
TY~E:1 PEAL,
U S E, G A 4 M A ,
tNCL1’UE t~ IN :)A T A I T% _ T2 _ GATE ..DATA

DAT A~ Y 3_.GA TE ._DATA ,

D A T A $ ACCOI INTE I) ._ FO W ,
INI TI A L_ VALUE , NEITHER ,
LOCAL ITYs GLOBA L ,
RAI~iGE ; “NEI THEP ,COUNTE.D,SUMMED~ ,
TYPE., E 1)LJ~iER AT ION ,
USE; BOT H,

-
- A SSOC IATED HITHI

E.~’ T I T Y ,.,TYPEs LOST_ PULSE
ENTIT Y _ TY PE: l~EflJRPsEO_PULSE ,OuTPIJ T F R O M I
A L PHA , SETS_ COUNTED
A I P H A S 5ET_SUM~ED,

FEr .RF~
) RYS

5(~~NETs SUM_RETURNS
$IIBNETS TALL Y _RETUR NS ,

DA IA S A L PHA..ERP~ R ,
LO CA LI TY , LOCAL,
TY P ES PEAL,
USE; G A M M A ,
INCLIII)E L) IN S

D A T A ~ T1 _ T~ _ REC E.IV E.
D A T A I 13_ RECE IVE .

DA TA ; A LPHA _PHASE_ TAPER ,
LO CA LI TY , LOCAL.
TYPE , PEAL,
USE S GA M M A ,
INCLI DED INS

DAT A$ T1 _T2_ TRAN SMIT
DAT A; 13_ TRAN SM IT ,

Figure 6-1 Sample Output From Standard LIST SET Command

6-27

—
~~~~~~~~~~~~~~~~ ~~i

- --



ATTRIBUTE - all attributes in alphabetical order. 
V

- all primary relationships in alphabetical order
• followed by all compl ementary relationships in

al phabetical order.

PRIMARY — all primary relationships in alphabetical order.

COMPLEMENTARY — all compl ementary relationships In alphabetical
• order.

When RADX -Is initially activated the append item for all elements is
Ini tialized to ALL . I-f a new APPEND statement is entered for a type identifier ,
the append item list replaces the previous list for the type identifier and
remains active unti l a new APPEND statement changes the selection or RADX is
terminated.

The order that append items appear in the APPEND statement determines
the order that associated information is displayed about an element. A
duplicate Item in the statement will cause duplicate information to be
displ ayed for the elements of the type indicated by the type identifier .

Exampl es of the use of the APPEND statement and the results produced
us-~ng -i t wi th the LIST statement are provided in Figure 6-2.

6.2.3 Listing By Hierarchies

The LIST by HIERARCHY command prov ides a techn ique to vary the format
and order of the displ ay of s~t members. The syntax of the command is:

PUNCH51 
<set identifier> <positive connector> 

{~~~ ARCHY }~

r (MAP
hierarchy-name I <positive connector~~SEQIJENCE~ ~

.

L 

( GROUP

In the statement, positive connector can be any of the terms described

~n SectIon 6.1.3. The hierarchy name identifies a hierarchy that must be
d.fined using the define hierarchy capability described in Section 6.1.6. - —

~. set Identifier specifies the subject set from which elements can be
‘~ S ~o be displayed . The optional part of the statement is called

• - ,~~ dliplay option . If one of the options is not explicitly selected,
- ~~~~ p~~i r is used to make the display. Each of the

6-28

-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -



_ _ _

tR A D X COMMAND ’
APP E ND F I L E ,  CONTA IN5,

CRA D X C OMMAN D C
1.1$? FILE,

FILE; CA NDIDATE,
- 

CON TA INS ;
DAT A ; CAN DID A TE_ENERGY
DATA ; CANDIDATE_ IMAGE_ ID
DAT A ; CAP4DIDATE_WAV EFOR$
DATA ; PRIORITY,

FILE ; CO M MAN D ,
CON TAINS ;

DATA; CO M M AND _ENERGY
DATA ; COMMAND _ IMA GE _ ID
DATA; C OMMA N D _WAV E FO R M
D ATA; START _ TI ME,

FILE S STATE S_ FILE ,
CONTAI NS;

DAT A; STA TE _ DATA
DATA ; STA TE .,ID,

FILE; TER M INAT O R ,
C ON TAI NS;

DATA; DRn P_ RE A SON
— DATA ;  DROP_ TIME ,

FILE ; TLT2 ,DA TA ,
CONTAI NS;

DATA ; Ti _ T2_RECORD.
V FILE ; T l _ T2~ GAT E ,

CO N TAI NS;
DATA; TLT 2_GATEI ,JDA TA,

FILE; TLT~..,W INDO w .
CON TAINS;

DATA; TLT2_,W IND O~~ DA TA .

FILE S 73_ DATA ,
CO N TAINS ;

DAT A;  13_RECO RD ,

F IL E; 13_ GATE ,
CONTAINS ;

DATA; 73_ GATE _DAT A ,

FIgure 6—2 Sample Use of APPEND and LIST Co,~inands

6—29



IRA DX COMM A ND S
APPEND R_ NET , STRUCTURE,

P Pc ~~SSC • S • SS~~~ . P p

IRA DX COMM A ND S
LIST Rj4ET,

P Pc S S P S eeP s

R,,NET; CC~PESPONSE,ST R UC TURE;
INPUT_ I NT ER FACE S CC_ IN
AL PH A; VA L IDATE _HEADE R
DO

AL PHA : A Ct (NO~ LEDGE
OUTPUT _ INTER FACE; CC_ OUT

AND
CON SIDER DATA; CO M M A N D_ ID
IF (HAN DOVE R _ I M A GE )

ALP HA ; TR AC K _ IN IT IA TE
V AL IDA TIO N _POINT; C2_ IMA GE _~4AND OV E R
EVEN TS AL L O CA TE
OU TPU T_ INTE RFA CE; DA TA _ RECORD

OR (IN ITIATE _ ENGA GE M EN T_ M ODE )
A LPHA , STAR T E R
V A LID ATION _ POINT S START IN G _ POINT
ALPHA ; EN GAGE ME NT_ IN ITIATION
E V E N T S  SCHEDULE
EVENTS SUMMAR IZE
TER M INAT E

OR CT E RM IN ATE JNG A G EM EN T_ M OD E )
A L PHA , TER M_ ENGA GE M ENT
TER M INATE

OR (DROP _ TRAC K )
SELEC T ENTITY _ CL A SS ;  IMAGE SUCH T HA T ( IMAG E III IDS HO_ ID)
IF (FOUND)

SUONETI RECOR D_DROP
A L PHA , TER M ,S, TR A CK
OUT PUT _ INTER P A C ES DA T A _PECO~ D

OT H ERW IS E
A L PHA ; CC _ ERROR_ PROC ESSING
TER MIN A TE

END
OR (CC _ ME SSAGE_ ERR OR )

A L PHA ; CCJ RRO R _ PPO CESSING
TER M I NATE

END
END

END ,

Figure 6—2 Sample Use of APPEND and LIST Coninands (Continued )

6-30

~ 

V - -~~~~~~~ -- ~~~~~~~~~~~~~~~~ -V -~~~~~~~



-V V ~~~~~~~~_-w-. •V ~~ - -‘~~~~—--—r ~~~~~~~~~~~~~ -w-
V V

displa y options are explained below using the followi ng hierarc hy definition :

HIER INFO SOURCE = INPUT_INTERFACE PASSES MESSAGE;
— MESSAG E MAD E BY FILE;

MESSAGE MADE BY DATA ;
FILE CONTAINS DATA ;
DATA INCLUDES DATA .

V 

MAP Dis play Option 
—

Either of the follow i ng statements can be used to sel ect th is
option:

LIST ALL BY HIER INFO_SOURCE.

LIST ALL BY HIER INFO_SOURCE BY MAP.

An example of the displ ay generated by this option is given in
Figure 6-3. The followi ng rules appl y when listing by this option.

• An element is displ ayed if and only if i t is a member of
the set identified by set identifier and it is encountered
while traversing the hierarchy .

• El ements are displ ayed in the order that they are traversed
in the hierarchy.

• The syntax of the display is a special form that is not
legal RSL syntax.

• El ements are indented according to the level in the hierarchy
where they are encountered.

• The only associated information displ ayed about an element is
the binding relationships between the elements in the
hierarchy . Thus, the APPEND sel ection has no affec t when
listing wi th this option.

SE~JENC E D isplay Option 
-

An example of the specification of this statement and the resulting
displa y is provided in Figure 6-4. The following rules are applied to
determine the format and content of displays generated when this option is
sel ected.

• An el ement is displayed if and only if it is a member of the
set identified by set identifier and it is encountered while
the hierarchy is traversed .

6-31 
—

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~V V • ~


(RA DX COMMA NDS
LIST AL L BY HIER INFO_SOURC E BY M A P ,

INPUT_ INTE RFAC E; CC_ IN
PASSES

MESS A GES HA ND OVE R
M ADE BY

DATA; COMMAND _ ID
DA TA; HO_ ID
DA T A; INITIAL .1COV A R IA N CE
DATA; INITIA L _ STA TE

ME3$AGE; M ODE _ CHANGE
M ADE BY

D A T A ; CO MMA ND_ ID
ME SSAGE S TER M INATIO N

MADE BY
D A T A ; CO MMA ND_ ID
D A TA ; HO~ ID

IN PUT _ IN TE RFAC ES RA D AR ~CLOCKII .IN
PASSE S

ME SSAGE s R_ CL O CK~ME$ 8AGE
MADE BY

DA T A ; RA DA R _CL Oc K _ T IME
INPUT_ INTE RFAC E, RAD AR _ IN

PASSES
MESS A GES T1 _ T2_ RETUR N

MADE BY
FILE; T LT2 _D A T A

CONT A IN S
DA T A ; T 1 _T2_ R!CORD

INCLUDES
DA T A ; NOISE_ LEVE L
DA T A ; RAN G E _ M A RK _ INFOR MAT I ON

INCLUDE S
DA TA ; RANG E_ MARK _ TIME
DA TA ; SIGNA L_ AM PLITUDE

MADE BY
D A T A ; RA DAR _TYP E
DATA; RR_ ORD ER_ ID
DATA; TLT2 _REC EIV E

INCLUDES
DAT A 5 A L PHA _ER R O R
D A T A ; BETA.,, ERRO R
DA T A ; T IT 2 RT PJ _ERROR _ REPO RT

INCLUDES
DATA ; REA S O N.,FOR_T RA NS MIS5IO~~ FA II. URE

— DA TA ; W A K L A R RA Y
INCL UDES

DA T A ; AV E R A G E_ SIGNAL _POWER
DA T A ; T HRES HGL D_DOW N_CROSSING UII1INE
DA T A s THR(SI1OL D_UP_ CROS S ING~ TIME

V Figure 6-3 Sample LIST By MAP

V
6—32

(RA D X COMMAND S
LIST ALL BY P4IE R INFO _SOURCE BY S EQUENCE ,
•SSe~~~SS e S S Ø e S P S S S e S S e ~~ 5~~~5SP e S* s.. .S.p.~~~

p• 5

INPUT_ I NTE RFA CE ; CC_ IN ,
CONNECTS 101

SUBSYSTEMS SSC2 ,
ENA 8 LE S I

R ,..t4 ET I CC_ RESPONS E,
PAS SES ;

M ESSAGE ; HAND OVE R
MESSAGE S MODE_CHANGE
MESSAGE S TERM INAT ION .

TRA CED FR OM ;
ORI GINAT JNG_ REOUIREP’ENy 5
TLS_ DPSPR _ PAR A GRAP H_ 3_ 2_ 1_ A_ FUN C TIO N AL _ REQU IREM ENT S
OPLGINA 1ING_ RE~UIREM .NT S
TL. S_ DPSPR _ SUBSEC T ION_ 3_2_ l_ FUNCTI ONA L_ R EOUIREMEP~ TS ,

REFER RED BY $
R_~ ET: CC _ R ESPONS E,

• M ESSAGE ; HA N DO VER ,
MAD E BY S

DA TA; CO M MAND _ ID
O A T A $ HO_ ID
D A T A $ T NIT !A L . C O VAR IAN C E
D A T A ; INITIA L _ STA T E ,

PA $ SE L) THROL’r,H,
INPUT _ I NT E R FAC Es CC _ IN.

TRA C ED PROM ;
OP IG INAT IN G _ R EQU IR(M ENT ;
TLS _ DP SPR_ PA RA GRAP H_ . I_ 2_ 1_ A_ FUNCT IONA L _ REQ UI REMENTS
6R IGINA T ING_ RE~ U I R E M EN T S
T L S _ DPSPR _ PARA G RAP M_ 3_ 2_ 1_,B_ FU P4CT I ONA L _REQ UIREMENT S,

D A T A ; CO M MAND _ T O ,
L O C A L I T Y ; L O CA L,
RA NG E S
W H A N t~OV ER _ IPIA G E ,D~ Op _ T~ AC K , IN IT IA T E _ENGAGE M ENT_ MOD E,

TE R P~INAT E_,ENG A G EMEN T _ MOD E ,CC _MES SAG E_ ERRO R’ ,
TY P ES E N UMERATI O N ,
US ES BO T H ,
MA K ES

M ESSAG E ; A C K N~ W L E D G E M E NT
M ESSAGE , HA ND OVER
M ESSAG E S M ODE _CHANG E
MESSAG E S - TERMV4*uIeN,

IN PU T 101
A L P HA , V A L I D A T E _~4 EA D E R,

Fi gure 6-4 Sampl e LIST By SEQUENC E

6-33

- —- ~~~ - - -~~~~~~

- —.-- —,--.-V.-~~~--

-
,

•

• Elements are displ ayed in the order that they are traversed —

in the hierarchy.

• The syntax of the display is the same as that produced by
the standard LIST coninand which is an indented form of legal
RSL syntax.

• Followi ng the displ ay of an element, associated information
pertaining to the element is displ ayed as selected by the
APPEND statement.

GROUP Display Option

Figure 6-5 gives an example of a statement selecting this option and
-

•

the output generated in response to the statement. The rules that are used
V

to determine the type of display produced when this option Is selected are:

• An element Is displ ayed if and only if it is a member of the set
identified by set identifier and it Is encountered while
traversing the hierarchy.

• The syntax of the displ ay Is the same as that produced by the
standard LIST comand which is an indented form of legal RSL
syntax.

• The APPEND option is applied following the displ ay of an element
to determine the associated information that should be displayed
about the element.

• A group of el ements encountered whi le tra versing the hierarch y starting
from an el ement in the top-of-the-hierarchy is displayed in an
al phabetical order following the displ ay of the top—of-the-
hierarchy element.

A-summary of the type of displ ay produced by each of the options described
in thi s section is given in Table 6.2.

6.2.4 Plotting Structures

This command is used to generate CALCOMP plots for those elements which
have STRUCTUREs. The syntax of the statement is:

I in
PLOT <set identifier> ~csize selection>~0

.

The set identifier is used to identify the set of elements to be plotted,

and of course, only those elements (if any) which have structures will be
plotted. RADX uses the same basic technique for generating plots as that used
by the RNETGEN function described in Section 5.2. Thus, if a structure has

ANAGPVAPH coordinates, the relative position of the structure symbol s in the

6-~34

~

-

~

-

~

V-V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
•~~~~~ W ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ V~~~VVVV -

- • -
V •_~~~~ _

(RAQX COMMAND S
APPEND ALL PASSES, PASSED, M AI(E5, MAD E BY , CONTAIN S ,

CONTAINED, INCLUDES, INCLUDED,
•55.S•55..5 5•.5.5•5. •555 .5.5 •• •5 5 5 •

(RA DX C OMM A wI ~:LIST ALL BY HIFR INFO_ SO URC E BY GR OUP .
• 5*.5.55• •e. 5 5•5•55•5•• .•• 55 555 .0. . 5

INPUT _ IN TE RFAC E , cC_ I~1,
PASSES ;

MESSAG Es HA~1DOVER
MES SAGE; MODE_CHANGE
ME SSAGE ; TE R M I NAT I ON ,

DA T A ; C OM MA N D _ ID ,
MAK ES S

M ESSAGE S ACK N OW LEDGEME NT
MESSAGE ; HANDOVEP
MESSAGE S M ODE _CHANG E
M ESSAG E S TE RM INAT ION .

DA TA HO_ ID ,
MAK ES S

~ESSAG E s HA N D OV E R
MESSAGE ; STATE_UPDATE
MESSAGE s TERM INAT ION
MESS AGE S T~ AC K_ IN ITIA TION
MESSAGE ; TRAC K_ TERM INAT ION .

DA TA; INI TTA L _COVA R IA N CE,
MA K ES S

MESSAGE; HAND OVER ,

D A T A S IN IT I A L _ S T A T E ,
MAKES;

M ESSAGE ; HA .1’)OVER
MF SSAGE , TRACK _ IN ITIATIO N ,

MESSAG fl MANDOVER ,
PASS ED THROUGH ,

INPUT_ IN TERcACE; CC_ I’J ,
MAD E B Y I

DAtA ; COMMA ND _ID
DATA ; HO_ID
D A T A ; I N IT IA L _C O V A P IAN C E
D A T A ; IN I T I A L _STA T E ,

MESSAGE S MOL)E_CHANGE ,
PAS SED T HROUGH:

IP~PUT_ INTER FAC ES CC_ IN,
MAD E t3YS

L)A 1’A$ C O MM A ~ O_ !O,

FIgure 6-5 Sample LIST By GROUP

6-35

- -

U.’

(I) V)
LU LU~~~J 0 LU LU
0- _J o. >-

< V~~ ic(
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

o
I.- -J -.~ aLU V) c~ a

LU LU ~~ LU ~~Z< V)~~ ~~~~~ V)
-

~~~ ~~ I.- ~~ ~~ I- 0V) (fI ~J (J V) V) . J  L)

~~~o_J w

~~ >- ~~ U_ — Z
LU ~~ LU = I— ~~
~
- L.~ 1- L~ I ~— U.’ 0 I—

~~ U.. ~~ ~~< 0 LU < LU
LU 0 ~ a ~~ I ~~ LU

LU () LU 0- LU
~~ ~PI ~~ ~~ — V) ~~ ~~ a -i~~.j >- ~~i0 .~ ~~ — LU ‘-4 I- U.’ .~ ~~~ LU

U.’p..’

c~.J

‘.0
a a
Li LU
I— I—

I.- U.’ U.’
Li
0- ~~ V) ~~ (/)

V) ‘-4 ~~

~~~~~~~~~~~~~~~~~~~~~~~~~~ i



plot will be the same as their relative position when displayed on the
ANAGRAPH. Should a structure not have coord inates, the automated plotting
procedure is used for assigning (in the ASSM) the location of the structure
symbols. The size of a plot is determined by the size selection specified
by the user. The syntax of this part of the statement is given below
followed by the rules that appl y to the processing of the statement.

~WIDTH 
11 r—i 1

1HEIGHTc1 L J  va ue

1. The value of the WIDTH parameter specifies in inches the
width of the plot.

2. The value of the HEIGHT parameter specifies in Inches the
height of the plot.

3. The value of the WIDTH or HEIGHT parameter can be a real or
integer number that is greater than zero. If the value of
either parameter -is less than or equal to zero, an error
message will be displayed and no further action will be taken
by RADX .

4. If the WIDTH parameter is not specified , then 8.0 is used for
the parameter value.

5. If the HEIGHT parameter is not specified , then 10.0 is used
for the value of the parameter.

6. If the specified value of the WIDTH parameter is greater
than 50.0, a diagnostic message will be issued and 50.0 wIll
be used in place of the specified value.

7. If the specified value of the HEIGHT parameter is greater than
29.0, a diagnostic message will be Issued and 29.0 will be
used in place of the specified value.

6.2.5 Listing RSL Descriptions

A description of the currently defined Requirements Statement Language (RSL)

can be acquired from the ASSM by the LIST RSL statement which offers two basic
formats for generating the description.

RSL Definition

The format of thi s display contains a syntax that is legal inpu t to the
RSL extension function (see Section 8). The syntax of the RADX statement
to obtain the display is:

6-37

V

~

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
• .



r’~ 
~~~~~~~~~~~~ —~~~~~~~ - .- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ V T~~~~~~~~~

{ PUNCH~ RSL [<display item>)

A list of allowed forms for display item is given next with a descrip-
tion of the display generated when the displ ay item is used.

V

element-type-name - definition of the element type

relationship-name - definition of the relationship

attribute-name - definition of the attribute

ELEMENT_TYPE - definition of all element types

RELATIONSHIP - definition of all relationships

ATTRIBUTE -
- definition of all attributes

ALL - definition of all element types, relationships,
and attributes. (Assumed value when display
item is not specified.)

Exampl es of the use of this statement and the displays generated by It
are contained in Figure 6-6. The RSL definitions In Appendix D.3 of this

dociaaent were generated using the command:

LIST RSL.

RSL Summary

This display provides a summary of the legal uses of an element type
for writing RSL. The summary is not a form that-is acceptable to the RSL
translator . The general syntax of the statement that invokes the sumary is
given bel ow and exampl es are presented in Figure 6-7.

‘ PUNCH}1
RSL [el ement-type-name] SUMMARY.

In the statement , the el ement type name identifies a particul ar RSL
element type that should be summarized. If an element type is not specified V

in the statement, then a summary for all el ement types Is generated .
Appendix D.4 of thi s document was generated using the c ommand :

LIST RSL SUMMARY.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- ~~~~
- V ~V

~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~ VV ~V_  - VV, V ~~~~~~~ ~~~~~~~~~~~~ 
_ _~V~__V_ ~~~~~~~~~~~~~~~~~~~ 

V Vp~~

______

t RA DX COMMAND S
LIST RSL,
.O• —, 5• —.

ELEMENTIUII TY PE ALPH A
(* A PRO CESSI N G ST EP IN THE FUNCTIONAL REQUIRE MENTS

DOMAIN. ~).STRUCTU RE AP PLIC ABI L ITY; NET ,

EL.EMENT.STYPE DA TA
(* A S IN GLE ITEM OR 5ET OF DATA THAT IS SPECIF IED

AND THA T W IL L EITHER BE REQUIRED IN THE
REA LOTIME SOFTWAR E OR IS NEEDED FOR
DESCRIPTIVE PURPOSES, *),

ELEM ENT_ TY PE S DEC ISIO N
(* THE DEC ISION THAT HA S BEEN MA DE TO ENA BLE

R E QUIRE M ENT S TO BE TAKEN FRO M THE DPSPR TO THE PPR ,
THIS MEAN S THA T THE REQUIRE M ENTS A RE NOT SIMPLY
A LLOCAT ED, BUT HAVE REEN SUBJEC TED TO
DER IVAT ION , *),

( RA DX CO M MA ND S
LIST RSL ENTERED_BY,
S 00 • ••5 — ~• 5.5~~~~ •~~~~ 55

ATTRIBUTES ENTERED _BY ,
AP PLICAB LE ELEMENT_TYPE ; ALPHA

DA TA
DECIS I ON
E NT I TV_ CLASS
EN TITY_ TYPE
E VENT
F ILE
INPUT_ INTERFACE
MESSAGE
OR IGINA TIN G_REQUIREMENT
OUTpLJy_INTERFACE
PERF ORMANCE _REQUIREMENT V

P_NET
SOURCE
SURNET
SUBSYSTEM V

LNSTRUCTURED_REQU1REMENT
V A L I DA T I O N _PA TH
V A L  I DA T ION_POIN T
VER SION ,

VALUE S TEXT
(* THE IDEN TITY OF THE LAST PERSO N TO ENTE R

INFORMA TIO N A BO U T THE ELEMENT , *),

Figure 6-6 Sample LIST RSL Definition

6-39

hIL _ _  ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ — ~~~~~~~~~~~~~~~~~~~~~ V•
~ W~

V •~_ V~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ••7V_ V~ V~VV ~~~~ ~~~~ ~~~~~ ~

V -~~~~~ - ~ - ~~~--‘~~~--~~ ~~~~~~~~~~~~~~~ -~~
‘

IRA DX COMMAND S
LIST RSL SU MMARY ,
., . ~~~ S..... S•.•• — —

ELE MENT_ T YPE ;  ALPHA
LEGA L PELAT IO NS HIPS I

V CREATES ;
V ENTITY _ CL A SS
- 

- 
DESTROYS;

ENTI T Y ,.C LA SS
FORMS ;

M ESSAGE
IM PLEM E~ T S;

- 
- VERSION

INPUTS,
DATA
FILE

OUTPUTS ;
D A t A
FILE

SETS ;
EN T ITY~ TY PE

DOCUMENTED (“Bv0)S
SOUR CE

EQUATED ( “ T 6~~) ;
SY’~ONYMTRA CE D (“F ROM ’);
DECISI ON
ORIG INAT ING_REQUIR EMENT

LEG A L ATTRIBUT ES ;
ART I FICI A LI TY;

A P TIFICIA L
VA LIDA T IO N
IM PLEMEN T_ A P PR O XI M AT E L Y
IMPLEMENT_PREC ISEL.Y

BE T A S
TE X T

CO M PLETENESS ;
INCO MPLETE
CO M PLE TE
CHAN GEAB L E

DESCRIPTIO N;
TEXT

ENTERE D _ BY;
TEXT

GA M MAS
T EXT

ELE MENT _ TY PES DATA
LEGAL RELAT IO NSHIPS ;
I

t S

I
FIgure 6-7 Sample LIST RSL SUMMARY

6-40



~RA 0X CO MMA ND S
LI ST RSL DA TA SUMMARY ,
S. ~~.S..S....S e •• —

ELEMENT.II,TVPE DATA
LEGAL PELA TIONSHIPS S

DELAYS ;
EVEN T

IMPLEMENTS ;
VERSIO N

— INCLUDES;
DATA

N A K E S S
MESSA GE

OR DERS ;
FIL E

A SSOCIAT ED (“WITH”),
ENTIT Y_CLASS
ENTIT Y_TYPE

C O NTAI N ED (“ IN ”) I
F ILE

DOCUMENTED (‘BY’);
SO URCE

• EQU ATED (“TO”);
SY~1ONYMINCLUDED (“ IN”) ;
DAT A

INPUT (“ TO ”) ;
ALPHA

OUTPUT (“FROM’);
A L P HA

R EC OR DED (“ By” ) ;
VALIDATION _POINT

TRACED (“FROM” );
1) E C isi o~OPIG ZNA TIN G_ REQUIREMENT

LEGAL ATT RIBUTES ;
A RT IF IC IA LI TY,

A RT I FICIAL
VA L IDATI O N
It4PLE MENT_ AP PROX ZMA TELY
IMPLEMENI_PRECISELY

C6~’PLETENESSiINC OMPLETE
C O MP L ETE
CHAN GEAB LE

DESCPIPTION ;
T E X T

TF . XT
INIT IA L_ VA L UEs

NA 4Ej)
NUMERIC

Fi gure 6-7 Sample LIST RSL SUMMARY (Continued )

6-41

- ~ V ~~~~~ ~~~~~~~~~~~~~~~~~~~~ V



572 TRW DEFENSE AND SPACE SYSTEMS GROUP HUNTSVILLE ALA F/S 9/2
REVS USERS MAMIAI.. SPEP FINAL REPORT. VOLUME II.(U)
AUG 77 H E DYER. L .J GUNTHER. R I SMITH DASGo O—75—C—0022

UNCLASSIFIED TRW—27332—6921—0 26—VO4.—2 p4. 

I IU~~~~!!i
I

113 _ 
_ _

uuEII. a
I _
I

! I I IL n 1~



• ~~ (I~I~ ~~~

_________ 2.2.
C

I .1 ~~~~ 1)112.0
• llll)~• (1(11’ • 25 lff((1 4 (~III..~

MR I~O~ II U H IU.U

F - L I I 4 U~~~l~ . It.N( AI4J  t



~~~——~~~~~~~ 

~~~~~~~~~~~
-

~~
-:

~~~ ~~~~ 
. - _7

~~
—

~~~~~

6.2.6 ListIng Control and Extension Permissions

This statement Is used to obtain a listing of the control and extension

permissions that are active for the ASSM being used by REVS. The syntax of

the statement Is:

~PUNCH}1 
PERMISSION GIVEN control-permission-name .

The control permission name must be the name of a control permission that

has been established using the extension portion of the RSL translator. If

It Is not, the command will be rejected. If it is , MDX will dis pl ay the

RSL statement CONTROL PERMISSION wi th the given name and will generate the

RSL statements for all other permissions in the ASSM , should any exist.

Figure 6-8 contains exampl es of this.

6.2.7 Punching the ASSM

As indicated in the previous portions of this section , anything that
can be LISTed by RADX can also be PUNCHed . This allows a data base to be

stored in “source form ” instead of “data base form”, two or more da ta bas es
to be merged , or a requirements data base to be moved from one REVS

installa tion to another .

The REVS Executive and RADX have special provisions to allow informa-

tion to be PUNCHed . The value of a parameter of the REVSXQT macro as

described in Section 9 actually controls the disposition of PUNCHed Images.

After Information has been PUNCHed , i t can be in put to the RSL
Translator. If the information is on card s, then obviously the cards

serve as the input source. If the information has been placed on a file ,

then the file can be the input source by using the REVS Executive ADDFILE

eapab ility that is documented in Section 4.2.2.

6-42
Revision A



(RA pX C~ MMANr )s
LIST PERM ISSION GIVEN CH4NGE_ AND_ .EXTENSICN _,C~NTRCLLER ,
— a a. a ~~.. . — ~ .. a.. ~ . — ~~~~~~~ aa ~ ,~~ ~~~ • e. . a.aa. a aa a R C U

CONTROL .PER I~IS5ION CHA 1~GLAND..EXTENSION_CeNTROLLER ,
C~ NTROL.PFRMISSI ON C~ NTR~ LLER_ I ,
CCNTROL.,PERM ISSTON CONTROLL .ER,..2,
E~ TE NSIONII.P (RMISSI0N EXTEN~ Ep.,1,
EXTENS ION .P.PNMISSION EXTENDER.,?,
EXTENS 1ON,,PI~ MjSSII~N EXIENDE~~3,

~RADX COMM ANt :
LIST PERMISSI ON GIVE.P~I C ONTROLLER..I,
• a eeC.. a a a. a. a a ~~~~a. • a — * aaaR •a a .R a a a

CONT~~~~PF~ P’ISSIO~ CONTROLLERI,I,
CO NTROL_ PERMISSI ON CH*4GE_ AND..EXTENS !0P4..,CONTROLLER ,
CCNTROL..PE~HuISSI6N CONTROLLER ,_ 2,
EXTENS18N.II.PF~~ISSI ON EXTENDER.,I ,
EXTENSION I.PFRI4ISSION EXTENDER,.?.
EXTE NSION,.PFR MISSION EXTENUER._3,

tRADX COMM ANC ’;
LIST PERMiSSION GIV F N EXTENOER _ 1,

a .R  • ..... a Caa — — a a aa a a a a.,. a a .. a
*€ PROR 2580 TLLEG&L PEPI.USSION SPECIFIED,

- SY MBOL EXTENDER _ i

(RADX C6P4MAND~
LIST PERMISSI ON’ GIVEN T,.A IEED_ Tl’ç,KNOW ,
a a a a. a aCa .a . . . a  a a aa a a  — .  — ~~aa aS•  a a a .u •u.aa

*ERROK 2580 TL~. EGAL PERMIS SION SPECIFIED ,
- SYMBOL N0T_ A._ NLED._ T0..,KN OW

Figure 6-8 Sample LIST PERMISSION

6-43



The user should be cautious to only Inpu t Information to the RSL

translator tha t Is PUNC Hed by RADX as legal RSL. The following are the

reconinended statements to be used for PUNCHing the RSL definition and the
requirements spec ificatIon when they are intended to be input to the RSL
translator .

PUNCH RSL .
APPEND ALL: ATTRIBUTE, PR IMARY , STRUCTURE.
P!JNCH ALL .

U

6-44



6.3 USING AUTOMATED STATIC ANALYSIS

This section describes the automated static analysis that is provided
by RADX . There are two basic types availabl e to the user. The first is a
consistency check of critical relationships and attributes specified In the
ASSM. The second Is a data flow analysis within an R NET. The selection
to perform a data flow analysis also causes the consistency test to be per-
formed. Another function of this area of RADX is to perform the consistency
check and collec t information from the ASSM during ini t ia l izati on of the

SIMGEN function. There are no requirements on the user to cause this but
there is a need to know about it so that certain information displ ayed during
SIMGEN execution can be understood. This will be further explained tn thi s
section.

The actual error messages that can occur from an analysis are given in
Appendix F.2. The discussion that follows provides a general statement of
the types of errors detected , an inter pretation of anal ysis d ispla ys , and a
description of the RCL used to invoke an analysis.

6.3.1 ConsIstency Ana lysis

The syntax for activating the automated consistency analysis is:

r ~IMpLIED~ll
ANALYZE set ldentif ier>I USING BETA 

~
> 

~~
.

L GAMMA ‘iJ
The set identifier Is the identification of a collection of R_NETs

to be analyzed. The set may contain elements other than R_NETs but their
Inclusion will not influence the analysis. The optional part of the
statement specifies the type of DATA to be used during the analysis. Should
no option be selected, IMPLIED DATA is used . The meaning of each of the
options i s :

IMPLIED - ignore the USE attribute and use the lowest level
DATA in the ASSM (i.e., DATA that does not INCLUDE other
DATA).

BETA - use DATA with USE BETA.

GAMMA - use DATA wi th USE GAMMA .

6-45

~~IL~_______________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



When USING BETA or USING GAMMA Is selected, the USE attribute test
described below is performed to identify anomalies that result from the
specification of the USE attribute and conflicting relationships .

Analysis Information Network

The initial output from an analysis , either user activated or
SIMGEN activated, is the display of the information to be used in the
analysis. For the case of SIMGEN activation , it is also a displ ay of the
information to be simulated . An example of the display Is given in
Figure 6-9. The format is similar to that generated when the MAP option
Is selected in a LIST HIERARCHY coimiand (Section 5.2.3). The exception
i~ that when the character str ing, ( *) ,  appears after an element name , it
indicates that the pertinent information about the element has previously
been displayed in the information network and is not repea ted.

Loop Detection

As the information network Is generated a test Is performed to
identify loops that may occur in the network. A loop can be caused by
a direct or Indirect reference between SUBNETs and a recursive definition
of a DATA element via the INCLUDES relationship. An example is DATA X
INCLUDES DATA V and DATA V INCLUDES DATA X. When such an error Is
detected, a message is issued and the path of elements containing the loop
is displayed.

USE At tribu te Tes t

This test is performed if the option USING BETA or USING GAMMA Is
selected or if the analysis is activated from SIMGEN which always requires
that either BETA or GAMMA be chosen for analysis and simulation .

The following Is a list of the errors that can be detected by this test
when they occur while analyzing DATA with USE BETA .

1. The lowest level DATA that is needed for the BETA analysis
does not have a USE attribute. A message is issued and the
DATA is used in the analysis.

2. The lowest level DATA required for the BETA analysis has USE
GAMMA. A message indicates that it should have USE BETA or
USE BOTH. The Item is used for the analysis .

6-46



— 
_ _ _  

— 

~~~~~~~~

IRA DX CO M P IAND Z
A~4A LY ZE DATA JLOM ALL USING BETA,
• a~~ ~~~ a .saaR aa aa ~~R .aaa . — a a aR — CRC. Ca

R~ NET $ CLRESPONSE
REFERS T O

AL P~4A $ ACKNO W LEDGE
FO RMS

MESSAGE S ACKNOW LEDGE MENT
MAD E BY

DA T A , COM MA N D _ ID
A LPP4 A , CC..ERf~OR .SPROC ESSING
A LP~ A I ENGA GEMENT ,.INIT IAT IO N

OUTPUTS
DA TA S MODE

A L PMA$ STARTER
OUTPUTS

F ILES WAVE FOR M,_TA BLE
CO NTA INS

D A T A I W p ._CI4AR A CTER I$11C5
DA T A I

ALPI 4A 5 TE RM_ENGAGEMENT
O UTPUTS

D A T A I MODE
ALP~’A I TER M_ TRACK

OUTPUTS
FILCI T E RM INA TOR

CONTA INS
D A TA I DROp ._REA 5ON
D A TA s OR Op,.TIM E

INPUTS
DA TA S CLOCK ,.TI ME
DA T A I OROP.,,REAS OP ,
DA TA I DROP _ TIME

OUT PUTS
D ATA I DATA ..REC ORD _ TYPE
DA TA I R EA SON _ FOR_ DR O P
D ATA I TIME .,OF,.ORO P

FOR MS
M ESSAGE S TR &CK _ TE RM !NA T ION

MAD E BY
D A T A S DAT ~~ RE CORD _,TY RE
DA TA, MO _ I D
DA T A I R EA SON _ FOR_ DRO R
DATA , TI M LOF_ DR OP

ALP$4 A S TRACK _ IN IT IA TE
IN PUT S

D ATA I CLOCK _T IM E
DA T A I we_ ID
DA TA S INI T IAL .,CO~# A R IA N C E
D A TA s INIT IAL .,.STATI

OUTPU TS
0A 4 s C OVAR IAN C E
C DA TA UI,RECORDUI,TYPE

FIgure 6-9 Sample Analysis Information Network

647

-~ —~~~~ -~~~~ -~~~ ~~~~~~~~~~~~ ~~~~~~~~~

~~~~~~~~~~~~~ ~ TiLT ~~iT~
’

3. A DATA element with USE BETA either directly or indirectly
INCLUDES other DATA with USE BETA. The highest level element
is used in the analysis and the user is Informed of the problem.
However, should there be another need for the lower level DATA
item that does not go through the higher level item, the lower
level item will be selected for analysis in addition to the
previously selected higher level element.

When an analysis is done for DATA with USE GAMMA the test and actions
lis ted next are performed.

1. A DATA item required for the GAMMA analysis does not have a
USE attribute. The situation is reported to the user and
the DATA is used for ana lysis.

2. A DATA item, with USE GAMMA or USE BOTH , INCLUDES other DATA .
The appropriate error message is issued and the analysis is
performed without the item.

3. A lowest level DATA element has USE BETA. A message which
indicates that it should have USE BOTH or USE GA~~A is generated
and the element Is used in the analysis.

LOCALITY Attribute Test

Thi s test checks the correct use of the LOCALITY attr ibute. It is
concerned with the DATA and FILE elements that are members of Repetitive
Data Sets (RDS). The RSL elements that make an RDS are MESSAGE, ENTITY_
CLASS, ENTITY_TYPE, and FILE. The elements that can be assigned a LOCALITY
are DATA and FILE. The value of LOCALITY can be GLOBAL or LOCAL . The
LOCALITY of an RDS (other than a FILE) and its members is not optional .
They are: LOCALITY of MESSAGE is LOCAL; LOCALITY OF ENTITY_CLASS Is
GLOBAL ; LOCALITY of ENTITY TYPE is GLOBAL . The LOCALITY of a DATA or FILE
element is GLOBAL if It is not contained in an RDS that dictates its value
and no LOCALITY is specified . Based on these facts, the following test and
actions are performed in the order that they are listed:

1. If the information content (i.e., FILE or DATA) of a MESSAGE
has an expl icit declaration of LOCALITY GLOBAL, an error
message is issued identifying the conflict. For analysis
purposes, all the Information in the MESSAGE is considered
to be LOCAL, regardless of the LOCALITY attribute.

2. If the members of an ENTITY_CLASS or ENTITY TYPE have been
assigned LOCALITY LOCAL, the error is identified and all the
members are treated as GLOBAL .

6-48

- —



— 

~~~~~

-

~~~~

-

3. If the specified LOCALITY of the DATA in a FILE differs
from the specified or defaulted LOCALITY of the FILE, then
an error message is generated which identifies the problem
and the LOCALITY of the DATA Is considered to be the same as
the LOCALITY of the FILE.

Membership Test

This test identifies those DATA items that are members of more than
one Repetitive Data Set. An error of this nature can possibly cause
multipl e error messages to be produced about the LOCALITY of an element.
For this reason, the errors of the membership category should be examined
to see if they are triggering LOCALITY errors. The following sumarizes
the specific tests that are performed. It is indeterminant what effect
the errors will have on the analysis or simul ation of the requirements
data base that contains any of these errors. An error will be identified
if any of the following conditions occur:

1. A DATA MAKES a MESSAGE and is CONTAINED In a FILE but the
MESSAGE is not MADE by the FILE.

2. A DATA is CONTAINED in more than one FILE.

3. A DATA is CONTAINED in a FILE and is ASSOC IATED wi th an
ENTITY TYPE or ENTITY CLASS but the FILE Is not ASSOC IATED
with tlTe ENTITY_TYPE ~r ENTITY_CLASS.

4. A DATA MAKES a MESSAGE and is ASSOCIATED with an ENTITY TYPE
or ENTITY _CLASS .

5. A DATA is ASSOCIATED with more than one ENTITY_CLASS.

6. A DATA is ASSOC IATED with more than one ENTITY_TYPE that
does not COMPOSE the same ENTITY_CLASS .

6.3.2 Data Flow Analysi s

The option to perform a consistency analysis and a data flow analysis
is selected using the following syntax:

I ~IMPLIED 11
ANALYZE DATA FLOW cset identIfier luSlNG <BETA I .

IGAI~t4A lJ

The meaning of the set identifier and the optional part of the state-
ment is the same as the description In Section 6.3.1. When this coninand Is
specified , the consistency analysis tests are performed and an analysis of

6-49

-~



~ ——— 
~~~~~~~ 

. -

~~~~~~~~

the use and ass igrinent of information based on the predecessor/successor
relationships of the nodes within an R_NET and dependent SUBNET structures
is performed. The actual tests made by the data flow analysis can be grouped
into the following classes.

1. The incompl ete or ambiguous specification of branch conditions
in a structure.

2. Net structure errors .

3. The incorrec t assigment and use of information.

4. The ambiguous identification of information that is assigned
or used In parallel paths.

Wal k-Back From Error Source

When a data flow error is detected, a message is generated that
describes the nature of the error. For most messages, additional informa-
tion that identifies the element or elements which caused the error is
displayed after the message. After this , a walk-back from the node in the
structure where the error was detected to the first node of the R_NET being
analyzed is produced to aid the user in locating the source of the error.
An example of how this will appear in the output is:

*ERROR 2664 INFORMATION ALWAYS USED BEFORE ASSIGNED .
DATA : WLFEO4 .

* ERROR DETECTED AT ALPHA : ALPHA7H
* PRECEDED BY AND-NODE
* PRECEDED BY AND-NODE
* PRECEDED BY ALPHA : ALPHA7
* PRECEDED BY R_NET: RNET7

Conditional Branch Test

The errors detected by this test are those which occur at a CONSIDER
OR node. The following are the conditions that must hold for the node.
If any are violated , an appropriate error message Is issued .

1. The element that is the subject of the CONSIDER must be of
element type DATA or ENTITY_CLASS.

2. I-? the CONSIDER element is DATA, then it must have TYPE
ENUMERATION and a value for the RANGE attribute.

3. A value that appears in the RANGE attribute cannot dupl icate
another value and it must not be the same as a name in the
ASSM.

6-50. 

- -~~~~~ -~~~~~~~ —~~- 
- .



- — -.- ‘,.-. ~~ .—--~,- .~~--—.-——~—..— - .•-~~~r-~--~
-- ~~~ .,- ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~

r ~~~
. - -  

. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

4. If the CONSIDER element is an ENTITY CLASS, there must be
Instances of the COMPOSED relationshTp for the element.

5. The values that appear in branch expressions from the
CONSIDER node must be legal for the el ement being considered .
For example, if an ENTITY CLASS is being considered , only
ENTITY_TYPEs which COMPOSt the ENTITY_CLASS can be in the
branch expressions. For DATA of TYPE ENUMERATION , the value
must be in the RANGE attribute.

6. The values in the branch expressions must include all the
possibl e values of the considered element.

7. A value can only occur once in all of the branch expressions.

Net Structure Test

The RSL Translation and the Interactive R-Net Generation functions
ensure that a single R_NET or SUBNET structure is legal before it Is entered
in the ASSM. There are two probl ems that go intentionally undetected until
data flow analysis. One is the simplediagnosis of a SURNET without a
structure that is directly or Indirectly referenced by an R_NET. being analyzed
or simulated . The second is the detection of partially rejoining logic
constructs which resul t from SUBNET expansion in a referencing structure.
This problem can occur for both AND and OR constructs. Figure 6-10 Illustrates
a partially rejoining AND construct that occurs when SUBNET S is expanded
into R_NET R.

Information Assigmient/Usage Test

Based on the predecessor/successor relationships of nodes in a
structure, this test identifies errors that result from the use of informa-
tion that does not have a source and the assigment of information that is

not used . The term infc~rmation is applied in a general sense to refer to
the following element types: DATA, FILE, MESSAGE , INPUT_INTERFACE, OLJTPUT_
INTERFACE, ENTITY CLASS, and ENTITY_TYPE. Information is considered to be

used at a node if Its value is required to compute information, to make a
branch decision , to Identify other information , or PASS an OUTPUT_INTERFACE.

Information is assumed to have a source if it has an INITIAL_VALUE, exists
external to the R-Net being analyzed (i.e., LOCALITY GLOBAL or acquired from

an INPUT INTERFACE), Is OUTPUT by an ALPHA , or is a member of a properly
maintained Repetitive Data Set. The operations used to maintain a Repetitive

Data Set are FORM, CREATE, DESTROY, SET, SELECT, and FOR EACH.

6-51

——

~

- --~~~~..- . - .- -—-—— — - -~~~~~~ -- —~~-.. ,—.—- .---—--- -. - ~~ --~ —-~~ -— . .

p
- -.- ,- ~~ ~~~~~~~~~~~

- . - . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SPECIFICATION

R_NET R SUBNET S

& I ALPHA C 1

ALPHA A SUBNET S

&
___________ ___________

ALPHA D (ALPHA E 1
ALPHA B

EXPANSION R_NET R

PARTIALLY REJO IN!

___ _ _ _

~ UBNET S

[~~~H A A J / [ALP HA C I

/ _ A
_ _

\ AIPHA D] IA LP HA E I

ALPHA B
N~. .7

Figure 6-10 Sample Partially Rejoining AND—Construct .

6—52


~~~~~~~~~~~~~~~~ ~~ fl~~~~fl~ ~~~~~~~~~~~ . 
~~~~‘- -~.‘.!V ~~~~~~~~~~ ‘ .rrr ,

~~
.
~vt z~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ • ~~~~~~~~~

-

The detected errors are segmented as to whether they will always
occur at a node or whether they will only occur for some paths that
precede the node. For the latter case, the word, SOMETIMES or POSSIBLY ,
will appear in error messages to make the distinction. The fol lowing

sumarizes the conditions that will be diagnos& by this test.

1. The use of LOCAL simpl e DATA that does not have an INITIAL_
VALUE and has not been assigned by a predecessor ALPHA .

2. The use of information ASSOCIATED wi th an ENTITY TYPE or
ENTITY_CLASS that is not Identified.

3. The use of information CONTAINED in a FILE that is not
identified.

4. The assignment of LOCAL information that is not used In a
successor node. This includes a FORMed MESSAGE that cannot
PASS an OUTPUT INTERFACE.

5. The assignment of LOCAL information that is reassigned before
it is used in a successor node.

6. A SET ENTITY_TYPE that is not preceded by a CREATE, SELECT,
or FOR EACH operation on the ENTITY_CLASS that i s COMPOSE~of the ENTITY_TYPE.

7. A DESTROY ENTITY CLASS that is not SELECTED.

8. The use of information from more than one INPUT INTERFACE
MESSAGE on the same path.

9. The selection of a new ENTITY_CLASS without a COMPOSED
ENTITY TYPE being SET for the current ENTITY_CLASS fol lowi ng
a CREATE operation.

10. The traversal of an OUTPUT_INTERFACE wi thout a FORMed MESSAGE
that can PASS the INTERFACE.

11 . InformatIon passing an INPUT_INTERFACE Is not used.

AmbIguous Flow Test

For the purpose of this test, an R_NET Is considered to contain an

ambiguous data flow specification if a change In the sequence of execution
of parall’el paths causes the source of information for a node to change.

It is possible that such a condition has been Intentionally specified and

is not a true error. However, the ambiguity will always be Identif led and

it is the user ’s responsibility to access the Impact on the requirements.
Exampl es Of this type of error are Illustrated below .

6—53

TE ~~~~~~~~~~~~~~~~~~~~~~~
-

R_NET P R_NET Q

ALPHA A - DATA x
A
-

DATA X & &

\ A

ALPHA B ALPHA C ALPHA A ALPHA C

/
DATA X & DATA X

INPUT
DATA X- ——-- ALPHA B

In both of the R_NETs the source for DATA X that is INPUT to ALP HA B
can either be ALPHA A or ALPHA C depend ing on the order that the parallel
paths are exercised. For R_NET P, RADX would inform the user of the problem
by displaying the fact that DATA X is assigned and used on different parallel
paths. The message triggered by R_NET Q would inform the user that DATA X
is assigned from more than one parallel path.

6-54

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - --
~~~~~~~~~

- -

- -- - -~~~~~ - -

-

~~

—

~

- - - -‘

7.0 SIMULATING REQUIREMENTS

REVS supports generation and execution of simulators of the data pro-
cessing system based on the requirements stated in RSL and stored in the
data base (the ASSM). The simulators are discrete event and are of two
distinct types. The first, a functional or beta simulation , uses model s
of the processing steps, the ALPHAs. These models may employ shortcuts
and use models of the true data to simulate the required processing. This
type of simulation serves as a means to validate the overall flow of pro-
cessing against higher level system requirements.

The other type of simulation , an analytic or ganmia simulation , uses
analytic model s, i.e., model s that employ algorithms similar to those
which will appear In the software . A ganina simulation may be used to
define a set of data processing algorithms which have the required accuracy
and stability. Thi s does not establish real-time feasibility of the algorithm
set for a particular implementation; instead it provides an existence proof
of an analytic solution to the problem.

For gama simula tions, REV S will also generate a simulation post pro-
cessor containing the PERFORMANCE_REQUIREMENT TESTs specified in the ASSM.
The post processor tests are executed against data recorded from a gama
simulation to establish the analytic feasibility that the set of algorithms
will meet the performance required of the data processing system.

As stated above , the distinction between beta and gama simulations
Is the ALPHA model s and the degree to which the required DATA is modeled.
In a gama simulator , all of the requirements DATA (i.e., lowest level of
DATA) is present; in a beta simulator , only those DATA with USE BETA or
USE BOTH are used . Thus , for a g iven ASSM the remainder of the simulator
(processing flow and data structures) remains constant.

The ASSM representation of t ,e requirements is translated into
simulator/post processor code In the programing language PASCAL . The
flow structure of each R_NET and SUBNET is used to develop a PASCAL pro-
cedure whose control flow impl ements that of the net structure . Each
ALPHA reference on the nets becomes a call to a PASCAL procedure containing
either the model (BETA) or algorithm (GAMMA) for the ALPHA . The data

definitions and structure for the simulator are synthesized from the

7—i

- - - -~~~~~~-~~~~- • -

requirements DATA and their relationships and attributes specified in the
ASSM. Based on this information, data management and recording procedures

— - are synthesized. This software generated based on the ASSM is consolidated
wi th simulation utilities and a driver to construct the simulator .

In generating a post processor , the PERFORMANC E_RE QUIREMENTs TESTs
in the ASSM are translated into PASCAL procedures. The data definitions
and structures for the post processor and the retr ieval procedures for
accessing data recorded by the simulator are synthesized from the ASSM re-
lationships and attributes of RECORDED DATA . These are consol idated wi th
control utilities to generate a post processor. The dependencies of the
simulator and post processor on the RSL concepts are further described in
Section 7.1, as are the rules for writing BETAs , GAMMAs , and TESTs .

A simulator and post processor are built by the REV S Simulator Genera-
tion (SIMGEN) function. Through SIMGEN comands (See Section 7.3), the user
controls the type of simulation , its scope, and its identification . After

— first internally invoking the RADX ANALYZE capability , discussed In Section
6.3 , to analyze the ASSM, SIMGEN performs the translation and consolidation
described above and establishes conditions which will cause the simulator
(and post processor) to be compiled (see Section 9.0 for the REV S job control
stream).

A REV S generated simulator is composed of the following major components ,
as shown in Figure 7—1 :

• R_NET procedures

• Simulation Executive

• Simulation Event Manager

• Simulation Data Manager

• Simulation driver .

The simu lator is of the discrete event type and Is designed to inter-
face the R_NET procedures wi th a simulation driver to form a r osed_loop
simulation. Overall simulation control and the engagement clock reside in
the Simulation Executive. The driver interfaces wi th the R_NET procedures
through the Simulation Data and Event Managers.

7—2

-- -- - -~~~~~~~~ - --~~~~~~~~~~~ -~~~~~~~~~~~~--- -- -- - - - --~~~~~~~~~~~ -

—-~~~~~~ ~—---- ~~ ~~
__ _•_“_

.~
•__—_.,_._ -,--- __7__

rr— - -- i. ~~~——- — -

LU I
I S

LU ,~. • C .

/

~~

_ _ _

I
~~0

~~~~.r o
LU

—LU U,

_ \
\
\\

(I,
LU

S . .

7—3



An R_NET is the only el ement in RSL which can be scheduled for execu-
tion in a simulator . An R_NET Is schedul ed to execute whenever flow passes
through an EVENT which ENABLES the R_NET or when a MESSAGE PASSES an INPtJT_
INTERFACE which CONNECTS to the data processing subsystem and ENABLES the
R_NET. A component of the driver representing a SUBSYSTEM is scheduled to
execute whenever a MESSAGE Is PASSED through an OUTPUT_INTERFACE which
CONNECTS to a SUBSYSTEM. The Simulation Event Manager provides the utilities
to schedule the execution of both R_NETs and SUBSYSTEM models. The ~imula-
tion Data Manager coptrol s and provides access to the MESSAGEs which are
PASSED through the Interfaces , as wel l as managing all other RSL DATA con-
structs. The Simulation Executive controls the execution of the simulator by
causing control to pass to the driver model s and the R_NETS at the scheduled
times. Details of interfacing a driver with the simulated R_NETs are pro-
vided in Section 7.2.

A REVS generated post processor consists of a post processor controller ,
data retrieval procedures , and PERFORMANCE _REQUIREMENTs TESTs translated into
executable PASCAL functions . Once generated, the simulators and post pro-
cessors are accessi ble for execution through the REV S Simulation Execution
(SIMXQT) and Simulation Data Analysis (SIMDA ) functions. The user controls
availabl e through SIMXQT and SIMDA are described , respecti vely, in Sections
7.4 and 7.5.

7-4



7.1 PREPARING AN ASSM FOR SIMULATION

In generating a simulator and post processor from the ASSM, REVS uses
the RSL concepts compris ing the Da ta , Alpha , R-Net and Va lidation Segments
(see Sections 3.1 through 3.4 , respectively). The concepts are either
direc tly represented in the simulator or used in Its generation. All of
the concepts In these segments are pertinent with the exceptions of the
DATA attributes MAXIMUM_VALUE , MINIMUM VALUE, RESOLUTION, and UNITS and of
th e VALIDATION _PATH attributes MAXIMUM_TIME and MINIMUM TIME.

To generate meaningful simulators , the conventions assoc iated with
the concepts (as explained in Section 3) must be followed . It is further
necessary that the requiremeflts perti nent to functional flow have been
completed (for exampl e, that each interface CONNECTS to a SUBSYSTEM, each
R_NET is ENABLED , and each interface PASSES MESSAGEs). Also , as described
In Section 5, the names for requirements elements should have been selected

• to conform to the installation dependent naming requirements described tn
Section 10 and so as not to conflict with BETA/GAI44A, TEST, and PASCAL reserved
words (see Appendix B). REVS will always build a simulator even If the resulting
simulator Is not meaningful because of omissions or anomalies In the ASSM; the
simulator will have the same omissions and anomalies.

Where possibl e, REVS provides defaults in the simulation generation

process: if an R_NET or SUBUET structure Is omitted , REVS will generate a
“dummy” procedure representing an empty structure; if a BETA or GAM MA is
omitted, REVS will provide one (see Section 7.2.1); if certain attributes

of DATA such as TYPE or INITIAL_VALUE are not specified, default values will
be used in the simulator.

In generating a simulator , the ANALYZE function of RADX is first auto-

matically executed to analyze errors and to identify default action where
possible. Where the user does not follow the conventions of RSL, RADX
will attempt to diagnose the probl em (see Section 6.3) but cannot correct

the error; thu s an erroneous simulator will be generated . Consequently,

before generating a simulator , it is recomended that the user run the RADX

package described in Section 6.1.8, execute the data flow analysis capability

of RADX (see Section 6.3) and correct the indicated anomalies.

7—5
Revision A

- - - - - —  , - - -~~~~~~~- - -~~ - - - --~~~~ - - -



As noted previously, the conventions concerning the RSL concepts are
documented In Section 3.0; described below are the conventions for writing
BETAs, GAMMAs , and TESTs.

7.1.1 Writing Beta and Gamma Model s for Aiphas

The required processing in an ALPHA is model ed for simulation in an
executable description , either a BETA or GAMMA attribute. These executable
descriptions are written as standard PASCAL procedures with the following
al terations:

• The user does not provide a procedure heading -- this is done
automatically by SIMGEN .

• Special statements (peculiar to REVS) are used to access
FILEs -- these are translated by SIMGEN into legal PASCAL
statements.

REV S processes the executabl e descriptions to produce standard PASCAL pro-
cedures for incorporation into the beta or gamma simulator.

All of the normal PASCAL programm ing features and facil iti es are
ava i la ble , except that all data that is not strictly local to a BETA or
GAMMA must be declared via the RSL Data Segment (see Section 3.1). Com-
munication between BETAs or GAMMAs of several ALPHA s during simulation is
via the DATA described in the Data Segment. Specifically, a BETA or GAMMA
communicates via the DATA INPUT to and OUTPUT from the ALPHA .

DATA specified in RSL are represented in simu l ations as variables of
the same names and of the type assigned by the RSL attribute TYPE. Thus ,
reference to DATA from wi thin a BETA or GAMMA is via the RSL name of the
el ement consistent with the standard PASCAL reference conventions.

Accessing FILEs

FILEs consist of mul tiple i nstances of the DATA CONTAINED ~n the
FILE. A series of statements whi ch are un iq ue to REVS and serve to augment
the PASCAL language are used in BETAs and GAMMAs to distinguish between the
multiple instances in FILEs and to create and destroy FILE entries . These
file access statements , described below , are coded in the executabl e
description as though they were PASCAL statements; they are translated Into
executable PASCAL code which accesses the FILE instances during simulation .

7-6



SELECT

The SELECT statement is used to make available to the BETA or GAMMA 
-

the contents of one record (instance) in a FILE. In BNF (see Appendix A),
the syntax* of the statement is: 

-

SELECT 
{
~~~T} RECORD FROM file-name

[SUCH THAT (<Boolea n expression>)] -

If FIRST is specified , the search operation begins with the first
record in the FILE (a FILE is either ordered first-in-first-out or ORDERED
by DATA CONTAINED in each record of the FILE). If NEXT is specified the -

search begins with the record imediatel y fol lowi ng the presently sel ected -.

record.

If a SUCH THAT cri ter ia is specified, the Boolean expression is
evaluated using the DATA from the current instance. If the expression
evaluates FALSE, the next instance is examined . If the expression evaluates
TRUE, the predefined local DATA Item RECORD_FOUND Is set to a Boolean TRUE
value , the contents of the record are made available to the BETA/GAMMA code, -

and the search terminates .
-

If no instance is found that meets the selection criteria, or if the -

FILE is empty, RECORD_FOUND is set to Boolean FALSE and the search is -
-

terminated.

The selected instance remains selected and thus its DATA values remain
availa ble until another selection is performed on the FILE or the net is
terminated . The selection remains in effect even though the processing flow

-

may pass from one ALPHA to another. —

CREATE

The CREATE statement adds a new record to a FILE. The syntax of the
statement is: -

CREATE file-name RECORD

*The syntax of the special statements available for operating on FILEs in a
BETA or GAMMA is sumarized in Section 2 of Appendix G In both BNF and
syntax diagram form.

“I

- .~~~~~~~~~~
- -

When the record is created it is automatically selected and its data remain
availabl e until another CREATE or SELECT Is performed on the FILE. During
the creation of an instance all DATA items ar~ initialized to their Stipu-
lated values from the INITIAL_VALUE attribute, or to a default value if
none is given . After a CREATE, the BETAs/GAMMAs can assign new values to
the data items via the usual PASCAL assignment statements.

DESTROY

The DESTROY statement removes the currently selected record from a
FILE. The syntax of the statement is:

DESTROY file-name RECORD

After a DESTROY, the DATA values in the record are no longer availabl e.
The DESTROY performs a de-selection on the FILE; thus , the assignment of
values to DATA CONTAINED in the FILE is meaningless until after the next
selection .

FOR EACH

The FOR EACH statement is an iterative form of the SELECT statement.
It allows a simpl e means of applying a common operation to multipl e recoi-ds
in a FILE. The FOR EACH header specifies the FILE and the criteria (if
any) to be used in selecting records. An ENDFOREACH signal s the end of the
range of code to be applied to each instance satisfying the evaluation

criteria.

FOR EACH file-name RECORD [SUCH THAT (<Boolean expression>)] DO
<PASCAL statement>
ENDFOREACH

where PASCAL statement is defined to include a file access statement as a

legal form.

Each instance is examined In turn , beginning with the first, and the
logical expression eva luated using DATA from the Instance . If the expression
evaluates to true, the code encompassed by the DO and ENDFOREACH is executed
using the instance DATA . If no Instance meets the criteria , the FOR EACH
is null and the embedded code is not executed . FOR EACH structures may be nested

to ten deep1~.

7-8

- -~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ -- - - ~~
-

~~~~~~~~~~~~~~~~



- ~~ -- “ k—•--•-—— --— - - -

To Illustrate the use of the FOR EACH statement, assume that an
ALPHA is to compute X_ERROR_SUM as the sum of all instances of DATA X_ERRO R

CONTAINED in FILE HISTORY. The followi ng GAMMA would accomplish this sum-

mation.

GAMMA :
“BEG IN

X_ERROR _SUM: = 0.0;
FOR EACH HISTORY RECORD DO

X ERROR SUM : = X ERROR SUM + X ERROR
END FOR EAC H ;
END ;”

The same operation can be performed using SELECT statements as shown
below:

GAMMA :
“BEGIN
X_ERROR_SUM : 0.0;
SELECT FIRST RECORD FROM HISTORY;
WHILE RECORD_FOUND DO BEGIN

X_ERROR SUM: = X_ERROR_SUM + X ERROR;
SELECT NEXT RECORD FROM HISTORY
END

END;”

Simulating Alpha Entity and Message Operations

The RSL relationships CREATES, DESTROYS, and SETS are between ALPHAs
and ENTITY_CLASSes and ENTITY TYPEs. They indicate that an ALPHA deter-
mines the existence of an instance in an ENTITY_CLASS (CREATE and DESTROY)

and determines its specific ENTITY_TYPE (SETS). The relationship FORMS
between an ALPHA and a MESSAGE indicates that the ALPHA designates that the
MESSAGE will be PASSED through the appropriate OUTPUT_INTERFACE when the
interface is encountered subsequently on the net.

When a simulator is generated, the code to perform these actions is

automatically inserted In an ALPHA ’s executabl e description (BETA or GAMMA).

CREATES and SETS are performed before any user specified code in the BETA

or GAMMA -- all CREATES being performed first. DESTROYS and FORMS are per-
formed Imediately before exiting a BETA or GAMMA after any user specified

~~ A - -~~~~~~~~~ 
-~ - -~~~~~~~ ~~ • -~~~~~~~~~~~



code (if a BETA or GAMMA executable description is omitted from the ASSM, a
BETA or GAMMA will be generated containing only these operations).

In ~esponse to a CREATES, a new entity in the ENTITY_CLASS will be
established . All DATA items ASSOC IATED with the class will be initialized
to their INITIAL_VALUEs or to defaul t values if no iNITIAL_VALUEs are
specified. After a CREATES, the BETA/GAMMA or subsequent ones can assign

new values to the DATA. The CREATES acts as an entity selection; once a
new entity is created, it is selected until either 1) another ALPHA CREATES
a new entity in the ENTITY_CLASS, 2) an ALPHA DESTROYS the newly created
entity , 3) a SELECT or FOR EACH node whose subject Is the ENTITY_CLASS or
an ENTITY_TYPE which COMPOSES the class Is traversed on the net, or 4) the
net is terminated .

In response to a DESTROYS, the currently selected entity in the —

ENTITY_CLASS is destroyed. Since the DESTROYS is performed at the end
of the BETA or GAMMA , DATA ASSOCIATED with the entity becomes unavailabl e
upon exiting the ALPHA model . The DESTROYS acts as a de-sel ection on the
class and its types.

In response to a SETS, the currently selected entity in the ENTITY_
CLASS COMPOSED of the ENTITY_TYPE will be assigned the specific ENTITY_TYPE.
The selected entity may have been newly created, in which case it is
assigned a particular ENTITY_TYPE and the DATA ASSOCIATED with the type
will be assigned INITIAL_VALUES .

If the entity is not newly created and already has a type, the type
will be changed and the DATA content of the entity will be changed as —

follows: DATA ASSOCIATED with only the previous type will be removed; DATA
ASSOCIATED with only the new type will be assigned INITIAL_VALUES; and
values of DATA ASSOCIATED with both types will be unaffected and remain
available. In any case the values of DATA ASSOCIATED with the ENTITY_CLASS
will remain available and unchanged . After a CREATES, a SETS must occur
before either another CREATES occurs on the class , another entity is

selected from the ENTITY_CLASS, or the R_NET terminates.

In response to a FORMs, conditions are established such that the
MESSAGE will be PASSED through the OUTPUT_INTERFACE that PASSES the
MESSAGE when the processing flow reaches the Interface. DATA which MAKE

the MESSAGE or which are CONTAINED in FILEs making the MESSAGE may be

7-10



, .- ---. 
~
.•.—•-—•,. .—••~~

-.— -
~—- ~~~~- • - -  - -— •- --,--~.‘-

--
~~- - -~~~-~--~ —~-— •~—,— ~~~

,-
~

-- -- - - - .“-.~ —•.,•-— -~•--- —- ~ • — — -~~-—. ~~~~~~~~ —•,—~-—- - ~~~ • .- —~~- ,-

/

assigned values before or after the FORMs and until thc processing flow
reaches the OUTPUT_INTERFACE.

7.1 .2 Writing Performance Requirements Tests

As described in the RSL Validation Segment (see Section 3.4 ), a
PERFORMANCE_REQUIREMENT has an attribute TEST which defines the require-
ment as an executable test. The information availabl e to a TEST is all
DATA RECORDED by the VALIDATION_POINTs appearing on the VALIDATION_PATHs
CONSTRAINED by the PERFORMANCE_REQUIREMENT . When generating a gamma simu-
lator, REVS will also automatically generate a simulation post processor
corresponding to the simulator ; only the TESTs for PERFORMANCE REQUIREMENTs
CONSTRAIN ing those VALIDATION_PATHs which appear i n the simula tor are
included In the post processor.

TESTs are written as pass/fail criteria. The executable TEST is
translated by REVS into a Boolean valued PASCAL function whose name is the
name of the PERFORMANC E REQUIREMENT . The TEST is written as a standard PASCAL
function with the followi ng al terations:

• The user does not provide a function heading - this will be
done automatically by SIMGEN .

• Special statements (peculiar to REVS) for accessing DATA are
used - these are translated by SIMGEN into legal PASCAL
statements.

RSL elements used in a TEST (i.e., DATA ) are referenced directl y by their
RSL names. All RSL names availabl e in a nost processor are automatically
declared by REVS; thus the only declarations which should appear In the
TEST are those for variables, constants and types local to the TEST.

Conceptually, each time during simu l ation that the processing flow
reaches a VALIDATION_POINT on a net, a RECORDING is generated consisting
of all DATA RECORDED by the VALIDATION_POINT. A VALIDATION_POINT can
RECORD a FILE; in which case DATA is extracted for each record in the FILE.
The same DATA and FILEs may be RECORDED by many VALIDATION_POINTs. Thus ,
DATA referenced in a TEST must be uniquely identified by VALIDATION POINT,
by RECORDING , and by record In a FILE; a FILE must be uniquely Identified
by VALIDATION_POINT and RECORDING.

The approach used to establish uniqueness is analogous to that used
in the remainder of RSL for DATA and FILEs ASSOCIATED with entities and

7—li 

—-~~~~~~~~~~~~~~ - -~~~~~~~ ~~~~~ -~~ -~~~~~~~~~~ -- —- ~~~~~~ - - -



~,., —‘.- -~~v- - _ ”~~~~ ~ ~~~~~~~~~~~ r-
~~~~ ~~~~~~~~~~ — ,,. . ~—~~~nr- 

~~~~~~~~~ ~~r~~.r” - 
‘r” ~~~ !~~’ t ~~~~~ - 

--
~~~~ ~

_ J__ . /

for DATA CONTAINED In FILEs . Identification by RECORDING and by record in
a FILE is performed by selection . Identification by VAL IDATION_POINT Is
done through naming conventions . All RSL DATA and FILE names appearing in
the TEST are prefixed by the name of the VALIDATION_POINT which RECORDED the
DATA or FILE to be used . The two names are separated by a decimal point.
(Thus, to refer to DATA (or FILE) B RECORDED by VALIDATION_POINT Vl , the
identifier Vl.B Is used in the TEST.)

The special operators for identifyi ng a particular RECORDING are the
RETRIEV E and FOR EACH. These operate identically to the SELECT and FOR EACH
on FILEs written in BETAs and GAMMAs (see Section 7.1.1). The syntax of
the RETRIEVE is shown below in BNF (see Appendix A).*

RETRIEVE ~~~~~ RECORDING FOR val idation-po i nt-name

[SUCH THAT (cBool ean expression>)]

To understand the operation of the RECORDING retrieval , the set of
RECORDINGs generated by a VALIDATION_POINT can be thought of as an ordered
assemblage with a pointer which may be moved . The ordering is from least
to greatest on simulated time of generation of the RECORDING . The RETRIEVE
statement first repositions the pointer : to the first recording for RETRIEVE
FIRST; or to the one followi ng the current pointer position for RETRIEVE
NEXT. The conditi on is then evalua ted usi ng the DATA In the RECORDING
designated by the pointer . If the expression evaluates to TRUE, the correct - -

RECORDING has been found . Otherwise, the pointer is moved to the next
Instance and the process repeated . If the condition Is omitted , the RECORDING
will be RETRIEVED by positioning of the poInter only.

After a RETR IEVE operation , the predefined Boolean variabl e RECORDING_
FOUND will have the value TRUE if a RECORDING which meets the retrieval was
located; otherwise RECORD ING_FOUND will have the valu e FALSE. The search
does not go end-around ; It is terminated and a value FALSE set when the last
RECORDING is reached.

After a RECORDING has been RETRIEVED , all references to DATA and FILEs
In the RECORDING are assumed to refer to that RECORDING. The RECORDING

*The syntax of the special statements availabl e in TESTs is summarized In
Section 3 of Appendix G in both BNF and syntax diagram form.

7— 12

- - .--

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ —~--—-~~~-



RETRIEVED remains availabl e until the next RETR IEVE or FOR EACH on the same
VALIDATION POINT is encountered.

The syntax for the FOR EACH on VALIDATION_POINT RECORDINGs is shown
below:

FOR EACH val idation-point-name RECORDING
[SUCH THAT (<Boolean expression>)] DO <PASCAL statement>
END FOR EAC H

where PASCAL statement is defined to inclu de a special TEST data access
statement as a legal form.

The FOR EACH on RECORDINGs has the same meani ng as the FOR EACH on
FILEs in BETA/GAMMA descriptions (see Section 7.1.1); the executabl e
statements encompassed by the DO and ENOFOREACH are executed for each
RECORDING meeti ng the retrieval criteria . Again the RECORDINGs are
examined in the order of their record i ng time . If the condition Is omitted ,
the statements will be executed for all RECORDINGs generated by the
VAL IDATION_POINT .

Uni queness by FILE is established by the special operators SELECT
and FOR EACH. The syntax of these statements is shown bel ow.

SELECT {
~~~T} RECORD FROM validation -point-name .file-name

[SUCH THAT (<Bool ean expression>)]

FOR EACH val idation-point-name .file-name RECORD

[SUCH THAT (<Bool ean expression>)] DO <PASCAL statement>
END FOR EAC H

These statements have the same interpretations as the SELECT and FOR EACH
statements on FILEs in BETAs and GAMMAs (see Section 7.1.1). After a SELECT,
the predefined Boolean variable RECORD_FOUND will have the value TRUE
if a FILE record meeting the selection criteria was located; otherwIse, ft
will have the value FALSE .

To Illustrate the use of these statements, assume that the PERFORMANCE_
REQUIREMENT X_ERROR_LIMIT i s to sum the X_ERROR RECORDED by the VAL IDATION_
POINT Vl and to compare this to a max imum error. X_ERROR Is contained In
FILE HISTORY which is also RECORDED by Vi . The following TEST would specify
this requirement.

7—13

- ~~~~ fl ~~~~~~~ fl ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ - w - f l— n-fl

- - -

TEST:
“CONST X ERROR MAX = 50.0;
VAR X_ERROR SUM: REAL;
BEGIN
X_ERROR SUM: = 0;
FOR EACH Vl RECORDING DO

FOR EACH Vi .HISTORY RECORD DO
X ERROR SUM: = X ERROR SUM + Vi .X_ERROR
ENDFOREACH

ENDFOREACH;
X ERROR LIMIT: = (X ERROR SUM < X ERROR MAX)
END;”

Shown below is the equivalent TEST using RETRIEVE and SELECT state-
ments instead of FOR EACH statements.

TEST:
“CONST X_ERROR MAX = 50.0;
VAR X ERROR SUM: REAL;
BEGIN
X_ERROR_SUM: = 0;
X_ERROR LIMIT: = FALSE;
RETRIEVE FIRST RECORDING FOR Vl;
WHILE RECORD ING_FOUND DO

BEG I N
SELECT FIRST RECORD FROM Vl.HISTORY ;
WHILE RECORD_FOUND DO

BEGIN
X_ERROR_SUM: = X ERROR_SUM + Vi .X ERROR ;
SELECT NEXT RECORD FROM V1.HISTORY
END;

RETRIEVE NEXT RECORDING FOR Vi
END;

IF X_ERROR_SUM > X_ERROR_MAX THEN X_ERROR_LIMIT : = FALSE

END;”

7-14

_

~

— - - -~--——~~~~~~~~~~~- ~~~~~~ -~~~~~~~~~~~~~~~~ .- --~~--~~— ~~~~~~~~~~~~~~~~~~~~~~~~ - - -
~~~~~~~~-~~~~~~~~~~

7.2 INTERFACING A DRIVER

In order to generate a simul ator, REVS must be provided with a driver .
This driver is written externally to REVS in PASCAL and is provided to the
Simulation Generation (SIMGEN) function on the Simulation Driver Definition
File (SDF).

REVS provides a standard set of interface routines which the driver
uses to comunicate wi th the simulated data processing subsystem. The
Interface procedures and the conventions to be followed in writing a driver
are described in the followi ng sections.

7.2.1 Representing Subsystems

The data processing subsystem has interfaces to other components of
the system. In RSL, INPUT_INTERFACEs and OUTPUT_INTERFACEs CONNECT the
data processing subsystem to other SUBSYSTEMs. An INPUT_INTERFACE PASSES
MESSAGEs to the data processing subsystem; an OUTPUT_INTERFACE PASSES
MESSAGEs from the data processing subsystem.

Operation of a REVS generated simulator is based on the driver modeling
these SUBSYSTEMs and accepting and generating the specified MESSAGEs. For
each SUBSYSTEM specified in the requirements and used in the simulator , there
must be a corresponding model in the driver . A SUBSYSTEM model must be
capabl e of either :

1) accepting all MESSAGEs PASSED by the OUTPUT_INTERFACE whi ch
CONNECTS to the SUBSYSTEM ;

2) generati ng all MESSAGEs PASSED by the INPUT_INTERFACE which
CONNECTS to the SUBSYSTEM ; or

3) performing both operations if the SUBSYSTEM CONNECTS to both
an INPUT INTERFACE and a~ OUTPIJT INTERFACE.

The SUBSYSTEM models are PASCAL procedures. The procedure names are
the RSL names of the SUBSYSTEMs being model ed. These procedures have no
calling parameters and must be provided on the SDF.

7.2.2 Sending Messages to the Simulated Data Processing Subsystem

During simulation , an R_NET i s executed when a MESSAGE whi ch is PASSED
by an INPUT_INTERFACE becomes available at the interface. A driver SUB-

SYSTEM model causes invocation of an R_NET by posting MESSAGEs for a particular
INPUT_INTERFACE using the followi ng procedure call:

7-15 



I

EEPSTMES (MESNAME, MESTIME)

where MESNAM E is the RSL name of the MESSAGE to be posted at time MESTIME
(real). EEPSTMES will post the MESSAGE for that INPUT_INTERFACE which
PASSES the MESSAGE. The R_NET ENABLED by the INPUT_INTERFACE is scheduled
for execution at MESTIME, the simulated time in seconds at which the MESSAGE
is to be availabl e at the interface. A SUBSYSTEM model may post many
MESSAGES for an interface -- each will cause a separate invocation of the
corresponding R_NET.

MESSAGEs may be MADE by FILEs. Before posting a MESSAGE MADE by a
FILE, the driver must create the FILE records using the followi ng procedure
calls:

EEBLDREC (FILENAME) - A record for the FILE is created.

EESAVREC (FILENAME) - The newly created record is stored into the
FILE structure.

The FILENAME is the RSL name of the FILE being created . The driver sets
the values of DATA CONTAINED in the FILE record between calls to EEBLDREC
and EESAVREC.

7.2.3 Obtaining Messages from the Simulated Data Processing Subsystem

When an OUTPUT_INTERFACE is traversed on a net, the MESSAGE FORMED
for that interface will be posted for comunicatlon to the SUBSYSTEM
CONNECTED to the OUTPUT_INTERFACE. Each posting of a MESSAGE will cause
execution of the corresponding SUBSYSTEM model for processing of the
MESSAGE.

In the simulator, interfaces are represented by lists containing
the posted messages. A SUBSYSTEM model obtains access to messages on an

— 

interface list by operations analogou s to the BETA/GAMMA SELECT FIRST
and SELECT NEXT operations on FILEs. Only one message per interface list
Is availabl e at a time. The PASCAL procedure calls described below are

for use by the driver In accessing messages ; In each case the inpu t
parameter INTNAME is the actual RSL name of the OUTPUT_INTERFACE.

EEFSThES (INT NAME, FFLAG ) - The first message on the interface
l ist is selected and made availabl e for reference.
The found flag FFLAG is set to TRUE if a message is
found or set to FALSE If a message is not found.

7-16

~



EENXTMES (INT NAME , DFLAG , FFLAG ) - The next message on the inter-
face list is selected and made available for reference. —

The found flag FFLAG is set to TRUE if a message is found
or set to FALSE If a message is not found . If the inpu t
parameter destroy flag DFLAG Is set TRUE , the previously
selected message is destroyed before selecting the next
message.

FILEs can MAKE MESSAGEs. Once a MESSAGE has been accessed , ind ividual
records in a FILE are accessed in a manner analogous to accessing the MESSAGE.
The following procedure calls provide FILE access for the driver :

EEFSTREC (FILENAM , FFLAG ) - The first record In the file named in
the FILENAM parameter is selected and made available for
reference. The found flag FFLA G is set to TRUE if a
record is found or set to FALSE if a record i s not found .

EENXTREC (FILENAME , FFLAG ) - The next record in the named file is
selected and made availabl e for referer,ce. The found flag
FFLAG is set TRUE if a record is found or set to FALSE If
a record is not found .

• EEDSTREC (FILENAME) - The currently selected record in the file is
destroyed. (A record must have been previously selected
by a call to either EEFSTREC or EENXTRC.)

Al though this d i scussion has been i n terms Of OUTPUT_INTERFACEs , these
procedures can be used to access INPUT_INTERFACE l ists if this is required

in the driver .

7.2.4 Referencing Data

The MESSAGEs PASSED by an interface are MADE by DATA and by FILEs which
CONTAIN DATA . In a simulator , only the lowest level of DATA (pertinent to
the type of simulation) making a MESSAGE or CONTAINED in a FILE will be
represented. A DATA item is represented by a PASCAL variable of the same
name as the RSL element and of the type specified by the value of RSL attribute
TYPE. Thus, the driver references DATA directl y using the RSL name of the
DATA . The variabl e and type declarations are generated automatically by
REVS.

7.2.5 Schedul ing Driver Events

During simu l ation , a SUBSYSTEM model is scheduled for execution whenever

the CONNECTIng OUTPUT_INTERFACE is traversed on a net; an R_NET Is scheduled for

execution In response to a SUBSYSTEM model posting a MESSAGE for the

enabl ing INPUT_INTERFACE. In additi on, the driver may execute SUBSYSTEM

7—17

--

~

- •-“

~ 

~~~~~~~~~~~~~~~~~~ ~~~~~
— -

~~~~~
- - -



model s Independently of the R_NETs by scheduli ng the special driver pro-
cedure SSEXOG . SSEXOG may be scheduled to execute at any desired simulation
time. This allows for the occurrence of internal driver events which are not
in direct response to MESSAGEs from the simulated data processing subsystem.

The procedure availabl e for scheduling driver exogenous events is:

PROCEDURE EECAUSE (SSEXOGSTR:EESTR;TIMEABS:REAL)

where SSEXOGSTR is a sixty character string containing the word SSEXOG as
the first six characters and the remaining characters are blanks
(EESTR=PACKED ARRAY [l..60] OF CHAR).

As with SUBSYSTEMS, a procedure named SSEXOG which has no calling
parameters must be provided in the driver even if it Is not used.

7.2.6 ObtainIng Simulation Time

The current simulated time is availabl e to the driver in the variable
CLOCK_TIME; this Is a pre-defined DATA of TYPE REAL and is therefore also
ava ilable to the R_NETs. CLOCK_TIME should be treated as read only; it is
reset from a master simulation clock just prior to execution of an R_NET, a
SUBSYSTEM model or SSEXOG.

7.2.7 Initializin g a Driver

At the beginning of a simulator execution the driver procedure
SSSTARTIJP will be invoked to allow for driver initialization. The procedure
SSSTARTUP, which has no call ing parameters, must be provided in the driver .
SSSTARTUP performs any Internal driver initial ization required and , at a
m inimum , posts a message to the data processing subsystem to initiate the
simula tion . The user specified start time and end time are availabl e to

the driver as the va lues of the real data items EESTARTTIME and EESTOPTIME ,
respectively.

7.2.8 Organization of the Simulation Driver Definition Fii~
The Simulation Driver Definition File (SDF) contains the source code

for the driver components of a simulator . This file Is constructed externally

7-18

~

—-- -

~

• • .

~



“ i 
~~~~~~~~~~~~~~~~~~~~

to REVS and is organized into four segments, separated by the character “$“ .

Each segment of the SOF is inserted into its proper pl ace in the simulator
during execution of the Simulation Generation Function.

The format of the SDF is:

Constant declarations
$

Type declarations
$
Variabl e declarations

$
Model procedures

$
The first three segments contain any globa l constant, type, and variable
declarations required by the driver . Any or all of these segments may be

empty but the segment separators (“$“) must be present. Also , the PASCAL
keywords CONST, TYPE, and VAR must not be stated. The fourth segment con-
tains the model procedures for the driver , and must contain a procedure
SSSTARTUP and SSEXOG and a model procedure for each SUBSYSTEM required in
the simulation. A model procedure must have the same name as the SUBSYSTEM
name specified in RSL.

7.2.9 Naming Conventions

The RSL names for el ements represented in the simul ator (R_NETs, SUBNETs,
ALPHA s, VALIDATION POINTs, DATA , FILEs, ENTITY TYPEs, ENTITY CLASSes,
MESSAGEs, SUBSYSTEMs, INPUT_INTERFACEs , and OIJTPUT_INTERFACEs) are used
directly as identifiers in the simulator . All of the simulation utilities
are named with a two letter prefix of EE.

A driver should be written taking care not to duplicate any of these
names. It is recomended that driver identifiers be defined using the two
letter prefix SS.

7-19

—

~~~

- ‘--

~~

--— -- -
~~

—----
~
--

~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — • •~~ —

7.3 GENERATING A SIrIIJLAT0R AND POST PROCESSOR (SIMGEN FUNCTION)

The generation of a simulator and post processor (for a gamma simu —
lator) from the contents of the ASSM is performed automatically by invoking

the REV S StTnuiatlon Generation (SIMGEN) function. The user exercises
control over the scope and the type (beta or gamma) of simulator and

may also provide an ident i fying name for the simulator . The SlMGEN comma nds

to exercise these control are presented and described in the following
subsection. The syntax of each of the commands is presented in BNF (see
Appendix A); the complete syntax is summarized in Appendix G in both BNF
and in syntax diagram form.

Several types of diagnostics may be issued after ini tiati ng SIMGEN :
SIMGEN RCL d iagnostics , da ta base analysis diagnostics (the RADX ANALYZE
capability described in Section 6.3 is executed by SIMGEN), and SIMGEN
translation diagnostics. The SIMGEN RCL and translation diagnostics are
presented and explained in Ap pendix G; the data base analysis diagnostics

are documented in Append ix F. In addition , since REVS checks only the special

data access statements in the BETA/GAMMA and TEST attributes for correct-

ness -- not the PASCAL statements , the PDL 2 or PASCAL compiler may issue
error diagnostics when compiling the simulator and/or post processor. The
error diagnostics issued by these compilers are explained In references 1

and 2, respectively.

Only one simulator and corresponding post processor may be generated ,

compi led and saved during an execution of REV S. See Section 9 for a description
of the REVS macros related to the generation of simulators and post processors.

7.3.1 Defining the Scope of the Simulator

REVS does not require a complete set of requirements to be specified

In the ASSM prior to simulation; only a portion of the requirements may be

simulated (i.e., those perta ining to a col l ection of R_NETS). In commanding

SIMGEN , the user specifies the particular R_NETs to be included in the simu-

lator. Based on these R_NETs , SIt•~GEN wi ll i nclude only those RSL elements

required to support simulation of the processing specified by these nets.

• —•.~ - —-•-— ___________________

~~~~~~fi1I )~~ p~~ ~~Tl~~~~~~

7—2 1
-

-U

Revision A

- ~~~~

• ._.. ~~~~~~~~~~~~~~~~~ ~
—.-.— —

~~
— --- — _____

• - - -

The user designates by either inclus ion or exclusion the particular
R_NETs to be simulated . In both cases the user supplies a list of the RSL

names of the R_NETs. The inclusion statement has the following syntax:

INCLUDE [~ NETs] {R_Ne t_name}~.

Several inclusion statements may be used .

To specify the contents of the simulator by exclusion , a statement
with the syntax

EXCLUDE [~
-
~p] {R_Ne t_name}

hl
.

is entered. Several exclusion statements can be used; the resulting simu-
lator wil l contain all R_NETs specified in the ASSM except those appearing
on the exclusion li sts. A m ixture of inclus ion and excl usion statements is
not allowed .

If SIMGEN is to use all R_NETs in the ASSM to generate a simula tor
the followi ng command is entered:

INCLUDE ALL [R_NETS].

If this form of inclusion statement is used , the include-list form described
above cannot also be used.

At least one INCLUDE or EXCLUDE statement must be provided to SIMGEN

in order to generate a simu lator.

7.3.2 Defining the Type of Simulator

In order for SIMGEN to generate a simula tor, the user must designate
the type, either beta or gamma , of simul ation . The type declaration state-

ment has the syntax
-

ISIMULATION1 TYPE r151 jBETA k1
LSIMULATOR J

L -I
~GAMMA~1

At least one simulation type declaration must be provided; if mult ipl e

types are specified , the last entered will be used by SIMGEN .

7—22

- ~~~~~~~ —.- ~~~ ~~~~~~~~ —. - --~~~~~~~ ~~—~—~•• —--~~~~--.•-- -;
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•- •___v_ p.-

_____  - ~~~~~~~~~~~ 
L- _

~~~ -I•~— -~--~~~~- — - - -- — -.- -

7.3.3 Identifying the Simulator

The user may supply an Identifier for a REVS generated simulator. The
identifying name Is entered in a SIMGEN statement using the followi ng syntax :

‘I

~~~~~~ ~
IDENT [IS] identification-name .
~ IDENTIF ICAT ION

If multi ple identification statements are provided to SIMGEN , only the last
name entered will be used. The identification name will be used to label
the output of the simulator and the output of the corresponding post pro-
cessor (gamma simulation only).

7—23

- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~ --~~~~~~~~~~~~~~~~~~ -•-- -- -~~~~~~~ - - -~~~~- ~-



_ _ _ _  - 

—

~~~~~~~~~~~~~~~~

-

~~~~~~~~~~~~ ~~~~~~~~~~~~~

7.4 EXECUTING A SIMULATOR (SIMXQT FUNCTION)

Simulators generated by REVS are PASCAL main programs which are
executed as independent programs outside the direct control of REV S using

the SIMRUN macro (see Section 9.0 for the REV S job control stream). User
inputs to a simulator are provided , however, through the REVS Simula tion
Execution (SIMXQT ) function. -

These inputs must be provided through SIMXQT in order to execute a
simula tor. For any execution of REVS, only one set of inputs can be pro-
vided ; if SIMXQT is executed more than once, only the last set of inputs
will be routed to the simulator .

User inputs consist of simulation start and end times and a simulator
run identification. These Inputs are described below. The syntax is
presented here in BNF (see Appendix A), and again in Section 1 of Appendix
H in both BNF and syntax d iagram form.

Diagnostic messages may be issued by both SIMXQT and by an executing
simulator program; these are explained in Sections 2 and 3, respectively,
of Appendix H.

7.4.1 Controlling Simulation Start and End Times

The user must, at a minimum , supply start and end times for simulation .
The times are specified as real numbers in units of seconds. The syntax
for these SIMXQT commands are:

START [TIME] = real-number .

END [TIME] = real-number .

Either start time or end time may be negative; however, end time must be
strictly greater than start time . These two statements may be entered in
either order but both must be present for simulator executi on. If mult ip le
start or mul tip le end times are provided, only the last times entered will
be routed to the simu l ator.

In the simula tor, the start time will be made availabl e to the simulation
driver in order to Initiate simulation by posting messages to the data pro-

cessing requirements model . During simulation , the RSL DATA Item CLOCK_

7-25 —— -  - -
~~
—

~~~~~~~~~~~~~~
-

~~~~~f!w1fl.1fl p
~~ 

MD?

~~~ ~~~~~~~~



~~~~~~~~~~~~~ -—-- ~~~~~~~~~~ -- -.-- —~~~~~ -- ~~~~~~ 
_,r_ 

~~~~~~~~~~~~~~ ~~~~~ 
-

_

TIME reflects current simulated time. When the value of CLOCK_TIME equa l s
or exceeds the user specified end time , the simulation is terminated .

7.4.2 Identifying the Execution of the Simulator

The user may supply an identification for any execution of a REVS
generated simulator . The identifying name is entered in a SIMXQT control
statement using the fol lowi ng, syntax:

• ESIMULATIONI RUN ~IDENT [IS] identification-name .
IDENTIFICATION)1

If mul tipl e Identifications are provided to SIMXQT only the last name
entered will be used . The identification name will be used to label the
output of the simulator and the output of the correspond ing post processor
(gamma simulation only).

7.4.3 Simulator Output

The primary output of a simula tor run consists of an RSL element
execution trace and run time diagnostics. Each activation of an R_NET
will be documented followed by the names of the nodes reflecting the path
which was executed on that invocation of the net. Figure 7-2 shows a
sample of the element trace.

Any run—time diagnostics will be output in the trace at the point
at which an error was detected. The error diagnostics output during simu-
lator execution are documented in Appendix H.

When executing a beta simulator , DATA RECORDED by VALIDATION_POINTs
will be automatically output to a separate print file , a :~mpl e of which
is shown In Figure 7-3. ThIs file and the trace file will be printed auto-
matically by the REVS job control stream documented in Section 9.

When executing a gamma simulator , a recording file is generated for
DATA RECORDED by VALIDATION_POINTs. This file is processed by the post
processor and, since It Is not a standard print file , is not displayed when
executing the simulator.

7-26


~~~~~~~
.-— --

~~~
-

~~~~~~ ~
—

IV
o 0
I

1.4o 0
o 0

a 0 a
o a
e a
o a
• •_.

I)
1.3
I-

1.4
I-.

0 1.1 1.4
If’ 1.4 cP-
_ 2: 1.I~~~ 1.1 0

,) ~_1
ft. 1- 1.1 l— I&.1 ö 1 . 4 1.1 l—~~-~
0 ~~~., I.- Z~~~ 1-
0 G~ S 1.&~~~I ~~ ~4I.4 *.4~~~ 0 ( J IJ Z I~4~~~A 0 P- I- 1.4 0 ~~~~~~~~~ 1.~~I~J0  2:1.1

1.I~~~~~~~ Iii O .Z  ‘•I Iil X X ~~~. *-. p--
. ‘P- ,IJ $J V) X & , 0  ~~~~~~~~ 

C-
1.) 1.J 1.4 1.4 1.4 1.4 0 ‘4 1.4
.4 2: 1 .)X~~~~I- Z P —  U) U ‘*0) 0 1.)
~~ ‘.4 1.1 k4 1.4~~~~S- ‘-‘ 4 0 ~~~~~~~~~~P- 1.3
I- I- )I- *4 0)Z  1.4 ImJ Z ~~ 1.4 1.4

I- 0) U
o • .- 1.I XI ~~~~~~~~~~~~~~~~ ~~~I.4 Z ~~~~~~~~
‘-4 ~~. c~~~~~~’o j :~~~I-Z ~~~~~~~$j Z  ~~~~~~~~~~~~~~~-‘ va 0) ~~~~~~~~~~~~

I- I-~~J .4  lJ 1J 0) ’4L3 1J0 ~~~~~~~ )t300 0 1 . 4 4 1 40
X ‘~~ (.4 1.4 1.4 1.4 P $ 1 . 3 0. ’  )(I - 4 4 I i I Z Z X Z I J Z
I- I- 0) ZØ1.)X I— P- 0 I- ~~~0~~II 0) I.4 1.42:01.1 0

IV Z 1.412*01.31.4 Z Z 1.4 ~~~ P.1 1- $— ~~ 0
‘.4 IJ W I*I 4 ~j~~ 3 P.J( )  0 S 4~~ $1 $1.J 1.I~~~~Z 0 1 ) I l I Z

a 0 . 4 1-  0X... .h ’.41.4 Z ZP - P -L 0 ‘-~ Lao
— 0 0 Z~~~~W f t~~~)~~~~~~~)t .4SSII441J- I— a ... ~~
a • 0~~~~ 00~~ 3 S -  00. 4 1 . 4  . .-. s ~ $ o o0 i —  ~~~~~~~~~~~~ E— — 1.4 Z 1-~~~~Z 4 1.*X Z J1.4 ’~~~~ ~~ Z 1*a 1.i~~~ ~~0) 1.4 0 Z 4 0 0X Z  .-~~~~~~~~~~~00 0) 1 J  ‘-‘ .411.4
~~ I- 0 I.i Z ‘.,P.- s-s Z (J~~~~I.4 0 Z 4 4Z Z~~~~~I.4 0 11.4 1) 4.4 Q)
— 4 0 . 4 I~. 1 0) 0) U)  X 4. 4) (~~~ ~~~U)0))( .—
o 0 0 Z1• l I- 4 Z 0 1.1 0) C-
o a 0 I - . 4 4~~~~ 4 0 4 I — S- 0 .4 I.- .4 ,—

•aa  ft.~~~~~XX S . Z . - . XZ Z O .  I X X X X Z  IZ
I.— _~ • 0 ) f t f t f t .I— Q _) O l*4 11.* U) ~~~~~~~~~~~~~~~ %J 1.4~~~ ~~~~~~~~~~~.4 .4 U1 (1.1 Z _.I ~J ~~ ...a .4 ~ I ~~ 1.4 I ~ ..I .4 . 4 . 4  .4 ~~~ $ t J . J  ~~~i

. 4 0 . 4~~~~~41.4l&k~~~ 0 1.1 1.1 1.4 0 )- 4 1.4 P- C4

I- z t .1 ~~~ P~~~~~ $ P -l 1..~ ‘-‘ ‘-s
I- .

~~ 4. 4.) ~~ 2: z N-

4.3 1.3 0) 0 0 0 0  0) X
P.- $ 1.. 1.. 1.. I*.
IV 0) I— I- P- I- I— i-

1.4 1.4 1.4 1.4 1.4 1.4
‘0 1&4~~~ 2 Z Z Li~a 0) I I  I I  I t  ~ $
z 12
0 ~~~*.4 W

01- 2:
P- 0 1.. “

~~ 1.4 I 1.-’- C~ft. I-~ 1.)
1- .4 . 4 40
~~ 1.4
0 ~~ 2 : 0) 1 . 3

4.4 .4
Z (Z R
0 ~~ 11400
.~~ 0 ‘-. ‘-I
P. P•- — P. 1- C
4 .4 0 . 4 . 4_ _J _J -“4 _f_ s

2: 2: Z Z Z
~~~ ~.• .4

• 0P ~~~0) 0)

-~~~~~~

7-27

— ~~ ‘ — -~~~~ , - , -

-~~ -- - ---~~~~ -~~~~~~~~~ - ‘~~~~~~~~~~~~
..

-
~~~

- - ~~~~~~~~~~~~~~~~~~~~~ -
~~~~~ -~ ---.~ -

/

V

a

—

a LLI
laJ -

2:
‘4
I-

p.-

p.-

a
_ _

‘I_J_J 4,

.4 ——
o 0

4:
4,

-z
.4 -0
2:

1 $

U, -. 4,
a

ft P
0 114
1.. a- t a
$4 a

a w
ft 0
I -•
.4

a a 0 0 IV
1.4 0 0 0

+ 4- .
— cn$4 0) 1.4
V 1.4 0 1.40 4 .0 F-...

‘-. 0 ~~~04-0 P — 0 4- 0 -V
1.4 0)0 0)0

‘-4 0 a ~~~a0) ~~o
*1 4 4 .41.4 . 0 $%1 1a4 . — ‘P~~ I4 s IV — 4 -.0 U

4- C 4- 4— ~~~ P. 4- ~~ 4— ft 114
1.4 $4 I I LI (.4 4. Z $41.4 0

‘4 z :o az . 4 >2:
4 0 4- - . 4f t I , j f t O ~~ 1.3 ft $4 ft 1.4 0-0~~~~0 0
~) & ZP . 00 0 $ 4 .4 2: .4 2: .4 2: Q . 0 P . $ 4 I.)

I.—’ L I f t k 0 I .4 2: .4 2: .4 Iz 00 $4
Z 0 Z I 1 4 0 I l Jft 1.1 Z~ 4.4 Z ‘4 Z Z - .UZ f t~.-4 ft

4~ 0~~~~0f t (J > 0 I P S P 5 I O X o o I
‘4 ~~~1 $~ 1.4.4 LI 1.. 1.. ~ I... 1.. II. ‘-4t”I~~’ LI 0 0)
I- 4- 13 P- . 4 f t x 1 . J Z 2: 2: 2: 2: 2: 1-1144- 1.1 1 1.1
4 4 R 4 # - f t 0 — 0 — -.0 — .40.4ft ._I
a 0’4 . J 4 U) — f t — $ 4 — ft 1 . 4 — W f t — 1 . 3.. I14 04 _I %14 ’4
44 ‘-‘4- ~~~0 1.4 I , J 4 0 4 ~~~~~~~~~~~~~~ ~~.4 ~~~~~~~~~~~~~~~~~.4 _ I f t 2 : _ s _ I P . 4 . P ._ I 1-_ S L I P ._ I P ._ s 4 . 4-_I4- _I ..J ’- S2 : P . 4- J
.4 . 4 . 4’ 4 0~~~~~ 4 $ 4 . 4 . 4 . 4’ d$ 1 4 . 4 4 . 4 . 4 $ 4 - . 4 . 4 . 4 . 4 ~~~~~~~~~~~~~~~~~~~~
> 4-- U) Z 11~ 1.. 0 ft 0 > 0> ft 0> 0 > ft 0 > 0 > > IV U) 0 0> 2:

0) (.1

7—28


~~~~~~~~~~~~ - ~~~~~~~~~ ~~~ — -- -.-.- ~~~~~ - ‘  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

7.5 EXECUTING A POST PROCESSOR (SIMDA FUNCTION)

Simulation post processors generated by REVS are PASCAL main programs
which are executed as independent programs outside the direc t control of
REVS using the TESTRUN macro (see Section 9.0 for the REVS job control
stream). User inputs to a post processor are provided , however, through the
REVS Simulation Data Analysis (SIMDA) function . These inputs must be pro-

• vided through SIMDA in order to execute a post processor. For any execution
of REVS, only one set of post processor i nputs can be provided ; if SIMDA is
executed more than once, only the last set of inputs will be routed to the
post processor. In order for SIMDA to be used during a REVS execution , a
post processor must have previously been generated by SIMGEN in this or a
prior execution of REVS.

7.5.1 Controll ing Performance Requ irement Test Selection

User input to a post processor consists of the designation of the
PERFORMANCE REQUIREMENTs to be executed. The designated PERFORMANCE_
REQUIREMENTs will be executed to evaluate the data recorded during execu-
tion of the corresponding analytic simulator .

The user may designate that either all or a subset of the PERFORMANCE_
REQu IREMENTs be executed. To test the simulation results against all
PERFORMANCE REQtJIREMENTs , the fol lowi ng command is entered into SIMDA :

EST A IPERFORMANCE REQtJIREMENTS1I LL LPERFORMANCCREQUIREMENT J

To sel ect a subset of PERFORMANCE REQU IREMENTs for execution , the user
enters a comand using the fol lowi ng syntax :

TEST ~~~~~~~~~~~~~~~~~~~~ {performance_requ1rement_name}~.

where the performance requ irements names are the RSL names of the i ndi vidual
PERFORMANCE REQU IREMENTs to be executed . The user can designate all the

names in a si ngle l ist or can enter thi s type of command several times
with different lists.

If the list of requirements is qu i te long , the user may al ternatively
designate those PERFORMANCE REQUIREMENTs which are not to be tested. Entry

of the statement 
—

7-29



-.-
~~~~—~~~‘ - ~..-—- ~~~~

--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~1~~

TEST ALL EXCEPT [PERFORMA NCE REQUIREMENTS~

{Performance_re~uirement..name~1
.

will cause all PERFORMANCE_REQUIREMENTs in the post processor to be execu ted
except those designated by names in the list. Cl early entry of more than
one command of this form is not meaningful .

SIMDA wil l- diagnose errors in the user input; the SIMDA diagnosti c
messages are explained in Appendix I. Al so included in this apperf~ix is
the syntax of SIMDA RCL in both BNF and syntax diagram form.

7.5.2 Post Processor Output

The post processor output consists of the results (pass/fail) of execu-
t’on of the PERFORMANCE REQUIRE1~ NT TESTs selected by the user and any post
processor execution error messages . The test resul ts output is labeled by
simulator and simulation execution identification and by time and data ~f
both the generation of the simulator and its execution. Shown bel ow is
sample output from a post processor.

SIM Ut.A TOR /TE ST CREATED ON Ob/27/77 ~T O 9t42I ~4I WI T H ID

~~CORDI NG MAD E ON Ob /~ 7/77 A T O9 I5’H 5~ w IT H ID USER$_ t’ANU I....

P~tRFOR M A N CE RE QU IREMENT EXAMP LE _ PE RF O R M A N C E _RE Q PASSED.

i~iagnostic messages output by a post processor are documented In Appendix

~~tput Is written to a standard print file which is printed automatically by
ih~ ~ob control stream documented in Section 9.

7-30

A



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~

1~~~

8.0 EXTENDING THE LANGUAGE (RSLXTND FUNCTION)

The Requirements Statement Language may be extended or changed by
the definition, modification, and deletion of element types , attributes ,
attr ibute legal values , and relationships . The remaining primitives of
RSL, the Requ irements Network STRUCTUREs and the validation PATHs, are
only extensi bl e in that the element types which can occur as element nodes
on theni are extensible.

A lthough RSL is extensible , the only parts of REVS which automatically
adapt to these extensions are the RSL and RSLXTND functions and the RADX
capabilities for subsetting and listing requ irements (see Sections 6.1 and

-

-‘ 6.2). The remaining portions of the REV S tool s are dependent in varying
degrees upon the existence of the element types, attributes , and relation-
ships described in the RSL Al pha , Data , Validation , and Requirements Network
Segments (see Sections 3.1 through 3.4). The only concepts within these
segments which can be freely modified or del etea are the DATA attributes
MAX IMUM_VALUE , MINIMUM VALU E, RESOLUTION, and UNITS, and the VALIDATION PATH
attributes MAX IMLJM TIME, and MINIMUM TIME . Extensions may, however, be
freely riade within the Management segment (see Section 3.5) with the exception
that the element type SYNONYM and the relationship EQUATES have special
significance and should never be altered .

To provide management control over changes in the language definition ,
a mechanism has been provided within the RSLXTND function which can be used
to control extensions to the language. This control mechanism is the sub-
ject of Section 8.1. Other sections below detail and provide examples
illustrating the extensions which may be performed on the language. The
RSLXTND command syntax presented is expressed in the extended Backus-Naur
Form (BNF) explained in Appendix A. The compl ete RSLXTND syntax from which
these rules were extracted Is presented in Appendix J , in both BNF and
syntax diagram forms.

It should be noted that any RSL command Is also a l egal RSLXTND
command. Al so, the inpu t and output specifications for the RSLXTND function
are Identical with those given for the RSL function in Section 5.1.

8-~

-
~~

- - -

8.1 CONTROLLING LANGUAGE EXTENSIONS

The RSL extension function provides command s which may be used to
establish and maintain control over extensions to the language. These
extension controls are based on a two level system of permissions which
can be entered into an ASSM and acquired by various users. The highest
level of permission , control permission , denotes the permission to extend
the language as well as the permission to establish and rescind permissions .
Extension permission is subordinate to control permission and denotes the
permission to extend the language but not the permission to establish or
rescind permissi ons.

The use of controls over extension to the language is optional. If
controls are not in use, every user of the RSL extension func tion (RSLXTND)
has control permission and the ASSM is said to be uncontrolled . If control s
are in use, the ASSM is said to be control led and there will be at least
one control permission established in the ASSM. All users will then have
only the level of permission that they acquire by identifying themselves
(see Section 8,!.3).

There are four types of extension control commands used to identify
users, establ ish control permission , establish extension permission , and
rescind permissions. These commands are discussed and illustrated in
separate sections below. Each command syntax contains a name . These names
are treated slightl y different from the RSL names . They have only 58
significant characters instead of 60 and they are maintained separatel y
from all other RSL names so that no confl ict between them and RSL names
can ever occur. The syntax for the extension control commands is:

<extension control comand>::=
IDENTIFICATION name.

I EXTENSION_PERMISSION name.
CONTROL_PERMISSION name.

I RESCIND PERMISSION name.
8.1.1 Establishin g Control Permissions

An uncontroll ed ASSM Is changed Into a controlled one by the establish-

ment of a control permission. This is accompl i shed by stating the word

CONTROL_PERMISSION followed by a name. For exampl e, the following establishes

a control permissi on: ________________________
8-3

_ _ _

~~~ PA~~ ilO? 11USD 

~~~--~~-- - -_  ~~~

_ -

-‘ ~~~~~~~ —. •_. _ _
~~~~ 

- _
~~

__
~~~

.,P
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ — -V--- - I’T •1I’~ 

- 
- 

1~~

CONTROL_PERMISSION CONTROL_ONE .

A user must have acquired control permission before he can establish
a control permission. For an uncontrolled ASSM every user has control
permission and any user may enter the first control permission , converti ng
the ASSM to a controlled one. The user entering the first control permission
retains control permission until he exits the RSLXTND function or identifies
himself (see Section 8.1.3).

All control permissions m a n  ASSM are treated as equal. Any user with
control permission can use that permission to establish further control and
extension permissions (see Section 8.1.2), to rescind permissions (see
Section 8.1.4), and to extend the language (see Section 8.2).

The complete syntax for establishing a control permission is:

<extension control commanth ::=
c ONTROL_PERMISSION name .

8.1.2 Establ i shi ng Extension Permissi ons

Once a control permission has been entered into the ASSM , an extension
permission may be entered by stating the word EXTENSION_PERMISSION followed
by a name. For example, assuming an uncontrolled ASSM to start, the followi ng
establishes a control permission MAGIC and an extension permission OPEN SESAME.

CONTROL_PERMISSION MAGIC.
EXTENSION_PERMISSION OPEN SESAME.

At least one control permissi on must exist i n an ASSM before any ex-
tension permission may be entered. As long as at least one control permission
exists in an ASSM, any number of extension permissions may be entered by any-
one who has acquired control permission.

The complete syntax for establishing an extension permission is:

<extension control comand>::=
EXTENSION_PERMISSION name .

• 8.1.3 Identifying the User

If an ASSM is controlled, a user wishing to extend the language or
-
- - 

to establish or rescind permissions must first acquire the a ppropriate
level of permission. Permission is acquired by stating the word IDENTIFICA-
lION followed by a name. This statement identifies the user and grants him

8-4



- -  -
~

- - - -
~~~~~~~~~~~~~~~ --—

—-—-- ••• -
~
.—-— --- •

~~
-

~~~~~~---•~- ~~~~~~~~ •- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

the permission level which has been previously associated with the name
specified. For example , assume that in a controlled ASSM control permissions
CP1 and CP_2 and extension permissions EP_l , EP_2, and EP_3 have been

• established. Either of the followi ng statements would give the user exten-
sion permission , allowi ng him to extend the language (see Section 8.2):

IDENTIFICATION EP_I.
IDENTIFICATION EP_2.
IDENTIFICATION EP_3.

Either of the following statements would give the user control per-
mission , allowi ng him to esta blish and rescind extension and control per-
missions as well as exterri the language.

IDENTIFICATION ~.r_l.
IDENTIFICATION CP_2.

A user retains the permission l evel he has acquired until he either
exits the RSLXTND function or re-identifies himself. The followi ng example
shows a user first acquiring extension permission and later acquiring no
permission since there is no permission associated with NO_PER in our
assumed ASSM. After the first statement, the user coul d extend the language;
after the second , any attempted extensions are illegal .

IDENTIFICATION EP_2.

(language extensions l egal )

IDENTIFICATION NO_PER .

(language extensions illegal )

If an ASSM is uncontrolled, al l users have implicit control permission
and identi fication should not be used . If a user does identify himself and

the ASSM is uncontrolled he will always acquire no permission .

The syntax for Identifying a user is:

<extension control cooinand>::=
IDENTIFICATION name.

8-5 

--



8.1.4 RescindIng Permissions

To rescind an existing permission , the words RESCIND PERMISSION ,
followed by a name are entered. To use this command , the user must have
previously acquired control permission. For exampl e, if control per-
mission is associated with both KING and QUEEN and extension permission
with COUNT and EARL , the foll owing sequence will remove the permissions
associated with QUEEN, COUNT, and EARL:

IDENTIFICATION KING .
RESCIND PERMISSION QUEEN .
RESCIND PERMISSION COUNT .
RESCIND PERMISSION EARL .

The permission associated with the name used to acquire control per-
mission can also be rescinded but this rescission does not take effect
until the next IDENTIFICATION command or the exiting of the RSLXTND function.
Thus the following command sequence will remove all permissions in the above
example, resul ting in an uncontrolled ASSM .

IDENTIFICATION QUEEN.
RESCIND PERMISSION COUNT.
RESCIND PERMISSION KING .
RESCIND PERMISSION EARL .
RESCIND PERMISSION QUEEN.

Since control permission i s necessary to rescind other permissi ons ,
the last remaining control permission in an ASSM cannot be rescinded as
long as there is at least one extension permission outstanding . Thus the
following sequence of commands is Invalid sinc e an extension permission
for COUNT still exists:

IDENTIFICATION QUEEN.
RESCIND PERMISSION KING .
RESCIND PERMISSION EARL .
RESCIND PERMISSION QUEEN.

— The syntax for rescinding a permission Is:

<extension control comand>::~
RESCIND PERMISSION name .

8-6 



r~ I: TI ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

8.2 DEFINING NEW RSL CONCEPTS

Using the RSLXTND functions , the user who has acquired extension or
control permission may define new RSL concepts In the realm of new element
types , new attributes , and new relationships . These RSL extension defini-
tions are discussed in the followi ng sections .

8.2.1 Defining a New Element Type

The syntax for defining a new el ement type is that of a new element
type definition, which in its simplest form is:

[DEFINE] ELEMENT_TYPE el ement-type-name comment.

For exampl e, the fol lowi ng defines a new element type named NEW_ONE:

DEFINE ELEMENT TYPE NEW_ONE (*EXAMPLE*).

The word DEFINE may optionally precede the word ELEMENT_TYPE and its
use Is rec o.mnended . If DEFINE is not stated and the element type name is
not In the ASSM, a new element type definition is assumed ; however , if
DEFINE is not sta ted and the element type name is in the ASSM , then the
assumption Is that the existing element type name is to be modified.
Consequently, it Is always safest to explicitl y use the word DEFINE when
the intent Is to define a new el ement type . The fo llowing definition of
NEW_ONE is thus the same as that above if NEW_ONE is not in the ASSM .

ELEMENT_TYPE NEW_ONE (*EXAMPLE *).

One additional sentence type, the structure applicability declara-
tion, optionally preceded by the word INSERT , may be used to compl ete the
new element type definition. Thi s declaration has two forms to specify
that the new el ement type may be used as an element node on a net STRUCTURE
or on a va lidation PATH. The form of the structure appl icability declara-
tion Is:

STRUCTURE APPLICABILITY ‘ PATH }

As an example, the fol lowi ng def ines three new element types . The
first one , MY_TYPE , may be used as an el ement node on an R_NET or SUBNET
STRUCTURE and on a PATH. The second one , YOUR_TYPE , is not usabl e on
either a STRUCTURE or a PATH. The third one, THEIR_TYPE, Is usabl e on a
STRUCTURE but not on a PATH .

8-7

A

DEFINE ELEMENT_TYPE MY_TYPE (*MY OWN *).
INSERT STRUCTURE APPLICABILITY NET.
INSERT STRUCTURE APPLICABILITY PATH.

DEFINE ELEMENT TYPE YOUR_TYPE (*NOT MINE*).
DEFINE ELEMENT_TYPE THEIR_TYPE (*NOT GOOD ON PATHS*).

STRUCTURE APPLICABILITY NET.

The user who wishes to define new element types should be cautioned
that the new element types defined wi ll have no legal attr ibutes , nor will
they be legal subjec t or object el ement types for any relationships unl ess
the desired attributes and relationships are modified to add the new
element types to their appl icabl e, subject , and object el ement type lists.
The method of making these modifications is presented in Sections 8.3.2
and 8.3.3 for attributes and relationships , respectively.

The complete syntax for a new element type definition is as follows :

<new element type definition> ::=
[DEFINE] ELEMENT_TYPE element-type-name comment.

{[INSERT] <structure applicability declaration>}

<structure applicability declaration>:: =
(~lSTRUCTURE APPLICABILITY

8.2.2 DefIning a New Attribute

The complete definition of a new attribute consists of three parts;
a definition of a name and comment for the new attribute , a declaration of
the element types to which the attribute applies , and a declaration of the
values that the attribute may take on. The definition of a name and comment
must precede the other two definition parts which have no Imposed order .
The form of the name and co mme-t definition Is one of the following :

ATTRIBUTE attribute-name comment.
DEFINE ATTRIBUTE attribute-name comment.

The other two parts of a new attribute definition are both forms of
the attribute definition sentence , optionally preceded by the word INSERT .
The applicabl e type declaration declares the el ement types to which the
attribute applies. The two forms of the applicabl e type declaration are:

8-8

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ ;7~~~~

APPLICABLE ELEMENT_TYPE <el ement types> .
APPLICABLE 4element types>.

There are three forms of the specification of <element types>:

ALL

ALL EXCEPT {ei ement_type_name}~

{el ement_t~pe_name}~

The first form means that el ements of all currentl y defined el ement types
except SYNONYM may take on values for the new attributes . The second
form means that el ements of all currentl y defined el ement types except
SYNONYM and those listed after the word EXCEPT may take on values for the new
attr ibute . The third form means that only el ements of those specific
element types listed may take on values for the new attribute .

The syntax for a new attribute definition allows any number of
applicabl e type declarations. Multiple applicabl e type declarations are
only meaningful , however , if all of them are in the third form , i.e., a
list of element type names.

The values that the new attribute may assume are declared in one
or more legal value declarations:

NUMERIC 1

VALUE NAMED [comment] .

~value-name 1

The va lue NUMERIC means that any signed or unsigned integer or real num ber
as defined in PASCAL is a legal value for the new attribute (see Appendix B).
The va lue TEXT means that any string of characters encl osed withi n double
quotes is a legal value. The value NAMED means that any RSL name not used

In another context in the ASSM is a legal value. The va lue name form means
that the va lue name Itsel f Is a legal value.

Any number of legal value declarations may be included In a new attribute
definition. Thus , it is possibl e to sta te that a new attribute may have as
many legal values as desired ,includ i ng any combi nati on of NUMERIC , TEXT and

either NAMED or any number of specific value names. Note that it is not mean-

8-9 

~~ - -—--~~~~~~~~~~~~~ - - -



- • -~ — -——--—-~~ ,- --~r -
~~— ~ — ‘ ~~~~~ ,r ’ v~’,w ., —~-w-- - ‘.‘ ‘~ —‘~~~ —--——-.~ --- .— - • -  ~~~~~~~

,
~-~~

- -- ,—-~~- - - ~~w~ y~~~,V7_ - -

ingful to have legal values of NAMED and one or more specific value names for
an attribute. These two legal value forms should never be used together.

The following example defines a new attribute NEW_AT which can apply
to any element of type ALPHA or SUBNET and which can take on any NUMERIC
or TEXT value:

DEFINE ATTRIBUTE NEW_AT (*COMMENT FOR NEW AT*).
INSERT APPLICABLE ELEMENT_TYPE ALPHA , SUBNET .
INSERT VALUE NUMERIC (*ANY NUMBER*).
INSERT VALU E TEXT (*ANY TEXT STRING*).

As shown above, more than one legal value declaration can be given.
The same is true for the applicabl e type declaration as long as none of
them uses the ALL or ALL EXCEPT form . For exampl e, the following is
exact ly equivalent to the attribute definition given above:

DEFINE ATTR IBUTE NEW AT (*COMMENT FOR NEW_AT*).
APPLICABL E ELEMENT_TYPE SUBNET .
APPLICABLE ALPHA .
VALUE TEXT (*ANY TEXT STRING*).
VALUE NUMERIC (*ANY NUMBER*).

The following example defines a new attri bute A_ONE with legal value - •

VAL_ONE, VAL T~fl, and NUMERIC which may apply to elements of all currently • —

defIned element types except DATA (and except SYNONYM):

ATTR IBUTE A_ONE (*A_ONE*).
VALUE VAL_ONE.
VALUE NUMERIC .
APPLICABL E ALL EXCEPT DATA .
VALUE VAL_TWO .

This exampl e illustrates that the applicabl e type and l egal value declara-
tions may occur in any order and may even be intermixed .

The complete syntax for a new attribute definition is:

<new attribute definition>::=
[DEFINE] ATTRIBUTE attribute-name comment.

{ [INSERT] <attribute definition sentence>}~

8-10

_  ~~~~~~~~~ --- • ~~~• - - - ~~~--~~~~~~~~~~~~ - - - - - - - --— • - -  - - - - ---• •~~~~~~~~~~~~ - - -



- - - ---. ---;-_•

<attribute definition sentence>::=
<applicabl e type declaration>

I <legal value declaration>

<applicabl e type declaration>::=
APPLICABLE [ELEMENT_TYPE] <el ement types> .

<element types>: := -

ALL

I [ALL EXCEPT] {element_tY~e_name} ’

<legal value declaration>::=

NUMERIC
VALUE NAMED [comment) .

value-name -

~

8.2.3 Defining a New Relationship

The definition of a new relationship consists of four parts; a defini-
tion of a name and comment for the relationshi p followed by relation defini-
tion sentences specifying the complementary relationship name , the element
types which may be the subjects of the relationship, and the element types
which may be the objects of the relationship. The form of the relationship
name and comment definition is the fol lowing :

[DEFINE] 
~ LATI0NSHIP}1 relation-name

[(“ relation-optiona l-word”)] comment .

This part of the definition gives a name for the new relationship, called
the primary relationship name, a commen t, and may give a relation optional
word which may be used in RSL commands follow i ng the use of the rel ati on
name to Improve readability .

The three other parts of the new relationship definition are all forms
of the relation definition sentence, optionally preceded by the word INSERT .
The complementary relation declaration declares a name for the complementary

relationship and may also specify a relation optional word intended to be
used following the complementary relation name in RSL comands to Improve

readability .

8-11

_  _  - • - - - .-- --~~~~~~ -



-, 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • — ---,----.;.,- ‘ •  

~
- -—--.-‘.-- .r .~r —.--- -- .——~~~—--- --. .—.

~~~
--—- —-.—.-,.- --‘ v

COMPLEMENTARY relation-name

[(“ relation—optional -word”)].

Notice that no comment is a llowed in the compl ementary relation declaration
while one is required for the primary relationship name . Also , the primary
and complementary relation names must always be distinct although their
relation -optional words have no such restriction. The guidelines followed
in the core relationships for RSL (see Section 3) have been to always use
the present tense , third person singular form of a verb for the primary
relationship name, and to use the past tense , third person singular form
of the same verb for the compl ementary relationship name . Relation optional
words were used whenever their use would improve the readability and natural-
ness of RSL .

The element types which may be used as subj ects of the new relationship
are defined in a subject type declaration :

SUBJECT [ELEMENT_TYPE] <el ement types> .

There are three forms that the specification of the <element types> may
take:

ALL
(ALL EXCEPT ‘~el ement-type-name~ 

-

(
-~ el ement-type-name~

The first form declares that el ements of all currentl y defined el ement types ,
with the exception of SYNONYM , may be used as subjects of the new relation-
ship. The second form declares that elements of all currently defined
el ement types except those listed (and except SYNONYM ) may be used as subj ects
of the new relationship. The third form lists specific el ement types which
may be used as subj ects of the new relationship.

The el ement types which may be used as objects of the new relationship
are defined in an obj ec t type declaration:

OBJECT [ELEMENT_TYPE] <el ement types> .

8-12

I.— ~~~~~~~~~~~~~~~~~~~ 
__

~~~~~


As In the subjec t type declaration , there are three forms of the <el ement
types> specification. The interpretation of these forms is identical except
that references to subjec t element types should be read as references to
objec t el ement types .

The syntax for a new relationship definition allows any number of
relation definition sentences in any order . For a complete and valid new V
relationship definition the following rules should be adhered to:

• Exactl y one compl ementary relation declaration should be sped —
fied .

• At least one subject type declaration and at least one objec t
type declaration should be specified .

• Multiple subject or objec t type declarations should be sped -
fied only if all of them are in the form of a list of element
type names.

The fol lowing ex ampl e defines a new relationship P R 1 with relation
optional word POW and complementary relationship CR_i wi th relation optional
word COW . The relationship ’s subject and object element types are all the
currently defined element types except for SYNONYM .

DEFINE RELATIONSHIP PR_I (“POW ”) (*NEW REL*).
INSERT COMPLEMENTARY RELATIONSHIP CR_L (“ COW ”).
INSERT SUBJECT ELEMENT_TYPE ALL.
INSERT OBJECT ELEMENT_TYPE ALL.

Assume tha t the only currentl y defined element types are ET_ONE ,
ET TOW, and ET_THREE; then the following new relationship definition is
exactly equivalent to the exampl e above.

RELATION PR_i (“ POW ”) (*NEW REL*).
OBJECT ET_ONE , ET_TWO .
SUBJECT ALL .
COMPLEMENTARY RELATION CR_i (“ cow ”) .
OBJECT ET_THREE.

This example illustrates that the three declaration parts may be in any
order and that multipl e subject or object type declarations may be used .

The complete syntax for defining a new relationship is:

8-13

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ -- - -  - -~~~~~~~~~~~~~~



<new relation definition>::=

[DEFINE] { RELATIONSHIP} relation-name

• [(“ relation-optional-word”)] comment.

{[INSER~] <relation definition sentence>}0

<relation definition sentence>: :=
<compl ementary relation declaration>
<subjec t type dec laration>
<objec t type declaration>

<complementary relation declaration>::=

COMPLEMENTARY 
~~~~~~SHIP}1 relation-name

• [(“ relation-optional -word ”)].

<subject type declaration> ::=
SUBJECT [ELEMENT_TYPE] <element types>.

<object type declaration>::=
OBJECT [ELEMENT_TYPE] <element types> .

<el ement types>::=
ALL

[ALL EXCEPT] {el ement_type_name}~

8-14

- - ~ v -,-.-~~ -~~ _________ - -

8.3 MODIFYING RSL CONCEPTS

An existing el ement type, attribute, or relationship definition may
be modified by using the RSLXTND comands to insert new Information into
or remove information from the definition. The user wishing to modify the
standard RSL concepts should , however , be aware of the restrictions noted in
Section 8.0. The fol lowing sections describe the various RSLXTND comands

-
-

used to perform these modifications and provide exampl es illustrati ng their
use.

8.3.1 Modifying an Element Type Definition

An element type definition may be modified by replacing the coninent —

associated wi th the el ement type or by inserting or remov ing the declara-
tions al l owing its use as an el ement node on a net STRUCTURE or on a PATH.
The el ement type modification must begin with a dec laration of the el ement
type which is to be modified :

[MODIFY] ELEMENT_TYPE el ement-type-name [comment] .

The word MODIFY is optiona l but its use is suggested . If MODIFY is
not used , the RSLXTND function assumes that this is a new el ement type
definition if the element type name is not already in the ASSM . The comment
is also optional; if a comment is provided it will repl ace the existing
comment for the element type, otherwise the existing comment will be
retained . The fol lowing two examples both modify an assumed el ement type
El ASSUMED . The first one , however , does not cha nge the definition of
El ASSUMED while the second one gives ET_ASSUMED a new comment .

MODIFY ELEMENT_TYP E El_ASSUMED .
MODIFY ELEMENT_TYPE fl_ASSUMED (*NEW COMMENT *).

The el ement type may be further modified by inserting or removing
structure applicability declarations . The syntax for inserting a structure
applicability declaration is:

[INSERT] STRUCTURE APPL ICABILITY ‘
~~ TH~’~1

The word INSERT is optional when inserting a structure appl icability

declara tion.

8-15

-- - - - ~~~~~~~~~~--

_ _ _ _ _ — —,---—

~~
--‘
:~~

-
~~~~~

‘ - —  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The removal of a structure applicability declaration requires the use
of the word REMOVE:

(M ~lREMOVE STRUCTURE APPLICABILITY
‘ ~1

For exampl e, assume that the following definition of el ement type
TYPE_EX has been made:

DEFINE ELEMENT_TYPE TYPE_EX (*EX COMMENT*).
INSERT STRUCTURE APPLICABILITY NET .

The following will then mod ify the definition of TYPE_EX so that it may be
used as an element node on a PATH but not as an el ement node on a STRUCTURE.

MODIFY ELEMENT_TYPE TYPE_EX.
INSERT STRUCTURE APPLICABILITY PATH .
REMOVE STRUCTURE APPLICABILITY NET .

Note , however , that If one or more elements of the el ement type being
modified are in use as element nodes on a STRUCTURE or PATH, the corresponding
structure applicability declaration (NET or PATH) cannot be removed.

The complete syntax for an element type modification is:

<el ement type modificat ion>::=
[MODIFY] ELEMENT_TYPE el ement-type-name [comment] .

*

~

[
~~

] <structure appl icability dec1aration>}~

<structure appl icability declaration> :

STRUCTURE APPLICABILITY ~NET ~,

~P H~

8.3.2 ModifyIng an Attribute Definition

The definition of an attribute consists of three parts ; the declara-
tion of a name and comment for the attribute , the declaration of the
applicable el ement types for the attr ibute , and the declaration of the
values that the attribute may assume . Any or all of these parts may be
changed in order to modify the attribute definition.

Any modification of an attribute definition must begin wi th a
declaration of the attr ibute name which is to be modified . The form of
this declaration Is:

8- 16

A ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

-

[MODIFY] ATTRIBUTE attribute-name [comment].

If a comment is provided in thi s declaration it will replace the existing
comment for the attribute, otherwise the existing comment will be reta ined .

The declaration of the attri bute name and opti onal coment may be
followed by any number of attribute declara tion Insertion or removal
sentences. These sentences perform functions which are the subjects of
the following sections. For convenience in reference, the first part of
the syntax of the attribute modification is given below. The sections
following will detail subord inate parts of the syntax as requ ired.

<attribute modlfication>::=
[MODIFY] ATTRIBUTE attribute-name [comment].

([INSERT] <attribute definition sentence>

‘~<applicabl e type declaration removal>

~<legal value declaration removal>

<attribute definition sentence> :

<applicabl e type declaration>
<legal value declaration>

8.3.2.1 Dec laring New Applicable Types for an Attribute

New applicabl e types for an attri bute are .ieclared by giving an
applicabl e type declaration , optionally preceded by the word INSERT .

[INSERT] APPLICABLE [ELEMENT_rYPE] <el ement types> .

The specification of <el ement types> is one of the forms:

ALL

ALL EXCEPT {element_type_name}~
{el ement_tY~e_name}~

The first form specifies that all currently defined element types are to
be added as applicabl e element types (except for SYNONYM). The second
form specifies that all currently defined el ement types except those listed

(and except SYNONYM) are to be added as appl icable element types. The
third form specifies specific element types which are to be added as
applicabl e element types. If the attribute already has one or more

8-17

-
—,-‘—--

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~‘ ~~~~~~~~~~~~~~~~ •-v~,— - - —-, ~~~~~~~~~~~~~ ‘~~“ ~~~~~~~~~~~~~~~~ ~
__~~—_. -- ______.

_____- - -‘-.-- - -.-— - --

appl icabl e el ement types only the third form should be used as any dupl icate
applicabl e element types specified will result in errors.

An an example assume that element types ET_l , ET_2, ET_3, and ET_4 are
currently defined but only ET1 is an appl icabl e element type for attribute
All. The following would establish ET_2, ET_3, and ET_4 as additiona l
applicabl e el ement types for attribute AT_i :

MODIFY ATTRIBUTE AT 1 .
INSERT APPLICABLE ELEMENT_TYPE E12 , ET_3 , ET 4.

The same result would be accomplished with the followi ng :

MODIFY ATTRIBUTE A T 1 .
APPLICABLE ET_4.
APPLICABLE ET_2, ET_3.

The compl ete syntax for declaring new applicabl e types for an attribute
is:

[INSERT] <appl icable type declaration>

<appl icable type declaration>::=
APPLICABL E [ELEMENT_TYPE] <el ement types> .

<element types>::
ALL

[ALL EXCEPT] {element_type_name}~

8.3.2.2 Removing Existing Applicabl e Types for A~n Attribute

One or more existing applicable types for an attribute may be removed
by the following :

(ALL
REMOVE APPLICABLE [ELEMENT_TYPE] 

~
(~e1 ement-type-name~1 1

The form ALL means that all element types which are currently defined as

appl icabl e element types for the attribute will be removed as appl icabl e

element types. The resul t will be an attribute defined wi th no appl icabl e

element types. The second -form lists specific el ement types which are to

be removed as applicabl e element types for this attribute. An error will

8-18

~

-

~

- -

~

--

~ 

—--~~~~~~~~~ - —- ------
~~~~~~~~—~~~- - -—- -~~~~~~~~--- ~~~~~~~~~~~~~ -- ~~~~~ - -


~vv~~~~~~~~~~~.r ~~t~~~~
__ ,_ ,~_ ,._ !

~~~~~~~~ . - .ç,vww _ _ , r w _ ~~ _ 
~_, ~~~~~~~~ “‘T” 7~- I

be detected if an element type listed is not an applicable element type
for the attribute. -

An el ement type may not be removed as an applicabl e element type for
an attribute as long as any element of that el ement type has a value for
the attribute. The attempted removal of such an applicabl e el ement type
will be diagnosed as an error and rejected.

As an exampl e, assume that attribute MY AT has been defined with
appl icable el ement types MY_ET_1 and MY_ET_2. If no el ements of type
MY_El_i or MY ET 2 exist with values for MY_AT then the following would
remove both element types as applicabl e el ement types for MY AT:

MODIFY ATTRIBUTE MY_AT.
REMOVE APPLICABLE EL EMENT_TYPE ALL .

The same result would be achieved by:

MODIFY ATTR IBUTE MY_AT.
REMOVE APPLICA BLE MY_El 2.
REMOV E APPLICABLE MY_ETJ .

The complete syntax for removi ng an appl icable type for an attribute
is:

<applicabl e type declaration removal>::=
(ALL 1

REMOVE APPLICABLE [ELEMENT TYPE] <({element-type-name~i i

8.3.2.3 Declaring New Legal Values for an Attri bute

New legal values for an attribute are declared by giving a legal

value declara tion , optionally preceded by the word INSERT.

NUMERIC 1

[INSERT) VALU E NAMED [coment].
valu e-name -

~

The reader is referred to Section 8.2.2 for a discussion of the meanings of

the words NUMERIC, TEXT , NAMED and value name .

Any number of l egal values may be declared for an attribute , except

- 

- 

that an attribute should never have legal values NAMED and one or more value

8-19

~ 

- - ----— - —- - -



- v . .- .  ~~-~~-.,--v. vv.-. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~-- --v.-----~~~~~~

.
~~~~~~~~~~~ , -~~ -

______

-4
I

names at the same time . For exampl e , assume that attribute AT_ONE has been
defined wi th legal values NUMERIC and NAME_ONE. Then the followi ng would
result In AT_ONE having legal values NUMERIC , TEXT, NAME_ONE, and NAME_TWO:

MODIFY ATTRIBUTE AT_ONE .
INSERT VALUE NAME_TWO (*EXAMPLE*).
INSERT VALUE TEXT .

The compl ete syntax for declaring new legal values for an attribute
is:

[INSERT] <lega l value dec laration>

<legal value declaration>::=

~NUMERIC ~
VALUE ‘INAMED ~

- [comment) .
!~ val ue-name

8.3.2.4 Removing Existing Legal Val ues for an Attribute

An existing legal value for an attribute may be removed by the
following:

NUMERIC 1

REMOV E VALUE NAMED
value-name

Any number of attribute removal declarations may be given , each of
which removes one existing legal value for the attribute being modified .
No legal value for an attribute may, however, be removed as long as an
element exists with a value of that form for the attribute .

As an exampl e, assume that attri bute AT_MINE is defined wi th legal
values TEXT, NAME_i , NAM E_2, and NUMERIC . Then the foll owing would remove
NUMERIC and NAME_i as legal values for AT_MINE.

MODIFY ATTRIBUTE AT_MINE .
REMOV E VALUE NAME_i.
REMOVE VALUE NUMERIC .

The follow ing would remove all legal values for AT_MINE and could only be
accompl ished if no element has any value for attribute AT_MINE.

8-20

~



MODIFY ATTR IBUTE AT_MINE.
REMOV E VALUE TEXT . -

REMOVE VALUE NAME_i.
REMOV E VALUE NUMERIC .
REMOVE VALUE NAME 2.

The compl ete syntax for removing existing legal values for an attribute
Is:

<legal value declaration removal> ::=

NUMERIC
REMOVE VALUE NAMED

value-name .

8.3.3 Modifying a Relationship Definition

The definition of e relation shi p consists of four parts: (1) the
declaration of a primary relationship name , comment, and optional relation
optional word; (2) the declaration of a compl ementary relationship name
and optional relation optional word ; (3) the declaration of subject element
types for the relati onshi p; and (4) the declaration of object el ement types
for the relationship. Any or all of these parts may be cha nged in order to
modify the relationship definition.

Any modification of a relationship definition must begin wi th a
declaration of the relationship name which is to be modified . The primary
relationshi p name must be used in this declaration ; the compl ementary
relation name cannot be used . The form of the declaration is:

[MODIFY] ‘
~RELATIONsHIP}1 

relation-name

[(“relation-optional-word”)] [comment] .

If a relation optional word is provided , it will be associated with the
relation name , repl acing the existing relation optiona l word if one existed .

If no relation optional word Is provided any existing relation optional

word for the relation name will be retained . Al so , if a coniuient is pro-
vided, it will replace the existing comment for the relationship, otherwise

the existing comment will be retained .

8-21 

--~~~~-- . ,- -- - -—- --~~~~~~~ ~~- . -“ --~~~~~~~~~~~~~-- - - -



—“—-- --- ____
~~_‘_ _

~~
_ __

- --_.-v-v._,_.—r_-•, —‘—-— ----- -- - - ~~ ~~~n’ - ‘
— —----~~~~—---—~~—-——- -

~~~~~
--
~
---— :

~~

r -

~~
--

~~~~~~
-

~
-

~~
-——-— -

The declaration of the relation name, optional relation optional word , and
comment may be -followed by any number of relation declaration insertion or removal
sentences . These sentences perform the functions which are the subjects of
the following sections.

For conven ience in reference , the first part of the syntax of the
relation modification Is given below. The sections fol l owing will detail
subordinate parts of the syntax as required :

<relation modification >-::=

[MODIFY] 
~ LATI0NSHIP}1 

rel ation-name

[(“ relation-optional -word”)] [comment].

[INSERT] <relation definition sentence>
<compl ementary relati on declaration removal>
<subject type declaration removal>
<obj ect type declaration removal>

<relation definition sentence>::=
<compl ementary relation declaration>

I <subject type declaration>
I <obj ect type declaration>

8.3.3.1 Declaring a New Complementary Relation Name for a Relationship

A new compl ementary relation name for a relationship may be declared
by giving a compl ementary relation declaration optionally preceded by the
word lNSERT:

[INSERT] COMPLEMENTARY RELAT IONSHIPS relation-name

[(“ relation-optional-word”)].

As discussed in Section 8.2.3, the definition of a relationshi p

requ ires tha t exactly one com pl ementar y rela tion name be decl ared for each
relationship. Because of this , the only time that a new compl ementary

relation name should be declared for an existing relationship is after the

existing compl ementary relation name has been removed (see Section 8.3.3.2

below ) . Resul ts are un predi cta bl e I f more than one comp l ementary rel ation
name exists for a relationship.

8-22



- -

As an example , assume that relation REL exists and that no compl ementary
relation exists for REL . The followi ng will then define CREL with relation
optiona l word COPT as the complementary relation name for REL .

MODIFY RELATIONSHIP REL.
INSERT COMPLEMENTARY RELATION CREL (“COPT”). -:

With the same assumptions , the follow i ng would declare CREL_2 as the
compl ementary relation name with no relation optional word .

MODIFY RELATION REL .
COMPLEMENTARY RELATION SHIP CREL_2.

The compl ete syntax for declaring a new compl ementary relation name
for a relation is: —

[INSERT] COMPLEMENTARY {RLLATIONSHIP~1 
relation-name

[(“relation-optional-word”)].

8.3.3.2 Removing a Complementary Relation Name for a Relationship

The compl ementary relation name for a relationship may be removed by
giving a complementary relation declaration removal .

REMOV E COMPLEMENTARY {RELATIONSHIP}1 
relation-name

[(“relation-optiona l -word”)).

The complete definition of a relationship requires that a compl ementary
relation name be defined , therefore the only time that a complementary rela-
tion name should be removed is when it is to be repl aced by a new compl ementary
relation name or in preparation for the removal of the relationship definition.

As an exampl e of the removal of a compl ementary relation name assume
that relation MY_REL with compl ementary relation name MY_COMP_REL is defined .
Then the fol lowing will remove MY_COM P_REL .

MODIFY RELATION MY REL.
REMOVE COMPLEMENTARY RELATION MY_COMP_REL .

If there is a relation optiona l word defined for the compl ementary relation

name , that relation optional word will always be removed along with the

8-23

~

- --

~

-

~

-

~ 

-- ~~~~~
.,--- ——- - - -~~~~~~~~~~~

-v.•--- --- - -~~~~--—- ——--



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —
-

~~~~~~

complementary relation name, regardless of whether the complementary rela-
tion declaration removal included the relation optional word.

The compl ete syntax for the removal of a compl ementary relation is:

~compl ementary relation declaration removal>::~

REMOVE COMPLEMENTARY 
~~~~~~~

5HJP}1 relation-nam e

[(“ relation-optional-word”)] .

8.3.3.3 Declaring New Subject El ement Types for a Relationship

New subject element types for a relationship may be declared by
giving a subject type declaration , optionally preceded by the word INSERT .

[INSERT) SUBJECT [ELEMENT_TYPE) <element types> .

The specification of <element types> is one of the forms:

ALL
(

ALL EXCEPT ~el ement-t~~e-nameJ.

{el ement_type_name}~

The first form specifies that all currently defined element types are to
be added as subject element types (except for SYNONYM). The second form
specifies that all currently defined element types except those listed
(and except SYNONYM) are to be added as subject element types for the
relation . The third form specifies specific el ement types which are to
be added as subject el ement types. If the relationship already has one
or more subject element types defined , only the thi rd form should be used
since any duplicate subject element types specified will result In the
detection of errors.

As an example assume that element types TYPE_i , TYPE_2, and TYPE_3,
are currently defined , with TYPE_3 defined as a subject element type for
relation REL_l. The follow ing would declare that TYPE_i and TYPE 2 are
also subject el ement types for relation REL_l:

MODIFY RELATIONSHIP REL_1.
INSERT SUBJECT TYPE_2.
SUBJECT ELEMENT_TYPE TYPE_i.

8-24

-- ~.,- - -~.-,v.-, v v ~~~~~~rv~~~-,--. - -~~~~~ ~~~~~~~~~~~~~~~~~~ - - v V ~~
,
~~

_ - ~~~
-

*
A

The complete syntax for declaring new subject element types for a

relationship is:
-

-

[INSERT] <subject type declaration>

<subject type declaration>: :=
SUBJECT [ELEMENT TYPE] <el ement types> .

<element types>: :
ALL

I [ALL EXCEPT {el ement_type_name}”

8.3.3.4 Removing Subject Element Types for a Relationship

One or more existing subject element types for a relation may be
removed with a subjec t type declaration removal :

IALL
REMOVE SUBJECT [ELEMENT_TYPE] I n

[{el ement_type_name }

The form ALL , or the lack of a specification of the el ement types to be
retrieved,means that all el ement types which are cu~-rently defined as
subject element types for the relation will be removed as subject el ement
types. The result will be a relationship defined with no subject element
types. The second form lists specific el ement types which are to be
removed as subject element types for the relation . It is an error to

list an el ement type which is not currently a subject el ement type for

the relation.

A subject el ement type for a rel ation may onl y be removed if no
element of that type is the subj ect of the relation .

As an exampl e assume that relation PREL is defined wi th subject
element types T l , T_2, and T_3. The followi ng will leave PREL wi th only

T_2 as a subject element type:

MODIFY RELATION PREL .
REMOVE SUBJECT ELEMENT_TYPE I i , T_3.

8-25

• v ~~~~~~~ — ’ ~~~ ~~~~~~~~~~~~ -
- / -

The complete syntax for the remoyal of subject el ement types for a
relation is:

<subject type declaration removal>::=
rALL 1

REMOVE SUBJECT [ELEMENT_TYPE] I n IL {elenient_t~pe_name}1J

8.3.3.5 Declaring New Object El ement Types for a Relationship

New object element types for a relationship may be declared by giving
an object type declaration , optionally preceded by the word INSERT .

[INSERT] OBJECT [ELEMENT_TYPE] <el ement types> .

The specification of <el ement types> is one of the forms :

ALL

ALL EXCEPT {element_tyPe_name}~

{el enient_type_name}~

The first form specifies that all currentl y defi ned element types are to
be added as object element types (except SYNONYM). The second form speci-
fies that all currently defined element types except those listed (and
except SYNONYM) are to be added as object element types. The third form
lists specific element types which are to be added as object element types.
If the relation being modified already has one or more object element types
defined , only the third form should be used . Otherwise the duplicate
declaration of obj ect el ement types will result in the detection of errors .

As an exampl e assume that relation REL 1 is defined with object
element type ET_l. Al so assume that element types ET_2 and ET_3 are defined .
Then the fol lowi ng wi ll resul t In Eli , ET_2 , and ET_3 being object el emen t
types for REL 1 :

MODIFY RELATIONSHIP REL 1.
INSERT OBJECT ET_3.
INSERT OBJECT ELEMENT_TYPE ET_2.

8-26

- - - --- — ~~~~ —- -

- —-- -----—.--.-—--- - .— --

r -
-

~~~

-

~~~~~~~~~~~~~

---- - - - - - —

The compl ete syntax for declaring new object el ement types for a
relationship is:

[INSERT] <object type declaration>

<object type declaration>::=
OBJECT [ELEMENT TYPE] <el ement types> .

<el ement types>: :=
ALL

I [ALL EXCEPT] ~element_type_name }1

F 8.3.3.6 Removing Objec t Element Types for a Relationship

One or more object el ement types for a relation may be removed with
an object type declaration removal:

rALL
REMOVE OB~3ECT [ELEMENT_TYPE] I nL{& enlent_type_name}1

The form ALL , or the omission of the specification of the object element
types to be removed , means that all el ement types currently defined as
object element types for the relation will be removed as object el ement

types. The result will be a relationship wi th no object element types.
The second form lists specific el ement types which are to be removed as
objec t element types for the relation. An error will be detected if an
element type is listed which is not an object el ement type for the rela-
tionship.

An el ement type may not be removed as an objec t el ement type for a
relation if any el ement exists which is the object of that relation.

Assume that relationship REL NAME is defined with object el ement

types TYPE_i , TYPE_2, and TYPE _3. The followi ng would remove all three

as object el ement types.

MODIFY RELATION REL NAME.
REMOVE OBJECT ELEMENT_TYPE ALL .

8-27

~~~~~~~~ - - - - - - -~~~



‘~~~~~~~~ ‘~‘ ‘ ‘  
~~~~~~~~ ~~~~~~~~ 

—
~~~~~~~~~ _~~~_~

I- — - -  -——-_  -..& - - -

The complete syntax for the removal of object el ement types for
a relationship is:

<object type declaration removal>::
rALL 1

REMOV E OBJECT [ELEMENT _TYPE) I n I
[{

el ement_tYPe-name}1j

8-28

~

-

~

-_-

~ 

-~~~~~~ -~~~~~~~ -~~~~~~ - - -  -- ~~~~~~~~~~~~ - - - - -~~~



- ~~~~~“ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. ~~TT

8.4 DELETING RSL CONCEPTS

Any of the existing RSL element types, attributes , or relationships
may be deleted using the RSLXTND functi on. The user shoul d be aware,
however, of the restrictions noted in Section 8.0. The fol lowing sections
describe the RSLXTND commands used to perform these deletions and provide
examples illus trating their use.

8.4.1 Del eting an Element Type

An el ement type may be del eted by spec ifying an el ement type deletion :

DELET E ELEMENT_TYPE el ement-type-name .

An el ement type may only be deleted if it is not in use. Any of the fol low-
ing constitutes a use of an element type which will prevent its del etion :

1. An element of the el ement type exists . The el ement must be
deleted before the element type can be del eted (see Section
5.1 .3).

2. The element type is an appl i cabl e el ement type for an attribute .
The attribute must be modified to remove the element type as
an applicabl e el ement type before the element type can be
del eted (see Section 8.3.2.2).

3. The el ement type is a subject or object el ement type for a
relationship. The relationship must be modified to remove
the el ement type as a subjec t/objec t el ement type before the
element type can be deleted (see Sections 8.3.3.4 and 8.3.3.6) .

It is , however , not necessary to expl icitly remove the structure appl icability
for an element type as this will be done automatically if all of the above
conditions are met.

As an example , suppose that el ement type TYPE_OLD Is defined but Is
not used , in the above sense. Then the following will del ete TYPE_OLD ,
Includ i ng its net or path structure applicability if any has been established :

DELET E ELEMENT TYPE TYPE _OLD .

If TYPE_OLD had been , for exampl e, an appl icabl e element type for attr ibute
AT_ONE but not otherwi se in use , then the attribute AT_ONE would first have —

had to been mod ified to remove TYPE_OLD as an applicable element type before
TYPE_OLD coul d be deleted. The followi ng would accomplish this:

8-29

.- -

~

--  ~~ - - - - -  -~~~~ -~~~~~- - -~~~~-~~~~~~ -~~~~~~- - -



_ _

MODIFY ATTRIBUTE AT_ONE.
REMOVE APPLICABL E ELEMENT_TYPE TYPE_OLD.

DELETE ELEMENT TYPE TYPE_OLD .

The complete syntax for deleting an el ement type is:

<element type del etion’::=
DELETE ELEMENT_TYPE el enent-type-name.

8.4.2 Deleting an Attribute

An attribute is deleted by an attribUte deletion:

DELETE ATTRIBUTE attribute-name .

The only necessary condition for the deletion of an attribute is that no
element may exist with a value for the attribute . If such an el ement
exists, the attribute instance for the el ement must be removed or the

• el ement del eted before the attribute itsel f may be del eted. It is not,
however, necessary to remove the appl icable element types or legal values
for the attribute . These will be automatically removed when the attribute
is del eted .

As an example , assume that attribute AT_ONE is defined as follows :

DEFINE ATTRIBUTE AT_ONE (*EXAMPLE*).
INSERT APPLICABLE ELEMENT_TYPE TYPE 1, TYPE_2.
INSERT VALUE NUMERIC .
INSERT VALUE TEXT (*ANY STRING OF CHARACTERS*).

If no element has a value  for AT_ONE then the following would delete AT_ONE.

DELETE ATTRIBUTE AT_ONE.

The followi ng sequence would also result in the del etion of AT_ONE.

MODIFY ATTRIBUTE AT_ONE (*THIS PART UNNECESSA RY*).
REMOVE APPLICABLE TYP E 1 , TYPE_2.
REMOVE VALUE TEXT .
REMOV E VALUE NUMERIC .

DELETE ATTR IBUTE AT_ONE.

If the element EL_EXAMPLE had a value for AT_ONE the removal of that
attr ibute instance would be required prior to the del etion of the attribute :

8-30 

—~~~~~~~~~~- - - - - -- --— - -~~~~~~~~~~ --— - -~~~~~~~~~~~~~~~~~~ - - ~~~~~~~ -



, _
~~~~~

MODIFY TYPE 1 EL_EXAMPLE
REMOVE AT_ONE.

-

DELETE ATTRIBUTE AT_ONE.

The compl ete syntax for the del etion of an attribute definition is:

<attr ibute del etion>::=
DELETE ATTRIBUTE attribute-name .

8.4.3 Del eting a Relationship

A relationship definition is del eted by the statement:

DELETE
{~~~~~

g
~sHIP}~

relation-name

[(~relation-optiona l --word”)].

The relation name used In this statement must be the primary relation name;
a compl ementary relation name may not be used . As shown in the above syntax ,
the specification of the relation optional word is optional . Whether it Is

specified or not, the relation optional word for the relations hip will be

removed when the relationship is deleted .

Only one circumsta nce can prevent the deletion of a relationship.
That circumstance is the existence of an instance of the relationship between
elements in the ASSM. All instances of a relationship must be del eted before
a relationship itsel f may be del eted. There is , however , no requirement to
remove the compl ementary relation name or the subjec t or obj ec t el ement
types before del eting a relationship. These, if they exist , will be auto-
matically removed when the relationship is deleted .

Assume that relationship REL_EX is defined as follows :

DEFINE RELATION REL_EX (“OPT_WORD”) (*JUST AN EXAMPLE*).
INSERT COMPLEMENTARY RELATIONSHIP COMP_EX (“C_OPT_WORD”).
INSERT SUBJECT ALL .
INSERT OBJECT ALL .

If no el ements are related by REL_EX then the relationship may be deleted
by:

DELETE RELATIONSHIP REL_EX.

8-31

—~~~~~~~~ ---“---~~~~~~~ ~~--~~~~~~ - .~~•

-~~~--~~~-~~~~~ -

~~

-_-

~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

- Al ternately, the relationship could be modified to explicitl y remove the

complementary relation name and subjec t and object el ement types before the
relation was del eted. The resul t would be the same .

The compl ete syntax for del eting a relationship is:

<relation del etion>:

-

~ DELETE
~RELATIoNsHIP}1

relation-name
-

[(“ relation-optional-word”)].

8-32

- -

- - - ~~- - - ~~~~~~~~~~ /

9.0 REVS JOB CONTROL

‘p

REVS operates on the Control Data Corporation (CDC) 7600 and Texas

Instruments Advanced Scientific Computer (ASC) at the Ballistic Missile
Defense Advanced Technology Center (BMDATC) Advanc ed Research Center (ARC)
in Huntsville , Ala bama, and on the ASC at the Naval Research Laboratory
(NRL) In Wash ington, D.C. The ARC Installa tions of REVS operate either
from card input (termed off-line mode) or interactively (termed on-line
mode) using the Data Disc Color Graphics (ANAGRAPH) Displ ay System Terminal .
In the on-line mode , all REVS functions are ava ilable to the user and may
be invoked In any order . In the off-line mode , all functions except
RNETGEN may be utilized In any order. The NRL Installation of REVS operates
only in the off-line mode. An explanation of the job control stream required
to execute REVS on each of these computers is documented in the following
subsections.

9-1
Revision A

L A - -
~~~~~~~~~~~~~

• - -
~~~~~~~~~~~~ 


TTII__ ~~ ~~~~

9.1 T1-ASC JOB CONTROL

REVS Is invoked as a program on the TI-ASC through the use of the
Job Statement Language (JSL) of the operating System. To aid the user in
executing REVS , the fo llowing JSL macros have been defined :

• REVSPREP to initialize all files

• REVSXQT to execute REVS

. SIMRUN to execute a REVS generated simulator

• TESTRUN to execute a REVS generated post processor.

Using these macros, the normal job setup Is very simple , requiring a JOB
card to identify the job, a LIMIT card to speci fy required di sk and CPU
resources, a MACASG card to obtai n the REVS rn~cros, the REVSPREP JSL macro
call , and the REVSXQT macro call followed by REVS RCL and RSL. A job set-
up includes macro calls to SIMRUN and TESTRUN , if, respectively , a simu—
lator and/or simulation post processor are to be executed. Any files to
be referenced wi th an ADDFILE statement within REVS must be provided by
the user. The last card of the job is the 1/ EOJ card.

The JOB and LIMIT cards are documented in the TI-ASC JSL reference
manual [3] . The MACASG statement -is installation dependent as follows :

• At the BMDATC Advanced Research Center (ARC):
// MACASG M ,USERCAT/TRW/REVS/MACROS

. At the Naval Research Laboratory (NRL):

// MACASG M ,AFFIL/JUD/TRW/I3ERGP1/REVS/MACROS

Each of the REVS macros is descri bed in the followi ng subsections ; Section
9.1.5 contains sampl e REVS job decks.

9.1.1 REVSPREP Macro

The REVSPREP macro provides for the acquisition of all necessary files

and environ~ental conditioning for use 0f REVS on the T I- 1\SC. The parameters
for this macro are defined in Table 9.1. Defaults for the parameters are

listed in the table; the current parameter defaults are also documented in

the macro expansion in the job activity file when the macro Is used.
—I

-
~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~

-

H
9-3 - —

—i

Revis ion A

~

~~~-- - . - - - - - ~~~- - -



~~‘T TTI 7~
_

Table 9.1 REVSPREP Macro Parameters

PARAMETER FUNCTION DEFAULTS

REVSVERS= Specifies the disk version of REVS +0
version

REVSEFID= Specifies tape number of REVS baseline Disk version
tape number to be used to be used

ASSMEFID= Specifies tape number of ASSM to be Disk version
tape number staged to di sk to be used

ASSMFILE= Specifies file number of ASSM on tape 1
file number if ASSI1EFID specified

ASSMBAND Specifi es maximum band size for ASSM 100
bands (4 pages/band )

ASSMVERS= Specifies the disk version of baseline +0
version ASSM

SIMEFIO= Specifies tape number of simulator to No simulator
tape number be used - loaded from

ta pe

SIMGEN= Specifies whether SINGEI1 is to be 
- 

NO
IYESt executed in this job (applies to FIRL
~NO J only)

) -
9-4

Rev ision A



—~~~ — ~~~-,---_.--•__~~,~~~~~~~~ —,-,-._.,—--— - —:-.:---—- —
~ 

-‘-- --< 

~
-•—--

The REVSPREP must be used once and only once per job and must precede

calls to any other REVS macros . Any number of REVS executions can be

specified following the REVSPREP card . Normally, onl y one execu tion i s
required; with few exceptions (see Section 7.0), any number of REVS func tions
can be executed in any order wi thin one step.

9.1.2 REVSXQT Macro

The REVSXQT macro invokes execution of REVS and provides all control
necessary to acquire and dispose files needed during the REVS step. Table

9.2 contains an explanation of the macro parameters and their default
values.

9.1.3 SIMRU N Macro

This JSL macro executes a simulator generated by the SIMGEN function
of REVS . The simulator may have been generated -in a previous REVSXQT step,
or loaded from tape by the REVSPREP macro , either of which will supply the
associated files needed. Execution of the SIMXQT function in a previous
REVSXQT step is required to supply necessary simulato r input. The simu-
lator may be saved after execution if recording data has been collected for
a simulation post processor which is not to be executed in this job. The
SIMRUN macro parameters are defined in Table 9.3. Parameters on the PASCAL
macro PXQT are available in addition to those shown in the table.

9.1.4 TESTRUN Macro

This JSL macro executes a simulation post processor generated by

the SIl-IGEN function of REVS. The post processor may have been generated in

a previous REVSXQT step, or loaded from tape by the REVSPREP macro . The

recording data base used by the post processor is generated by execution of

a gama simulator , and is saved on tape with a simulator (a null data base
is generated if the simulator is saved prior to executi on in a SIMRUN step).

Execution of the SINDA function in a previous REVSXQT step is required to

supply necessary post processor control input . Table 9.4 contains an ex-

planation of the TESTRW’1 macro parameters and their defaul t values . In
addition to those shown in the table , parameters of the PASCAL macro PXQT
are available.

9-5
Rev ision A

L~~I -~~~~~~~~~_  - -- ~~~ ----- -~~~ —~~~ -- —----—- -- -~ ---~~-~~ - -- -



TTT~T~ T~~~7~~

Table 9.2 REVSXQT Macro Parameters

PARAMETER FUNCTION DEFAULTS

GO: Specifies program file to be executed REVSABS
access name

REVSIN= Specifies the access name of the REVS Unnamed file
access name input file of cards

ininediately
following macro

ADDMEM= Specifies additional memory required for 12K
memory size file buffers (SIMGEN requires 28K)

STKS!ZE Specifies number of words to be allocated 10000
words to the stack

HEAPSIZE= Speci fies number of words to be allocated 10000
words for heap

OUTBAND= Specifies band allocation for REVS.OUT 1/50/1
band sizes file

DMPBAND: Specifies band allocation for REVS.DMP 1/10/1
band sizes debug file

OPT: Specifies step options (I)
options

CPTIME= Specifies step time limi t in seconds 600
seconds

CALCCMP= Specifies dispositio n of CALCOMP plot out- YES
YES put. NO means suppress tape unconditional —
NO ly. YES means produce tape only i-f plots
FOSYS are actually generated. Plotting requires
tape number tape label for file FTO4FOO1 at the ARC .

At NRL , plotting is performed automatically.
At NRL, FOSYS indica tes that the onl ine
plotter is to be used. At NRL , a tape
number can be specified if the plot tape is
to be saved by the user.

ASSMSAVE: Specifies disposition of ASSM after execu- NO
tion . YES means save on tape (requires

~NO l 
label for file FTO2FOO1). NO means leave

3 on disk for subsequent exection , or discard .

9-6
Revision A 

--~~~~~~~~~~~~~~ -



Table 9.2 REVSXQT Macro Parameters (Continued)

PARAMETER FUNCTION DEFAULTS

REVSPNCI-1= Specifies disposition of punch output. YES
YES ~ YES means punch cards i-f RADX has been
NO ~ instructed to punch. NO means
access namej suppress punching even if RADX punch

statements are executed. Specifying an
access name causes the punch file to be
retained as a job local file with the
specified access name for subsequent
user disposition.

SIMGEN= Specifies whether SINGEN will be used in NO
fYES~ this step. YES means SIMGEN may be execu-
1NO J ted. NO means SIMGEN will not be executed

and therefore no capability to build a simu-
lator or post processor is to be provided.

SIMSAVE Specifi es whether to save a generated simu- NO
~YES~ lator on tape. YES means that if a simu-
INO I lator was generated it will be saved on

tape with all adjunct files required , which
includes the ASSM , SDF file and simulation
post processor, if any . This tape can be
subsequently reloaded by the REVSPREP macro
-for execution of a simulator or simulation
post processor. NO means don ’t save on tape.

REVSLOG= Specifies whether to suppress printing of *

JKEEP~ the REVSLOG output. KEEP means do not
* J print hut leave file for subsequent user

disposition (for use by interactive users
at URL ),* means print it.

REVSOUT Specifies whether tc~ suppress printing of 
*

1KEEP~ REVSOUT output. KEEP means do not print
* but leave file for subsequent user

disposition (for use by interactive users
at NRL ), * means print it.

9-7
Revision A



Table 9.3 SIMRUN Macro Parameters

PARAMETER FU~CTIOM DEFAULTS

STKSIZE Specifies number of words to be allocated 5000
words to the run time stack.

IIEAPSIZE= Specifies number of words to he allocated 5000
words to the run time heap.

ADDTIEM= Specifies additional memory required for 15000
memory size file buffers .

CPTIME= Specifies step time limi t in seconds 240
seconds

SIMSAVE: Specifies whether to save simulator , NO
JYES~ simulation post processor , recording data
~NO J base and associated files on tape.

Appropriate only for gamma simulations .

Table 9.4 TESTRUN Macro Parameters

PARAMETER FUNCTION DEFAULTS

STKSIZE~ Specifies number of words to be alloca ted 5000
words to the run time stack

HEAPSIZE: Specifies number of words to be allocated 5000
words to the run time heap

ADDMEM Specifies additional memory required for 15000
memory size file buffL.’s

CPTIME Specifi es step time lim it in seconds 240
seconds

9-8
Revision A



~~~: ~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~r

9.1.5 Sampl e REV S TI-ASC Job Decks

FIgures 9-1 and 9-2 are excerpts from sample REV S TI-ASC job decks.
Figure 9—1 shows a deck setup to execute REV S usi ng three ADDFILEs. The
other sample , Figure 9-2, is a deck setup to generate and execute a
simula tor.

9—9
Revision A

~~~~~~~~~~~ - -



rr~ ~~~~~~~~~~~~ 
-I~~~~~~

- -~ - ---d.~~~~—-- —

/1 3~B 81 1a .ERRFI P .D ,PTLA ?,S~ ITH
I/ LIM IT BA~ 0;2On ,’I~:~ O
,‘, M~ CA SG ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// REVS PREP A5 SMEFI fl:b 3 (~4/ /  R~ V SX 0T  CPTIM E:3 0 0f l IH EA PS 1Z E ;300 00
RA DX ’,
AD O F ILE HIER .
ADOFILE LISTSET ,
A DOFILE E~ r~OPS .STOP .
// S TA RT A C NM:H IF~HI~ R SU BSYS _ T O _ DA T A S UBSVS T E H C6NNE C~ ED INPUVU W TE RFA C E,

INPUT ..~.INT ERFA CE PASSES MESSAGE,
ME SS/GE MADE BY FILE ,
MESSAGE MADE BY DAT A,
FILE CONTAINS DATA ,
DATA INCLUDES DATA .

0
0

MIE R ET ...AS SOC IAT ES EN T ITY TYPE AS SOCIA TES FILE,
L NT ITV ...TY P E A S S C C T A T E S  DA TA ,
FILE C O N T A I~ S D A T A ,
DATA INCLUD ES DATA ,

/ /  SiOP
/ /  S TA RT A C N M : L IS T S ET
SET STD _DA T A = FOUP4D,REcORILFOUND ,CLOCK :TIME .

•
•
•

SEy OF ...E N T T T Y _R ELAT E D _D A T A  ~ AL L BY HIER ECLAS S ’.
SET nF _MESSA GLDATA = ALt.. W ITH FlIER MSG ,
SET OF...FILE _NAM E S FILE ,
SET OF _DAT A _C0~ TAI P4ED ...P4_FTLES = A LL t 3Y FlI ER FILES,
SE:, OF_FULLY _c S_ RE FER EN CE D _ REOU IREM ENTS _ IN FOR MA T ION ALL,
SET DAT A ~!TH_ENU~ SPECIFIED _DATA WITH TYPE ENUMERATIONS

0
0
0

// SyO P
// S TA RT A C NM : E R RO RS
APPE ND ALL ~0NE ,
LIST OF _ D A T A _ W I T H .~W O _ SOU RC E~~ R_ S IWK .
LIST OF _DA T A _W ITH _SOURCE _ t3t J ’L.NO _SINK.

•
S
S

L IST ~~_EM pT Y _ N ET W O R K S ,
LIST OF _U~IJSED _ NF :TwOR K .~.ELEMENTS ,APPE ND A LL A LL ,
II Sy O P
//  Fü ,1

Figure 9-1 REVS TI-ASC Job Deck - Sample 1

9-10
Rev ision A

L ~~~~~~~~~ - - -



-~ ~~~~~~~~~~~~~~~~ ‘~~~~~~~r~~~~~ -~~~~~~~~~~~~~~’ 
- 

‘~~‘ ‘ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~ - ‘ ‘

- - 2

II JOB JOBNAME ,JOBNO ,USERNAME
II LIMIT BAND 200 ,M IN=2 0
// MAC ASG MACROS, (JSERCAT /TRW /~ EVS /MACR 0S
II REVSPREP ASSMVERS= .2
II RE V SXOT ADDME M~~ 8K ,CPTIME 12OO ,HEAPSIZE 20000 ,SIMGEN=YES
SI MG EN
S IM U LA T IO~1 TYPE BETA ,
INcLuDE ALL R_NE:rS.
SIMU LATOR IDENT IS TRA CK _LOOP .
SI M XQ T .
START=0,O , -

END:5,O.
RUN ID IS EXAMP LE _ FeR _ USE RS _MA N UA L.
SToP .

— // SIHRUN OUTBAN D 8/24/3
II T~ ST RU’I
/ /  STA RT A~ NM SDF
(*SETS CoN STAN T DEC L.ARA T IO NS * )

SSCC !N :ICC _ IN
SSRDRIN ‘RAD AR _!N
SSRCLKIN :’RA DAR CLOCK IN
S

~*SETS Ty PE: DECLARAT IONS .)
S ST R I NG : PACKED ARRA Y (1..28) OF CHAR ;

S
(*SETS VA RIAB LE DECLA RA TIONS *)
SSFOUND $ BOO LEA N ;
SSNUMR REA L ;
SSEED RE A L;
8SI3COU’4T s INTEGER

sST3C~ TR $ INT EG ER ;
SSOUTPUT I TEXT;

$
(*S E:TS PR O CE D UR ES * )

PROCED URE s S EX OG;
BEG IN C* NULL EXOGE NO US EvENT PROCEDU RE *)
END ;
PROC EDU RE s SSTARTUP ;

S
S

ENO
S
/1 STOP
// EOJ

Figure 9-2 REVS TI-ASC Job Deck - Sampl e 2

9—U Revision A 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — - -~~~~~~~~~~~~ - - ---- ~~~ -- - - ~~ — — -~~- ---


9.2 CDC 7600 JOB CONTROL

REVS is invoked as a series of programs on the CDC 7600 through the
use of the job control statements of the operating system. The followi ng
programs emulating the JSL macros defined for REVS on the TI-ASC have been
defined:

• REVSPRE to in itialize all files

• REVSXQT to execute REVS

• SIMRU N to execute a REV S generated simulator

• TESTRUN to execute a REVS generated post processor

• SIMSAV E to save a REVS generated simulator and post
processor

• SIMLOAD to reload a REVS generated simulator and post
processor.

Using these programs, the normal job setup can be very simple, requir ing a
job card to identify the job and acqu ire necessary resources, ATTACH and
LIBRARY cards to obtai n the l ibrary of REVS programs, a REVSPRE card, an
EXIT(U) card , and a REVSXQT card followed by a end-of-section (7/8/9) card
and REVS RCL and RSL . The last card of the job deck is an end-of-Information
(6/7/8/9) card .

A job setup may Include add itional job control statements, as necessary,
to acquire and save ASSM files and to provide aux i l iary input files , such as
fi les referenced with ~~~

- ADDFILE statement within REVS. The job setup may
also include SIMRUN and TESTRUN cards if , respectively, a simula tor or
simulation post processor are to be executed . A SIMSAV E card may be Included
to prepare simulation related files for storage on tape or disk. These files
may then be made available in a subsequent job by a SIMLOAD card .

The REVS programs are described in the following subsections. The
requ ired ATTACH and LIBRARY cards are as fol l ows:

ATTACH,REVSL IB ,TRWREVS7600SYSTEM , ID=PTLREVS.
LIBRARY ,REVSLIB .

~ d1’- ioral job control statements are doc umented In the CDC SCOPE 2.1 reference
~~~~~~~~~ f~ 1 . Sample REV S job decks are Illustrated In Section 9.2.7.

9-13
Revi sion A

I~&~~~ IiG~ PA~~ JID? 7n~~ Jj

— - - -— 
— — —— — —  

-



9.2.1 REVSPR E Program

The REVSPRE program provides for the acquisition of necessary files
and enviromental conditioning for use of REV S on the CDC 7600. ThIs
includes the acquisition of an ASSM containing the predefined element types,
attributes, relationships , and el ements described in Section 3. This ASSM
may be replaced by an exi sting ASSM saved as a catal ogued fi le by plac ing
the following two control cards after the REVSPRE card :

RETURN ,TAPE2.
GETPF ,TAPE2,PERMFILENAME , ID=YOURID .

If the ASSM is on tape rather than on a catalogued file then the GETPF should
be replaced by an appropriate STAGE or REQUEST card as described i n [4],
specifying TAPE2 as the local file name .

The REVSPRE must be used once and only once per job and must precede
cal l s to any other REVS programs. Any number of REVS executions can be
specified followi ng the REVSPRE card . Normall y, only one execution Is
required ; with few exceptions (see SectIon 7.0), any number of REVS functions
can be executed in any order within one step. The job control statement
required to i nvoke the REVSPRE program is simpl y the word REVSPRE followed by
a period ; there are no parameters defined .

9.2 .2 REVSX QT Program 
-

The REVSX QT program invokes execution of REVS and control s the acquisi-
tion and disposa l of files needed during the REVS step . To insure complete
processing by REVS , an EXIT(U) should always Immediatel y precede a REVSXQT card.
REVSXQT provides six positional parameters representing file names as follows :

REVSXQT(FILEO1 ,F I LE O2 ,FILEO3 ,FILEO4,FILEO5 ,FILEO6)

The parameters and their defaul t values are:

File Default Interpretation
FILEO1 INPUT Standard REVS input file (REVS.IN)
F1LEO2 OUTPUT Standard REVS log file (REVS.LOG )
FILEO3 OUTPUT Standard REVS output file (REVS.OUT)
FILEO4 OUTPUT OBCS TAPE6 error file (DBCS.ERR )
FILEO5 OUTPUT SIMGEN debug output file (REV~.DMP)
FILEO6 PUNCH Standard REVS punch file (REVS.PUN)

9-14
Revision A



-~—------ — - - ~~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---—- —----- ‘ - ----- - -- ~-—-
.— - ~,_,- ——---—--— - 

- __

r - --a.- 
- 

-‘

All files with the default name of OUTPUT wi ll beautomatical ly printed by
REV S unl ess the file names are overridden on theREVSXQT card . The standard REVS
punch filewill also be automatically punched . If any of these file names are over-

ridden on the REVSX QT ca11,the userassumes responsibility for their properd isposition.

The REVSX QT program provides for the automatic compilation of a simula-
tor and post processor if the SIMGEN function is i nvoked. No special user
action is required to accomplish this. REVSXQT also provides for the
automatic post-staging of any plot tape If pl otting was requested through
RNETGEN or RADX . The loca l file name for the plot tape is TAPE 4 and a
tape label must be submitted by the user.

9.2.3 SIMRUN Program

The SIMRUN program executes a simula tor generated by the SIMGEN
function of REVS . The simulator may have been generated in a previous
REVSXQT step, or loaded from a tape or disk file by the SIMLOAD program
(see Section 9.2.6), either of which will supply the associated files
needed. Execution of the SIMX QT function in a previous REVSXQT step Is
required to supply necessary simulator input. The SIMRUN program is
invoked by a control card specifying the word SIMRUN followed by a period;
there are no parameters defi ned. Al so, to insure compl ete processing by
REVS, an EXIT(U) should always immediately precede a SIMRUN card .

9.2.4 TESTRUN Program

The TESTRUN program executes a simula tion post processor generated
by the SIMGEN function of REVS. The post processor may have been generated
In a previous REVSXQT step, or loaded from a tape or disk f ile by the
SIMLOAD program (see Section 9.2.6). The recording data base used by the
post processor is generated by execution of a gamma simulator , and Is
saved along wi th a simulator by the SIMSAVE program (see Section 9.2.5).
(A nul l data base is generated if the simulator is saved prior to execution
in a SIMRUN step.) Execution of the SIMDA function In a previous REVSXQT
step is required to supply necessary post processor control input. The -

TESTRUN program is Invoked by a control card specifying the word TESTRUN
fo llowed by a period; there are no parameters defined .

9.2.5 SIMSAVE Program

The SIMSAVE program consolidates all files necessary to execute a

simulator and post processor generated by the SIMGEN function of REVS.

9-15
Revision A

.- --  ~~~~~~ - -~~~~- -~~~~~~~~~ — - -- -~~~~~ —- -~~~~~---— -- - - - ~~~~- - -~~~~~~~~~~ - -~~~~~~~~~~ -- -



- ~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ T”~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

These files are combined on a local file named SIMFILE. This file can then
be saved on disk or tape by using the appropriate CATALOG, REQUEST,
or STAGE cards as described in [4]. The files combined on SIMFILE Include
the load modules for the simulator and post processor programs as wel l as
the other files necessary for their execution. The recording data base
generated by execution of a gamma simulator is included (a null data base
is generated if the simulator is saved prior to execution in a SIMRUN step).
The SIMSAVE program Is Invoked by a control card specifying the word SIMSAVE
foll owed by a period ; no optional parameters are defined .

9.2.6 SIMLOAD Program

The SIMLOAD program reconstructs REVS simulator and post processor
files previously saved by the SIMSAVE program. The SIMLOAD program assumes
that these files are available on a loca l file named SIMFILE; the user is
responsibl e for supplying the necessary ATTACH, REQUEST, or STAGE card as
described in [4] to obtain this local file. After the SIMLOAD program runs,
the loaded simulator and post processor may be executed by the SIMRUN and
TESTRUN programs after the required SIMXQT and SIMDA inputs are supplied in
a REVSXQT step.

9.2.7 Sample REVS CDC 7600 Job Decks

This section illustrates a number of sampl e deck setups to execute
REVS on the COC 7600. Some familiarity wi th the CDC SCOPE operating system
job control statements as defined in [4] is assumed .

9.2.7.1 Nominal Execution

The dec k setup below illustrates a minimal job starting wi th the
predefined ASSM and saving no resultant ASSM .

JO~N fl ,STM IL ,T77. YOUR NA M F
A T TA ~ H,~ EV5 LTR ,T~ W~~ V S76 00SY STEr4.ID=PTLR EVS.
LI P~~A R Y ,R EvSL I~4.
I~EVSPI~E.
E X I T. U.
RFV ~ x~ T .

7/~ /9 CA~W
I~FV S INPU T CA PDS

6/ 7 /8/ 4 CA~ I)

9-1 6
Revisio n A

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —“ - - --



9.2.7.2 BuIlding an Initial Data Base

The deck setup below illustrates a job which constructs and saves an
ASSM on a catalogued file. To save the same ASSM on tape, the REQUEST card
would be replaced by the appropriate tape REQUEST or STAGE card and the
CATALOG card removed.

JORNO ,STMF Z ,177 , YOUR NAM E
A T TA CH , R EV S L I~ ,T RWRE V S 76 O OS y SJ EM , ID PTL pEVS .
LI ARY .R&~/SLIB.RFQUFsT ,TAPE2 ,*PF .
RE VSPRE
EXIT,U .
REVS xl) T.
CATALOG ,TAPE 2,YOJRNAM EFORDA 1A I3~SE,ID=yOuRI).7/~/9 CARDREVS IN PUT CA RDS

6/7/8/9 CARD

9.2.7.3 Updating a Data Base

The two dec k setups below illustra te jobs which update an existing
data residing on a catalogued file. The first deck setup does not save the
resul tant data base; the second deck setup does save the updated data base.
The REQUEST , GETPF , and CATALOG cards should be replaced by the appropriate
REQUEST or STAGE cards as described in [4] If the data base is maintained
on tape ~ather than on a disk file.

JOR NO ,STM FZ ,T7 7 . YOU R NAME
A TT A C H ,R EVSLIR ,T~ WR EVS 760 OSYSTE M , ID PTL REVS .
L IMRA RY ,PEV SL IB.
RE V S DRE
RETURN . IAPE2 .
GE T PF .TA PE 2 ,YO URN AMF FORDATA 8ASE , ID=YOUR ID.
EX IT .U.
REVSYQT .

7/~ /9 CA RD
R EV S INPUT CARDS

6/7/ ~~/9 CARD

~J(~~~f l ,ST M F i .T7 7 .  YOUR NA M 1~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~LI ARY. ~~ vSL TL
PFVSPP~~.
R~~ T l I I ~ N , T 1 t P E ? .

~~~~~~~~~~~~~~~~~~
GE TP~~, T A , f M l~fflA T A -i A~~~ , IU YOUM ID.
E X T  I ,t I.
RFV SXQ T .
C A T A t 0 G , T A P .Yo p L

~N A~
.E F O . m A lA r s A ’ ,r, ID=yOuPI) .

7 /1 4/ 9  (~. AR ~)

~ vc I~ P’ir ~~ic6/ 7/ h / Q  CA~-~1)
9—17 Rev isIon A

-- --- --- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



r-

-

~~~~~~~

-

~~

~~~~ 
— -

9.2.7.4 Executi ng and Saving a Simulator/Post Processor

The deck setup below constructs, executes, and saves a simula tor and
post processor. The files catalogued on the dIsk file wil l include the
recording data base generated by the execution of the simulator since the
SIMRUN precedes the SIMSAVE. To save the simulator files on tape rather
than on a catalogued file , the RE QUEST card should be repl aced by an

appropriate tape REQUEST or STAGE card as described in [4], and the CATALOG
card removed .

JflkN r~,ST MF7 ,T~~7, YOUR NA’4€.
— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1I~~~~-~Y. ’~,L1-l .RE V S~ P~~. -

-

REt Ul~N, tA P - ? .
r,~ r~-~ , ~-, y (p L ~~~~~A~~~- F f l M)1 . TA iA :‘f- • I J) Y)URJ !) .

IrXT T. 19 .

EX1T ,U .
STM~ IIl ’J.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I ‘ S I ~ U

7 /- 4 /9  CA ’- ~
~~vc i~’p~’r  (: :~~~

-
~~L)~~

5/7/j/ ) CA -ffl

9.2.7.5 Loading and Executing a Simulator

The deck setup below illustrates a job which load s a prev iously saved
simulator and executes it. If the simulator had been saved on tape rather
than on a catalogued file , then the ATTACH card would be repl aced by the
appropriate REQUEST or STAGE card as described in [4].

J( rIn ,514F / ,117. YOUR N A ’4~

~/SL • S1~~W . J l)~ PTL~ P\IS .

~~~~~~~~~~~~~ (~1.

A T I A r H , S TM ~ I I ~.Y l r~t’-~i~ A r r U P S 1 M s .J L A T O ~-4 I- 1Lt ~. . i)~~Y~)U~~Ifl .
‘STMLrIA ’.
* It. U.
~FvSvu r .IT
S N W s I N .

7 /- . /~ ’I C A ~~ i)

(‘~~‘~S I ‘WIlT (? ‘I)5
7 ~~~~~~~ CA .~U

9-18
Revision A

- - A

- .~ ~~~~~~~ ~~~~
C_

~
,,_’ ._ _

~~~
- .~~~-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- —-“

~~~~
,
~~

- — — 
~~~~~~~~~~~~~~~~~~~ ~~~

p z~~
- — — - -

~~

— -

~~~~

-- —- — -j

10.0 INSTALLATION DEPENDENCIES

‘ -p

Thi s section describes those portions of REVS, exclusive of the job con-
trol streams described in Section 9, which are Insta llation dependent. The

dependencies for each installation of REVS are discussed in separate sub-

sections.

10-1
Revision A

- 
- -



F ‘

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~

10.1 TI-ASC DEPENDENCIES -

Thi s section describes the REV S dependencies as they apply to the
installations of REVS on the TI-ASC , both at the Naval Research Laboratory
(NRL) in Washing ton , D.C., and at the Ballistic Missile Defense Advanced
Technology Center (BMDATC) Advanced Research Center (ARC) in Huntsville ,
Alabama .

10.1.1 Character Set

The ASC installat ion of REVS uses the standard EBCDIC character set.
All characters will print as shown in this document.

10.1 .2 CALCOMP Plotting Symbol s

The symbol s plotted by the ASC installations of REVS agree with those
shown in Figure 5-2.

10.1.3 OperatIng Modes -

The on— line operating mode I s available in the ARC ASC installa t ion

but not in the NRL ASC installation . There is no restriction on the number
of times a user may use the on-line mode in the ARC ASC installation.

10.1.4 TI-PDL 2 Compi ler

Simulators and post processors generated by ASC installations of REV S
are compiled using the TI-PDL 2 compIler described in Volume 1 of [1). No
restrictions exist beyond those defined in that volume.

10.1.5 Linkage Editor

The standard ASC linkage editor [5] Is used to link-edit the simulators
and post processors generated by ASC installations of REVS. To Insure proper

l ink-editlng,elements of the fol lowing element types, when used In simul ating
requirements , must be un ique in the first eight characters: ALPHA ,
PERFORMANCE REQUIREMENT , R NET, SUBNET, SUBSYSTEM, VALIDATION_POINT.

-

~~~~~~~ PAZ ~D’2 1T1~~~~~ 
- -

10-3
Revision A

- -----



10.2 CDC 7600 DEPENDENCIES

This section describes the REVS dependencies as they apply to the
REV S installation on the CDC 7600 at the Ballistic Missile Defense Advanced
Technology Center (BMDATC) Advanc ed Research Center (ARC) in Huntsville ,
Alabama .

10.2.1 Character Set

The ARC CDC 7600 installat ion of REVS uses the standard BCD character
set. All characters will print as shown in this document with the followi ng
exceptions:

CDC ASCII Hollerith ASCII
Character Graphic Graphic Punch (026 ) Punch (029)

doubl e quote 8-4 8-7
underscore 4- 

_ 0-8-5 0-8-5
vertical bar ] ] 0-8-2 11-8-2
up-arrow + 11-8-5 8-5

10.2.2 CALCOMP Pl otting Symbol s

The symbol s plotted by the ARC CDC 7600 installation of REVS agree

with those shown in Figure 5—2.

10.2.3 Operating Modes

The ARC CDC 7600 installatIon of REVS allows the use of the on— line
operating mode with the restriction that the user may use the on-line mode

only once in any REVSX QT step.

10.2.4 TRW PASCAL Compiler

SImulators and post processors generated by the ARC CDC 7600 installa-
tion of REV S are compiled using a TRW PASCAL compiler which impl ements the
PASCAL language as defined in [2). Limitations of this compiler require that
el ements of the followi ng element types , when used in simulating requirements ,

must be unique -In the number of characters specified :

uni que in 7 characters unique in 10 characters
FILE DATA (TYPE not ENUMERATION)
ENTITY TYPE ENTITY CLASS
DATA (~ith type ENUMERATION) MESSAGE

INPUT INTERFACE
- OUTPUT INTERFACE

values ln a RANGE attribute

10-5 RevIsion A

- 
- -



_ _ _ _  
_ _

—~~~~~~~ ~~~ . -.,.-.

Al so , the Boolea n operators EQU and XOR defined in the syntax for RSL
are not recognized by this PASCAL compiler and should not be used in the ARC

CDC 7600 installation .

10.2.5 SCOPE Loader

The standard CDC SCOPE loader [6) is used to link-edit the simulators

and post processors generated by the ARC CDC 7600 installation of REVS. To

Insure proper link-editin g, elements of the followi ng element types, when
used In simulating requirements , must be unique In the first seven characters:
AL PHA, PERFORMANC E_REQUIREMENT , R_NET , SUBNET , SUBSYSTEM, VALIDATION _POINT.

10-6
Revi sion A

---- - -
~~
--—-- -— - - .~------ - — ~~~ - -_~~

-----I._
~_~ — - - -~~~ --- - - P-----



— . % , —— . - -,—  —

:4.L ...~~~~ - /  
-

APPEND IX A

EXTENDED BNF NOTATION

Throughout this documen t, the syntax of the Requ i rements Statement
Language (RSL) and the REVS Control Language (RCL ) has been defined i n a
notation which is called extended BNF (Backus-Naur Form). This notation
is a loosely formal grammatical representation of the syntax.

A gramar is composed (at least in part) of rules , or productions.
Each production specifies a textual replacement; by starting with the
chosen initial symbol , and substituting as necessary using the produc—
tions , all legitimate forms (commands) of the language may be developed .

Three general classes of symbol s appear in productions , namel y
termi na l symbols , non-termina l symbols , and meta—linguistic symbols.

• Terminal symbols are those characters and character strings
which will actually appear in a language statement. Examples
of terminal symbol s for RSL include words such as “STRUCTURE” ,
“TERMINATE” , any of the el ement names , and charac ters suc h as
“
.
“ and “(“ . Any symbol which is not a non-termina l or meta-

linguistic symbol is by default a terminal symbol . The
terminal symbol s may be grouped into two classes. 

-

- Individual symbol s, such as punctuation marks (e.g.,
“ ( “ )  and keywords (e.g., “TERMINATE ”), are those symbol s
which represent themselves. That is , they appear in the
BNF exactly as they will appear in RSL or RCL . Individual
symbols which are words will be written In all capitals.

- Class Symbol s, such as “name ” and “comment” , are those
symbol s which denote a whole group of terminals with a
formation rule to define the constitution of the class.
Any member of the class may appear In the language state-
ment or command. Class symbols will be written in lower
case letters. Optional prefixes giving semantic i nfor-
mation may be used with class symbols. An example of this
is “el ement-name” which means that any “name ” designating
an “el ement” may be use d .

• Non-terminal symbols name other productions in the language
and w il l alwa ys be wr itten enclose d in corner brackets . For
example <set definition> is a non-terminal symbol In the RADX
RCL syntax . Examples of non-terminals from RSL include <new
element definition> and <relation declaration> .

‘U

0

A- I

III - ~~~~- - - -  ~~~~-- - - --- - -—  --~~~~--~~- —---~~~~~~~- - ---



_ _ _ _ _ _

• Meta-l inguistic symbol s are those characters used to write
productions. The character “ < “ and “ > “ are such characters ,
and are used to denote non-terminal symbols. The meta-
linguistic symbol s in addition to corner brackets (“ c ’ and
“ > “) used in this document are interpreted as follows :

- Braces ( “ { “  and “}“) are used to indicate possible
— repetition of the phrase written wi thin the braces. The

subscript following the closing brace gives the minimum
number of repetitions al lowed ; likewi se, the superscript
gives the maximum . Thus

{<node>}”

means that 1 or more (with the upper bound indefinite )
occurrences of <node> may be used at that point.

- Bracke ts (“[“ and “1”) are a shorthand for { ... }~
, m di-

cating that the enclosed phrase may be used once or
omitted . For exampl e,

[MODIFY] element-type-name el ement-name .

means that the terminal MODIFY may be omitted .

- More than one phrase w ithi n bracke ts or braces (on dif-
ferent lines), denote that exactly one of the phrases Is
to be chosen on each repetition . The choice is completely
independent from one repetition to the next; thus ,

a{~}

2
d

generates the fol lowi ng phrases:

a bd
acd
a bbd
a bcd
ac bd
accd

- The symbol “ : := “ is used to denote the definition of a
non-terminal . All productions are of the form

<non-termlnal> ::= phrase

where <non-terminal> Is thereby defined to be “phrase ” .

- The symbol “i” is used to designate alternatives. If
<a or b’ is to be defined to be A or B, the production
to express this would be

<a or b>:: A IS

A-2

~ 

- — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -



IT~~~7~ ~~

APPENDIX B

GENERAL SYNTAX RULES

The RSL and RCL grammars have , as their terminal symbols , words ,
punctuation marks , numbers , text strings , and coments. Eac h of these
termi nals  Is discussed in the following paragraphs.

Word s

The word is a class symbol which corresponds to the intuitive defini-
tion of a word in English. It is a string of characters starting wi th a
letter or underscore (exce pt w ith RNETGEN whi c h allows onl y a le tter as the
first character), and continuing with l etters, digits -or underscores ( 

— 
).

Thi s de f in i t ion  is shown below in the form of a syntax diagram .

— (~~ letter ~~~~~~uii

___________ ietter

‘
~~ 

dig -It 
~I)-iiiu

The word Is term inated by one or mor e bl an ks or punc tua ti on marks (see

F bel ow). Note that the end of a card or line is defined to be an extra
character which Is read as a bl ank; therefore , no word may be split over
a card boundary . No maximum length for a word is specified In the
language definition (BNF or syntax diagram forms), however words are re-

stricted to a maximum length of 60 characters.

Words are divided i nto three subclasses: reserved words , optional
words , and names.

Reserved Word s - Words which appear as keywords in the BNF and
syntax diagram definitions of RSL and RCL are reserved -for the use desig-

nated in the defin iti ons . The REVS user may not redef ine these words
for his own use. In addition , the user should not use PASCAL keywords
except in BETA s , GAMMAs , and TESTs.

B-l

~ 

-~~~~~~~ -



- - -- - ~~~~~~~~~~~~~~~~~~~~~~~ 
- - - - -

_________ - - - - -
~~~- ~~~~ —----——----- - -- -- I

Listed below are the RSL , RCL and PASCAL reserved words.

Executive RCL Keywords

(Sinc e the Executive scans REVS input for Executive Control Statements,
caution should be used in forming Function Control Statements so as not
to use these keywords to inadvertentl y form Executive RCL at the beginning
of a l ine image.)

ADDF ILE LOG RSLXTND
ALL NEWPAGE SIMDA
BOTH OFFLINE SIMGEN
EXECRCL ONL INE SIMXQT
FEND ONLY STEP
FUNCTION OUTPUT STOP
GO RADX TESTER
IMPL IED RNETGEN TRANSPARENT
JOB RSL

RSL and RSL Extension Keywords

ADD ERROR RECORD
ALL EXCEPT RELATIONSHIP
AND EXTE N SION PERMISSION RELATION
APPLICABILITY FALSE —

PrMOVE
APPLICABLE FOR RENAM E
AS IDENTIFICATION RESC IND
ATTR IBUTE IF RETURN
COMPLEMENTARY INSERT RETYPE
CONSIDER LEVEL SELECT
CONTROL PERMISSION MOD IFY STRUCTURE
DEFINE — MOD SUBJECT
DELETE NET SUCH
DIV NOT TERMINATE
DO OBJ ECT THAT
EACH OR TRUE
ELEMENT TYPE OTHERWISE VALUE
END — PATH XOR
EQU PERMISSION

- - ~~~~~~~~ _ _ ~~~~~~~_~~~~~~~~~~i~

*046 572 TRW DEENSE MC SPACE SYSTEMS GROUP HUNTSVILLE F/s 9/2
MAP WAI. • SPEP

rnS
~~~~~

S F I

~~

L R E V I I !

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

F i

I
_ _ _ _ _ _ _ _ _ _ _ _

Ii

I 0 ~IID2_~ 2

~~ ~~ DV 2.2

I .1 ~
• ~~
• 1.25 ((ff(i•4 llQI~

MIrf ~c~ (‘ I ~ ~~ t l I I (~N TES 1 CH(~~
. 1 $

F- -~~~~~~
_ _ _ _

RADX RCL Keywords

ALL HIERARCHY REFERS
ANALYZE IMPLIED RELATION
AND IN RELATIONSHIP
ANY IS RSL
APPEND LIST SEQUENCE
ATTRIBUTE MAP SET
BETA M INUS STRUCTURE
BY MULTUPLE SUCH
COMPLEMENTARY NO SUMMARY
DATA FLOW NONE THAT
ELEMrNT TYPE NOT USING
FROM —

OR WHERE
GAMMA PLOT WHICH
GROUP PRIMARY WIDTH
HEIGHT PUNCH WITH
HIER REFERRED WITHOUT

SIMGEN Keywords

ALL IDENT R NETS
BETA IDENTIFICATION STMULATION
EXCLUDE INCLUDE SIMULATOR
GAMMA IS TYPE
ID R_NET

BETA/GAMMA FILE Access

CREATE FIRST RECORD
DESTROY FOR SELECT
DO FROM SUCH
EACH NEXT THAT
END FOR EAC H

TEST Recordi ng Access

DO FOR RECORD ING
EACH FROM RETRIEVE
ENDFOREACH NEXT SUCH
FIRST RECORD THAT

B-3

-‘ - - ?r --n- -~ ~~~~~~ -r
- .~~- . -

L PASCAL

AND FUNCTION PROGRAM
ARRAY GO TO RECORD
BEGIN IF REPEAT
CASE IN SET
CONST LABEL THEN
DIV MOD TO
DO NIL TYPE
DOWN TO - NOT UNTIL
ELSE OF VAR
END OR WHILE
FILE PACKED WITH• FOR PROCEDURE

PDL 2 Extensions to PASCAL

ACCESS COMMON MACRO
ALIGNED ESCAPE XOR
BY EQU

• SIMXQT RCL Keywords

END IS SIMULATOR
ID RUN START
IDENT SIMULATION TIME
IDENTIFICATION

SIMDA RCL Keywords

ALL PERFORMANCE REQUIREMENT TEST
EXCEPT PERFORMA NC E1~EQUIREMENTS

Optional Words - Optiona l words are defined in RSL as part of a
relation definition (see Section 8.0, Extend ing the Language (RSLXTND
Function)). Once defined , an optional word may be used anywhere in the
RSL input stream and is essentially ignored by the RSL translation func-
tion . (Note: Optional words appearing in conditionals , coments, and
text strings will be stored in the ASSM . Optional words should not be
used in conditions or text strings containing PASCAL code; they will
resul t in simulator post/processor compilation errors.) Optional words
can appear only in inpu t to the translator; they cannot appear in RCL .

If a relation definition is deleted from the language, the optional
word Is del eted. However , an optional word may be associated with more
than one relation and , thus , as long as one relati on associating the
optiona l word remains defined , the optional word may be used . Examples

B-4

• -
~~~~

•-
~~~~~

-- -
~

- — -~~i~:i~~::

of possibl e optional words are: BY, FROM , IN, OF, TO, WITH. All optional
words currently defined appear in - the RSL concept definitions appearing In
Appendix D, SectIon 3.

Names - All other words appearing in the definition of RSL and RCL
are interpreted as names which take on user specifiabl e semantic interpre-
tation. Throughout the BNF and syntax diagrams appearing in the appendices ,
prefixes are added to a terminal symbol name to indicate the semantic
Interpretation which is Impl ied by using a name in the indicated positton .

Punctuation Marks

Punctuation marks are individual symbols which correspond roughly to
Engl ish punctuations . There are two classes of punctuation marks recognized
by REVS.

The followi ng punctuation marks appear explicitl y in the RSL and RCL
syntax and are therefore reserved for those uses alone: -

() < > < = >= = < > + _ */

The other class of punctuation marks is ignored by REVS and may be
used to improve readability :

, ,

These punctuation marks cannot be used in a conditional .
— Numbers

Number Is a class symbol In RSL and RCL which has the formation rules
for numbers that are found in PASCAL . Specifically, the followi ng rules
apply:

<signed number>::= <sign> <unsigned number>

<sign>::= + I —

<uns igned number>::= <unsigned integer> <unsigned real>

<unsigned integer>::= <digit sequence>

<d igit sequence>: := {d1~it}~
<unsigned real>: := <unsigned Integer> . <digit sequence>

I <unsigned integer> . <d igit sequence> E <scale factor>

I <unsigned integer> E <scale factor>
<scale factor>: := <unsigned integer> <sign> <unsigned integer>

B-5

•— •~~~~~~~~~~~~ - -~~~~ - •~~~~~~~~~~ - -—— —-~~~~~~ - --

-, .-— ~‘-r’~

_~~;. ~ _ I._________ - - - - - -
-
----- ~~~~~~~~~~~~~~~ - - • - -

,— •~~~ ‘,—~— ---- -- •

These syntax rules are summarized in the following diagrams.

unsigned number

~~~ 
1
~C) t!E~)j’ ~~

signed number

-
~~~~~ unsigned number F

Note that if the number contains a decima l point , at least one digit must

precede and succeed the point. Al so , no coma may occur in a number .

Text Str ings

The text string Is a class symbol . It consists of any sequence of

characters surrounded by doubl e quotes (i.e., ...
Coment

Comment is a class symbol which consists of any sequence of charac-

ters beginning with (* and ending with *) (i.e., (* •. .*)). Coments in

RSL may be placed only where specified in the syntax. Comments may be

entered through RNETGEN only where l egal In the corresponding RSL syntax.

Comments may appea r anywhere in a RADX command; and comments are not legal
in any other portion of RCL.

6-6

~~~~~~~~ - -~~~~~ -~~~~-- - -  ~~ --



~~T ~~~~ ~~~~~ : ~~~~~~~~~~~~

APPENDIX C

REVS EXECUTIVE SUMMARY

C.l EXECUTIVE RCL SYNTAX

Table C.i contains a description of the syntax of Executive RCL in
the Backus-Naur Form described in Appendix A. An underline is used in
this syntax description to identify the assumed keyword when an optional
keyword is omitted. For each syntax production or set of productions for
the Executive RCL comands , this tabl e also identifies the number of the
section in this document where the command is described .

Figure C-i shows the syntax of Executive RCL in diagrammatic form .

- t

c-i



— -, “T’W ’ ~~~~~~~• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - •~~~~~ ~~*•
- -
~~~~~~~~~~~~~~~~~~~~~~

.

Tabl e C.l Executive RCL Index

EXECUTIV E RCL SYNTAX SECTION

<REVS Executive comand>::=
<function sel ection> <function end> <transparency declaration>
<input directive> .conllne/offllne directive> clogging directive>
<output directive> I <paging directive> I <stop coninand> 4.0

<function selection>::=
[FUNCTION] <function name> . [remark]

<function name>: :=

RSL RNETGE N I RADX I SIMGEN I SIMXQT SIMDA I RSLXTND I TESTER* 4.1
<function end>::~

FEND. [remark] 4.1
<transparency declaration> : :=

TRANSPARENT string-of- l-to-8 characters. [remark] 4.2.1
<Input direct lve>::=

ADDF1LE [TRANSPARENT] access-name. [remark] 4.2.2
<online/offUne directive>:

IONLINE 1
GO IOFFLINE I [ONLY] . [display—remark ] 4.3

LOPPOSITEJ 
________

dogging dlrective>::~
LOG [~~CRCL] . [remark] 4.4 .1

<output directive>:
IONLINE 1

OUTPUT 
~~~~~~ ~

. [remark] 4.4.2
L IMPLIED J ________

<paging dlrective> ::=
-_______

IOFFLI NE1
NEWPAGE ~~~~~ I. [off l lne-page-titling-remark) 4 .4 •3

[IMPLIED J ________

<stop coninanth::=

~i~’ [~~ p] . [dIsplay-remark] 4.5

*The TESTER function Is reserved for software developner. ~ only.

C -2

~~~-- • -- -~~~~~~ - - -- •
~~



r~ 
~~~~~~~~~~ —-

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

0~~~

~~4$4444 
LU 

ii 
__

* 0 —

1 1 _ I T T I L J

C-3 

-~~•- - -.— - - -‘~~~~ - - ~~~~~~~~~~ - -- ~~~~~~~~~~~ •~~~~~~~~ • _ _ _-_ _  

L~~~~~



~1~~~

_ _  

I

I

(.
~~~~~~~ c

~~~~~~~~~ J 

(.
~~ 



~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

C.2 EXECUTIVE MESSAGES

The messages output by the REVS Executive are Iden tified and described
below. These messages appear both on REVS.LOG and REVS.OUT except as noted .

XX 000 REV S BASELINE VERSION = X ,(DATE = / 1 . TIME = :_:_).

Identifies the version of REVS being executed , showing the base-
l i ne number , and the data and time the baseline was created. It
appears at the beginning of the print file. Executive output
fol lows thi s l ine.

XX 001 FUNCTION functi on-name INITIATED .
Identifies the REVS function being initiated , and indicates a
change of state from executive to function . On REVS.OUT, this
line is padded with asterisks to highlight the state change .
Function output fol l ows this line.

XX 002 FUNCTION function-name COMPLETED .
Identifies the REVS function which is termi nating and indicates
a change of state from function to executive. On REVS.O IJ T, this
line is padded with asterisks to highlight the state cha nge.
Executive output follows thi s line.

XX 003 DATA BASE OPEN FAILURE.
Indicates that the ASSM cannot be opened for use and therefore
causes an immediate REVS termination .

XX 004* FEND VIOLATION , PROGRAM ERROR : ABORT .
Indicates a function attempt to read past the FEND statement.
This should only occur as a result of a system/hardware error.

XX 005* STOP VIOLATION , PROGRAM ERROR : ABORT .
Indicates an executive attempt to read past the STOP statement.
This should only occur as a result of a system/hardware error.

XX 006 NON REVS-EXEC-RCL STATEMENT: IGNORED .
Indicates that non-executive RCL statements (I.e., Function
Control Statements) have been encountered while in the executive
state. This message appears only once per executive state regard-
less of the amount of irrel evant input . This may be a resul t of
the mis placement or omission of Executive RCL statements or can
occur if a function prematurely termi nates before readi ng al l its
input.

XX 007 REVS COMPLETED : NORMAL TERMINATION .
Indicates normal termination of REVS. All output Is compl ete.

*ThIs message appears only on REVS.LOG .

C-5

—---—

~

- - - - - - -

~

• - • - _ -

~

• -

XX 008 REVS COMPLETED : ABNORMAL TERMINATION.
Indicates abnormal termination of REVS. Other messages indi-
cating the source of the error may be found in the ASC Job Activity
File (SYS.JATF) at the front of the run , or in the REVS.OUT listing .
All output should be compl eted .

(HARDWARE/STACK OV ERFLOW~
1

XX 009 PDS 2 RUN-TIME ERROR : ABORT IN PROCESS ~UTILITY/ LIBRARY
~BOUNDS CHECK ~1

Indicates premature termination. The suffix of the message gives
a general classification of the error detected:

• HARDWARE/STACK OVERFLOW means a hardware interrupt or PDS
stack overflow has occurred. The hardware interrupt means
hardware error , program error, or time out and is clarified
on REVS.OUT. Time can be increased on the REVSXQT macro.

• UTILITY LIBRARY means an error was detected by the PDS
utility library, and is clarified on REVS.OUT.

• BOUNDS CHECK means a program error was detected , is clan -
f led on REVS.OUT and probably indicates a hardware error.

XX 010* XXHALT TERMINATION REQUESTED .

Indicates a programmed emergency termination and can only occur
by hardware error .

XX 011 * ADDFILE COMPLETED : RECORDS READ = number .
Indicates compl etion of the reading of an alternate input file.
The number of records read is printed .

XX 012 REVS CHANGING MODE TO ONLINE.
Indicates that the Executive is changing the operating mode to
on-line. Subsequent output is to the on-l i ne consol e unless
specifically routed off-line wi th an OUTPUT statement.

XX 013 REVS CHANGING MODE TO OFFLINE.
Indicates that the Executive is changing the operating mode to
off-line. Output routing is governed by the last OUTPUT statement.

XX 014 PREVIOU S GO ONLY ACTIVATED STOP ON THIS GO STATEMENT .
Indicates a GO statement was encountered following one with the
ONLY option and that it is being Interpreted as a STOP statement.

XX 015 REVSGRAPH RELEASE OMISSION , PROGRAM ERROR : EXEC CORRECTED .
Indicates synchronization error between the Executive and a REVS
function over control of the on-line console. This condition can
only occur as the result of a hardware error.

*Thjs message appears only on REVS .LOG .

C-.6

~

- -


~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~
~~~~ -,—- -~~ --, ~~~~~~~~~~~~~~~~ 

,. ~~~~~
,—~~~~<.‘

•

XX 016 REV S TERM INATING : GO OFFLINE , STOP IMPLIED .
Indicates REVS is terminating while still in the on-line mode.
Previous messages on REVS.OUT explain why . This message appears
on the on-l i ne console only.

XX 017* ONLINE USER HAS REQUESTED INTERRUPT .
Ind icates the on-line user has requested a function Interrupt
with the trackbal l at a page wrap opportunity . Reaction to the
request is function dependent.

XX 018 DEFAULT ONLINE IDENTIFICATION USED : user-name . -
•

Indicates that the user has failed to provide a personal identifi-
cation notice in the comment fiel d of the GO ONLINE statement to
be shown on the introducto ry REVS display on the ANAGRAP H on-line
console. A default identification is thus displ ayed which is the
user name from the job card .

XX 019* ONLINE CONSOLE ACQUIRED SUCCESSFULLY.
Indicates the actual time that REVS achieved the on-line mode.
Comparison with the time of the previous message (XX 012) reveals

• that the del ay is due to non-availability of any graphics corn-
inunication or to consol e contention.

XX 020* user-identification NO’v~ ACTIVE ONLINE.
Identifies the user and time of initial on-line response. Corn-
panison with the time of the previous message (XX 019) reveals
the extent of a REVS idle condition waiting for user activity .

— XX 021* NUMBER OF CARDS PUNCHED BY REVS IS number .
Ind icates the number of card s punched by REVS as a result of
RADX punc h statements. Thi s message occurs onl y if punc hed
output is produced (number of cards > 0).

XX 022* NUMBER OF STRUCTURES PLOTTED = number, MAX X = number, MAXY • number .

Indicates the number of structures plotted by RNETGEN and/or RADX
and the maximum X and V plot size in inches. This is formatted to
ease the task of manually compl eting plot requests at the ARC .
Plotting is automatically compl eted at NRL .

*Thls message appears only on REVS.LOG .

r~~•-’~—’,~ •’- .—v’-w -,•
~---—~~~~~~~ _•.,- -,-— — -_r-.- ~~~~~~~~~~~~

-- — ~~~ - ‘

- - ~~~~~~~~~~~~~~~~~ - -
-

APPEND IX D

RSL SUMMARY

D.l RSL SYNTA X

Table D.l contains a description of the syntax of RSL in the BNF
notation described in Appendix A. This table contains the syntax for only
that part of RSL used for developing requirements; the syntax for extend i ng
the language is documented in Appen lix J. For each syntax production or
set of productions for the RSL commands , this table also identifies the
number of the section in this document where the command is described .

Figure D-l shows the syntax of RSL in diagrammatic form . Since the
forma l syntax for RSL al lows statements which will result in semantic errors , —

some of the semantic rul es have been incorporated in the statement of the
grammar in order to aid the user of RSL .

_ _ _ _ _ -~

~_ _ ,_1•
1

- -

Table D.i RSL Index

* RSL SYNTAX .
SECTION

<RSL comand’::
<new element definition >
(element modification >
<element deletion>
(el ement rename>
<e lerert re tv o e ’ 5.1

<new el ement def in it ion>::~
[DEFINE] element-type-name element-nam e [comment).
{[INSERT) <el ement definition sentence>}~

<element definition sentence’::—
<attribute declaration >

I < -elation declaration >

I <path declaration>
<structure declaratIon’ 5.1.1

<attribute declaration’::=

(value-name ~1
attribute-name ~number ~ [com ment).

ttext—str lng)1 5.1.1.2
<relation declaration ’ ::—

relation-name [relation-optional-word] {[el ement-type-name] element-name
[coment]}~ . 5.1.1.3

<oath dec larat ion ’ : :—
PATH {<elmment node>) END [comment].

5 1 1 5

<structure declaration ’::—
STRUCTURE

fnode’}~
END [comment] .

<node ,::—
<el ement node’
<term inator>

and node>
<or node’

I ‘consider-or node>
(for-each node>

I <select node>
<element node’::—

[element -type-name] element —name [comment]
<term ina tor ’ : :

TERMINATE [comment]
I RETURN [comment)

<and node> ::
DO [comment] <branch> ANDfbranch’}~ END

<branch>::.

<er node’::•
IF (commen t] ‘conditional branch,

~OR ‘conditional branch>j~0
OTHERWISE [< bra nch’] END 5.1.1.4

D -2

_ _

- ——•—-•—_.-.—.-.—- ~~~ —_-_-— -,,~~~~~~~ .~,. - -
~~

- •

- - - •

Table D.1 RSL Index (Continued)

RSL SYNTAX

• - <conditional branch>:: -
[unsigned Integer) <condition> <branch’

<consider-or node>::-

‘consider-data ’
• I <consider-entity-class>

<consider-data,::—

CONSIDER [DATA] enumerated-data -name
IF [comment] <consider-data branch>

~OR <consider-data branch>~1
END

‘cons ider—data branch’::—

(enumeration-value-name {oR enumeration-value _ name) ~
) [<branch>]

<consider-entity-class ’ ::—
• CONSID ER [ENTITY _CLA SS] entity—class-name

IF (comment] <consider—entity branch>

~OR <cons ider—entity branch>j~
END

<consider-entity branch’::—
(entity_type-name {OR entity_type_name)

‘

~
j (<bra nch>)

<for-each node>::

~[FILE] file—name [RECORD]
FOR EACH ~ [ENTITY_TYPE J entity-type-name ~‘ (SUCH THAT ‘condition’]

[ENTITY CLASS] entlty—class—name j 1

DO rc m nt1 ~ [ALPHA) alpha-name [comment] ~ 1 END~ 0 e
~ [SUBNET] subnet-name [comment]

~
<selec t node>::—

~~~~~~~~~~~~~~~~~~~~~~~~~~ } SUCH THAT <condition > (comment]

<condition ’

(cBoolea n expression’)
<Bool ean expresslon>::=

<simple Boo1ean~fB op> <simple sooiean4~

<sim ple ~oo1ea r~.::=

Boolean term >10R <Boolean ternt.~0c Boolea n ternm.::

‘Boolean factor> SAND < Boolean facto r>~0
< Boolea n factor ’ ::—

< Booleart’~ [<rel op> Boolean> ]
I <arithmetic expressiorD <rel op.<ar ithmet ic expresslon~.

<BoolearD ::~
[NOT] Bool ea n primary>

Boolean primary > ::—
• TRUE

I FALSE
I Boolea n-da te-name
I (< Boo’ean express iovb ) 5.1.1.4

D -3

_ _ _ _ _ _ _ _ _



- - - -‘- —--~-~-~—--- -— - 
~~~~~~~~~~ 

—

— -

Table D.l RSL Index (Continued)
f

RSL SYNTAX

<aritPinetic ex pression ’ ::—
(<ad o p) ‘ar1tfr~etic term’ ~cad op> <ar1t~v~et Ic term>)

~<arlttretlc term’::
I ~~fl

<arltfr~et 1c factor> j mul op> ‘arithmetic factor ’ j~
~<ar it~riet1c factor ’ : :—

• unsigned number
arithmetic—data-name
(<arithmetic expression’)

* <B op>::—
E~i t xo;~

<rd op’::

<ad cp’::

+ 1 -
<nul op ::

* DIV t L~~~”) 5.1.1 .~-~~~~~~ —~~~~~~~~~~~- —

<element ro~iiicat icrl>::*
(1-tODIFY) elcc-e r.t -type-ram e el ement-na [cor’~:ent).

(IliS[~T) <element definition sentence’
<attribute declaration removal’
<relationship declaration removal>

‘structure decldratlon removal’

<path declaration removal> 5.1.2

<attribute declaration removal,::

RE~’O.’E at tr ihute-na ’e . 5.1.2.3

‘relationsh ip declarat ion rerova l ’ : :

REI’.OV E re lation-name [relation-optional-word)
{(el ec- iert_ type_ nar.e) element •name }~~. 5.1.2.5

‘struc ture declarat ion rc-ova 1, ::~
RE’-’OV E STR UCT L’ E. 5.1.2.7

.cpath declarat ion rm- c va l > : :—
P F r ~.

-
~ r:i” . 5 .1 .2.9

celecrent de E 1cr ,>: :=

~~~ r 1
~~~ - .~~n . r ’ P  (

~lr~— r~nt - n ’ r e . 5.1.3

• <el ement re~ar-e’::
P - ’~~ ~-lr. (.~~ - r v - r A S n~w.p l pf ’ nt -Tfl ” rrr~ -~ nt l 5.1.4

-_-w---_- - - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-- 
_

clement rc:y~e’::~
RETYPE ml r- rnt -n2~~e AS element -t vp.’-nr0. 5.1.5

—~~~~ J~~~
_

~__

• *See Sec t ion 10 for installation dependent restrictions.

D -4
Revision A 

~~- - -- - -~~~~~~~~~~— •-• -- ~~~~~~~~~~~~~~~ •~~~~~~•--



— — — —.-•- •.—_---- — - --— -~r~~~~-~~~~ ’ ~~~~~~~~~~ --~~~~~--

- - • •
• •

~~~~
- --‘.

~
.———• ———— -- •

•1

4.I I.~~I E
I I~~I —0

E

IL L~~_J
4~~~

j

.~~~ 2
2

-

~~~~~~~~~~~~~~~

-
~~ ‘I~~.J I  —

( . 1  4.

U,

_ ~~

_J
4J C/i

I

l i l t
~~ : 2

~ .~ ~4. 4. 4’ 4’ .!
4.

C 

____ ~~~~~ 
[_ T T J  4

I I
)
2 4’

D-5 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

C

~~I~~ I ~~I~~ I I~~ IR I — I c~~ j ,..
‘ I 4 ’ I ~• — I - . I I~~~~ I ... A

“
~~I 4 ’ I u I . - ! •

U,
C ?

2 1 . 2 1
t • .C

4.

a .4

D-6

- -- •- -- - - - -- - -~~~~~~~~~~ - • - -- - - ~~~~~- - - - - ~~~~~~~~~~~~~~

I

- F

4 — — —- — .-

I
U

• ±__•_
~~ - - - - ~~~~~~~-_- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ - -

_

_ _ _ r~~~ ~~T ~~~~
- -.- --

~~~~~~~

p 
1

- - I I  ~~~~
. I

I I  - I.
~ 

•‘- .~2

[1] 1~

__-

~~

~
G-.

8 £

I

~~~~~~ 

D~8
Revisi On A

4 - --- - -~~~~~~~~~~~~~~~~~~ -- -~~*-~~~- - ——-~~~~~-•-~~~ •-- -- •~~~- ‘ - - -. • -

-- •

~~~~~~~~~~~~~~~~~~~ 
• - ‘ ••

~~~1 ~~~~I ~ l~-~I k~.I
I I. ~ .~ I.’cI I~,.- I

U 4’ ~ I~~~~ I I c . - ~I
• I. O~ .0. u-U o O ’
... ~~

-
~~ ~~

-

~~ ~~

- I — — — — — “~i~’ il -
~~ —r c i . o cC U

~~~~~ 
U O

3 
•U 4’

U,

_ _ _  

I

I L~!i
I~! ~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-

~~

- ••

~~ ~~~~~~~~~~~~~~~~~~ T~~~ i~~~~~~T 7 ~~~~~~~~~ ~~~~~~

4

_ [‘1Iig i 1~ 1
I- C..)

_~j
)

p 1 -[11 [11 [
~

[1] J1I Ei~—tii
:

I

~~~~~~~~~~~

I

~~~~~~~~~~~~ 

_
_

D-lO


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I

4

I 

1~~if i
I —
4’ I

4. 
_ _ _ _ _

)

~~~~

J T T T T ~~

_ _

C

C —
I ~ — I- 4’

4.
C I i.- I C C 0

.2 I~~~ I i~; ~ .~ ~ i~1

I~~~~ I ._ :- •-~
‘.

C

I -~- — —_____ ,
C.

4. 4. —
.2

a

D-11

0.2 RSL CONCEPT CROS~-REFERENC E

• Tabl e D.2 provides a cross-reference between the standard RSL element
types, relat ionsh ip s, attributes , and structures. The element types are
partitioned into segments corresponding to the segments which introduce and
discuss them in Section 3 of this document. For relationships , attributes ,
and structures the defining segment is indicated by an X.

For each element type additional entries In Table D.2 indicate whether
the element type may be the subject (S) or obj ect (0) of each relationship
and also whether the element type is an applicabl e element type for each
attribute (*). If an element type may appear as an element node on an RSL
struc ture , the appropriate table entry contains the entry A.

----- ------

D-13 ______

-
~

_ _

— a -a — — . — — . — a U — a — . • — — — — — . a —.~ .< .
~

.
~ .<

~UYd

3Sfl ..c
SLINfl .4

3dAI *4 4’

1S)J. *4 $
N0Iifl1OS3~1 .4 *

3~JN~i1 * 4 4 ’
— — — —

W31~Odd ~
3fl1VA Wfl~ INIW

—
‘< 4’

— — —

3W TI W flWI N IW *4 4
La -- —. — — - — — - - - —
~ 3A1VA Wfl~.-ilXYfr1 *4 4’ — — - — —
~ 3W11 WflHIXVW .4 a

A1I1Y~O1 .4
—

3fl1VA 1VIIINI -
.c 4’

Vl4WV~ ‘ 4 $

A9Th3)331N3 * 4 4 4 4 ’ 8 4 ’ * 4’ * 4 8 4 4 4 4 4 4 4 ’ 4 . 4 4 ’

NOI1dIl~3S3~ ~~ $ 4’ 4’ 4’ 4’ 4’ 4’ 4’ 4’ 4’ 4’ 4’ 4’ 4’ 4’ $ 4’ 4’ 4’ 4’

SS3N3i31dWOJ 4’ 4’ 4’ 4’ * 4’ 4’ 4’ 4’ 4’ 4’ 4’ 4’ 4’ 4’ 4’ 4. 4’ 4’

vl3a * 4 .

A I11YI D H I I~~ ~
S3MIVN)J311V ‘4

S3)Y~il ‘< a 0 0 a a a a a a a a a a a a a a

_ _ _ _ _ _ -
C, SQ’dO~3~

—

‘(0 0
—

S3SSVd Cc

SIfldlflO
—

U, * 4 0 0
C, — -

4-) S~3O)AO ‘ (U i 0
__________ — - - — — -

*4
-

Ui 0
—

U SifldN I a’ a

0 S31V~Od~O~NI .<~~~~~a’ _ _ _ _ _ _ _ ~~~~~~~~~~~~~~~~ _

S3Ur11JNI ‘4_______ — ~~~~~- - — - - — ~~~~ - - — -
U) S1N3W31&~I ~c a) a’ •1) a a~ U’ U’ U, U, U) U’ U) a’ a’ U’ a’ U) if)

a _ — —_ - _ — •- ,- >_
SW~iOJ 0

-
S31VflO3 ~~~ ‘

~~ ~ : ~ -
S318Y~3 * ‘a ’ 0 U)

S1W3W1~)OO *4 0 0 Vi
-

0 0
-

0
—

0 0 0
-

0 0 0 0 0 0 0 0 Q

SAO ~ 1S3O a, a
~~_ ~ _

SAY13G * 4 0 UI

S3IY3)~D in .c a

SNIV1~OJ *4 0 in

SN1Y~31SNOD Cc UI 0

SID 3NU OJ ,.,
~~ ~~ •~~

S3SO dWO D *4 O U I
0 ~~ —S3IVIDOSSY ‘4 0 U) a, 0 .4

~~~~~
~~ A.o i- La

Lii 
_

Li. ~ -- —
I- La )~~ .<

:‘ a Lii La ~~~

Mi p... 
~~
. a’ •..) ~~ z L.) .. .ç -.I t  .~~ w I ~~~~~~~~~ *-~~~ ~

a, — a — i— ~•, — .— , -~ . .-. -
~ .-, n

~ ~~~
.

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~a ,., .,-, , ~. .~_ Li, ~ii La Si. .—. IZ 0 U) ü-
• •J ,.; I— U S S U U

1. Cc Ii) 0 • ~

D-14



-~~~~~~~~~~~~~

r

0.3 DEFINITIONS OF RSL ELEMENT TYPES , RELAT IONSHIPS, ATTR I BUTES , AND
PREDEFINED ELEMENTS

Ei.E 1ENTITYP E s ALPHA
( 0  A BAS IC PROCES SING STEP IN THE FUNC TIONA L

REQ UIREMEN TS . . ) ,
STRUCTURE AP PL ICAB ILT IV I NET ,

ElEMENT~~TYP E$ DATA
(* A SINGLE PIECE OF INFORMA T ION OR SET OF

INFORMATI ON THAT IS EITHER REQUIRED IN THE
IMPLEMENTED SOFTWARE OR IS NEEDED FOR
D ESC R I PTIVE PURPOSES , *) ,

ELEME NT I~!TYPE $ DECISI O N
C o A CHO ICE OR INTERPRET A TI O N THAT H*S BEEN MAD E

IN ORoER TO ESTABLISH FUNCT IONAL AND/OR
PERFORMAN CE REQUIREMEN TS BASED ON ONE OR MORE
OR !GINA TING~..REQU IREMENy S , THIS ME &NS THAT THE
LOWER LEVEL REQUIREME NTS ARE A RESULT OF
DERIVATION . NOT SIMPLY A LL OCAT ION~ 0) ,

E~EMENT qTYPEI ENTIT Y 2CLASS
(o A GENERAL CA TEGORY OF OBJECTS OUTSIDE THE DA TA

PROCESSING SUBSYSTEM , THE OBJECTs MA Y BE REAL
OR PERCEIVED AND ARE THOSE IN THE ENVIRONM ENT
ABOUT WHICH THE DATA PROCESSING SUBSYSTEM MUST
MA IN TAIN IN FOR MAT IO N , FOR EXAMPL E , AN
EN TITY _CLASS MIGHT BE TARG ET OR INTERCEPTOR ,
WHEN THE EX ISTENCE OF AN OBJECT 1w AN
ENTITY :cLA s s is DETER MINE D. FILES AND DATA MAY
BE TEMP O RAR I LY CREATED T O MA I NTAIN INFORM ATIO N
ABOU T IT , .).

ELEMEN1~ 1YPE$ ENT ITYJTYPE
(0 A SUBSET WIT HIN A GENERA L CLASS (ENTITY _CLASS)

OF OB JEC T S OU TSIDE THE DAT A PROCE SS ING
SUBSYSTEM ABOUT WHICH THE DA TA PR~cESSOR MUST
MA INTA IN IN~ ORMAT 1ON , FOR EXAMP LE ,
ENTITY..:.TYPES W ITHIN THE ENTIT Y _CLASS TARGET
MIGHT BE DETECTI ON , POTENTIALLY , NON.
THREATENING, THREATE NING , ETC, WHEN A
PART ICULAR OBJECT IN AN ENTITY_CLASS IS
DETERMINED TO BE OF A SPECI FIC TYPE, THE
OBJECy CAN BE SET TO THE TY PE AND DATA AN D
FILES PERT INEN T TO OBJECTS OF THA y TYPE
TEMPORARILY CREATED 10 MAINTAI N INFORMAT ION
ABOUT THE OBJECT . e) ,

0-15 

- ,•.~~~~~-~~~~~~~~~ ••~~~-~~~~~ - - - - -~~~~~



ELEMENT~ TYPE S EVENT
(* AN IDENTIFIED POINT IN THE SEQUENCE OP

PR OCESSING SPECIFIED BY ONE OR MORE R_NETS COR
SUSNETS) WHICH CAUSES THE ENABLEMENT OF AN
R.:NET. A N EVENT MAY BE USED TO SPECIFY A
VALIDATION :PATH. 0) ,

STRUCTURE A PPLICABILITY , NET ,
STRUCTURE A PPL ICABIL ITY , PATH,

ELEMENT~ TYPE$ PILE
(* AN AGGREGA TION OF INSTANCES OF DATA , EACH

INSTANCE OF WH IC H IS TREAT E D IN THE. SAME
MANNER, e),

ELEMENT~ TYPEI INPUT _ INTERFACE
Co A PORT BETWEEN THE DATA PRpCESSING SUBSYSTEM

AND ANOT HER SUBSYSTEM (E ,G,, A RA DA R ) THROUGH
WHICH DATA IS PASSED TO TH~ DATA PROCESSING
SUBSY STE M, AN xNpuT :INTERFAcE APPEARS AS THE
FIRST NODE OF ONE AND ONLY ONE R:NET

• STRUCTURE , *) ,
STRUCTURE A PPLICABILI TY , NET .

ELEM (NT~ TYPEI MESSAGE
(0 AN AGGREGATION OF DATA AND FILES THAT PASS

IHROUQH AN INTERFACE AS A LOG ICAL UNIT , 0 ),

E LE ME NT ~ TYPEI ORIG INATING _REQUIREMENT
(* A HIGHER LEVEL REQU IREMEN y FROM WHICH LOWER

LEVEL REQUIREMENTS (THOSE EXPRESSED IN THE RSL)
ARE T R ACEA BLE , *) ,

ELEMENTrITYPE, OUTPUT XN TE R FA C E
Ca A PORT BETWEEN THE DATA PROCESS INp SUBSYSTEM

AND ANOTHER PART OF THE SY STEM (E.G., A RADAR ),
THROUGH WHICH DATA iS PASSED TO THE OTHER
SUBSYSTEM , A N OUTPUT INTERFACE MAY APPEAR ON
AN R_NET OR SUBNET STRUCTURE A S THE LAST NODE
OF A PATH , e) ,

STRUCTURE APPLICABI LITY , NET .

ELE MENT~ TYPE s PERFORMANCE _RE QUIREMENT
( 0  AN ANALYTIC PERFORMANC E REQUIREMENT OR

NON .8TIMULLJ$SRE5PONSE TIMI NG REQUIREMENT WHICH
IS TO BE MEl’ BY THE DATA PROCESSING
SUBSYSTEM , a),

D-1 6 



-
~~- /

ELEMENT~’ITYPEI R_MET
(a THE ORDER OF LOGICAL PROCESSING THAT MUST BE

PERF ORMED ev THE DATA PROCESSING SUBSYSTEM ZN
RE SPONSE TO EX TERNA L OR INTERNAL sTIMULI, THE
PROCESSING Sl’EpS ARE A LPHAR OR SURNETS WH ICH
MAY ~E EXPANDE D TO LOWER LEVELS OF DETAIL . IN
ADDIT ION TO PROCESSING STEPS , THE R_NET
STRUCTURE M~ Y CONTAIN INTERFACES , EV E NTS ,
VA L IDATION _POINTS , AND S, ORS, SELECTS, AN D FOR
EACH NODES~ IT MUST BE ENABL ED AND
TER M INA TED , a),

E~ EMENTP~TY PE~ SOURCE
(a SOURCE OR AUXI LIARY MA TER IAL FOR REQUIREMENTS,

I.E., OR IGINAT ING POINT FOR ONE Op MORE
ORI G INATING _REQU IREMENTS , DOCUM ENTATI ON OF
TR AOE.OFF STUDIES , OR B~ CKcROUND MATERIA L FOR
RE QU IREMEN TS ELEMENTS . *) ~

ELEMENT’~TYPE, SUBNET
(a A SEQUENCE O~ LOGI CAL PR OCESSING sTEPS THAT

MUST RE PERFOR MED TO ACCOM PLISH THE
REQUIREMENTS O~ THE NEXT HIGHER N FTWORK
(SUBNET OR R_NET). 0) ,

STRUCTURE APPLICABIL ITY , NET ,

ELEMENT~1TYPEI SUBSYSTEM
(-0 A PART OF THE SYSTEM (E.G ., A RADA R ) WHICH

COMMUN ICAT ES W ITH IPIE DAT A PROCESSING
SUBSYSTEM , a) ,

ELE MENT~ TYPEI SYNONYM
(a A SYNONYM IS AN A LTEP P4ATE NAME TM*T CAN BE USED

IN PLACE OF THE PRIME NAM E OF AN ELEMENT , IT
IS USED AS AN AS E3REV IATIO N IN MO ST CASES , BUT
MAY BE USED FOR OTHE R REASONS . M O T E s  IN THE
RSL DEFINITION S OF RELATIONSHI PS AND
ATTRI BUTES , ~~LL” A LWAYS IMPLIES “ALL EXCEPT
SYN ONYM ” , a ) .

ELEMENTITYPE, UNSTRUCT IJRED REQUIREMENT
(0  A REQUIREMENT THAT MUST BE PASSED TO THE

SOFTWARE DESIGNER BUT THAT DOES NOT FIT INTO
THE STRUCT URED FRAME WO RK pc~OVIOED BY RSL , 11115
ELEMENT MIGHT BE USED BECAUSE THE
REQUIREMEN T IN QUESTI ON IS TOO UNCOMMON TO
JUSTIFY DEFINIT iON OF A NEW TY PE oF ELEMENT, A
NEW RELAT IONS HIP , OR A NEW ATTRIB UTE , (AN
EX AMP L E OF AN UN5TRUCTURED~REQUIREMENT MIGHT
BE PRECLUSION OF USING A MULTIPRO CESSOR W ITH
A S S O C I A T I V E  MEMO RY ,) 0) ,

D—l7

-



~~~~~~~
-- -

~~~
-. -- - -

~~ . -

ELEMENT~ TY P E$ VAL ID AT IO N PATH
(a  A PATH OP PROC ESSING OVER wHI CH Q UA N T I T A T I V E

VA LIDA TION TESTING WILL BE PERFORMED , A PA TH
IS SPECIFIED USING VA LID A ~~ ON_ PO INT S AN D
EVENT S AND MUST CORRESPON D TO A ROUTE THROUGH
AN R_NET OR THROUGH R.NETS CONNE CTED BY
EVENT S.  a) ,

ELEMENT~ TY PE 1 vA LZDAT IO N: POI NT
(a A LOG ICAL POINT ~N THE PR OC E SSI NG SP E C I F I E D  BY

AN R_NET OR SUBNET AT WHICH DATA MUST BE
O BTA INABLE IN THE IMPLEMENTED SOF TWAR E IN ORDER

— TO VA LIDAT E THAT THE PERFORMANCE REQUIREMENTS
HAVE BEEN FULFILLED . 0)~~

-

- ST RU ~ TURE A PPLICA BILITY , NET ,
-• STRUCTURE A PPL ICABI L ITYS PATH,

ELEMENT~ TYP E, VERSION
(0 THE AG GREG ATION OF REQUIREMENTS THAT ARE TO

APPLY AS A UNIT TO THE DATA PR OCESSING
SUBSYSTEM AT A PARTICU LAR TIME . LO OP_i,
LOOP_a, ETC,, ARE VERS IONS , AS IS AN IOC
SYSTE M, a ) ,

RELAT IONSHIP , ASSO CIAT ES
(* IDE NTIFIES WH ICH DATA AND pILES COME INTO

EXISTENCE WHEN A DATA PROCESSING STEP CAN
ALPHA ) EITHER CREATES AN INSTANCE OF AN
ENTITY _CLASS OR SETS THE ENTITY _ TYPE OP AN
INSTA NCE OF AN ENT ITY .CLAS S, DAT A AND FILES
CAN BE ASS OCIATED WITH ONLY ONE ENTITY _CLASS ,
DATA AND FILES MAY BE ASS OCIATED WITH SEVERAL
ENTITY _TYPES PROVIDED THE ENTITY _TYPES
COMPOSE TIlE SAME ENT ITY CLASS , DA TA AND FILES
TH AT ARE ASSOCIATED WITH AN ENTITY :TYPE OR
ENTITY _CLASS MAY NOT ALSO MAKE A MESSAGE , DATA

— THAT IS ASSOCIATED WI TH AN ENTITYI~TYPE OR
ENTI TY _CLAS S M AY NOT ALSO ~E CONT AINED IN A
FILE. a) ,

COM P LEMENTA RY RELATIONSHIP , ASSOCIATED (sWITH”)~,
SUBJECT ELEMENT_ TY PE, ENTITY ,~CLASS

- 
ENT ITY 4 TY PE ,

OBJ ECT ELEMENT _ TYPES DATA
FILE,

RELATIO NSHIP S CO MPO SE S
(o IDENT IFIES T O WHICH ENI ITY aC LASS A N ENT ITY TY PE

BELONGS , AN ENTITY ..TYPE COMPOSES ONLY ONE
ENTI T Y _C LASS I  AN ENT ITY:c LAss IS C O M POSED OF AT
LEA 8T ONE ENT IT Y _ TYPE , a) .

CO MP LEMEN TARY RELATIONSHIP , COMPOSED (“OF ”),
SUBJ ECT ELEMENT _ T Y P E,  E NT1 TY ~ TY P E,
OBJE CT ELEME NT _ TYPE , E NT I T Y ....C LA SS,

D-18



- 
.

-

RELATIO NSH I PS CO NN ECTS ( “ T O ” )
(a IDENTIFIES W IT H WH ICH SUBSY STEM THE

INPUT” INTE RFACE OR OUTpUT !~J~ NT ERFA C E
COMMUNICAT ES , AN INTERFA CE CONN ECT S TO ONLY
ONE SUBSYSTE M , a) ,

COMPLEMENTARY RELATI ONSHIP, _ CONNECTED (“yO”),
SUBJECT ELEMENT _TYPE S INPUT_ INTER FAC E

OUTPUT JINTER FACE ,
OBJECT ELEMENT_TYPE S SUBSYSTEM .

RELATIONSHI P, CONSTRAINS
Ca IDENTIFIES TO WHICH vALIDATION :PA TMC s) THE

PERFOR MAN CE_REQUIREM (NT APPLIES, a) .
COMPLEMENT ARY RELATIONSHIPS CONSTRAINED ~“BY” ),SUBJECT ELEMENT _TYPE, PER~ ORMAN CE REQUIREMENT ,
OBJEcT ELEMENT_TYPE S VAL IDATION :PATH .

RELATIO NSHIP S CONTAINS
(a IDENT IFIES THE MEMBERS OF EACH INSTANC E IN A

FILE. DATA MAY BE CON T AI NED IN O NLY ONE FILE.
DATA THAT IS C ONTAIN ED IN A FILE MAY NOT ALSO
MA KE A MESSAGE NOR MAY IT ~E ASSO CIA TED W ITH AN

• ENTITY _C L ASS OR ENTITY TYPE, 0 ) ,

COMP LEMENTA RY RELATI ONSHIP, CONTA INED (“IN”),
SUBJ ECT ELEMENT :TypE, FILE ,
OBJECT ELEMEMT I,TYPE$ DATA ,

RELATIONSHIP, CREAT E S
(a INDICATES THAT THE ALPHA CREATES AN INSTANCE OP

• THE ENTITY _CL AsS(ES , CREA T I ON Op AN ENTITY
INSTANCE IN A CLASS OCCURS IMMED IATELY AT THE
BEGIN NING OF AN AL PHA WHICH CREATES THE
ENTITY _CLASS , ONLY ONE NEW ENTIT y INSTAN CE IS
CREATED , a) ,

COM PLEMENT ARY RELAT IO NSH IP ,  C REATE D ( “ B Y” ) .
SUBJ ECT ELEM ENT _ TYP ES ALPHA 1
O BJE CT ELEME NT _ TYPE , E N T IT Y _ CLASS ,

RELATIO NSHIP,  DELAYS
(a THE ENABLEME NT OF R:NETs B~ THE EVENT IS

POSTPONED FOR THE AMOUNT OF TIME SPECIFIED IN
THE DA T A ,  ON LY ONE DA T A MA Y DELA Y AN EVENT?
THIS DATA MUST NOT INCLUDE OTHER DATA . FOR
SIMUL ATIO N PURpOSES, THE VALUE OF THIS DATA
MUST BE IN UNITS OP SECONDS, a) ,

• COMP LEMEN TA RY RELATI ONSHIP, DELAYED (“BY”) ,
SUBJECT ELEMENT TYPES DAT A,
OBJE cT ELEMENT _ TYPE S EVENT, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


—.--—- -- --—-- - - - - • -
~~~~~~~~

-
~~~~

—
~~

---• ---
~~~~~~~

- • -

R EL ATIO N SHIP S D EST R OYS
(a  IN D ICA TE S Y M A T THE A L PHA DE STROYS AN INSTANCE

(THE CUR RE.N IL Y SELECTED ONE ) OF THE
t N T ! T y _ CLAS S (ES), IDENTIF ICATION OF THE
IN STAN CE IS PER FORME D BY A SELECT OR FOR EACH
N ODE ON A N E TW O RK . DESTRU C TION O p THE INSTANC E
OCCURS IMME DIATELY BEF ORE COMP LET ION OP
PROCESSING IN THE ALPHA , a) .

CO MP L EM ENTARY R E LATIONSHIPS DESTROYED ( ‘9Y ” ) ,
SUBJECT ELE MENT _TYPE, ALPHA 1
OB JECT ELEME NT _ TYPE S ENT ITY _ CL ASS .

R EL ATIO NS HIP S DOCU M ENT S
C* THE SOURCE MAT E RIA L  PROVID ES AUXI LI ARY

IN FORMAT ION ABOUT OR Is IHE O RIGINA T ING POINT
FOR THE OB JECT E LEM ENT , *)~

COMP LEMEN T AR y RELA TIONSH IP ; DOCUMENT ED (“BY”),
SUBJ(CT ELEMENT _TYPE, SOURCE ,
OBJE CT ELEMENT _ TYPE ,  A LPHA

• DA TA
DECISION
EMIt TY cLASS
ENTITY _ TYPE
EVENT
FILE
INPUT_ INTERFACE
MESS AGE
OR IGINATING RC QUIREMENT
OUT PUT :X NIE RPACE
PERFOR MANcE :REQUIREMEMT
R_NET
SU8NET
SUBSYSTEM
UNSIRUCTURED REQU IREMENT
V A L I DA T IO N PAT H
VAL IDAT ION _ PO IN T
VERSION ,

R EL AT IO NS HIP S ENAB LES
(a INDICA TE S THAT WHEN THE PROCE SSIN G CONTRO L PLOW

PASSES THROU GH THE EVENT ON AN R~ NET , OR WHEN
DATA IS AVAI L A BL E AT THE IN PUT :IN TERFAcE , THE
FUNCTIONAL PROCESSI NG SPEC IF IED By THE R NET
CAN BE BEGU N . AN R. NET MUST BE ENABL ED AND CAN
BE ENAB LED EITHER BY ONE A ND ONLY ONE
IN PUT ~ INT ER FAC E OR BY ONE ~R MORE EVENTS , a) ,

C OMP L EMENTARY RE LATIONSHIP S ENABLED (“BY ”),
SUB JEC T ELEME NT _ TYPE , EVENT

INPUT _ IN TERFA CE ,
OB JECT ELEMENT _ TYPE , R_NET .

D-20

- - - - - - - -~~~ - - - -- - -- - •  
_ •~ • _ 

- -  ~~~~~ -~~~~~~~~~~-



_ _  

~~~~~~~~

.1

RELATIO NSHIP S EQUATES (“TO”)
(a DEFINES AN A LT E RNATE NA ME pOR AN ELEMENT . THE

OBJEC T OF EQUATES IS CALLE D THE PRIME NAME ,
THE SuBJEC’ NA ME CAN BE USED FOR INPUT TO THE
ASS M , BUT ALL PELAT 1ONSHXp~ , ATTR IBUTES , ANDSTRUCTURES S~i DEFINED ARE ACTUA LLY
CHARAC TER IST IC S OF THE PRIME NAME~ a),COMP LEMENTARY RELATIONSHIP S EQUATE D (“To”),

SUBJ pCT ELEMENT _ TYPE S SYNONYM.
OOJE~ T ELEMENT_ TYPES AL PHA

DAT A
DECI SION
ENT I TY,.~CLAS SENT ITY _ TYPE
EVENT
FILE
INPUT _ INTERFA CE
MESS A GE
OR IGINATI NG:REQ UIREMENT
OUTpUT :INTERFAcE
PERFORM A NC! :REO UIREM ENT
R_NET

-
- SOURCE

SUBMET
SUBSYSTEM
uss,RUcTURED:REOuIRFMENT
vALID A TIO N ; PATH
V A L I DAT j ON_ P 0 I NI
VERSION .

RE LATIO N SHIP S FORMS
(a INDICATES THA T THE A L P HA ESTABLISHES THE

MES SAGE AS THE ONE TO BE PASSED By THE
C O RR ESPOND ING OUTP UT INT ER FAr E (THE
OLJTPUT _ INTE ’FACE WHI CH PASSE S THE MESSAGE)
W NEN THA T X NT ~ RFAC E IS ENCO UNTERE D ON THE NET,
AN A LPHA MAY FOR M SCV E RA . M ESSAGE S PROV IDED
THEY ARE PASSED BY DIFFERE~1TOUTPUT~ tN TERFA CES , a) ,

COMP LEMEN TARY REL ATIONSHIP , FORMED (“BY”~~,SUàJECT ELEMENT :TYPE, AL PHA ,
OBJECT ELE MENT_ TYPE S MESSAGE ,

D—2 1

- -

-
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~
‘— - -.7

~~
—

~
-— — -“!

• — 4~~~ •~••_~ - A

RELATIONSHIP, IMPLEMENTS 
• -

(0  DEFINES THE VERSION(S) TO WHICH THE ELEMENT
APPLIES, 0) ,

COM PLEMENTARY RELATIONSHIP , IMPLEMENTED ~“BY” ),
SUBJECT ELEMENT _ TYPE, ALPHA

DATA
DECISION
ENTITy~ CLASS
ENT ITY .JTYP E
EVENT
FILE
INPUT: INTERF ACE
MESS AG E
OR I G I N A T I N G: REQ U I REM EN T
O U T PUT _ IINTERFACE
PER F OR MA NC E R  EQ UI REM EN T
R~ NET
SUBNET
SUBSYSTE M
UNsTRUcTURED :RE QUIREHENT
VA L IDATION PATH
VA L I DA T I 0 N P  01 NT ,

OBJECT ELEMENT_ TYPES VERSION .

RELATIO NSHIPS INCLUDES
- (a  INDICATES A HIERARCH ICAL RELATION SHIP BETWEEN

D A T A , IF A INCLUDES B, THEN OBTA INING A WILL
OBTAIN B. a) ,

COMPLEMENTARY RELATIONSHIP , INCLUDED (“IN ”),
SUBJECT ELEMENT _TYPE S OA TA ,
OBJECT ELEMENT_TYPE, DATA,

R !LATIONSHIP, INCORPORA TES
(a  INDICATE S A HIERARCH ICAL RELATION S HIP BETWEEN

OR !GINA T ING~ REQU IREMENTS . THE SC~ PE OP THE
SUBJECT (HIGHER LEVEL) ORIGINAI INC :REQuIREMENT
INCLUDES THE OBJECT ( LOW ER LEVE L)
OR IGINATING _REQU IREMENT, *~~,

CO MP LEMENTARY RE LATIONSHIP ,  INC O RPO RATED (“ IN”) ’~SUB JECT ELEMENT _ TYPE S O R IGIN AT I NG.REQUIREMENI ,
• OBJECT ELEMENT _ TYPES OR IGINAT ING _REQUIREME NT ,

RELATIONSHIP, INPUTS
( a  IDENTIFIES THE DATA AND FILES USED BY THE

ALPHA~ a ) ,
COMP LEMENTARY RELATI ONSHIP , INPUT (“TO”),
SUBJECT ELEMENT _TYPE, ALPHA .
OBJECT ELEMENT_TYPE S DATA

FILE .

0—22



• ~ ~~~~~~ _~~~:T~ 
-r

RELATIONSHIP S MAK ES
(a INDICATES THAT THE D A T A  OR FILE IS A LOG ICA L

COMPO NENT OF THE MESSAGE , A DATA OR FILE MAY
MAKE S EVE RAL M ESSAGES, DAT A AND FILES THAT
HA KE A ME SSAGE MAY NOT ALSO BE AS SOCIA TED WITH
AN ENT ITY TY P~ OR ENTITY :cLAss. DATA THAT
MAKES A MESSAG E MA Y NOT ALSO BE CONTAINED IN A
FILES a) ,

CO MPL EMENTARY RELATIONS HI PS MADE (“ By” )~SUBJ ECT ELE MENT~ TVPEI DATA
FILE .

OBJEcT ELEMENT_TYPE, MESS AGE •

RELATIO NSHIP S O RDERS
(* INDICATES THAT THE VA LUE ~p THE DAT A IS USED T O

ORDER THE INSTANCES OF THE FILE, A FILE MAY BE
ORDERED BY ONL Y ONE DATA ; THE DATA MAY NO~
INCLUDE OTHER DATA AND SHOULD BE CONTAINED IN
THE FILE, a) ,

COMP LEMENTA RY RELATI ONSHIP , ORDERED (“BY”) ,
SUBJECT ELE MENT _ TYPE, DATA .
OBJECT ELEMENT _ TYPE, FILE,

RELATIONSHIP ; OUTPUT S
(a IDENT IFIES THE DATA AN D FILES WHOSE VALUE S OR

CON TENTS ARE MOD IFIED BY TH E ALPHA, a ) ,
COMP LEMENTARY REL ATI ONSH IP, OUTPUT (“FROM ”),
SUBJECT ELEMENT _TYPE, ALP HA ,
OBJECT ELEMENT _ TYPE S DATA

F I L E ,
-
‘ RELAT IONSHIPS PASSES

(a IDENTIFIES THE LOGICA L UNITS OF IN FO RMATION
WH ICH ARE PASS E D THROUGH THE INTERF A CE . A N
INT ERFACE MAY PASS SEVERA L M ESSAG ES ? A G IVE N
MESSAGE MAY liE PASSED THROUGH ONLY ONE
INTERFAC E , a) ,

CO MP LEM ENT A RY RE LATIO NSHIP ,  PASSED ( “ THROUG H” ) ,
SUBJ ECT ELEMENT TYPE S INpuT :INT ERFAc E

OUTPUT .jNTERFACE ,
OBJECT ELEMENT_ TYPES MESSAGE ,

RELATIONS HIP, REC ORDS
(0 IDENTIFIES THE PARTICU LAR DATA AN D FILES WHICH

ARE T o BE MADE AVAILAB L E A T THE
VA LI DATION _POINT FOR PERFORMANCE
E V A L U A T I O N , a), 

-

CO M PL EM ENTARY R ELATIONSHIPS RECORDED ( “ BY ”),
SUB J~ CT ELEMENT _ TYPE S VAL ID ATION _POINT .
OBJECT ELE MENT_TYPE, DATA

FILE.

D-23

_ _ _ _ _ _ _  -~~~~~-_



— — ~~~~~~~~ ~—‘-~--~ ~~~~~~~~ . • ~ -~~

r - - -s- ----- • ‘ - - -  -~~~~~~~~~~ - - - —  

RELATIO NSHIP S SETS
(a INDICATE S THAT THE ALPHA ESTABLISHES AN

INSTANCE (T HE CU RREN TLY SE LECT ED ONE) OF AN
ENTITY _CLAS S T O BE OF THE ENT ITY _ TY PE ,
IDENTIFICA TION OF THE INSTANCE IS PERFOR MED BY
A SELECT OR FOR EACH NODE ON A NE yWORK , AN
ALPH A MAY SET SEVERAL ENTITY TYPES PROVIDED THE
ENT ITY _TYPES DO NOT COMPOSE THE SAME
ENTIT Y_CLASS , THE SETTING OF AN ENTITY _TYPE
OCCURS IMMEDIATELY IN AN ALPHA SUBSEQUE NT TO
ANY ENTITY CREATIONS, a) ,

COMP LEMENTARY RELATIONSHIP ; SET (“BYM),
SUBJECT ELEMENT_ TYPE S ALPHA J
OBJECT ELEMENT_TYPE; ENT ITY .~.TYPE.

RELATIO NSHIP, TRACES (“TO”)
(* IDENTIFIES THE ELEMENTS (LOWER LEvEL

REQUIREMENTS) TO OR FROM WHIC H THE HIGHER
LEVEL REQUIREMENT (O R IGINAT ING REQUIREMENT OR
DECISION ) HAVE BEEN ALLOCA TED OR DERIVED , a ) ,

COMP LEMENTARY RELATIONSHIP , TRACED (“FROM ”),
SUBJECT ELEMENT TYPE, DECISION

ORIGI NA TING~ REQUIREMENT ,OBJE~ T ELEMENT _ TYPE S A LPHA
D A T A
DECISION
ENT ITY ~ C LA SS
ENTITY _ T Y P E
EVE NT
FILE
INPUT._INTERFACE
MESSAGE
O U T P U T _ INTERFAC E
PERFOR MANCE _RE QUIRE MEN T
R_N (T
SUBMET
SUBSYSTEM
uNsT puc,URED :REQuIREMENT
VA LI DA T ION , PATH
VAL IDAT ION _°OIP4T
VERS ION,

ATTRIBU TE ; ALTERNATIVE S -

(a THE ALTERNATIVES THAT HAVE BEEN CONSIDERED TO
RESOLVE A PROBLE M RESULTING IN A DECISION , a) ,

APPI,~ CA8LE ELEMENT .. TYPE , DECISION .
VALUE S TEXT.

-— —- 

D-24 

J



- - -~ -•

ATTRIBUTE S ARTIFICIALITY
(a THE DEGREE OF FLEXIBILITY AL LOWED IN IMPLEMENTING

- 
THE ELEMENT IN TH E S OFTWARE , .).

APP LIC ABLE ELEMENT _ TYPE ,  ALPHA
D A T A
ENTI T Y , C LAS S
ENTITY _ TYPE
E V E N T
FILE
INPUT_ I N T E R F A C E
MESsAGE
OUTPUT :INTERFACE
R_ NET
S UB NE I
VA L IDATIO N~ PAT H
VA LIDAYION :pOINT,

VALU E S A R TIFICIAL
(a THE ELEMENT HAS BEEN DEFINED F~ p EXPLANA TORY OR

SIMULA TION PURPOSES IN THE REQUIRE MENTS STATEMENT
A ND NEED NOT BE PRESENT IN THE SOFTWAR E , a ),

VAL UE S VAL IDATION
(a THE ELEMENT IS NECE SSARY FOR PERFORMAN CE

REQUIREMEN TS EVA LUATI ON BUT IS NOT REQUIRED IN THE
OPFRAT~ ONA L SOFTWAR E, a ) ,

VALU E S IMPLEMENT..YREcISELY
(a THE ELEMENT MUST SE IMMPI..EMENTED IN THE SOF T W ARE

EXACT LX AS DEFINED , a),
VALUE S IMPLEMENT_ AP PROXI MAT ELY

(a THE ELEMENT MUST BE IMPLEMENTED IN THE SOFTWAR E.
BUT THE PRECISE IM~ LEMENTA T IO N 1S LEFT T O THE
PROCESS DESIGNER , ~) ,

ATTRIBUTE ; BETA
(a THE PRO CEDU RAL COR E (P ASC AL )  FOR FUN CT IO NAL LY

MODE LING THE PR~ CES S ING STEP . TH E C~ DE IS NOT
PROCES SED BY IPIE RSL TRANSLA TO R BUT IS PROC ESSED
BY THE SIMU LATION GE NERAT IO N FUNCTIO N AND THE
CO MP ILER . A ~1E IA MAY USE TH E SPECIA L C REAT E,
DESTROY , SELECT AND FOR EAC H OPERAT ION S ON
FILES . *) ,

A PPLICABLE ELEMENT _TYPE; ALPHA ,
VALU E , TEXT .

A T T R IB UTES CHOICE
(a THE A L TERNATI VE SELECTED TO SOLVE A PROBLEM

LEA DI NG TO A DECISION , THE R A TIONA LE FOR THE
CHOICE SHOULD BE INCLUDED HERE. ) ,

APP LICABLE ELEMENT .. TYPES DECISION .
VALUE ; TEXT.

D-25 



~

ATTRIBU TE S COMPLETENESS
(a THE DEGR EE T O WHI C H THE DEFINITION OF AN ELEMENT IS

IN FINAL FO RM , a) ,
A PPLICAB LE ELEMENT .. TY PES ALPHA

D A T A
DECI SION
ENTITY CLASS
EN T ITY _ TYPE
EVENT
FILE
INPUT_INTERFACE
MESS AGE
OR I G I N A I I N G;R E QU 1 RE ME NT
ouTpuT :INIERFAcE
PEPPORMANcE :REQUIREMENT
R_NET
SOURCE
S U B N E T
SUBSYSTEM
uNs,RUcTuR ED:REQUIREMENT
VA L IDATI ON PATH
VAL IDATIO N_POINT
VERSION ,

VALUE , CHANGEA BLE
(a ALT HOUGH ALL RELATIONSHIPS, AT TRIBUTES , AND

STRUCTURES MA Y BE DEFINED FOR THE ELEMENT , SOME OP
THEM WILL PROBABLY BE CHANGED , INFORMAT ION ABOUT
THE ELEMENT IS BELIEVED TO BE c O RRE CT , BUT IS
SUBJECT TO CHANGE , a ),

VALUE , INCOMPLETE
(a THE DEFINITION OF THE ELEMENT IS KNOWN TO BE

!NCO MPLETE~I THEREF ORE, EVEN IF RELATIONSHIPS ,
ATT RIBUTES , AND STRUCTURES ARE STATED , THE ELE MENT
DEFINITION IS STILL INCOMPLETE , a),

VALUE ; COMPLETE
(a THE DEFINITION OF T HE ELEMENT SH OULD B~ ASS UMED TO

BE CO MPLETE AND WILL PROBABLY NOT CHANgE, a) ,

0-26_ 
-~~~~~~~~-



i~~~~~r~~
-
~~

A TTRIBU TE ; DESCRIPTION
(a  ANY FR EE FORM TEXTUA L MATERI AL DESCRIBIN G THE

ELEMENT , a),
A PPL ICAB LE ELEMENT 1TY PEI ALPH A

DATA
DECISION
ENT ITY C LA SS
ENT ITY_TYPE
EVENT
FILE
INP UT_ INTERFACE
MESSAGE
t’,RIGINATIWG :REQUIREMENT
ouTpuT :INTERFACE
pERFORM *NcE :REQUIREMENT

NE I
S O URCE
S U €INE I
SU~~YSTEMUN~TRUCTURED REQUIREMENT
V A L I D A T I O N .PATH
VA LI DAT ION POI NT

VA LUE; TEX T.

A TTRIBUTE S ENTERED:Bv
Ce THE IDENTITY OF THE LAST PERSO N TO ENTE R

IN FORMAT IO N ABOUT THE ELEMENT , a) ,
APP LICABLE ELEMENT~ TYPE S ALPHA

D A T A
DECISION
ENT ITY CLAS S
E N T I T Y _ TYPE
EVENT
FILE
INk~uT_INTE RFAC E
ME 55*
O 9IGINAT ING REQUIREMENT

pE~ FoR MANcE :REouIREMENT
R_ NET
S OU RC E
SUBNET
SU(~)YSTEMUNsTRUcTURED :REQUIREMENT
VA~..IDATION PATH
VA L IDAT ION _POINT
V E. fl s ION ,

VA LUE; TEX T.

0-27

~ 

• •-~~~~~~~~ -~~~~~~~~
- -~~~~~~~~~- •~~~~~~~~~~~~~~~~~~



—,
~~

- -
~~~~

- - - --- --- -— ,--- --— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

ATTRIBU TES GAMMA
- -

(a THE PROCEDURA L CODE (PA SCAL) FOR ANA LYT ICAL LY
MODE LING A PROCESSING STEP . THE CODE IS NOT
PROCESSED BY THE RSL TRANSLATO R BUT ~S PROCESSED BY
THE SI MU LATION GENERAT IO N FUN CT ION AND THE
CO MP ILER . A GAMM A MA Y USE THE SPECIAL CREATE,
DESTROY, SELECT AND FOR EACH OPERATI ONS ON
FILES , *~~,

APP LICABLE ELEMENT T Y PE S A LPHA .
VALUE , TEXT,

A T TR I BUTES INIT IACVALU E
(a THE INIT IAL VALU E A DATA ITEM IS REQUIRED TO HAVE
IN T HE IMPLE MEN TE D SOFTWA RE, THIS VALUE WILL BE
ASSUMED BY THE DATA ITEM WHEN IT COMES INTO
EXISTENCE IN A S IMULATI O N , *)~APP L!CABL E ELEMENT T Y P E , D A T A ,

VALUE , NAMED.
VALU ES NUMERIC.

ATTRIBU TE; LOCALITY
(a THE A CC ES S I BI L ITY AND LIFETIME OF A DATA OR

F I L E , a) ,
APPL !CABLE ELEMENT .LTVPE; DATA

FILE.
VA LUE; G LO BA L

(a G L O BA~ DATA AND FILES ARE ACCE SSIBL E BY MO RE THAN
oNE R_NET AN D MAY EXIST THROUG HOUT EXECUTION OF THE
SYSTEM~ DATA AND FILES V4HICH AR E ASSO CIA TED WITH AN
ENTITY _ T YPE OR AN ENTITY :CLA55 ARE BY DEFINITION
GLOBAL , a) ,

VALU E ; LOCAL
(a LO CAL D A T A AND PILES A RE A S S O C I A T E D W ITH THE R. NET S

IN WHICH THEY ARE USED AND EXIS T ONLY DURING THE
INVOCAT ION OF THE RJNET TO WH ICH THEY ARE LOCAL .
DA TA AN D FILES W H ICH MAKE A MES SAGE AR E BY
DEFINIT ION LOCA L , * .

AT TR IBUT E; MAX IMU M T IME
-

(a THE MA X IMUM T IME THAT CAN BE TAKEN T~ TRAVER SE IPIE
VAL IDAT ION PAT H, THE TIME IS SPECIFIED IN THE UNITS
STATED IN THE UNITS ATTRIBUTE R a) ,

APPLICABLE ELEMENT TYPE S VA LI DAT ION.PAT H .
VALU E , NUMERIC.

A TTRIBUTE; MAX !MUM . VAL,JE
(a THE MAXIMUM VALUE A DATA ITEM MAY ASSUME, THE

VALUE IS IN THE UNITS STATED ~N THE UNITS
ATTRIBUT E AND SHOULD BE CONSI STENT W ITH THE TYPE OF
THE DATA , a),

APP LICABLE ELEMENT .TYPE, DATA,
VALUE , NUMERIC .

D- 28

— ~~~~~~~~~~ - - -“ - • — - ~~~~~~ - --


~~~~T~~~~~~~~~~~~ T~~~Y

-~~~~~ A TTRIBUTE; M IN I MUM . T!ME -

(a THE MINIMUM T IME THAT CAN SE TA KE N TO TRAV ERSE THE
VA LXQATION : PATM , THE TIM E IS SPECIFIED IN THE
UNITS DES IG NATED BY THE UNITS A T TRI B UT E , a),

APP LICAB LE ELEMENT _ TYPE; vAL!DATIoN :pAYH~VA LUE ; NUMERIC,

A TT RI BU TE , MIN IMUM~ VALIJE
(a THE MINIMUM VALUE A DATA ITEM MAY ASSUME, THE

VALUE IS T N THE UNITS STATED IN THE UNITS
ATTR IBU T E AND SHOU LD BE C O NS IS TENT W IT H THE TY P E OP

- 
THE DATA , a),

AP PLICAB LE ELEMLNT TYPE ;  D A T A .
VALU E ; NUMERIC,

Ay TRI BU~E; PROBLEM
(a 1P4E PROBLEM THAT HAS LED TO THE NEED FOR A

- 
DECISI O N , a) ,

APP LICAB LE ELEMENT2TYPEI DECISION .
VA L UE, TEX T.

A T T R I B U T E S  RA NGE
(a THE NAME D VA LU ES THAT CAN BE A SSUMED BY A D A T A  WITH

TYPE ENUMERATIO N , a) ,
APPL ICABLE ELEMENT:TypE, DATA .
VALU E , T EXT
(
~ THE ALL OWED VA LU ES ARE SEPARATED BY COM MAS . *~~,

A TTRIBU TE S RESOLUTION
(a DESC RIBES THE REQUIRED MAXIMUM VALUE OF THE LEAST

SIGNIFIC A NT BIT FOR THE DA TA IN UNITS SPECIFIED IN
- 

THE UNITS ATTRIB UTE, a), - 
-

APPL ICAB LE ELEMENT :T YpEI DATA,
VALUE ; NUMERIC ,

A T T R IB U T E ;  T E ST
(a PROCEDURAL CODE (PASCAL) WHICH DEFINES THE

C O M PUT A T IONS NECESSA RY TO TEST THE SA TISFACTIO N OF
A PERFORMANCE _ REQ UIREMENT USI~iG DATA RECORDED BY
VAL IDA T ION POINT S , THE CODE i~ 

NOT pROCESSED
BY THE RSL T R A N S L A T O R  BUT IS PROCESS ED BY THE
SIMULATI ON GENERAT ION FUNCTION AND THE COMPILER ,
A TEST CONTAINS SPECIAL RETRIEVE AN D FOR EACH
OPERATIONS TO IDENTIFY VALIDA TION_POINT RECORDINGS
AND MAY USE SELECT A ND FOR EACH OPERA TIONS TO
ACCESS RECORDED FILES , *)~APP LICABLE ELLMENT :TYPE, PERFO RM AN CE_REQUIREMENT ,

VA LUE S TEX T,

0 ~29

--

~ 

~~~~~~~~~~~~~~~~~~~~~~~ 
_ _

- :
~ -~ - - -r - ~~~~~~~~~ ---------- -

ATTRIBUTE; TYPE
(a THE TYPE FOR A DATA ITEM WHICH IS EITHER

REFERENCED ON AN R NET OR SUBNET OR IS USED IN A
BETA OR GAM MA SIMULATION . a) ,

APP LiCABLE ELEMENT TYPE, DATA,
VALU E S REAL.
VALUE S ENUMERAT iON

(a THE DATA ITEM CAN ASSUME ONLY CERTAIN VALUES
WHICH ARE NAMES , THE ALLOWED VALU ES PeR THE DATA
ITEM ARE SPECIFIED IN THE RANGE ATTRIBuTE , a),

VALU E ; BO OLEAN ,
VALU E , INTEGER ,

ATTRIBUTE; UNITS
(a TIlE ENGINEE RING UNITS OF THE VALUE 0, A DATA ITEM

OR THE UNITS IN WHICH THE MAX IMUM .TIME AND/OR
M IN IMUM _ TIME FOR A VAL !OATION4JPATH ARE
SPECIFIED, a) ,

APPLICABLE ELEMENT TYPE$ DATA
V A L IDA T! O N PA T H ,

VALUE ; NAMED
(a FOR IND IV IDUAL PROJECTS Ii MAY BE DESIRABLE TO

RESTRICT THE UNITS WHICH CAN BE USED , IN THAT CASE ,
NAMED SHOULD BE REPLACED BY THE SPECIFIC LEGAL
VAL UE NAME s, a) ,

A 1IRIBUy ES USE
(a QUALIFIES THE USE OF A DATA ITEM IN

SIMULATION , ~) ,
APP LICABLE ELE MENT TYPE, DATA.
VALUE ; BET A

CC THE DATA ITEM IS TO BE USED IN FUNCTIO NAL
SIMU LATIONS ONLY , a) ,

VA LUES GAM MA
(* THE DATA ITEM IS TO APPEAR IN ANA LYTIC

SIMULAT ION S ONLY, a),
VALUE , BOTH

(a THE DATA ITEM IS TO BE USED IN BOTH FUNC TIONA L AND
ANAL YT IC SIMULATIONS, a) ,

DAT A; CLOCK TIME .
DESCRIPT iONS

“A PREDEFINED DATA ITEM WHICH I~
INCREMENTED AT

THE SA ME RATE AS ENGAGEMENT TIME . EXCEPT FOR ITS
INIT IAL .:VALUE WHICH IS ARB ITRARY , CLOCK_ TIME MAY BE
REGARDED AS ENG AG EMENT TIME, IT HAS NO CLOCK
ER ROR ,” ,

LOCALITY , GLOBAL .
TYpE; REAL.
UNITS ; SECONDS ,
USES BOTH,

D-’30

-
-

~~~~~

-

~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~T1T~~~~ .: ~~~~~~~ 
-

~~~~

DATA; FOUND ,
DCSCRIPTI~ Ns

“A PREDEPINED DATA ITE M WH ICH 7S SET TO EITHER
TRUE OR FAL SE £FTER EACH SELECT ØN AN EN,ITY:TYPE
OR ENTITY~ CLA Ss , FOUND IS S~ T TO TR UF IF AN
IN-S TAN CE SAT ISF -~’INr, THE SELECTION CRITERIO N IS
L0CATED~ OTHERWIS E, FOUND IS ASSIGNED THE VALUE

- FALSE .”.
INITIAL vALU E I FALSE .
LO CALITY, LOCAL.
TYpE; BO OLEAN ,
USE; 80TH.

DA TA ; REC0RD~FOUND .
-

DESCRIPTION ,
“A PREDEFINED DATA ITEM WHICH iS SET TO EITHER TRUE
OR FALSE AFTER EACH SELECT ON A FILE TN A BETA OR
GA M MA , REC ORD FOUND IS SET TO TRUE IF A RECORD
SATISFY ING THE SELECTION CRITERION IS LOCATED I
OTHERWISE , PECORD)OUND IS ASS IGNED THE VALUE
FA L SE .”,

IN !TIAL VALUE ; FALSE .
LOCALITY, LOCAL.
TY pE; BOOLEAN .
US€ s BOTH,

D-3~

0.4 SUMMARY OF RSL RELATIONSHIPS AND ATTRIBUTES BY ELEMENT TYPE

ELEME NT_TYPES ALPHA
LEGAL PEI A T I O NS H I PS$

CRE A TE S ;
ENTIT Y_CLA SS

DEST R O Y S ;
E~JTITY _CL ASS

FORMS 5
MESSAGE

IMPLFME~ 1S$
VERS ION

INPUTS ;
DATA
PILE

OUTPUTs:
D A T A
F ILE

SETS ;
ENT I T Y _TYPE

DOCUMENTED (“BY”);
SOURCE

F.nUATEf) (“TO”);
SY~ flNYM

T R A C E D (“ FR O M ”) ;
DEC 1ST O N
OP I G I NA T I N ~~_ REQ U 1 ~E14 EN TLEGAL A rT RxBuTE s ,

ART IFI CIA LI T Y;
AR TIFICIAL
V A L IDATI ON
IMPLE.MENT_ A PPROXI9A TFLY
IMPLEMENT_PREC ISEL y

B E T A ;
T E X T

C O~ P1 ETE NESS;
INCOMPLETE
CO MPLETE
CHA NGEAB L E

DESCRI PTION;
TEXT

E N T E P E D .IPB YI
TEXT

GA MMA S
TEXT

0-33 -

- --______________________

~~~~~~~~~~~~~~ I~~t1~~~~ 

~~~~~ MO? nimo

—
-

~

-

~~~~~~~~~~~~ 

-



~~~~~~

-_— - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~‘1

ELEMENT_TYPE S DA TA
LEG AL PELATIONSP,IPSS LEGAL ATTR IBUTES ;

0EL~ VS; ART IFICIALITY ;
EVE NT ART IFICIAL

IMPLE MENTS, VA LIDATION
VERS I ON IMPLEMENT _APPRO XIMA TELY

INCLUDES , IMPLEMENT_ PRECISELY
DAT A COMPLETENESS;

MA KES ; INCOMPLETE
MESSAGE COMPLETE

ORDERS; CHANGEAB LE
FILE DESC PIPT IO N;

ASS O CIAT E D (“ WI T H” ) ;  TEXT
ENTIT Y_CLASS ENTE RED_BY;
ENTITY~ TyPE TEXT

CONTAI NED (“ IN” ); INITIAL_ VALUE ,
PILE NAME D

DOCU MENTED (“BY”); NUMERIC
SOURCE LOCALITY ;

EQUATED (“TO”); GLOBAL
SYN ONYM LOCA L

INCLUDED (“IN”); MAX 1MUM~ VALUE ;
• DA TA NUMER IC

INPUT (“TO ”); M IN IMUM _VALUE ,
AL~ HA NUMERIC

OUTPUT (“FR OM”); RANGE S
AL~ HA TEXT

RECORDED (“BY”); RESOLU TION ;
VA LIDATION _POINT NUMERIC

TR ACED (“FR OM” ); TYPE,
DECISI ON REAL
ORIG INAT ING_ REQUI PEP4ENT EWUMF.RAT ION

80 OLE A N
INTEGER

UNITS
NAMED

USE ;
BETA
BOTH
GA MMA

0-34

-~~--—- -~~~~~
---

~~~~~~~~~
-

~~~~~~~~~



w~~~~ 

-

~~ -~~~~~~~~~ 

~~~~~~~~~~~ ~~~~~~ ~~
—‘

~~~~~~

ELEMENT~ TYPEI DECISION
~~~~~~ 

LEGA L RELATIO NSH IPS ;
t IMPLEMENTS,

VERsION
TR ACES (~ TO”)s

ALPHA
D A T A
DECiSION
E N T I T Y _CLASS
E N T I T Y _TYP E
EVENT
FI LE
INpuT:INTERFAcE
MESSAGE
OUT PUT _ INTERFACE
PERFOR MANCE R EQ UI REM EN T
R N E T
S US N E T
SUB SY STEM
UNST RUC TURED _REQUIREM ENT I -

— VA L IDA T ION PATH
VA LIDAT ION _P O ’ M T
VER SION

DOCU MENTED (“BY”);
SO URCE

EQUATED (“T0”)u
S Y N O N Y M

TRAC ED CN FROM ”)S
D E C I S I O N
ORI GINAT INCREQUIREMENT

LEGA L ATTR I BUTES ,
AL T ERNAT IVES ;

T EXy
CHOICE S

TEXy
COMPLETENESS;

CHANGEAB LE
INCO MPLETE
COMPLETE

DESCRIPT ION ;
TEX T

ENTERED:BY,
TEXT

PR OBLEM S
TEXT

I

D—35

— ~~~~ ~~~~~~~~~~~~~~~~~~~~
_ w—_~~ ~~ --- -- ___

~

-
-

-“~~~
-
~~~

-
~~ 

_.
~~~—~

-.- — - - - - — -

ELCP4ENTI,TVPE ENTITY~CLASSLEGAL RELAT IO NSHIPS,
ASSOC IATE S ;

DATA
FILE

IMPLEMENTS~
VERS ION

COMP OSED (“OF”);
£NTXTY~ TYPECREATED (“BY”);
ALPHA

DESTROYED (“BY ”);
ALPHA

DOCUMENTED (“BY”,,
SOURCE

EQUATED (‘TO”)S
S Y N O N Y M

TRACED (“ FRO M”);
DECISION
ORIG INAT ING.UI,REQUIRE~ ENT

LEGAL ATTRIBUTES ,
ART IFICIA LI TY;

ART IFICI AL
V ALIDAT ION

— IMPLEMENT _A PPROX IMATELY
IMPLEMENT_PRECZSELY

COMPLETENESS,
INCOMPLETE
COMPLETE
CHANGEAB LE

DESCRIPTION S
T E X T

EN TE RE D B Y I
TEXT

D-36


~~~~~~~~~~ IT T~~~
”
~~~~~~

T ~~~~~~
-:

~~
‘

~~ ~~~~~~~~~~~~~~
-

• ELEMENT_ TYPE S ENTITY_ T YPE
-~~~~~ LEGAL RELATIONSHIPS ,

ASSOCIATES ;
DATA
FILE

COMPOSES,
E N T I T Y _ CL A SS

IM PL E MEM TS $
VERS IO N

DOCUMENTED (“BY”);
SOURCE

EQUATED (“TO”);
SYN ON YM

SET (“ B Y ”) ;
A LPHA

TRA CED (“ FR O M ”) ;
DECI SIO N
OPIG INAT ING_ REQ UIR EPENT

LEGAL A T T R I B U T E S ;
ART IFICIA LI TY;

ART IF IC IAL
V A L I D A T I O ~IMPLEMENT _ A PPR OX I M ATELY
IMPLE MENT_PRECISELY

COMPLETENESS,
INC OMPLETE
CO MP LE T E
CHA NGEABLE

DES C R IPTION ,
T E XT

E NTE P ED_B y ;
TEXT

D—37

ELEM E N T_ TYPE ! EVEN T
LEGAL RELATIO NSHIPS ,

ENA 8LESI
R_ P4ET

IM PLEM EN TS ,
VERSI ON

DELAYED (“BY”);
DAT A

DOCUMENTED (“BY”),
SOURCE

EQUATED (‘TO”);
SYNONYM

TR A CE D (“FRO M ”);
DECISIO N
ORIGI NAT ING_ REQUIRE MENT

LEGAL A T TRI B U TE S S
ART IFICIA LI TY;

ART IFICI A L
VA LID AT I ON
IMP LE M ENT _ APP R O X IM A T E L Y
IMPLEME NT_PRECISEL Y

COM PLETE NESS ,
• INC OMP LETE

CO MP L E T E
CHA NGEAB LE

DESCPIPTIO NS
T E X T

ENTERED _JO Y S
TEXT

I.
0-38

EL E M E N T_ TY PES FILE
LE GAL REL AT I ONSHIPS ;

CONTAINS ;
DAT A

IM P LF M EMTS S
VERS ION

MA KES S
MESSAGE

A SSOCI ATE D (“W ITH”) ;
EN TITY _ CLA SS
EN T I T Y . TYPE

DOCU MENTED (“BY’);
SOURCE

EQU ATED (“TO”);
SYNONYM

INPU T C ” T O”)S
ALPHA

ORDERED (“BY’);
D ATA

OUTPUT (“FROM ”);
A L PHA -:

RECOR OE~D (“BY’);
VA LID AT ION _P0I~ T

TR ACED (‘FROM ”);
DFCISIO N
OPZG INATING_ REQUIPEMENT

LEGAL AT TR IB UTE S ,
ART I FICI A LI TY ;

AR TIF ICIAL
V A L I D A T I O N
IMPLE MENT_ A PPROX IMATELY
IMPLEMENT_ PRECISELY

CO M PLE TENESS ,
INC OMPLETE
C OM P L E T E
CHAN GE AB LE

DESCRIPTIO N;
TEXT

ENTE PEt _By;
TI X T

LO CA LI TY ;
GLOBA L
LOCA L

D-39

~

--

~

-

--~

ELEMENT_ TYPE S INPUT _ INTERFA CE
LEGAL RELAT I ON SHIPS ,

CONNECTS (“TO”);
SUB SYSTEM

ENA BLES;
R_ NE T

IMPLEMENTS ;
VERS ION

PASSES ;
MESSAGE

DOCUMENTED (‘BY’);
SOUR CE

EQUATED (‘TO”);
SYN ONYM

TRACED (‘FROM ’);
DECISION
OP IS I MAT I N G REQ U IRE ~ EN TLEGAL ATTRIBUTES ;

ART IFICIA LI TY ;
ART IFICIAL
VA LID AT IO N
IMPLE MENT_APPROX IM A TELY
IMPLE M ENT _PRECISEL Y

CO M PLETENESS ;
INCOMP LETE
COMPLETE
CHANGEAB LE

DESC P IP TI ON;
T EXT

ENTERED_BY ;
TEXT

D-40

_
_ _ _

E ~~~~~~~~~~~~~~~~

-

~~~i~
i—

~

- T!~ 
-

~~~ 
_ _

I i

ELEME NT_ TYPE , MESSA GE
LEG AL RE LAT ION SHIPS ,

IMPLEMENTS,
VERSI ON

DOCUME NTED (‘BY’);
SOURCE

EQUATED (“TO”); •
-

SYNONYM
FOR MED (“ BY’);

A L ØHA
M AD E (‘BY”);

DATA
F ILE - -

PASSED (“THR ~ouGH ”)$I N ~ UT _ INTER FAC E
OUTPUT_INTERF ACE

TRACED (‘FROM ’);
DECISI ON
ORIG INAT ING_ REQUI REMENT

LEGAL ATTR IBUTES ;
A RT I FICIA LIT Y;

ART IFICIAL
VA LID AT IO N
IMPLEMENT_ A PPR OX I MA TE LY
IMPLEME NT_ PREC ISELY

CO M PLETENE SS ;
INCOMPLETE
COMPLETE
CHAN GE A B LE

DESCRIPTIO NS
TI Xl’

ENTEPED~ B Y;
TE X T

D-41

—-—

~

~~~~~ -~~—-- — -~



T 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - . -

~~~~.

1-

ELEME NT i~TYPE S ORIGINAT ING _RE QU IRE MENT
LEGA L RE LATIONSHIPS;

IMPLEMENTS;
VERSION

INCORPORAT ES;
OR IGINAT ING ..REQUIREMENT

TRACES (“TO”);
ALPHA
DAT A
DECISION
E N T I T Y _ CLASS
E N T I T Y _TY PE
EVEwT
PILE
INPUT:INTERFACE
ME5$AGE
OUT PUT _INTERFACE
PERPORMANCE REQUIREMENT
R_N E T
SU BM ET
SUBSYSTEM
UNSTRUCTUR~D_REQUIREMEP4TVA L I DA TIO N,~P A TH
VA LI DATION _PO I NT
VERSION

DGCUMENTED (“BY”);
SOU RCE

EQuATE D ~“T0”)i
SYNONYM

INCORPORAT ED (“IN’ )S
ORIGINA,ING:REQuIREMENT

LEGAL ~~
‘
~RtBUTES;

CO MP L E I ~ NE SS I
~ SEA B L E

IN OMPLETE
• COMPLETE

DESCRIPTION;
TEXT

EN TERED Bf ;
TEX T

D-42 

~~~~~~~~~~ -- -- ~~~~~ --- 
-
~~~~~-- - --~~~~~~~~~~ -~—-- - -—-—~~~~~~~~~~~~ -~~ -



ELEME NT_TYPE ! OUTPUT_ INTERFACE
LEGAL REt ATIONSHIPSI

CON NECTS (“TO”) ;
SUBSYSTEM

IMPLEMENTS ,
VERS I ON

PAS SE SI
MESSAGE

DOCU MENTED (‘BY’);
SOUR CE

EQUATED (‘TO’)!
SYI~ONYMT R A C E D  (“FROM’);
DEC IS ION
OR I G IN AT I N S_ REQ U I ~E ~

‘ EN I
LE GAL ATT R IBUTE S ;

ART IFICI ALITY ,
A RT IFICIAL
VA LIDATIO N
IMPLEMENT_ APPROXI MA TE LY
IMPLEMENT_PRECISELY

COMPLETENESS,
INC OMPLETE
COMPLETE
CHANGEABLE

DESCRIPTIO N;
TE XT

E N TE PED..,BY,
T E X T

0 4 3



ELEME N T~ TYPE I PER FO RMANCE _ RE QUIREMENT
LEGAL RELAI1ONSHI-P$,

CO NSTRAINS;
VA LIDAT! OM :PA TH

IMPLEMENTS,
VERsION

DOCUMENTED (“BY”);
SOU pCE

EQ UATED ~“IO”);SYNONYM
TR*CED (~ FROM” )i

DEC ISION
OR IGINAT ING _REQUIR EMENT

LEGAL ATTR IBUTES ,
COMPLETE NES S;

CHA NGEABLE
INCOMPLETE
CO MPLETE

DESCRIPTION,
TEXT

ENTERED _BY,
TEX T

— 

TEsT S
TEXT

0-44



_ _  _ _

ELEMENT_TYPE S RJ4ET
LEGAL REL AT IONSHIPS;

IMPLEMENTS ,
VERS ION

DOCUME NTED (‘BY’);
SOURCE

ENABLED (‘BY”);
EVENT
INPUT_ INTER FACE

EQUATED (‘TO”);
SY N ON YM

TR A CE D (“FROM”);
DECISION
ORIG INAT ING_ REQUIREMEN T

LEG AL ATTR IBUTES ,
ART IFICIALITY ,

ART IFICIAL
VA L IDA TIO N
IMPLEMENT _ A PPROX I MATELY
IMPLEMENT _P R E C I S E L Y

COMPLETENESS,
INCOMPLETE
COMPLETE
CHANGEAB LE

DESCRIPTION,
TEXT

ENTERED _By;
TEXT

LEG AL STRUCTURE ELEMENT_ T Y P ES ;
ALPH A
EVENT
INPU T_PITEPPACE
OUT PLJ T_ INTEPFA CE
SUBNET
VA L I ~ AT I ON_P 01 N I

D -45

~

--- - -~~~~~~~~~~~~~~~ -~~~ --~~~~~~— - -- --
~~~~~~~

- - --

ELEMENTITYPE, SOURCE
LEGAL RELATIONSHIPS;

DOCUMENTS;
ALPHA
DAT A
DECISION
ENTITY_CLASS
E N T I T Y _ T YPE
EV ENT
FILE
INPUT INTERFACE
MESSAGE
0RI GXNA TING~ REQUIR !MENT
OUTPUT_ INTERFACE
PERPORMAN CE REQUIREMENT
R_NET
SUBNET
SUBSYSTEM
UNsTRUCTURED_REQUIREMENT
VA LI D AT ION PAT H
VAL !DATZONJOINT
VER ~ I 0N

EQUATED (“TO”);
S YNONY M

LEGAL ATTRIBUTES;
COMPLETE NESS ;

CHANGEABLE
INCoMPLETE
COMPLETE

DESC R IPT I ON ;
TEX T

EN$ERED 9Y,
TEX T

j

0—46

_ _ _ ~~~~~~~

~~~~~ ~~~~~ ~~~~~~~~~~~~ ~i ‘1- :1
ELEMENT_TYPE; SUBNET

LEGAL RELAT IONSHIPS;
IMPLEM EN TS ,

VFRSION
DOC UME N TED C ”B Y ” )u

SOU RCE
EQUATED (‘TO”);

SYNONYM
TRA CED ç ”FRO M” ) ;

DEC IS! ON
~P I SI N A I I NC_ REQ UI REM EN T

LEGAL A TTR IBUTES ,
ART I FICIA LI TY,

A RTIFICI AL
V A LIDAT ION
IMPLE MENT_A PPROX IM ATELY
II~PLEME NT_P R E C I SE L y

CO MPLETENESS,
INCOMPLETE
C OMPL ETE
CHANGEABLE

DESCRIPTIO N;
TE XT

ENTERED_B Y ;
TE X T

LE GA L STRU CTURE ELEM ENT _ TYPE S,
A L PHA
E V E N T
OU T P U T _INTERFACE
S NE I
VAL IDA TION _POINT

0-47 

—~~~~~~~-- •~~~~~~~~~~ -~~~~— - - -  _ _ _



__

ELEMENT ITYPE ; SUBSY STEM
LEGA L RELAT IONS H IPS , ) -

IM PLEMEN TS;
VERS ION

CONNECTED (“TO”);
INPUT I NI ERFA CE
OUT PUT _ INTERFACE

DOCUMENTED (“BY”);
SO URCE

EQuATED ~“TO”) SSYN ONY M
TR*CED (sFROM”)5

DECISION
ORIGINAT ING~RE QUIREMENT

LEGA L ATTR IBUTES ,
COMPLETENES S;

CHANGEABLE
INCOMPLETE
COMPLETE

DESCRIPTION; -

TEX T
ENyERED BY;

TEX T

0-48 

----- --~~~~~~ -~~~~~



- ~~~~~~~~~~~~~~~ L.~ T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ELEMENT_TYDES SYNONYM
LEG AL RELAT IONSHIPS;

EQUATES (“TO”);
A LP HA
DAT A
DECISION
ENTITY_CL ASS
E N TITY _ TYPE
EVENT
F ILE
INPUT_ i NT E pP ACE
MESSAG E
0RIGI NA TING_ PE~ ’1I~ EMENT
OUTPUT_ INTERF A CE
P F P FO R MAN C I.. RE i~ U I ~E ~ EN TP_ NET
SOURCE
SUBMET
SIIR~ YSTEM

— U~ STRUCT1jRE~0_REQ UtpEMENT
V A L I D A T I O N _PAT H

- - 
V A L I DA T I O N_PO INT
VF~ SION

NO LEGAL ATTR IRUTES

0-49

~



ELEMENT!~TYPE; UNSTRUCTURED REQUIRE MENT
LEG A L RE~ A y jON3M IPS ;

IMPLEMENTS ;
- 

VERSION
DO CUMENTED (“BY”);

SOU RCE
E QuATED “TO” )I

SYN O NYM
TR ACED (flFROM0),

DECISION
ORI GINAT IMr,:REQUIREMENT

LEGAL ATTR IBUTES,
COMPLETENESSI

CHA NGE AB LE
INCOMP LE T E
COMPLETE

DESCRIPT ION ;
TEX T

ENTERED RY I
TEXT

0-50



r.—
~
w_wIw

~ 
__ ‘_ -•-•w - - - --~~~~ ~~~~~ --------~~~~~

--- ‘I----- 
~~~~

--
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~
,—-- -

~~~~~~~~~~ - - ~~~~~~~~~~~~~
- -----•- —- ~~~~~ -~p-~ --- — - -  -

— 
- --

~~~~~~ --  — ~~~~~~ - - ~~~~~

•

~ ~~~
.--- - - - - - - -

-

~~~~~

-

~~~~~~~~~~~

ELEMEN T_ TYPE S V A LI DATI ON_ PA T H
LEGAL RELAT I ONSHIPS;

IM PLEM ENTS ,
VERS I ON -

CONSTRAIN ED (‘BY ”),
PER FORM AN CLRE QUI REMEN T

DOC UMENTE D (“BY”);
SOURCE

EQUATED (“TO”);
SYN ONYM

TRA CED (“FROM”);
DECI SION
ORIGINATING_ REQUIREMENT

LEGA L ATTRI BUTES ;
ART IFICIA LI TY ;

ART IFICIAL
VALID AT ION
IMP LE MENT _ APP R OXI MA TELY
IMPLEMENT_PRECISELY

CO M PLETENESS;
INC OMPLETE
CO M PLETE
CHANGEAB LE

— DES CRIPT ION ;
TEXT

EN TERED~ 9YS
T E X T

MAX IMUM _TIME;
NUMERIC

MIN IMUN_TINEI
NUMERIC

UNITS;
NAMED

LEGA L PATH ELEM E NT_ TYPES ,
EVENT
VA LID AT ION _ PO IN T

D—51
-
•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



___  - -
~~~~

--•

~ ~~~~~~~~~~~~~~~~~~~~~
F -

- - -~ -~—- —

44

CLEMENT_ TYPE S VA L IDA TION_ POI~ T
LEG AL REL AT IONSHIPS ;

IMP LEM ENTS ,
VERS I ON

RECOROSI
D A T A
FILE

DOCUMENTED (“BY”);
SOUR CE

EQUATED (“TO”);
SY NO NYM

TRAC ED (‘FROM”) ;
DEC ISIO N
OP IS I NAT ! N ~_REQU IRE ~ I ~ TLEGAL ATTRIRUTFS :

• A RT IFICIA LI TY;
A RTIFICIA L

-

VA LIDAT ION
IMPLEMENT _ A PPROX IMATE LY
IMPLEMENT _ PREC IS ELY

COM PLETENESS ;
INCOMP LETE
COMPLETE
CHANGEAB LE

DESCRI PTION ,
TEXT

E N TE R ED_ BY ;
T E X T

-

I

S

0-52

- - -~~~~~~~~~~-

T - -

ELEMENt~ TYPE . VERS ION
LEGA~,, RELAT IONSHIPS;

DO CUMEN TED (“BY”);
$OU pCE

EQuATED (~ TO”)$
SYN ONY M

IM PLEMEN TED (‘BY”),
ALPHA
DATA
DE C ISION
ENT ITY _CLASS
ENT ITY _ TYP E
EVENT
FILE
INPUT IN TERFACE
MESSAGE
OR IG INA T ING RE QU IREM EN T
OUTp UT _ INTERFA CE
PERFORMANC CRE QU IREME N T
R_ N E T
SUSNET
SUBSYST EM
UNSTRUCTUR!D._REQUIREMENT
VALIDA TION I,P A T H -

VAL!DATIGNJOINT
TRA CED (‘PROM”);

DECI SION
OR ZGZNAT INCRE QU IREM EN T

LEGAL ATTR IBUTES;
COMPLETENESS;

CHANGEABLE
INCOMPLETE
COMP LET E

DESCRIPTION;
TEX T

EM TERED BY ,
TE XT

- 0—53

—

~~

•‘

D.5 RSL TRANSLATION DIAGNOSTIC MESSAGES

Diagnostics from the RSL translation function are printed as an up—
arrow (+) point ing to the command symbol at which the error was first

detected and an error number . The error may be detected one or more

symbols beyond the actual error.

When an error occurs in the first sentence of a command (i.e., the
sentence which identifies the subject element), the results are d i f f i c u l t
to predict. The translator may not recognize the sentence as beginning

a new command , will ignore the sentence and proceed to appl y the succeeding

sentences to the previous subject element as though no new command had

begun.

Whenever a s”ntax error is detected (error numbers 12-1 99), all Inpu t

text between the detection of the syntax error and the recovery from that

error (error number 200) is Ignored . No attempt is made to check the syntax
of thi s text nor are any actions performed on the ASSM.

The diagnostics output during RSL translation are listed below.

(This list also contains the diagnostics for the RSL Extension (RSLXTND)

function.) The majority of the errors will cause the sentence to be Ignored

(i.e., no action will be taken in the ASSM). Those marked with (I) are In-

formative only; the action specified In the coimiand will be taken. Those

marked with (F) will cause termination of translation and the return of

control to the REVS Executive.

Error
No. Interpretation

0 The parse stack is not empty at the end of the translation. (This
usually Indicates a severe syntax error.) (F)

1 Parse stack overflow. Reduce the complexity of the statement. (F)

5 Illegal character or Illegal two-character operator.

6 Integer too large (i.e., larger than 9 dIgits).

7 Too many significant figures in a real number (I.e., more than
9 digIts).

8 Real number too large (i.e., absolute value greater than l.0E74).

11 More than 50 errors In one line . Only the first 50 are listed.

0-55
-

-

p
~~~~~~~~~~~~~

_  - —& -p•-— - I~~~~~~~~~~ - - — ~~~~-. U.L •_
~~~~~~~~~ •~ 


——,--• __—,.-
-~~ ~~~~ ~~~ ~-—

/ —‘Il

Error
No. Interpretation

12-1 99 Syntax Error.

200 Recovery from prev ious syn tax error. (I)

201 A comment was expected. (I)

202 Comment not allowed here . (I)

203 A period Is missing at the end of the input file. (I)

204 Duplicate relationship instance in the ASSM . (I)

400 An instance of this attribute already exists.

401 The element type is not an applicable el ement type for this
attribute .

402 The given element is associated with a node of a STRUCTURE or
PATH.

403 The element type is an appl icabl e element type for an attribute .

404 Illegal sentence in an attribute definition.

405 Attribute definition sentence mispl aced.

406 OR node ordinal exceeds maximum of 9999.

407 Error In a conditiona l expression.

408 Compl ementary relation name is used in a relation definition
header .

409 El ement is not of type DATA .

410 Degenerate logical or arithmetic expression .

411 Sentence appears after a del etion command .

413 Duplicate attribu te Instance.

414 Dupl icate definition for an attribute name.

415 El ement type Is already in the ASSM .

416 Du plIca te elemen t type l i st member .

417 DuplIcate NET/PATH structure appl i cability .

418 Duplicate ord inals on two branches of the same OR node.

D-56

- ~~~~~~~~~~~~~~~~~~~~~~~~
-~~~.-- ~ -, ‘- -~~—-~~— r

- -- - - ~~~~~—--—-- -
-

-‘

Error
No. Interpretation

419 Duplicate def{nltion for a relation name.

421 Duplicate relation object on object list.

422 El ement already has an associated STRUCTURE or PATH.

423 Duplicate attribute l egal value. (I)

424 Illegal sentence In el ement definition .

425 Element definition sentence mispl aced.

426 An element exists with this el ement type.

427 Node element is not of a type defined wi th structure applicabiltty
NET .

428 Illegal sentence in an element type definition.

429 An element of the given type Is used on a NET or PATH.

430 El ement type definition sentence mispl aced .

431 “RECORD ” must be preceded by FILE name.

432 El ement name in the body of a FOR EACH node is not of type ALPHA
or SUBNET .

433 El ement Is not of type FILE , ENTITY _TYPE , or ENTITY_CLASS.

434 Illegal syntax followi ng DO.

435 An INPUT_INTERFACE begins a branch.

436 An INPUT_INTERFACE fol l ows a node.

437 Illegal value for this attribute .

438 Illegal complementary relation name for this relation.

439 A declaration removal mus t be within a modification command .

440 Name being renamed is not an el ement name .

441 Illegal object el ement type for a relation .

442 Illega l subject element type for a relation .

443 El ement type name is Incorrect for the element.

444 Invalid attribute name .

D—57

• • •

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~--• - - -  1



___ ~~~~~~~~~~~~~

Error
No. Interpretation

445 Invalid el ement name.

446 invalid element type name.

447 Invalid relation name .

448 Too many new (undefined) names . (This error should be ignored
between a syntax error (12-1 99) and the recovery from that
error (200).)

449 Name already in use.

450 A node fol lows a terminator node or OUTPUT_INTERFACE.

451 New (undefined) name was lost. (Thi s error should be ignored
between a syntax error (12-199) and the recovery from that
error (200).)

452 The ALL EXCEPT form may not be us ed for removal s.

453 No instance of this attribute exists for the given element.

454 Given attribute legal value does not exist.

4~5 No object list in a relation declaration .

456 A node is not allowed in a structure removal .

457 Element type has no NET/PATH structure applicability .

458 Element does not have an associated PATH.

459 The given relationship instance does not exist.

460 El ement does no t have an assoc iated STRUCTURE.

461 No type specified for undefined el ement.

462 No valid subject for the command .

463 No element type list Is specified .

464 An attribute value is not specified .

465 El ement Is the object of a relation instance , therefore I t canno t
be del eted.

466 Ordinal and non-ord inal branches are mixed in an OR node.

467 I l le gal sen tenc e In relation definition.

D-58

—--—. -



~~~~~~~— /

Error
No. Interpretation

468 Relation definition sentence misplaced .

469 A RETURN may not a ppear on an R_NET .

470 An instance of thi s relationship exists.

471 The el ement type is a l egal object element type of a relationship,
therefore the el ement type definition cannot be deleted.

472 The element type is a l egal subject element type of a relationship,
therefore the el ement type definition cannot be del eted.

473 Structure has fewer than two nodes.

474 Struc ture has no term ina tor node or OUTPUT_INTERFACE.

475 Command subject is not of type R_NET or SUBNET so a struc ture
declara tion is illegal.

476 El ement is the subject of a relation instance , and cannot be
deleted .

477 The given SYNONYM already EQUATES to an element.

478 Terminating and non-terminating branches are mixed within an
AND/OR node.

479 Name is undefined .

480 Node element is not of a type defined with structure applicability
PATH.

481 Command subject is not of type VALIDATION_PATH , so PATH declara-
tion is illegal .

482 An attribute value is specified where none Is allowed . (I)

483 A node is not allowed in a PATH removal.

484 PATH has no nodes.

485 Zero ordinal

486 El ement is not of type ENTITY_TYPE or ENTITY _CLASS.

487 New type is redundant on a RETYPE.

488 An INPUT INTERFACE i s il legal on a SUBNET .

489 SUBNET has no RETURN.

0-59

- - ~~~~~- - - - - - - - --- - -~~~- - --- - •- - - -~~~~ -- -~~~~ - - - ~~~~~~~~~~ - - - - -


~~~~~~~~~~~~~~~~

Error
No. Interpretation

490 SUBNET has more than one RETURN.

491 RETYPE of an OUTPUT _INTERFACE wh ich a ppears on a struc ture Is
illegal .

492 El ement is not of type DATA or ENTITY _CLASS.

493 El ement has a value for TYPE other than ENUMERATION .

494 El ement Is not of type ENTITY _TYPE.

495 Enumerated value name required.

496 Permission to use extensions not established.

497 Control permission required but not established.

498 A permission is already associated wi th the identifier .

499 No permission is associated with the Identifier .

500 Translator was not invoked via RSLXTND .

501 Last control permission cannot be rescinded wi th outstand ing
extension permissions.

502 Extension permission cannot be established without any control
permissions .

503 No non-empty branch on a CONSIDER OR node.

504 More than one empty branch on a CONSIDER OR node.

505 Du pl ica te name i n cons ider cond it ional .

506 Coma, colon , or semicolon in conditiona l expression.

600 Name reserved by ASSM. (F)

601 Error In initial ization . (F)

602 Error in REVS Executive request. (F)

603 Error in ASSM access routine. (F)

604 RequIred input file DONNEES Is missing or empty. (F)

605 Required inpu t file RSLDICT is missing , empty, or incompl ete. (F)

606 Null ASSM , RSLXTND required for language definition. (F)

D-60

_



APPENDIX E

RNET G EN MESSAGES

A DANGLING STRUCTURE HAS BEEN DETECTED , SAVE REJECTED 
—

This message results when , in an attempt to save a structure, an
incomple te structure was detected , i.e., a node with no predecessor —

or successor. The structure is displayed wi th the node in question
located at the center of the structure display area surrounded by a
red , blue , and white square. The structure remains In the ASSM In
temporary status.

A DO-NOTHING BRANCH DETECTED ON REJOINING AND % SAVE REJECTED
This message results when, i n an attempt to save a struc ture , a
null AND branc h was detected , I.e., the successor node of an AND
node is its ma tching rejoining AND node. The structure is dIs-
played with the AND node In question centered in the structure
displ ay area surrounded by a red , blue , and white square. The
structure remains In temporary status In the ASSM.

CALCOMP REQUEST COMPLETED , CONT I NUE 
-

This message is displ ayed upon compl etion of a CALCOMP menu opera-
tion. The message informs the user that the selected structure
has been successfully plotted on CALCOMP and that further pro-
cessing may now continue.

CANNOT EXECUTE RNETGE N FUNCTION IN OFFLINE MODE
This message will appear on REVS.OUT If the user attempts to
execute the RNETGEN function while In the off-line mode. RNETGEN
terminates and returns control to the REVS Executive.

COLOR HAD BEEN CHANGED ON SELECTED NODE , CONTINUE
Thi s message is displ ayed merel y to Inform the user that the node
color-change operation is compl ete and that further processing may
now continue. 

—

COMMENT HAS BEEN ATTACHED TO SELECTED NODE , CONTIN UE
This message is displayed upon completion of a coniuent node menu
operation . The message i nforms the user that the comment was
successfully attached to the node in the ASSM and that further
processing may now continue.

COMMENT MUST BEGIN WITH (* , INP UT REJ ECTED
T hi s messa ge resul ts when an a ttempt to enter a commen t whi ch
does not begin wi th the character string (* Is made. The Input
Is rejected , however the commen t node menu sel ecti on rema i ns In
force.



COMMENT WAS REMOVED , IF INDEED , ONE EXI STED
This message results from the REMOVE coment operation. It is in-
tended to inform the user that the selected operation is complete
and that other processing may now continue.

CONSIDER - DATA, ENTITY _CLASS , NEITHER - SELECT VIA TRACKBALL
This message is displ ayed after having selected the poi nt on the
screen to locate an OR node. The user must respond by selecting
one of the entries In the message using the trackball.

DISPLAY BRANCH IS COMPLETE , CONTINUE
Thi s message Is displayed merely to Inform the user that the opera-
tion Is complete and that further processing may now continue.

DO YOU WANT STANDARD DOCUMENT SIZE? KEVIN YES OR NO
This message Is displayed when the user selects the CALCOMP menu
entry. The keyboard is enabl ed and the user must respond with a
YES (Y) or NO (N) keyboard entry. If the response is YES, the
CALCOMP displ ay will be 8-1/2 x 11 inch document size, otherw ise
the user will be required to supply the desired document size.

DOES BRANCH HAVE CONDITIONA L EXPRESSION? KEVIN YES OR NO
This message Is displ ayed when an attempt is made to connect a
FOR EACH node wi th Its successor node. The keyboard is enabl ed
and the user must respond with a YES (Y) or NO (N) keyboard entry.
If the response is YES , the user will be required to enter the
condi tional expression via the keyboard.

DOES BRANCH HAVE ORDINA L VALUE? KEVIN YES OR NO
Thi s message is displ ayed when an attempt is made to create the
initial branch of an OR node. The keyboard Is enabl ed and the
user Is required to respond with a YES (Y) or NO (N) keyboard
entry. If the response is YES, the user will be required to
enter the ordinal value.

DUPLICATE O,~D INAL , INPUT RE J ECTED , ENTER TB TO CONTINUE
This message resul ts if there already exists a branch from the
current OR node which has an ordinal value equal to the one which
was just Input. The ordinal inpu t is rejected and the user Is
required to re-input a different ordinal value.

ELEMENT ALREADY IN ASSM. IS IT THE ONE? KEVIN YES OR NO
This message results when the element name keyed-in by the user is
alread y In the ASSM an d Its type agrees with that reflected by
the menu selection. The keyboard is enabl ed and the user Is re-
quired to respond with YES or NO. If the response Is YES and the
menu sel ect ion was a structure type, the struc ture , i f one ex ists ,
is retrieved from the ASSM and displayed in the structure display
area. If the response Is YES and the menu selection was a node
type , the node Is displayed at the selected position In the

E-2

A

~

0

~ 

- -
~  -_ _



t ~~~~~~~~ c -~~~r — -~~ ~~~~~~ _. ._ 
~~~~~~~~~~~ 

T ~wyr

-

-
-

~~~~~
-

~~~~
- -— - - -

-
-

structure displ ay area . The first three characters of the asso-
ciated el ement name is also displayed on the node. If the response
i s NO , the element name which was keyed-in is ignored and the current
menu selection remains in force.

EL EMENT HAS BEEN ENTERED INTO ASSM
If the user responded with a YES to the previou s message (i.e.,
ELEMENT NOT IN ASSM . DO YOU WANT IT ENTERED? KEVIN YES OR NO),
the el ement i s entered i nto the ASSM and the a bove messa ge Is
displayed .

ELEMENT HAS NOT BEEN ENTERED INTO ASSM
If the user responded with a NO to the previous message (I.e.,
ELEMENT NOT IN ASSM. DO YOU WANT IT ENTERED? KEVIN YES OR NO),
then the element is not entered into the ASSM and the inpu t Is
ignored ; however , the current menu selection remains in force.

ELEMENT HAS TYPE OTHE R THAN ENUMERATION , INP UT REJECTED
If element type DATA was sel ected for the CONSIDER OR node and
the suppl ied element name has the attribute TYPE with a value
other than ENUMERATION , this message is displayed . The el ement
name is ignored and the node screen position must be reselected
by the user .

ELEMENT IN EXPRESSION IS OF INCORRECT TYPE , INPUT REJECTED
If the conditional expression keyed-In for an OR/FOR EACH branch
contains ASSM elements of element type other than DATA , then this
message results. The desired branch connection is ignored and
the user must again identify the nodes to be connected and re-input
the conditional expression .

ELEMENT IS IN ASSM AND IS OF INCOMPAT IBLE TYPE , INPUT REJECTED
This message results when the element name keyed-in by the user is
already in the ASSM and its type does not agree wi th that refl ected
by the menu sel ection. The inpu t is rejected and the current menu
selec tion remai ns i n force.

ELEMENT NOT IN ASSM . DO YOU WANT IT ENTERED? KEVIN YES OR NO
Thi s messa ge res~..lts If the el ement name keyed-in does notcurrently exist in the ASSM . The user must respond via the key-
board wi th either YES (Y) or NO (N).

ELEMENT _TYPE DOES NOT EX I ST IN THE ASSM , INPUT RE JECTED
Thi s message results if an el ement type keyed-In by the user
cannot be found in the ASSM . The menu sel ection is ignored .

ELEMENT _TYP E UNDEFINED FOR THI S NODE TYPE , INPUT R EJ ECTED
Thi s messa ge resul ts when , in an attempt to enter a node for a
selected node type, it Is determ i ned that there exists no defini-
tion in the ASSM for such an el ement. For instance , If an attempt
to enter an alpha node is made but there exists no el ement type ALPHA
In the ASSM the above message is displayed and the request is ignored .

E-3

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — --‘-.--,,-- -.-,— ,-.-—--- -- --— -
~~~~~~~~~~~~

ENTER COMMENT SEGMENT
This message is displ ayed when in the coment node menu opera-
tion and a node has been selected to comment. The keyboard is
enabl ed and the user must keyin a comment line. The entire corn-
ment must be enclosed with (* and * )•

ENTER CONDITIONAL EXPRESSION SEGMENT
This message is displ ayed when attempting to connect an OR/FOR EACH
node with Its successor. The keyboard Is enabl ed and the user mus t
keyin the desired conditional expression . The entire expression
must be enclosed wi thin parentheses, except for an OTHERWISE
expression.

ENTER DESIRED ELEMENT _TYPE VIA THE KEYBOARD
If the user has sel ected a node type of OTHER in the menu , the a bove
message Is d ispl ayed. The user responds wi th a keyboard entry of
the appropriate element type.

ENTER , REMOVE , OR DISPLAY COMMENT ON NOD E , SELECT VIA TB
This message resul ts from the selection of a node after having
selected the comment node menu operation . The user must respond
with a trackball selection of the desired operation within the
displ ayed message.

ENTIRE COMMENT ON SELECTED NODE HAS BEEN DISPLAYED
Thi s message is displ ayed merely to inform the user that the
dis play comment opera tion is complete for the sel ected node.

ERROR IN INPUT , TRY AGAIN
This message results when a non-numeric value is Input as a
CALCOMP document size. The Input is Ignored and the keyboard
Is re-enabl ed for input.

FOR EACH - FILE, ENTITY CLASS, ENTITY TYPE — SELECT VIA TB

This message is displayed when a FOR EACH node is entered on a
structure. The trackball is enabl ed and the user must respond
with a trackba l l sel ection of one of the three en tr ies in the
message in order to designate the el ement type for the el ement
associated with the FOR EACH node.

ILLEGAL MENU SELECTION
This message will result if an attempt is made to zoom-in on a
structure which Is not in the zoomed-out mode, i.e., the structure
has not first been zoomed-out. The message will also occur if
an attempt is made to process a structure which is non-existent.
Selection Is ignored .

E-4

~ 



ILLE GAL NODE FOR CURR ENT STRUCT URE
This message is displayed if an attempt is made to enter a node
which is not allowed for the current structure type (e.g., a return
node on an R-Net structure is illegal). Another menu selection
should be made at this point.

ILLE GAL NODE SELECTION , RESTART SELECTION SEQU ENC E
This message may result for several different reasons as fol l ows:
(a) an attempt to del ete a node which has successors which have

no graphics coordina te data.
(b) an attempt to disconnect nodes which are not actually con-

nected .
(c) an attempt to connect nodes which cannot be l egally con-

nected.
The sel ection sequence is ig nored , however the current menu selec-
tion remains In force.

ILLEGAL ORDINAL VALUE , INPUT REJECTED , ENTER TB TO CONTINU E
Th i s message resul ts if an a ttempt is made to inpu t an ord i nal
value whose characters are not numeric. The input is rejected
and the user is required to re-input the ordinal value correctly
via the keyboard.

ILLEGAL REJOINING AND/OR NOD E, SAVE REJECTED
Thi s message resul ts when , in an attempt to save a structure,
either an unmatched rejoining AND/OR node was detected or an
attempt to mix splitting and rejoining branches from the same OR
node was detected. In either case , the structure is displayed
with the node in question centered in the structure display area
surrounded by a red , blue , and white square. - The structure - —

remains In the ASSM in temporary status.

ILLEGAL SUCCESSOR NOD E, RESTART SELECTION SEQUENCE
This message will result if , when attempting to connec t two nodes,
it has been determi ned that the desired successor node cannot
l egally follow the selected predecessor node. The desired con-
nection is ignored, however , the curren t menu sel ecti on rema i ns
in force (i.e., the user may reselect two nodes).

ILLE GAL SYNTAX , INP UT REJE CTED
This message results if the ASSM el ement name typed in via the
keyboard contains illegal characters or does not begin with an
al pha betic charac ter. The messa ge also resul ts I f the syntax for
the CONSIDER OR node conditiona l expression is In error.

ILLEGAL TRAC KBALL SELECTIO N
This message will result if the user selects a point on the screen
outside the structure display area when indeed the selected point
should be within the structure display area . The Input is ignored ,
however the current menu sel ection remains In force.

E—5

~~ L. - -- - - -~~~~~~~~~~~~ - - - - ~~~~-~~~~~~~~~~~~~



IS PREDECESSOR NODE A REJOINING -OR- NODE, KEVIN YES OR NO
This message is displayed when the predecessor node of two nodes
to be connected is an OR node and no implicit determination can
be made as to its type -- rejoining or non-rejoining OR node.
The keyboard i s ena bled and the user mus t res pond wi th a YES (Y)
or NO (N) keyboard entry.

IS THIS A REJOINING -OR/AND- NODE?
This message is displayed when the user attempts the comment node
menu operation on an OR/AND node. The user must respond by
typing in YES (V) or NO (N) via the keyboard. If the response is
YES (Y) the operation will be ignored .

KEVIN DOCUMENT HEIGHT (INCHES)
Thi s message follows a request for entry of the document width when
the user chooses not to use standard document size for CALCOMP
output. The keyboard is enabl ed and the user inputs a one to four
digit number (real or integer) to be used for the height of the
~.ALCOMP output. Any number larger than 29.0 will be reduced to
29.0.

KEVIN DOCUMENT WIDTH (INCH ES )
The message results If the user chooses not to use standard
document size for CALCOMP output. The keyboard is enabl ed and the
user inputs a one to four digit number (integer or real ) to be
used for the width of the CALCOMP output. Any number larger than
50.0 will be set to 50.0.

KEVIN ELEMENT NAME OF DESIRED ELEMENT
This message Is displayed when the user selects a structure type
or when the user selects a screen position in the structure dis-
play area after having selected the desired node type. The key-
board is enabl ed and the user is required to enter the element
name of the desired el ement.

KEVIN ENTITY _TYPE ELEMENT(S) ASSOCIATED WITH THIS BRANCH ( )
Thi s message is displayed when the user attempts to connect a
CONSIDER OR node with its successor. The CONSIDER OR node is
associated with an ASSM element of type ENTITY CLASS. The user
responds by typing In the ENTITY_TYPE el ement(~) associated with
the selected branch.

KEVIN ORDINAL VALUE
This message is displayed when, i n crea ti ng a bra nc h of an OR
node , it has been determined that an ord i nal value is required .
The keyboard Is enabl ed and the user must respond with a one to
four digit keyboard entry.

E—6

~



1;
KEVIN RANGE VALUE(S) ASSOC IATED WITH THIS BRANCH

This message is displayed when the user attempts to connect a
CONSIDER OR node with Its successor. The CONSIDER OR node is
associated with an ASSM el ement of type DATA . The user responds
by typing in the RANGE values associated wi th the selected branch.

LOOP DETECTED IN THE STRUCTURE , SAVE REJECTED
This message results when , in an attempt to save a structure, a
loop was detected by the structure analyzer . The structure is
displayed with the node in question centered in the structure
d i splay area surroun ded by a red, blue, and white square. The
structure remains in the ASSM In temporary status.

MOVE HAS BEEN COMPLETED , CONTINUE
This message is displayed upon completion of a move node menu
operation . The message is intended to inform the user that the
node was successfully moved to its new screen position , and that
further processing may now continue.

MOVE SUBTREE OPERATION IS COMPLETE , CONTIN UE
This message is displayed upon compl etion of the move subtree menu
operation . The messa ge In form s the user tha t the move sub tree
operation was successfully compl eted and that further processing
may now continue.

NAME ALREADY IN ASSM AS SOME OTHER RSL NAME , NODE REJE CTED
Thi s messa ge resul ts when an el ement name keyed In by the user
already exists In the ASSM for some other use suc h as rela tions hi p
name , attribute name , etc . The i nput is ignored ; however, the
current menu selection remains in force.

NO COMMENT EX ISTS ON SELECTED NODE , R EQUEST IGNORED
If the user has selected a node which contains no comments for
display, the above message is displayed .

NO CONDITIONAL EXPRES SION ON THIS BRA FICH
Thi s messa ge resul ts if, after having selected the display branch
menu opera tion , the selected branch contains no conditional expres-
sion. The i nput is then rejected .

NO CURRENT STRUCTURE ASSOCIATED W ITH ELEMENT
This message results when an attempt Is made to displ ay the struc-
ture for an el ement selected by the user and no structure exists
in the ASSM for that element. An entry node is created for the
structure and displayed at the upper center portion of the struc-
ture displ ay area . The user may then add to the structure by
selecting desired node types via the menu .

E-7

-



—-

~~~~~~~~~~~~~~~~~~~~~~
I -

--.

~

.
-

NO GRAPHICS DATA ON STRUCTURE
This message is displayed when the structure for the element name
supplied by the user has no graphics coordinate data for its
associated nodes. The structure was created and entered in the
ASSM via the RSL translator.

NO ORDINAL , ENTER TRAC KBALL FOR COND ITIONAL EXPRESSION
If the user has selected the display branch menu operation and
the selected bt~anch does not contain an ordinal , then the above
message result-s.

NO STRUCTURE ASSOCIATED WITH SELECTED ELEMENT , INPUT REJECTED

This message results if an attempt is made to generate CALCOMP
output for a non—existent structure. The Input request is ignored.

NO STRUCTURE AVAILABLE , SAVE REJECTED
This message results when an attempt is made to save a nonexistent
structure. The request is simply ignored .

NODE DEFINITION IS INCOMPLETE , SAV E REJECTED
This message results when , in an attempt to save a structure, an
AND/OR node was detected as having only one incoming and one out-
going branch. The structure is displayed with the node in question
centered in the structure display area surrounded by a red , blue , and
white square. The structure remains in the ASSM in temporary status.

NODE OVERLAP IN STRUCTURE , REPEAT SELECTION SEQUENCE
Thi s message resul ts when an attempt is made to create/locate a
node which would overlap an already existing node in the structure
displ ay area. The user selection of the node location is ignored;
however, the current menu selection remains In force.

NODE WILL NOT FIT ON DRAWING AREA , TRY AGAIN
This message results when an attempt is made to create/locate a
node either outside the structure displ ay area or too near the
border surround ing the structure displ ay area . The user entry of
the node location is ignored but the current menu selection
remains in force.

NODES HAVE BEEN DISCONNECTED , CONTINUE
This message is displayed upon completion of a disconnect nodes
menu operation. The message Informs the user that the nodes were
successfully disconnected In the ASSM and that fur ther process ing
may now continue.

NON-EXISTENT NODE SELECTED, RESTART SELECTION SEQUENCE
T’i s messa ge resul ts when , In an attempt to select a node in the
structure display area , the screen position sel ected actually con-
tains no node. The position selection(s) is ignored , however the
current menu sel ection remains in force.

1___~
_
~

__
—~~~-- - —-- .—~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

T~~~~ ~~~~~~~~~~~~~~

NOT EXACTLY ONE OTHERWISE BRANCH ON OR BRANCH , SAVE REJ L~’ED

This message results when , i n an a ttempt to save a struc ture , it
was determi ned that an OR node (not a CONSIDER OR node) exists in
the structure which does not have one and only one OTHERWISE
branch. The structure is displ ayed with the OR node in question
cen-~ered in the structure display area surrounded by a red, blue ,
and whitc square. The structure remains in the ASSM In temporary status.

NOT EXACTLY ONE RETURN NODE ON THIS SUBNET , SAVE REJECTED
If, in the process of attempting to save a SUBNET structure , the
struc ture does not conta i n one and onl y one SUBNET return node,
then the above message results . The user must correct the situa-
tion before the structure can be saved .

SCROLL IS COMPLETE , CONT I NU E
This message Is displ ayed upon compl etion of a SCROLL net menu
op2ration . The message informs the user that the structure was
successfully scrolled and that further processing may now continue.

SELECT FROM MEN U WITH TRACKBALL
This message is displayed Immediately upon entering the RNETGEN
function. The only menu selection allowed at this poi nt is one of
the followi ng: one of the structure types, color sel ection , or
the STOP command.

SELECT NODE TO BE DI SCONNECTED
This message is displayed after selecting the first of the two
nodes to be disconnected . The user must respond with a trackball
selection of the desired node to be disconnected from the previously
selected r-l e.

SELECT SUCCESSOR NODE
This message is displayed after selecting the first (predecessor)
node of the two nodes which are to be connected . The user must
respond with a trackball selection of the desired successor node.

SELECTED NODE HAS BEEN DELETED , CONTIN UE
Th i s messa ge Is d is pl ayed u pon com pletion of a delete node menu
operation. The message informs the user that the node was suc-
cessfully deleted from the ASSM , and that further proc&-sing may
now continue.

SELECTED NODE HAS NO ASSOC IATED EL EMENT , CONTINUE

This message results when in the display node menu operation and
the selected node has no el ement associated with it in the ASSM .
The selection is Ignored and the current menu selection remains
in force.

E—9

— ~~-
-

~
—

~ ~1

SELECT NODES HAV E BEEN CONNECTED , CONT I NU E
Thi s message is d ispl ayed upon com ple tion of a connect nodes menu
operation . The message informs the user that the nodes were
successfully connected , and that further process i ng may now
continue.

SELECT - ENTITY CLASS, ENTITY _TYPE - ENTER VIA TRA C KBALL
When pos ition i ng a SELECT node on the screen , the above message is-
displ ayed. The user must respond with a trackball selection of one
of the two entries in the message.

SELECT - PROMPTER OR AUTOPLOT - VIA TRACKBALL
This message is displ ayed when the structure selected by the user
has no graphics coordinate data for its associated nodes. The
structure was created and entered in the ASSM via the RSL trans-
lator function. The user responds by selecting either the word
PROMPTER or the word AUTOPLOT In the di spl ayed message usin g the
trackball. If the PROMPTER selection is made , the user will be
requested to develop the structure graphics using the successor
node menu operation. If AUTOPLOT is chosen, the graphics coordi-
nate data are generated by REVS.

SELECT - TO POSITION - VIA TRACKBALL
This message resul ts when attempting to move a node or to scroll
the entire structure. The user responds by selecting, via the
track ball , a position on the screen to which he wishes a previously
selected node to be moved or, i n the case of a scrol l , to wh ich he
wishes a previously selected point on the structure to be moved
(SCROLLED).

STRUCTURE DOES NOT HAVE AN ENTRY NOD E , SAVE REJ ECTED
Thi s messa ge resul ts when , i n an attempt to save a struc ture ,
it has been determined that no entry node exists for the structure.
The structure remains in the ASSM in temporary status.

STRUCTURE ALREADY HAS AN ENTRY NODE , SEL ECTION RE JECTED
Thi s messa ge resul ts If an a ttempt is made to enter more than one
entry node for a structure. The i nput Is ignored ; however , the
menu selection remains In force.

STRUCTURE HAS BEEN SAVED , CONTINUE
Thi s mess age is displa yed upo n comple tion of a save net menu
operation . The message is intended to inform the user that the
structure was successfully entered in the ASSM in a permanent
status, and that further processing may now continue.

E-l 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- --
~~~~~~~~~~ - - —--


STRUCTURE NEED S ADDITIONAL GRAP H IC S DATA , SAV E RE JECTED

Thi s messa ge resu lt s when , in an attempt to save a structure, at
least one node was detected to have no graphics coordinate data .
The structure is displayed with the predecessor to the node in
question centered in the structure display area surrounded by a
red, blue , and white square. The structure remains in the ASSM
in temporary status.

SUCCESSOR NODE HAS D EEN DI SPLAYED , CONTINUE
Thi s message is displ ayed upon compl etion of a successor node menu
operation. The message is intended to inform the user that the
successor node operati on was successful , and that further process-
ing may now continue.

SYNTAX ERROR WAS DET ECTED IN EXPRESSION , INP UT REJECTED
This message results from a syntax error in a conditional expres-
sion on an OR/FOR branch. The line containing the error is dis-
played and the character in error is displ ayed in red . The desired
branch connection and assocIated conditional expression is rejected.
The user must re-Indicate nodes to be connected and subsequently
re-Input the conditional expression correctly.

THERE ARE NO MORE SUCCESSOR NODES ON SELECTED NODE, CONTINUE
Thi s messa ge a ppears i n the successor node menu opera ti on when
the sel ected node has no other successor nodes withou t gra phi cs
coordinate data . The node selection is ignored ; however , the
curren t menu sel ection rema i ns i n force.

UNDEFINED ELEMENT _TYPE FOR THIS STRUCTURE , INPUT REJECTED
This message results when the structure type sel ected by the user
has no corresponding element type defined in the ASSM. For
instance , if a su bnet struc ture was sel ected from the menu and
no el ement type SUBNET existc in the ASSM , then the above message
is displayed and the request is ignored .

WARNING ... PREVIO US STRUCTURE WAS NOT SAVED , RE-SELECT MENU
Thi s message results from an attempt to beg in/select another struc-
ture or to stop (exit RNETGEN) prior to saving the currently dis-
pl ayed structure . At this point the user may sel ect any appropriate
menu operation including the save net operation.

ZOOM-IN IS COMPLETE , CONTINUE
Thi s message is displ ayed upon compl etion of a ZOOM-IN on net menu
operation. The message is intended to inform the user that the
ZOOM-IN operation was successful , and that further processing may
now con ti nue.

E—l 1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— -



-
~~~

ZOOM-OUT IS COMPLETE, CONTINU E
F

This message is displ ayed upon compl etion of a ZOOM-OUT on net menu
operation. The message Informs the user that the ZOOM-OUT operation
was successfu l and that further processing may now continue.

-

ZOOM-OUT OR ZOOM-IN ON STRUCTURE, SELECT VIA TRACKBALL
-

Thi s message is d isplayed in order to prov ide the user wi th the
option of dIspl aying the selected structure in either its zoomed-

- out or Its zoomed-In form. The user responds with an appropriate
trackball selection .

i

i

)

F E-12

- A - - - - -______________ —


~~~~~~ - TT~~ r- f~~TTT -I r~~ ~

APPENDIX F
— RADX SUMMARY

F.l RADX RCL SYNTAX

Tabl e F.l contains the syntax of the RADX command statements pre-
sented in the BNF notation described in Appendix A. Each entry in the
table also incl udes the number of the section in this document which

— describes the corresponding syntax.

Figure F-l shows the syntax in diagrammatic form.



F’ TTI~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Tabl e F.1 MDX RCL Index

MDX RCL SYNTAX 
- 

SECTION

<RADX comand>::—
<set definition> <hierarchy definition> I (append definition>

I <list set> I ~1ist RSL> <list permission>

<plot set> J <ana lyze set> 6.0

<set deflnition’::
SET set-name <set description> 6.1

<set description>::—

<Set list> <set combination> <attribute qualification>
<relationship qualification> <structure qualification>

<hierarchy qualification> 6.1
<set l ist>::—

(
~<set id>~ . 6.1.1

<set Id >: :—

ALL
ANY

[SET ) set—name i 6.1
element—name ~element-type-name)1 

________

<set combination> ::=

<set id> ç OR ?<set id> . 6.1.2
~MINUS 11 ________

<attribute qualification ’::— value—name 1

<set Id> <connector> attribute-name [[<rel OP>) strinjl ]. 6.1.3

<connector>: : —

<positive connector’ <negative connector’ 6.1.3
<posit ive connector>: :

WITH I WHERE WHICH [IS] IN I FROM SUCH [THAT) THAT [IS] BY 6.1.3
<negative Connector>::-

WITh OUT J <positive connector> NOT I <positive connector’ NO 6.1.3
<rel op>::

> I ‘ I = I <> < 6.1.3
<relationshi p quallfication’::=

‘set Id> <connector> [MULTIPLE] relatlon_name{relation_optlOflal_WOrd}p(<Set id>]. 6.1.4

<structure qualificat ion> ::—

<set Id’ <connector> (MULTIPLE] 
~~~~~i~ED}1 

{relation-o~tional_worci}’~ [<set id>). 6.1.5

<hierarchy qualification >::—

<set Id> <connector’
~HIERARCHY },

hIerarchy-name . 6.1.7

<hierarchy deflnition> ::

{~~~ ARCHY} hierarchy-name {cset Id’ <binding relation’ <set Id’j . 6.1.6

<binding re lation’ ::—
relation-name {relatlon-o~t1onal-word}0 REFERS (rela tion_optional word~~

REFERRED ~re1at1on-o ptlona l ~~rd J0 6.1.6

F—2

~

- — - - - — - ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 7~~~~~~ •S =T - d - - -

- -
-
.

~~- --
- ~7P~~

Table F.I MDX RCL Index (Continued)

MDX ~ L SYNTAX SECTION

<append definition’::—

IAL L
APPEND ~ANY ~ ~<append ltenl>} . 6.2 .2

-
telecnent-type-name) 1 1

<append Item’::—
attribute—name I relation-nane [relation-optional-word]

I REFERS [relation-optional-word) REFERRED [relation-optional-word]
I ALL I NONE I STRUCTURE ATTRIBUTE I RELATION RELATIONSHIP

PRIMARY CO r-1PLEMENT~PY 6 .2 . 2
-~list set > : :— 6.2. 1

~PUNcH} <set Id> [<hierarchy list option>]. 2

<hierarchy list optlon’::=
g r (MAP ~~~

<positive connector’
~~ ARC HY~

hlerarchy -name[9ositlve connector> ~GROUP
~ J

6.2.3
1 -

-
(SEQU ENCE~1

<list RSL’::

{PUNCH},
RSL 1<R SL itm~i’].

RSL item>::—
element—type-name [S1Y~ARY] relation-name I attribute-name I ALL

I ELEMENT TYPE I RE 1ATI O~SH I P I RELATION ATTRIBUTE I SUMMARY 6.2.5

<list permission>:: —

~ PUNCH}
PEPMISSION GIVEN control-permission-name . 6 .2 .6

<p lot set>::
PLOT <set id~.f plot size>). . 6.2.4

<pl ot size’::—
WIDTH [—] number I HEIGHT [

~] number 6.2 .4

ana lyze set>::— BETA
ANALYZE (DATA FLOW) <set Id> [USING GPJIMA ‘]. 6.3—

IM PLIEDI 1

F-3

-
- -—-- -.— — - —..- —--,,——

~~

-,

~

- -
~~~~~ ~~,‘  ~~~~~~~~~~~~~~~~ ~--~- - ~~~~~ ~~~~~~~~ ~~~~~~ ~~.___ _ _ ,, ~,__ _ 

~~~ ~_‘__~_—v .—~--,_.=,_—-.- ~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

Fr.,!,,
- -

~

,- — - - -
~~

- J~—, — -— - - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

r
.,-

C,

-J

fil L1~11 I

I. ;~ 1. 
~~

I i I
T T T T T J ~~~



- _ -~-._=;.P- -
~~~~~-

~~~
—

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~iT_ r~

I~~~I ~~~~~~~r
~~~~~~ I i e I  I 0 0

—~

r~i1~~Ri I

I I ,.‘-.~ 
( -

~~(I, 2 ..~~~

r~i~~~~~~~~~~~~~ j
I I I I  I I~~II I V I 1 4 ~~~1 i.— i

F~5

~ 

~~~~~~~~~~ ~~~~~~~ 


— .~~~~~ —l—,--,-----——---..—-- fl’”
— .—-- —-——‘-~,----,-

~~~~~~~~~~~~~~ —‘-—•- 
~~.r ? .~n S ~~r— ~-,,- 

._ -•
~ 

__
~• 

___
~ _______ 

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—
_ _

LI

ii
__

~ I

; L J ~~ i~~~~~
_

U ø_ f It 1
~~~~
I

1’
_ T f T

x
I ,.- ’I I

C I W ~~~I0
4.

C

U.

F-6 

———--- -~~~~----~~~~~—-—~~-~~-—---- - - -  -- —-- — —~—,~~-----———— -- -- - .



—— — w— — 
—_--! _-.—--_,-.——-,- --.-—v- c—-----— 

-.‘‘~~~~~~~ “ - ~~~~~~ —Sw. — —‘ —, — .,—_--—-_—--— F

—

A

][
;

] C
~
] 

- - -

~~~~~~I

~~i(Li1JJ\
~~~~~~~~~~~~

1

~~L;JL;JL;JL~

J 
_ _

F-i



F . 2 RADX DIAGNOSTIC MESSAGES

A summary of the error messages that can be issued by the RADX function
is listed below. All error messages have the followi ng standard format:

*ERROR XXXX description.

The XXXX is a unique four digit number that appears with the description
of each of the foll owing messages.

0060 ILLEGAL KEYWORD WAS SPECIFIED .

0061 BAD ANALYZE COMMAND.

0090 SET TO BE LI STED DOES NOT EX I ST .

0091 BAD LIST SET COMMAND .

0092 NOT OPTION CANNOT BE APPLIED TO LIST BY HIERARCHY.

0093 INCOMPLEtE LIST SET BY HIERARCHY COMMA ND.

0094 REFERENC E TO UNDEFINED HIERARCHY .

0095 BAD LIST RSL SELECTION.

0096 INCORRECT LIST PERMISSION COMMAND .

0100 SET NAME CANNOT APPEAR IN THE ASSM .

0101 SET NAME MUST BE ALPHANUMERIC BEGINNING WITH ALPHA .

0102 SET NAM E MUST NOT BE AN RCL RESERVED WORD .

0120 REFERENCE TO UNDEFINED SET IN SET DEFINITION STATEMENT.

0180 INCOMPLETE SET QUALIFICATION COMMAND .

0181 NOT OPTION ILLEGAL WHEN QUALIFYING BY HIERARCHY .

0182 REFERENC E TO UNDEFINED HIERARCHY .

0183 BAD QUALIFY SET COMMAND .

0184 REFERENC E TO UNDEFINED OBJECT SET IN SET QUALIFICATION.
— 0210 REFERENCE TO UNDEFINED SET .

0240 INCOMPLETE APPEND STATEMENT.

-

~

-

~

_

~ 

---— - - -
~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~::~i~-

-

0241 REFERENCE TO UNDEFINED RSL ELEMENT TYPE.

0242 ILLEGAL SELECTION IN APPEND STATEMENT.

0280 SYMBOL STRING IS TOO LONG .

0281 CHARACTER STRING IS TOO LONG

0320 INPUT LINE BUFFER OVERFLOW (STATEMENT IS TOO LONG).

1080 AND-NODE USED TO SPLIT AND JOIN , OR NEITHER .
Can onl y be caused by system error .

1120 OR-NODE USED TO SPLIT AND JOIN , OR NEITHER .
Can onl y be caused by system error.

1200 AND-NODE USED TO SPLIT AND JOIN , OR NEITHER .
Can only be caused by system error.

1240 NO SUCCESSOR ON SPLIT OR-NODE.
Can only be caused by system error.

1241 OR-NODE USED BOTH AS SPL IT AND JOIN, OR NEITHER .
Can only be caused by system error.

1520 RADX ABORT FROM QQERRPRC .

Message issued when RADX has to abort because of system error.

1540 OUT OF SET STORAGE SPACE.
The user has exceeded the number of sets that can be defined
in a single activation of RADX .

1660 OUT OF GLOBAL WORKING SET SPACE.
Can onl y be caus ed by RADX sof tware error.

1790 ASSM DATA BASE ERROR DETECTED.
Ind ica tes tha t RADX is un ab le to retr ieve in forma tion from the
ASSM .

1800 ATTRIBUTE VALUE IS ILL-FORMED .

1801 ATiIUBUTE RELATIONAL OPERATOR IS ILLEGAL FOR ATTRIBUTE VALUE.

1802 ATTRIBUTE VALUE EXPECTED .

1804 ATTRIBUTE VALUE SPECIFIED IS ILLEGAL.

F—b

- -

~~~~~~~~~~~~~~~~~

— 
-

~~~~~~~~

1820 PRIMARY RELATION NAME STRING IS NOT IN THE ASSM.

Can only be caused by system error.

1821 PRIMARY RELATION OPTIONAL WORD STRING IS NOT IN THE ASSM .

Can only be caused by system error.

1825 PRIMARY RELATION INSTANCE IS NOT IN THE ASSM.
Can only be caused by system error.

1840 COMPLEMENTARY RELATION NAME STRING IS NOT IN THE ASSM.
Can only be caused by system error.

1841 COMPLEMENTARY RELATION OPTIONAL WORD STRING IS NOT IN ASSM .
Can only be caused by system error.

1842 PRIMARY RELATION FOR COMPLEMENTARY RELATION IS NOT IN ASSM.
Can occur because of an incompl ete RSL definition.

1846 PRIMARY RELATION INSTANCE IS NOT IN THE ASSM.
Can only be caused by system error.

1880 COMPLEMENTARY RELATION FOR PRIMARY RELATION IS NOT IN ASSM.
Can occur due to an incomplete definition of RSL .

1920 NO ELEMENT TYPES ARE DEFINED .

1960 NO ATTRIBUTES ARE DEFINED .

1961 NO APPLICABL E ELEMENT TYPES ARE DEFINED .

1962 NO ATTRIBUTE LEGAL VALUES ARE DEFINED .

1980 NO RELATIONSHIPS ARE DEFINED .

1981 NO COMPLEMENTARY RELATIO NSHIP IS DEFINED .

2000 NO LEGAL SUBJECTS ARE DEFINED .

2001 NO LEGAL OBJECTS ARE DEFINED .

2060 I NCOMPLETE DEFINE ~IIERARCHY STATEMENT.

2061 DEFINE HIERARCHY STATEMENT TOO LARGE.

2062 REFERENCE TO UNDEFINED SET IN HIERARCHY DEFINITION .

2063 REFERENC E TO UNDEFINED RELATION IN DEFINE HIERARCHY.

F-li

_ “- -- - - -- —
~~~~~~
- -,

~~~~~~
- - -

~~ ~~~
-----_ _- - —

~~
-_ -

~~~
- 

~
-- _



- .~~~~ ~~ ‘~~~‘~~~~~~~~~~~

2120 OUT OF DEFiNE HIERARCHY SPACE.
Too many hierarchies have attempted to be defined during a
single activation of RADX.

2121 TOO MANY START ENTRIES IN HIERARCHY.
Too many sets i n the h ierarchy defi n iti on have the same name
as the top-of-the-hierarchy.

2122 HIERARCHY TOO COMPLEX .
There are too many connections between the entries in the
hierarchy .

2180 NO MORE PROCESSING ON CURRENT PATH OF HIERARCHY .

Ind icates that an error was detected while traversing a hierarchy
and that the processing of the hierarchy is Incompl ete.

2200 TOO MANY LEVELS IN HIERARCHY.

The len gth of a h ierarc hy trace causes RADX stora ge of a pa th in
the hierarchy to be exceeded.

2201 LOOP IN HIERARCHY.
Indicates that a direct or indirec t loop has been found In a
requirements hierarchy .

2320 LOOP IN INFORMATION NET.
Ind icates that a loop was detected In a requirements hierarchy
while constructing the analysis information net.

2321 PATH IN INFORMATION NET TOO LONG.
Indicates that a path in the analysis information net is too
long to be stored in an internal RADX table.

2460 REPETITIVE DATA SETS (RDS) CONTAIN COMMON MEMBERS.

2540 DATA WITH USE=BETA INCLUDED IN OTHER DATA WITH USE=BETA .

2541 DATA WITH USE=GAMMA INCLUDES OTHER DATA .

2542 NO USE ATTRIBUTE.

2543 DATA SHOULD HAVE USE=BETA . VALUE ASSUMED .

2544 DATA SHOULD HAVE USE=GAMMA . VALUE ASSUMED .

2560 REFERENCE TO UNDEFINED SET IN PLOT COMMAND .

2561 PLOT DIMENSION TOO SMALL .

2562 PLOT DIMENSION TOO LAR GE -- REPLA C ED BY MAXiMUM .

F-12 

-~~~~~---- —--—-—---------—-~ —-——--—------ - --- - .~— -— _ --~ ————- - _ -.-.----- ~- ~~~~~~~~~~~~~~~~~~~~ _ .. _



- - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

i~~IUI~~~

2563 REAL NUMBER ILLEGALLY SPECIFIED .

2564 ILLEGAL SYMBOL SPECIFIED IN PLOT COMMAND .

2580 ILLEGAL PERMISSION SPECIFIED .

2600 LOCALITY OF REPETITIVE DATA SET AND MEMBERS NOT THE SAME.

2620 MESSAG E CONTENTS PASSING OUTPUT_INTERFACE NEVER ASSIGNED .

2621 MESSAGE CONTENT S OF OUTPUT_INTERFACE POSSIBLY NOT ASSIGNED .

2640 ELEMENT ON CONSIDER OR IS NO T OF TYPE DATA OR ENTITY _CLASS.

2641 ELEMENT ON CONSIDER OR DOES NOT HAVE TYPE ATTRIBUTE.

2642 ELEMENT ON CONSIDER OR HAS ILLEGAL VALUE FOR TYPE ATTRIBUTE.

2643 ELEMENT ON CONSIDER OR DOES NOT HAV E RANGE ATTR IBUTE.

2644 ILLEGAL NAME IN CONDITIONAL BRANCH OR IN RANGE ATTRIBUTE.

2645 ITEM IN RANGE ATTRIBUTE EXISTS IN ASSM .

2646 ITEM IN COND ITIONAL BRANCH EX ISTS IN ASSM.

2647 DUPLICATE NAME ENCOUNTERED ON CONSIDER OR NODE BRANCH.

2648 BRANCH ITEM NOT CONTAINED IN RANGE LIST ON CONSIDER OR.

2649 ALL ITEMS IN RANGE LIST NOT ENCOUNTERED ON BRANCHES .

2650 ENTITY_TYPE ON BRANCH DOES NOT EXIST IN ASSM.

2651 DUPLICATE ITEM IN RANGE LIST.

2652 ENTITY _CLASS IS NOT COMPOSED OF BRANC H ENTITY _TYPE.

2653 ALL ITEMS IN COMPOSE LIST NOT ENCOUNTERED ON BRANCHES.

2661 INFORMATION ALWAYS REASSIGNED BEFORE USED .

2662 INFORMATION SOMETIMES REASSIGNED BEFORE USED .

2663 INFORMATION SOMETIMES USED BEFORE ASSIGNED .

2664 INFORMATION ALWAYS USED BEFORE ASSIGNED .

2665 POSSIBLE USE AND ASSIGI’IIENT FROM DIFFERENT PARALLEL PATHS.

2666 POSSIBLE ASSIGNMENT FROM MORE THAN ONE PARALLEL PATH.

2667 USE AND ASSIGNMENT FROM DIFFERENT PARALLEL PATHS.

F-13

L. - ~~~

- -
~

— _
~
—, V~~~~~~~~ - ’ ~~~~~ ~~~~~~~~~ ,,r -~ -,-- - - - _-- -

- -

2668 ASSIGNMENT FROM MORE THAN ONE PARALLEL PATH.

2669 INFORMATION ASSIGNED BUT NOT USED .

2670 INFORMATION SOMETIMES ASSIGNED BUT NOT USED .

2671 SET ENTITY _TYPE WITHOUT SELECTED/CREATED ENTITY_CLASS.
2672 POSSIBLE SET ENTITY _TYPE WITHOUT SELECTED/CREATED CLASS.
2673 DESTROY ENTITY_CLASS THAT IS NOT SELECTED.

2674 POSSIBLE DESTROY ENTITY_CLASS THAT IS NOT SELECTED.
2675 DISJOINT INPUT MESSAGES REQUIRED AT THE SAME TIME.

2676 DISJOINT INPUT MESSAGES POSSIBLY REQUIRED AT THE SAME TIME.

2700 ENTITY TYPE NOT SET FOR ENTITY _CLASS BEING UPDATED .

2720 MESSAGE NEVER FORMED WHEN OUTPUT_INTERFACE TRAVERSED .

2721 MESSAGE POSSIBLY NOT FORMED WHEN OUTPUT INTERFACE TRAVERSED .

2740 ALPHA FORMS MORE THAN ONE MESSAGE THAT PASSES SAME INTERFACE.

2760 PARTIALLY REJOINING AND-CONSTRUCT.

2780 PARTIALLY REJOINING OR-CONSTRUCT.

2800 REFERENCED SUBNET DOES NOT HAVE A STRUCTURE.

2801 TOO MANY NESTED SURNET REFERENCES.
The number of SLJBNET references Is larger than that which can
be processed by RADX .

2820 INFORMATION PASSING INPUT _INTER FACE NOT USED .

F-b 4

--
~~~~~~~~~~~~~~~~~~TT~~~~~~~T~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

APPENDIX G

SIMGEN SUMMARY

G.1 SIMGEN RCL SYNTAX

Table G.1 contains a description of the syntax of SIMGEN RCL in the

BNF notation described in Appendix A. For eac h syntax production or set
of productions for the SIMGEN RCL commands , this tabl e also identifies the
number of the section in this document where the command Is described .

Figure G-l shows the syntax of SIMGEN RCL In diagrammatic form.



- 

T~~~~~~~~~~~~T~~~~~~~

’

~~~2~~~~ 

-- ---—- —-,

~

,u

~~

Tabl e G.1 SIMGEN RCL Index

SIMGEN RCL SYNTAX

<SIMGEN comand> ::=

<simulation scope declaration>

I <simulation type declaration>

I
<simulation identification> 7.3

<simulation scope declaration>::=
INCLUDE ALL [R_NETS].

I INCLUDE
E H~s] {R_Net_name

} ~

EXCL UDE
~~H~~~s]

{R_Ne t_name }
~

.
7.3.1

<simula tion type declaration>::=

ISIMULATION1 TYPE rj5i 5BETA k ’
LSIMULATOR J ~ j

~GAMMA
~ 1

7.3.2

<simulation identification>: :=

‘ID
[SIMULATION] ~IDENT [IS] identification-name.SIMULATOR !IDENTIFICATION ‘1 7.3.3

G-2 C l


~~~~~~~~~~I~T~ - --

~~~~~~~~~ L L ~i~J


F/S 9/2
USERS MAM L • S E P F

!LASSIFZED
77

m _ ~7~~~~~ 921_o2o_vo t _2
R W S

~
f lh1I “~ L660—75—~—0022 1I I

I I
I END
I FILMD

12— fl
DDC

I
I
!

H”-
/

I .0 ~~ ~2.8
~I2.5

‘
~- ~~ 2.2L

~~° 20
I L

• _________

• (JEll ’
.25 IIIlli~ HIll~

MICROCO PY RESOWT IO~4 TLST CHIR1
• .

~ .~ •! ~~~~~~~~~

G.2 BETA/GAMMA FILE ACCESS SYNTAX

Tabl e G.2 contains a description of the syntax of the REVS sta tements
used to perform file operations in BETA and GAMMA executabl e descriptions .
The syntax is presented in the BNF described ~n Appendix A. As noted in the
table , these statements are explained in Section 7.1.1.

Figure G-2 presents the syntax of the file access statenents In
diagramatic form.

_ _ _ _ _ In

G-5

.~~~~~~...4 ~~~~~~~~~
‘

~~~~
“

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~ ~~~~~~~~~~~~~~~ 
—

Table G.2 BETA/GAI~U1A FILE Access Index

FILE ACCESS SYNTAX no N

<file access statement>::=
<create statement>

I <destroy statement>
<select statement>

I <for each statement>
<create ~~~~~~~~~

CREATE file-name RECORD

<destroy statement>::=
DESTROY file-nam e RECORD

<select statement>: :=

SELECT 
{
~~~T}

l
RECORD FROM file-name

[SUCH THAT (cBoolea n expression>))

<for each statement>::r
FOR EACH file-name RECORD (SUCH THAT (<Boolean expression>)) DO

<PASCAL statement> ENDFOREACH 7.1.1

NOTE: <Boolean expression’ is defined in the RSL syntax presented in Appendix D.
<PASCAL statement> is defined to include <file access statement> as a
legal form.

G-6

(L~
I5~~ IIoc. I S0*

.5I, .5

C
0.5

— C
.5 l.a

g a)
‘I

~L.~J f l~J

‘‘ IT

~II1111 T
c.’JI Q I

5-• 1 0 1
~.w+1 I ’ ~~ I 5, •0—C C
-J~~~ a)C E C .5- ~,. I-.5 5..

.5 0)•5 •. ..,
~~~
.- .5-..5 .5 .c LI...5 ~.. 5.. U

U .5 —.. .! ~
I-V ..

—5 5 5 —

T T •1-~T .5
C—

.5
C

.5

.5

.5 .5 -.~~II 

.5 C
5...5 

5. —45 .5 
1.
0

— .5 55. £

G-7



~~~~~~~~~~~~~~~~~~

G.3 TEST RECORDING ACCESS SYNTAX

Table G.3 contains a description of the syntax of the REV S statements
used to access RECORDINGs in PERFORMANCE_REQUIREMENT TESTs . The descrip-
tions are in the BNF described in Appendix A. As noted in the table, these
statements are explained In Section 7.1.2.

Figure G-3 presents the syntax of these statements in diagramatic
form.

G-9

fri~:TT~ ~~~~~~~~~ 7~

TABLE G.3 TEST Recording Access Index

RECORDING ACCESS SYNTAX

<recording access statement>::
<retrieve recording statement>
<for each recording statement>
<select recorded file statement>

f <for each recorded file statement’
<retrieve recording statement>::—

~FIRST~
1

RETRIEV E
~NEXT ~ RECORDING FOR validation-point-name

[SUCH THAT (<Boolean expression>)]

<for each recording statement>::—

FOR EACH validation-point-name RECORDING
[SUCH THAT (<Bool ean expression>)]
DO <PASCAL statement> ENDFOREACH

<select recorded file statement>::

SELECT {FIRsT}i RECORD FROM valldation-polnt-name.flle-name

(SUCH THAT (<Boolean expression>)]

<for each recorded file statement>::-
FOR EACH validation-point-name.file-name RECORD

[SUCH THAT (.cBoolean expression>)]
DO <PASCAL statement> ENDFOREACH 7.1.2

NOT: <Boolean expression> is defined In the RSL syntax presented in Appendix D.
<PASCAL statement> Is defined to Include <recording access statement’ as
a legal form.

G-l 0

~ . - - .n... -.~~~~ ~~~~~~~
- •-

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~5-TT!~~. ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

riI~~I I
. .:~—I

XII
;- 

~~
5~ l5 4-’

0
5.I .5

ii ill
~

V V
• £ CV

~ .! .5.U 5V 55.~~~ +5 l.a 5.1C C 
.5_f_T—J 

~
5’ H
0 i.

V

11

—4



, —,,-—-
~*~

- 
~~~~~~~~~~~~~~~~ ~~~~~~~~

‘
~~“

G-12

—

~~

~~~ --- - - - . -~~- -~. -~ -~ - - - - - -- -
-

-

- - .~~ - -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .- - --,---~~— -- .  .—.-~ ~~~~ 
_ __._ _..

-S_-.---- _

~~~~~~~~~~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

G. 4 SIMGEN DIAGNOSTIC MESSAGES

SIMGEN RCL Diagnostics

The following errors are detected by SIMGEN in response to the user

input RCL comands. Each of these error messages will be preceded by
ERROR and followed on the next line by a diagnostic message of the form:

SYMBOL: last-symbol -scanned;

giving the last symbol scanned in the RCL comand before detection of the
error.

CONFLICT IN LIST TYPES
INCLUDE and EXCLUDE l ists cannot both be used In a single
generation.

ERROR IN INITIALIZATION
SIMGEN could not obtain a pointer to element type R_NET.

INPUT EMPTY
No coniiiands have been given to enable generation of a simulation.

PERIOD MISSING
The last inpu t statement did not contain a period terminator
(non—fatal).

UNRECOGNIZABLE STATEMENT

UNRECOGNIZABLE SYMBOL

After completion of SIMGEN parsing , the following diagnostic messages]
may occur.

SIMULATION SCOPE (PARTIAL OR ENTIRE) NOT DEFINED .
SIMULATION GENERATiON CANNOT BE PERFORMED.

SIMGEN did not receive an RCL Input specifying which R_NETs were to
be included In the simulation.

SIMULATION TYPE (BETA OR GAMMA) NOT SPECIFIED.
SIMULATION GENERATION CANNOT BE PERFORMED .

SIMGEN did not receive an RCL inpu t specifying whether the simulation
should be a beta type or a gama type.

Data Base Analysis Diagnostics

Prior to translating the contents of the ASSM Into executable simula-
tion code SIMGEN executes the ANALYZE capability of RADX (see Section 6.3).

G- 13

-~~~~~~~~~ . .—~~-— -—.
~~~~~~~~~~~~ 

-
~~~~~ - -S -- -~~~~~~~ ~~- . -—----~~~~~ -


— --- ~- - -
.
~~~~~~~~~~~~~

. --~~~~~~~~
- . --

- - - 

- 

- - . -
.
.
~~~~~

----—

Diagnostics output by RADX in support of SIMGEN are documented In Appendix
F, SectIon 2.

SIMGEN Translation Diagnostics

The following errors at’e detected by the SIMGEN function while construct-
ing an executable simulation from the contents Of the ASSM.

A FOR_EACH WITHIN A PR TEST HAS NO MATCHING ENOFOREACH

This message will be accompanied by the name of the PERFORMANCE
REQUIREMENT.

ALPHA alpha-name HAS NO

The BETA or GAMMA attribute for the named ALPHA cannot be found
In the ASSM. SIMGEN has represented this ALPHA with a dutm~yprocedure in the simulator program.

ASSM ERROR DETECTED AT CHECK POINT number.
SIMGEN encountered an error in accessing the ASSM . The number
indicates the point in the process at which the error occurred.
Report the error to the REVS maintenance group.

ENDFOREAC H DOES NOT HAVE A MATCHING FOR_EACH
This message will be accompanied by the name of the PERFORMANCE_
REQUIREMENT.

EVENT NAME NOT FOUND FOR R_NET R-Net-name.
There is no enabl ing event for the R_NET.

PERFORMANCE REQ(J IREMENT COULD NOT BE ACCESSED IN ASSM
Thi s message will appear when, through some internal system
error , the PERFORMANCE REQUIREMENT could not be accessed in the
ASSM.

PERFORMA NCE_REQUIREMENT TEST COULD NOT BE ACCESSED IN ASSM
This message will appear if there is no TEST or if, through some
internal system error , the TEST could not be accessed in the ASSM.
The message will be accompanied by the name of the PERFORMANCE_
REQUIREMENT.

SIMGEN ASSM ERROR PRINT DISABLED.
The printing of ASSM access errors has been disabl ed after the
detection of twenty-five errors.

G- 14

- --~~~~~~~- -~~~~~~~~ —- -— --- ~~~~~~~
--

~~~~~~~~~~~~
-
~~~~~~~~~

- --~~~~~~~~ - - .- -

- - - -- —~~~~~~—~~--~~~—---— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
r - - ~ —

~~~~~
r - - .  

~~~~~~~~~~~ 

*

SYNTAX ERROR IN PERFORMANCE REQUIREMENT TEST
This message will be accompanied by the name of the PERFORMANCE
REQUIREMENT and the name of the function being translated. In
addition the name of the VAL IDATION POINT, the name of the VALI-
DATION_POINT FILE, and the number oT the word in error will appear
if known and applicable.

TEST IS NOT IN THE ASSM OR IS NOT AN ATTRIBUTE
This message will appear when the attribute TEST has been deleted
from the language or when TEST is no longer an attribute.

(CREATE 1

*l
~FOR EACH * STATEMENT IN *al pha_name* CONTAINS AN ERROR: OPERAND
~SELECT

jdentjfjer NOT FOUND IN DATA BASE.
A statement in the BETA/GAMMA text of the indicated ALPHA has
an operand that is not in the AS~1. The statement Is treated
as PASCAL .

(CREATE)l

~~~~~~~~~ STATEMENT IN *alpha_name* CONTAINS SYNTA X ERROR.

~SELECT 
~l
A statement in the BETA/GAMMA text of the indicated ALPHA is not
consistent with the syntax defined In Section 7.1.1.

CREATE
*jdentffjer* IS ILLEGAL OPERAND OF* * STATEMENT IN *al pha...name*

SELECT

A statement in the BETA/GAMMA text of the indicated ALPHA has an
operand that is not of type FILE. The statement is treated as
PASCAL.

*j dentffj er * IS {~~~~~T~y} *alpha_name*.

NOT CONSISTENT WITH SPECIFIED REQUIREMENTS.
SIMGEN has detected the ind icated relationship In the BETA/GAMMA
text of the named ALPHA. The relationship is not included in the
requirements that have been specified for this ALPHA.

*identjfler* WAS NOT ~~~~U~
N
BY}~ *al

pha_n~~e*.

For the indicated ALPHA , there is an INPUTS or OUTPUTS relation-
ship , with the identifier as the object, that Is not impl emented
in the BETA/GAMMA text.

G- 15 

--- -~~~— - -“ -- -~~ - ----- JA



— — -——
~~~

-

~~~~~~~~

m

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

OPERAND OF *{C1~EAtTE~~ * NOT FOUND IN *alpha_name*

DELETED FROM ALPHA TEXT .

There is a syntax error in a CREATE or DESTROY statement in the
BETA/GAMMA text of tne Ind icated ALPHA . S1MGEN was unable to
find the operand of the statement , and the operator (e.g.,
CREATE) w~s not translated.

0342 DATA-ITEM ENUMERATED TYPE HAS NO ATTRIBUTE OF RANGE
A data element has the attribute TYPE with a value of ENUMERATION

• but the data element does not have the attribute RANGE.

0343 DATA-ITEM HAS ENUMERATED TYPE BUT NO RANGE ATTRIBUTE AADBPTR
A data element has the attribute TYPE with a value of ENUMERATION
but the definition of the attribute RANGE cannot be located in the
ASSM. Either it has been del eted from the language , RANGE is
defined in the ASSM but not as an attribute, or there has been a
system/hardware error.

0344 DATA-ITEM HAS AN UNKNOWN TYPE ATTRIBUTE STRING
A data element has the attribute TYPE but the value Is not REAL,
INTEGER, BOOLEAN, or ENUMERATION .

0345 DATA-ITEM TYPE ATTRIBUTE HAS A BAD STRING SEGMENT
A data element has the attribute TYPE but the value could not be
accessed from the ASSM due to a system/hardware error.

0346 DATA-ITEM HAS NO ATTRIBUTE OF TYPE
A data element does not have the attribute TYPE.

0347 NO TYPE ATTRIBUTE AADBPTR
The definition of the attribute TYIE could not be located In the
ASSM. Ei ther it has been del eted from the language , TYPE is
defined in the ASSM but not as an attribute, or there has been
a system/hardware error.

0521 DATA-ITEM INITIAL VALUE HAS A BAD STRING SEGMENT
The value of the attribute INITIAL VALUE for a data element
could not be accessed due to a faulty ASSM.

0523 NO INITIAL VALUE ATTRIBUTE AADBPTR
The definition of the attribute INITIAL VALUE could not be located
in the ASSM . Either it has been del ete~ from the language,INITIAL VALUE Is defined in the ASSM but not as an attribute, or
there has been a system/hardware error.

G-16

—--- - -

~~•~•~ • ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~ - -
~~~~

- - 
~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~:

- 
• 

- -

0681 LOCALITY IS NOT AN ATTRIBUTE

LOCALITY is defined in the ASSM but not as an attr ibute.

• 0682 LOCALITY IS NOT IN THE ASSM
The definition of LOCALITY has been deleted from the language.

0683 TYPE IS NOT AN ATTRIBUTE
TYPE is defined in the ASSM but not as an attribute .

• 0684 TYPE IS NOT IN THE ASSM
The definition of TYPE has been del et l from the language.

0685 RANGE IS NOT AN ATTRIBUTE
RANGE is defined in the ASSM but not as an attribute .

0686 RANG E IS NOT Il’I THE ASSM
The definition of RANGE has been deleted from the language.

0687 INITIAL_VALUE IS NOT AN ATTRIBUTE
INITIAL_VALUE is defined in the ASSM but not as an attribute.

0688 INITIAL_VALUE IS NOT IN THE ASSM
The definition has been del eted from the language.

0701 FILE NAME STRING IS BAD

The name of a FILE element could not be accessed due to a system/
• hardware error.

0741 MESSAGE NAME STRING IS BAD
The name of a MESSAGE element could not be accessed due to a
system/hardware error.

0742 INTERFACE NAME STRING IS BAD

The name of an INTERFACE el ement could not be accessed due to a
system/hardware error.

0801 FILE LOCAL ITY ATTRIBUTE STRING IS BAD
The value of the attribute LOCALITY of a FILE element could not
be accessed due to a system/hardware error.

0802 ATTRIBUTE LOCALITY IS ABSENT
The definition of the attribute LOCALITY could not be located in
the ASSM. Either it has been del eted from the language , LOCALITY
is defined in the ASSM but not as an attribute, or there has been
a system/hardware error.

0821 ENUMERATED TYPE VALUE STRING HAS MOR E THAN AAST RLEN CHARCTR S
The length (in characters) of an enumeration value name Is more
than 60 characters. (See the definition of the attribute RANGE.)

G-l 7

S - - .

~

- --

~ 

~~~~~

~~~~~
-- ----- - - •- - -- - -- - -- “ -

~~~~
•-•

~~~~ 
- -



~ 

— —- r ~~~~~ /

0822 ENUMERATED TYPE RANGE SEGMENT IS BAD - 
-

The value of the attribute RANGE could not be accessed due to a
system/hardware error.

0823 ENUMERATED TYPE ENDED UNEXPECTEDLY (NO DOUBLE QUOTE)
The syntax specifying the value of the attribute RANGE Is
incorrect indicating a system/hardware error.

0824 ENUMERATED TYPE DOES NOT BEGIN WITH DOUBLE QUOTE
The syntax specifying the value of the attribute RANGE Is
incorrect indicating a system/hardware error.

0825 ENUMERATED TYPE HAS AN EMPTY (ZERO-LENGTH) VALUE
The syntax specifying the value of the attribute RANGE is
incorrect indicating a system/hardware error.

0841 CLASS DATA ITEM NAME STRING IS BAD

The name of a DATA element could not be accessed due to a system/
hardware error.

0842 ENTITY_TYPE NAME STRING IS BAD
The name of an ENTITY TYPE element could not be accessed due to
a system/hardware error.

0843 ENTITY CLASS NAME STRING IS BAD
The name of an ENTITY_CLASS el ement could not be accessed due to
system/hardware error .

0844 CLASS FILE NAME STRING IS BAD
The name of a FILE element could not be accessed due to a system/
hardware error.

0861 INSTANCE FILE NAME STRING IS BAD
The name of a FILE element could not be accessed due to a systecn/
hardware error.

0881 INSTANCE DATA-ITEM NAME STRING IS BAD
The name of a DATA element could not be accessed due to a system/
hardware error.

0941 SIMPLE DATA LOCALITY STRING IS BAD
The value of the attribute LOCALITY could not be accessed due to
a system/hardware error.

0942 ATTRIBUTE LOCALITY IS ABSENT
The definition of the attribute LOCALITY could not be located in
the ASSM . Either it has been deleted from the language , LOCALITY
is defined in the ASSM but not as an attribute, or there has been
a system/hardware error.

G-l 8 

~~~_•~~~~~~~~~~~ -~~~- - - - - - .•


:~~T~
—
~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V

- O~43 SIMPLE DATA NAME STRING IS BAD
¶ i..; The name of a data element could not be accessed due to a system/

• hardware error.

5000 VAL IDATION POINT NAME STRING CANNOT BE ACCESSED IN ASSM
• The name of a VALIDATION_POINT could not be accessed due to a

system/hardware error.

• G-l9

_ i -- - • - ~~~~~~~~~~~~~

r~~~~
VS
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

APPENDIX H

SIMXQT SUMMARY

H.l SIMXQT RCL SYNTAX

Table H.l contains a descrIption of the syntax of SIMXQT RCL in the
BNF notation descr ibed In Appendix A. For each syntax production or set
of productions for the SIMXQT RCL comands, this table also Identifies the
number of the section in this document where the coninand is described.

Figure H-i shows the syntax of SIMXQT RCL in diagramatic form.

H-I

•

~

•

~ 

~~~~~~ - ---- - - - -~~~~~~- -  ~~~
-- - - -— -

~~~~~--- - -~~~~~~~~~~~~~~~~~~~~~~~ - --



_ _  _ _  - ~~~~~--—~----~~ - -
~~~_ _ _  

___ -
-
~~ ~~~ - i~~

Table H.l SIMXQT RCL Index

SIMXQT RCL SYNTAX ~jiJB
I
~
N

<SIMXQT coninand>::=
<start time declaration>

I <end time declaration>
I <simulation run identification> 7.4

<start time declaration>::=

~~~~~~ 
START [TIME] = real -number . 

1
<end time declaration>::=

~SIMULATI0N~ END [TIME] = real-number . 
7.4.1

<simulation run identification>: :=
r —‘ (ID
1
SIMULATION

1 RUN ~IDENT ~ [IS] Identification-name.
L UDENTIFICATION ~ i 7.4.2

H-2

_ _ _ _ _  - - - - • •.- - •  - -~~~~~~
- --- - -



TiTT1~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ T T~:!!~~ ~~~~~~~~ ~~

1 4 1
I k i

E U
I I
III
I~~~~~I V

I.,

.,-

I—.
’ 

d—~---.~ 
Q

~~~~~~~~~~~~~~~~~~~~~~~~~~~

I- C

p.

[
~] [~

] ¶1


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _

H.2 SIMX QT DIAGNOSTIC MESSAGES

The following errors are detected by SIMXQT in response to the user
input RCL coninands. Each of these error messages will be preceded by
*EpJ(OR* and followed on the next line by a diagnostic message of the form:

SYMBOL: last-symbol -scanned;

giving the last symbol scanned in the RCL ccnmiand before detection of the
error.

ERROR IN REAL NUMBER

INPUT EMPTY

• PERIOD MISSING

TIME MUST BE LARGER THAN -l .0E4

UNRECOGNIZABLE STATEMENT

UNRECOGNIZABLE SYMBOL

The execution of the simulation requires the input of both a start
and end time, with the end time greater than the start time. If these
inputs have not been correctly provided, the following diagnostics will be

— produced:

END TIME NOT SPECIFIED

START TIME NOT SPECIFIED

START TIME >= END TIME



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ “~~~~~ ‘ -~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •—~~~~~~~~~~~
-•---_-_,-- ~~~~~~~~~~~~~~~~~~~~~

- -
~~
—•

-— ,- — — - - ——--—--—— --.—-•-‘ ~~~~~~~~~ •r . , - _ e ~ ~~~ Is . -~r•.;_-—.— — — —

H.3 SIMULATOR PROGRAM DIAGNOSTIC MESSAGES

Initialization Diagnostics

During the in itialization phase of a simulator program execution, the

user suppl ied start and end times are read Into the simulator program from
a file (the EESUIF) constructed by the SIMXQT function. The following
diagnostics may occur:

START TIME NOT INPUT
No start time was found on the EESUIF.

END TIME NOT INPUT
No end time found on the EESIJIF.

The simulator program initialization also reads another file, the EEDF, con-
structed by SIMGEN. In reading this file, simulator initial ization will
verify that it Is the correct file. The following diagnostics may occur:

NO EEDF FILE PROVIDED
No EEDF file is available.

EEDF FILE DOES NOT MATCH THE SIMULATION PROGRAM TEXT
The EEDF file read In was not created by the same SIMGEN execu-
tion as was the simulator program.

If any of the above errors was detected during Initialization , the
following diagnostic will be output and the simulator program will not be
executed.

SIMULATION PROGRAM CANNOT BE EXECUTED

Execution Diagnostics

ATTEMPTED BACKUP IN TIME, EVENT IGNORED, TIME = simulation-time

ATTEMPTED CAUSE OF AN UNKNOWN EVENT, EVENT IGNORED , TIME = simulation-time

EVENT NAME IS event-name
An attempt has been made to cause an event which Is not known to
the simulator event manager. The event will be ignored.

EVENT NAME IS event-name EVENT TIME desired-event-time
An attempt has been made to cause an event to occur at an earlier
time than current simulation time . The event Is ignored.

.— ~
-----.--- — ~~~~~~ -~ ~~~~~~~

V ALIDATION POINT = xxxx i
NO OWNER SELECTED FOR

A VAL IDATION_POINT attempted to RECORD DATA which Is either
CONTAINED in a FILE or ASSOCIATED with an ENTITY TYPE or ENTITY_
CLASS and the recording was attempted without a FILE record or
entity having been previously selected; or the VALIDATION_POINT
attempted to RECORD a FILE ASSOCIATED with an ENTITY_TYPE or

- ENTITY_CLASS without an entity having been selected. This message
will be preceded by a message identifying the name Of the
VALIDATION POINT. (Note that xxxx is the ordinal of the VALIDATION_
POINT at w~Ich recording was attempted.)

4001 NO SET TYPE FOR A NEW ENTITY CLASS INSTANCE
An instance of an entity-class was created and Is now being de-
selected but a SET operation has not been done to establish the
type.

4021 DATA—SET INSTANCE STATUS IS OLD BUT NO INSTANCE PRESENT
A system internal error occurring when an entity or FILE record
to be de-sel ected is marked as existing but the pointer to it Is
NIL.

4061 SELECT NEXT WITH NO SELECT FIRST OR WITH NO FOUND CHECK
A SELECT wi th a NEXT option has encountered a ~no current instance s
condition. Thi s may occur if a SELECT wi th a FIRST option has not
preceded it or if the global data element RECORD_FOUND has not been
monitored properly to determine that no insta nce is selected.

4201 DATA-SET HEADER BEING LOADED INTO FROM INSTANCE IS NOT EMPTY
An error detected on the selection of an entity which ASSOCIATES
a FILE; there is already a FILE in existence which Is not
attached to an entity. This can occur by creating a FILE without
having previously selected or created the entity and then per-
forming a SELECT or FOR EACH on the ENTITY_CLASS or ENTITY_TYPE.

4241 DATA—SET BEING COPIED INTO IS NOT EMPTY
A system internal error occurring on the establislinent of a
MESSAGE.

4281 INSTANCE TO BE DESTROYED IS LOCKED BY A FOR—EAC H
A DESTROYS ENTITY CLASS has been encountered inside of a FOR EACH
operation on a FIt~ ASSOCIATED with the currently selected entityof the ENTITY CLASS.

H-8

- - - - - • - - -- - — -•---- — - - - - -


~~~~~~~~~~~~~~~~~~~~~~~~~~~

4301 DATA-SET HEADER TO BE DESTROYED IS NOT EMPTY
A system internal error occurring on the destruction of a MESSAGE
or ENTITY TYPE (or class) which MAKE a FILE or ASSOCIATES a FILE,
respectIv~Iy. The condition is abnormal because the FILE should
have been destroyed earl ier.

4341 ATTEMPT TO SAV E ENTITY_CLASS WITH NO ENTITY_TYPE SELECTED
A system internal error occurring on the save portion of a FOR
EACH operation.

4342 ATTEMPT TO SAVE ENTITY TYPE WHICH IS NOT SELECTED
A system internal error occurring on the save portion of a FOR
EACH operation.

4343 ATTEMPT TO SAVE DATA—SET WHICH HAS NO VALID INSTANCE SELECTED
A system internal error occurring on the save portion of a FOR
EACH operation.

4361 ATTEMPT TO RESTORE ENTITY TYPE WHICH IS NOT IN ENTITY_CLASS
A system internal error occurring on the restore portion of a FOR
EACH operation.

4362 ATTEMPT TO RESTORE DATA-SET WHICH WAS NOT SAVED
A system internal error occurring on the restore portion of a FOR
EACH operation.

4363 ATTEMPT TO RESTORE A NON-EXISTENT INSTANCE
A system internal error occurring on the restore portion of a FOR
EACH operation.

4401 DESTROY ENTITY_CLASS WITH NO ENTITY SELECTED
An error occurring on the destruction of an instance of an entity—
class when no instance is selected.

4402 DESTROY DATA—SET WITH NO INSTANCE SELECTED
A DESTROY operation on a FILE has been encountered when no record
is sel ected in the FILE.

4441 SET TYPE ON ENTITY_CLASS
A system internal error - SETS has been attempted on an ENTITY_
CLASS .

4442 SET TYPE ON FILE OR INTERFACE
A system internal error - SET S has been attempted on a FILE or
interface.

H-9 

-~~~~- • - - - - --~~ - - -~~~~~~~~- - - -- --- - •~~~~~ - - •“ -  - -~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~-



4443 SET TYPE WITH NO NEW OR SELECTED ENTITY
An error occurring when a SETS ENTITY_TYPE o~eration is done
without an entity being s~1ected .

4444 SET TYPE WITH AN INVALID INSTANCE SELECTED

An error occurring when a SETS ENTITY_TYPE operation is done
without an entity being sel ected .

4501 ATTEMPT TO TERMINATE A NON-OUTPUT-INTERFACE
A system internal error occurring when a data-set which Is not
an interface is terminated.

4502 A MESSAGE WAS NOT FORMED ON AN OUTPUT_INTERFACE
An error occurring when an OUTPUT INTERFACE Is encountered
without a MESSAGE having been FORifed for the interface.

4541 DATA—SET TYPE INCONSISTENT WITH CURRENT INSTANCE POINTER
A system internal error occurring on the restore portion of a
VALIDATION POINT execution. The data-set (or specifically - file)
name saved during the save portion of the VALIDATION_POINT execu-
tion does not agree wi th the data-set name passed to the restore
function. This is the first of two different cross checks to
guarantee restoration of the same data-set as that saved .

4542 CURRENT STATIC DATA POINTER IS NIL

A system internal error occurring on the restore portion of a
VALIDATION_POINT execution. The pointer to a dynamically allo-
cated record of the file ’s original enviroment is NIL. This
condition is abnormal because the record is al located and the
pointer set during the save portion of a VALIDATION_POINT execu-
tion (which precedes the restore).

4543 DATA_SET TYPE INCONSISTENT WITH STATIC DATA POINTER
A system internal error occurring on the restore portion of a
VALIDATION_POINT execution. The data-set (or specifically - file)
name saved during the save portion of the VALIDATION_POINT exec u-
tion does not agree with the data-set name passed to the restore
function. Thi s is the second of two different cross checks to
guarantee restoration of the same data-set as that saved.

H-i 0

-

~ 

-• --



APPENDIX I

SIMDA SUMMARY

1.1 SIMDA RCL SYNTAX

Tabl e I.l contains a description of the syntax of the SIMM RCL com-
mand In the BNF notation described in Appendix A. The section number
appearing in the tabl e identifies the section of this document where the
coninand Is described.

Figure 1-1 shows the SIMDA RCL syntax in diagramatic form.

I—i



Table 1.1 SIMDA RCL Index

SIMDA RCL SYNTAX SECTIOI

— 
NUMBER

<SIMDA coninand>::=

TEST ALL rPERFORI4ANCE REQUIREMENT 1
LPERFORMANCEJ

~
EQU IREMENTSJ

TEST ALL EXCEPT rPERF0RMANCE REQUIREMENT 1
LPERFORMANCCREQU IREIIENTSJ

{ performance-requirement-name } 
~~~

.

T T rPERFORMANcE REQUIREMENT 1 iES ~~~ 7.5

1-2

~~- —----~~--—-—-- -
— • ---- - --—

~

- - - ---. — -•-- -•-- — --

• ~~~ ~~~~~~~~ -‘

~
_

~~

‘
+ 1I I
I- az ~ 0

‘a-

U
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1—3

_ _  -~ - --- -~~~~~-- ---



1.2 SIMDA DIAGNOSTIC MESSAGES

The Simulation Data Analysis Function (SINDA ) must read in a file ,
the EEDF, created by SIMGEN to obtain the names of PERFORMANCE_REQUIREMENTs
included in the simulation. If the EEDF file is missing or contains no
PERFORMANCE RE~JIREMENT names, then SIMDA will output the followi ng diag-
nostic and will terminate.

NO PERFORMANCE_REQUIREMENTS AVAILABLE FOR TESTING

The fol lowi ng errors are detected by SIMDA in response to the user
input RCL conrands. Each of these error messages will be preceded by
*ERROR* and followed on the next line by a diagnostic message of the form:

SYMBOL: last-symbol-scanned.

giv ing the last symbol scanned before detection of the error.

CONFLICT IN LIST TYPES

Only one form of the TEST list may be given. If ALL or ALL EXCEPT
was used , no other list may be specified.

INPUT EMPTY

PERIOD MISSING

The last Input statement did not contain a terminating period .
This error does not affect the processing of that statement.

UNRECOGNIZABLE STATEMENT

UNRECOGNIZABLE SYMBOL

—1

1-5 Nfl ILIMD

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - •~~ - - ~~~~~~~~~~~~~~~~~~~~ - - . - ~-~~- -- 



_ _ _ _ _ _ _  

- — -

~

-

~~ L~~~~~~~
- •
~~~~~~T~~~~~~~~ir~~~ 

—

1.3 SIMULATION POST PROCESSOR DIAGNOSTIC MESSAGES

Initial ization Diagnostics

During the in itial ization phase of a simulation post processor execu-
tion, the recording data base and the validation information file are
correlated with the simulator post processor program to guarantee com pati-
bility. If some irregularity is discovered during this check, one of the
followi ng messages will be issued.

VP RECORDING DATA BASE COULD NOT BE OPENED
This message will appear when through some Internal system or
user error the recording data base could not be opened.

VP RECORDING DATABASE HEADER IS ABSENT
ThIs message will appear when through some internal system or user
error the recording data base identification data is missing .

RECORDING DOES NOT MATCH TEST
This message will appear when the recording data base input to
the simula tion post processor program was not generated by the
simulator which matches the simulation post processor program
(i.e., both were created by Simulation Generation at the same
time). This message will be accompanied by the time, date, and
ID of creation for both the recording data base and the simula-
tion post processor program .

VALIDATION INFORMATION FILE (VVIF) IS EMPTY
This message will appear when no validation information file has
been supplied .

VALIDATION_INFORMATION_FILE HEADER DOES NOT AGREE WITH TEST
This message will appear when the val idation information file
input to the simulation post processor program was not generated
from the simulator which matches the simulation post processor
program.

NO VALIDATION POINT INSTANCES RECORDED IN DATABASE
This message will appear when no DATA was recorded at any VALIDA-
TION_POINT during the simulator execution.

VALIDATION_POINT xxxx HAS NO RECORDINGS IN THE DATABASE
This message will appear when no data was recorded at validation
point xxxx (where xxxx is the val idation point ordinal) during the
simulator execution . In the post processor, there is a retrieval
procedure corresponding to each VALIDATION_POINT In the simulator;
the name of the procedure Is VVxxxx where xxxx is the validation
point ordinal. The RSL name of the VAL IDATION POINT appears In a
comment directly followi ng the retrieval proce~ure heading.


~~~~~~
,.— •- ---

~~~
,;,-

~~~~~~~

_

~~~~~~~~~~

__
- —

~
——,-•- • - • -----— •—

~
•.— -

~
--
~

- -
~~~~

- 
~~~~

— .—,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
—.-- - —

~

--- --——•--—•- - . •_••7__
~ 

— v-
- 

~~~~~~~~~~~~~~~~~~~ - -

Execution Diagnostics
-

PERFORMANCE REQUIREMENT performance-requirement-name NOT FOUND
- Thi s message will appear when the user has requested execution of I -

a performance requirement test that could not be found. I

I


~~~~T - ~~~~~ ~~~- r ~~~

APPENDIX J

-. - RSLXT ND SUMMARY

• J.l RSL EXTENSION SYNTAX

Table J.l contains a description of the syntax of RSL Extension com-
mands in the BNF notation described in Appendix A. For each syntax produc-
tion or set of productions for the RSL Extension commands, this table also
identifies the number of the section in this document where the command is
described. Note that an RSL command (the syntax for which Is sinnarized in
Appendix D) is a legal comma nd to the RSL Extension (RSLXTND) function.

Figure J.l shows the syntax of RSL Extension commands in diagrammatic
form.

J.2 RSLXTND DIAGNOSTIC MESSAGES

The diagnostic messages output by the RSLXTND function are the same as
those output by the RSL functIon and are documented in Section 5 of Appendix D.

J-l



Tab’e J.l RSL Extension Index

RSL EXTENSION SYNTAX BER

~RSL Ex tension coemand’: :—
‘extension control coemiand>

I ‘new element type definition ’
I ‘el ement type modification ’

<element type deletion >
<new attr ibute definition >
<attribute modification ’
<attribute deletion >
<new relation definition >
<relation modification >

I <relation del etion ’
I RSI. coninand 8.0

‘extension contro l coimnand>::—
-‘ IDENTIFICATION name.

I EXTENSION_PERMISSION name .
I CONTROL_PERMISSION name .
I RESCIND PERMISSION name. 8.1

‘new element typ e definition ’ ::- 
-

• ~DEF DIE] ELEMENT_TYPE ci enent—type -name camnent .

~ (INSERT) <structure applicability declar atio n> }
cstr uct ure applicability dec 1arat1on ’ : :~

STRUCTURE APPLICABILITY 
~~~~~~ 8.2.1

‘element ty pe modifi cation ’ ::—
(MODIFY] ELEMENT_TYPE element-type -name (corm~ent] .

~
<structure applicability declaration >)”

8 3 1
<element type deletion >::—

DELET E ELEMENT_TYPE element-type -name . 8.4.1
< new attribute definitio n’ ::—

DEFINE] A TTR IBUTE attr ibute -name coninent.
(INSERT] <attribute definition sentence>)

Vl

‘attribute definition sentence >::—
<appl icab l e type declaratio n’

I <legal value declaratio n’
<appl icabl e type declaration ’ ::—

APPLICA BLE (ELEMENT_TYPE] <element types ’ .
<element ty pes’ ::

(ALL EXCEPT] ~elenent_typ e-name }~
’

<legal va lue declar atio n’ ::—
($JMERIC ~

VALUE ~ (canrent] .
value-neme ~ 1 - 8.2.2

J-2

~

- • -— —-

~

— -----

~

—

~

-- -~~

-

-

_
~~~ - --~~~~~~~~~ 7

Table J.I RSL Extension Index (Continued)

RSL EXT ENSIO N SYNTAX !ICTION
PL~BER

<&t tr ibute modificatio n. . :—
(MODIFY] ATTR I BUTE attr ibute—n.m. (comment).

( (IN SERT] ~att r ibute definition sentence .
~ ..ppllcable type declar ation removal’ }elegal value declaration removal’

.ppllcable type declaration ra.ov.l~::—
ALL

RExOVE APPLI CA&E (ELEMENT _TYPE) 
{ {element_ti~e.name~~j 1

.

alega l value declaration removal.::.

I EXT~NU ME R 1C 

I
l

R EMOV E VALUE 
~ MI4ED
~va lue -name 8.3.2

attribu te deletion ,::.
DELETE AITRIOUTE ,ttribute-Mme . 8.&2

~new relation defi n iti on , :: •

IRE LAT I ON ~ 
1

(DEFINE] ‘
~Rt LAT I ON SNIP 1 

relat Ion -name (( relat1on-o ptioni l-mord~)]
comment.{[INSERT] relation definiti on sentence’~0

crelation definit ion sentence,::•
dcau,pl.mentary relation declaration ’
e subject type declar.tion
objec t type declarat ion ’

acm.pleientary relation declarat ion ,::.
Il

CEMPLEMENT A RY 
~

RE LATION 
~ r,lation-n.me [Crelation-..ptional..mmrdi3R E LATIONS HI P

subj.ct type declaration .::—
SUBJECT (E LLMEN ’T _T’PE) .e).uient types..

cobject type declaration .::.
OBJ ECT (ELEMENT TYPE j .eImment types’ . 8.2.3

.relati on modif itation, : - .

~~~~~~~ 
~

l
(MODIFY]

I RE LA TI ONSH I P relat ion -name ((‘ rel.ti.n .optlon al—wor d)J

(cem.ent3.

I[INSE RT] .r,Iat ion definition sentence’
~ .cmmpl.mentary r~lat4on dectiration r~~ val.

~.s,bjec t type declaration r .moval,

~objac t type declaration ramovab

ecm.pl..entiry relation declarati on ramoval ,::.
RE LATION IREP~~VE coePL(MEi~TA RY

~RLtA TI0MS *4I P~
relation-name

((“r.l.tiam..ptIonel -smrd))

.subjec t type decl aration removal .: •~ rAIL mlREMOVE SUBJECT [ELEMENT YPE] Ueiememt type imame} ii -

~ bjec t typ e declarat ion ra.ova l ’: ,1R&P ~ V E OBJECT ((LEM NT _TYP I] Ileimment type naIie~ ~j 8.3.3
—ar-e lat ion de 1etton ’ ::~ j

DELIT E ~RE LA Ttrnl
RELATUJUSIIIP I relation-name [(r.lat ioe-.pti.na l.word)3. $ 4 3

—

I

J -3 1 1

— - - - -~~~~~-‘~-~~

~~~~~~

---
~

---

~~~ ~~~~~~~ 
- -

- - - - - ~~~~~~~~

2 kIl~~~ J L J
2 .!

2
SI T__J. m.D

(Tm
~g I~~ I

~ I~~I
•

—
2 -~ a I—

~ 1 m.~ -U E

~~~~~~~I~I

_ _  ‘C

j . S/)

SI SI 
C

vs
C
ci

g +1

AT 
141

I -JSn

— 
—“

3 — — 5 4. —
U S. C 4.1

~ i i ~ IB C 
j 4 .  5 _

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~



~~~~~~~
— 

~~~~~~ ~~~~~~~~~~~~
—7-- — I

_

.3
SI

me 4

(
_ _

I

I

‘I
~ Jc~J~~~

TI?1;
[1]

~~~~~S~~~ 1

LqJ

~ 
I 

‘~~~~~~~~ --—-- -~~~~~~~~~~~~~~~ -------- - -- - -



--7- •-
~~~
-

~
-—-

F - - -
- - • : ~~~~~~~~~~~~~~~ --

I.
a

—
III

aI I . ~ ‘
~~ ‘-I I~~j l 4-

I~~I~~ .! I~~I 3

T I
.

I

— -a
. .

I—
\~1

_

I

-~~ I~~ I -
~~ H

ç ~D

V a. SI

—I SI .~~

j .~ H

J -6

.- — -— —~--- --r~~~~~~~~~~ - --’r ’ ~~‘ ~~~~~~~~~~~~~~~~~~~~~ r~~-~~-~~ -y - ~~~~~~~~~

• - ~~~-~~~~~~ —-~~~~~~

4. •1~~
A ‘U 5 4.)
T 5 C

0 •1•

1 I .4’ ,’ —~(a) - .I.. in

-
4-

(
_ _151 I~~ I I ~~ I

I~~I I~~II~~l *—.~

I~~I

l~~ I~~I I~~I
I~fI U U

~~ L
j
) -

I ~
li-i

.—* ~~~— — - ~~~~~~~~~-----~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~

2

I I~~I
4. 

‘~ _1 5a i 
— B ~ —
4. (• ‘

~ 
SI

j  

- \ ,J  in
E

4” —
~~~~~~~

r~i
—

- j~j I
— •

I~ I I~~II~~I

[I~~~~~~~ !
I

I~~ I ~~I~~ I I_ IT I
J -8

-~~~~~~~ - ~~~~~~~~~~~~~~~~~~ ! -- ~~ ~~~~~~~~~~~~~~~~~~~ ~~~ —- -— --— -. --•- •- - .

T ~~~

~~~~~~~~~~~

• (

t

)

ICI) 

I 

H-g
SI 

.

~~ C
~~ -~~

B :2
~

.2
I; if ~~~

.

in
E
5-

• ~0-0
—

K
— c - I

C

.
~~~

rmi C
C ci
2 _.

~
,

d B

F-

C. ci
5-

‘-4 — V.

0 —

‘3.9

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --~~



=-~

REFERENCES

1. “Process Design Methodology Design System Specification”, Vol umes I-V ,
Texas Instruments , Incorporated , Document No, H750502-1B, September
1976 .

2. K. Jensen and N. Wirth, PASCAL: User Manual and Report, Second Edition ,
Springer-Verlag New York Inc., New York, N. V., 1975.

3. “ASC Job Specif ication Language Reference Manual” , Texas Instruments,
Incorporated, Document No. 930038-4, May, 1976.

4. “Control Data CYBER 70/Model 76 Computer System, 7600 Computer System, 
—

SCOPE 2.1 Reference Manual” , Control Data Corporation, Publication No.
60342600, (Revised) May 1975.

z .  “ASC Linkage Editor User ’s Guide ”, Texas Instruments, Incorporated,
Document No. 930057-2, April 1976.

6. “Control Data CYBER 170 Series/Model s 172, 173, 174, 175, CYBER 70
Series/Models 72 , 73, 74, 76, 6000 Series, 7600 Computer Systems,
Loader Reference Manual”, Control Data Corporation, Publication No.
60344200, (Revised) September 1975.

e n

R-l
Revision A

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.~~~~~~~, 
-

- - - -- - - - - —- ---,----

