| AD-AO46 565 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OHIO F/6 13/6 <

A COMPARATIVE STUDY OF THE RIDE QUALITY OF TRACV SUSPENSION ALT=-ETC(U)

SEP 77 R A LUHRS

UNCLASSIFIED AFIT=CI=78=2

| oF 2 v

-“.Euzu 565 . . . . .
' B

\




<3
‘M
e

SECURITY alﬁiﬁm« OF THIS RAGE (Wheri Date Entesgc , )

_READ IN CTIONS
BEFORE COMPLETING FORM
IP'ENT’S CATALOG NUMBER

PR RT DOCUMENTATION PAG

2. GOVT ACCESSION NO

¥ & PERIOD COVERED

A Mve Study of the Ride Quality of TRACV
Suspension Alternatives ¢

ORG. REPORT NUMBER

LTSI A
7. AUTHD ®. CONTRACT OR GRANT NUMBER(s)

A./tunrs/ usar

[Te. DISTRIBUTION STATEMENT (of this Report)

TZATION NAME AND ADDRESS 10. PPOGRAM ELEMENT, PROJECT, TASK |
APEA & WORK UNIT NUMBERS
AFIT Student at Princeton University,
Princeton NJ
11. CONTROLLING OFFICE NAME AND ADDRESS / 12,
AFIT/CI / Sep SN W77 _4
R OF PAGES S

WPAFB OH 45433 .
112 P

MONITORING AGENCY NAME & ADDRESS(If different f; ice) | 15. SECURITY CLASS. (of thie report)

*

AFLT-CI- 78’-51

Unclassified
| '5a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

clvEe@n

Approved for Public Release; Distribution Unlimited

D NOV 21 1977
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report) u lbu U lb
B

=

19. KEY WORDS (Continue on reveree side if necessary and identity by dlock number)

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

L2 RAJO 4B

rORM :
DD an7s 1473  eoimion oF 1 nov 63 18 oBsoLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE '

D P TN 0T T, R A I |




A COMPARATIVE STUDY OF THE RIDE QUALITY OF ‘
TRACV SUSPENSION ALTERNATIVES : 2

by
Richard A. Luhrs

Princeton University
School of Engineering and Applied Science
Aerospace and Mechanical Sciences Department

Submitted in partial fulfillment of the requirementé for the degree of

Master of Scienc eering from Princeton University, 1977.

Prepared by:

-

Richard A. Luhrs

Approved by:

W.C.Cond, 1.

Professor H. C. Curtiss, Jr.

«
Ve




ABSTRACT

——A linear, unconstrained perturbation model for the Tracked Ram Air
Cushion Vehicle is developed. This model is the result of theoretical
expressions for the TRACV which have been verified by wind tumnel and
towed model tests. This model is varied to' allow fc;r passively suspended,
two-degree-of-freedom winglets and for processor-controlled actuators on
the same winglets. Optimization of the springs and dampers in the passive
suspension is performed according to a performance index based on acceler-
ation, winglet gap variation, and control pdwer. Linear optimal control
is applied to the active suspension to determine the optimal feedback
@ains using a similar performance index. The basic, passively suspended,
and actively suspended vehicles are analyzed to .determine root mean squared
values for the following: 1) vertical acceleration in the foremost and
rearmost seats in the passenger cabin, 2) gap variation at the front and
rear winglet areas, and 3) control deflection. The acceleration spectral
density of each of the vehicle types is compared to the Urban Tracked Ram
Cusion Vehicle standard. The active control system is analyzed to see if
& reduced set of sensors may achieve acceptable ride quality based on the

above measures. 7\
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ABSTRACT

i linear, unconstrained perturbation model for the Tracked Ram Air
Cushion Vehicle is developed. This model is the result of theoretical
expressions for the TRACV which have been verified by wind tunnel and
towed model tests. This model is varied to allow for passively suspended,
two-degree-of-freedom winglets and for processor-controlled actuators on
the same winglets. Optimization of the springs and dampers in the passive
suspension is performed according to a performance index based on acceler-
ation, winglet gap variation, and control power. Linear optimal control
is applied to the active suspension to determine the optimal feedback
gains usino a similar performance index. The basic, passively suspended,
and suspended vehicles are analyzed to'determine root mean squared
ve .he following: 1) vertical acceleration in the foremost and
rearmost seats in the passenger cabin, 2) gap variation at the front and
rear winglet areas, and 3) control deflection. The acceleration spectral
density of each of the vehicle types is compared to the Urban Tracked Ram
Cusion Vehicle standard. The active control system is analyzed to see if

aAreduced set of sensors may achieve acceptable ride quality based on the
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above measures. 7\
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~ system state matrix; time non-dimensionalization constant,

 NOMENCLATURE

A = 1.456 sec.; guideway roughness parameters, A = 1.27 m x

10'6

ft.; (when subscripted) area
system control matrix; linear damper constant
system disturbance matrix

vehicle chord length, ¢ = 150 ft.

oty
1ift coefficient, 'CL = ga =
moment coefficient, ¢ = _;!_
’ - we

gravitational acceleration, g = 32.2 ft/sec?
height above a reference in feet, positive up
h

non-dimensional height, h = .

hinge moment on winglet around axis parallel to longitudinal
axis, positive 'tips up

hinge moment on winglet around axis_ perpendicular to
longitudinal axis, positive leading edge up

linear spring constant; feedback gain matrix

radius of gyration about axis perpendicular to longitudinal
axis

1lift; véhicle length, L = 150 ft.

moment about c.g., positive nose up; perfoﬁnance index
transformation matrix

vehicle mass

underside surface pressure

solution of steady-state matrix Ricatti equation

viii .
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"area ratio of winglet gap to intake area less exit area
area ratio change due to winglet pitch

vehicle surface area, S = We |

Laplace operator

time

vehicle forward velocity, U = 300 fps

control vector

vehicle width including winglets, W = 15 ft.

noise vector

state variable vector; distance along vehicle from
front in feet

distance along vehicle from front as a decimal portion

of chord, x = =

diagonal matrix of weighting factors

bottom slope of vehicle, @ =0 + o

level vehicle bottom slope, o = 0.028 rad.

area ratio of intake less exit area to exit area
winglet deflection around axis parallel to longitudinal

axis in radians

winglet deflection around axis perpendicular to longi-

tudinal axis

Gaussian white noise function




Smrscripts

pitch angle in radians from horizontal, positive nose up

guideway disturbance wavelength in feet

dumy state variable
density of air, p = 0.00238 slugs/ft?®

non-dimensional time, T = %

center of pi'essure

of the exi'b. or tailing edge region

of the guideway

leadiﬁg edge

variable index

of the vehicle with respect to the guideway
trailing edge

of the vehicle with respect to the inertial frame
of the winglet

initial value; steady-state value

trial index
derivative with respect to real time
derivative with respect to non-dimensional time




CHAPTER I
INTRODUCTION

Reliable and inexpensive high-speed intercity transportation is
receiving increasing attention as the cost of operating automobiles con-
tinues to soar. Present modes, however, face time and convenience problems
which the car does not. Aircraft are capable of cruising at great speed,
but the time lost on the ground getting into and out of airports can be
thrice the enroufe time on short and medium distance runs. In addition,
due to space requirements, airports usually cannot be located in or near
the center of cities. Trains do not face the same requirements; their
stations are often in the heart of the business district of town. But
while trains have terminal convenience, they often have as little as one-
tenth the cruise speed of aircraft.

The most convenient form of mass transit would écmbine the better
half of each of these, giving both high speed and terminal convenience to
the vehicle. High speed ground transportation can provide this combination
once the dangers to public safet& and construction problems are removed.
Several schemes have been advanced and the most likely fall into three major
categories: high-speed rail, magnetic levitation (mag-lev), and air cushion
vehicles. Each of the classes has varying subtypes with advantages and

drawbacks.

The high-speed rail concept utilizes an improved rail with welded

joints and modified existing equipment and technology. On the other hand




high-speed increases the consequence of the ever-present derailment threat,
and road maintenance is jnarticularly costly if freight must also move on the
high quality rails. Magnetically levitated vehicles of either the attractive

or repulsive type are less susceptible to derailment and use non-contact
suspension, but some are statically unstable and all face the cost and weight
of cryogenic coil cooling. In addition unavoidable electrical discontinuity

in guideway joints causes field interruptions.

i

Air cushion vehicles do not pose such problems. They are statically

stable and may use ordinary, locally rough, non-conducting guideway materials
; .such ;a.s concrete. Derai]ment is not a problem a tracked air cusion vehicle is
likely to face. Low loading on the guideway decreases maintenance costs. Static
cushion vehicles, however, suffer from high captation drag, induced by turning
‘ incoming air downward. Even this problem, though, is absent in a Tracked Ram
| Air Cushion Vehicle (TRACV). Such a vehicle uses dynamic air pressure to
: generate lift, and virtually flies in ground effect down its guideway. Its

non-contact suspension is not as noise-transmitting as & train, and the

e — -

presence of the ground gives it far better lift/drag characteristics than
aircraft. :

This studyinvestigates t!  le quality of a particular TRACV config-
u;'ation. As a passenger vehi( ossibility, the TRACV's ride quality as
: measured by accelerations and suspension travel is important. A linear
, ] ' p1tén-ne.ve model of the vehicle has been developed and the longitudinal
dynamics are analyzed to defem:lne the vertical accelerations felt by the

passengers and likelihood of vehicle-guideway contact. Three configurations




are considered: 1) an all-rigid vehicle, 2) a vehicle with moveable control

surfaces suspended by springs and dampers, and 3) a vehicle with moveable
control surfaces controlled by actuators subject to active feedback. The
basic tradeoff for all three types is between minimizing vertical accel-
erations and maintaining adequate clearance between ‘the vehicle and the
guideway without unwieldy control power requirements.

PREVIOUS WORK

Since the TRACV is a fairly recent concept, literature discussing its
dynamics is not abundant. Dynamics analyses have been performed, but a
- pitch-heave analysis which accounts for the considerable coupling has not
been done. Some of the work on static air cushion suspensions is indirectly
applicable, but the dynamics are considgrably different and results do not
necessarily correspond.

T. M. Barrows and S. E. Widnall ‘(1970) presented a paper which laid
" out the aerodynamics for the "ram wing". This paper discusses ride quality
of the heave-only constrained vehicle after developing_expressions for
heave and pitch forces due to ground disturbances.

W. E. Fraiée and T. M. Barrows (1973) performed a system definition
study which hypothesized a 15L-foot vehicle with a one hundred passenger
capacity. This extensive study defined all aspects of a full-scale system
and studied feasibility and basic dynamics. Appendix C of this reference
discusses a TRACV suspended on one-degree-of-freedom winglets for heave
control and performs a body heave-winglet dynamics analysis which was later

found to contain some errors. Earlier that same year, Barrows presented a paper

which shows that almost any body natural frequency and damping ratio can be

ki b
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achieved in a suspended TRACV and discusses some active control concepts
in TRACV suspension.

P. V. Aidala (1974) studied the lateral stability of the TRACV and ;
determined stability derivatives. His report also compares longitudinal
forces with the numerical predictions of a one-dimensional flow mass
congervation theory given by Boccardoro, and shows that lateral and longi-
tudinal forces may be considered independent.

H., C. Curtiss, Jr., and W. F. Putman (1977) present a simplified theory
for 1ift and moment characteristics and show good agreement between this
. theory and wind tunnel and towed model tests. Their report p:resents
equations for lift and moment stability derivatives and describes pitch
and heave static stability, but there is no discussion of coupled pitch-
heave dynamics. A
THE VEHICLE

The vehicle model useq in this study is a full-scale TRACV with a linear
sloping bottom surface and haveing the cross-section of the upper half of
an NACA 0021 airfoil. It is 150 feet long and 15 feet wide with 2.5-foot
winglets. ' The guideway is 12 feet wide and about 7 feet deep, with winglet
running lips placed at a 45 degree angle to horizontal. The size of the
vehicle (but not the shape) is similar to that of the Mitre Corp. Study
(Fraize and Barrows, 1973). Figure 1 shows the front and side views of

the vehicle. The bottom slope is .028 rad (about 1.5°) and the bottom

surface clearance at the trailing edge is three feet. These values were
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b. Side View

Pigure 1. Dimensions of TRACV
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derived from & = 1.4, which experiment showed to give good L/D character-
istics and good cor'relati..on between theory and experiment. The venicle is
constrained to a constant forward velocity of 300 fps or 205 mph. .
The winglets ride in very close proximity to the guideway lips, having
a nominal 1.07 inch clearance. With the vehicle length of 150 feet, this
close clearance will necessitate very good control of pitch displa.ceménts;
and gap variations at the forward and trailing corners of the winglets will

prove to be the limiting values. The reason for such close clearance is

that the winglets essentially act as a pressure seal to keep up the underside

pressure. Because of this fact, the lift variation with height change is
strongly dependent upon gap variation; the stability derivatives support
this conclusion.

OVERVIEW OF ANALYSIS

Thisthesis first reviews the various terms and ratios used to develop
the stability derivatives. ' The latter part of Chapter II derives the control
surface derivatives and presents the basic model. It then describes the
guideway roughness modelling process and describes the effect of size of the
vehicle on short-wavelength guideway disturbances.

Chapter III discusses the dynamics of the rigid vehicle with its im-
moveable winglets. The acceleration spectral density is compared to the
Urban Tracked Air Cushion Vehicle (UTACV) standard, and rms values of accel-

eration and winglet gap variation are presented. Thes‘é are the measures by




which this study determines ride quality and Chapters III, IV, and V follow
similar formats. s

Chapter IV develops the passively suspended vehicle using massless
winglets. Linear torsional springs and dempers are attached to the wing-
lets and the values for these are optimized according to a criterion based
on acceleration, gap variation, and winglet deflection. This optimization
‘procedure is a four-variable gradient search performed by a digital computer.

Chapter V presents the model for the active suspension. Linear optimal

control is applied to find the optimal feedback gains according to a per-

formance index similar to that used in Chapter IV, Spectral densities are
shown, as in all cases, for the foremost and rea;-most passengers' seats.
The feedback gain matrix is then altered in a simple check ‘to find the effects

of reduced sensor capability on ride guality.

D e i . e




CHAPTER II
~ MODELLING THE VEHICLE

Given that the TRACV is supported by aerodynamic forces, the mathe-
matical model of it can be placed in a form similar in some respects to
those of aircraft. Hence, the equations of motion contain coefficients
of 1ift and moment as well as stability derivatives similar to those of
aircraft. At this point, however, most of the similarities end. The
parameters of interest from which these derivatives are calculated are
considerably different from other vehicles. These parameters arise
from the fact that the TRACV operates in ground effect and they are ones
which can be measured in tests and expressed explicitly in equations of
motion and derivatives. They are also useful in that they appear in non-
dimensional form and may readily be applied to either scale models or
full-sized vehicles. In addition, the axes are not body fixed, but
are fixed in an inertial reference and translate with the vehicle, giving
such that the axes are not free to rotate. 1In this cqordinate
system, the word "position" refers to the state of the vehicle in pitech
and héight at a given point in time.

This Chapter first discusses the motion variables which will later

be used as state variables, then explains the non-dimensional ratio

perameters as they appear in the work of Curtiss and Putman (1977).

Finally, all these are drawn together into the various parts of the model
on which the dynamics analysis is to be done. This model is developed

part by part to include attitude stability derivatives, control surface
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motions and guideway roughness. It is hoped that this development will
give the reader a thorough understanding of all the aspects of this
unique vehicle being studied. :
ATTITUDE AND RATE

The two most obvious variables to present thems;elves are the height
of the vehicle and its pitch attitude, called h and © respectively. The
beight variable, h, is the measure of the vehicle's height in feet above
same reference, the value of which is divided by the length of the vehicle

(called chord length, or c¢). Thus, h has no dimension. Theta (0) is the

‘pitch attitude of the vehicle with respect to some reference, measured in

radians.

The vertical velocity, ﬁ, is the vertical velocity in feet per second
non-dimensionalized by the forward speed, U., This varicdle is not the
same as the time derivative of h, but is related to it by the constant
-(%). The pitching velocity, q, is similarly related to the time derivative
of © by the same constant.

Thus, there are four variables which describe the state of the
TRACV: ﬁ, é, i, q. Upward translation and nose up rotation are considered
to be positive. It is also important to keep track of the relations

E=g 2 GO  a=ftg ey

cle

since we will eventually wish to use common variables in expressing the

equations of motion. The stability derivatives will be the derivatives
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of the 1lift and moment coefficients with respect to each of these four.

; é The reference against which each of these motion variables is to be ; %

;'3 measured, as well as the specific motion being measured, is denoted by

: i .special subscripting or prescripting. For instance, the heigﬁt of the 5 ;
vehicle center of gravity above some inertial reference is ﬁv,'wnereas }
the relative height of the vehicle c.g. above the point directly below > %

on the guideway surface, or relative height, is ﬁr. A full description

of various notations may be found in the Nomenclature.

RATIO PARAMETERS g

BRI S SIS AR S D TS

In keeping with the -idea of using variables which may be conven-

iently expressed and solved for, the development of the equations of

G St N s

1lift and moment coefficient are functions of three parameters: &, ros Tae 3

' These three are ratios of different areas and arise from the fact that
the 1lift and moment equations are baéed on the continuity equation for
the control volume which is the airspace between the vehicle and the
guideway. Air enteps the frontal area and escapes benea#h the winglets

and out the trailing edge area at free stream pressure. A detailed des-

cription of the theory is discussed in Curtiss and Putman (1977). Thus,

the most convenient way to express lift and moment coefficients are as a

:gl + function of the ratiocs of entrance and exit areas. f
2 1 The first ratio is &, which is defined as the ratio of the fromtal 1

{ ]
{’! area less the exit area to the exit area. This ratio is depicted in ;
ki Al
E B Figure 1 as 7—. The defining relationship is . ;
g | 4 ,'~.
E |} = _ Wea : £
" A 1
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where A is the trailing edge exit area, W is vehicle width, ¢ is chord
length, and o is the slope of the bottom surface with respect to the
guideway expressed in radians. Note that for small angles sin o = o,
80 hy £ ca, In Figure 1, the width is the dimension out of'the page.
The bottom slopes upward toward fhe front, giving the vehicle positive
angle-of-attack.

The second parameter, Tos is a ratio of winglet gap area to area
A, as defined in Figure 1 when the winglets are parallel to the guideway
lip. Its defining relation is

2 Goc

=
To Wac

The term § i is the size of the gap between the winglet tip and guideway

lip (see Figure 24) and the factor of two accounts for both winglets.

Hence, r, includes the total winglet gap area, not just that for one side.
Finally, the third parameter is r,, which expresses the change in

winglet gap area as the winglets take on nonzero angles with respect to

the guideway lip. It is given by

2¢O e

=
3 Wac

and represents the difference in winglet gap area between a non-parallel

winglet and a parallel one divided through by area A, of Figure 1. Theta

is the angle the winglets make with respect to the guideway, or simply
the body pitch angle perturbation.




CONTROL SURFACE DISPLACEMENTS

Like other aerodynamic vehicles, the TRACV may require surfaces of
some sort which exert controllable forces on thé vehicle. Since the motion

variables of interest are pitch and heave and their rates of change with

time, surfaces which control each of these motion separately are most desirable

from a control standpoint. Although several types are possible, the form
which appears to be feasible, realizeable, and giving uncoupled h and § control
is a two-degree-of-freedom winglet rotation. The first motion is rotation
about an axis parallel to the vehicle longitudinal axis and is designated
) w1; the second is a rotation about an axis perpendicular to the longitu-
dinal axis of the vehicle. located at about a forty percent chord position,
designated Gw,' These motions are depicted in Figures 2a and 2b respectively.

STABILITY DERIVATIVES

In order to arrive at a reasonably complete and yet workable model,
ﬁe must make a few assumptions. The first of these is that we are in-
terested in small perturbations from the steady-state only. Since large
motions while cruising necessarily mean poor ride.quality, they must be
prevented in the first place by a tight feedback control or a suspension.
The second, a direct result of the first, is that the 1lift and moment
may be described by a Taylor series truncated after the first order terms,
since second order and higher terms are vanishingly small in a small
perturbation analysis.

As can be seen in Appendix A, the steady-state and perturbation parts

of the problem may be separated. The equations of motion are then expressed

13
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' 1 as the products of derivatives and corresponding attitude pérturbations.
These derivatives are expressed as a series of partial derivatives with
re.spect to each of the three area ratio parameters. For instance, the
I change in 1ift with variation in height is expressed as

8 38 M T o T

and in similar fashion for the remaining three motion quantities, 6, rgx,

,
1
i and q. Each of these partials may be found using equations found in
{ Appendix B. ' : " : ;
5 In addition to the derivatives with respect to each of the motion ;
variables, we must consider the effects of change in control surface
position on 1ift and moment. There are four such terms: 1ift and
: moment derivatives with respect to each of the two winglef motions,
;.: ‘ 5"1 and 6w . As before, these are expressed as a series of partial 4

E | | 2
f | | derivatives with respect to the three ratio parameters; for example:

&
e

o

o

%Ioa
£ ]

3, _
*,

1

BCL 31‘0 aCL dr 1

+ .
1 ar° 33“ LAY

A full developient bf tHese is also found in Appendix B. We now state
A the third assumption: the effect of winglet motion rate (6“"1 and 6"") ;
" on vehicle dynamics is negligible. This assumption simplifies the model

":,! . and seems reasonable since the damping effects of winglet rate is

‘ probably small with respect to steady-state fqrces.

] : The result is a coupled pair of fourth order equations in the variables

B, q, B, and © with the control variables 6"1 and § . The accelerations
a :
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of the vehicle are strictly dependent upon the relative attitude and
velocity of the vehicle with respect to the guideway. The perturbation

equations of motion appear in the following form:
oC oC eC aC

m o N ey L L., L
é pU’ 2 hv _aﬁ Ah + _aq Aq + _aﬁ Ah + % 49
oC oC
L L
-+ — A6 + — A6
%WI W1 w' w'

I - aC aC 3C, aC
—X— § = Mah+ Maq+ Hab+ Mo
2ousc ¥ oh °q ah *

oC oC
M M
+ — AG e A6
&wx w1 36wa WQ

These equations are further refined in Appendix A.

MODELLING T¥= GUIDEWAY

Considering tﬁat this is a ride quality study, the effect of the
guideway roughness on vehicle motions is a necessary part of the overall
model. Any control design or suspension must account for the spectrum
of the disturbances; the values for acceleration and suspension displace-
ment will be largely dependent upon the type of surface over which the
vehicle will travel. As the entire model so far is linear, some linear
model of guideway roughness is desirable.

A search of the literature shows that a commonly used model for
roadway surfaces has a power spectral density given by

AU
lg(s) = - ;
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where U is the forward velocity and A is a surface roughness parameter
(Hedrick, Billington and Dreesbach, 1974). For a smooth highway, A = 1.27
X 1o"rt. is a typical value; this seems a likely value for a guideway
constructed for the TRACV and not one which, as a design specification,
would require strict construction tolerances, driviné the construction
cost out of practical limits. The above relationship éan also be ex-
pressed as Qg = |hg(s)| 3, It then follows that if we let hg(s ='/-—§-H
(ignoring phase relationships) then, once again involving the small

angle assumption (sin @ = 6) then we can say

h 1
E&ﬁ_ (-ﬁg) b, = 8.0 =% ('/;:_H) =/TAI-_rad-sec2

Thus, it seems that the guideway appears as white noise filtered by an

integrator in height and simply held a{: a constant value over all frequencies
_1n pitch. Using white noise as an input for the overall model simplifies
the analysis and control problem since it has an even spectrum and does
not affect closed loop characteristic modes of motion. .Standa.rd methods
for control such as found in Bryson and Ho (1969) may be directly applied.
FINITE PAD LENGTH EFFECT

. The above guideway model is incomplete, however. It has a drawback
in that such a definition seems to say that at any instant of time and
regardless of frequency, the entire segment of guideway under the wvehicle
has a uniform height and pitch. For instance, a stairstep in the guideway
would not appear to the vehicle as an obstacle to climb, but as a step
change (in the guideway model) in the height of the entire guideway. If
the vehicle had a point contact suspension this would work, but in a
model which is of finite length and attitude and rate dependent, the

17




result is infinite rms accelerations in the vehicle. This cannot be, but
there is a correction for this error known as the finite pad length effect.
‘ If we assume that that which primarily affects the vehicle is the
average of each of the guideway variables over the length of the vehicle,
then the very short wavelength disturbances seem to be filtered out by the
size of the vehicle, as one might reasonably expect. This assumption is
not an attempt to model the unsteady aerodynamics of the TRACV which are
assumed to be unimportant, and is made by way of analogy to other levitated
vehicles. The result given is thoroughly developed in Appendix C (Riblich,
Captain, and Richardson; 1967).

The effect of taking the average of guideway variables is to seemingly
attenuate the guideway spectrum by the function |§.§§_§l . This attenuation
can be closely approximated by the magnitude functioh_ of a second order
filter, such as the one depicted in Figure 3. A second order filter was
chosen because it had sufficient dropoff to insure that there were no
infinite acceleration in the total model (as would have been the case with
a first order model) although it slightly overestimates the attenuation
of the |-§l2-5| function. This filter has the transfer function (in real
time)

45.3
Ge(s) = G+ 55)( + 8.2

The linear model of the guideway as it appears to the vehicle, then,

is white noise filtered by an integrator and further filtered by a second

order finite pad length approximation for height disturbances, and the

4 B i . A
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time derivative of the same for pitch disturbances. The relationship is

11lustrated in block diagram form in Figure L.

Vehicle Dynamics :
) Apparent Guideway

Finite Pad Length Effect
e,

— /7 Actual Guideway

AV
S

7/7757;;; White Noise 7777 :! "

Figure 4. Block Diagram Representation of Guideway
melo N

The advantage of using such a linear ﬁodel is that it ‘does not unduly
b

camplicate the understanding of vehicle dynamics and it does not affect

a Gaussian process (white noise) other than in magnitude. The guideway

spectra may then be expressed by the following differential equations.

8, +13.76, + 5.3 8, =/-§-n(t)

c L ]
"%

= H

where T(t) is a white noise source with unity spectral density. This is
a third order set of equations which completely describes the guideway

variations as seen by the vehicle traversing over it.
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TOTAL MODEL

The total model is a fourther order set of vehicle equations controlled
by two inputs and disturbed by a third order white noise filter which models
the guideway. It is expressed in state variable form as x = Ax + Bu + Cw
where A, B, and C are matrices and x, u, w are vectors. These are presented
in Appendix D. The stability derivatives are derived from 1ift and moment
coefficients and a first order Taylor series assumption. Since we are
interested only in small perturbations about some steady-state, we can elimin-
ate the steady-state terms from the equations qf motion. The guideway is
assumed to have the spectrum of a typical smooth highway and the effect
of vehicle size on small bumps has been approximated by assuming that the
average value of the guideway under the vehicle which is of interst.

The complete model as presented does have its drawbacks. The
linearity of the system will not predict the changes in 1ift coefficient
derivatives, for instance, when the gap is altered drastically in violation
of the small perturbation assumption. However, the theory shows that t.he
derivatives remain approximately constant over gap height change. For

example, the steady-state gap of one inch presently used corresponds to

e - 0.5. Varying r, as much as £ 0.475 changed none of the lif't 'deriv-A

atives by more than three persent. All the derivatives were within a
: C
fifteen percent tolerance except for TM which varied by thirty-five
dh
percent. This seems to say that a linear assumption is reasonably good.

Also, there is no provision for air turbulence; the model assumes a




stationary air mass in the guideway. Though this last assumption is not
likely to be .thc case, it does provide a good starting point for the

TRACV dynamic analysis and will yield a good impression of what the dominant
modes of motion are likely to be.




CHAPI'ER” IER ‘III
RIGID VEHICLE DYNAMICS
Having assembled a complete model, the first item of business is to
explore the dynamics of the rigid vehicle, one in which the winglets are
firmly fixed with respect to the body. Doing so provides an initial idea
of the fundamental vehicle dynamics and whether somé form of suspension

is necessary. Setting up the tools for this analysis also paves the way

for later more complicated analysis.

EIGENVALUES AND EIGENVECTORS

We start with a look at the eigenvalues and eigenvectors, for they
describe the vehicle characteristics in detail., Table I gives
these for the rigid vehicle. From these values we can see there are two
oscillatory modes in the vehicle: one low freqﬁency, very lightly damped
mode and a second higher frequency, moderately damped mode. Because there
are two complex pairs, only two eigenvectors need be expressed; the other
two are the complex conjugates of these. The pitch attitude vari-
able (0) is the base for each eigenvector.

The rigid vehicle has two natural frequencies which are fairly close
tpgether, neither of which are strongly damped. The eigenvectors indicate
that the height variation and pitch variation are nearly in phase for the
low frequency mode. This means that the nose comes up with the rising of
the c.g. in the guideway such that the front end of the vehicle has the
largest excursions. One might infer that the winglet gap at the front
will have the greatest variation, since forward of the c.g., the pitch

and heave oscillations add to each other. The attitude mode ratio for
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Figure 1. Transient Response of Rigid' Vehicle.
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the low frequency eigenvector is 'el! = 0.54, indicating that a 0.1 radian
pitch variation coincides with an 8.1 foot variation in c.g. height. For
the 150 foot-long vehicle, this motion appears as a rotation about an
effective center at about the 94 percent chord position, almost at the
tail end. Figure 1, a time-domé.in step response, shows this in-phase
relationship. Having an effective center of rotation at .9%c suggests
that the forward-most seat in the cabin will experience the worst acceler-
ations, having the longest moment arm.

On the other hand, the high frequency mode is sixty degrees out of
phase and has a mode ratio 92 which is six times greater than that of the

low frequencsr. This will mean that this frequency appears as nearly all
heave and the small Pitch component does not add as much vertical acceler-
ation to any vehicle location as does the low frequency mode. This effect
is apparent in the spectral density plots which follc.:w, particularly if

one remembers that part of the high frequency reduction at .90c is due

to the reduced reinforcement of the nearby low frequency mode.

SPECTRAL DENSITY AND RIDE QUALITY

Table II shows the A and C matrices for the rigid vehicle. Since
there are no control motions (winglet movements), the B matz.-ix is of no
concern., Using these matrices and Cramer's rule, the transfer functions
may be found for the various state variables with respect to the noise
vector which has been normalized to one. The magnitude squared of this

- function plotted against frequency is the spectral density. For vehicle




TABLE 2.

GENERALIZED MATRIX FORM OF RIGID VEHICLE STATE EQUATIONS

£ = Ax + Cw
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. against a ride quality standard which will show at what frequencies the

accelerations, we use |s ﬁ:’" as our c.g. spectral density, and a linear
cambination of ﬁv' and e_; will give the acceleration transfer function

at other vehicle locations. These spectral densities may be plotted

accelerations are unacceptable.

One such standard is the Urban Tracked Air Cushion Vehicle (UTACV)
standard (DOT Specification, 1972) which sets an upper limit on the
magnitude of the spectral density plot. Figure 2 shows the spectral
density of accelerations at the c.g. as compared to the UTACV limit.

It shows that the accelerations in the range from 0.764 - 2.2L4 Hz are

unacceptable. At the rearmost seat, near the apparent low frequency

mode center of rotation, we would expect that the spectral density plot
would show a diminished low frequency peak and overall reduced accelera-
tion according to the prediction of the eigenvectors. Figure 3 shows this
to be the case, although the standard is scarcely met.. These figures
and similar ones in later paragraphs are in non-dimensional frequency.

The defining relationship is 1 Hz = 9.15 rad/'r. The vertical axis has [ A

2
units of db (20 log |1‘~§§7-F| ).

RMS ACCELERATION AND GAP VARTATION _ | ,‘

In addition to spectral density comparisons, an important indicator
of ride quality is the root mean squared (RMS) acceleration. Whereas the
spectral density plot shows acceleration level at a frequency, the rms
value gﬁes the overall acceleration felt by the passenger. Both indicators

are necessary for a camplete picture. If G(s) is the transfer function of
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interest, then the mean squared value is given by

E(x®) = —;;—r-j'“ G(s) G(-s) ds; s=jo

| This integral has been solved in closed form and tabulated for systems up
to tenth order (Newton, Gould, and Kaiser; 1957). At the c.g., the rms

acceleration was found to be 0.121 g, a fairly rough ride. The rearmost

! : seat, at .90c, proved to be far better as predicted, having rms accelera-

tion of 0.0055 g.

E | Not only are we interested in the rms value of the accelerations, but
the rms variation in the gap at each end will give an idea of frequency of

contact with the guideway. Once again, the Gaussian white noise assumption

is useful, because the gap variation is Gaussian as well, a direct result

of having a linear gap to white noise transfer function. The rms value is

Bl

: ; related to the standard deviation of the Gaussian distribution, so a
E , knowledge of the steady-state gap size and the rms variation will indicate

what percentage of the time the winglets are in contact with the guideway. i

The rigid vehicle leading edge rms gap variation is 14.7 inches and

4 ‘ ! the trailing edge rms gap variation is 6.07 inches as compared to a
steady-state value of about one inch. Since the vehicle can not appear

below the guideway, these values tell us that the vehicle is likely to

spend much of its time in contact with the guideway, or simply put, it
will "bottom out" frequently, particularly at the front, primarily be-
cause of the influence of the very lightly damped low frequency mode.

The reader should remember that these numbers are the result of an un-

constrained linear model and while they are quite good as estimates of




what will occur, they cannot exactly describe the actual nonlinear problem

of guideway contact.
The conclusion to be drawn from this rigid case analysis is that from

all measures the ride quality of the rigid vehicle is unacceptable'. There x LTH .
are treqiwncies in all positions of seats where the accelerations are un-

comfortable. Thc overall ride is rough, and the vehicle tends frequently

ey

to bottom out. The vehicle has one oscillatory mode which is very lightly

damped at about 1 Hz which is in large measure the cause of these problems, ! 1
only to be aided by another mode of light damping nearby at 1.5 Hz. It is | 3
- - readily apparent that some form of suspension or control is necessary if : i 9
the TRACV is to be implemented. The Chapters that follow explore this E

possibility in both the passive and active sense and compare those cases

to this one ‘to determine what degree of improvement can be made.
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CHAPTER IV
'THE PASSIVE SUSPENSION

Since it is clear that the rigid vehicle is unacceptable, tne ways
in which the ride quality can be made acceptable become important. If
the winglets are given freedom to move about, then “they can be used to
control winglet gap and thus vehicle motions, since the theory of 1lift
and moment indicates that the forces are very strongly a function of .
the winglet gap. The motions of the winglets as described in Chapter II
can be controlled by two means: passive suspension and active control.
In this chapter the former case is considered; a model is developed and
the ride quality of this model is examined. Since the passive suspension
is much less e@siw to implement than active‘ control, if their per-
formances can be made nearly equal, then passive suspension is preferable.

THE REVISED MODEL

The passively suspended-model can be considered an uncontrollable
dynamic system as opposed to a system with control surfaces, with the
wingle‘f:s restrained by springs and dampers. We assume massless winglets
for simplicity because they will be very small in mass compared to the
vehicle and their natural frequencies will be so high that for the present
purpose fhey,are infinitely fast. There are then two first order equations
which a~s added to the equations of the rigid case, one for each degree-of-
freedom of the winglets. The motions of the winglets A&w1 and Mw. are

considered state variables and the coefficients become part of the A

o) ;

33:
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matrix. After finding values of spring and damper constants which give
the best performance, the analysis of such performance parallels that
of Chapter III.

We start by writing a force balance equation for each winglet

motion. Once again, only perturbations are of present concern. The

hinge moment on the winglet for each mode of motion is related to the
pressure distribution under the vehicle and is a function of the motion

and control variables.

5,.)

b
W, Wg

By s, + K88, = (B q, h, 8, 8

Bg A&w. + Ky A&w’ =m (h, q, h, O, 6w1’ sw‘)

In the above equations, HM and I:l'd refer to the hinge moment around the
first and second winglet axes, respectively. For the first of these two,

- the hinge moment is related to the 1lift since the pressure generating
1ift places a moment on the winglet.
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We note that x, is the distance from the axis to the center of pressure

P

on the winglet in feet and A_ is the total area of the winglets (including

the area of both winglets). Since the theory assumes that the pressure at

the gap is that of free stream and the pressure near the root of the winglet

is that under the vehicle, there must be some gradient of pressure along the

width of the winglet. Assuming a linear gradient, as approximation the

center of pressure is at ‘i;-, or 0.833 feet. This value yields P = 33440 ft.-1bs.
The second type of hinge moment is also related to previous 1lift and

moment coefficients, but in a different way.'

NN
Jersty

2] =)
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In the above equation, the first term describes the pressure at the c.g.
due to 1ift acting on the winglet, the second relates the effect of the
lengthwise pressure distribution which causes the aerodynamic moment on

= io, the first

the vehicle. Again calling on the assumption that :':c

term drops out and we get
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Because of our earlier notation cM! = o % sg—, the radius of gyration

%em mt be caremlly reinserted to insure consistency. This devélopnent
ylelds R = 3753 ft.-1bs. '

The basic equations of motion in state variable form appear as
% = Ax + Cw where A, instead of being a seventh order matrix, is a ninth
order matrix. The eighth and ninth rows come from the equations below

which are once again written in non-dimensional time,

B0, ‘= _ A +2c a0’ +PC_AR+PC A
v, L A

UA A UA I.(1 Lﬁ IB

+(PcC -K,)Aa6_ +PC
: ( 1) wl It .wa

L£1 Va

IB

Bgas, ‘=Rc AR +28c a0’ +RrC, AR +RC, 40

w,.UAMf1 UAM‘1 Mﬁ "e

+RC A6w1+(RC

Y Ys

Wy Va

R Ka) Aﬁw'

Notice the change in notation to the new damping constants, ‘51 and 'ﬁ,.
This is to indicate that these two have also been shifted to non-dimen-

sional time. The full state matrix form with the two added equetions

may be found in Appendix D.
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OPTIMIZING THE PASSIVE SUSPENSION

: The ride quality of the passively suspended TRACV is dependent on
the four spring and damper constants; K,, Kg, B,, and. Bg. The values
which give the best possible ride quality must be determined, but the
process involved is not very simple because of a ninth-order model and

a ride quality which is a function of four variables. The most obvious

. method of solution is a gradient search on a computer, since the analyt-

ical method would involve multiple detefminants of a ninth order system
and as a result the likelihood of multiple algebraic errors. A gradient
search which simply looks for the direction of largest improvement in a
cost function and adjusts the four variables accordingly would be fast
and relatively simple to program. |

The routine which was used was .the simplest gradient m.ethod possible,

based on the procedure

Where x is the particular variable being incremented, k is the iteration
counter, e 5 in the step size constant for X and J is the cost function.
The procedure is to find the partial derivative of the cost function with
respect to each of the four variables, adjust by the corresponding €
and use the result as the stepsize for eacﬁ variable.

The cost function which was used placed a cost on six values. These
values are the rms acceleration in heave and pitch, rms gap variation

fore and aft, and rms winglet deflection for both motions. These were
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found for a given A matrix by using Cramer's rule to find the transfer
function of each with respect to unity white noise and calculating the
mean squared error integral of that transfer f@ctim. The value of

x: = 1 vas taken as five percent larger than x: rather than the actual
previous value to insure that a large previous step does not adversely
influence the derivatives at the present point. Computationally, using
old values would have been less expensive, but the cost margin was deemed

small. The cost function used is described by
S
Jd= %.f xT Zx dt
o

where x is a vector of the state variables and Z is a diagonal matrix of

weighting constants. The values of Z were set by

Z(n,n) = lxnl l

max
which is the inverse of the desired maximum value of each of the respective
state variables. The values chosen were h:naxz .0Olg, MiGa.p = 0.33 inches.
and no weighting on control deflections or p:ltching accelerations. These
values were actually the result of first having solved the active optimal
control problem and finding out what set of weighting coefficients worked
best.

Using this cost function, an algorithm for the optimization of the

spring and damper constants was developed. Figure 1 gives a flow diagram
for the algorithm. When implemented on the IBM 370 computer using APL,

the method converged in approximately twenty steps. The cost function
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" 8ince the axis of rotation of Asw ié at the c.g., the 1lift causes no
8 : ;

had several local minimums in the same general vincinity, so the one with
the smallest rms vertical acceleration was chosen. Only one cost function

was used; it is possible to find different optimal values by adjusting the

weighting factors.
With the cost function used, the solution of the optimization problem

is as follows:

ft . -1bs °
rad7sec

31 = 1652

% ft.-1bs.
Kg = 37h.1 =

ft.-1bs.

Bg = 1115 rad/sec

steady-state moment on Kg and the fact that there is no steady-state moment
to counter, the spring K, has a zero steady-state. Spring K,, on the other
hand, must supply a steady-state moment to the winglet to counter the effect
of 1ift. This value is given by : : 7

Since these are the total spring and damper values; they may spread out

over several springs and dampers for each motion if necessary. This set

of results seems to be the optimum passive suspension for the given set of
weighting coefficients. It was felt that a better suspension might be found

by repeating the entire process' with several sets of weighting parameters.

Rather than grind away numerically at considerable costs, however, a
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local search around this optimum was made by using educated guessing, and
no better tradeoff between vertical acceleration and gap variation could
be found. |

With the spring and damper constants determined, the overall model
is easily described in state variable form with two mére variables than
in the rigid case; AGw' and Aaw' are becoming state variables. We now
have a ninth order system which may be evaluated using the same criteria
as used in Chapter IIT.

EIGENVALUES AND EIGENVECTORS

Once again we start with a study of the eigenvalues and eigenvectors.
For the passive suspension they differ greatly from the rigid case, as
shown in Table I. The eigenvalues show a marked change from very low
damning to moderate damping and drastic lowering of natural frequencies.
For the rigid vehicles, the two frequencies occurred at two and three
hertz; in the passive case they occur at 0.036 and 0.325 Hz, so that they
are not only lower, but they are relatively further apart. Spreading
them apart and increasing the damping means that, on the whole, the accel-
eration will be much lower and more nearly uniform over the range of fre-
quencies.

The eigenvectors also show a marked change. The mode ratios of
heave topitch for the two frequencies are much larger, indicating that
the degree of coupling is drastically reduced. The high frequency mode
has a § mode ratio which is sixty-four times greater than the ratio for

]
the rigid case, implying that the high frequency mode is nearly all heave.
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TABLE 1
EIGENVALUES AND EIGENVECTORS OF PASSIVE SUSPENSION
1 | R Eigenvalues Eigenvectors
E | -8 . F High Frequency x
| - ; 1 o
a 5'5 ; hrl 628 ei 226
| 0 - :
: | =967 + 1 1.79 0. | = [ 438 o .
E | -.967 - 1 1.79 ; 2 1 108°
i .07 +1 215 | B . pets
e | i £ o
i \ 077 -1 .215 el‘_J 1.0 e1
4 -128.3 Winglet Modes e z ‘ -
| - 37.2 ‘
Low Frequency
sampd el 1 110°
g
h, 0173 e
o
erl g .3u9 ei 111
o
| B L0522 et 043
! ; 4©
i Eigenvalues in units of sec > o 5 DS <
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For the low frequency mode, the opposite is true, the % mode ratio for the
passive case is over ten times greater than that of tge rigid case and the
. low frequency mode is nearly all pitch motion.

These values suggest that the motions of A6wl act so as to decouple
almost entirely the two modes of motion of the body while they move to
track variations in the guideway, keeping the vehicle body as motionless
as possible. The high frequency damping ratio has increased from the rigid
case value of 0.23 to 0.48 and the low frequency ratio has improved from the
rigid case 0.08 to 0.34, indicating that these winglet motions also reduce
the number of oscillations in the vehicle body. Because of the very low
frequency of the pitch mode, the accelerations caused by the pressure of
this mode are apt to be small (given that the excursions areAnot very large)
and hence the accelerations felt by the passengers will be ﬁostly due to
heave and should be nearly equivalent everywhere. Figure 2 illustrates
a typical time-domain step response of the passively suspended vehicle.

ACCELERATION SPECTRAL DENSITY

Shown in Figures 3 and 4 are the vertical acceleration spectral den-
sities at the c.é. and .90c positions, respectively, which show & definite
1mrrovement over the rigid case. Not only does the curve meet the UTACV
specification, but it is better by at least a factor of twenty at all
frequencies. 'There are no sharp peaks, indicating that the damping is
improved as well. These figures would suggest a very acceptable ride

quality as a result of the passive suspension by the low level of acceler-

ation at all frequencies.
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RMS ACCELERATION, GAP VARTATION, AND CONTROL DEFLECTION

The acceleration at the c.g. was greatly improved by the passive
suspension. In the rigid vehicle the rms vertical acceleration was found
to be 0.121g, while the passive suspension improved this to 0.0072g, a
very smooth ride. The rearmost seat was about the same as the c.g. in
the passive suspension, as predicted, experiencing 0.009g accelerations
which are slightly worse than the rigid case. The very smooth .90c
acceleration level for the rigid case was dﬁe to the in-phase coupling

of the modes which is destroyed in the passive suspension. Hence, the

. slight loss of ride quality at that location is understandable.

Another significant improvement is in the gap variation. The leading
edge rms gap variation is one percent of and the'tiailing edge value
is 3.5% of the rigid case value. These new values are Ah . ey " 143

inches and Ah.. " .224 inches. Since the steady-state gap is

"slightly over one inch, one can safely say that the winglets rarely touch

the guideway. In fact, it seems that there is some margin in these values,
and that adjusting the cost function to weight accelara£ions more heavily
might result in some set of springs and dampers which enlarge this variation
slightly and yielded still lower acceleration levels. It is interesting that
the trailing edge has the larger variation, which is not true of the rigid
vehicle, It is clear from the above values, however, that the difference

is smaller, as a result of mode decoupling. The decoupling and phasing of

b and 6 motions is further illustrated by this fact. i
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There is one other result of interest, and that is the rms deflection
of the two winglet modes. These values are fourd in the same way as the
others and give an idea of the typical size of the control surface displace-
' ments. For the passive suspension, rms A8 i is 0.0154 rad. and rms Mw,
is 0.000534 rad. The typical heave control is sma.ll,' varying through a
typical % 1°, A deflection of one degree represents a change of gap on
the order of one-half inch, however, and that is significant. This seems
to tell us that the motions of the winglet are such that the heave in the
guideway is countered by similar motions of the winglet sothat the gap
remains constant along with the c.g. while the winglet and guideway move
together. The typical pitch deflection is also quite small, for we find
that the value of 0.000534 rad. corresponds to .O3°, and a gap change at
the vehicle rear of about 0.6 inches.. Once again, the winglet deflection
is larger than the gap variation, indicating that the second mode of motion
is also probably necessary to keep the vehicle body unaccelerated and to
prevent winglet-gu._idewa.y contact.

To summarize, we have built a passive suspension by allowing the
winglets two-degrees-of-freedom but restraining each mode with a spring
and a damper. The effect of this configuration (if one finds optimal
springs and dampers) is to lower the frequencies of both modes while
spreading them apart, increasing damping, and decoupling the modes of motion.
In terms of the ride quality, the new configuration is very good and a
tremendous improvement over the rig:ld_. vehicle. The overall acceleration

level is quite low and there are no particular "bone-jarring" frequencies.




The rate of winglet contact goes from almost continuous to almost never,
and the size of springs and dampers required is reasonable and permit

only very small control deflections, so that the passive suspension does

not attempt to violate the assumptions from which the model arose. All

in all, the general outlook is very good for this form of control.




CHAPTER V
ACTIVE SUSPENSION

The active suspension is one in which the winglets are controlled
by actuators which receive signals from feedback circuits originating
at vehicle position and rate sensors. In this chapter the linear
optimal control problem is solved using a performance index very similar
to the one in the previous chapter. The form of the equations is varied
slightly to accommodate the solution technique in that the winglet motion
equations are dropped as a result of assuming that the winglet-servo
response to control inputs is of sufficient medth to be considered
infinitely fast. The method of solution involves the solution of the
matrix Ricatti equation and using this to find the feedback gains. Solving
this problem will gi{re some idea of the best which this particular vehicle
can possibly do, and provides an index against which other types of sus-
pensions may be canpared.A Having found the optimal feedbacks, we will
proceed to analyze the ride quality along the lines of previous chapters.
ACTIVE SUSPENSION MODEL

This model assumes & controllable dynamic system with white noise
disturbance. The state equations written as matrices have the form
% = Ax + Bu + Cw where the A and C matrices are identical to those of
the rigid vehicle model, and the B matrix is the set of derivatives of
1ift and moment coefficient with respect to each of the two control
motions, The result is a seventh order system. with two control inputs

and one distur\_w.nce input.
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Since there are seven state variables, this formulation assumes

 seven sensors from which the feedback signals originate. This may not

always be feasible, so a comparison is done later with a system in which
some of the sensors are turned off. The seven states are vehicle heave
rate and pitch rate, relative heave and pitch, and guideway heave rate,
pitch rate, and pitch. The first two may easily be sensed with on-board
accelerometers, the output of which is integrated. The second pair could
be sensed by measuring capacitance, using small feelers, or even by care-
fully measuring under-vehicle pressure at several points and deriving
attitude from the lift and moment relationships. Of these possibilities,
use of feelers is the least desirable since the feelers create noise and
would continually require replacement because of weai'.

Infrared ranging of the relative distance is difficult because the
track is subject to differential heating which would i'.m-ow measurements
off. A laser ranger would be a distinct possibility, but such devices
are expensive. No matter what the type of sensing, a reliable knowledge
of height above tﬁe guideway at two different chord positions would be
all that is required for height and pitch determination. If relative and
'vehicle rates and displacements are known, then the guideway' rates and
displacements are but an algebraic sum of these and easy to generate.
However, same thought must still be given to means of sensing the vehicle
and guideway states.

THE LINEAR OPTIMAL CONTROL PROBLEM

The straightforward optimal control problem involves finding the




f coefficients of the feedback matrix which yield collectively the lowest
cost function value when the cost function is a function of the states
and the control inputs. The desired cost ﬁmction, however, is not in

3 these terms. Instead, the items weighted are vert:lcgl acceleration, gap
T ' : variation, and control deflections. Some transformation must be made to
I rewrite the performance index as a function of actual state variables

‘ and control inputs. Letting % be the vector of variables to be weighted

and x be the actual state variables, then the following linear trans-

formation may be made:

!
"
A zm
E M

which says simply that the desired variables are merely linear combinations

of the state variables.

Since % is a vector of six variables and x has seven and u has two,
M is a six by nine matrix of constants. Letting Z be a diagonal matrix

of weighting factors as previously used, we develop the following cost

function:

I= %-j‘t ([xF u'] MY) 2 (M [:])4(11:
[+

4 ' s=1 ft (x" u'] MTezem (] at .
o

Lenmmmannn Al M
o .6,

The term (M'+Z-M) 1s the matrix inner product of the transpose
M itself, A Z. This product gives a matrix with off-diagonal terms




and the resultant cost function expressed in standard notation is

16° 1|9 N]["]
d=3 [ ] dat
2It°xu [NT PJ lu

for a state system appearing as ¥ = Ax + Bu. However, it is possible
to rewrite this problem (Bryson and Ho; 1969) so that the cross terms
of x and u which appear in the submatrix N above become zero. We first
rewrite the system equation as x = (A-BP-lNT) X + Bu, and then the cost
function becomes
1® e Q-NP'INT 0 x
J = é-j' [x"u’] dt
t

2 (o] P

The submatrices off the main diagonal are now all zero and the form is
along more standard lines. For this formulation, we find that

kK =P (' + BTR)

is the feedback matrix where R is the solution of the matrix Ricatti
equation cited in numerous references (Schultz and Melsa; 1967).

The procedure to be followed starts with determining the linear
transformation ma'trix M and then selecting the values of Z, the weighting
factors. Then the matrix multiplication must be performed and the sub-
matrices Z, N'and P. determined. The modified A matrix A = A - BPN" is
calculated as well as the modified Q matrix § = Q - NP IN'. These are sub-
stituted into the mtﬁx Ricatti equation which now appears as

%R + §& - rep 1pTR + Q=0

This particular form is used since we are interested in a terminal time
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at infinity where R is zero. Several methods of solving for R are available,

bui". the most convenient way is to integrate backward in time from the terminal

condition R (») = O, until R is constant to within some limit. The optimal

feedback matrix KT is found and we rewrite the system as a white-noise-

disturbed regulator:

w

i :':=(A-BKT)x+Cu

{ ’ This description of the system is that of which we will analyze the ride
i : qualﬂ;y according to the pattern of the previous chapters.

! This entire process was programmed in APL because of that language's
ability to handle matrices with ease. The reader will find in Appendix E
the source codes for the entire routine as it was programmed for this prob-
lem, along with the appropriate logic flow diégi-am of the overall solution
| technique. The entire routine required several cost function variations.
before an optimal control form was discovered, but the cost of solving this
“.2 i problem was less than that for the passive suspension owing to the greater
: efficiency of this technique. The initial values of the weightirig factors

was found by exactly the same means as that described in the previous chapter:

the inverse square magnitude of the maximum permissible value.

THE OPTIMAL CONTROLLER AND VARIATIONS

After several trials, the set of weighting parameters which produced

the best rzsults were the inverse magnitudes squared of the following maximum

permissible values
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hLE Gap = 0.33 in.

It is interesting to note that there was no weighting necessary upon the

i} control surfaces or the pitching accelerations. The control deflection
; ‘§ terms were free because the gap control had an influence upon how large
the control deflections were and would not permit large deflecfions which
result in large gap variations. The controller would not permit high
pitching accelerations because over the ninety feet from c.g. to the tail
these would necessarily mean substantial gap vapiations.

In Table I are listed the values of the feedback gain matrix. None
of the values are so large as to be unwieldy; in fact, most are quite

small., The controller's response to a guideway pitch change of + 10° is

to add in & A of + 11.6° and a As_ of - 28.3°% (-14.8 inches at the

2 1
winglet tip). The pitch control to such a situation is moderate and
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nearly exactly tracking the guideway. The heave control seems to be

R R AT TR TR

leading the approachiné gréde by beginning to 1lift the vehicle earlier and
spreading out the upward acceleration over a longer period of time. On
the other hand, if the vehicle were to have a one foot per second rise
rate, the controller would move the winglét tips down by 0.l inch and
pitch the winglets nose up by 0.Q15° which corresponds to dropping the

i trailing edges by 0.29 inch and raising the leading edges by 0.19 inch




in an effort to induce a negative moment to pitch the body nose down and
check the vertical rise. This second set of motions seems small by com-
parison to the responsé to attitude changes and one might guess that
ignoring the rate inputs, while deteriorating performance, might still
produce an acceptable vehicle. ihis possibility and the results of doing
it are discussed later.

EIGENVALUES AND EIGENVECTORS

We now begin the system evaluation of the actively controlled vehicle
and proceed in the usual fashion. This configuration may serve as a
standard against which any other type of suspension may be compared, since
for the given set of weighting parameters, this is the optimal solution.
Table I displays the eigenvalues and eigenvect-rs for the three cases.
Once again, as compared to the rigid vehicle, the actively controlled
vehicle shows a distinctly improved performance. The natural frequencies
are considerably lower and the damping ratio for both modes is around 0.T.
This damping is somewhat better than the passive suspension, and much

greater than the rigid case.

The eigenvectors show that the low frequency g mode ratio is altered
a ;
similarly to the passive so that this mode is primarily pitch in nature

and contains considerably less heave content than the rigid case. The
high frequency éﬁ mode ratio is almost unaltered from the rigid case.
Whereas the passive case high frequency mode is all heave, the active
case contains a small amount of pitch, but this is still so small that
the high frequency mode, as in the rigid case, may be considered nearly

all heave. Figure 1 shows a typical time domain response of the active
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TABLE 1

EIGENVALUES AND EIGENVECTORS OF ACTIVE SYSTEM

Eigenvalues

-8

=5.5

(o}
976 + 1 1.014
.976 - i 1.01L
L08 +i W12
o8 - i W2

F

D o
-

|}
Hw"i

8
s

Eigenvectors
High Frequency:

P.,.ha o1 214° 1
2.6 o 126°
3.65 e 79.9°

1 eio
L "

Low Frequency:

The following are the feedback gains for the controller:

L
an f - .004T7h
a0 ' .338
b, - 4565
ae_ L.52
Aﬁs’ . 00L7h
A0 8’ .0885
a0 . 1.69

A6w.

. 000266

- .0319

000847

- 1.16

. . 0077

+000266

Units

.0712 ei 129
Ly of 133°

.08L4 o -3.84°
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rad
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Figure 1. Transient Response of Actively Suspended Vehicle.
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case, in which the virtual separation of the modes (decoupling h and 6)
can be seen,

ACCELERATION SPECTRAL DENSITY

In Figures 2 and 3 are shown the acceleration spectral densities of
the .4Oc and .90c positions in the vehicle. The curves show a very smooth
transition from low to high frequencies and agreement with the specification

at all frequencies with room to spare. There are no sharp peaks or valleys,

only a very gentle rounded peak indicating the combined effect of the two

modes. When compared against the corresponding figures of the other two

cases, the active case proves to have the lowest vertical acceleration at

any given frequency, as one might expect. Once again the reader's attention
2

is called to the vertical axis labelj.ing, which is 20 1ogl° |;;§71-_-| format.

The conversion to hertz is 9.15 rad/t = 1 Hz.

RMS ACCELERATION, GAP VARIATION, AND CONTROL DEFLECTION

The accelerations at the c.g. are greatly '_.‘mproved over the rigid
vehicle (0.121g) and somewhat better than the passive suspension (0.0071g)
having a rms value ‘of 0.0212g. This could be considere.d a very smooth
and comfortable ride. The rearmost seat proved even smoother s being on
the order of 0.00lg. The seats in between will have values ranging be-
tween these two, so that the overall level of vertical accelerations is
very low indeed.

The rms gap variation is on the or@er of one-third inch, that being
the criterion against which the cost function was altered. There is a

tradeoff between gap variation and accelerations, and the cost function




was ldJuatéd until this level of gap variation was met but not exceeded.
Hence the values of 0,218 inch at the leading edge and 0.327 at the trailing
edge are not so much a r;:sult as they are a design condition for the active
controller. These values mean that the steady-state gap is more than three
standard deviations out on the normal distribution, implying that contact
is rare. As with the passive suspension, there is a reversal from the
rigid case in the relative size of leading and trailing edge gap variation.
The typical winglet motions are slightly larger for the active con-

troller; the rms Aéw is 0.25 rad. which corresponds to 0.75 inch at the
1

tip, and rms A&w. is 0.00055 rad. corresponding to a trailing edge gap

variation of 0.594 inch. These are both significant motions with regard
to the size of the gap, but théy are small enough on the vehicle level to :

imply that the power required for the winglets is likely to be relatively

small as campared to total vehicle energy consumption. The seemingly small

.feedback gains yield a fairly tight, or fast-responding, control system,

resulting in a smooth ride for the passenger. As with the passive case,

the dominant mode of winglet motion is as a guideway follower so that both

gap and vehicle height remain nearly constant. With the active controller 3 '

however, there seems an additional leading of the guideway by the vehicle 4
which tends to spread the accelerations over a longer time period, helping ‘

to smooth out the ride in a way that the passive suspension could not do.

THE "PARTIALLY BLIND" CONTROLLER
In the process of designing for cost, one might be led to ask, "Is

there any way to reduce the number of sensors and feedback circuits and
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still achieve reasonable performance?" The answer seems to be yes. By
geroing elements of the feedback matrix, one effectively shuts down sensors
and "blinds" the controller to those inputs. Doing so and performing a ride
‘quality analysis yields interesting results. Eliminating ail sensing of the
guideway motions with respect to the earth (the last three states) produces
no noticeable change in vehicle performance.. With only vehicle velocities
and relative displacements, the performance is almost exactly the same as
full sensing, the difference being less than one percent by any measure.
It seems that these three of the seven sensors may be eliminated out of hand.
The feedback of relative displacements is crucial to performance and
provides most of the improvement noted above. Eliminating the velocity
feedbacks does degrade performance noticeably, but not sé far as to be
intolerable. With only the relative height and pitch displacement feedbacks,
we find that the rms accelerations increase to 0.017g at the c.g. and 0.0R6g

at .90c. While these are not exactly considered & smooth ride, they are

quite tolerable. The respective spectral densities are shown in Figures 4

and 5, Figure 6 shows the time response of this system to the same set of
initial conditions as used before and one may see from this plot that some
of the pitch damping is gone, but that the overall response is similar.
The indication is that attitude feedback is most critical, while rate feed-
back fine tunes the response and adds some degree of smoothness. Guideway
position and rate feedback is unnecessary.

Overall, the active control does an extremely effective Job‘%f smoothing




out the ride and maintaining a reasonable gap clearance. The acceleration
' levels are scmewhat ':Improved over the passive suspension, though there
might be reasonable doubt that the improvement is worth the extra cost of
the active system over the passive. The active controller does, however,
yield accelerations of the order of 0.002g or less (élepending on position
inside the passenger compartment), requires very small control deflections
and hence small control power, and allows us to virtually select what levels =
of gap variation the vehicle should have. The feedbacks are quite small and

therefore easily realized. In addition, even if the active system is not to

be realized, it does provide some insight to the limits of vehicle performance.

It seems that, as a result of this analysis, the performance of the TRACV at

a its best seems to be very pramising indeed.
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CHAPTER VI

P

CONCLUSTON

In examining the Tracked Ram Air Cushion Vehicle, one finds himself
confronted with a high degre¢e of heave-pitch ‘coupling. This strong coupling
means that for longitudinal studies, one cannot ignore one when studying the
other. In addition, any control system or suspension must be able to avoid
this coupling as well as changing the frequency and damping of the dominant
modes. Using this criterion for a choice in suspension methods will lead
toward the ability to positively control ride qﬁality.

Since the TRACV is inter_xded as high-speed groqnd transportation for
passengers, the ride quality of the passenger compartment in terms of noise
and accelerations is of paramoﬁnt importance. The vertical accelerations
experienced in the passenger compartment are the subject of this study; the
test subjects are the basic vehicle and two types of vehicle control (passive
element and active) usi.né two-degrees-of-freedom winglets. The ride quality
of these three configurations over a surface having tl;e roughness of smooth
highway is the'design cri’gerion and the outcome is briefly described below.
CONCLUSIONS

Using a linear, unconstrained model of the vehicle dynamics, the
following conclusions may be drawn about  TRACV pérformance:

1. The basic vehiéle with no control surfaces is unacceptable,

In almost all positions in the passenger compartment, the




TABLE 1

SUSPENSIONS COMPARTSON

Rigid Passive Active
Vehicle Suspensions Suspensions
RMS Accel. at .l (g) 0.121 ~ 0:0072 0.00212
RMS Accel. at .9c (g) 0.0055 0.0091 0.00092
RMS L.E. Gap Variation (in.) 14,7 : 0.143 0.218
RMS T.E. Gep Variation (in.) 6.07 0.224 0.327
RMS A5, (rad.) ' 0.0154 0.025

RMS A&w’ (rad.) 0.00053 0.00055

‘High Frequency Mode (Hz) 0.324 0.224
Low Frequency Mode (Hz) 0.036 0.134
High Frequency Damping Cghge 0.692
Low Frequency Damping 0.337 0.704




acceleration spectral density exceeds the UTACV standard
in the 1 - 2 Hz range. In addition, potentially destructive
winglet-guideway contact frequently occurs.

A two-degree-of-freeddg winglet suspended by springs and
dampers smooths out most of the accelerations of the rigid
vehicle. Guideway contact is rare, the accelerations meet
the specifications, and the modes of motion are almost com-
pletely decoupled in addition to the lowering of vehicle
natural frequencies and increasing damping by allowing the
winglets to become guideway followers.

The active control of the two-degree-of-freedom winglets

further improves the performance. The accelerations reach

a level approaching the threshold of sensitivity while not

requiring large amounts of power to do so. This configuration,
however, gives only moderate performance improvement over the
passive suspension (which is quite acceptable) in return for
substantial construction and maintenance cost increases.

If the active controller is to be used, the sensing of the
guldeway motions is irrelevant to ride quality. Rate sensing,
while not strictly necessary, does give substantial improve-
ment at levels where improvement is needed.

. DIRECTIONS FOR FURTHER INVESTIGATION

One point of this study subject to question is the guideway approximation.




Ty ——"

: task; and there might be alternatives. One such possibility is pitch

control by way of a trailing edge flap. This possibility requires study

The average of guideway pitch and height is a fine descriptor for wave-
lengths much smaller or much larger than the length of the vehicle. In
the transition region near where the length of the vehicle is about one-
half the guideway wavelength, the effects not accounted for in the second
order linear approximation mey be of importance, par:bicularly with regard
to the effect on moment forces of such a bump as it traverses the length i 3
of the vehicle; these bear further study. i
Different schemes for control also seem to be a likely prospect for ;’

stud:v. Mechanization of a two-degree-of-freedom winglet may be no small

of the dynamics of a two-segment bottom slope. Another possibility is

that given the pitch control, Abw’ , 1s very small, allowing the winglet
2

only AGw freedom and warping the winglet to obtain Asw effects may be
; 1

2 ]
a distinct possibility. This prospect, however, requires close study of

stress and fatigue factors.

Finally, vehicle dimensions will play a strong role in the dynamics.
A vehicle 'ﬁfty feet iocng is as likely as one one hundred fifty feet long.
Top surface lift will have an effect on moment equations. The flat, sloping
bottom surface is an important part of the present model as well as aspect
ratio and weight. Since all of these factors will significantly affect the

dynamics, it is important that a practicable vehicle be laid out before any

further detailed work on longitudinal ride quality is undertaken.
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APPENDIX A
EQUATIONS OF MOTION

The model of the TRACV used in this thesis is a two-degree-of-freedom

aerodynamic mode with freedom in heave and pitch. It assumes that the
lateral and longitudinal aspects'may be considered separately, and the
present concern is on longitudinal motions only. Other assumptions in-
clude constant forward velocity, constant mass, and fixed center of gravity.

The lift and moment may be described by Taylor series:

L=1 + §._I£ AR + g_;' Aq + a—f’- Ah + g—;" 46 + (higher-order terms)

dh ah

Aq + §¥ Ah + -g-éli A9 + (nigher-order terms)

oh

This expression of the lift and motion reflects the basic vehicle dynamics.
Assuming small perturbations of the motion quantities only around some
steady-state, the higher order terms may be neglected. In steady-state,

M =0, L = mg, and there are no perturbations, so we may write:
mgsLsLo O~=M=M°

The sum of all the steady-state terms is zero and they may be dropped
along with the higher-order terms. In addition, if the winglets are
allowed to move , then the 1ift and moment have derivatives with respect

to the control motions. In final form the equations are:

AL--B—EA§+%§AQ+

3k

Lpn+ZPao +Lns +

dh LEY bk

R R A LA T
[
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M M M ,= M M oM
aM =T Ak + S aq+ AR + 5540 + 57— 28, + ST— 48 (a-2)
oy 9 dh o ¥, M “w, Va
It should be noted that the motion variables above are all of the vehicle

relative to the guideway. ;

EC L R B e i A ‘
e et it b S o Ml bl . o - - 4
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Having expressed the change in 1ift and moment, we may now write

relations concerning vehicle accelerations: g

P

ol = AL ]

s 1 2 -
mchv=2pU SACL 7

k| 1 L -'_“
by | 5P U* s :
, c cLo iy -

3 PR L mela . (a-3)

cC
The term —gé has the units sec® so that one convenient way to obsorb it

is to change to non-dimensional time. Such a conversion is convenient in
that if, during the scaling process, the term -t%\- is kept constant (A defined

below), the dynamics will be unchanged except for frequency. We then write:

§ J ch
A = -—s— seconds

1 =2 (a-b)

In making this conversion, one must be careful that any time related terms

be adjusted. All the time derivatives must be rewritten as is h below:
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and equation (A-3) can be rewritten:

¥ o (1 & 1 =
_—(—-h)=Aa(—h)=h =ACL
g A® A2

Remembering from Chapter II the relationships

f=St a=%6 ¢

ale

we are able to express equation (A-1) in the following forms:

o c 2 c ? - '
h =—=0C..Ah +=—0C_ A8" +C Ah + C_ A®
L Ui B e

+C A8, +C Y (A-5)

aC
The compact notation CLE means —_-I-‘- and so on.
oh

Following a similar az;gmnent yields a moment equation:

%= _ AR +=C, a8’ + AR + C, 48
v " UA Mg R M ez My

+ A8 +C A8 AS
c"o w1 M6 w' w.
Wy Wa

(a-6)

A k 2
In the development of (A-6) however, the term (—cx) comes up, where ky
o® Cy

is the vehicle radius of gyration. We define i 8- De Sees =EET
Mg k> 2B

and

so forth to ebsorb it. In the present model, ky was taken to be the

value of the gyration radius of a uniform rigid bar of vehicle proportions.

’
Adding the two relationships b = -;-lr- h and 8'= % 8 to (A-5) and (A-6)

™.




b re A o B e

gives us our fourth order pitch-heave model.

The steady-state 1ift coefficient is CI‘o = 455, a value found to
be typical of those found in towed model tests at the Princeton University
Dynamic Model Track. With an assumed forward velocity of 300 fps, the
vehicle weight for equilibrium is 110,000 1bs., agreeing fairly closely
with the Mitre vehicle (Fraize and Barrows, 1973). Also the present
model implies A = 1.456 sec. It should be noted that this theory assumes
no upper surface contributions to either 1lift or moment. In actuality,

the shape described adds a ACL = .25, which will slightly alter moment

characteristics and allow a heavier vehicle.




STABILITY DERIVATIVES

Presented below are the equations for the attitude stability de-
rivatives as they were theoretically developed in (Curtiss and Putman;
1977). The rate derivatives are the result of a qugsi-static theory
developed by Professor H. C. Curtiss, Jr. of Princeton University, and

are based on the under-vehicle pressure which assumes a level pitch
attitude (8 = 0) and incompressible flow. The effect of vehicle rates ~ |  :_~

{s as an increment to the lift and moment coefficients.

;-I'-g;]:’{[&+a3(l-i)]ac "'o':'crL-%,-c;-;: i
-&zacu+2c 3y

3h o 3z oHor

3CL'2WG [tn 1-"'12«]

1]

SkoB sl z)u—tor )+
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- ac
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oh o oh Ag @ l+a
- ac e
ﬁ=(§°-°’f1)a‘*+ Y2 (@+2-%)@+tn—)
o 1 Ag @ o 1+
-2 (1 +&)% - 1) + tn ——]]
(-] l+o

The various partial derivatives with respect to the ratio parameters may be
found in the cited reference and were computed by the FORTRAN program at
the end of this Appendix.

To find the derivatives of 1lift and moment derivatives with regpect
to the control surface deflections, we express them as effects on the

dimensionless parameters. We find that 6w affects only Ty and Gw affects

1 2
only r,. Figure B-l illustrates a perturbed wingleﬁ proximate to a guide-
way lip. Examination of this geometry shows that, assuming a guideway lip
cant of forty-five degrees and anominally level winglet, on can write

A6° = 707 Ww o Aéw1
and, incorporating the definition of r,, one can express the 1ift coefficient
and moment coefficient derivatives as follows:

BCL BCL aro 2 BCL <707 Ww
Waoa




Figure B-l.

Geometry of the Perturbed Winglet.
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; Assuming that the center of rotation for §  is at the c.g., 8 g
3 P

i affects only r,. Violating this assumption forces us to include the ¢ 3

relationship ]

L2 CAEE s i

F Aro Wo (xc.r.- xo) A6w

f‘ but if ic A io’ then we may ignore it and we can write

R | _=2c >

E &ry = o Abw,

f ﬁ - acL Br1 . aCL i : ‘

k| 6 ar, * ¥ r, " Wa ;

F Cy =acM - 2¢
; | % Mw' arl Wa

One must be careful to note that, for each of the motion variables and

both of the control variables

& l ;
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EAT=15 4 = e
- RAEGY:R= ((BBT**2+1 )+(x0 0 )*?2312.%zﬂiﬂfztziiziﬂakrfizL;;-~;
CEXT=A10G(1./(1.+ALF2AR))
WHAT=ALFBA %/ (THETAO+30TTON)
 DCLTELD =2.*WHAT/ALFBAR**2% (DEXT+ALFBAT /(1. +ALFBAR)) _
DCLIC=-WHAT/ALFPBAR**3* (ALFBAR**2/ (1. +aLrB¢{)+2.*ALFB *(1 +1 /aLEB
“1agm- X() *(DEXT+RALFBAR/ (T.+ALFBAR))) o
_DCMLED _=(X0- (ALFBAR+1. )/uxrsxa)*DCLnan 2.*4ﬁ I/AL?BA“**’*(AL“BAA+
ICEXT)
. DCHELC= (X0- (ALFBAR+1. )/hLFEPh)*BCLDQ+ddA”/uLFB&‘**3*((( 2.-ALFBAR) /
12.) +1. /2ALFEAR* (-DEXT) +2. *(lLFBAQ#DzAL)*(T +1 /ALFBAE-AO)) S
f‘ﬁclli(ﬁ 401) .- =il s S EETE SRR
WNARITE(6,111)CCLCHD , BCLDO ncmnpn ,cc*nq

‘401 _ FCTEAT (1X,Th, ' DCLDHDZ',T14, ' DCLDQ® ,T24, ' DCADHDT ,zaq,éncubq')f_“ g

IF(FIAG.NE.1)GC TC 10
... WEITE(6,117) X0,ALFBAK
- RIFEAR=ALFBAR+STPSIZ ;
- IF(ALPBAR.LE.LIMIT)GO 10 2
.= A1FBAR=ALFORG . AT S St
GC 10 1 '
10 IPIEIAG.NE.2)GO 70 11
__ WFITE(6,'118) X0, ROTTCHN
J'EC’TQB~EOTTOH+S*PSIZ
% “IF(BOTTICH.LE.LINIT)GO 10 2 :
CaENs PETTONNBOTORE e wEEssa
GC 10 1
11 ‘IF(FI2G.NE.3)GO TO 12
R T T S
. C=C+STPSIZ. : T T R
o« 1E(C. LEmLIﬂIT)GO TO 2 . 5y B
 CBCCRE o v o s ._i._-_'-:j_-._'.""»_‘ PO
GC 10 1 i
12 IF(FIAG.ME.4)GO TO 13
/ WFITE(6,120) XC,THETAOD
TEETAO=THETAO+STP512
11 (THETAO.LE.LIXIT)GO 10 2 o
TEETAO=THEORG .. . .= .
GC 10 1 ;
13 IF(FIAG.MNE.5)GO TO 14
. _WBITE(6,121) X0,R0_
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FC3M2T(/,' ABOVE 3UN AT xC= ',F10.5,! RLFBAR= !

" FCIMAT (/,' ABOVE ROUN BT XC= ¥,F10.S,' ‘BOTTOM= ',F10.5,/////) -
FOSPRT(/,' RBOVE ROUN AT XC= ', B10.5,' . = - C= Y PV0.5,/////) = °
FCIM3T(/,' ABOVE RUN AT XC= ',P1C.5,' THETAD= ',E1C.5,/////)= .
FGiFR2T (/,' ABOVE RUN AT XC= ',F1C.5,!' R0= ' ,710.5,/////)
FC3K2T (/,' ABOVE RUN AT xc=_',r1o.-,' W= ',P10.5,////7) .
coNYINEE - 3.

ESINT, ' RATE: z,arz, ;narao.
: paznz;.'j-ALrsaa- : ,ALFE&F,'
BEAGL ¢ g L R Sl i R
BFIN3, ' 12= L2, 2=
EFINT, ' r2= ,212, M3=
FEINT, ' DCMLA= .',ccmna,t, ECIBA=.  t,BCLDY -
BRINT, ' [LCHDRC= ,ncnu:o; DCIDRO--E.,DCVDRO
EFIKT, ' [CHDR1= ',DCMDE1,' DCLLR s ,DCLDR1
Esxma, Vot sl e e 3
##*###t##**#t*********t*#t*#******##******#*#*******#z*#t***##**F*

'*‘0#1##***#*O*******#*####******#*#*****#*************#****#*#**#*

 1THEY 2RE THE COSRIESPONDING NUMBERS, ‘0& THE A _MATRIX.'

- EKINT, 'LCMDH= ',DCMDH,' DCMDPR= ',DCHMDPA - =

" 18T¢, PROM THE HIGHEST GRLER LCWN¥.' ~ .-...L. 3

F(=50+SIPSIZ : i e
If(ﬁO.IE LIHIL)GO P02
' FC=FOCRG. S DR S B R e
GC 10 1
IF(ELAG.EE.E6)30 TO 9
"FITE(6,122) X0,W
W=W+3TPSIZ
If(ﬂ LE. LI*IL)GO 30 2 i
. k=KCRG. ey B e ) SR e e
éC 10 1
SHITE(€,117) XN ,ALFBAR

A SNy B

* ; %*
_ 3FAC=.23423 :

AF2C IS THE 5Q. EOOT OF (C*G/(U**?*CLO)
*

CCHCE=CCHMDH/RADGYR
CCEILEA=DCHLPA/IADGYR
DCMCED=DCHLHC*AFAC/RACGY2
CCELC=CCHDC*AFAC/RADGYR
CCITEC=DCLLCHD*AFAC et
 LCLEC=CCLECC*APAC Liamh mresin
AC=ECLLH*DCHTPA-DCLDPE*DCIDH ;
A 1=CCHLQ*UCLDA-CCLDQ *LCYLH+LCLDHD*DCMDPE~DCLLOA*DCMDHED
AZ=[CKLQ*DCLDKD-DCADHD*DCIDQ-DCLLH-LCNDER
A2=-ICIDHD-DCXDC : ISR Rl R e
ERIN1, 'THE POLLOWING \KZ NOT THE ACTUAL cowvrzcxnsms, au; ax"ﬂE«

FFIK1, *CCLDHD= ',DCLDHD,'  DCLIQ= ',ECLCC
ESTN1, 'DCLDH= ',DCLDH,'  DCLDPA= ',DCLDPA
PEINT, 'DCMDHD= ',CCHDHD,'  LCMDG= !',BCHDO

EFIKT, ' THE FOLLOWENG ARE THE CHARAC ZVBIeTIC POLYHOH’AL bOE

WSITE(6,402)A4,A3,12,41,AC
FCEE2T (1X,E(F10.3,4X))
SICE g
ENL

FUNCTION ENTGRL(LB,UB,F,DX )
IMELICIT EEAL*8 (A-H,0-9)
SENL*8 LEB,UB,DX
NI=(UB=1B)s0X .
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- FE=F (1LE)

XE=1E . S i
IE(NIL.EQ.D) GO TO 2

EC 1 I=1,)rI

FA=FE :

XE=LX*I+LR

FEEB=F (XE) (5 et
A=A+, S*(FA+PB) *DX _ . ool
WBEITE(6,100)FB,2
CCNIINUE
CCMNIIRUE - e SR S
3—30.5*(PB+F(UB))*(UB XB) s R

_RETUERN-.. _.-_;"_'-:. , f-;--i.”-‘ :
ENT

LeRNCRIel FYIOYD)
IMEEICIT REAL*8 (A-H,O- 5) -
AICG |X)=DLCG (X): - -~ .
 ATAN(X)=DATAN(X) . .
SCKT (X)=DSCRT (X) ‘
F1=X#ATAN (X) / (X#*2+1.0)

BETUEN
- ENL
=L , funczxcu ?4(X):" ‘
L IMELIICIT REAL*8 (A-H, o- s)
196 ALCG (X)=DLCG ()
Bt -7 A . RIAN(X)=DATIAN(X) s o =
198 SCHT (X)y=LSCRT (X) | eI R T ‘
199 _;' o X*AIOG(X+SQ«T(X**2+1.0))/(x*V+1 C)f_; .
S {0 L BETUEN =" o G ey e Rt il
201 END |
S PERERY s 2
ICLCH. ~ [CICFA - -=DCMCH DCMDPA |

-‘“8 3301 74

“LCICHLT Il

-14.9049 4.

| Aecve ruw aT xc= 05

Eost c
{ - apeap:

12= ; c
g2= - Co
_ ECHECA=

- [CRLRO=

. ICHERI=

THE FOLLOWING A
LCICHC=
[CIDH= -

. vZGC - '2 8839 ) -7.“252

S0 beurHnt  bokbe
6765  0.4439 =-0.6365

ST w000 T

3occocooocoooococ C1°° 1HETAO: -
~ ks 1uoooooonaz133san 01 BC

2‘6:6579583256290 00 13- 0. 8)35115316n809¢éu-01
38C247288u4871867D 00 M3= 0.1270643384604157D 60
-0,5227058291176051D0-02 ECLCA= . 0.,1360770457624580D )0 ;
-0.39533537722487967D-02 DCLDEO= . UUUUDOOOUUOTOULLUSITUDNUUISNY
C.7l“5993955771322u~02 DC1D=1= T Lz{--O‘63805790176925260-01 3

az NCT THE ACTUAL COEFPICIENTS, RUT RAIHER THEY ARE THE CORRBSPOTBg 
$116€40674125913C 01 DCLDG= 0.1606126276395752D 01 3
.zaqsanlazssaasnsn 03 _ECLDPA= 74
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- APFENDIX C
FINITE PAD LENGTH EFFECT

As an air cushion vehicle travels over the ground, it encounters a
series of surface irregularities which alter the conditions of the air
cushion. Since the 1rregularifies occur in all wavelengths, it is likely
that some of the irregularities will be of much shorter wavelength than
the length of the air cushion. When this is the case, the shape of the
ground with respect to the vehicle cannot be described by a single number,
as is the case with a point contact suspension, but is instead some
function of the pad length, or length of the air cushion. For instance,
to a point contact suspension a stairstep is a step change in surface

height, but to a pad of finite length it is an obstacle to be climbed,

for a step change in surface height implies that all points under the

pad change height simultaneously, which is nét the present case.

The model in this paper uses attitude and rate terms to describe
the effects of wvehicle mofions on the forces on the body. Because of
this fact, the typical surface spectrum will cause the vehicle to have
a constant accéleration spectral density high frequency asypptote when
constant guideway descriptors are used. This implies infinite rms
accelerations which is obviously wrong, and experience shows that very
high frequencies are usually severely attenuated. ' The discrepancy is
caused by the model chosen which implies that the relative height and
pitch of the vehicle over the guideway may each be described by a single
value. In actuality, where irregularity wavelengths on the 6rder of

B e o o e
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and shorter than vehicle léngth are present, the relative height and j):ltch
ar; necessarily functions of distance along the vehicle,
Including such functions in the model make' any kind of analysis ex-
tremely tedious if not impossible. Simplification is possible, however.
Suppose we assume two-dimensional irregularities suciz that the surface is
constant across the track width at any point‘ and that the average height
and pitch of the guideway portion under the vehicle are the most significant .
descriptors. It then becomes possible to describe the effect of vehicle

size on small disturbances as an attenuation by-liigiil (Riblich, Captain,

" and Richardson, 1967).

For ease of description, we assume at t o O the center of the vehicle
is at a crest of the guideway and that the guideway itself is expressed
as a sum of sinusoids over a continuous frequency domain. Using A to

represent guideway wavelength, the height of the guideway with respect

to some mean datum plane is

ifg = Iﬁg ()| cos (?.{.’E.,.?LXQE)

where x is distance in front of the vehicle center. If we normalize

guldeway amplitude to one, then the average height of the guideway
under the vehicle is

y 0 2nx , 2nU
e e

i =zt [sin (3% + Zant) - sin (——’;’L + ___21;0!:)]




and by trigonometric identity

: : 2nUt '
= (;-‘_"T sin '-i—L-) cos “l : (c-1)

sAvg

The term in parentheses in equation (C-1) is the %i function for
g = —. This function is plotted in Figure C-1 which demonstrates that
this function goes to zero for very short wavelengths. This result is
not surprising since experience tells us that disturbances with a wave- »
length of one inch will be of no effect on a large, 150 foot long vehicle.

The rate of guideway height change, ﬁ, is found in a similar fashion.
Normalized height was expressed by

- . 2nx , 2nUt
hg = cos i e )
80 its time derivative is

Foo=2nl 2mx , 2nUt

The average value is

: T, e 2nx 211'Ut
th .EJ:L 3 sin (= + =—) &
vg /2
§ 2o L, 2nge, L , 27U,
h‘Avg AL = (" ) - ek (n + 2020
By =5 s1n TL g1n 208
Avg
& - 2ny ("RL nI.) gin 2NMUt - (c-2)
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. Tnds last expression is the time derivative of (C-1).
It turns out that the effect of averaging guideway pitch is similar.
We proceed in the following way ’

dh
= —£
dn
it
_at
at

tan 0 =
- g

For the guideway model we bave chosen, as with the vehicle, the small-
angle assumption is valid. This being the case, one can say tan 6 =0
and as a result '

Tt then follows that

2n Ut

217 /A wL
g —_ (: sin-):-)sin N

gAvg A nL

and, in a similar manner

2n Ut
A

. Sinty

A nL
— gin ==) cos

It is apparent that equations (c-;z), (c~3), and (C-4) are related to
(C-1) by constants and time derivatives.

If, as we have seen; the effect of using average guideway parameters
is to add attenuation to the guideway eff<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>