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THE ELECTRONIC PROPERTIES OF A STMPLE }TTAL-METAL INTERFACE

Avishay Yaniv

Department of Physics, University of California San Diego
La Jolla, California 92093

Abstract

The properties of metal-metal interfaces are of interest in many metallurgi-
cal applications. These include grain boundaries, crack growth, friction and bi-
metallic adhesion. The present work is a study of the electronic properties of
a simple bimetallic junction. The methods employed to investigate the interface
are the Green's function technique and the phase shifts method. We calculate the
Green's function of a simple junction within the tight-binding approximation. The
conditions for the occurance of bound states is deduced from the poles of the
Creen's function. It is shown that there are three types of wave functions asso-
ciated with the interface. The first extends throughout the entire crystal, the
second extends on one side of the interface only, whereas the third kind is localized
near the interface. Using the phase shifts method we derive an expression for the
change in density of states due to the creation of the interface. From this
expression we derive the corresponding single-particle contribution to the interface
energy and the interface specific heat.
* Supported in part by the Office of Naval Research and the National Science Foundation
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I. Introduction

The properties of metal-metal interfaces, are of interest in many metallurgi-
cal applications. These include, for example, grain boundaries, crack growth,
friction and bimetallic adhesion. The general metal-metal interface is a much
more complicated problem than the corresponding metal-vacuum interface. Recently
there has been, however, some success in applying certain methods developed for
surface phenomena, to the investigation of bimetallic interfaces.

The electronic properites of l-dimensional bimetallic junctions were dis~
cussed by several authors using various types of models. Aerts(l) studied the
electronic structure of a 1l-dimensional Kronig-Pemney model, in the limit of a
§-like potential. In this work he established the possibility of the existence of
bound interface states. A tight-binding approach, which was used successfully
for several surface problems, was also applied to the 1-dimensional interface.
Davison and Cheng(?') investigated the electronic properties of such a system
using the molecular-orbital method. The model they use associates a single s-type
orbital with each atom. A similar model was studied by Allan and I.annoo(3) , using
an approximate,Gaussian, density of states, having the correct second moment.
Creen's function formalism was used by Foo and WOng(l") to study the interface
states of a l-dimensional sp-hybrid junction.

As far as we know, the study of three~dimensional bimetallic inte was

carried out by the density-functional formalism only. This formalism, de -loped

by Hobenberg, Kohn, and Sham, (5), (® was applied recently to bimetallic

interfaces by Bermett and Duke, @, 8 Ferrante and Smith, 9, 10 Rouhani
(12)

and Schuttler, (11) and by Mehrotra, Pant and Das.
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Whereas the density-functional formalism is applicable mainly to simple
metals, the tight-binding approximation is more suitable for the description
of transition metals. Since the purpose of the present work is to investigate
the electronic structure of a bimetallic junction, formed from two transition
metals, we shall use the tight-binding approach. The model we consider is a
highly simplified one. The two metals, on each side of the junction, are des-
cribed by s-type tight-binding Hamiltonians. The interface we consider is
formed by bringing together two semi-infinite, simple cubic crystals, and creating
bonds between the atoms on the two sides of the interface. We assume that the
two semi-infinite crystals have the same, two-dimensional, translation symmetry
parallel to the interface. The electronic properties of this model are investi-
gated by using the Green's function method, described in detail by Kalkstein and
Soven. (13 ‘

The details of the tight-binding model are outlined in Section II. Within
this model we allow for a change in the self-consistent potential of the electrons
near the interface. The diagonal matrix elements of the Green's function are
calculated in Section III by considering the formation of the interface as a
perturbation on the two semi-infinite crystals. This is accomplished by the use
of Dyson's equation. Using the expression for the Green's function we discuss
the electronic structure of the interface in Section IV. We show that there are
three types of wave functions associated with the interface. The first one
extends throughout the entire system, the second type extends on one side of the
junction only, and the third, associated with bound states, is localized near the
interface. The behavior of the bound states as a function of the coupling constant
between the two metals is also discussed. The ''phase shifts'' method is applied
in Section V to determine the change in the total density of states due to the

creation of the interface. Applying this result we obtain an expression for the

wln




single-particle energy contribution to the interface energy and the corresponding
contribution to the electronic specific heat. An application of the model to the
interface formed between two transition metals of the same series is presented
in Section VI, where we calculate numerically the local densities of states,
the change in density of states and the interface energy.
II. The Model

Consider the formation of a metal-metal interface by bringing together
two, semi-infinite, metallic crystals. As soon as a contact is formed, electrons
will flow from the metal having the higher Fermi energy to the one having the
lower energy. This flow of electrons stops when the potential energy difference

between the two sides of the junction, which is created by the dipole layer

produced at the interface, is equal in magnitude and opposite in sign to the difference

between the two Fermi levels. Thus, the Fermi levels of the two metals are aligned,
due to the interface dipole-layer, when the bimetallic junction is formed. If

-Av and +Av are the electrostatic potential created by the dipole layer on

the right and the left hand sides far away from the interface, then we have:

etv =} (B - Efb)

where -e is the charge of the electron and Efa and Efb

are the original
Fermi levels of metals a and b, located to the right and to the left of
the junction, respectively. The common Fermi level, after the junction is formed,

is given by:
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In order to describe the electronic properties of the two bulk metals, the
two metal-vacuum interfaces, and the metal-metal interface, we apply the tight-
binding approximation for the various Hamiltonians. For simplicity we associate
one s-type orbital with each lattice site. It is also assumed that each orbital :
has a g-fold degeneracy in order to partially account for the 10-fold degeneracy
of the d orbitals in transition metals. Therefore, the Hamiltonians of the

Skl

two bulk metals, Ha and Hb , are given respectively by

goeg gt =g -b*b
i, 1 419 H, oy Sen (2.3)
where ::f!]'_,aj and b;f_, bj are the creation and destruction .operators of the

Warmier type orbitals, associated with metals a and b, localized near sites i

and j . The prime on the summation signs denotes a summation over nearest neighbors

only. The matrix elements tgj and tli)j are given by
]
B £E Tim b5 i ;
a o Yoa ¥ s i . 3
tij = -.;1|Hai_]> = E1a or Ei‘a if i and j are nearest neighbors ) I
0 otherwise
b = 1
. Eob if i* i ?
tij o <Ii|Hb'j> = Elb or Elb if i and j are nearest neighbors %
0 otherwise
(2.4b)
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To cleave the crystal along a given low-order crystalographic plane, we have tc
break the bonds between two adjacent planes, parallel to the corresponding direc-
tion. We neglect any geometrical reconstruction of the crystal due to the forma-
tion of the surface and assume that the transfer integrals tgj and tli?j with

i # 3, have the same value as in the bulk systems, provided that both sites

i and j are occupied. In addition, we assume that the effect of the surface

on the redistribution of the electronic charge near the surface can be described as
a change in the self-consistent potential of the electrons near the first surface
layer only. Therefore, the diagonal matrix elements of the Hamiltonian for sites
located on the surface plane will be different from the corresponding bulk value.

Thus, for the metal-vacuum systems we have

]
1

<i|H}|i>

G N (2.5a)

oa a

\‘i|l{!')|i> =B, F éi,-l (2.5b)

where 0, and ﬁb denote the change in the self-consistent potential of the
electrons near the surface. In the above expressions we assumed that i =0 and
i = -1 denote surface sites of metal a and b , respectively.

In order to form the metal-metal interface we start from two non-interacting
semi-infinite metal-vacuum interfaces (the free surfaces), having the same trans-
lational symmetry parallel to the surface, and introduce a coupling between the

two surface layers. The Hamiltonian of the non-interacting system is given by

= ¥ty ¢ e, (2.6a)
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where
<i|H;Ij> if both i and j are a sites.
®1j T )<i|H!|3> if both i and j are b sites.
o otherwise
ai, a]?j if i is an a site.
and € €=

o ;
bi’ bi1f11sabsz.te.

(2.6b)

(2.6¢c)

The interaction between the two surface layers is characterized by a transfer

matrix element

%

< B —lIHlB o> ) <B O|H|B -.l>

2.7

where R .1 @d R denote two nearest-neighbors sites located on the two sides

of the interface. We also note that the dipole layer created at the interface

will change the self-consistent potentials on the two sides of the junction.

If we assume that charge redistribution is confined to the near vicinity of the

interface we can write

]

A X 3 : it ;
\131!}1 |R> = E etV +U_ ¢ if i is an a site |,

oa i,o ¢

n
=]
+
o
>
<
o4
a
O

|
<..R;j1H lR_J> ob

if j is a b aite

(2.8a)

(2.8b)
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where i =0 and j = -1 denote interface sites of metals a and b, respec-

tively. In the above expressions Ua and Ub denote the change in the self-
consistent potential of electrons near the interface relative to the bulk.

III. The Bimetallic Interface Green's Function

As we already noted before, we assume that the two crystals forming the inter-
face have the same translational symmetry parallel to the interface plane. As

a result, the wave vector parallel to the interface k is a good quantum number .

In the following we assume that the interface is in the 2zy plane, and that
metals a and b are to right and to the left of the interface respectively.
The mtegérs m, n, ... will be used to label the various planes parallel to
the interface. Metal a 1is assumed to occupy the planes m > O,whereas m < -1
planes are occupied by b atoms. Following Kalkstein and Soven(]'S) , we denote
by Ty the translation vector parallel to the interface which brings the atoms

in the n-th nlane to coincide with the transverse positions of the atoms on the piane

n=0 eneral coordinate of an atomic site on the n-th plane is thus given
by
=Ry TRy F
R Byt h z 3.1

where R 4 is the distance between the planes o and n, and R  is a general
translation vector parallel to the interface. Using the localized Wannier orbitals
|_E_{n1 R, + T we define the mixed Bloch-Warmier representation by the following

two-dimensional Bloch sum(14)

TR (R ot )
i o -n
“n (3.2

ikn’n> s (Nn)-% z Igni- * B_n AN
Ry,
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where N, is the mumber of atoms in the plane parallel to the interface. These
functions are localized near the n-th plane. Since the translational symmetry
parallel to the interface is preserved, the eigenfunctions of the interface
Hamiltonian can be expanded in terms of the Bloch-Wamnier functions (3.2) as
follows

E. ..k_"> =Z Cj Ikn’ n>
j o Bkn (3.3)

where j stands for any quantum number needed to specify the eigenstates in
addition to k,, .

Using the expression (3.3) we can define various densities of states for
the system with the interface. The local density of states, near the n-th plane,
with a definite value of k, is given in terms of the coefficients Ci]-]k by

B e
o ok} = & g | 0@y, ) (3.4

The local density of states (per atom) near the n-th plane is

. 2
1 .
R g E T SR A, | a0 (3.5)

on JsKn
The sum over 15” in this expression goes over all values of k in the two-
dimensional Brillouin zone defined by the crystals geometry parallel to the inter-
face. Suming the expression (3.5) over the various crystal planes we obtain

the total density of states. The density of states per atom is thus given by




@ =z, @)=L sz | '25(E B
e Ny - pn N i,k n&n ‘ jku
1 En

n

(3.6)

where N 1 is the number of atomic planes parallel to the interface and N is the
total number of atoms given by N =N, N 1,

In order to derive the various densities of states of the bimetallic inter-
face we shall use the Green's function technique. ILet H and H° be the Hamil-
tonians of the interfaced crystal and of the free metal-vacuum interfaces respec-

tively. The metal-metal interface Gre=n's operator G 1is defined by the following

equation

(E -i8 - H) G =1 (3.7)

where E 1is the energy and § 1is a positive infinitesimal. The surface Green's
operator G° 1is related to the Hamiltonian H° by a similar equation. The

Green's operator of the interface is related to the surface Green's operator via

Dyson's equation:

c=¢’+ c°ve (3.8)

where V 1is the perturbation necessary to create the metal-metal interface from

the free surfaces of metals a and b, i. e.

V=H-g® (3.9)




We note that because of the translational symmetry parallel to the interface,
G, 6° and V will all be diagonal in the wave vector index k, , in the Bloch-
Warnier representation (3.2). Omitting the corresponding &-function,
§(ke - k'), we use the notations G (m,n; k.) , ¢ @,n; k) and V (mn; k.)
for the matrix elements of G, @ , and V in the Bloch-Wannier representation.
To further simplify the notation, we shall generally omit the explicit k, depen-
dence in these expressions.

The various densities of states defined earlier by Egs. (3.4) - (3.6), are

simply related to the imaginery part of the diagonal matrix elements G (m,m; ki)

by

0(E) =& InTr G = - InE il k) (3.10)
m,_-_vl

< —'1 “12 n 2 (3.11)
pn (E) = TN, I ., G(n,n; ki)
p_(E, ku) __1‘. ImG (n,n; ky) (3.12)
n i

We turn now to the evaluation of the interface Green's function from Dyson's
equation (3.8). This operator equation is reduced to the following algebraic

equation in the Bloch-Wannier representation:

G(m,n) = G°(m,n) +>2 G° (m, £)V (4,1 )G (r,n) (3.13)
1585

From the discussion 6f the model given in Section II, it is obvious that the

perturbation potential V has off-diagonal matrix elements, which couple the




interface planes n=0 and n= -1 . In addition, on each side of the inter-
face V has two types of diagonal matrix elements. The first one, due to the

, interface dipole layer, is given by teAv . This is just the perturbation

E' ) necessary to align the Fermi levels on the two sides of the junction, Eq. (2.1).
The second type of diagonal matrix elements is due to the change in the self-
consistent potential of the electrons near the interface. This is given by

L ﬁa and Uy - Ub where U_, ﬁa and Uy, ﬁb are the self-consistent potentials,

relative to the bulk, of interface and surface electrons of metals a and b ,

respectively.

As we shall see later on, it is possible to determine the surface Green's
functions for an arbitrary value of the surface self-consistent potentials fla and
Ub . It is, therefore, simpler to start from a fictitious, intermediate surface
problem where the surface self-coiisistent potentials I'Ja and ﬁb : have already
the correct interface values, Ua and Ub , respectively. Using this system
as our starting point, the perturbation potential necessary to create the metal-
metal interface is simpler than in the original problem. It consists of diagonal
terms +eAv , which align the Fermi levels of the two metals and of an off-diagonal
term, which couple the two semi-infinite crystals. Thus, the only non-vanishing

matrix elements of the perturbation are given by

-efv form - 0

V(m,m) = { (3.14)
+eAv for m < -1

i (k)

V(-1,0) =V(0,=-1)* = B(k,) e (3.15)




where 8 and ¢ are derived from the relation
V(-1,0) = g' X, [v[r > elky © R+ 7)

In this expressi;, 1 is a translation vector parallel to the interface
which brings the transverse atomic sites of the two interface planes to coincide.
In Eq. (3.15) the phase ¢ was chosen in such a way that g>0.

We start now from the intermediate surface problem discussed above, vhose
Green's function we denote by ¢, and apply the perturbation in two steps. First
we align the Fermi levels of the two metals by applying a constant electrostatic
potentials +Av onmetal a and -AV onmetal b . The only effect of applying
these constant potentials on the surface Green's functions is a shift in the

corresponding energies. Explicitly we have

& 3.7
A =Gy (Etelv) )

Q
—
5]
~—r

|

Gy (B) =Gy (E-edv) (3.17b)

where é denotes the value of the Green's functions in the intermediate problem,
after the application of the potentials #Av . To simplify the notation we drop
the wiggle from these Green's functions remembering that the energies have to be
shifted according to (3.17).
At this stage we turn on the second part of the perturbation i. e. the off-
_apomal coupling between the two metals. Due to the localized nature of this
pertucbation, the Dyson's equation (3.13) is greatly simplified, and we obtain

G(m,n) = Go(m,n) + Go(m,-l) V(-1,0) G(Qyn) + (:O(m,o) V(0,-1)G(~1,n) (3.18)

38
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Using the fact that the surface Green's function ® (m,n) vanishes if m and
n refer to planes on opposite sides of the interface, we can easily solve equa-

tion (3.18) for the perturbed Green's function. In this way we get

G@m,n) = G°(m,n) + c°(m,0) [v<o,-1)c°<-1,n) # o %6t 1 x

, 51
c°(o,n)] [1 = |wto,~13] G°<o,o)c°<-1.-1)]

(3.19a)
for m>0
and
G (@m,n) = Gc°@m,n) + c°(m,-1) [v(-1,0) 6°(0,n) + !v(0,-1)1%6°(0,0) x
-1
c°(-1,n)] [1- |v¢0,-1)12 ¢°(0,0) c°(-1,-1) ]
(3.19b)
or m< -1, i

In particular, the diagonal matrix elements of the interface Green's function are

given by
1
-1
G(m,m) = ¢°@,m) + B2c°(~1,-1) ¢°(m,0)c°O,m) [1-8%6°(0,0)6° (-1,-1)
?
form> 0 (3.20a)
and
= oc1,-n | 7
(o] = -
oty = 6" t,n) + sch(o,o) °(m,-1) 6°(-1,m) | 1-8” G (0,00G (-1, )
for m < -1. (3.20b)

T




5] In the above expressions 8 is related to the off-diagonal coupling between the
two metals through Eq. (3.15), i. e.

8 = |v(o,-1)|

The diagonal matrix elements of the surface Green's function were calculated

by Kalkstein and Soven1 . Using the same method one can also derive the

general matrix elements of this Green's function. In Appendix A we show that

these matrix elements are given by

!m-n ' mm

I o w " . . ) o
6% G ) iu;l e-l(m-n)va‘ ( aiiua ) +(&a+1ua) 'H;(wa 2Ua} (3.21a)
l 2Ta ZTa i pa(wa-zﬁa)
for m, n> 0
s fm-n | (m{+{nl-2
e w +ip Wty |
8 ~i(m-n)é b b e (3.21b)
R e : ( 2Ty, ) : ( 2Ty, ) d

i +(wb-2Ub) ]

1us(wb-2ﬁb) ‘

for mn < -1

and

(3.21c)

Go(m,n) = 0 otherwise.

1=




In these expressions u and w are defined by

(4T2"”2)% for w2 = 472
o= ! (3.21c)

isign (w) (wZ_M,Z)% for w2 > 4'1'2

and

€
[

E - W(En)

where W, T, and 6 are related to the matrix elements of the bulk Hamiltonians

of the two metals,in the Bloch-Wannier representation,as follows

Way & = nl&v-‘”a(b) Ik,

i‘:“ (kl') =
T, by &) € a®) =" = <nky[R | ntl, k>

In order to apply the expressions (3.21) to the solution of the interface
problem, we replace first ﬁa and ﬁb by the corresponding interface values
Ué and Ub , respectively. In addition we have to shift the energies according
to Eq. (3.17) in order to align the Fermi levels of the two metals. This can

be achieved by redefining the w-s in the following way

&
"

E - W (k) +ebv (3.22a)

&
]

E =W (l(_n) - elv
b o (3.22b)

-16-




< Substituting the explicit expression (3.21) for the surface Green's function
into Eq. (3.20), we obtain that the diagonal matrix elements of the interface

Green's function are given by

jih

: 2m
1 W Hp ip + (w -~ 2U0)
G(m,m)*i & ( a a) g ~a a a
a

Bl i
a W a+i (wa 2Ua) 2Ta

2
e L ) (3.23a)
4t (Bt 1@ 20 | Fbﬁ(wb -2ub] f

for m > 0 , and
2'm‘-2

- 1 w +H
G(m,m)=-l-+ (b " )

ub 2T
; = b
u_b‘H. (wb Z.Ub)

iy, +(®,-20p)

“b

8821 & 1

5 e (3.23b)
48" + [u,a+ i(wa-ZUa)] [p,b+ i_(wb-ZUb)] ‘

for m < -1.
We recall that w s and W in these equations are defined by the energy-shifted
expressions (3.22a) - (3.22b), respectively.

It is straightforward to confirm that in the limit where the two metals

a and b are the same, the expression (3.23) for the interface Green's function
reduces to the corresponding bulk expression.
IV. The Electronic Structure of the Interface 4

In this Section we apply the Green's function derived in the preceding section
in order to investigate the electronic structure of the interface. From the expli- *
cit expression (3.23) it follows that the diagonal matrix elements of the inter-

face Green's function have a non-vanishing, continuocus imaginery part for energies

o17=
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which are either insidc the band of metal a or inside the band of metal b
(shifted, of course, according to (3.17)). Therefore, as follows from Eq. (3.12)
the band width of the crystal with the interface is the union of the shifted
bands of the two separate crystals. However, the wave functions of the combined
crystal can be classified into three distinct classes according to their different
localization properties. To facilitate our further discussion we define the ki,

sub-bands of the two metals as the band structure obtained by the intersection of

E,® and E (k) wit: " = constant, where E (k) and E, (k) are the
single-particle energy s; e two bulk crystals.

The first type of states nave wave functions which extend throughout the
entire crystal. As can be seen from Eqs. (3.4) and (3.23), this kind of behavior
is associated with states whose energy lies in the k,, sub-band of the two metals,

i.e. their energy and wave vector satisfy the relations

IE - W, (kw) +etv| <21, (k)

[E - W (k) - etv| <2t (k) 4.1)

The second type of states have wave functions which extend to infinity on
only one side of the interface, and which decay exponentially with the distance
from the interface on the other side. Using the expression (3.23) for the Green's
function it is not hard to see that this behavior occurs when the energy lies in
the k, sub-band of one metal but outside the corresponding sub-band of the other.

Thus, for energies and wave vectors that satisfy

|E - W, (k) +edv| -27, (ky)

(4.2)
[E - W, (k) - edv] 2T, (k)

1B




the corresponding wave functions are Bloch-like inside metal a but decay exponen-
tially from the interface inside metal b . In a similar way, the wave functions

of states whose energies and wave vectors satisfy

IE = W (k) + edv|>2T, (ky)

E - W, (k) - eAv|-<2Ta () (4.3)
extend to infinity on the b side of the interface, but decay exponentially

on the a side. The decay coefficient of the wave function is determined by

the energy measured relative to the corresponding k,, sub-band center. If we
express this energy in units of the sub-band half-width, and write

w (l‘_n) = QZTQS.") 2 'al';l (44)

where w(k ) and T(k.) refer to the corresponding values on the side of the
interface where the wave function decays exponentially, we obtain from Egs.
(3.4) and (3.23) that on the decaying side the wave function on plane m is
Am

proportionally to e~ The decay coefficient A>0 is given by

A= - l,n[a - sign (@) J 0’2-1] (4.5)

Thus, the further the energy is from the center of the sub-band, the stronger
is the exponential decay of the corresponding wave function.
We note that the behav.c: of the wave functions extending throughout the

entire system and those extending only on one side of the interface is as expected.
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If we try to propagate a wave through the interfaced crystal this wave can pro, .-
gate from one side to the other only it its frequency is in the common sub-bands.
If, however, the frequency is in the sub-band of one of the crystals but outside
the sub-band of the other, this wave cammot penetrate into the second crystal,
and its amplitude will decay exponentially.

The third type of wave function is associated with the existence of bound
interface states. For a given ki, the energy of the possible bound states are
determined by the poles of the Green's function, which lie outside the ki, sub-
bands of the two metals forming the junction. Using the explicit expression
(3.23) for the interface Green's function, we see that the bound states energies

are given by the roots of the equation:

432 = [sign(w'a)aa‘i' e ZUQEi.gn(wb)ilb+ s W ZUb] = {%.9)

outside the k. sub-bands. In this equation §i is defined by

T= @ - arhE
As can be seen from Eq. (3.23), the wave function of an interface bound state
is localized near the interface and decays exponentially with distance on both
sides of the interface. Thus, the bound electron is free to propagate parallel
to the interface, but is confined to a finite stripe of width A,y (where
A, and A\, are given by Eq. (4.9) below) in the direction perpendicular to the
interface. The decay coefficients of the bound state wave function will be

different, in general, on the two sides of the interface. If we express the
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bound state energy, relative to the center of the two k, sub-bands, in terms of
the corresponding sub-bands half-widths, we can write

o i el e
W, =@ 2T, laal/l ; ® = o 2T, Iwbl 1 %.7)
where
w® = g° -wa+eAv;wg=E°-Wb - elv
(4.3)

and E° is the energy of the bound state. It is easy to see from Eq. (3.23) that
the exponential decay coefficients on side a and side b , Ay and A, res-

pectively, are given by

__2.,_
. Ln[aa o~ sign(aa) ./08 -1 ] (4.9a)

< o - sign (o, o, -1 ] (4.9b)

Thus, the greater the distance of the bound state energy from the center of the
k. sub-bands, the more localized is the corresponding wave function.

We note that a general property of the bound interface states, derived
from Eq. (4.6), is that whenever two interface states exist simultaneously, an
increase in the coupling constant § will increase the energy of the interface
state having the higher energy and will decrease the energy of the lower energy
bound state. Another remark that should be added here is that for very strong




coupling between the two metals there will always be two interface states, a bonding

state below the sub-bands and an anti-bonding one above the sub-bands. The
asymptotic energies of these bound states are given by

E =Ua+Wa-eAv+B

1
E,=U +W +ewv -8

. 4 |Ua+wa-eAv]>|Ub+wb+eAv| and by

E} =0 +W +ev+ 8
E,=U, +W, -etv- 8
if | Ub+wb+eAv|>|Ua+wa-eAv|

The analytical solution of Eq. (4.6) for the bound states cuergic. is not ~ossible
in general. However, by a suitable graphical analysis, one can determine the
conditions for the occurance of bound states, their number and their position
with respect to the bands, as a function of the strength of the coupling constant.
It turns out to be very convenient to analyze the interface bound states in

terms of the properties of the bound surface states of the intermediate surface
problem considered in the preceeding section (i.e. the surface problem having a

surface self-consistent potential equal to the respective value of the interface
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problem). It is well known that the bound surface states are given by the roots

of the equation(13) 1

sign(w) ¥ +w -2U=10

The corresponding surface bound state energies are given by

2
T, =~ (kn)
Q) e a ‘= (4.10a)
Ea = Fva (kyy) - edv + Ua ot T,
o 3 sz (_ISH)
Eb = wb (Eu) + elAv + Ub + = (4.10b)
b

provided |U [>T, and |U }>Tb . For U< T there are no surface states.

In the following analysis we shall use the indices 1 and 2 to denote the metal
having the higher sub-band top edge and the lower sub-band bottom edge, respec-
tively.

The behavior of the interface bound states can be described as follows:

a. When in the intermediate surface problem there are no bound states
(i.e. IUa|<Ta and |Ub]<Tb) there will be no bound interface states
for small values of the coupling constant g . As the coupling constant
is increased, a bound state will appear as soon as the critical value
81 is reached, where

"
B, = min{[n%(T2+U2) £y (Eymin), % (Tl-Ul)fz(Elmax)]} (4.11)
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E,, max and Ez’min are the top edge and the bottom edge energies of the higher
and the lower of the two ki, sub-bands respectively. If -(Tzwz)fl(Ez,mjn) <
(T1 - Ul)fz(El, mx) the bound state will appear below the sub-bands. If, how-
ever, -(Tz-i{lz)fl(Ez’mx) > (Tl - Ul)fZ(El : max) the bound state will appear above
the sub-bands. The bound state described above exists as long as B>Bl . When
the coupling constand is further increased and the value By is reached, a

second bound state appears. The second critical coupling is given by

o
2

B Jmax[-’%(T U, £, (E ), 5(T,-U )£, (E ] ’ 4.13
27} PR T LT 2 ) (4.13)
for B > By there are always two bound states, one below and the other above

the sub-bands.

b. Suppose that in the intermediate surface problem one of the following

four situations holds:
1. There is one bound state above the sub-bands and the two sub-bands

overlap.

2. There is one bound state above the sub-bands, which is associated
with the metal having the higher sub-band and there is a gap between the

two sub-bands.
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3. There are two surface states, one above the sub-bands and the other -
lies in the sub-band of the second metal and there is an overlap between
the sub-bands.

4. There are two bound states, a gap exists between the sub-bands and
the bound state of the lower sub-band lies above the sub-bands, whereas,
the one associated with the upper sub-band falls in the lower sub-band.

Then the behavior of the interface bound states is as follows: for small coupling
constant there will be one bound state above the sub-bands. This state develops
in a continuous way from the corresponding surface state. If Eg is the energy
of the surface state, which lies above the sub-bands, then for small 8 the

energy of the corresponding interface state is given approximately by

£ E° o -
=] fj (E?_) T, (4.14)

where fj (E) is the function defined by (4.12). As long as B is in the range
°§B<B3 where By is defined by

1
4

e . 2

there is one bound state above the sub-bands. For B>B3 there are two bound

interface states, one above and the other below the sub-bands.

c. Suppose that in the intermediate surface problem one of the following

four situations exists:

=5




1. There is an overlap between the sub-bands, and a bound state exi:.‘s
below the sub-bands.
‘.
below the sub-bands which is associated with the lower sub-band.

There is a gap between the sub-bands, there is one surface state

3. There is an overlap between the sub-bands and there are two sur-

face states, one below the sub-bands and the other lies inside the

sub-band of the second metal.

4. There is a gap between the sub-bands and there are two surface
states, the one associated with the higher sub-band lies below the sub-bands,

and the other falls inside the higher sub-band.

Then the behavior of the interface bound states is as follows: for small B there

will be one bound state below the sub-bands, with an energy given approximately

by (4.14). When the coupling constant is increased, a critical value By, 1is

reached, where a second bound state appears above the sub-bands, B, is defined by

'l%

4.16
lm:)-J ( )

8, (& @,

For B8y, there are, thus, two bound states, one below and the other above the

sub-bands.

d. Suppose that in the intermediate surface problem one of the following

situations holds:
L.
state above the sub-bands, which is associated with the lower sub-band.

There is a gap between the sub-bands and there exists one surface
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2. There is a gap between the sub-bands and there exist two surface 41
states. The one associated with the higher sub-band is located above
the sub-bands and the other lies inside the higher sub-band.

Then the behavior of the interface states is as follows: for a small coupling
constant there is one interface state above the sub-bands. When B reaches the

critical value 3 where

g =|-% (T, +U,) £, (E ]
5[ 1 G 1,min) 4.17)

€ min being the bottom edge energy of the higher sub-band) a second bound
state appears inside the gap. This bound state exists as long as the coupling
constant is in the range: 655 Bix 86’ where 86 is given by

%
3, =[% @, - U £ € mx)] (4.18)

E, is the energy at the top of the lower sub-band. For B>8 ¢ the bound

state disappears from the gap. When B reaches the value g, given by Eq.
(4.15), a new interface state appears below the sub-bands. For gsg; there

i e o S

are two interface states, one below and the other above the sub-bands.

e. Suppose that in the intermediate surface problem one of the following

situations holds:




1. There is a gap between the sub-bands, and there exists one surfac.
state associated with the higher sub-band which lies below the sub-bands.

2. There is a gap between the sub-bands and there are two surface states.
The one associated with the lower sub-band lies below the sub-bands znd
the other one lies in the lower sub-band.

Then the behavior of the interface states is as follows: for small values of the

coupling constant there is one interface state below the sub-bands, whose
energy is given approximately by (4.14). When B 1is increased, and reaches
the value B, given by (4.18), a new interface state appears in the gap. This
bound state exists in the gap for Bg<B <Bs where Bs is given by (4.17).

For B > B the bound state disappears from the gap and a new bound interface
state appears above the sub-bands for 8 > 8, where B, is given by (4.16).
For B > 64 there aré two bound states, one below and the other above the subQ

bands.

f. Suppose that one of the following situations holds in the intermediate

surface problem:

1. There is a gap between the sub-bands and there is a single surface

state which lies in the gap.
2. There is a gap between the sub-bands and there are two surface
states, one in the gap and the other lies inside the sub-band of the

other metal.

Then the behavior of the interface bound state is as follows: for small values
of the coupling constant there is a single interface state which lies in the

: -28-




gap. When B is increased and reaches the value B+ where
& e DALY E E )k L) £y s (4.19)
7'“ 11 52 Vol mint 272 "1 T2, | :

this bound state disappears. For B> there appears a new interface state
=

below the sub-bands where B, is given by (4.15). If B>p, there is also
a bound state above the sub-bands, where 84 is determined by (4.16).

g. Suppose that in the intermediate surface problem there are two sur-

face states below the sub-bands, and a gap exists between these sub-bands,
then for small values of B there will be two interface states below the
sub-bands (with energies given approximately by (4.14)). When g reaches

the value given by (4.15), the interface state having the higher energy disap-
pears. A new bound interface state appears in the gap when 8 reaches

value of B . where B8 is given by (4.18). This bound state exists as

6
loag as B<B<Bs where B is determined by (4.17). For g > Bg the
interface state disappears from the gap and a new bound state appears above

the sub-bands when B > B, , where 8, is given by (4.16).

h. Suppose that the situation in the intermediate surface problem is the
E same as described in (g.) except that there is an overlap between the

' sub-bands. There will be two interface states below the sub-bands for
0<B < By, where By is given by (4.15). A new interface state

appears above the sub-bands for g > 8, , where 8, is given by (4.16).
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i. Suppose that in the intermediate surface problem there are two surface

states above the sub-bands, and a gap exists, then for sm:l values of B
there are two interface states above the sub-bands. When ¢ reaches the value 8,
given by (4.16), the interface state having the lower energy <:sappears. A
new bound state appears inside the gap when 8 reaches the va.e 8g given by

(4.17). This bound interface state exists as long as 85 < = > fg where

Bg 1is given by (4.18). If g8 is further increased, the bouné state disappears
from the gap and a new interface state appears below the sub-hands when 8 > B4

where 83 is given by (4.15).

k. Suppose that in the intermediate surface problem tnere are two surface states
inside the gap, then for small values of the coupling constant there will
be two interface states inside the gap. Their energies are given approxi-

mately by (4.14). When B reaches the value B¢ where

f |
Py =¢m1n [35 (T,-Uy) fl(EZ:nax)’ - (T, tUp) T, (Hl mm)] ‘ (4.20)
one of these bound states disappears. When g is further increased and
reaches the value Bg given by
P (4.21)

af - , <% (T +U)f,/’h )}
Bg {max[ %(T, U,) £ (EZ m:uz % (T L T 5 vdr ‘
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The other bound states also disappears from the gap. For g > B3, where
B4 is given by (4.15), an interface state appears below the sub-bands,
whereas for 8> By where By, is given by (4.16), there is a bound state

above the sub-bands.

1. Suppose that in the intermediate surface problem there are two surface
states, one below and the other above the sub-bands, then for any value of
the coupling constant B there will be two interface states, one below and
the other above the sub-bands.

m. Suppose that in the intermediate surface problem there are two surface
states, one in the gap and the other below (above) the sub-bands, then for

small values of B there will also be two interface states, one in the gap

P

and the other below (above) the sub-bands. The bound state in the gap
disappears for B > B, where B, is given by (4.10). For B > By,
(8 > 83) a new bound state appears above (below) the sub-bands, where
By, (83) is given by (4.16), and (4.15) ).

This analysis covers the various possible bound interface states.

In Section VI we shall return to the problem of the interface states while
discussing a numerical example.
V. The Interface Energy

If many-body effects are neglected the total energy of the crystal with

the interface is just the sum of the occupied single-particle energy levels.
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This, in turn, can be expressed as a corresponding integral over the system's
density of states. The total density of states of the interfaced crystal can be
obtained from the Green's function derived in Section III, by summing the
imaginery part over the various planes parallel to the interface. However, in
order to determine the energy needed to break the metal-metal interface into two
metal-vacuum interfaces we need to know the change in the total density of states
due to this cleavage process. This can be evaluated directly, without calculating
the density of states of the two systems, by using the phase shifts method des-
cribed by De Witt(ls) , Callaway (16) , and Toulouse(U) . This method can be
sumarized as follows: let H=H° +V be the perturbed Hamiltonian, and let Ej
and ¢, be the eigenvalues of H and H° respectively. The change in density

J
of states due to the perturbation V can be written as

Ap(E) = p (E) - 2% (E) =§l [5(E-Ej) - .(E—ej)]

where ° and p are the unperturbed and the perturbed densities of states.
This can be also expressed in the following way:

: E-i{-E,

Im O

Ap (E) e z y_‘n[——"‘]’—]
j

1 o) -1
» ImaE T [!,nG G]

where G and G° are the Green's operators of the perturbed and the unperturbed
Hamiltonians, respectively. Using Dyson's equation we can express G"1 in

terms of G . In this way we get




In = Tp [ln (1-G°V)] ! ]
§

0@ =L m2
= o)
L e 1-c°v)] (5.1)

g e e T

In the last step ve used the identity Tr [tod|= n [det A|, vhere A is
a general operator. The application of Eq. (5.1) is especially useful for a
localized perturbation, when det (l-GOV) can be expressed as a finite-order
determinant.

Let us turn now to the specific problem of the interface. In this case we

start from the two semi-infinite surface systems (the a and the b surfaces),

and apply the perturbation necessary to create the interface. This perturba-
tion was described in detail in Section V. We introduce the perturbation in two
steps. In the first one we apply a constant electrostatic potential 4Av on
metal a and -Av onmetal b . As we have seen before, the application of
these potentials causes a shift in the densities of states of the two surface
systems, which aligns the Fermi levels of the two metals. Since each metal is
electr'ically neutral, there will be no net change in their energies due to the
application of this perturbation. Our second and final step is to apply the
remaining perturbation V needed to form the interface. As we have seen in
Sections II and III, the only non-vanishing matrix elements of this perturba-

tion are given by

v (0,0) = U - i} (5.2a)

b —'b (5.2b)
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V (<1,0) = V(0,-1)* = Be (5.2¢)

where, as before, U, U, and ﬁa’ I'lb are the self-consistent potentials near
the interface and near the surface, respectively. Thus, in the present
case we have

1w E7 Rl 05 ¥ (A1, ~1) L2, L1 ¥ L,0)

det (1-6°v) = :
-c°(0,0) vV (0-1) 1 -¢%®,0) vV (0,0) (5.3)

where GO(O,O) and (-1,-1) are the corresponding surface Green's functions
of metals a and b, respectively, with the energies shifted according to (3.17).
We note that the surface self-consistent potentials in e (0,0) and Go(-l,—l)
are ﬁa and ﬁb , respectively, and not Ua and Ub , as was the case in the pre-
ceding section. Since G° and V are diagonal in the wave vector k,, , the deter-
minant (5.3) factorizes into similar terms with different ki, values. Expanding

(5.3) in terms of the indices m and n shows that each such factor is given

by

det, ~(1-67V) = [1-V(-1,-1> c°<-1,-1)] [1-v(0,0) c°<0,0)J -226°(0,0)6%(-1, -1)

(5.4)

In this expression we used the notation detk. for the partial determinant, with

a specific k. .




Substituting the explicit expressions for the surface Green's functions c® (0,0)
and G°(-1,-1), from the general expression (3.21), into Eq. (5.4) gives |

I+Bz+’ua+i(wa-2Ua )] [u.b+i (wb-ZUb)]
det, (1-G°V) = - 22 o ot
E" [}J’ H(w -2U )] [‘h‘ +H (W -QU] \l 2
a a a L b )

The bound state energies of the crystal with the interface are given by the

roots of the equation(16-l7) :

o =
det (1-G V) 0 (5.6)

outside the shifted bands of the two metals. Using the explicit expression (5.5)
we see that this is exactly the same condition derived earlier from the poles

of the interface Green's function, Eq. (4.6).

In analogy with ordinary scattering theory, one defines the partial phase
shifts by (1617,

7 (E,k,) = Tm 4n [detl_c_,, (1-G°V)]

{452+ l“a + i(wa-zua>l[@b + i(wb-ZUb)‘}
Arg SeiET : =
[, * L8, - 2 6 [ * 1 420 (5.7
In the second step, we applied the explicit expression (5.5) and used the iden-
tity Iménf = Argf, where Arg denotes the argument of the complex fumction.

If we take the determinant of (5.5) with respect to ki, and use the rela-
tion (5.1) we see that the change in the density of states per surface atom,

relative to the shifted bands, due to the formation of the interface, is given by:
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(a2 fu, 1, - zua)]_[ub-h; (wb-zub)]}

g Au 3 _
T @m? ‘:‘:_Efd!('" Arg{ l“‘a + i(wa-zﬁa)] {“‘b + i(wb-zﬁb)]

(5.8)

In this expression we introduced explicitly the g-fold degeneracy of the bards

under consideration. We also note that A,, is the area of the unit cell para-

llel to the interface and that the k. integration goes over the two-dimen-
sional Brillouin zone defined by the crystals structure parallel to the interface.

Equation (5.8) can be used to derive a relatively simple expression for the

change in the integrated density of states. This is given by:

]

E
AN(E) f Ao (E) dE

482+ [“‘a+ 1 (ma-zui)J [“b + i(u,b-2U£)]

1%. (2r)2 fdl,gn Ars{'[ua + i(wa'Zﬁa\'H““b T‘i(uh-zﬁb)] } (5.9)

i

The single-particle contribution to the interface emergy o at =0 (i.e.
the energy per interface atom necessary to break the interface into two semi-
infinite crystals, at T=0) 1is given by

El
f
rab=—jAp(E) EdE

oo

(5.10)

where the Fermi energy Eé differs from the value given by Eq. (2.2) by a term
which is O0(1/N,;). This Ef'f guarantees the charge neutrality of the interfaced
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crystal. Expanding (5.10) to first order in Ei'f - F; we can express the inter-

face energy as follows:

Bg
oy = - f 20 () (B-E) E (5.11)

I
5
Z
B

g A g S ‘4«;,2+ [“’a +ig, - 2Ua)]_ l“’bﬂ(wb-zub)“
e (2n)2 f E/ Ko rg“v;‘a +i(wa-zfya)“ub+i(w;zfyb)] )

Also, E~f is the common Fermi energy of the two metals, i.e. Ef =% (E‘?E + Eb) and

wy and wy include the corresponding shifts in the energies, according to Eq.
3.22).

In a similar way, one can determine the single-particle contribution to the
change in the electronic specific heat. This change is given by:

of
= — dE
sc, = [ B ® T

x

where f(E) is the Fermi-Dirac distribution function. For temperatures much lower

than the Fermi temperature the change in the electronic specific heat is linear
in the temperature and proportional to the change in the density of states at

the Fermi level (assuming no Van Hove singularity occurring at the Fermi energy).
Explicitly we have

"y
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ACV 3 KB Ap(Ef) d:

]

vT

where Ky is the Boltzmann constant. For the interface system the constant vy is

given by

2 .
/ + + i(w - ) = -2
‘m [,hz l(ua 2Ua “ 1\1 Zu )“

B °
o= e dk = Arg
Y 12"1 ",[ i JE 3 M 1 (¢ 1
”“‘a tig -20) [.Ah * 4 Mb-ZI’b) ‘ (5.12)

where the integrand has to be evaluated at the common Fermi level.

VI. Numerical Results and Discussion

As an application of the formalism developed in the last three sections we
consider in the following the interface formed parallel to the (100) plane of two
crystals described by the same tight-binding parameters, but having different
Fermi energies. The coupling between the two metals is taken to be the same as
the bulk coupling, we also neglect the interface perturbation U, and Uy (i.e.
we set Ta = Tb =8, and Ua = Ub = 0). This simplification is done here in
order to reduce the mumber of independent paraments in the problem. The general
case, discussed earlier, can be analyzed in a completely analoguous way. The
specific case, considered here, can serve as a crude model, describing the elec-
tronic properties of a (100) interface formed between two transition metals

belonging to the same series, and will be referred to as such in the following.
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From the preceeding discussion, presented in Section IV, it is obvious
that there are no interface bound states in the model under consideration. The
electronic wave functions are delocalized, and extend on either one side or on
both sides of the interface, according to the corresponding electron energy. For
the (100) interface we have

W (s = 28 [cosak) + cos(ak,)] (6.1a)
T=E (6.1b)

Using these relations and Eq. (3.23) for the diagonal matrix elements of the
Green's function, and the expression (3.11), we can calculate the local densities
of states on the various planes of the interfaced crystal. Figure (1) shows the
results of such a numerical calculation of the local density of states on(E), for
the first three atomic layers adjacent to the interface (n = 0, 1 and 2, respec-
tively). The difference in the Fermi energies of the two metals was chosen to

be AE. = ZEl . Fig. (2) shows the corresponding density of states for the case
of AEf = 8E1. For comparison, the shifted bulk density of states is also shown
in these figures. All the density of states presented here are normalized to
unity (i.e. we set g =1). We note that Figs. (1) - (2) refer to the side of
the interface on which the metal having the higher Fermi energy is located. The
local densities of states on the other side of the interface can be obtained from
the curves in Figs. (1) and (2) by taking their mirror images, with respect to

the E = 0 line. As can be seen from the above-mentioned figures, the local densi-
ties of states have a ''tail" extending outside the shifted bulk band. This tail
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is contributed entirely by electrons tunneling from the other side of the int: -face.
From Figs. (1) and (2) it is obvious that the penetration distance of these elec-
trons is essentially limited to only a few atomic layers. In general, the most
pronounced effect on the local density of state occurs near the interface itself
(i.e. n=0). As one proceeds away from the interface, the density of states
approaches asymptotically the bulk density of states. For n = 2 (the third
layer near the interface) the density of states of the interfaced crystal is
already very close to the corresponding shifted bulk density of states.

When, in the model under consideration, the coupling constant between the
two metals is allowed to vary, it is possible to form bound interface states.
Following the discussion of Section IV it is not difficult to show that for
the present model the two critical values By and By coincide. Therefore,
in this case there will be either no bound states at all or there will be two
of them, one above and the other below the sub-bands. It can be easily shown that
the critical coupling constant B.» to which béth By and B, reduce, is related

to the difference in the Fermi energies of the two metals as follows

%

= ; Z

Thus, the bigger the difference in the Fermi energies the larger is the coupling
necessary to create a bound state. This is quite expected since the greater is
the difference in the Fermi energies the larger is the minimm distance of the
bound states from the center of the sub-bands. The minimum possible critical

coupling is obtained for AEf =0, and is given by e T. Therefore, in

the present model, every coupling constant which exceeds the bulk coupling will
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produce a bound state. Fig (3) shows the dependence of the bound state energies
on the coupling constant for the case of AEf =0 and AEf = 2T. As can be
from these curves, an increase in the coupling constant increases the energy
of the upper bound state and decreases that of the lower. This behavior agrees
with our general discussion given in Section IV.
We now turn to the calculation of the change in the total density of states
and the interface energy of two transition metals belonging to the same series.
Using Eq. (5.8) it is not difficult to see that the change in the density of
states, in the model under consideration, is an even function of the energy rela-
tive to the center of the band. Using Eq. (5.9) we calculated numerically the
change in the integrated density of states AN(E) due to the creation of the
interface. Fig. (4) shows the change in the integrated demsity of states,
which is an odd function of the energy, for the cases of AE = 2E1 ; AEf = 6E1
and AE; = 12E1, respectively. In this figure we used the value g=10 to account
for the 10-fold degeneracy of the d orbitals in transition metals. To obtain
the corresponding interface energy we have, according to Eq. (5.11), to integrate
AN(E) with respect to the energy, up to the common Fermi energy. The results
of such a numerical calculation are shown in Fig. (5), where the interface energy
4 for a given transition metal with n d electrons is ploted vs o, the number
of d electrons of the other metal forming the interface. The curves in this
g figure correspond to the cases where By = 0, 1, ...5. The corresponding graphs
for na>5 (i.e. W 6, ...10) can be obtained by taking the mirror images of

the curves of 10 - n, electrons, with respect to the e 5 line. This is

due to the face that in the present model, the following symmetry holds

La it
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o(na,rb) = ¢(10 - n, 10 - nD)

where n, <5 and n<5. The surface energy of transition metals can be read
off the curves of Fig. (5) by looking at the points where n, =n, - Our
results for the surface energies are the same as those derived earlier by F.

(8) .nd by 6. Allan. ) This is as expected, since in the

Cyrot-Lackmaim
limit of two identical transition metals our iuterface model,discussed in this
section reduces to the free surface model investigated by these authors.

As can be seen from the Fig. (5), the electronic contribution to the inter-
face energy between two transition metals, of the same series, is always less
than the corresponding contribution to the surface energy of a half-filled
band metal (belonging to the same series). We also note that for a given transi-
tion metal, with n d-electrons, there exists another transition metal, with
nbo electrons, whose combined interface has the maximum interface energy. As
n, is varied, the position of this maximum drops down from nbO*S for an empty
band (n, = 0) to n° %2 for a full band (n, = 10).

The interface model developed in the present work is a highly simplified
and crude one. Nevertheless, we believe that certain features of a real inter-
face, such as interface states and electron turmeling across the interface,
are illustrated by our model. Thus, although a realistic physical description
of a bimetallic interface might be much more complicated, we feel that many of

the qualitative properties of such an interface will be similar to those des-

cribed in this article.
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APPENDIX

In this Appendix we derive the expressions for the general matrix elements
of the surface Green's function. The technique we apply is the same as that
used by Kalkstein and Soven 13 to derive the corresponding diagonal matrix
elements.

To form to metal-vacuum interface we start from the bulk metal and break
the bonds between the two adjacent planes n=0 and n = -1. In addition,
we change the self-consistent potential of the electrons near the surface. The
perturbation described above, which is necessary to create the surface, has

the following non-vanishing matrix elements in the Bloch-Warmnier representation:

[}
(=]

vV(©,0) =V (-1,-1) (A.1)

]
[
=
(1]

V(-1,0) =V(0,-1)*
(A.2)

With this perturbation potential, the Dyson's equation for the surface Green's
function takes the following form:

G(m,n) = G (m-n) + 0 (mH) V(-1,0)6(0,n)*c° m+L )V (-1,-1)G(-1,n)

+6° 136 ¢~ ° .
(m)V(0,-1)G(-1,n)4G" (m)V(0,0)G(0,n) (A.3)

In writing down the above equation we used the property that due to translational

invariance, the bulk Green's function G° depends on the indices m and n only




through the different m-n. Taking into account the fact that the surface
Creen's function G(m,n) vanishes if m and n refer to planes on opposite
sides of the interface, we can solve Eq. (A.3) for the general matrix elements

of the surface Green's function. This is given by:

G(m,n) = ¢°(m-n) *+ [Go(m"’l)V(-’,O) + G°<m)v(o,0>] ¢° (-n) [1-c°(1> x

v<-1,0)-c°(0)v<o,0)]'1
(A.4a)

for m,n>0

G (m,n)=G° (m-n)+ [c°(m)V(o,-1) + 6% (@ )V (-1,-1){ G° (-1 -n) [1-G°(-1) x

v(0,-1) --G°(-1)v(-1,-1)l = (A4.b)
for m,n Ak
gl (<n+iu ﬂ"' -in®
im0 e

Using this expression and the expressions (A.1l) - (A.2) for the perturbation,
we obtain from Eqs. (A.4) that the matrix elements of the surface Green's func-

tion are given by:

, lmenl +n igt(w-20)
Slaym = A ertame ) o o) s Ui AR
g w 2T ol 13- (w-20)




!m!'!‘ln‘;z

4(_‘”2%1:_) : zﬂ“ﬁﬁ)_} (A.5b)
- (w-27)

|m-n]

G (m,n) "ﬁ' e‘i(m'n)e{( “’2_"__1-TE)

formn<-1, and

G@m,n) = 0




FIGURE CAPTIONS

Figure 1 The local density of states of a (100) interfaced crystal. The

difference in the Fermi energies of the two metals is 2 El' (a)

The first atomic layer, n = 0. (b) The second atomic layer, n = 1.

. (c) The third atomic layer, n = 2. The shifted bulk density of states

k is shown as a dashed curve.

Figure 2 The local density of states of a (100) interfaced crystal. The
difference in the Fermi energies of the two metals is 8E 1 (@) The
first atomic layer, n= 0. (b) The second atomic layer, n = 1.
(c) The third atomic layer, n = 2. The shifted bulk density of
states is shown as a dashed curve.

Figure 3 The interface bound states energies as a function of the coupling

constant. The full and the dashed curves correspond to AE¢ = 0,

and AE¢ = 2T, respectively.

Figure 4 The change in the integrated density of states due to the creation of
the interface.

Figure 5 The interface energy of transition metals having n, and 0y d elec-

trons. (a) n, =0,1,2, (b) n, = 3,4,5.
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