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ThE ELECfl~O~IC PPDPERI’IES OF A S]2 PLE AL-~~~AL fl~1~RFACE*

Avishay Yaniv

Deparl~~ nt of Physics , University of California San Diego

La Jolla , California 92093

Abstract

The properties of netal-uetal interfaces are of interest in many u~ tal1urgi-

cal applications . These include grain boundar , crack growth , friction and bi-

n~ tallic adhesion . The presen t ~~rk is a study of the electronic properties of

a simple bimetallic junction. The ri~ t x aiiployed to investigate the interface

are the Green ’s func t ion technique and the phase shifts n~ thd .  We calculate the

Green ’s function of a simple junction within the tight-binding approx imation . The

conditions for the occurance of bound states is deduced from the poles of the

Green ’s function . It is sbown that there are three types of wave functions asso-

ciated with the interface. The first extends througbout the entire crystal , the

second extends on one side of the interface only, whereas the third kind is localized

near the interface. Using the phase shifts n~ tbod we derive an expression for the

change in density of states due to the creation of the interface . Frcxn this

expression we derive the corresponding single-particle contributi on to the interface

energy and the interface specific heat .

* Supported in part by the Office of Naval Research and the National Science Fo’.~nx~ation
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I. Introduction

The properties of metal-metal interfaces , are of interest in many matallurgi-

cal applications . These include, for example , grain boundar ies , crack growth ,

friction and bimetallic adhesion . The general metal-metal interface is a nuch

n~re ccxriplicated probl eni than the corresponding metal-vacuiin interface. Recently

there has been , Fcwever , sar a success in applying certain metbods developed for

surface phencx~~na , to the invest igation of bimetallic interfaces .

The electronic properites of l-din~~isional bimetallic junctions were dis-

cussed by several auth rs using various types of nodels . Aerts studied the

electronic structure of a 1-dimensional Kronig-Penney nodel, in the limit of a

5-like potential . In this ~~rk he established the possibility of the existence o.E

bound interface states . A tight-b inding approach , which was used successful ly

for several surface prob1 en~s, was also applied to the 1-dimensional interface .

1~ vison and cheng~
2
~ investigated the electronic properties of such a systen

using the nolecular-orb ital methDd . The nodel they use associates a single s-type

orbital with each atom. A similar noda l was studied by Allan and L~ inoo~
3
~ , using

an approx imate , Gaussian, density of states , having the correc t second ra:xnent.
(4)Green s function formalism was used by Foo and Wong to study the mter face

states of a 1-dimensional sp-hybr id junction .

As far as we know, the study of three-di mensional bimetallic int 4as

carried out by the density-functional formalism only. This formali sm, dt. .doped

~~ }~ j~~ j~~~g [(~~~ ~~~ ~~~~ 
(5) . (6) was app lied recentl y to bimetallic

interfaces by Bennett and rxike, ~~~ (8) Ferrante and ~nith, (9)~. (10) 1~oui,ani

and Schuttl er , 0~~ and by ~~hrotra , Pant and ~~~~~~~
~~~~~~ ~~~~~~ 

kIDc~• •~‘~“
.

\ ~~~~~~~~~ 
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%~hereas the density -functional formalism is applicable mainly to simple

metals, the tight-b1ndix~g approximation is trore suitable for the descri ption

of transition metals. Since the purpose of the present ~~rk is to investigate

the electronic structure of a bimetallic junction, formed from t~~ transition

metals , we shall use the tight-b inding approach . The nodel we consider is a

highly simplif ied one . The t~~ metals, on each side of the junction, are des-

cribed by s-type tight-binding I-larniltonians. The interface we consider is

formed by br inging together t~~ senii-infinite, simple cubic crystals , and creating

bonds between the atoms on the t~~ sides of the interface . We asst.me that the

tv~ s~ni-infinite crystals have the sane , tw -dimensional, translation synnEtry

parallel to the interface . The electronic properties of this irodel are investi-

gated by using the Green ’ s function method , described in detail by Kalkstein and

Sovth .~~
3
~

The details of the tight-binding irodel are outlined in Section II. Within

this trodel we allow for a change in the self-consistent potential of the electrons

near the interface . The diagonal matrix e1ar~nts of the Green ’ s function are

calculated in Section III by considering the formation of the interface as a

perturbation on the t~~ sani-infinite crystals . This is accomplished by the use

of Dyson’s equation. Using the expression for the Green ’ s function we discuss

the electronic structure of the interface in Section IV. We show that there are

three types of wave ftnictions associated with the interface . The first one

extends throughout the entire systen, the second type extends on one side of the

junction only, and the third , associated with bound states , is localized near the

interface. The behavior of the bound states as a function of the coupling constant

between the tw~ metals is also discussed . The “phase shifts” method is app lied

in Section V to determine the change in the total density of states due to the

creati on of the interface . Applying this result we obtain an expression for the

-3—
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single-particle energy contribution to the interface energy and the corresponding

contribution to the electronic specific heat. An application of the rrodel to the

interface formed between t~~ transition metals of the same series is presented

in Section Vt, where we calculate numerically the local densities of states ,

the change in density of states and the interface energy .

II . The ~bdel

Consider the formation of a metal-metal interface by bringing together

two, seni-infinite , metallic crystals . As soon as a contac t is formed , electrons

will flow fran the metal having the higher Fermi energy to the one having the

lower energy . This flow of electrons stops when the potential energy difference

between the two sides of the junction, which is created by the dipole layer

produced at the interface , is equal in magnitude and opposite in sign to the difference

between the two Fermi levels . Thus , the Fermi levels of the two metals are aligned ,

due to the interface dipole-layer , when the bimetallic junction is formed . If

-~v and +~v are the electrostatic potential created by the dipole layer on

the right and the left hand sides far away fran the interface , then we have :

a bei~v = 
~~~ (Ef - Ef ) (2 .1)

where -e is the charge of the electron and Ef
a and Ef

’° are the orig inal

Fermi levels of metal s a and b , located to the right and to the left of

the junction , respectivel y. The camvn Fermi level , after the junction is formed,

is given by:

-4- 
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Ef
= E f

a — e ~V

= E f
b 4 eAv

= ½ (Ef
a 
+ E

f
b) (2 .2)

In order to describe the electronic properties of the two bulk metals, the

two metal-vacuuii interfaces , and the metal-metal interface, we apply the tight-

binding approx imation for the various Hamiltonians. For simplicity we associate

one s-type orbital with each lattice site . It is also asstined that each orbital

has a g-fold degeneracy in order to partiall y account for the 10-fold degeneracy

of the d orbi tals in transition metals . Therefore , the Harniltonians of the

t~~ bulk metals , Ha and Hb , are given respectivel y by

aH =
~~~ t .  a~~a . H. = E t . .  b .b .a . 

~ ii 1. j  . . 1 (2 .3)
1,3

w1~iere 4, a~ and 4, b~ are the creation and destruction operators of the

Warinier type orbitals , associated with metals a and b, localized near sites i

and j . The prime on the suiination signs denotes a sunmation over nearest neiziibors

only. The matrix elaiEnts t~j and t~~ are given by

E if i j
= •~IlH ~~.j> = E1 or E~ i~ i and j are nearest neig hbors

o otherwise

E i f i j
b ob 

*
t~~. = = Elb or E~b t~ i and j are nearest nei ghbors

o otherwise
(2. 4b)

-5-
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To cleave the crystal along a given low-order crystalographic plane, ~~ have tc.

break the bonds between two adj acent planes , parallel to the correspond ing direc-

tion . We neglect any geometrical reconstruction of the crystal. due to the forna -

tion of the surfac e and assume that the trans fer integrals t~j arid t~j with

i 
~~ 

j , have the sara value as in the bulk systens , provided that both sites

i and j are occupied . In addition, we assuiE that the effect of the surface

on the redistribution of the electronic charge near the surface can be described as

a change in the self-consistent potential of the electrons near the first surface

layer only. Therefore , the diagonal matrix elai~nts of the Hamiltonian for sites

located on the surface plane will be different from the corresp onding bulk value .

This , for the metal-vac~.n~n syst~ns we have

- - i~H~li> = Eoa +U a ~i ,O 
(2 .5a)

~j~H~~1> = E
b 

+ U
b 

ôi~_l (2.5b)

where Ua and denote the change in the self-consistent potential of the

electrons near the surface . In the above expressions we assun~d that i = 0 and

i -l denote surface sites of metal a and b , respectively .

In order to form the metal-metal interface we start fran two non-interactin g

s~ni-infinite metal-vactnzi interfaces (the free surfaces ) , having the same trans-

lational synmetry parallel to the surface , and introduce a coupling between the

two surface layers . The Hamiltonian of the non-interac ting systen is given by

H° ~ t1,~ 4 c,~ (2.6a)
1,3

-6-
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where

<iIH~Ij> if both i and j  are a sites.

t j J <i~ H~ Ii> if both i and j are b sites. (2.61,)

o otherwise

a. a~ i~ i is an a site .
and c., c . (2.6c)

b
~
, b~!’ if i is a b site .

The interaction between the tw surface layers is characterized by a transfer
matrix elanent

<
~~~ _ 1IH~R ~

> = <R Q IHIR (2.7)

where R 
-1 and R denote two nearest-neighbors sites located on the two sides

of the inter face . We also note that the dipole layer created at the interface

will change the self-consistent potentials on the two sides of the jun ction.
If we assume that charge redistribution is confined to the near vicinity of the
interface we can write

.zR ~) H  i~~> = Eoa - e~ V + Ua ~~~~ , ii i is an a site (2 .8a)

<ZR ~H IR .> = E + eL ~V + U 5 . if ~ is a ~~ ~~~~~~~~ (2 .8b)—j —J ob h j , —1

—7—
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where i = 0 and j = -l denote interface sites of metal s a and b , respec-

tively. In the above expressio ns Ua and denote the change in the self-

consistent potential of electrons near the interface relative to the bulk.

III . The Bimetallic Interf ace Green’s Function

As we already noted before , ‘we assume that the two crystals forming the inter-

face have the sane translational syninetry parallel to the interface plane . As

a result , the wave vector parallel to the inter face k is a good quantum n~nbcr .

In the following we assure that the interface is in the zy plane , and that

metals a and b are to right and to the left of the interface resp ectively.

The integ rs m, n, ... will be used to label the various planes parallel to

the interface . ~~tal a is assumed to occupy the planes m >  0, ‘whereas m < -l

planes are occupied by b atoms . Following Kalkstein and Soven~~
3
~ , ‘we denote

by T
n 

the translation vector parallel to the interface which bring s the atoms

in the n-t~ ~lane to coincide with the transverse positions ot the atoms on tne plane

n = 0 eneral coordinate of an atomic site on the n-th plane is thus given

by

R = R i . + R ,, + 1
—

~~~ 
—n (3.1)

where R -h is the distance between the planes o and n , and R ,, is a general

translation vector parallel to the interface. Using the localized Wannier orbi tals

+R4, + ‘we define the mixed Bloch-Wannier representation by the following

two-dimensional Bloch

— ½ ik ,, (R ,, -
~ 

)
k ,, , n> (s,,) 

~ I~ i. R~ + e — — 

(3.2)

-8-
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‘where N,. is the nunber of atoms in the plane parallel to the interface . These

functions are localized near the n-th plane. Since the translational synmetry 
. 

-.

parallel to the interface is preserved, the eigenfunctions of the interface

Hamiltonian can be e~cpanded in terms of the Bloch-Wannier functions (3 . 2) as

follows

E . k,,> = E C3
k ~~~n (3.3)

where j stands for any quantum number needed to specify the eigenstates in

addition to k,,

Using the expression (3 . 3) we can define various densities of states for

the systeii with the interface. The local density of states , near the n-th plane,

with a definite value of k ,, is given in terms of the coefficients C~~ by

~ 
(E ,k ,,) = E lc~~ t 2 5(E

~
E j k ,

) (3 4)

The local density of states (per atom) near the n-th plane is

~ 
(E) 

~ P~ 
(E ,k ,,) = N~ k 

~~~ 1
2 

~ (E~Ejk ) (3 . 5)
j  ,_I,

The sun over k ,, in this expression goes over all values of k ,, in the two-

dimensional Brillouin zone defined by the crystals geometry parallel to the inter-

face. Suir~ing the expression (3.5) over the various crystal planes ‘we obtain

the total density of states . The density of states per atom is this given by

-9-
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p(E) ~~~
- E P~ 

(E) = -
~~
- : c~ 

2 
- Ej k ) (3 .6)

ft

ft

‘where N .L is the number of atomic planes parallel to the interface and. N is the

total number of atoms given by N = N,, N 1 .

In order to derive the various densities of states of the bimetallic inter-

face we shall use the Green ’ s function technique . Let H and 11° be the Harnil-

tonians of the interfac ed crystal and of the free metal-vacuum interfaces respec-

tively. The metal-metal interface Gre en ’ s operator G is defined by the following

equati”n

( E- i ~~- H ) G = l  (3.7)

where E is the energy and 6 is a positive infinitesimal . The sur face Green ’ s

operator G° is related to the 1-lainiltonian H0 by a similar equation . The

Green’s operator of the interface is related to the surface Green’s operator via

Dyson’s equation:

C = C° + G°VG (3.8)

where V is the perturbation necessary to create the metal-metal interface from

the free surfaces of metals a and b , i. e.

V H - H  (3.9)

-10-

L - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~



— --.~—.,—~‘ .- ---,---‘--- —.- - ~~~~~~~~~~~~~~~ .—,—~~~~~~~~—- -—~~~~~~~~~ - —-~-~~~~~--.-. .-‘ ~~~~~~~~~~~~~~~~~~~~ 
- -r--- -.,•-’:- ~~~~~~~~ •~ -- ,--- --- -

F - - - :. - - /

We note that because of the translational synmetry parallel to the interface,

G, G° and V will all be diagonal in the wave vector index k~, , in the Bloch-

Wannier representation (3.2). Quitting the corresponding 6-function ,

6(1<,, - k,, ’ ) ,  we use the notations G (m,n; 1<,,) , Cf (m,n; 1<,,) and V (m,n; k,,)

for the matr ix elaircn ts of G , G°, and V in the Bloch-Wannier representation.

To further simplify the notation, we shall generally crnit the explicit k~ depen-

dence in these expressions .

The various densities of states defined earlier by Eqs. (3.4) - (3.6), are

sinipiy related to the imaginery part of the diagonal matr ix elau~nts G (m,m; 1<4,)

by

p(E ) = IuiT~ G = E G ~fli ,~ :l ; k T,) (3.10)
tn ,,,

1 (3.11)
p (E) = —v— IrnE G(n ,n; k,,)
n rh ,,

p ( E , k ,,) = 1mG (n u; 
~~ 

(3.12)

We turn now to the evaluation of the interface Green’ s function from Dyson’s

equation (3.8) . This operator equation is reduced to the following algebraic

equation in the Bloch-Wannier representat ion:

G(m ,n) G°(m,n) + E G°(m ,L)V (L ,r ) G ( r ,n) (3.13)

From the discussion of the nodel given in Section II, it is obvious that the

perturbation potential V has off-diagonal matrix elenents, which couple the

-11- 
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interface planes n = 0 and n = -l . In addition, on each side of the Inter -

face V has t~~ types of diagonal matrix el~~ nts. The first one, due to the

interface dipole layer , is given by ±e~v . This is just the perturbation

necessary to align the Fermi levels on the two sides of the junction , Eq. (2.1) .

The second type of diagonal matrix eletents is due to the change in the self-

consistent potential of the electrons near the interface. This is given by

U - U and Ub - 0b where U , Ua and U~1, , U~, are the self-consistent potentials ,

relative to the bulk , of interface and surface electrons of metals a and b

respectively.

As we shall see later on, it is possible to determine the surface Green’s

functions for an arbitrary value of the surface self-consistent potentials CIa and

Lt1~ . It is , therefore , simpler to start from a fictitious , inter mediate surface

probl ain where the surface self-coitsistent potent ials CIa and Ub have alread y

the correc t interface values , Ua and Ub , resp ectively. Using this systan

as ~~~ starting point , the perturbation potential necessary to create the metal-

metal interface is simpler than in the original probl an . It consists of diagonal

terms ±e~v , which align the Fermi levels of the two metals and of an off-diagonal

term , which couple the two san i-infinite crystals . Thus, the only non-vanishing

matrix elanents of the perturbation are given by

( -et~v for tn 0
V(m ,m) = (3.14)

(~feE~v for m ~ -1

and

v (-1,0) = v ( O ,~ 1)* ~~~,,) ~~~~~~ (3.15)

-12-
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where ~ and ~ are derived frau the relation
V(- 1,O) — E’ <L1 I v~~ ,> e’~~ ~~~ + .i.)

In this expression , t is a translation vector parallel to the interface

which brings the transverse atomic sites of the two interface planes to coincide.

In Eq. (3.15) the phase ~ was clx sen In such a way that 8>0 .

We start now from the intermediate surface probl an discussed abave, ‘~1t se

Green’s function we denote by Cf , and apply the perturbation in two steps . First

we align the Fermi levels of the two metals by applyir~g a constant electrostatic

potentials +t~v on metal a and -AV on metal b . The only effect of applying

these constant potentials on the sur face Green ’ s functions is a shift in the

corresponding energ ies. Explicitly we have

(3 . l7a)
C (E) = C 

~~~~~~~

G~° (E) = Gb° (E-e~v) 
(3.l7b)

where G denotes the value of the Green ’s functions in the intermediate probl an ,

after the application of the potentials ±Av . To simplify the notation we drop

the wi~~1e fran these Green ’ s functions ralBubering that the energ ies have to be

shifted according to (3.17) .

• At this stage we tur n on the second part of the perturbation i. e. the of f-

.~ap.’inal coupling between the two metals . [Lie to the localized nature of this

perturbation, the Dyson’s equation (3 . 13) is greatl y simplified , and we obtain

G(m,n) = G°(n~,n) + G° (ni , -l) V(- 1 ,0) G(O,n) + G° (tn 0) V( O , -1)G(- 1 ,n) (3 . 18)

-13-
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Using the fact that the surface Green ’ s function G°(m,n) vanishes if m and

n refer to planes on opposite sides of the inte rface , we can easily solve equa-

tion (3.18) for the perturbed Green ’s function. In this way we get

C (in ,n) = G°(m,n) + G°(m ,O) 
i~~

0, 1)G
0(_1 ,n) + ~V(0 , - 1) J 2G° (-1 , -1) x

G0 (O ,n)1 [1 - V(0,-1)~
2 

G
0 ( O , O ) G0 (_1 ,_ 1)J 

-l

(3 . l9a)

for m>0

and

G(m,n) C°(m,n) +C °(tn ,_ 1 ) IV( _ 1 ,O) G°(O ,n) + I V(O ,_ 1)1
2
G
0
(0,0) x

G°(_1~n)J I i - t V ( 0 , -1)~
2 G° (0 , 0) G° (-1 , -1) 

~

(3 .19b)

or tn <. -1.

In particular , the diagonal matrix ela~ nts of the interface Green ’s function are

given by

G(m ,m) G°(m ,m) + ~2G0 (_ 1 , _ 1) G° (m , 0)G ° (0 ,m) I 1_ ~
2c0 (0 ,0)c0 (_ 1 , _ 1 )J

f o r m > 0  (3.20a)

and

G(m ,m) = G°(m,m) + S2G°(O, 0) G°(m,-l) G°(-1 ,m) i-B
2 

G
0 (O, 0)G

O (_i ,~~) I ‘

for tn < -1. (3.20b )

-14-
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In the above expressions 8 is related to the off-diagonal coupling between the

two metals through Eq. (3 . 15) , i. e.

= IV (O,-1)t

The diagonal matrix elaxerits of the surface Green’ s function were calculated

by Kalkstein and Soven~~
3
~. Using the same met~~d one can also derive the

general matrix elanents of this Green’ s function. In Appendix A we siw that

these matrix elatents are given by

G°(m,n) = i~~
1 

e
_
~~

m_
~~~ a~ (

~~~~~
It a \ ~~~~~~~~~~~ (3. 21a)

~ \ 2T / \ 2T ~‘ i k_ (W _2U )

for m , n> 0

tn-n i ~rnj +~n I-2

G°(tn ,n) = ~~ e
_i(m

~~~ b~ (~
i~”~b) + (wb~~~~~

) ~ 
(3.21b)

i~~~(wb
_2

~b) 
‘

~

for m,n ~ -l

and

C° (m , n) = 0 otherwise. 
(3.21c)

-15-
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In these expressions ~ and w are defined by

(4T2 W2)~ for 4T~
2 2 ~ 2 2 (3.21c)

isign (w) (w -4T ) for w > 4T

and

w E - w(k ,, )

where W , T, and 0 are related to the matrix elenents of the bolk Hamiltonians

of the two metals~ in the Bloch-Wannier representation,as follows

W a(b ) (k~~ ‘~~~h 1k a ( h )  ink ,,

Ta(b) (
~ t~

) e a(b)~~ ”~ 
= 

~~~“~~a(b ) fl+1 , k i r >

In order to apply the expressions (3 . 21) to the solution of the interface

problan, we replace first Ca and U,~ by the corresponding interface values

Ua and Ub , respectively. In addition we have to shift the energies according

to Eq. (3.17) in order to align the Fermi levels of the two metals. This can

be achieved by redefining the w-s in the following way

E - W + et~v (3. 22a)

= E — W b (k ,, ) - efrv
(3. 22b)

-16- 
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Substitut ing the explicit expression (3.21) for the surface Green’ a function

into Eq. (3.20) , we obtain that the diagonal matrix ela~ nts of the interface

Green ’s function are given by
1 /W + i j I \ i~~+ ((b -2U )

+ _ _ _ _ _ _ _ _ _  
a .a a

• 

~a p
~a+i (Wa

_2U
a ) \ 2T /

• 28B ~ (3.23a)
4~2~ L~a+ i(W _2U

a)J[~h
+i(W

b
_ 2U.

b] ~

for m >  0 , and
2 f m ( -2 ]4~b +(W b

_2U b )
+ 1

b
\ 2 T b /

~.çI-i (wb _2Ub )

8~~
2
i

- _________________ ____________ 
( (3.23b)

4~
2 + 
[~a

+ i(wa
_ 2U

a)F[~~
+ i (w b

_2
~ b )] S

for m < -1.

We recall that W
a 

and in these equati ons are defined by the energy-shifted

expressions (3.22a) - (3. 22b) , respectivel y.

It is str aightfor~~rd to confirm that in the limit where the two metals

a and b are the same , the expression (3.23) for the interfac e Green ’ s function

reduces to the corresponding bulk expression .

IV. The Electronic Structure of the Interfac e

In this Section we apply the Green’s function derived in the preceding section

in order to investigate the electronic structure of the interface . Fran the expli-

cit expre ssion (3. 23) it follows that the diagonal matrix elanents of the inter-

face Green ’s function have a non-vanishing, continuous imaginery part for energies

-17—
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which are either insick. the band of metal a or inside the band of metal b
(shifted , of course , according to (3 . 17)). Therefore , as follows fran Eq. (3 .12)

the band width of the crystal with the interface is the union of the shifted
S bands of the two separate crystals. However , the wave functions of the ccxnbined

crystal can be classified into three distinc t classes according to their different

localization pro perties . To facilitate our further discussion we define the k~,
sub-bands of the two metals as the band structure obtained by the intersection of
Ea(k) and Eb (k) wit! ~~~~ , = constant , where Ea (k) and Eb (k) are the
single-particle energy s~ - ~e two bulk crystal s .

The first type of states ciave v~ave functions which extend throughout the
entire crystal. As can be seen from Eqs . (3.4) and (3.23) , this kind of behavior
is associa ted with states whose energy lies in the k,, sub-band of the two metals,
i.e. their energy and wave vector satisf y the relations

IE - W I,) + e~v1 <2T (k,,)

— W
b

(k I,) - eAv i <2T
b

(k,,) (4.1)

— The second type of states have wave functions which extend to infinity on
only one side of the interface , and which decay exponentially with the distance

from the interfa ce on the other side . Using the expression (3.23) for the Green ’ s
function it is riot hard to see that this behavior occur s when the energy lies in
the k,, sub-band of one metal but outside the corresponding sub-band of the other.
Thus , for energies and wave vectors that satisf y

IE  - W (k ,,) ~~~~~~ -~2T (k ,,)a 
(4.2)

E - Wb (!s.~,) 
- eAv ~

2Tb ~~~~~~~~~
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the corresp cndix~g wave functions are Bloch-like inside metal a but decay exponen-

tiall y fran the interface inside metal b . In a similar way, the wave functions . 
-

of states whose energies and wave vectors satisf y

- Wa (k i~
) + eAv I >2T a (k ,,)

- Wb (k ,,) - eAv I -.2T (k ,,) (4.3)

extend to infinity on the b side of the interface , but decay exponentially

on the a side. The decay coefficient of the wave fi.nction is determined by

the energy measured relative to the corresponding k4, sub-band center . If we

express this energy in units of the sub-band half-width , ar id write

w (k ,,) = ~2T (k ,,) , ~I - -1 (4 4)

where w(k ,,) and T(k ,,) refer to the corresponding values on the side of the

interface where the wave function decays exponentiall y, we obtain from Eqs.

(3 .4) and (3.23) that on the decaying side the wave function on plane m is

proportionall y to e~~ . The decay coefficient A>0 is given by

A = - - sign(~) ~/ 
~~~~~ (4.5)

Thus , the further the energy is fran the center of the sub-band , the stronger

is the exponential decay of the corresponding wave func tion .

We note that the behav~~. ~if the wave functions extending throughout the

entire systan and those extending only on one side of the interface is as expected .

-19- 
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If we try to propagate a wave through the interfaced crystal this wave can pro~-

• 
- gate fran one side to the other only it its frequency is in the ccmiion sub-bands

If , however, the frequency is in the sub-band of one of the crystals but outside

the sub-band of the other , this wave cannot penetrate into the second crystal ,

and its anplitude will decay exponential ly. -

The third type of wave function is associated with the existence of bound

interface states . For a given k,,, the energy of the possible bound states are

determined by the poles of the Green ’ s function , which lie outside the k4, sub-

bands of the two metals forming the junction . Using the explicit expression

(3.23) for the interface Green ’ s function , we see that the bound states energ ies

are given by the roots of the equation :

4~2 
— [sign (w

a)~~
+ W - 2U

}
iEn (Wb)i~b+ Wb 

- 2Ub] 
= 0 (1 6)

outside the k,, sub-bands. In this equation ~ is defined by

: =  (w 2 
~~4T2)½

As can be seen from Eq. (3.23), the wave function of an interface bound state

is localized near the interface and decays exponentiall y with distance on both

sides of the interface. Thus , the bound electron is free to propagate parallel

to the interface , but is confined to a finite stri pe of width Xa +Xb (where

Aa ~~~ Ab are given by Eq. (4.9) below) in the direction perpendicular to the -
~ 

-.

interface. The decay coefficients of the bound state wave function will be

different, In general, on the two sides of the interface. If we express the

-20-
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bound state energy, relative to the center of the two k,, sub-bands , In terms of

the corresponding sub-bands half-widths, we can write

— 1 ~~ ‘
~b 

2Tb , I (4 7)

where

W° E° - W  + eAv ; w° = E 0 - w  - eAva a b b (4 3)

and E° is the energy of the bound state . It is easy to see fran Eq. (3 . 23) that

the exponential decay coefficients on side a and side b , Xa and Ab res-

pectivel y, are given by

- Ln [~a - s ign (
~ a ) ,Jc~ 2 ..i ] (4 . 9a)

= - Ln {~ b - s ign ‘~b ~b 
]

Thus , the greater the distance of the bound state energy fran the center of the

k4, sub-bands, the ~iore localized is the corresponding wave function.

We note that a general property of the bound interface states , derived

fran Eq. (4. 6) , is that whenever two interface states exist sinultaneously, an

increase in the coupling constant ~ will increase the energy of the interface

state having the higher energy and will decrease the energy of the lower energy

bound state. Another ranark that should be added here is that for very strong

-21-
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coupling between the two metals there will always be two interface states , a bonding

state be~ ow the sub-bands and an anti-bonding one above the sub-bands . The

asymptotic energies of these bound states are given by

E1 = U a + W a
_ e

~v + 8

E2 = % + W b + e ~v - ~~

if I U + W -~~~v I > 3~~~~~ +~~~v l  a n dby

El~~~UlO + W b + e~v +  ~

E2
= U

a + Wa~~~~
V
~~ ~

if Ub + W b +e L~v I > ~U + W ~~~ e~v I

The awilytical 3o1ut~on of Eq. (4.6) for the bound st atcs cncrgie.  ir not ?ci~sib1c

in general . However, by a suitable graphical analysis , one can determine the

conditions for the occurance of bound states , their number and their position

with respec t to the bands, as a function of the strength of the coupling constant .

It turns out to be very convenient to analyze the interface bound states in

terms of the pr operties of the bound surface states of the intermediate surface

probl a~n considered in the preceedi ng section (i. e. the surface prob len having a

surface self-consisten t potential equal to the respective value of the interface

-22-
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• probl an) . It is well known that the bound surface states are given by the roots

of the equation~~”~~:

sign(w) i:i ~~ -213= 0

The corresponding surface bound state energies are given by

0 
Ta ~~ (4 l0a)E = W (k ,,) - eL~v + U + ______

a a —  a Ua

Tb
2 (k,,)

= Wb (k,,) + etw + Ub + (4.lOb )
b

provided Ua >Ta and Ub >Tb . For U < T there are no surface states.

In the following analysis we shall use the indices 1 and 2 to denote the metal

having the higher sub-band top edge and the lower sub-band bottom edge , respec-

tively.

The behavior of the interface bound states can be described as follows :

a. When in the interu~ iiate surface problen there are no bound states

(i.e. lUa j< Ta and I U I) NTb) there will be no bound interface states

for ~nall values of the coupling constant ~ . As the coupling constant

is increased, a bound state will appear as soon as the critical value

is reached , where

B 1 
= min{t..½ (T2~~2

) f
1 ft2

rnin ) , ~ (T
l~

U
l
)f

Z
(FS~~~~~

)]} 
(4.11)
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f.(E)~sign (W ~)~~+ c~~ 2U~ (4.12)

E1, max and E2 min are the toP edge and the bottom edge energies of the higher

and the lower of the two k., sub-bands respectivel y. If -(T2+U2)f 1(E2~~~~) <

(T1 - U1) f2 (E~ ~~
) the bound state will appear below the sub-bands . If , how-

ever , -(T2+U2)f 1(E2max) > (T~ - U1)f 2(E1~~.~~) the bound state will appear above

the sub-bands . The bound state descr ibed above exists as long as . When

the coupling constand is further increased and the value 
~2 

is rea ched , a

second bound state appears . The second critical coupling is given by

~‘ 2 ~~
max 
[~

½ (T2+u2)f~ (E
2
~~~~1 ½ (T1

_u
1 )f2 (E.. ] ~ (4.13)

for ~ > ~2 
there are always two bound states , one below and the other above

the sub—bands .

b. Suppose that in the intermediate surface problen one of the following

four situations holds:

1. There is one bound state above the sub-bands and the two sub-bands

overlap .

2. There is one bound state above the sub-bands , which is associated

‘with the metal having the higher sub-band and there is a gap between the

two sub-bands .

-24-
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3. There are t~~ surface states, one above the sub-bands and the other

lies in the sub-band of the second metal and there is an overlap between

the sub—bands .

4. There are tv~ bound states , a gap exists between the sub-bands and

the bound state of the lower sub-band lies above the sub-bands , whereas ,

the one associated with the upper sub-band falls in the lower sub-band . S

Then the behavior of the interface bound states is as follows : for small coupling

constant there will be one bound state above the sub-bands. This state develops

in a continuous way fran the corresponding surface state . If E~ is the energy

of the surface state, which lies above the sub-bands , then for small 8 the

energy of the corresponding interface state is given approximately by

4B 2
(1 -v )

— 1 
~ (E°) (4.14)
i i

where f~ (E) is the function defined by (4. 12) . As long as 8 is in the range

‘where 83 is defined by

(T2
-1-U2)f1 E2~~~~)j (4 .15)

there is one bound state above the sub-bands . For 8>83 there are two bound

interface states , one above and the other below the sub-bands .

c. Suppose that in the intermediate surface problan one of the following

four situations exists:

-25-
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1. There is an overlap between the sub-bands , and a bound state exi~. ~-s

below the sub-bands .

2. There is a gap between the sub-bands , there is one surface state

below the sub-bands which is associated with the lower sub-band.

3. There is an overlap between the sub-bands and there are two sur-

face states , one below the sub-bands and the other lies inside the

sub-band of the second metal.

4. There is a gap between the sub-bands and there are two surface

states , the one associated with the higher sub-band lies below the sub-bands ,

and the other falls inside the higher sub-band .

Then the behavior of the interface bound states is as follows : for small 8 there
will be one bound state below the sub-b ands , with an energy given approximately
by (4.14). When the coupling constant is increased , a critical value 84~ is
rea ched , where a second bound state appears above the sub-bands , 84 is defined by

B4 =[
~ 

(T1~U1)f2 (E )]
2 

(4 .16)

For ~>$4 there are , thus , two bound states , one below and the other above the

sub-bands.

d. Suppose that in the intermediate surface pro blen one of the following

situations holds :

1. There is a gap between the sub-bands and there exists one surface

state above the sub-bands, which is associated with the lower sub-band .

-26-



2. There is a gap between the sub-bands and there exist two surface

states . The one associated with the higher sub-band is located above

the sub-bands and the other lies inside the higher sub-band.

Then the behavior of the interface states is as follows : for a small coupling

constant there is one interface state above the sub-bands . When 8 reaches the

critical value $ where
5

65 =[-½ (T1 + U1) f2 (E1
~~~ )] (4.17)

~~~ being the bottom edge energy of the higher sub-band) a second bound

state appears inside the gap . This bound state exists as long as the coupling

constant is in the range: 8~~. 8 < where 86 is given by

~6 
[½ (T2 - U2) ~1 

(E ] (4 . 18)

is the energy at the top of the lower sub-band . For 8>8 6 ~~~ bound

state disappears from the gap . When 8 reaches the value 83’ given by Eq.

(4 .15) , a new interface state appear s below the sub-bands. For 8>83 there —

are two interface states , one below and the other above the sub-bands .

e. Suppose that in the intermediate surface probl en one of the following

situations holds :

-27- 
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1. There is a gap between the sub-bands, and there exists one surfa~ .

state associated with the higher sub-band which lies below the sub-bands .

2. There is a gap between the sub-bands and there are two surface states .

The one associated with the lower sub-band lies below the sub-bands ~.nd

the other one lies in the lower sub-band .

Then the behavior of the inter face states is as follows : for small values of the

coupling constant there is one interface state below the sub-bands , whose

energy is given approximatel y by (4.14) . When 8 is increased , and reaches

the value 86 given by (4 . 18) , a new interface state appears in the gap . This

bound state exists in the gap for 8~~8 <85 where 85 is given by (4.17) .

For 8 > 85 the bound state disappears from the gap and a new bound interface

state appear s above the sub-bands for 8 > 84~ where 84 is given by (4 . 16) .

For 8 > 84 there are two bound states , one below and the other above the sub-

bands.

f. Suppose that one of the following situations holds in the intermediate

surface probl an :

1. There is a gap between the sub-bands and there is a single surface

state which lies in the gap .

2. There is a gap between the sub-bands and there are two surface

states , one in the gap and the other lies inside the sub-band of the

other metal .

Then the behavior of the interface bound state is as follows : for small values

of the coupling constant there is a single interface state ‘which lies in the

-28-
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gap . WF~~ B is increas ed and reaches the value 87 where

87 ‘~~‘~ ~-½(T1-FU1) f2 (
~ ,mj fl~’ ½ (T2-U2) f1 (E2~~~)] 

~ ½ 
(4.19)

this bound state disappears . For 8>8 there appears a new interface state— 3
below the sub-bands where 83 is given by (4.15) . If 8>84 there is also

a bound state above the sub-bands , where 84 is determined by (4.16) .

g. Suppose that in the intermediate surface probl an there are two sur-

face states below the sub-bands , and a gap exists between these sub-bands,

then for small values of B there will be two interface states below the

sub-bands (with energ ies given approximatel y by (4 . 14)). When B reaches

the value given by (4 . 15) , the interface state having the higher energy disap-

pears . A new bound interface state appears in the gap when B reaches

value of 66 where 86 is given by (4.18) . This bound state exists as

as B~~8<8~ where is determined by (4.17) . For ~ > the

interface state disappears fran the gap and a new bound state appears above

the sub-bands when 8 >  84 , ‘where 84 is given by (4.16) .

h. Suppose that the situation in the intermediate surface problan is the

same as described in (g.) except that there is an overlap between the

sub-bands . There will be two interface states below the sub-bands for

0 < B < where 83 is given by (4.15). t~ new interface state

appears above the sub-bands for 8 > 84 where 84 is given by (4.16) .
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i. Suppose that in the intermediate surface probla~ therc are two surface

states above the sub-bands , and a gap exists, then for ~~L1 values of B

there are two interface states above the sub-bands . When ~ rea ches the value 84

given by (4 . 16) , the interface state having the lower energy ~~ a~~eaxs . A

new bound state appear s inside the gap when B reaches the va.~~ 85 given by

(4 . 17) . This bound interface state exists as long as < - where

86 is given by (4.18) . If B is further increased , the bound stat e disappears

fran the gap and a new interface state appears below the sub-N~.ndS when B 83

where 83 is given by (~ . 15) .

k. Suppose that in the intermediate surface probl an t;ier~ are two surface states

inside the gap , then for small values of the coup ling constant there will

be two interface states inside the gap . Their energ ies are given approxi-

matel y by (4.14) . When B reaches the value 83 where

1.

~8 ~~~~ [~ 
(T2-U2) ~l~~~rnax) ’ ~ 

(T1 
+ 

~J~~) 1~ E ) ]  

2 

(4. 20)

one of these bound stat es disappears . When (3 is furtht r increased and

reaches the value 8 9 given by

>2 (4.21)

B ma4 ½(T 2 U2 ) t~ (E ) ,  -½ (T 1 
+ U 1) 

~2 
‘L

2 ,nux l ,r.~ir.
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The other bound states also disappears fran the gap . For B > 83~ ‘where

83 is given by (4.15) , an interface state appears below the sub-bands ,

whereas for 8> 84 where 64 is given by (4.16) , there is a bound state

above the sub-bands.

1. Suppose that in the intermediate surface probl an there are two surface

states , one below and the other above the sub-bands , then for any value of

the coupling constant B there ‘will be two interface states , one below and

the other above the sub-bands .

m. Suppose that in the intermediate surface prob lan there are two surface

states , one in the gap and the other below (above) the sub-bands, then for

small values of (3 there will also be two interface states , one in the gap

and the other below (above) the sub-bands . The bound state in the gap

disappears for (3 > 8~ , where 87 is given by (4.10) . For B > 84
(8 > 8~) a new bound state appears above (below) the sub-bands, where

84 (83) is given by (4.16) , and (4.15) ) .

This analysis covers the various possible bound interface states .

In Section VI we shall return to the probl aii of the interface states while

discussing a nuxErical example.

V. The Interface Energy

If many-body effects are neglected the total energy of the crystal with

the interface is just the stun of the occupied single-particle energy levels .

-31-

- ________________- --



- -5

: 1

This , in turn, can be expressed as a corresponding integral over the systan ’ s

density of states . The total density of states of the interfaced crystal can be

obtained fran the Green ’s function derived in Section III , by sunining the

lniaginery part over the various planes parallel to the interface . However, in

order to determine the energy needed to break the metal-metal interfa ce into two

metal-vacuLzn interfaces we need to know the change in the total density of states

due to this cleavage process. This can be evaluated directl y, without calculating

-; the density of states of the two systams, by using the phase shifts method des-

crib ed by L~ Witt US) , canaway (16) and ToulouseU7) . This method can be

stxiTnarized as follows : let H 11° + V be the perturbed Hamiltonian , and let E~
and be the eigenvalues of H and H° respectivel y. The change in density

of states due to the perturbation V can be written as

~p(E) = p (E) - ~)O (E) = 
~~ [o( E-E~ ) - - (E~ c~~)]

where ~O and p are the unperturbed and the perturbed densities of states .

This can be also expressed in the following way:

~p(E ) = Z 9
~ [E_i~ -L~ ]

j  E—i ~-— e .

= Im ~~~~~~ Tr ~ G
1GC]

where C and G° are the Green’ s operators of the perturbed and the unperturbed

Harniltonians, respectivel y. Using Dyson ’s equation we can express G 1 in

terms of C° . In this way ‘we get
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Lk (E ) ~~ Im~~~ T r [tn (1_C oy)]

= . Im~~~ tn [det (1-G
0V)] (5 . 1)

In the last step we used the identity Tr k~ I = ~~ ket A l ,  where A is

a general operator . The application of Eq. (5 . 1) is especially useful for a

localized perturbation, ‘when det (1-G°V) can be expressed as a finite-order

determinant .

Let us turn now to the specific probl an of the interface . In this case ‘we

start from the two sani-inf inite surfac e systalls ( the a and the b surfaces ) ,

and app ly the perturbation necessary to create the interface. This perturba-

tion was described in detail in Section V. We introduce the perturbation in two

steps . In the first one ‘we apply a constant electrostatic potential L~v on

metal a and -~v on metal b . As we have seen before , the app lication of

these potentials causes a shift in the densities of states of the two surface

systans , which aligns the Fermi levels of the two metals . Since each metal is

electricall y neutral , there will be no net change in their energies due to the

application of this perturbation . Our second and final step is to app ly the

ranaining perturba tion V needed to form the interface . As ‘we have seen in

Sections II and III , the only non-vanishing matrix e1ai~nts of this perturba-

tion are given by

V (0 ,0) lT
a - (5. 2a)

V (-1 , - I )  U
b - (5.2b )

-33-
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and

V (1 ,O) = V(0 ,_ 1)* 
(5.2c)

‘where , as before, Ua~ Uj)~ and 0a ’ b are the self-consistent potentials near

the interface and near the surface , respectively. Thus, in the present

case ‘we have

I - G°(-1 ,-l) V (-1,-I) -G°(-1 ,-1) V (-1,0) —

det (1-G°V) =
-G°(0,0) V (0-1) 1 - G° (O 0) V (0 ,0) (5.3)

where G°(O , 0) and G°(-l , -1) are the corresponding surface Green ’s functio ns

of metals a and b , respectively,with the energies shifted according to (3.17) .

We note that the surface self-consistent potentials in G°(O ,O) and G°(-l , -l)

are U and Ub i  respectivel y, and not Ua and Ub , as was the case in the pre-

ceding section . Since G° and V are diagonal in the wave vector k,, , the deter-

minant (5.3) factorizes into similar terms with different k,, values . Expanding

(5.3) in terms of the indices rn and n shows that each such factor is given

by

det
k (1-C°V) = [1-V(_ 1 ,_ 1) G

0 (_1 ,~ 1)][1_v (o ,o) G0 (0 ,0)] ~. 2c0 (o , o)c 0 (~ I , 1)

(5. 4)

In this expression we used the notati on det~ for the partial determinant , with

a specific k,, . 
-
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Substituting the explicit expressions for the surface Green’s functions Cf(O , 0) .

and C°(-l , -l) , fran the general expressi on (3 . 21) , into Eq. (5 .4) gives

0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
det (1-C V)  = - _________ - 

- (5 5)

The bound state energies of the crystal with the interface are given by the

roots of the equation~~~~
’7

~ :

det(1-G°V) = 0 (5 6)

out side the shifted bands of the two metals. Using the explicit expression (5 . 5)

we see that this is exactly the same condition derived earlier from the poles

of the interface Green ’s function , Eq. (4.6) .

In analogy with ordinary scattering theory , one defines the partial phase

shifts by (l6_l7) :

‘fl (E ,k,,) = Im Lu [detk t , (I_C 0V)1

Arg 
~ 4B

2+ [ F  i (W a~2Ua ) 1I~~ 
+ i(wb

_2u
b )1 }

t 
[~~~ a 

+ j (W  - 2 U i  [ b  
+ 

~
-5 (wh _ 2U b )l (5.7)

In the second step, we applied the explicit expression (5 . 5) and used the iden-

tity Imthf = Argf , where Arg denotes the argument of the complex function.

If we take the determinant of (5.5) with respect to k ,, , and use the rela-

tion (5 . 1) we see that the change in the density of states per surface atom,

relative to the shifted bands, due to the format ion of the interface , is given by:
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A,,
~p(E) — ~ ~~~~ ~j J dk ,, 11 (E ,k ,,

A ,, 
-f i(W a 

- 211a)l ~~~~~~~~~~~~~~

(2i
~~ 
;~ 

fd~ 11 Arg 

I~a + j(W~~ 2~~~)fl~~~~~~ 
i(wb -20b )J

(5 . 8)

In this expression we introduced explicitly the g-fold degeneracy of the bands

under consideration. We also note that A,, is the area of the unit cell para-

llel to the interface and that the Ice, integration goes over the two-dinen-

sional Brillouixi zone defined by the crystals structure parallel to the interface .

Equation (5 . 8) can be used to derive a relatively simple expression for the

change in the integrated density of states . This is given by:

- 
AN (E ) = f Ap (E) dE

= ~ A ,, 
fdk~ ~~ _ i a  ~ ~~~~~~~~~~~~~~~~~~~

(2r)2 
~ t~ a 

+ i (W
~~

2U
~~1 [~~b i ( i~~2Ub ) I  (5.9 )

The single-particle contribution to the interface energy °ab ~it 1—0 ( i .e .

the energy per interface atom necessary to break the interfac e into two sani-

infinite crystals , at T=0) is given by

Tab = A p(E) EdE (5.10)

where the Fermi energy E~ differs fran the value given by Eq. (2.2) by a term

which is O(l/N .L) . This E~ guarantees the charge neutrality of the interfaced
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crystal . Expanding (5.10) to first order in E~ - Ff 
we can express the inter-

face energy as follows :

Ef
= - f Ap (E) (E-Ef ) dE (5. 11)

= f ~N(E) dE
1~

A ,, 
Ef ~~~~ 

[~a 
+ - 2U a )I [~b~~~~b 2Uh )P

= ~~
. I dE (dk ,, Arg - ~~~~~~~~~~

—

ir (2n)2 3 J U a  + i(W _2 U )~~[~~ +i(w g2U~ )

Also , is the cctiion Fermi energy of the two metals , i.e. Ef = ½ (E~ + Eb) and

and include the corresponding shifts in the energies , according to Eq .

(3.22) .

In a similar way , one can determin e the single-particle contribution to the

change in the electronic specific heat. This change is given by:

= J EA P (E) ~~ dE

where f(E) is the Fermi~-Dirac distribution unction. For ta~~eratures niich lower

than the Fermi tanperature the change in the electronic specific heat is linear

in the tai~erature and proportional to the change in the density of states at

the Fermi level (assuming no Van Hove singularity occurring at the Fermi energy) .

Explicitly we have
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~C =~~— K
3 ~P(E f ) T

~~yT

where KB is the Boltzmann constant . For the inter face systan the constant y is

given by

~K~
2 

___ 
~~~~ + 

[‘~2 
i (~

U _ 2U a \1 ~~~~~ +
= A ,, fdk ,, - --— Arg - — —-

~~~~~~ 
—

12~ j — + ‘

~a~~~~~~~~a~~ 1 h  ~ (
~ b

_2
~

1
b )I ) (5.12)

where the integrand has to be evaluated at the cc:xm~n Fermi level .

VI. Numerical Results and Discussion

As an application of the formali~n develop ed in the last three sections we

consider in the following the interface formed parallel to the (100) plane of two

crystals described by the sane tight-binding parameters , but having different

Fermi energies . The coupling between the two metals is taken to be the same as

the Ixilk coupling , we also neglect the interf ace perturbation Ua and (i.e.

we set T = T b =~~ and U = U b = O ) . This simplification is done here in

order to reduce the number of independent paranents in the prob lan . The general

case , discussed earli er , can be analyzed in a completely analoguous way . The

specific case , considered here, can serve as a crude n~del , describing the elec-

tronic properties of a (100) interface formed between two transition metals

belonging to the sane series , and will be referred to as such in the following.
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Fran the preceeding discussion , presented in Section IV , it is obvious

that there are no interface bound states in the model under consideration . The

electronic wave functions are delocalized, and extend on either one side or on

both sides of the interface , accordin g to the corresponding electron energy. For

the (100) interface we have

W 
~~~~~~~~~ 

= 
~~l 

[cos(a1c~) + cos(ak~)] (6.la)

T = E1 (6.lb)

Using these relations and Eq. (3.23) for the diagonal matr ix elare nt s of the

Green ’ s function , and the expression (3 . 11) , we can calculate the local densities

of states on the various planes of the interfaced crystal . Figure (1) shows the

results of such a numerical calculation of the local density of states p (E) , for

the first three atomic layers adj acent to the interface (n = 0, 1 and 2 , respec-

tively). The difference in the Fermi energies of the tv.~ metals was chosen to

be AE~ = 2E~ . Fig . (2) shows the corresponding density of states for the case

of AEf = 8E1. For ca~~arison , the shifted bulk density of states is also shown

in these figures . All the density of states presented here are nor malized to

unity (i .e.  we set g = 1). We note that Figs. (1) - (2) refer to the side of

the interface on which the metal having the higher Fermi energy is located . The

local densities of states on the other side of the inter face can be obtained from

the curves in Figs. (1) and (2) by taking their mirror iniages , with respect to

the E = 0 line . As can be seen from the above-mentioned figures , the local densi-

ties of states have a “tail” extending outside the shifted bulk band . This tail

-39-



~ 
, -,“ . -_ — - —  - - —.-,.-- - ~- . — . 

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ -
~~ ~~~~~~~~ ~~~~~~~~ ‘

- -5 - - -
~~—— ~

—
~

- — - -- —---—
~
.-

~~
— 

-  
- 7—

- - - - - - . -
~~~~ ~~~~~~ 

/ -1

- 

- is contributed entirel y by electrons ttmneling from the other side of the lnt ’ face .

Frau Figs . (1) and (2) it is obvious that the penetration distance of these elec-

trons is essentially limited to only a few atomic layers. In general , the n~st

pronounced effect on the local density of state occur s near the interface itself

(i.e. n = 0). As one proceeds away fran the interface , the density of states

approaches asymptotically the bulk density of states . For n = 2 (the third

layer near the interface) the density of states of the interfaced crystal is

already very close to the corresponding shifted bulk density of states .

When, in the n~de1 under consideration , the coupling constant between the

t~~ metals is allowed to vary , it is possible to form bound interfa ce states .

Following the discussion of Section IV it is not difficult to show that for

the present model the t~~ critical values and 
~2 coincide . Therefore ,

in this case there will be either no bound states at all or there will be t~o

of then, one above and the other below the sub-bands . It can be easily shown that

the critical coupling constant to which both 
~l 

and 
~2 reduce, is related

to the difference in the Fermi energies of the two metals as follows

(6.2)

T1n.is, the bigger the difference in the Fermi energ ies the larger is the coupling

necessary to create a bound state . This is quite expected since the greater is

the difference in the Fermi energies the larger is the miniia~n distance of the

bound states fran the center of the sub-bands . The m.Lnintim possible critical

coupling is obtained for L~Ef = 0 , and is given by Bc = T. Therefore, in

the present model , every coupling constant which exceeds the bulk coupling, will
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produce a bound state . Fig (3) shows the dependence of the bound state energies

- on the coupling constant for the case of ~Ef = 0 and ~Ef = 2T. As can be

fran these curves, an increase in the coupling constant increases the energy

of the upper bound state and decreases that of the lower . This behavior agrees

with our general discussion given in Section IV.

We now turn to the calculation of the change in the tota l density of states

and the interface energy of two transition metals belonging to the same series .

Using Eq. (5.8) it is not difficult to see tha t the change in the density of

states , in the model unde r consideration , is an even function of the energy rela—

tive to the center of the band . Using Eq. (5.9) we calculated nixrerically the

change in the integrated density of states LiN(E) due to the creation of the

interface. Fig. (4) shows the change in the integrated density of states ,

which is an odd function of the energy , for the cases of ~Ef 2E1 , ~Ef = 6E
1

and tiEf = 12E 1, respectively. In this figure we used the value g=l0 to account

for the 10-fold degeneracy of the d orbitals in transition metals. To obtain

the corresponding interface energy we have, according to Eq. (5 .11) , to integ rate

~N(E) with respect to the energy , up to the catiron Fermi energy . The results

of such a nunerical calculation are shown in Fig. (5) , where the interface energy

for a given transition metal with na d electrons is ploted vs n,0 , the number

of d electrons of the other meta l forming the interface. The curves in this

figure correspond to the cases where 
~~ 

= 0 , 1, . . .5. The corresponding graphs

for 
~a>5 (i.e. 1

~a = 6 , .. . 10) can be obtained by taking the mirror images of

the curves of 10 - 1
~a electrons , with respec t to the nb = 5 line. This is

due to the face that in the present model , the following symmetry holds

-41-
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= o(lO - r~ , 10 - nL,)

where <5 and n~~ 5. The surface energy of transition metals can be read

off the curves of Fig. (5) by looking at the points where ~~~~~~ . Our

results for the surface energies are the sane as those derived earlier by F.

Cyrot-Iaci n~~
8
~ and by G. Allan . (19) This is as expected, since in the

limit of two identical tran sition metals our i..~terface model, discussed in this

section reduces to the free surface model investigated by these authors .

As can be seen fran the Fig. (5), the electronic contribution to the inter-

face energy between t~~ transition metals , of the sane series , is always less

than the corresponding contribution to the surface energy of a half-filled

band metal (belonging to the sane series) . We also note that for a given transi-

tion metal , with d-electrons , there exists another transition metal , with

electrons, whose combined interface has the maxinun interface energy . As

na is varied, the position of this maximum drops down fran nb°~8 for an a-npty

band 
~~~ 

0) to nb 2 for a l band

The interface model developed in the present work is a highly simplif ied

and crude one. Nevertheless, we believe that certain features of a real inter-

face , such as interface states and electron tunneling across the interface ,

are illustrated by our model . Thus , althoug h a realistic physical description

of a binetallic interface might be moch more complicated , we feel that many of

the qualitative properties of such an interface will be similar to those des-

cribed in this article .

-42-

-

~

- -. - - 5  -- — - ~~~~~~~~~~~~~~~~~~ - - — -



- ~~~~~~—~-,— —~~~~ -
~~~~~~~~

:---— 
~~~~ 

_ _ _  - 
— -5- 

_ _

~~~~~~~—~~~~~~~~
-

_
-
~~~~~~~~~~I— - - --- - -- ———---—— ~~~~~~~~ _ : 

- -
~~

-
- -

- 
-

~c~w~~~~~rs

It is a pleasure to thank Professor W. Kohn for suggesting this work and

for many helpful discussions on the subj ect . The assistance of Mr. C. C. Pei

in performing sate of the ni.uierical computations is gratefully acknowledged.

-43-

~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~
-5 - - - -



F.- -- 5 
~~

--‘
~~~~

——--—- - - -

REFER~~~ES

1. E. Aer-ts, Physica 26 , 1063 (1960) .

2. S. C. Davison and Y . C. Cheny, m t .  J. Quantiun Ch~~. Synp. 2 , 303 (1968) .

3. G. Allan , M. Lannoo and L. Dobrzynski , Phil . Mag. 30, 33 (1974) .

4. E. N. Foo and H. S. Wong, Phys. Rev . BlO , 4819 (1974) .

5. P. Hehenberg and W. Kohn, Phys. Rev. 136, B864 (1964) .

6. W. Kohn and L. J. Sham, Phys. Rev. 140, A1l33 (1965) .

7. A. J. Bennett and C. B. Thike , Phys. Rev. 160 , 541 (1967) .

8. A. J. Bennett and C. B . Thike, Phys. Rev . 162 , 578 (1967) .

9. J. Ferr ante and J. R. Smith, Surf . Sci. 38 , 77 (1973) .

10. J. Ferrante and J. R. Smith , Solid State Connnin . 20 , 393 (1976) .

11. M. D. Rouharii and R. Schuttler , Surf. Sci . 38 , 503 (1973) .

12. R. Mabrotra , M. M. Pant and M. P . Das , Solid State Cat1rLn~. 18, 199 (1976) .

13. D. Kalkstein and P. Soven, Surf. Sci. 26 , 85 (1971) .

14. R. A. Brown, Phys. Rev. 156 , 889 (1967) .

15. B. S. De Witt , Phys. Rev . 103 , 1565 (1956) .

16. J. Callaway, Phys. Rev. 154, 515 (1967) .

17. G. Toulouse , Solid State Ccmiain . 4 , 593 (1966) .

18. F. Cyrot-Laclcmann , Surf. Sci . 15 , 535 (1969) .

19. C. Allan , Arn~. Phys. (Paris) 5 , 169 (1970) .

-44-



APPENDIX

In this Appendix we derive the expressions for the general matrix elai~~its

of the surface Green ’s function. The technique we apply is the sane as that

used by Kalkstein and ~~~~~ (13) to derive the correspond ing diagonal matrix

el~tents .

To form to metal-vactum interface we start fran the bulk metal and break

the bonds between the two adjacent planes n = 0 and n = -1. In addition .

we change the self-consistent potential of the electrons near the surface. The

perturbation described above , which is necessary to create the surface , has

the following non-vanishing matrix elanents in the Bloch-Wannier representation:

~T(0 ,0) = ~ (— 1 , —I ) = (A.l)

i8
V(- 1 ,0) = V(0 , _ 1)* = -Te

(A. 2)

With this perturbation potential , the Dyson’s equation for the surface Green ’s

function takes the following form:

G(m,n) = G°(m-n ) + G°(m+1) V(-1 ,0)G(0,n)-~C°(m+1)V (-1 ,-I)G (-1 ,n)

~G°(m)V(0 ,-1)G(-1 ,n)-~C°(m)V(0 ,0)C.(0,n) (A.3)

In writing down the above equation we used the proper ty that due to translational

invariance, the bulk Green’s function (~ depends on the indices m and n only

A-i
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through the different rn-n . Taking into account the fact that the surface

Green’s f~~~tion G(xn,n) vanishes if m and n refer to planes on opposite

sides of the interface , we can solve Eq. (A.3) for the general matrix elanen ts

of the surface Green ’s function. This is given by:

G(m,n) = G°(m-n) + 1G
0 (m+ 1)V(~~ ,O) + G

0
(m)V(O ,O)1 C° (-n) i 1. -G

0 (1) x

V(~~1 ,0)_ G 0 (O)V ( 0 , 0)J  
-1

(A.4a)

for m,n>0

G(m,n)C°(m-n)+ [G
0 (m )V(0 ,~ 1) + C0 (m+1)V(~~1 ,~~1)j G0 (_ 1 -n) 11-G°(_I) ~

V(0 , -1) --
~~

-1)v (-1 , -1) ! -l (A4.b)

for m,n <-1

Ui+j ~. -the
G°(n) 2~ ( 2T ) e

Using this expression and the expressions (A.l) - (A.2) for the perturbation,

we obtain fran Eqs . (A .4) that the matrix elaients of the surface Green’s func-

tion are given by:

G (tn ,n) ~~_ e _ 1(m~ (~÷~ )~
m_ nI 

~~~~ 
nrfn 

_________  (A.5a)
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. for m,n ~0

G(m,n) ~~ e i (m ~~~~~~ 

)

!~~~~~~~ fl~~ -2 
i (W-2~) } (A.5b )

fortn,n <-l, and

G(m,n) = 0 (j~.5c)

otherwise.
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FIGURE CAPTIWS

Figure 1 The local density of states of a (100) interfaced crystal . The

difference in the Fermi energies of the two metal s is 2 E1. (a)

The first atomic layer , n = 0. (b) The second atomic layer , n = 1.
(c) The third atomic layer , n = 2 . The shifted bulk density of states
is s&~wn as a dashed curve .

Figure 2 The local density of states of a (100) interfaced crystal . The

difference in the Fermi energies of the two metals is 8E 1. (a) The

first atomic layer , n = 0. (b) The second atomic layer, n = 1.

(c) The third atomic layer , n = 2. The shifted bulk density of

states is sh wn as a dashed curve.

Figure 3 The interface bound states energ ies as a function of the coupling

constant . The ful l and the dashed curves correspond to L~Ef = 0,
and ~Ef = 2T, respectively.

Figure 4 The change in the integrated density of states due to the creation of

the interface.

Figure 5 The interface energy of transition metals having % and d elec-
trons . (a) 

~~ 
= 0 , 1, 2 , (b) na = 3 , 4 , 5.
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- [he pr operties of metal-metal interfaces are of Interest in many metallurgical
applications . These include grain boundaries, crack growth , friction and
)i-n-etallic adhesion. The present work is a study of the electronic properties
of a simple bimetallic junction . The methxls aiployed to investigate the Inter-
face are the Green ’ s function technique and the phase shifts metbod. We~~a1~cu-

• Late—~+te Green ’s function of a simple junction within the tight-bir~]ing approxi-
~ation,~ . The conditions for the occurance of bound states is deduced from the
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‘
~~~les of the Green ’s function. It is sh~ti that there are three types ~

‘ ~~ve functions associated with the interface. The first extends through it
the entire crystal , the second extends on one side of the Interface only,
whereas the third kind is localized near the interface . Using the phase
shifts metbod wo~-dcriiii’e an express ion for the change in density of state
due to the creation of the interface Frc*n this expression we-derive
the corresponding single-particle contribution to the interface energy
and the interface specific heat~’ * __
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