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Abstract

Extendix~g the theory ‘which developed by Kohn , Ckiffroy and Rehr for a one-

diii~nsional non-periodic systan, ~~ have developed a theory that describes buw the

electronic density distribution near an insulator-insulator interface approaches

the bulk behavior. The exponential decay constant depends on the band struc-

tures of the t~~ insulators and the positions of localized surface state ~iergies.

In addition , ‘we also study the behavior of the electron density perturbation due

to a defect across several successive interfaces.

* Supported in part by the Office of Naval Research and the National Science
F FOI2ndStiCTl.
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I. Introduction

In an infinite and perfectly periodic crystal , the eigenfunctions of the
ft

one-electron Schrodinger equation are the Bloch waves. The electron density

distribution is a periodic flmction with the sane periodicity as the potential .

In a crystal with an interface, the periodicity of the potential is lost . The

eigenñmctions of this crystal are no longer the Bloch waves. In the vicinity

of the interface , the electron density distrthi tion is perturbed by the exis-

tence of the interface . However , deep inside each of the crystals , the electron

density distribution approaches that of the infinite perfect crystal . In this

part , we want to find in what mar uier the electron density distribution approaches

that of the infinite perfect crystal , as we nr ve a~~y fran the interface into

either of the t~~ crystals . KoFra and ~~ffroy~ ~~~ ~~J ~<~~~2 developed a

procedure to construct generalized War inier functions for a systan with an

in~urity or a surface . They found that the generalized Wannier functions

approach the Wannier functions of the perfect crystal exponent ially with dis-

tance fran the defect or the surface . We want to extend their idea to study

the perturbation of the electron density distribution by an interface in one-

dincnsional insulators. For an insulator the Fermi level lies at an energy

corresponding to a gap for each of the t~~ crystals , i.e. all the energy b&

of the perfec t crystals are either full or aipty . We find that the perturbed

electron density distribution approaches that of the perfect crystal in an

exponential mar uier . The decay constant in each crystal is determined by the

relative positions of the following quantities : the positions of the band edges

of the last filled and first unfilled energy bands of the other crystal ; the

_ _



positions of the localized surface state energies ; and the position of the

branch point energy which are located between the last filled arid first unfi lled

energy bands of this crystal .

We also extend this theory to study nore general cases , the way in which

the density perturbation due to a defect appears across several . successive

interfaces . Again, we find that this perturbation decays exponentially and

obtain a canpiete prescription for determining the decay constants for an

arbitrary succession of periodic lattices. We believe that our results have

sar a pr anise for developi~nts of a theory for the following interesting chani-

cal polymer probl an: if we replace one atan by a different atan at one point ,

1u~ does the perturbation behave along the chain of the polymer?

In Section II we will derive the general theory of the electron density

perturbation due to the presence of the interface in a one-cthi~nsior ial insulator

of t~~ lattices in contact .

In Section III we will use this theory to discus s the electron density

perturbation due to an isolated defect in nore canpiex insulators having n

arbitrary different lattices in contact .

Section IV contains a sttmary of our results .

II. Isolated Defect in a Perfect Insu lator and Sinpie Interface

A. General Theory

Before proceeding to derive the theory , let us briefly review sate proper-

ties of the perfect periodic lattice . 3 The eigenfunctions of the one-electron

Schrödlnger equation are the J3loch waves ~
p
~

(x ,k) with energy E(n ,k) (eigen-

values ). Here k is the wave nuther and n is the band index. If we treat
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k as a ccmplex variable, k = g + ih, then ~~ (x,k) ar id E (n ,k) represent

the branches of nultivalued functions of k .  They are analytic everywhere

except at a set of branch points away fran the real axis. If g is restric-

ted to the fundamental Interval - 
~~

— <g < !L , these branch points have the
b b

form kli = ± lh’1, where 0 or 1 for n odd or even, respectivel y.

They can be determined fran the Kramer’s plot (Fig. 1) of coi(1~a) versus real E

The branch points Ic~ correspond to the (n + l)th extrenun of this plot . The

energy E~ = E(kri) at these branch points are real .

We now consider an electron in a one-dimensional potential which is taken

to be extended over the interval - d/2 < x < d/2 , with Hamiltonian (Fig . 2)

2
H = - + V (x)

dX~
v2(x~ -d/2 < x <-N

V x) v1(x) -N < x<O (2.1)

v2(x) O < x < d / 2

where v1(x~ and v2~x) are potentials with the periodic and synuetry properties:

v~(x+b) v~
(x);

(2 . 2)
v , (-x) = V

\) 
(x), where v = 1, 2.

Here b is the period of the potentials v1(x) and v2(x), and where N is

the length of the section at which the potential is v1(x) .

-4-
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The eigenfunctions ~ (x) are required to satisf y the different ial equation:

H ~(x) = E ~~x) (2 .3)

and the cornr entiona l periodic boundary conditions :

(2. 4)

q ’(d/2) = ~‘( — d/ 2) ,

where ~‘ (x) ~ (x)
dx

When N equal s zero (i.e. the case of the perfect crysta l) these eigerifimc-

tions are the Bloch waves

2 
,k
2
), where = (- ~~~~

- , --- , 0-- ,(~~ -1) ) .  (2.5)

The corresponding eigerivalues are grouped in quasi-continuous energy bands, each

containing d/b levels.

When N is not equal to zero , the energy states of the original band split

into t~~ groups ; one having ru localized Impur ity bands and the other having

(d/b-m) minibands (see Fig . 3). When d ~, these localized impurity bands

approach the bound states and the minibands becai~ scatterin g states wbose

energy gaps - approach zero4 (see Fig. 4).
NTIS W~i? e S~cfiøn ~~
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For real k
2

, the electron density contribitlcn of the state •r~(x,k~
) In

the mlniband m is

~~ 
(x,k) •m (x,k )  4)m

* (x,k )  (2 .6)

where k runs over the fundai~~tal zone (~i <k <~~1L) , where m - . 

-

2 d 2- d
index of niinibands Including the Inpirity bands and where ~ (~ ,k )  are ortlo-m 2
normal Bloch waves, i.e.

(x,k)  ~~, (x,k ‘) dx ~~ , ~(k -k ‘) .  (2.7)
J 2 2 2 2

r~ (x,k~
), as defined in Eq. (2.6) , is not an anal ytic function of k2 because of the

canpiex conjtn~gate appearin g In Eq. (2.6) . However we know n~ (x,k2) is Independent

of the phase of ~~ (x,k2) .  We are then free to cboose the phase of 4m (x,k2) such

that

~~ (o,k~) ~m
* (o,k )  real and positive . (2.8)

Thai we have the following relations:

( k ) * ( X k )
2 ‘~m ‘ Q

~m (-x,k )  = 4 ’
~ 

(X,k, ) .  (2 .9)

If we use the identities of Eq. (2.9) arid rewrite Eq. (2.6) in the form

tt
~ 
(x.k)  — ( çlc ) 4

~m “ 2~ 
(2 .10)
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we louq that, in this form, 

~ 
(x,k2) is an analytic function of cc*Tplex k2

except at the branch point s which connect the miniband in to its neighbors —

N
n (x,k ) =~~~ n~ (x,k ) (2.11)

2 n~ 0 2

where m runs over all minibands including the impur ity bands and n (x,k2) is

analytic at all branch point s connecting the minibands in1.

The total electro n density fran all the states of this band is

.11. N !.

n (x) =f c&2n (x,k )  =~~~~~~~ Iddk2 nm (x,k
2
) (2 . 12)

as d -
~~ ~~~, we have

n (~~~) =J ~ flSC (x,k2) +En
B (x,1Q) (2.13)

where nsc ( ‘çk 2J ) the electron density of the scattering states , is

(+) (-)
~~SC (x,k ~ 

= 

~k 
(x) 

~ k 
(x) , (2.14)

2 2

(±)
where tP+k (x) are the scattering states , (+) and (-) denoting states with

outgoing and incaning scattered stat es, respectivel y.

(x , k2~), the electron density of the bound states, is

-7-



~B (x,k2~~ ~ (x,k2~) [~ ~~~ 
(2.15)

wliere ~~ (x , 1c2~)are the normalized bo~xK1 state wave functions with wave vector

k2
3 wiose an~1itude s- are determined by the following as’ynvtotic condition:

~~ (x ,k2~)= 
~2 (*,k )  , x>o , (2 . 16)

where k 2
3 is determ ined by the relation :

E~
2
~ (k ,3 )= ~~ 

(2.17)

and where is the bound state energy which is in the energy gap of a perfect

lattice with potential v2 (x) . Here extends over all the occupied bound states .

The scattering process due to the existence of the potential v1 (X) can

be described transfer matrix M(2) which relates the anplitude and phase

of the sc -yes to dose of the incident waves. Here the superscript

(2) den- as an independent variable . We use t~~ different ways to

derive the transfer matrix : (1) Saxon’s nulti-scatter ing metlod;4 (2) Hem s’ s

Bloch wave matching metlod.5

(1) Saxon’s nulti-scatterin g metbod:

We can regard the presence of the potential v1 Cx) as a succession of

scattering centers which are located fran x = -N to x = 0 (see Fig . 2 ) .  When

N = 1 , the solut ion can be viewed as an unperturbed Bloch wave interact ing

with an isolated localized Impurity . This scatter ing process can be described

1 y a scatter ing matrix which relates the anplitude and phase of the

scattered waves to dose of the incident waves. For a finite N , the passage

-8-
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of an electron tbrough the N scattering centers can be tlought of as a iailti-

pie scattering of Bloch electron waves by tbose scattering centers . The trans-

fer matrix is then

(2) (2) S (2) —1 (2) (2) (2) S (2) —1 R~
2
~ S (2)

— R S_1 ~ -2 ) R - - - R S_ (N l) ( -N -N

=R ~
2
~ (G~

2
~~ S N 

(2 .18)

where Sa
(2) is the translation matrix for translation to the right tFu~ough a

lattice constant : (Fr an now on , we assur e that the lat tic e constant b equa ls one.)

(2 Ie~ 2a 0
Sa ~ 5-iic.~a ) (2 . 19)

where has the following properties :

~~2 ~~~(2) 
= 1

~~2 ( k )  = ~~~(2) ( 1)

R12 (k2) = ~~~(2) (-k 2) ,

~~~~~ (k2) = B22 ( k 2) , (2.20)

and ‘where

S1~~~ R~
2
~ 

(2.21)

Fran Appendix A, we have

_______ - - - -~~ - -  .-- - - - -—-— ~a-~~~~~~~~~~~~~~~~~~~~ - ---_~~~~~~~~~ 
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2 1 ~~~(2) ½ [~~~ )A N 
- (s-a) ~ N]4 R12~

2
~ B2~

2
~ 

e ( A 1
N~A 2 e~~~~

N0 = 

~~ ½ [(~~~ A N 
- ($ )A N

~+ B22~ B2~
2
~ 

e~~~ (A~~ A~~~e~~~2N

~ ~~~~~ B2~~ 
e~~ (A N A N) + B22

0 ½ [(~~)x N 
- (~~a)X~~J}e~~2

( . L 2)

~ B2i~
2
~ B22 e~~~ (A N A N) + R~~~

2
~ - [ (~4ct)A N 

~~~

where

= ~~~~~~(2) e ~~2 + R22~~ e~~~ ) 
2

= e - B22~ 
e

x 1= ½ 

[

~~~~~~~~~~~~~

2 

~~~ + B22~ 
e~~~2) +

~ ~(B2i~~ ~~~ + B22 ~~~~~ -a]

(2) Hem ’s Bloch wave matching matlod:

We consider a systen with three regions (Fig. 2).  in regions I and III,

the potential is v2 (x) while in region II it is v1 (x). Let ij~~ (x)

q~~ (x) ar id ~~~~ (x) denot e the wave functions in the regions I , II, and III,

respectivel y. Since the potential in regions I and III is V
2 Cx), ~~ (x) and

,
~~~~ 

(x) nust be linear canbinations of the Bloch waves 
~~~2 

(x ,k2) .  By the sane

reasoning , q,11 (x) is a linear canbination of the Bloch waves 
~i 

(x , k
1
)

-10- 

~~~~~—~~~~--~~~~~~-— -~~~~~~~~- - -— -~~~~~~~



—~~~ -~~
-—

~~~~
- 

_ _ _ _  —~~~~
—.---—

~~~~
- -

~~~~~~~~ 

~‘~:~:: ~~~~~~~~~~~~~ 
-

~~~~~~~~~ L..
—:: -- 

~~~~Y

I

~ 
= a1 *2 (x, k2) + b1 *2 (x, l~~)

= a2 ~~~~ 
+ b2 *2 (x , -~~)

*111 (x.
, = a3 *2 (x , k2) + b3 *2 (~ , -~~) (2. 24)

Using the continuity conditions at the interfaces , we obtain

M~
2
~~= 

1

W (ip1(0 ,k1) , ip1(0 , -k1) ) W (*2(0 ,k2), *2 (0 , -k2) )

I - Q12
(2) 

\ ~~~~~~~~~ Q11
(2) , ~~~~~~~~ Q12

(2) 
\

~ 1 (2) (2) J ~ -i(k1+k~)N (2) -i(°~~-k2)N (2) 1(2.25)
\ -Q21 , Q11 / ~ 

e Q21 , e 
~
. Q22 ,~

,

and

E~
2
~ (k2) = E~

1
~ (k1) (2.26)

where w(f , g) is the Wro nskian of the functions f and g :

w (f,g) Efg’ — f’g (2.27)

ar id where

—11- 
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Q11
(2) 

= w ~ip2(o ,i~) , ip1(0 , -k1) )

Q12
(2) 

= w (~,2(o,-k2), *1(0 , -k1) )

(2.28)
= w (

~l(°~ i),*2(°,~~
) )

Q22
(2) .

~~~~~ (*1(0 ,k.~),*2(0,-k2)

For a finite N , the ratio of the transfer matrix elanents 
~12 ’~22 

is an

anal ytic function of k2, except at branch points ‘which are the sane as tbose

of E~
2
~ (k2) and for the possible pole singularities at the zeroes of ~~~~2)

•
As N goes to infinity , tthugh U.~ ~~~~2)~~~9

(~) retains the just n~ntioned branch

point structure, t~~ additional. analytic features arise : (1) t~~ new sets of

branch points occur at values of k2 corresponding to the band edges of a per-

fect lattice with potential v1 (x) and (2) an infinite sequence of poles arise

fran the infinitel y many zero~s of ~~~(2)

The perturbation of electron density at x2 (xf 0) due to the existence

of the potential v1 (x) is (Appendix B)

(2)
Sn(x2) = j

~ 
2 

*2 (X2, 1
~

) *2(X2, IQ + ~~~nB (x2 k2
3 ) (2 . 29)

N22

We vixild like to discuss Eq. (2. 29) in the foliowing t~x simple cases : an

isolated defect in a one-din~nsiona1 perfect Insulator, and an interface .

-12-
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_______________B. Isolated Defect

When N = 1 , the systan can be tbought of as an isolated defect at the

origin in a perfect lattice with the potential v2 (X) . The strength of the

defect potential is v1 (x) (see Fig. 5 ) .

Since N12 ~~ /N22 
(2) is regular in ttie upper half of the k~ plane in the region

between the real axis and the branch points k
2

° 
, except for the possible pole

singularities at zero es of M22 
(2) correspond ing to the existence of the bound

- 

- 

states , we can free to shift the path of integration of Eq. (2.29) , fran the

real axis of 1<2 to the contour C as indicated in Fig . 6. This results

because of the periodicity of the integrand in Eq. (2.29) (the vertical portions

cancel each other) . 2 TIn.is

(2)
on (x2) = fc&2 (2) *2 (x2,~~)*2(~~~2 ~ ~~~~~ (~~ , k2

3 )

- , . , 1
-2ir i res 2

(2) *2 (x2,~~~ ~~2 (x2, k.,~ ) 
J (2 . 3 0)

where j runs over all the occupied bound states and where j runs over all

the poles which are located between the real axis and the contour C

Fran Eq. (2.30) , On (x2) will depend upon the strength of v1 (x) and

v2 (x) , the positions of the zeroes of N22~
2
~ 

and the positions of the

bra~ieh . i nts , E0
’2

~ , which are located between the last filled and the first

unfilled energy bands of a lattice with the potential v2 (x) . We can classif y
• all situations into three cases :

-13-



Case 1: E0~
2
~ lies between the energies of the first ~~~ccupied state

and the last occupied state : the residues due to the zeroes of M22
’2

~ pre-

cisely cancel the bound state contributions ~2 We obta in

~~~(2)
an (x

2) = J dk~ 
.i.2 

2 
*2 ~~~2’ ~

<
2~ ~~2 

(x2, 1<2) (2.31)
N22 ~

C

This leads to the asymptotic behavior :

Ion 
~~~~~~ 

<(co nst .) e 2h~~ 
X

2 as x2 , (2.32)

where h
2

° is the distance fran the real axis to the branch points k2° in

the k2 plane.

Case 2: E
0 

(2) lies below the energy of the last occupied state : the

residues fran the zeroes of N22~~

2

~ 
jus t cancel these contributions of the bound

states the energies of which are lower than E
0~~

2
~~ . On (x2) beccines

(2)
On (x2) = fdll<2 

N12 
~~~ (,c2, k

2
) t~~ (x~,k~) +~~~nB (x2,k2

3) (2.33)

c N22

~~~~~~~~~~~~~

This leads to the asymptotic behavior:

Ion (x2)I < (const.) e~
2
~2~’ ~2 as x2

-~ (2.34)

-14-
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~..t~ere h H is the distance frctn the real axis to the wave vectors correspon-

ding to the highest occupied state In the 1<2 plane.

Case 3: E
0~~

2
~ lies above the energy of the first t~~ccupied state :

the bound state contributions of Eq. (2. 30) then cancel the residues of the

zeroes of N22~~

2

~ 
which are corresponding to the occupied bound states . on (x2)

bec~~~s

(2)
On (,

~
) = 

*2 
(x

2~
k2) *2(X2J 1<2)

c N22~~

2

~ 
—

-2~i res 
[

~~ 2
(2) 

*2 (a, ) *2 (~~ ~ )] 
(2.35)

where j ’  rims over all poles of N22~
2
~ 

corresponding to the tu~ ccupied bound ‘

states the energies of ‘which are lower than E0~
2
~ . This leads to the asymptotic

behavior:

< (const.) e 2h2~
C2 as x2 

-

~~ 
~~~ (2.36)

where is the distance fran the real axis to the wavevectors corresponding

to the firat unoccupied st~ ~~ .

L

-15-
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C. Sinpie Interface:

As the length of the potential v1 (x) goes to infinity (N-~o o ) ,  the

systen sbown in Fig . 2 looks like t~~ one-dimensional periodic lattice s joined

at the origin (Fig. 6). In this case , is an analytic function of

except at branch points which are the same as tbose of E~
2
~ (1<2) , at wavevectors

corresponding to the band edges of a perfect lattice with the potential v1 (x)

and at the infinitel y many pole singularities which occur at the zeroes of

(1<2) (which corresponds to the existence of the bound states) .

Because of this ana lyticity and the periodic properties of the integrand of

Eq. (2 . 30) , we can shift the path of integration fran the real axis to the contour

C as Indicated in Fig. 8. The change of the electron charge density at x2 is

(Appendix B)

(2)
On = f M~~ 

*2 ~
<2~ *2 2~~2~ 

~~~~~ ( 1 <) )
i

-2iri~~~ res *2 (x2,k2~
’
)*2(x2, k2~~~ (2.37)

The second term on the right band side of Eq. (2.37) is the contribution fran all —

the occupied bound states ‘which are located in the gap between the first unfilled

and last filled band of a perfect lattice with potential v2(x) . The third term

is the contribution fran the poles fran the zeroes of N22 which are located

between the real 1<2 axis and the contour C

-16-



~‘ 1 Again, we can discuss Eq. (2.37) In three cases as we did for the isolated

defect.

Case 1: E0~
2
~ lies between the energies of the first u~x ccupied state

and the last occupied state : the second and the third terms on the right hand

side of Eq. (2.37) then cancel each other identicall y. On 
~~~~~ 

beccxi~ s

~ (2)
On (x2) = fdk~ ~

l2 
*2 (x21~~)*2 

(x2,k2) (2.38)

~~

We then have the asymptotic behavior:

Jon (x2) J  < (const.) e 21
~2 ~2 as x2 

-, . (2.39)

Case 2: EQ~~
2

~ lies below the energy of the las t occupied state: the

third term on the right hand side of Eq. (2.37) then just cancels the contribu-

tion of the bound states the energies of which are lower than E
0~~

2
~~. On (x2

)

beccm~s

(2)
On 

~~~ f

~~~
2

N12 1P2 ~~ 2,’Q*2 ~~ 2, k
2
) +Z~n

B (~~~1<~.J ) (2.40)

N22

E~
2

~ (k2~)>E0~
2
~ .

We then have the asymptotic behavior :

Ion (x2) I  < (conat.) e 2~2
d 
‘~2 , as . (2.41)

-17-
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Case 3: E
0~

2
~ lies a~xv e  the energy of the first unoccupied state : the

second term on the right hand side of Eq. (2 .37) than cancels all the residues

fran the poles corresponding to the occupied bound states . on (x2) beca~~s

(2)

On (*2) f ~ 
M1~ 

(2) *2 ~~ 2 ‘~
<
2~ *2 

~~ 2 
,k

2
) -21ri ~~ res I 

M12 
2 *2 

(x2 ,k2
3 )

j ’  L 1~~
0

*2 
I~~ . (2 .42) . -

‘where j runs over all thc i’OA. •~ponding to the tax ccupied bound states

the energies of ‘which are lower than E
0~~

2
~ . We than have the asymptotic

behav ior :

2h L
Ian (z2) I  < (const.) e 2 “2 as ÷ • (2.43)

We, therefore, have concluded that the electron density distribution

ncving away fran the interface approaches exponentiall y the bulk values . The

decay constant depends upon the relative position of the band structure of the

perfect latti ces.

III. M,re General Systens

In this Section , we e,ctend the theory developed in Section II to study the

following question : if a point perturb ing potential is intr oduced into a systen

which conta ins a succession of n arbitrary different insulator s as sbown

in Fig. 9, bow does the electron density perturbation produced by this distur-

bance appear across successive interfaces?
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First , let us consider the simplest case : a syst an with just one interface .

We take the perturbing potential (defect) at point P a distance x1 to the

left of the interface as indicated in Fig. 10.

To obta in the transfer matrix of the systan , we will follow the Saxon ’s

metbod as we did before . In this matbod, we only replace the scatteri ng matrix

R~
2
~ at x = -x1 (see Eq. (2 . 23) ) by the defect scattering matrix

Then the transfer matrix of the systan with the defect is

~~(2) 
= R~

2
~ (S1~

2
~ R(2~~~~ (51

(2) ~~2) ) (s1~
2
~ R

(2)
)~~~~~~ S

N~
2

~ 
. (3.1)

and that witbout the defect is

= R~
2
~ (S1(2) R(2~~~~ (S1~

2
~R~

2
~) (s1~

2
~ R

(2) )~~~~ S N 
(3.2)

The analytic properties of the l2 ’~I , 22~~ 
are similar to tbose of 

~~~ ~L2~~~’ 
-

N22 : both are anal ytic functions except at branch points and poles as dis-

cussed above in the case of the sinple interface. However, tbough the branch

points occur at the same k2 values for both functions , the poles occur at

differ ent k2 values (the zeroes of ~~~~ 22 in general differ fran tbose

of N22~~ 
)

Using the sane procedure as we followed for the case of the simple interface,

we have the following form ror the change of the electron density distribution

at a distance x2 to the right of the interface due to a defect at a distance

-19- 
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x1 to the left of the interface

On (xl, ~~ ~~~~~ ~~~~~ 
- n (~~, Q

(2) (2)
= (

Mj~~~ 
- 

M12 ) *~ ~k2~~2 (x2,k2)

c ,22

+ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~ (~~~~k J )

j  j
1 (2)

- 2lTi E res 
~ 

M112 
*2 (~~,k2~

’
)*2 (,~~, I~~~

’)
L M 1, 22

1 (2)
- res 

(2) *2 
~~~~~ )*2(x2,k~ )

L N 22
(3.3)

where the subscript I d~ x tes the systan with a defect; the 1x)tation otherwise

being the sara as in Section II.

By the sane reasoning which we used to discuss Eq. (2.37), we find that

n (x1,x2) has the following asymptotic behavior:

On (x1 ,x2) 
< (conat.) e 2

~2’~2 as x2 
+ (3.4)

where the subscript xl indicates 
~~ 

kept constant in this equation. Ct2

is the decay constant in the insulator 2; it has different values for the

following tI~ree cases:
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Case 1: When the energy of the first unoccupied state is higher than E0~
2
~

and the energy of the last occupied state is lower than E
0~

2
~

CL
2 

= h .,° . (3.5)

Case 2: When the energy of the last occupied state is higher than E
0~

2
~

a2 = h
2~ (3 .6)

Case 3: When the energy of the first unoccupied state is lower than EØ~
2

~

(3.7)

If in case (2) the bound state fran the defect is the last occupied state

or if In case (3) it is the first ~~~ccupied state , then a2 depends upon the

strength of the defect potential. Otherwise a2 depends upon the potentials of

the t~~ lattices only.

We r~,w ~~nt to discuss the nodification of On (x1~ Q as the defect is

noved away fran the Inter face while x2 is fixed. To obtain the functional

dependence of O n (x1, x2) upon x1 , we have to change the fundan~~tal inter-

val in Fig. 2 as follows : it is taken to be a perfect lattice with potential

v1 (x) with extended impurities fran x = 0 to x = N of the potential v2 (x)

as indicated in Fig. 11. The potential in this fundan~nta1 Interval is given by

-21- 
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- -

~~~~~ :~i~
j
~ T~~~~T~r ’-— ~~~~~~~~~~

v (x) -d/2<x<0

V(x) v2 (x) 0< x<N

v1 (x) N< x<d/2 (3.8)

Using the sane procedure as before , we obtain the trans fer matrix of this
systan by Saxon ’s metbod;

= ~~~~
(1)

~~
1 (S1~

1
~R~

1
~~~~”2 

~~~~~~~ 
~~~~~(1)~4 (S1 RW ) X

2+1

T~
1
~ ~~~~ (3 . 9)

and

M~
1
~ — (i~ , l S ~~~ RW N_

~’2 5 S (li ,~~~ ~ 
x+l— 5N+l 1 X2+l 

) 2

(3.10)

All the rotation is the sai~ as before, except for the superscript (1) which

dex~~tes k1 as an independent variable.

Fran the Appendix D, we obtain the following asymptotic behavior of On (x1. x~)

with fixed x2

Ian (x1,x.2) I  < (const.) e~~~lxl as ,
~1 (3.11)

where is the decay constant in the Insulator 1. It is given by

-22-
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1) C*l h O

if the energy of the first ur.occupied state is higher than E0~
1
~ 

and the

energy of the last occupied state is lower than

2) a1 = h 1
d

if the energy of the last occupied state is higher than E0~
1
~

3) CX1 =h L

if the energy of the first unoccupied state is lower than E0~
1
~ .

where E
0~

1’ 
, the branch points of the energy surface E~

1
~ (k1), is located

between the first unfilled and last filled band of a perfect lattice with poten-

tial v1 (x). h ° , h H and h 
L 

are the distances fran the real axis to
1 1 1

the wevevectors corresponding to the branch points, the last occupied state ,

and the first unoccupied state , respectivel y.

Fran Eqs: (3.4) and (3 .11), we have the following asymptotic behavior

of ‘Sn (X ~ ,~~~ ) :

-2ct Y -2cz x2IOn (x~, x~) I  < (const.) e e as x1 
-
~~ ~~

(3 . 12)
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We now want to discuss the effect of a defect in a nore general systan ,

namely, a syst an with n interfaces. This systan has a succession of n + 1

arbitrary different sublattices as sIx~wn in Fig. 9. The potential in the

vth sublattice is denoted by v,~, (x) . All the sublattices except for tFose

at the ends are of finite length, denoted by xv ; the end lattices are infinit e.

We put an isolated defect in the first sublattice at a distance x1 to the

left of the interface which divides the first and second sublattices. We

want to determine the change of the electron density distribution , ‘Sn (X,~, x
2 

. .

in the last (v=n+1) sublattice .

If the length of each sublattice is fixed, we have fran the above discus sion

the following asymptotic behavior of &~ (x1 ,x2 • . . ,x~~1) with respect to x1
and

-2a1x1 ~
2CLflf l  

x~+l
On (x

1 
,x2, . .. ,x~~1) I < (const . 

2’ ,x e e

as x1 +

X~~~1 ~ (3.13)

We r~~ want to find the functional dependence of On 
~~1~~~2’~~~

• ~x~~~) upon

for ‘v.2,3. . . ,n. First, we fix all x~ except a particular one i.t . In this

case we can thi.nk of the lattice ~i as a bost lattice whil e the other lattices

are tbought of as extended impurities . We cl-oose the fundamental interval

sh~ n in Fig. 12 and follow the same procedures as we followed in Sec. II. We

have (see Appendix D)
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4~I~~~

IOn ~~~~~~~~~~~~ < (const.) X
i,

X , . . . , x 
~~~~~~~~~~~~~ ~~~~~~~ x - ~

(3.14)

where ~~~~, the decay constant , has the similar definition as before .

Then we have the following results for the change of the electron density

distribution due to a defect :

n + l

I an (~1~x2~ . ~~~~~ < (const.)J] e
CL’v~~ as x (3.15)

where is the decay constant in the sublattice v . Its value is given by

1) a
V

if the energy of the last occupied state is lower than E0~
’v
~ and the energy

of the first unoccupied state is higher than

2) a = h R
V V

if the energy of the last occupied state is higher than E0
(V) . 

.

3) a = h L .

V V ‘

if the energy of the first unoccupied state is lower than E0~
’v
~ .
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where E0~
’v
~ , the branch points of the energy surface E~

’v
~ (k) , is located

between the first unfilled and last filled energy band of a perfect lattice

with potential V (xi . h ° , h H 
, and h L are the distances fran

V V V
the real axis to the wavevectors corresponding to the branch points, the last

occupied state and the first tnoccupied state, respectively.

IV. Sii~n~ry

The perturbation of the electron density distribution due to an isolated

defect appearing acr oss nfl successive arbitrary different lattices decays

exponentially. The decay constant in a particular sublattice i~ depends

on the position of the branch points (which are located between the

last filled and first unfilled energy bands of a perfect lattice with potential

v~ (~ç) .) relative to the energies of the highest occupied state and the last

unoccupied state of this systan.

There are three cases :

Case 1: If the energy of the last occupied state is lower than

and the energy of the first unoccupied state is higher than ~~~~~ the decay . -

constant equals the distance fran the real axis to the wavev’ectors corresponding

to the branch points ~~~~ in the k~ plane.

Case 2: If the energy of the last occupied state is higher than ~~~~
the decay constant equals the distance fran the real axis to the wavevectors

corresponding to the last occupied state in the k
~ 

plane.

Case 3 : If the energy of the first unoccupied state is lower than E0
(1.1)

the decay constant equals the distance fran the real axis to the wavevectors

corresponding to the first tnoccupied state In the k
~ 

plane .
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APPENDIX A

In this appendix, we ~~~t to discuss the analytic properties of the trans-
• far matrix M (see Eq. (2 . 18)) for a systan with an Interface . (For s1it~licity

of notation, the superscript (2) will be suppressed in this appendix.)

To calculate , we have to find a transformation P such that G is

in diagonal form:

/ ¾  (8+c~) ,  ~ (8-a) \p = ( ~ J (A.l)
R~~e 2/

‘where a and 8 are defined in Eq. (2.23) . G can be written as

/ x o \
G = PI ~ I P~~ (A . 2)

\ 0 A 2 1 -

where A1 ~nd are defined In Eq. (2.23) and where ~~~~ is the inverse

matrix of P given by

/p2 e~~~2 .J~ (8-a) \
P I (A . 3)

I P I  \ 21e~
u1C2 ½ (8-a) /

Here I” I is the determinant of P given by

I P 1 a. (A.4)

Fran Eq. (A.l) and Eq. (A.2) , M can be written as Eq. (2 . 22) .

-27-
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We r~~ ~~~~t to discuss the analy tic properties of M1~ /N~~ for a systen

with an interface (N- co) . Fran Eq. (2 .22) , 
~S~

1
~~~2 is given by

~ 
R11E1~e 2 (A

1
N 

- x2
N) + ½ [ 8-fc~ A2

N 
- (8 )x N ]  

(A.5)

— 

N22 R~1R.12e
’
~~ (A 1

N 
- A2

N) + R22 ¾ [(&+Q ) x2
N 

- (8-a) ~1N].

Before proceeding with the discussion, let us give the physical maaning of

A1 and A2. By canparing the Saxon’s mathxi with the Heine ’s matlul we have

the following relations between k1~ and k2 :

+ R22e = elkl + e~~ l

~~~~ 1e~~~ + ~~2e~~~~
) -4 = e~~~ -e

q , (A.6)

where satisfies the following relation :

E~
2
~ (IQ = E~

1
~ Ocr) . (A.7)

Here E(D (k
1
) and E~

2
~ (k

2) are the energy surfaces of the perfect lattices

• with the potential v1(x) and v2(x) , respectively.

Following tl~ se relations , X~ and can be written as:

A1 = e ~~l

(A.8)
A
2 

= e~~ l
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Let us now return to the d ussion. M12/N22 is an analytic function of

except at its branch points which are the sane as th se of E~
2
~(k2) and

‘which occur for tF~se values of 1<2 which correspond to k1 being n-it ;n = 0,

±1, ±2, --- (a=O) , and has infinitely many poles which occur for tlxse values

of ‘which correspond to the real k1 , i.e. tlx se poles occur at the points

corresponding to the points in the allowed bands of E~
1
~ (k1) and the branch

points occur at the points corresponding to the band edges of E~
1
~ (k,).

-29-
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APPENDIX B

We consider here a one-diii~~sional lattice to ‘which extended in~,urities

have been added (see Fig. 2). l~~ eigenstates of the systan are the scattering

states ~~ k~ 
(±) (x) arKi the ix*nid states ~B (x,k2

3). Here (+) and (-)

da~ te states with outgoing and incaning scattered waves, respectively. (kit-

side the in-çurity region, the scattering states are appropriate linear canbination

of Bloch waves:1

4~ 
(x,k~)

(x ) =  2

~~22 ~ N22~~~~2~~’~
<2~ 

+ H12 ~
‘2 

(x ,-k2) x< -N

(B.1)

( N 22~
2

~~~2 
(x, -k2) + H12 2~~,k2) x>o

~~ 
(+)

(~~ ) . .  1

2 
~~~~~ ‘~~<2~ 

x<- N

1~~ coefficients N22~
2
~ ~

nd N12
0 are tl,e e1en~nts of the transfer matrix.

At point x2 (x2>0) , the change of electron density due to tlx se inpuri-

ties is

~Sn(x2)E nI (x2) - n(x2)

iT

=1 ~~~~~ (
~~~~

)  ~~~~ (x~) + En
B 

(~~~~~~~~~~i)
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~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- f 
~<2 ~~~~~~~~~~ ~~~~~~~~

b (2)f dk~ 
2 

~2 (x2,k2) 
~2~~2’

1<2~ 
+ ~~~ (x2,k2~) (B .2)

~~6~

Fran Appendix A, we know H12 ~~N22
0 is an analytic fu nction of k2, except

at an infinite niinber of poles which occur at the zeroes of N22~
2
~ 

, at three

sets of the branch points which occur at the points ~~~O ~~~a 
~~~~~ , corres-

pondi.pg to the branch points of the energy surface E~
2

~ (1<2
) , and at the upper

and lower band edges of a perfect lattice with the potential v1 (x) . If we

deform the path of integration of the integral in Eq. (B.2) fran the real axis —

to the contour C just below the branch points k~° , the integral in Eq. (B.2)

can be written as a single integral along the contour C plus the residues at

the zeroes of N22 which are located between the real axis and the contour

C . This results because of the calculation of the vertical portions of the

contour (this is due to the periodicity of the Integrand in 1<2). 6n(x2) becai~s

(2)

~n(x~) = J dk~ 
N12 

2 ~2~~2 ”<2~ ~2(x2,k2) + ~~~~~~ ~~~~~~~J )

j

(2)
-2iTi ~~ res [ 

H12 
~2 ~~~~~~ ~2 

(~~~~i’
)] (B.3)
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Again, fran the appendix A , we 1~~w the Integral In Eq. (B.3) has the

following asynptotic behavior :

I f ~<2 N12
0 

~2 ~~~~~~~~~~~~ ~~~~~~~~~ 
I < (const.) e

2
~~

°X2 as Xf~ (B.4)

where 112° is the distance fran the real axis to the branch points 1<2°.

The boi..u,d state contributions to cSn(x2) are denoted by zj  nB(x2,lc~~),

where j r’.ris over all the occupied bound states and nB(x2,i<2
J ) is bounded

by (const.) p(-2h~
3x2) . Here is the distance fran the :eai. axis to the

wave vectors k~ corresponding to the bound state j with energy ~~, B 
= E~

2
~

(1<2
3) .

The residues at the zeroes of M22
’2

~ are denoted by the second suxmation

on the right hand side of Eq. (B . 3) . j runs over all the zeroes of 1’I~2 
(2)

which are located between the real axis and the contour C . The residue at

the zero of N22 
(2) k2~ 

is bound by (ccnst.) exp ( -2h~~ x~), where h~ is

the distance fran the real axis to the

We will discuss Eq. (B.3) in the following three situations :

(1) if the energy of the last occupied state is lower than E0~
2
~ and

the energy of the fir st unoccupied state is higher than E0~
2

~

j  and j ’  on the right hand side of Eq. (B. 3) run over the sau~ set of

The boi..n~I state contrilxites to &i (x2) precisely cancel the residues at the zeroes

of N22~
2

~ 
•
~~~ Therefore, 5n(x2) has the following asynptotic behavior :

I~ n(x2)I<(const. )e ‘
~~asx2~

o
~ (B .5) 

~~~~~~~~~~• • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • •~~~~~~~~~~~~
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$2) If the energy of the last occupied stat e is higher than EQ~
2

~ , the

resid ens at the zeroes of between the real axis and the contour C will

cancel the contributions of the bound states with energy levels below E0~
2
~

Eq. (B.3) becaies

f (2)
ón( ) = J cUc~ 

N12 
~2 2, k2~~ 2 (x2, k2) + ~~nB (~~~1<~J )

c N22 -

E~
2
~ (k2~)>E0~

2
~ (B.6)

In the forbidden region where the energy is h~gher than E0~
2
~ , we know

fran the Kr amar ‘s plot that the higher the ener~ /of a bound state , the smaller

the distance fran the real axis to the wave~~~tors corresponding to this bound

state . Then 5n (x2) has the following asyrrçtotic behavior:

H
-2h2x~.

~n (x2) 1< (const.) e as x2-*~ (B. 7)

‘wliere is the distance fran the real axis to the wavevectors corresponding

to the highest occupied state .

(3) If the energy of the lowest unoccupied state is lower than EØ~
2
~

the second term on the right hand side of Eq. (B. 3) (the contributions fran the

occupied bound state) will cancel the residues at the poles corresponding to

the occupied bound states . ~5n(x2) becai~s

~~~(2)

f ~~~ i2 
~2 ~~2, k2~~ 2 (x2, k2)

C
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r (2) 1
-2-u i 

~~ 
res (2) ~ (~ j~i )u ~ (x~,k~~ )j (B .8)

where j l  runs over all the zeroes of M22
’2

~ rre~~~~~ng to the tu~x ccupied

bound states with energy levels below E0~
2

~ .

In the forbidden region where the energy is lower than E0~
2
~ , we know

fran the Kramar ’s plot that the higher the energy of a bound state, the larger

the distance fran the real axi.s to the wavevectors corresponding to this bound

state. Then ~n(x2) has the following

I 6n(~~) I <  (const.) e
2
~~~~ as (B .9)

where ~~~~~~ is the distance fran the real axis to the wavevectors corresponding

to the lowest unoccupied state.
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APPU~])DC C

In this appendix, we want to derive Eq. (3.11) . If we define A, A1 and
B as follows :

+1
1

A1 = S,~~~~~~S1
R) ~~ -1 T S_,~1

— 
~1-1 1 x2+l , (C.1)

and N defined in Eqs. (3.9) and (3.10) can be written as:

M1 = B

N = B . A  (C . 2)

Again, for sinplicity of notation, we suppress the superscript (1) in thi s appen-
dix.

The change of the electron density distribution at the point x2 due to the
defect at the point x1 is

iT
(+) (.- )  (+) (-)

ân(xl,x2) = f dk1 [~~I ,k~~~~~~~I k  (x2) 
~~l ~~~~ ~~~~ 

(x2) ]

+ ~~~~~ (x2, I~~ ) _~~~nB(x2, lc1~) , (C . 3)
j j
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(+)

~iere (x) are the scattering states of the systan with the defect :

(+)

~~~~ (x2) = 
1 

[B22 ~l 
(x2,k~)~B21 ~~~~~~~~~~ 

]
( )

4’I,-k1 (x2) = 

~ [A1, i~ 
uP
1

(x2 k )  

~~I , 22 u~ (x2, -k1) j (C .4)

~~I , 22 1

(+)

and where ~~ (x) are the scatter ing states of the systan witbout the defect :
—1

~~~~~~~ (x~) = 

(M22)½ [B~~ ~l~~2’1<i? -B21up1 (x2, ~~~ I
(C.5)

~~~~~~~~~~~ 

(x~) = 

CM22) 
~ [A12 ~‘l 

(xi, k~) + A22uLi1 ~~ ~~~~~~ I

The integrand of the Eq. (C.3) I (x1,x2,k1
) can be written as:

= 

M122 
[B22~1 (x2,k1)-B21~1(x2,-k1) ] [A1 , 12~l x2~1~1

~~~~~~~~~~~~ ] - ~~~~~
_ 

~~~~~~~~~~~~~~~~~~~~~~~~~

{ A12~1(x2,k1) ~~22~l~~2’ ’~l) ]

= 

M22~~ 22 ~A1, ~~~~~~~~~~~~ 22~ 
[B22~1 (~~~ 

,~~) -B21~1(~~~, ~~~~ 

2

T12 e
2
~~~

C1 
[
~~

N
~
x2 e 1 2

~~ 
~~~~~~~~ 

- 

N-.x2

~~~~~~~ ~i 
(
~~)] /
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. J~~ Tr~~~

- F
N- +1 2ik~x +1 N- +1 2

1 21 12 11 22 12 22 12 21

x2-I-l ‘G 
N-x2 G 

x2+l N-x2 x2+l
+T22G22 ~ 1 21 12 22 G22

where GES1R.

I(x1 ,x~, k1) has the sai~~ analytic properties as the integrand of Eq. (B. 2).

We can deform the path of Integration of the integral in Eq. (C.3) to a contour

C just below the branch points of E~
1
~ (k1) as we did in Appendix B. We obtain

the asyn~totic behavior of the following integral along the contour C ‘with fixed

x2 :

-2h 0x
I fdk iI(xi~x2~ki) I  < (const.) ~~~~ 

1 1a s x + ~~ (C.7)

where h1
° is the distance fran the real axis to the wavevectors corresponding to

the branch points of E~
1
~ (ki) .

Using Eq. (C.7) and following the sair~ reasoning as we did in Appendix B ,

we can obtain Eq. (3.11) .
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APPENDIX D

In this appendix, we want to derive Eq. (3.14) . For simpli city, we consider

here the systan with t~~ interfaces as s1~ wn in Fig. 9 instead of n inter-

faces . There are three sublattices 1, 2 and 3 with the potential v1 (x),

v2(x) and v3(x) . respectively. Since we want to obtain the asymptotic behavior

of the change of the electron density distribution in the sublattice 3 due to

a defect in the sublattice 1 as the length of the sublattice 2 x2 approaches

to infinity, we can think of the sublattice 2 as a bost lattice and k2 as

an independent variable while the other sublattices 1 and 3 are tbought of

as extended impurities. The fundamental interval of this systen is sbown in

Fig. 11. The lengthes of the sublattices 1 and 3 are denoted by Li and L3~

respectivel y.

The transfer matrices for this systan with and wit1t~ut the defect are given

by

M~ = B  
~A1

M = B ~~A (D.1)

where

-l
B = S L (S1K) 3 

~~s
3 X

3
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= S~~ (S~K~~ s~~~ (S1R) Xl~~ (S1T)(SlR) 1 X1 S 
- 

~L~~~~~)

A = 5~3 
(S1K) S_~~ (S1R) 1 S (L~~~~) 

. (D.2)

Here R and K are the scattering matrices due to a localized inpurity at the

origin in a perfect lattice 2 with the impurity strength v1(x) and v3(x) ,

respectivel y and where the point x3 is in the sublattice 3 and the point x1

is in the sublattice 1.

The change of the electron density distribution at the point x3 due to

the defect at the point X1L 
is given by

= I ~~2 
~~ 2~~~2 ~A1, 1~~ 2A1~~ , 22~

- B21i~2(x3, -k2) ]
+ ~~ n1

B (x3 k~~) - n
B (x

3 
, k~~) (D. 3

j j

where

• A1, i~~zA1~~, 22 = e~~~ ~~~~~~

L -x1 Z - x  £ - x  L - x 1
G12 

1 
~~12 

1 1 +(T11R22+T12R21-R11T22-R12T21) G12 ~ 1G22 
1 +

L1-x1 1
(T12R22-R.12T22

) G22 
1 j

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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- B21~2(~~, -~~) = ~~~~~ [D 22~~~~ e~~~~~~ 2(x3,~~)

D 3~~~~~~ 2~~ 1- 21 e 
~2~~3’~~2~ J

and where

L - x  L - x  x - l 2~
2 21 21 [e 11 11 e 12 21

T G 
Li-xi + Li-~. -ik~ x~ xi~1 2ik2x2 X3 Xf.l

• ( 11 12 T12 22 )+ e (D11 C11 e ÷
~12 G22 )(T 21G12

L - x  1k2 - 1V  -1 L - x
22 22 1 ie D11 11 e 12 21 R11 12

Lfxl ~~~ x 
2ik2x2 x3 xi-l

+ e 
~ 1l C 1 e 

~~ l2 G22 )  (R21G12

- L - x

~~22 22 J e

As £1 and £3 go to infinity , the integrand of the integral in Eq. (D. 3) ,

I (x11x2, x3,k2) has analytic properties similar to tlxse of the integrand of

the integral in Eq. (B. 2) . It is an analytic function of k2 , except at the

branch points corresponding to the branch points of E~
2
~ (k2) and the band edges

of the perfect lattices with the potential v1 (x) and v2 (x) and at the poles

which occur at the zeroes of N22 ~~~ N1, 22. We ~an deform the path of inte-

grati on fran the real axis to a contour C just below the branch points of

E~
2
~ (k2) .  We obtain this asymptotic the contour C for fixed x1 and
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• IJdk2I(xi~x2~x3~k2) I <  (con ~~~~~~~ ~~~~~~~ as (D.5)

‘~~~re b~° is the distance fran the real axis to the branch points of E~
2

~ (k2).

Again, using Eq. (D. 5) and following the sai~ reasoning as we did in

Appendix B, we can obtain Eq. (3.14) .
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Fig. 1 Schanatic version of a Kramer ’s plot of cos(kb) vs real E . The
energy bands E(n ,k) are determined by the regions for which cos(kb) <1.
The branch points k~ correspond to the (nfl) th extrenin of this plot at
the energy En.
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Fig. 2 Schanatic plot of the potential V(x) in a fix~dan~~tal interval< x < d/2 (d>>N ; d = lOb , N” 3b ).  
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Fig. 3 Schanatic plot of the splitting of the original energy band of a
perfect lattice with the potential V

2 
(x) due to the existence

of the potential v1 (x) as slx~wn in Fig. 2.
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Fig. 4 1~~ sate plot as Fig. 3 except d~Io~; The dots denote the bound states .
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Fig. 5 Schenatic plot of an isolated defect in a perfec t insulator . The
potential strength of the defec t is v1(x).
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• Fig. 6 Integ ration contour for the integral in Eq. (2.29) . The dots indicate
• the positions of wave vectors k.,J of the bound states . * indicates the

branch points of k2° of the pertect lattice with the potential v2 (x) . 
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Fig. 7 Scha~atic plot of an interf ace between t~~ insulators . The - -

potentials of insulator 1 and 2 ar e v1(x) and v2(x), respectively.
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Fig. 8 Integr ation contour , C , for the integral in Eq. (2.40) .
is a branch poii~ of E(2) (k2) in the k2 plane ; k2~ an~wavevectors corresponding to the band edges of a perfect lattice
with the potential v1(x). The t-x closely spaced sequences of
points indicate the positions of wavevectors associated with the
bound states due to the N cells with potent ial v1, enbedded in
the infinite potential v2.
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Fig . 9 Schenat ic plot of n successive insulators with a defect at 
F

the point P .
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11~Fig. 10 Schenatic plot of an isolated defect at P in a systaii with
an interface. 
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Fig. 11 Schenatic plot of the potential V(x) in a fundamental interval
(-d/2 < x < d/2) of the superlatt ice defined on Eq. (3.8) .
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• Fig . 12 Schanatic plot of the potential V(x) in a fi~ndamenta1 interval• of the superlattice which is defined in Appendix D.
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