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PERTURBATION OF ELECTRONIC STRUCTURE OF INSULATORS BY INTERFACES AND DEFECT

Cheng-Chih Pei

Department of Physics, University of California San Diego
La Jolla, California 92093

;| Abstract

Extending the theory which developed by Kohn, Onffroy and Rehr for a one-

F:

' dimensional non-periodic system, we have developed a theory that describes how the
. B electronic density distribution near an insulator-insulator interface approaches
P; the bulk behavior. The exponential decay constant depends on the band struc-

tures of the two insulators and the positions of localized surface state energies.

In addition, we also study the behavior of the electron density perturbation due

to a defect across several successive interfaces.

* Supported in part by the Office of Naval Research and the National Science
Foundation.
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I. Introduction

In an infinite and perfectly periodic crystal, the eigenfunctions of the
one-electron Schrodinger equation are the Bloch waves. The electron density
distribution is a periodic function with the same periodicity as the potential.
In a crystal with an interface, the periodicity of the potential is lost. The
eigenfunctions of this crystal are no longer the Bloch waves. In the vicinity
of the interface, the electron density distribution is perturbed by the exis-
tence of the interface. However, deep inside each of the crystals, the electron
density distribution approaches that of the infinite perfect crystal. In this
part, we want to find in what marmer the electron density distribution approaches
that of the infinite perfect crystal, as we move away from the interface into
either of the two crystals. Kohn and Onffroy- Rehr, and Kohn® developed a
procedure to construct generalized Wammier fumctions for a system with an
impurity or a surface. They found that the generalized Wamnmier functions
approach the Wammier functions of the perfect crystal exponentially with dis-
tance from the defect or the surface. We want to extend their idea to study
the perturbation of the electron density distribution by an interface in one-
dimensional insulators. For an insulator the Fermi level lies at an energy
corresponding to a gap for each of the two crystals, i.e. all the energy ba
of the perfect crystals are either full or empty. We find that the perturbed
electron density distribution approaches that of the perfect crystal in an
exponential mammer. The decay constant in each crystal is determined by the
relative positions of the following quantities: the positions of the band edges
of the last filled and first unfilled energy bands of the other crystal; the




positions of the localized surface state energies; and the position of the
branch point energy which are located between the last filled and first unfilled
energy bands of this crystal.

We also extend this theory to study more general cases, the way in which
the density perturbation due to a defect appears across several successive
interfaces. Again, we find that this perturbation decays exponentially and
obtain a complete prescription for determining the decay constants for an
arbitrary succession of periodic lattices. We believe that our results have
some promise for developments of a theory for the following interesting chemi-
cal polymer problem: if we replace one atom by a different atom at one point,
how does the perturbation behave along the chain of the polymer?

In Section II we will derive the general theory of the electrcn density
perturbation due to the presence of the interface in a one-dimensional insulator
of two lattices in contact.

In Section III we will use this theory to discuss the electron density
perturbation due to an isolated defect in more complex insulators having n
arbitrary different lattices in contact.

Section IV contains a sumary of our results.

II. Isolated Defect in a Perfect Insulator and Simple Interface
A. General Theory

Before proceeding to derive the theory, let us briefly review some proper-

ties of the perfect periodic latt:'Lce.3 The eigenfunctions of the one-electron

Schrddinger equation are the Bloch waves wn(x,k) with energy E(n,k) (eigen-
values). Here k is the wave mmber and n is the band index. If we treat
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k as a complex variable, k = g + ih, then \Pn (x,k) and E (n,k) represent
the branches of multivalued functions of k . They are analytic everywhere
except at a set of branch points away from the real axis. If g is restric-
ted to the fundamental interval -L<g§3, these branch points have the
form k! = an]-:--f i , where a;n=b0 orl lEor n odd or even, respectively.
They can be determined from the Kramer's plot (Fig. 1) of cos(ka) versus real E .
The branch points kB correspond to the (n + 1)th extremum of this plot. The
energy E = E(K" at these branch points are real.

We now consider an electron in a one-dimensional potential which is taken

to be extended over the interval - d/2 < x < d/2, with Hamiltonian (Fig. 2)

H=- i- +V (x)
vy (x) -d/2 < x <-N

Vix) =qv; (%) -N < x<0 (2.1
v, (x) 0<x<d/2 ;

where vl(x) and vz(x) are potentials with the periodic and symmetry properties:

¥ xtb) = % x);

2.2)
vv(-x) = vv(x), wherev=1, 2.

Here b is the period of the potentials vl(x) and vz(x), and where N is
the length of the section at which the potential is v, ().

wdin




The eigenfmctions‘ ¢ (x) are required to satisfy the differential equation:
H ¢(x) =E ¢(» (2.3)
and the conventional periodic boundary conditions:
$(d/2) = (-d/2) ;

E (2.4)

¢'(d/2) = ¢'(-d/2),

where ¢'(x) = o(x) .

58
dx

When N equals zero (i.e. the case of the perfect crystal) these eigenfunc-

tions are the Bloch waves

2m d d
v (xk), vherek, =<% (- & ,-—-,0--,G -D ). 2.5) :
3 el & b

The corresponding eigenvalues are grouped in quasi-continuous energy bands, each
containing d/b levels. w
When N is not equal to zero, the energy states of the original band split
into two groups; one having m localized impurity bands and the other having ~
(d/b-m) minibands (see Fig. 3). When d - ~, these localized impurity bands
approach the bound states and the minibands become scattering states whose P ;
|3

|

energy gaps = approach zero4 (see Fig. 4).
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For real k e the electron density contribution of the state ¢n(x,k2) in
the miniband m is

*
ny Gok) = 4y (k) gy (k) 2.6)

where k, runs over the fundamental zone (—:;<k25—"-) , where m is the
d
index of minibands including the impurity bands and where ¢ (x,kz) are ortho-

normal Bloch waves, i.e.

*
$ " (xk) ¢ (xk ') dx=6_. 6k -k"). 2.7)
fm 2 ¢m 2 mm 2 2

n (x,1<2), as defined in Eq. (2.6), is mot an analytic function of k, because of the
complex conjungate appearing in Eq. (2.0). However we know n (x,kz) is independent
of the phase of ¢ (x,k2). We are then free to choose the phase of ¢ (x,ky) such

that
*
¢m (o,k2) * (o,kz) = real and positive. (2.8)

Then we have the following relations:
* X k3
bm (K,-kz) =¢m( i 2) !
Xk ) =4 (%K) (2.9)
¢m ("2 ¢m(».2° .

If we use the identities of Eq. (2.9) and rewrite Eq. (2.6) in the form

O N 2.10)




then we know that, in this form, n (x,kz) is an analytic function of complex k2
except at the branch points which commect the miniband m to its neighbors

m 1.3
M
n(xk) =2, m (k) 2.11)
2. o=y 2
where m runs over all minibands including the impurity bands and n (x,kz) is
analytic at all branch points comnecting the minibands ml.
The total electron density from all the states of this band is
L M m ?
d d
n(® = don (x,kz) =Z [ a m, (k) (2.12)
m
= w0 _ 7
d d
as d - o, we have
o
. e Boige B j
n (» = /mczn (x%,k,) +2n (x,ky”) (2.13)

m J
e
b

where n°¢ (isk,,:i) the electron density of the scattering states, is

(CD) )
0 (xk) =Y @V, ® : (2.14)
2 2 2
(1)
where ¥, (¥ are the scattering states, (+) and (-) denoting states with

outgoing and incoming scattered states, respectively.
nB (x,kzj), the electron density of the bound states, is




*
P k= @ xkgh [¢B (x,kz-q : (2.15)
where ¢B (x,kzj)are the normalized bound state wave functions with wave vector

sz whose amplitudes are determined by the following asymptotic condition:

B - g T

¢ (X,k2 )— ‘412 (x,sz) ’ X>0, (2-16)
where k Zj is determined by the relation:

E(2) (k,j)= : (2.17)

and where a? is the bound state energy which is in the energy gap of a perfect
lattice with potential v, (x). Here Zj extends over all the occupied bound states.

The scattering process due to the existence of the potential Vi (X) can

be described ' transfer matrix M(?-) which relates the amplitude and phase
of the sc aves to those of the incident waves. Here the superscript
(2) den as an independent variable. We use two different ways to

derive the transfer matrix: (1) Saxon's multi-scattering met:hod;4 (2) Heine's

Bloch wave matching metl'x'.\d.5

(1) Saxon's multi-scattering method:

We can regard the presence of the potential v; (x) as a succession of
scattering centers which are located from x = -N to x = 0 (see Fig. 2). When
N =1, the solution can be viewed as an unperturbed Bloch wave interacting
with an isolated localized impurity. This scattering process can be described
by a scattering matrix RQ) which relates the amplitude and phase of the

scattered waves to those of the incident waves. For a finite N , the passage
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of an electron through the N scattering centers can be thought of as a multi-

ple scattering of Bloch electron waves by those scattering centers. The trans-

fer matrix is then

D 2 g @ 5 @D (s Dy 1g® ___g@ 5 D D)1y 5 @
-r® ¥ @ (2.18)

where S a(2) is the translation matrix for translation to the right through a

lattice constant: (From now on, we assume that the lattice constant b equals one.)

ikza 0
@ _[®
S = : s 2.19)

where R(Z) has the following properties:

(2

Ru(z) Rzz(z) Ryp R21 L L

R, ® ) = 7, @ ) :

R, ® e = Ry i '

B, a = Ry P () ; (2.20)
and where

o g 5 W (2.21)

From Appendix A, we have




123

T T
s e Tl L el - e =
A M el act? s O SRRl W

. -ik
@ o M s [<s+u)x AR TS OR WE) lkz Yo s
M 2 g
§ [(Bm)x - (@A) R22(2) e O‘ln g Ve
r ik, N
{ Rl]_(Z) Rl ) 1k2 )\ ) + RIZ(Z) % (B-i-ol,))\ - (B—OL)Z.L }e]-k2
A (2.22)
. . 1 N
{ R21(2) Rlz(2> e’kz N‘*zN) + R22(2) {(em)x -(B-a) *1 }:ekz

where

M= % [(Rn(z) e1k2 + Rzz(z) e-lkz) o+ a]
A= % {(R.ll(z) elkz + R22(2) e 1-kz) -a]

(2) Heine's Bloch wave matching method:

We consider a system with three regions (Fig. 2). In regions I and III,
the potential is vy (x) while in region II it is Vi x).
vrp ® and Yppp (®) denote the wave functions in the regions I, II, and III,

Let y; (%),

respectively. Since the potential in regions I and III is v, x),

(x) must be linear combinations of the Bloch waves ¥y (x,k.z). By the same

("
g 1
reasoning, (yn (x) is a linear combination of the Bloch waves wl (x, kl)

~30e
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wI (x) = al Wz (X,kz) + bl 'PZ (x, -kz)
\pII(x) 2 az wl(xykl) ot b2 WZ (x) -k'l)
\pIII (% = as ¥y (X,kz) G b3 Yo (X,'kz) (2.24)

Using the continuity conditions at the interfaces, we obtain

Y@ _ 1

2, @, - @\ [N o @ | il o @
: (2.25)

& a) iy @ iGNy @

Q1

E? &) =W (k) (2.26)

where w(f,g) is the Wronskian of the functions f and g

f w (f,g) =fg' - f'g (2.27)




QP = w 0.k, ¥,0,k) )
QP = w (y(0,ky), 4,0,k )
(2.28)

QP = w (4 0.k, 4, (0,k,) )

QP = w (g (0K, U(0,k,) )

For a finite N , the ratio of the transfer matrix elements 1‘112(2)/1\122(2) is an

analytic function of 1:2, except at branch points which are the same as those
of E(Z) (kz) and for the possible pole singularities at the zeroes of Mzz(z).
As N goes to infinity, though the 1\112(2)/1‘122(2) retains the just mentioned branch
point structure, two additional analytic features arise: (1) two new sets of
branch points occur at values of k2 corresponding to the band edges of a per-
fect lattice with potential vy (x) and (2) an infinite sequence of poles arise
from the infinitely many zeroes of M22(2) :

The perturbation of electron density at X, (x2>0) due to the existence
of the potential vy (x) is (Appendix B)

b M, )
- 2 B j
Gn(xz) = /"dkz ——(5) wz(xz.kz) wz(xz.kz) + E n (xz,sz) (2.29)
- M2 "

J

We would like to discuss Eq. (2.29) in the following two simple cases: an
isolated defect in a one-dimensional perfect insulator, and an interface.




B. Isolated Defect

When N =1, the system can be thought of as an isolated defect at the
origin in a perfect lattice with the potential ) (X). The strength of the
defect potential is Vi (X) (see Fig. 5).

Since Mlz(z) /Mzz(z) is regular in the upper half of the k, plane in the region
between the real axis and the branch points k2° , except for the possible pole
singularities at zeroes of Mzz(z) corresponding to the existence of the bound
states, we can free to shift the path of integration of Eq. (2.29), from the
real axis of k2 to the contour C as indicated in Fig. 6. This results

because of the periodicity of the integrand in Eq. (2.29) (the vertical portions
cancel each other).2 Thus

@
o (%) = /dkz Ml—z(z) by (%) K0, (% Ky ) +Z:nB (%), k)
5 Lo j

2 '
-2ni E res ﬁz(—) Uy (xz,kzj My (%, kzj') (2.30)
7 1,
where j runs over all the occupied bound states and where j runs over all
the poles which are located between the real axis and the contour C .
From Eq. (2.30), én (x2) will depend upon the strength of v; (x) and

vy (x) , the positions of the zeroes of MZZ(Z) and the positions of the

brauch Jints, EO(Z) , which are located between the last filled and the first
unfilled energy bands of a lattice with the potential vy (. We can classify

all situations into three cases:

o .
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Case 1: Eo(z) lies between the atergies of the first unoccupied state
and the last occupied state: the residues due to the zeroes of MZZ(Z) pre-

cisely cancel the bound state contr:i.buti.ons.2 We obtain
M (¢3)
sn(x,)) = [dkz 2 U (%, K)) y, (%5, k) (2.3D)
(¢3)
Yoo
C
This leads to the asymptotic behavior:
-on °
lon () |<(const.) e 2 asx, v (2.32)

where h2° is the distance from the real axis to the branch points k2° in
the k, plane.

Case 2: Eo(Z) lies below the energy of the last occupied state: the
residues from the zeroes of Mzz(z) just cancel these contributions of the bound

states the energies of which are lower than EO(Z) 2 on (xz) becomes

2)
b (%) = L Gy) dy Grprkp) + 70 Gy ) 239
]

(2
¢ e

£® e 3ysg, @

This leads to the asymptotic behavior:

N |
| én (x2)| < (const.) e Zhy" %, as x> (2.34)

S e




where h2H is the distance from the real axis to the wave vectors correspon-
ding to the highest occupied state in the k2 plane.

Case 3: EO(Z) lies above the energy of the first unoccupied state:
the bound state contributions of Eq. (2.30) then cancel the residues of the

zeroes of M22(2) which are corresponding to the occupied bound states. én (x))

(2) 1
= N
2)
C My
w,@ 5 %
i .

where j' nuns over all poles of Mzz(z) corresponding to the unoccupied bound :

A A O b e .
" o § . :

states the energies of which are lower than E 0(2) . This leads to the asymptotic
behavior:

: L
lén(x)| < (const.) e % a Xy > (2.36)

where th is the distance from the real axis to the wavevectors corresponding

to the first unoccupied ste -.




C. Simple Interface:

As the length of the potential V1 (%) goes to infinity (N »= ), the
system shown in Fig. 2 looks like two one-dimensional periodic lattices joined

at the origin (Fig. 6). In this case, M, 2)}122(2) is an analytic function of K,

except at branch points which are the same as those of E(Z) (kz), at wavevectors
corresponding to the band edges of a perfect lattice with the potential vy x)
and at the infinitely many pole singularities which occur at the zeroes of M22(2)
(ky) (which corresponds to the existence of the bound states).

Because of this analyticity and the periodic properties of the integrand of
Eq. (2.30), we can shift the path of integration from the real axis to the contour
C as indicated in Fig. 8. The change of the electron charge density at X, 1is
(Appendix B)

(2)
" .
én (x) = /dkz Mlz(z) by (%K) ¥y (%,k) +) 0 (%),k;7 )
C M2 h|
(2)
» o 7
-mz: res [ 12 ¥y (R, Y0y k3 ﬂ (2.37)

(2)
M2
The second term on the right hand side of Eq. (2.37) is the contribution from all
the occupied bound states which are located in the gap between the first unfilled

J

and last filled band of a perfect lattice with potential vz(x). The third term
is the contribution from the poles from the zeroes of MZZ<2) which are located
between the real k2 axis and the contour C .

o, T




Again, we can discuss Eq. (2.37) in three cases as we did for the isolated
defect.

Case 1: E_? lies between the energies of the first unoccupied state
and the last occupied state: the second and the third terms on the right hand
side of Eq. (2.37) then cancel each other identically. ¢én (xz) becomes

Iy

(2)
i (x,) = /dk2 112(2) by Gkl Gaguky) 2.38)
c M22

We then have the asymptotic behavior:
-2h.°
|én (x2)| < (const.) e h2 X2 as Gl (2.39)

Case 2: E P lies Lelow the energy of the last occupied state: the
third term on the right hand side of Eq. (2.37) then just cancels the contribu-
tion of the bound states the energies of which are lower than Eo(z). én (xz)
becomes

2
v

(2
) :

o 6,) = / dk, by Gepdly k) + 00 (i kT)  (2.40)
j

E® a0y @.

We then have the asymptotic behavior:

o A
l6n ()| < (const.) €2 %2, as x> . (2.41)
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Case 3: Eo(z) lies avove the energy of the first unoccupied state: the
second term on the right hand side of Eq. (2.37) then cancels all the residues
from the poles corresponding to the occupied bound states. &n (x2) becomes

w, @ @ 3
sn (%) = /dkz 2 Yo (xz,kz)wz (x,.k)) -2 Y res [ 2 Yy (xz,sz )
2) 2 % od s B
T e 3 >
by X A 2.42)
where j' runs over all the poir.. .  -sponding to the unoccupied bound states

the energies of which are lower than Eo(z) . We then have the asymptotic
behavior:

L
lon (%) < (const.) e P2" % as %+ . (2.43)

We, therefore, have concluded that the electron density distribution
moving away from the interface approaches exponentially the bulk values. The
decay constant depends upon the relative position of the band structure of the
perfect lattices.

ITI. More General Systems
In this Section, we extend the theory developed in Section II to study the

following question: if a point perturbing potential is introduced into a system
which contains a succession of n arbitrary different insulators as shown
in Fig. 9, how does the electron density perturbation produced by this distur-

bance appear across successive interfaces?




First, let us consider the simplest case: a system with just one interface. -
We take the perturbing potential (defect) at point P a distance X, to the !
left of the interface as indicated in Fig. 10.

To obtain the transfer matrix of the system, we will follow the Saxon's
method as we did before. In this method, we only replace the scattering matrix
R at x = -x, (see Eq. (2.23) ) by the defect scattering matrix T(Z).

Then the transfer matrix of the system with the defect is

N-x, -1
@ 3@ 5 @ @)L @ @y s @ @ @ gy
and that without the defect is

M2 = r® (s,(2) gy’ s, Pr D) (5,@ o s S T

The analytic properties of the M1,12(2)/MI, 22(2) are similar to those of the }412(2) /
1422(2) : both are analytic functions except at branch points and poles as dis-
cussed above in the case of the simple interface. However, though the branch

points occur at the same k2 values for both functions, the poles occur at
different kz values (the zeroes of MI 22(2) in general differ from those
©) '
of M22 ) .
Using the same procedure as we followed for the case of the simple interface,
we have the following form ror the change of the electron density distribution

at a distance X, to the right of the interface due to a defect at a distance

-19-
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Xy to the left of the interface

i (xy %) =y (5 B) - Wkagion)

2
_,_12_ . 2Tl ) ¥y (s (
‘“‘2 (2) Mzzm o (%K), (x),K)

+ an (":'.'sz)‘Z“B Gy k)
b

M 1% ;' i
- 2ni Z res g ‘Pz (xz’kz'] )WZ(xz,sz )

3’ ”1,22(2)
“12(2) j 5 1
-y res [ = ¥y (X2,sz )w?_(xz,sz ) ‘
j' Y)

(3.3

where the subscript I denotes the system with a defect; the notation otherwise
being the same as in Section II.
By the same reasoning which we used to discuss Eq. (2.37), we find that
n (X.l,xz) has the following asymptotic behavior:

lon (x,%))] < (const.)xl e 2%%) ag 2 (3.4)

where the subscript X indicates X kept ‘constant in this equation. a,
is the decay constant in the insulator 2; it has different values for the

following three cases:
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Case 1: When the energy of the first unoccupied state is higher than EO(Z)
and the energy of the last occupied state is lower than Eo(z) ;

=h® . (3.5)

a
2 2

Case 2: When the energy of the last occupied state is higher than Eo(z) d

=-h R (3.6)

Case 3: When the energy of the first unoccupied state is lower than Eo(z) :

ay = bl (3.7

If in case (2) the bound state from the defect is the last occupied state
or if in case (3) it is the first unoccupied state, then a, depends upon the
strength of the defect potential. Otherwise a, depends upon the potentials of
the two lattices only.

We now want to discuss the modification of ¢én (x),x)) as the defect is
moved away from the interface while Xy is fixed. To obtain the functional
dependence of én (xl,xz) upon x; , Wwe have to change the fundamental inter-
val in Fig. 2 as follows: it is taken to be a perfect lattice with potential
vy (® with extended impurities from x =0 to x =N of the potential v, (x)
as indicated in Fig. 11. The potential in this fundamental interval is given by

.
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vl(x) -d/2<x<0
V(x) VZ (X) 05 x<N
vy (%) N< x<d/2 (3.8)

Using the same procedure as before, we obtain the transfer matrix of this

system by Saxon's method;

- l- - \
@ o5 Dl (g g% Sx2+1(1) o ML (g Wgyx4

(1,-1 (1) (¢}
S ol o5/ (3.9)
s B

and

1 _ 1),-1 g (L)p(1)\N- @ M),-1 g WpD)yx +H
M = s (S R o2 APl N B ARy
(3.10)

All the notation is the same as before, except for the superscript (1) which

denotes kl as an independent variable.
From the Appendix D, we obtain the following asymptotic behavior of ¢én (xl,xz)

with fixed Xy

lén (x),%)| < (const.zzze-zalxl as X » o (3.11)

where aq is the decay constant in the insulator 1. It is given by
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D % = h

if the energy of the first unoccupied state is higher than E

energy of the last occupied state is lower than Eo(l)'

(1) and the
o)

2)

3)
if the energy of the first unoccupied state is lower than Eo(l).

where Eo(l) , the branch points of the energy surface E(l) (kl), is located
between the first unfilled and last filled band of a perfect lattice with poten-

tial i (%. hlo . h H and hlL are the distances from the real axis to

1
the wavevectors corresponding to the branch points, the last occupied state,

and the first unmoccupied state, respectively.

From Eqs: (3.4) and (3.11), we have the following asymptotic behavior
of én (ﬁ'ﬁ):

S MR L

- Tl (3.12)

| 6n (x,%)| < (const.) e
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We now want to discuss the effect of a defect in a more general system,
namely, a system with n interfaces. This system has a succession of n+ 1
arbitrary different sublattices as shown in Fig. 9. The potential in the
: vth sublattice is denoted by v, (x). All the sublattices except for those
at the ends are of finite length, denoted by X); the end lattices are infinite.
‘E We put an isolated defect in the first sublattice at a distance X to the
| left of the interface which divides the first and second sublattices. We

want to determine the change of the electron density distribution, én (X]_,x2 “'Xn+1)’
in the last (v=nt+l) sublattice.
k If the length of each sublattice is fixed, we have from the above discussion
the following asymptotic behavior of & (xl,xz S n+1) with respect to x;
md xn'_].:
“Zox. =20 .. x*l
1"1 n+l ' n
| 6n (xi,xz, "”xn+1)' < (const.)xz’.“’xne e
Xl % (3.13)

We now want to find the functional dependence of ¢n (xl’x2""'xn+l) upon
X, for v=2,3...,n. First, we fix all X except a particular one u . In this
case we can think of the lattice p as a host lattice while the other lattices
are thought of as extended impurities. We choose the fundamental interval
shown in Fig. 12 and follow the same procedures as we followed in Sec. II. We

have (see Appendix D)




-20
|6n (%,%),---»x,1)| < (comst.) x x x 7 AR
% *ntl 1 e e N T @ as X,
(3.14)

where o the decay constant, has the similar definition as before.
Then we have the following results for the change of the electron density
distribution due to a defect:

n+1l

-2
| é6n (xl’x2"""‘tr+1)| < (const.)n e Pab as x = (3.15)

v=1

where a, is the decay constant in the sublattice v . Its value is given by
1) a =h ©,

if the energy of the last occupied state is lower than Eo(\’) and the energy
of the first unoccupied state is higher than EO(V) :

2) o« =hH

3) a =h L
if the energy of the first unmoccupied state is lower than Eo(‘)) .

~25-
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where Eo(") , the branch points of the energy surface E(v) (kv) , 1is located
between the first unfilled and last filled energy band of a perfect lattice
with potential v (x. hv° : th , and th are the distances from
the real axis to the wavevectors corresponding to the branch points, the last
occupied state and the first unoccupied state, respectively.

IV. Sumary

The perturbation of the electron density distribution due to an isolated
defect appearing across ntl successive arbitrary different lattices decays
exponentially. The decay constant in a particular sublattice u depends
on the position of the branch points E () (vhich are located between the
last filled and first unfilled energy bands of a perfect lattice with potential
v, (®.) relative to the energies of the highest occupied state and the last
unoccupied state of this system.

There are three cases:

Case 1: If the energy of the last occupied state is lower than Eo(“)
and the energy of the first unoccupied state is higher than EO(U), the decay
constant equals the distance from the real axis to the wavevectors corresponding
to the branch points EO(U) in the ku plane.

Case 2: If the energy of the last occupied state is higher than E O,
the decay constant equals the distance from the real axis to the wavevectors
corresponding to the last occupied state in the ku plane.

Case 3: If the energy of the first unoccupied state is lower than Eo(“) X
the decay constant equals the distance from the real axis to the wavevectors
corresponding to the first unoccupied state in the ku plane.
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APPENDIX A

In this appendix, we want to discuss the analytic properties of the trans-
fer matrix M (see Eq. (2.18)) for a system with an interface. (For simplicity
of notation, the superscript (2) will be suppressed in this appendix.)

To calculate GN , we have to find a transformation P such that G is
in diagonal form:

¥ (B+o), ¥ (B-a)

P= (A.1)
. -ik
Rye ™2, Rye™2
where a and B are defined in Eq. (2.23). G can be written as
A0
c=p| * T (A.2)
0 )\2
vhere A, and A, are defined in Eq. (2.23) and where Pl is the inverse
matrix of P given by
Rye F2 -k (8-0)
e -
Pt - (A.3)
[l \Ryeiky % (B-0)
Here |P| is the determinant of P given by
|P| = Rype 2, A.4)

From Eq. (A.1) and Eq. (A.2), M can be written as Eq. (2.22).

a2}

g i S S S A




We now want to discuss the analytic properties of MIZ/MZZ for a system
with an interface (M«). From Eq. (2.22), Mlz/M22 is given by

1 RiRpet 2 04" - ) + Ry % BB*“) - (B'“)AlN] (A.5)

= 1‘21“12"’1k2 Op = 22 +Ryy % [(e+a) AN - () A,

Before proceeding with the discussion, let us give the physical meaning of
Ay and X,. By comparing the Saxon's method with the Heine's method we have

the following relations between kl and k2:

Rl]_elk2 + Rzze-lk2 = Kl 4 i :

; S >
‘/(Rnelkz + R22e :|.k2) -4 = eikl -e lkl d (A.6)

where k1 satisfies the. following relation:
e @, =D ay . @a.7)

Here E(l) (kl) and E(Z) (kz) are the energy surfaces of the perfect lattices
with the potential vl(x) and vz(x), respectively.
Following those relations , M and A, can be written as:

_ ik
Al—e 1

(A.8)

-1k
Azel
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Let us now return to the discussion. M12/M22 is an analytic function of 1
k2 , except at its branch points which are the same as those of E<2)(k2) and
which occur for those values of k2 which correspond to k1 being nm;n = 0,
+l, +2, --- (0=0), and has infinitely many poles which occur for those values
of k, which correspond to the real k , i.e. those poles occur at the points
corresponding to the points in the allowed bands of ED (k) and the branch
points occur at the points corresponding to the band edges of E(l)(kl).

=20




APPENDIX B

We consider here a one-dimensional lattice to which extended impurities
have been added (see Fig. 2). The eigenstates of the system are the scattering
states ¥, &, ® () and the bound states ¢° (xk,)). Here (+) and (-)
denote st;tes with outgoing and incoming scattered waves, respectively. Out-

side the impurity region, the scattering states are appropriate linear combination
of Bloch waves: !

(x,k,)
wkz("') (x) = 1 wz = k2 X>0
T2 M22(2)w2(x'k2) 5 Mlz(z) by (x,-ky) x< N
(3.1
M, P, (x,-k) + 1, Py, k) w0
L
i Woo ) Py (x %
2% ) x<-N

The coefficients Hz.,(z) and M12(2) are the elements of the transfer matrix.

At point X, (x2>0) , the change of electron density due to those impuri-
ties is

on(xy)= np(x)) - n(x,)

=
b

]

Ay b ) 1 O ) + B i)
J

oA

=30-
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dicy W, k) ¥y, -Icy)

i t

e K2)
V)
i,

Uy o) Uy (9, k) + 1P (xy,k,7) (8.2)
My 3

[/
. '\‘o‘

W
B
From Appendix &, we know 1, P /M,,?) is an analytic function of k,, except
at an infinite number of poles which occur at the zeroes of Mzz(Z) , at three
sets of the branch points which occur at the points kzo : kza and kZB , corres-
ponding to the branch points of the energy surface E(?(k)) , and at the upper
and lower band edges of a perfect lattice with the potential vl(x). If we
deform the path of integration of the integral in Eq. (B.2) from the real axis
to the contour C just below the branch points k,° , the integral in Eq. (B.2)
can be written as a single integral along the contour C plus the residues at
the zeroes of MZZ(Z) which are located between the real axis and the contour
C . This results because of the calculation of the vertical portions of the
contour (this is due to the periodicity of the integrand in kz). Gn(xz) becomes

2
WW=/%WZ)%WW%%M+29%W>
4 M j
v, @ g :
-2ri Yy res M—;Tz)- vy (x2’kZJ ) ¥y (xz,kzj ) (B.3)

jl
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Again, from the appendix A , we know the integral in Eq. (B.3) has the
following asymptotic behavior:
) P
| &2:%12?(27 l"2 (x2’k2) "’2("2"‘2) | < (const.) e hz 2 as X, (B.4)
C

where h,° is the distance from the real axis to the branch points k,°.
The bound state contributions to én(x,) are denoted by zj np(xz,kzq),
where j runs over all the occupied bound states and n°(xy,k,) is bounded
by (const.) exp(-thsz). Here hzj is the distance from the ceai axis to the
wave vectors k2j corresponding to the bound state j with energy EjB = E(z)(kzj).
The residues at the zeroes of Méz(z) are denoted by the second summation
on the right hand side of Eq. (B.3). j' runs over all the zeroes of Méz(z)
which are located between the real axis and the contour C . The residue at
the zero of Méz(z) kzj' is bound by (const.) exp(-2h2j'x2), where hzj' is
the distance from the real axis to the k3 .
We will discuss Eq. (B.3) in the following three situations:
(1) if the energy of the last occupied state is lower than E_? and
the energy of the first unoccupied state is higher than Eo(z) ’
j and j' on the right hand side of Eq. (B.3) run over the same set of k, .
The bound state contributes to &n(x2? precisely cancel the residues at the zeroes
of 4,,” .1 Therefore, sn(x,) has the following asymptotic behavior:
o
e b PO

|§n(x,) [<(const.)e Xy (B.5)
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(2) If the energy of the last occupied state is higher than E P, the
rgsidens at the zeroes of Mzz(z) between the real axis and the contour C will
cancel the contributions of the bound states with energy levels below E_(2 .
Eq. (B.3) becomes

)
snxy) = | di %zzz)— by Gy Gl) + 3 o Gy k)
C 2 i

In the forbidden region where the energy is hi than Eo(z) , we know
from the Kramer's plot that the higher the energy’of a bound state, the smaller
the distance from the real axis to the waveveCtors corresponding to this bound
state. Then dn (x2) has the following asymptotic behavior:

|6n (x2)|< (const.) e (B.7)

where h2H is the distance from the real axis to the wavevectors corresponding
to the highest occupied state.

(3) If the energy of the lowest unoccupied state is lower than Eo(?') :
the second term on the right hand side of Eq. (B.3) (the contributions from the
occupied bound state) will cancel the residues at the poles corresponding to
the occupied bound states. Gn(xz) becomes

(2)
sy = [ 2y 4y Gy G0
C

A TR T S SIS T

i
]
{
:
§
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(¢3)
-2mi ), res %@' W (xz.kzj )y (xz.kzj') (B.8)
2
jl

where j' runs over all the zeroes of M22(2) corresponding to the unoccupied
bound states with energy levels below E ‘2 .

In the forbidden region where the energy is lower than Eo(z) , we know
from the Kramer's plot that the higher the energy of a bound state, the larger
the distance from the real axis to the wavevectors corresponding to this bound
state. Then Gn(xz) has the following

-21-,2L
lén(x2)|< (const.) e *2 as x, (B.9)

where th is the distance from the real axis to the wavevectors corresponding

to the lowest unoccupied state.
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APPENDIX C

In this appendix, we want to derive Eq. (3.11). If we define A, A and

B as follows:

-1 x2+1

B . |
AI x2+1 ](SIR) S-xl I S-xl

PR e
s B L €.1)

the My and M defined in Eqs. (3.9) and (3.10) can be written as:

s

M=B - A (C.2)
Again, for simplicity of notation, we suppress the superscript (1) in this appen-
dix.

The change of the electron density distribution at the point X, due to the
defect at the point X, is

s

b ) ) ) )
on(x),x,) = [ dkl[wl’kl(xz)wl,_kl (x,) -wkl ) w_kl ("2)]

m

b

e €
J
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1

®
where Yp» _*1 (x) are the scattering states of the system with the defect:

®

w g——L—_ - -

shies o e
)

VL ) = —— b (x) k) v k)| ()
o B ¥ [a1,12 ¥, %, 0 L G k)|

®

and where U _;1 (x) are the scattering states of the system without the defect:

+ 1
“’ki ’ o - o, % [Br w10k -Byyyy Gopeiey) | g

(C.5)

“’-12;) (xp) = ‘@s{[‘ﬁz b Ggs )+ Agyy (55, Ky) |

The integrand of the Eq. (C.3) I (xl’XZ'kl) can be written as:

1
b T o i G [322"’1 (g k) -By1¥y (p, Ky ][AI,lz“’l("z'kl)

Pt e e e T e e S S

Ay 230y ¥y 8) ] ; Mi [Bzz“’l("z,kl) ‘321“’1("2"“1)]

[ AV Ry kp) -Aggly Gy, -ky) ]

2
1
= (Ap 198997A1 A )[B ¥y (%9,k1) By ¥ (%), - )]
Mt 5 , 1,207 | B22¥1 (%00 k) -Byp ¥y (%9, -y
2ik, % N-x, =ik, (x;+1) N-
AR [Gzz . ¥ 0(%,1) - Gy 2 :
(xy+1) 2 '

eikz xz Wl (xz,’kl)]

=36~
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x2+1 Zi.klxl
oy “mp8y ¢ e +T

N- H o N- +
+1 o SRR Welig - %q
4TG0 2 )l [G21 Gia T HG ]}»

where G=S;R.

I(x.l,xz,kl) has the same analytic properties as the integrand of Eq. (B.2).
We can deform the path of integration of the integral in Eq. (C.3) to a contour
C just below the branch points of EV) (k) as we did in Appendix B. We obtain ;

the asymptotic behavior of the following integral along the contour C with fixed
Xy:

-2h, %%y
| dkll(xl,xz,kl)l < (const.) %, e as x| > ® {(C-7)
C
where h1° is the distance from the real axis to the wavevectors corresponding to
the branch points of E® (k).

Using Eq. (C.7) and following the same reasoning as we did in Appendix B,

we can obtain Eq. (3.11).

et
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APPENDIX D

In this appendix, we want to derive Eq. (3.14). For simplicity, we consider
here the system with two interfaces as shown in Fig. 9 instead of n inter-
.% faces. There are three sublattices 1, 2 and 3 with the potential vl(x) 2
vz(x) and v3(x) , respectively. Since we want to obtain the asymptotic behavior
of the change of the electron density distribution in the sublattice 3 due to
a defect in the sublattice 1 as the length of the sublattice 2 X, approaches
to infinity, we can think of the sublattice 2 as a host lattice and kz as
an independent variable while the other sublattices 1 and 3 are thought of
as extended impurities. The fundamental interval of this system is shown in
Fig. 11. The lengthes of the sublattices 1 and 3 are denoted by 111 and 23,

E respectively.

The transfer matrices for this system with and without the defect are given

by




-1 -1 = j
(le)x3 e SRMT s D ls ot
\AqT
ot SN
A-S (slx)x3 Sy, G s

s (gt (D.2)

Here R and K are the scattering matrices due to a localized impurity at the ]
origin in a perfect lattice 2 with the impurity strength vl(x) and v3(x),
respectively and where the point X3 is in the sublattice 3 and the point x,
is in the sublattice 1.
The change of the electron density distribution at the point X4 due to
the defect at the point x; is given by
m

B
on(x) . X),%q) = f &ZW (Ap 10829781987, 22)
-% s

2
[ Bagbatxy ) = Bypvpleg-iy) e

+ Y o elgh) - D 0f i)

J J

(28,4+2x,)
A 12890MA1,02 = T [@11R21'R11T21)

£, - £.-X L. -x £, -x
1 11 1™*1. 4%
G1o xlclz H(Ty Ry Ty Ro1 Ry Top Ry Tp1) Gpp = "G +

b4 4%
(T19Ry9"R12T50) Gop Gop ] :




Tkyt, [D22‘3‘X3 -ikyx,

Byobo(x3.K9) = By (x3,-ky) = e Uy (x3,k9)

Tt
-Dyy 2 EE “'2("3"“2)] ,

and where

e Lx, [ i A :
Hpadha = 3x3 S [ (D11X3G1 f 3G xl

£, -x -1 2 - L2, -
1™ 4% "“2 *‘3 il v g 175
(111615 +T15Gy9 e G1y Dy "6yy 7 ) (Ty 65

= -12 - £,-x
Ty5699 T )] [ lkz X3G11x1 2 12x3G21xl ) (R16py are
rox L 2k x o xl 4y
Ry, Gy + S Dl e Wy Gy ) Ry6p

£-x ik, (20,+22,)
171, e e .2 : (D.4)

YY)

As Ll and 113 go to infinity, the integrand of the integral in Eq. (D.3),
I (xl'KZ’XS’k‘Z) has analytic properties similar to those of the integrand of
the integral in Eq. (B.2). It is an analytic function of k2 , except at the
branch points corresponding to the branch points of E(?)(k,) and the band edges
of the perfect lattices with the potential vl(x) and v2(x) and at the poles

F which occur at the zeroes of My, and Mp 5o. We can deform the path of inte-
gration from the real axis to a contour C just below the branch points of
E (k). Ve obtain this asymptotic the contour C for fixed x, and x,:




(D.5)

where h2° is the distance from the real axis to the branch points of E(z)(kz).
Again, using Eq. (D.5) and following the same reasoning as we did in
Appendix B, we can obtain Eq. (3.14).
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Fig. 1 Schematic version of a Kramer's plot of cos(kb) vs real E . The
energy bands E(n,k) are determined by the regions for which |cos(kb)|<l.
The branch points ko correspond to the (ntl)th extremum of this plot at
the energy E .




S B e IR gt B OB i A e

i ! e e AN Sl S i3

Fig. 2 Schematic plot of the potential V(x) in a fundamental interval
& Z35°% x <°d/2 (d>>N; d = 10D, Me3b).




Schematic plot of the splitting of the original energy band of a
perfect lattice with the potential vy (x) due to the existence

of the potential vl(x) as shown in “ Fig. 2.
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Fig. 4 The same plot as Fig. 3 except d+»; The dots denote the bound states.




Vs R 00

Fig. 5 Schematic plot of an isolated defect in a perfect insulator. The
potential strength of the defect is vl(x).




Fig. 6 Integration contour for the integral in Eq. (2.29). The dots indicate
the positions of wave vectors k,J of the bound states. * indicates the
branch points of k2° of the perfect lattice with the potential v, (x).
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Fig. 7 Schematic plot of an interface between two insulators. The
potentials of insulator 1 and 2 are vl(x) and v2(x), respectively.
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Integration contour, C, for the integral in Eq. (2.40). k,’

is a branch point of E(2) (kp) in the kj plane; kp® 8
wavevectors corresponding to the band edges of a perfect lattice
with the potential vj(x). The two closely spaced sequences of
points indicate the positions of wavevectors associated with the
bound states due to the N cells with potential vy, embedded in

V2 .

the infinite potential
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Fig. 9 Schematic plot of n successive insulators with a defect at
the point P .
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interface

Fig. 10 Schematic plot of an isolated defect at P in a system with
an interface.




Fig. 11 Schematic plot of the potential V(x) in a fundamental interval
(-d/2 < x < d/2) of the superlattice defined on Eq. (3.8).
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Fig. 12 Schematic plot of the potential V(x) in a fundamental interval
of the superlattice which is defined in Appendix D.
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