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ABSTRACT

- 
A channeled model with a fine resolution nested grid is

used to study the flow over a mountain range. The basic

primitive equation model is frictionless and adiabatic , with

no vertical shear. The nesting is accomplished using a

scheme C staggered grid arrangement. The solutions are ob-

tained for three categories: a) coarse mesh solution, b)

uniform fine mesh solution, and c) nested solution. Compari-

sons are made between solutions first with no mountain pres-

ent, then with a mountain. During the early stages of the

f • 
integration, the nested grid solution is improved over the

I coarse mesh solution. Difficulties arise at the boundaries ,

though, in both the coarse and fine meshes. Detailed dis-

cussions relating to these problems are presented , with

suggestions on alternative boundary conditions.

F
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I. INTRODUCTION

The effects of mountain ranges on synoptic scale motions

have been shown (Reiter , 1971) to be quite influential. Yet ,

the physical cause and mathematical description of these ef-

fects are poorly understood. The large-scale flow over and

around mountain ranges is not properly observed or mathema-

tically well modeled. This was quite evident to this author,

having spent three years of forecasting weather for the Euro-

pean-Mediterranean area, where the Alps , Pyrenees , and other

mountain ranges have a marked meteorological effect. Due to

the grid size of most primitive equation models , a nested ,

finer resolution grid is required to depict accurately the

V flow over and around mountains. This is attempted in this

study.

The general circulation model used in this study is a

modified ver sion (Monaco , 1975) of the UCLA global predic-

tion model. To reduce computer memory and run-time require-

ments prior to nesting a finer resolution grid, a channeling

of the global model was undertaken. Procedures had to be

developed to take into account the scheme C (Monaco, 1975)

grid arrangement of the model and the higher order form of

the flux terms in the primitive equations .

In nesting a fine resolution scheme C grid , certain con-

ditions had to be considered to take into account the stag-

gered grid arrangement. Unlike the majority of nested grid 
V
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models presently available which use unstaggered grid ar-

rang ements , the indexing scheme used for each variable must

be considered in determining interface boundary conditions.

The solutions obtained are divided into three categories:
- a) coarse mesh solution, b) uniform fine mesh solution, and

V 

c) nested solution. Comparisons are made between solutions

with no mountain present, and then with a mountain. It is

V shown that a number of problems r emain for the type of

channeling and nesting used in the present model .



_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

II. MODEL DESCRIPTION AND
V INITIALIZATION PROCEDURE S

The general circulation model used in this research has

been described by Monaco arid Williams (1975). It is a modi-

fied ver sion of the UCLA global prediction model detailed by
V Arakawa and Mintz (1974). Our model assumes the atmosphere

is adiabatic and frictionless and contains no sink or source

terms. Numerical integration is carried out on a staggered,

spher ical , sigma coordinate system.

A. VERTICAL COORDINATE

The vertical coordinate used in the model is the non-

dimensional a-coordinate, fig. 1. It is defined as follows:

p 
- 

p
~ (2 .1)

where ~r is the terrain pressure. The pressure is given by

p , the surf ace pre ssure by p~ , and the constant tropopause

pres sure by Pt . The vertical boundaries of the coordinate

system, the earth’s surface and the constant tropopause

pressure level, follow from (2.1), such that:

a = 0 at p = Pt ( 200 tab)

a = 1 . at p = p  .

13
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The boundary condition at the tropopause pressure level,

and at the ear th’ s surface , is: 6(E 
~~~

) = 0

B. HORIZONTAL DISTRIBUTION OF VARIABLES

The dispersion of local accumulations of wave energy

generated by gravity-inertia waves is an important process

in any atmospheric numerical model. Winninghoff (1968)

showed how this geostrophic adjustment depended on the dis-

tribution of variables over the grid points. Five possible

distributions of the dependent variables ~~~, T, v, and u. are

shown in f ig. 2. The or iginal UCLA general circulation

model , described by Arakawa and Mintz (1974), used scheme B

for the horizontal distribution of variables ; this research
V 

V model uses scheme C.

Winninghoff showed that schemes B and C, in a one-dimen-

sional case , adequately simulated geostrophic adjustment.

However , in a two dimens ional case , scheme C was shown to

— be the best lattice to simulate the geostrophic adjustment

process. In using scheme C , though , two conditions can cause

problems. The first is due to the two velocity components

not being carried at the same latitude , causing some diffi-

culty with Coriolis force terms. The assumption of a con-

stant Coriolis parameter could eliminate this problem. The

second probl em occurs ~~ A RId is less than or close to one.

The quantity AR , the Rossby radius of deformation , is given

by

14 
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where H is the mean value of h , the depth of the atmos-

phere. The si tuation where AR/ d < 1 is rare and , there-

fore , scheme C is used.

= 

- 

C. PRIMITIVE EQUATIONS

The primitive equations are written using the orthogonal

curvilinear coordinates , ~ and r~ , where ~ = A (longi-

tude) and r~ = • (latitude). Scaling factors, ni and n

are defined as follows:

a cos ~ and ~~~= a

The horizontal velocity components, temperature , and surface

pressure , the prognostic variables, are governed by the fol-

lowing primitive equations:

3 3 , rru ~ 3 nv ..
-
~~

-
~~~ 
(
~~ u) + -

~~
-
~~

- ~~
-
~~~~

- u1 + -
~~~~~ 

(-i- u1 + -
~~~~~ ~~~ u 2 .2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~j F~

~~~~~~ 
v) + v) + -~ _( 1~~ v) + ~~~~~ v) (2 .3)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

f(2_ c
D

T) + h~
1
~ 

c~ T)+ }~.(!~~ c
D

T)

+ (~2-) K 
~~~~~~~~~~~~~~~ 

c
r

8) (2 .4)

3 ir u h  v 3ir-rr a~ (~~(~~) + -
~~
-
~~~ + — + ~~ Q

—

~

-

~

--V--- --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •,,— 
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and

3 ~~~~~~~~~ (‘“~‘+ ~~ (~
‘
~
?\÷ 3 (~~ ‘ — 0  2 55E ‘nm ’ ~~ 1r’ 3n tn ’ 3 a ~~~

(2 .6)

= —7rct c5o • (2 .7 )

A complete listing of the symbols used in the preceding equa-

tions may be found in the front of this report.

The vertical a-velocity is given by:

V 

= V • (~r~ ) da - a 
~~~~~ 

. (2 .8)

In determining geopo tentials , conservation of total energy

under adiabatic and frictionless processes , and conservation

of 0 and ln0 , integrated over the entire mass under adia-
— batic processes, are needed. In addition, the vertical dif-

ference scheme must maintain the property of the vertically

integrated horizontal pressure gradient force. This is a-

chieved essentially by combining an alternate form of the

hydrostatic equation, written in terms of potential tempera-

ture (2 .9), with the vertical integral of hydrostatic

equation (2.10):

= c dine 3(~~~~)
K (2 .9)

~~d(~) ~o
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The system is complete when the above two diagnostic equa-

tions are included with the primitive equations.

D. ANALYTIC INITIALIZATION

The initial wind and pressure (geopotential) fields are

defined mathematically in this model which has some advan-

tages over obtaining the fields from a weather map. The

analytic initial conditions: 1) simplify the task of inter-

polating and balancing initial fields from constant pressure

surfaces to sigma surfac es, 2) minimize imbalances between

j wind and pr essur e f ields thereby reducing gravity-inertia

waves .

Haurwitz (1940), in defining the initial velocity fields,

solved the linearized, non-divergent vorticity equation for

the stream function. The initial distribution of geopoten-

tial was obtained by using this solution in the forcing func-

tion of the non-linear balance equation (Phillips , 1959).

Initialization of the model, based on the aforementioned

solutions, was achieved using the following equations :

= -Ba 2 sin ~

= a2 A( 4 )

u = - ~~~ -~~~= B a cos p (2.11)

1
V a cos~~~T~~~ 

0 ,

where A (I~) — -
~~~ (2i2 + B)B cos2 ~ .

1i~~~ ~

‘- .

~~~~~~~~
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These equations represent solid rotation of the atmosphere

because of the absence of vertical wind shear. The horizon-

tal or zonal wind distribution varies as the cosine of the

latitude and the magnitude of the constant, B. The zonal

wind distribution in the model varied from u = 15.2 m-sec~~

at 34°N to u = 13.8 m-sec 1 at 58°N. The initial tempera-

ture field was determined in accordance to the NACA standard

atmosphere as defined by Haltiner and Martin (1957).

E. PROCEDURE FOR INTRODUCING TOPOGRAPHY INTO MODEL

The scheme used to introduce mountain topography into

the model is described in detail by Hayes (1977). Initially,

heights at the surface were set equal to zero everywhere .

During the model integration , the heights of the mountain

grid points were increased as a function of time until the

desired heights were achieved. The problem with wind field

initialization in the ~icinity of the mountain precluded

starting with a mountain “already built”. The following

equations were used at the mountain grid points :

= N ~~~ (ITt ) ~

~sf c (2 .12)

= M  , t > t ~,

where 
~s fc is the geopotential height at time t , M is

the final geopotential mountain height, and t~ is the

period of mountain “building”. Values used in this research

are :

sfc (max) = 7500 gpm

— 12 hour s

18 
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III. CHANNELING THE COARSE GRID MODEL

In any numerical modeling , considerations of computer

run-times and memory requirements are necessary. This is

especially true when developing and testing fine mesh grids

where the grid spacing , and therefore the time step , are

small. With this in mind , an attempt to channel the global

predic tion model (Arakawa , 1972; Arakawa and Hintz, 1974;

Monaco and Will iams , 1975) in the north-south direction was

made prior to nesting of a finer resolution grid.

A. PROCEDURES FOR CHANNELING

In the initial phase of this research , the assumption

of no variation in the north-south (n) direction was con-

sidered. This led to reducing the amount of north-south

pressure grid points in the model from 46 to 7. In accom-

-— pu shing this, the pole modification schemes for the

various predictive equations were eliminated.

In addition to removing the smoothing effect of the pole

modifications, the effect of another scheme which zonally

smooths the c-components of the pressure gradient force and

the divergence was reduced. This zonal smoothing eliminates

computational instabilities due to the convergence of

meridians at the pole. This smoothing is a function of lati-

tude , grid size, and wave number ; therefore, due to the

channel being centered at 46°N with a wid th of only 8° lati-

tude , its effect was much reduced.

V_V ~V~-V ~. — 
~~~~~~~~~~~~~~ _VV ~~~~~~~~~~~~~~~~ V ~~~~~~~~~~ V~~~ - V -V~~ V.~~~~-V V~~~~~~~ V V, V VV VV V~~~V V V V
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Although the above routines might have had a damping

influence on some of the large variations encountered with —

the model , the elimination or reduction of these routines

did not generate any oscillations. Rather, these oscilla-

tions were generated by the channel boundary conditions.

B. BOUNDARY CONDITIONS

Simple cyclic conditions east-west were used, but the

north-south boundary condi t ions proved to be quite formid-

able. The main cons traint , for the north-south direction ,

was that of no net mass flux in the n-direction. The two

main problems in this regard were the balancing of pressure

gradient term to the u-velocity component and the integrated

mass flux in the n-direction. Compounding the problem fur-

ther were the scheme C grid arrangement and the complex flux

forms of the advective terms in the equation of motion.

The scheme C grid point did not allow easy selection of

the boundary wall s, due to the asy~~etry of the variables

at each (I,J) grid point. The flux terms of the advective

equations involved a second order Jacobian scheme which

required specification of some terms outside the walls.

These problems were implicitly inherent in all boundary con-

&iderations.

For the constraint of no mass flux in the north-south

direction to be achieved , the v-equation of motion, (2-3),

integrated in the vertical and c-directions must balance.

The three terms that must be specifically dealt with along

the boundaries are the integrated pressure gradient, normal

20
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component of mass flux, and Coriolis terms. (Details are

given in Appendix A.)

The method used to prevent net mass flux across the

wal ls was to reflec t the normal component of the mass flux

from the immediate interior grid point by one opposite in

sign but equal in magnitude just outside the wall. This was

accomp lished by the following equations:

(-nv 
~~~~~~ 

+ (-n-v 
~~~I 1  = 0 (3-1)

(n-v 
~~~I,Jmax ÷ (n-v 

~~~I,Jmax+l = 0 . (3-2)

The term (-n-v 
~~~I Jmax+l is a mass flux quantity outside

the boundary wall , which was needed in the advective terms

of the equations of motion.

Although this procedure assured no mass flux across each

boundary , it did not assure zero net mass flux over the

entire field. This is due to the inequality between the

northern and southern mass flux terms, i.e.:

(-n-v 
~~~I l  + (n-v ~~~I,Jmax+l + 0 . (3-3)

This imbalance did contribute to total field mass variations

with time.

Along the walls the balance between the pressure gradi-

ent and the geostrophic u-component,

u - - + act .~~~
] , (3-4)

2].
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was difficult to maintaV ”. The gradient of terrain pres-

sure , -
~~~~~ , was restored to its initial value after each

V 
time step. This allowed the pressure to.vary along the walls,

but maintained the initial pressure gradient. The geopoten-

V tial height gradient was controlled in a different way.

Since geopotential height fields are not stored but calculated

at every time step , restoring the gradient -
~~~~~ to its initial

value was not straightforward.

The method used to s ~cify -
~~~~~ was through the parameters

that ~ was a fun ction of , i.e. temperature, pressure, and ,

indirectly, the velocity components. Since the boundary grid

points were not predictive points, the values needed at the

boundary walls wer e prov ided by extrapolation schemes using

interior predict1ive values. Since = 0 at a = 1 , but

increases with elevation as act -
~~~~~ decreases , any imbalance

in the parameters used to control ‘~‘ become more significant

with height. With or without a mountain in the model , the

= largest variation of the v-component always occurred at sigma

level 1 and decreased downward. This was evidently due to

the large .
~~~~~ term in the v-component equation.

With the inequality of normal mass flux terms plus the

imbalance in the boundary zonal flow, there was a variation

in the total field mass, and the oscillations were evident

in the surface pressure fields. This variation of pr essure

along the north-south direction with time is shown in Fig. 3.

The approximate period of the oscillations is 20 hours, which

indicates that the forcing might originate from the southern

2 2  
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boundary where the inertial period is 21.5 hours. This

might indicate a net mass inflow from the south in the early

V 
stages.

One attempt was made to eliminate these pressure , i.e.

mass , variations. The change in terrain pressure between

two time steps, averaged over the entire grid, was subtracted

from the forecast pressure fields. As shown in Fig. 3, this

reduced the oscillations substantially but, as shown in

Fig. 4, caused an increase in the temperature variation. This

temperature increase then caused problems in the calculation

of geopotential heights along the boundaries. The procedure

was discarded , thereb y allowing net mass changes over the

entire field to occur.

The phase and period of these pressure oscillations were

dependent on the grid and domain size. The oscillations in

a model with a grid distance of 4
0 latitude versus 1.5° Ltti-

tude are compared in Fig. 5. In addition, the domain size

of the 1.5° latitude grid is one-third that of the 4° la:itude

grid. The phase shift of six hours between the two grid

spacing is obv ious , but there is also a slight period change.

The smaller grid has a period of approximately 18 hours.

This is the inertial period for the southernmost run which

adds evidence that the mass variations are forced from the

V 
south.

C. GRID ARRANGEMENT AND ADVECTIVE TERMS

As mentioned in the preceding section, the scheme C grid

arrangement and the comp lex form of the advective terms
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compounded the problems at the boundary walls. The follow-

ing is a brief descr iption of these problems.

1. Scheme C Grid Arrangement

In Figs. 6A and 6B the parameters enclosed by a tri-

angle comp rise a scheme C (I,J) grid point. This indexing

nomenclature lends itself readily to placing a boundary wall

not at one latitude but two. This was used in this research,

and proved to cause more problems than it solved.

Since the boundary walls are not predictive points ,

values of 7T , T , U , V must be provided to allow time

stepping of the interior points. As discussed in section B,

the extrapolated methods used in this research were not com-

pletely satisfactory. An example of this is the divergence

calculation at IT-point (1+1, Jmax-l). The ~~~ i.i) 
term is

based comp letely on predictive values, where the ~~~1T\T)

term is not. Since the same gradient of -it and V is main-

tained between (Jmax-l, Jnmax-2) and (Jmax , Jmax-l), an

artificiality could develop with the presence of a distur-

bance along the boundary. As long as an indexed (I,J) grid

point is used as a channel wall, this problem will exist.

An alternative charmel wall boundary was considered ,

but not tried. It was to have had an unequal number cf

rows between the parameters U , , T , iT , ~ and V in V

time north-south direction. This would allow the U , ,

T , iT latitude row to be predictive along both the north

and the south boundaries. This would also eliminate the

problems of imbalanc es caused by the use of extrapolation

methods for providing values at the walls. Indexing does
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become much more complica ted , though, and this was the pri-

mary reason it was not attempted.

2. Flux Form of the Advective Terms

The prevention of non-linear instabilities in a non-

- V divergent flow can be achieved by conserving the mean square

vorticity , and mean kinetic energy with time. The global

model used in this thesis was written to simulate slowly

changing quasi-geostrophic motion. Prevention of non-linear

instability called for a second order finite difference

Jacobian. This second-order Jacobian was used by Arakawa

(1974) to write the non-linear advective terms of the primi-

tive equations . Due to its second-order nature , the mass

flux expression for a specific grid point required advective

mass flux terms as far away as two (I ,J) grid points . This

presents a problem as the boundary is approached by requiring

the specification of extra mass flux terms outside of the

channel wall (line Jmax+l in Fig. 6A).

The value of the normal mass flux outside the channel

wall is a reflected value of Jmax. The mass flux at Jmax,

though, is an extrapolated value and not a predictive value.

This is due to the scheme C grid arrangement and choice of

location of the channel wall. At the southern channel wall,

a predictive mass flux quantity at J—2 is reflected out to

J= 1.

If the channel wall is placed at the latitude row

having ~ T , IT , U , and ~ , then a simplified flux scheme

would be required. Although no extra flux terms would be

needed for predicting temperature , another external (n-u 4~i)

-•
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term would be needed at J=O and J=Jmax+l to calculate momen-

tum flux centered on a U point (Fig. 6B). It would probab ly

be adequate to simply set the following :

(n-u ii ~ I,0 
- (-n-u 

~~~~~~~~~~ 
= 0

(iru 
~~~I,Jmax - (ITU 

~~~I,Jmax+l = 0

To br iefl y summarize , the scheme C grid arrangement

and index ing read ily leads to certain boundary wall condi-

tions. These proved to be unsatisfactory, due to extrapola-

tion techniques for providing the channel wall values.

Another channel wall scheme was presented which would

eliminate extrapolating values to the wall. However, with

the integrated mass flux in the n direction not being zero,

with the changing of the flux scheme for the advective terms,

and with the large index ing problems , this scheme can still —

create difficulties. Time did not permi t attempting the

latter scheme.
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IV. NE STED MODEL

A. SCHEME C NESTING

The nested grid used in this thesis consisted of two

uniform grids with the fine mesh grid centered in the chan-

neled coarse mesh grid (Fig. 7). Due to the scheme C stag-

gered grid arrangement, the ratio of the coarse mesh length

— to the fine mesh length is three to one, which corre sponds

to a reduction of latitude spacing of 444 km to 148 km at

the center latitude. The longitude reduction is from 343 km

to 116 kin, also at the center latitude. The total number of

V gr id points in the coarse mesh for one sigma level is 20 x 7 ,

while in the fine mesh it is 19 x 7.

Although the fine mesh grid is placed at the center of

the coarse mesh, there is a minimum number of J rows required

— to the north and south of the nested grid to allow inter-

action between the grids at predictive points. Due to the

extrapolation schemes used at the coarse mesh boundaries , at

least two j  rows are needed to the north and south of the

nested grid. If the channel walls are changed to consist
V only of the ~ , it , T , U latitude row , then this require-

ment would be unnecessary.

The physics of the model for the nested fine mesh are

identical to those of the coarse mesh domain. The only

difference between grids was the complete elimination of the

zonal smoothing routine used in the coarse mesh .

~~~ 27
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B. BOUN DARY CONDITIONS

There are numerous approaches for spec ifying the inter-

face boundary conditions in a nested grid model (Ookochi ,

1972; Harrison and Elsberry, 1972; Chen , 1973; Moss and

Jones , 1973; Chen and Miyakoda , 1974; Jones, 1976; Madala ,

1977; and Miyakoda and Rosati , 1977) . They range from in-

terpolation schemes to using the finite difference equations

in providing the various boundary values. The method used

in this paper was the Dirichlet condition with local bound-

ary smoothing (Chen and Miyakoda, 1974).

The boundary points are provided all necessary values

of U , V , -ii- , and T for both one and two way interaction

approaches from the solutions of the coarse mesh grid.

These boundary values vary with time as the coarse mesh ad-

vances in time. Linear interpolations in time and space are

provided for the fine grid where necessary . Due to the flux

form of the advection terms, additional mass flux terms

(-n-v 
~~~

) and (itu 
~~~) are required outside the interface.

These values are also interpolated from the coarse mesh .

As descr ibed by Chen (1973) and Chen and Uiyakoda (1974), V

this method of providing all variables at the boundary is an

overspecification. This can cause a computational mode to

- 

V 

develop at the boundaries. A method to reduce this computa-

tional mode , but not to suppress signif icantly the physical

mode is to apply a local smoother to all variables at the

grid points next to the boundaries . Chen and I4iyakoda (1974)

- 

V 

suggested the use of a simple f i l ter  (1-2-1) app lied normal
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to the boundary at the adj acent row. In this research a five

point filter was used to help suppress lateral waves along

V the boundaries. For example, the smoothing routine for the

U-component at the west boundary is as follows:

U2~~ (smo othed) = ~~~
. 

~~~~ ÷ ~ (U1,J+U2,J+U2,J÷1+U2,J...l)

-: This filter was not applied after every time step , but after

V every 6-3-3-3 time steps (Fig. 8).

As with the coarse mesh boundary conditions , the scheme

C grid arrangement and flux forms of the advective terms af-

fected the choice of the interface walls. A scheme C (I,J)

grid point was used for the interface walls. In Fig. 7 the

points surrounded by the box are predictive points, whereas

fine mesh lines , I, J, 1+9, J+6 are interface , non-predictive

points.

Unlike the channeled coarse mesh gr id , there are no con-

servation of mass or energy requirements for the nested fine

mesh. Therefore, free exchange across the interface is

necessary. Providing the boundary values with local smooth-

ing was insufficient to maintain free exchange of mass and

energy across the interfaces. This can be seen in Fig. l5b ,

which shows the reflections of the U-component from the east

interface. A method suggested by Madala (1977) , which con-

sisted of calculating the mass convergence of the coarse mesh

at the interface to provide values for certain boundary f ine

mesh mass flux terms , was attempted without success. (Refer

to Appendix B for details of the divergence boundary condition.)

29
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Problems arose at the west and north interface walls where

the horizontal flux terms were removed considerably from

the interface. Changing the interface walls to consist only

of the -it , T , and ~ row would have allowed better conser-

vation of divergence between grids. This change, though ,

would have entailed changing the flux forms of the advective

V terms and considerable indexing changes. Time did not permit

complete testing of this boundary condition.

C. MARCHING PROCESS FOR THE NESTED MODEL

A schematic of the Matsuno-leapfrog time integration

scheme for both the coarse and fine mesh grids is shown in

Fig. 8. Each sequence is 45 minutes in length. This time

sequence app lies the Matsuno scheme less often in the fine

mesh , which results in less damping of the high frequ ency

oscillations. This is in contrast to Chen and Miyakoda

(1974) , who used the Euler-backward time step solely, and

Miyakoda and Rosati (1977), who used a time filter (Asselin,

1972) after each time step .

Due to the oscillations generated at the boundaries of

the coarse and fine meshes , it was difficult to evaluate the

above time stepping scheme. Computational modes did not

appear to be significant in the various model cases studied.

30
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V. DESCRIPTION OF THE

EXPERIMENT AND RE SULTS

The ma in objective in all nested grid models is to show

that the nested solution gives results similar to those of

a uniform fine mesh. This applies to situations in which

the resolution of the coarse mesh grid is inadequate and the

fine mesh resolution is sufficient. An attempt was made in

this research to obtain a nested fine mesh solution for flow

over mountains .

The following is a listing of the three basic models

studied in this research.

(1) Coarse mesh solution:

a) without a mountain
b) with mountain A
c) with mountain B

(2) Uniform fine mesh solution:

a) without a mountain
b) with mountain A

(3) Nested solution :

a) without a mountain , one way
b) without a mountain, two way
c) with mountain A , one way
d) with mountain A , two way

Mountain “A” is the case in which the mountain is built com-

pletely across the channel, whereas mountain “B” is built

only half-way across the channel. Results to 12 hours are

comp ared , due to problems developing after that time.

3].
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A. COARSE MESH SOLUTION

Hayes (1977) studied the flow over mountains using the

same primitive equation model (Monaco, 1975) , except he

used the full global model and not a channeled version. Some

of his results which can be used in comparison are as follows:
V (a) the mountains interact with the atmospheric flow to in-

duce ridging over the mountains and troughing on the down-

stream side ; (b) damping of small scale features with height;

and (c) increasing the grid resolution causes the scale of

the velocity component re sponse to decrease , but the magnitude

remains about the sane when compared to the coarse grid

resolution. The grid size that Hayes used for the coarse

mesh , 4 5 ° long by 4.0° latitude, is the same as used by

this au thor.

Prior to testing the channeled model with a mountain , a

case was computed wi thout a mountain . Thi s was done to check

if the initialization scheme, which used the linear balance

equation , was satisfactory for the channeled model. The

model was run to 56 hour s with the maximum variation in both

velocity components not exceeding ± 1 rn/sec over the initial

valu es . Some adjustment was expected because the finite

difference form of the analytic solution is inexact. The

terrain pressure does experience a variation with time (Fig. =

V 3). This is due , as explained in Chapter III, to the ince-

grated mass flux in the north-south direction not being equal

to zero . Therefore , other than the pressure variation , the

V model does appear to be in gàod balance.
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Next, a meridional mountain range 18° x 750 m (width by

height) extending across the entire channel was considered.

V Since the distance between grid points in the c-direction is

4•5
0 this allows onl y three grid points at each latitude to

represent the mountain. The middle channel U and V compo-

nents after six hours are shown in Figs. 9A and 9B for three

levels. The mountain has developed to half of its height by

this time. Upstream, the flow is deflected northward by the

mountain and downstream the flow is deflected to the south.

At some distance from the mountain both upstream and down-

~~ream, variations due to the mountain are less evident.

Figure 9B shows an increase in the U-component in the vicinity

of the mountain top. The increase can partly be explained by

the use of the conservation of potential vorticity equation,

= constant

where ~ is relative vorticity, f is the Coriolis para-

meter and ~p is the pressure depth of a column. In order V

to conserve potential vorticity on the upstream side the flow

turns anticyclonic and therefore an increase in the V-compo-

nent results . Over the mountain crest the flow turns cyclonic

and the V-component decreases, but due to the decreased column

depth the conservation of potential vorticity is achie ved by

an increase in the U-component. 
V

The vertical velocity field , shown in Fig. 10, indicates

rising motion on the upstream side with sinking motion just

over the mountain crest and downslope. In addition , a V
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secondary region of rising mot ion is indicated downstream.

This can be indicative of a mountain lee trough.

The temperature patterns for the middle of the channel

at the six different levels is shown in Fig. 11. Note the
V cooling on the upslope side of the mountain and the warming

downs tream . This is a direct resul t of the vertical veloc-

ities induced by the mountain . It must be noted , though ,

that the temperature field over the entire channel increased

on the average of lO°K at all levels from initial t empera-

tures. This was due in part to term (1) of the equation in

Appendix A , the integrated n-component of momentum and the

imbalance of mass flux terms between the north and south

boundaries .

V At 12 hours , the mountain has attained its final height .

The horizontal wind profiles for this time are shown in

Figs. l2A and B. The U-profiles appear reasonable with the

highest zonal velocity over the mountain crest , and also a

decreas ing magnitude with height. The V-profiles, though,

begin to show problems . At level six the flow is still being

deflected in the proper way , but problems are app earing at 
V

levels one and three. Although they, too, are show ing

proper deflection, the maxima of level one is the same magni-

tude as level six . This is unexpected , based on Hayes ’

V 
results showing dampening with height .

The large unexpected maxima at level one is possibly due

to two factors . The first is due to the method of specif ying

at the boundaries (refer to Chapter III for details.)
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The second is the apparent development of a meridional, ver-

tical oscillation as a result of the vertical velocity pat-

tern induced by the mountains. Note in Fig. 12A the apparent

compensating northward flow downstream at level six in re-

sponse to the southward flow at levels one and three. In

Fig. 13 the largest vertical velocities at level five, and ,

therefore , vertical transport of momentum, are shown to be

occurring along the channel walls in the vicinity of the

mountain. This pattern of the largest vertical velocities

occurring at the channel wall-mountain intersection con-

tinues with time and dominates the vertical velocity patterns

after 24 hours.

To estimate the effect of the mountain-channel wall in-

tersection, a test case was computed using the half-channel

mountain “B” . The horizontal velocity profiles were similar

to the channeled mountain, except for a slight increase in

the zonal flow north of the mountain. The 12 hour vertical

velocity pattern, Fig. 14, associated with level five of

mountain “B” is slightly different, especially along the

north wall , when compared to the pattern of mountain “A” ,

Fig. 13. At 12 hours the largest vertical velocities appeared

along both the north and the south walls . Even wi th the V

mounta4n not intersecting the north wall , vertical velocities

of the same magnitude as in Fig. 13 developed . Further tests

would be required to determine the minimum distance needed

to prevent interaction of the flow around the mountain and

the channel wall.
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B. UNIFORN FINE MESH

V 
The same geographic domain as in the coarse mesh model

was used in the fine mesh model with one-third the grid dis-

tance. Due to the increase in the computer memory require-

ments (9X) and CPU (Central Processing Unit) time (27X),

as8ociated with this solution, few case studies were corn-

pleted.

The case in which there was no mountain was computed to
V 

evalua te the ini tial balance and pressure , i.e. mass, varia-

tion over the total field. Results through 12 hours showed

maximum velocity variations of ± 1 rn/sec. The average pres-

sure over the domain did vary with increases of .3 mb at six

hours and 2.6 mb at 12 hours. The phase and period of these

pressure oscillations were difficult to calculate as the re-

quired long computer runs had to be limited due to the exces-

sive processing times. It appears , though, to have a phase

V close to that of the coarse grids phase , but a smaller

magnitude.

Regrettably, due to time limitations, the uniform fine

mesh with a channel mountain was not run for a sufficiently

long time to use in this study. Resul ts achieved by Hayes - -

(1977) in increasing the horizontal grid resolution (E-

direction only) can be used as a basis of what to expect.

Mainly , he found that by increasing the resolution in the

c-direction the veloci ty component response decreased , but

the magnitude of that response remained approximately the

same when compared to the coarser resolution grid.
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C. NESTED SOLUTION

~~o methods of interaction are employed with the nested
V - 

grid model . The first method is one-way interaction ; values

from the coarse mesh are supplied to the fine mesh boundary

at appropriate times, wi th no corr espond ing changes of coar se

• mesh interior values from the nested fine mesh. The other

method is two-way interaction. Al though bound ary values for

the fine mesh are still provided by the coarse mesh, rep lace- V

ment of coarse mesh values by interior nested fine mesh

values at coincident points is done at appropriate times.

For example: v(I+3,J+2) of f ine mesh rep laces v (I+2 , J+2)

of coarse mesh. A five point averaging scheme surrounding

each fine mesh coincident point is used to calculate the

replacement fine mesh value.

V Prior to testing the nested grid with a mountain present,

one case with each type of interaction was run without a

mountain to check the initial balance. As mentioned in sec-

tion 1 of this chapter , the coarse mesh is in good balance. 1 :.

The v and u components in the middle region of the fine mesh

af ter s ix hours are shown in Figs. l5A and B. The corre- V

sponding coarse mesh solution can be seen at either end of

each plot. The v-component profile shows level l(a = .08) V

to have the largest value. This can be due to the following : V

1) the oscillations of the height surfaces in the north-

south direction forced by the coarse mesh boundary values ,

2) the interface boundary conditions , and 3) the phase dif-

ferences in pressure oscillations. The u-component profile , V
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Fig. 15B, shows the reflection of energy from the east wall.

Insufficient interface boundary conditions did not allow

fre e exchange of mass and energy across the interfac e,

thereby resul ting in the reflections.

In addition , Fig. 5 shows the pressure variations for
V 

the nested (one-way) fine mesh. These oscillations appear

to follow the variations of the 1.50 uniform f ine mesh

(nested domain) spacing out to eight hours. After that time,

the coarse mesh variations force the nested variations. This

could lead to imbalances.

When the two-way interaction scheme is used , the fine

mesh has significant influence on the coarse mesh, Fig. 16.

In one-way interaction the coarse mesh v-profile would show

only a +.5 rn/sec value for the three levels. It should be

noted , though, that the variations of the fine mesh hori-

zontal velocity components were not as large in the two-way

as in the one-way. This was due to the transfer of energy

out of the nested grid into the coarse grid. This allowed V

any oscillations present in the fine mesh region to propa-

gate to the coarse mesh region. These oscillations , though,

aggravated the problems at the coarse mesh boundary wall.

V 
From 12 hours and beyond , the oscillations in both grids

become unrealistically large.

The last series of experiments was computed using the

nested, two-way interacting model with a 180 x 750 in mountain

present. This allows three grid points in the coarse mesh

and 11 grid points in the fine mesh to represent the mountain

at each latitude. The resulting horizontal velocity profiles
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after six hours for the fine and coarse mesLes are shown in

Figs. 17 and 18. The mountain has developed to half its

height by this time. The v-profiles in Fig. l7A show the

general upstream northward deflection and downstream south-

ward deflection. In addition, the upstream flow appears to

V be deflected northward only in the immediate vicinity of the

mountain. This is different than the coarse mesh solution

which shows deflections three gird points upstream from the

mountain. This narrowing of the velocity component response

compares favorably with that of Hayes (1977). One result

which does not compare is the lack of dampening with height.

V This is probably a result of the improper v-component values

from the coarse mesh being forced at the nested boundary in--

terface.

The u-profile (Fig. l7B), for level 6(a = .92) does indi-

cate an increase in the zonal flow over the mountain top, and

then a return to the upstream value . The upper two levels

(~~ 
= .42 , .08) ,  though , show an increase in the zona]. flow

downstream of the moun tain . This is probab ly caused by the

reflections from the east interface wall.

The coarse mesh velocity profiles are shown in Figs. l8A

and B. When compared to Figs. 9A and B , the one-way inter-

acting mountain case, few significant differences are noticed.

The v-profiles show the proper deflection north and southward,

with the zonal flow increasing in the region of the mountain

top . Since the flow in the reg ion of the mountains is just

an average of the nested reg ion flow , the fine mesh solution

must have been good for  the f i r s t  six hours.
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In Figs . 19 and 20 are shown the v-component profiles

and vertical velocities for the coarse mesh at 12 hours .

The v-profiles show a large level l(c~ = .08) northward com-

ponent with a compensating lower level 6(a = .92) southward

V component. The f ine mesh v-profile is similar , except the

deflections are spread wider over its domain . Part of the

reason for the large upper level v-component is the inter-

action of the mountain and the channel walls . As mentioned

in section 1, large vertical velocities are created at the

intersection with channel wall points , which causes an

artificial meridionally oriented , vertical circulation. The

same circulation apparently occur s in the fine mesh , due to

interface, mountain intersection. This energy is then par-

tially transferred to the coarse mesh via the two-way inter-

action . The coarse mesh vertical velocities are shown in

Fig. 20. The fine mesh influence is immediately apparent.

By this time , the solutions to the nested grid model are

dominated by unrealistic oscillations. Similar results were

obtained in the one-way interaction solutions .
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VI. SUMMARY AND CONCLUSIONS

V This thesis was undertaken to study the flow over moun-

tains using a channeled model wi th an interior nested grid.

The work involved two stages. The first was to develop an

east-west channel model from a global model. The second was

V the nesting of a finer resolution grid.

In channeling the modified Arakawa global model by

Monaco and Williams (1975) , oscillations and noise arose

along the channel walls. The scheme C grid arrangement and

flux form of the advective terms lead to certain boundary

conditions. These proved to be adequate when no disturbance

was presen t, but insufficient when either a mountain and/or

nested grid were introduced . Difficul ties also arose at the

mountain-channel wall intersection.

In nesting a finer resolution grid several things were

learned. The numerical response in the c-direction decreases

with the finer resolution when compared to the coarse mesh

solution . In addition , the two -way interaction does allow

partial transfer of energy to the coarse mesh. Several prob-

lems were also encountered.

The grid arrangement and flux form of advective terms

lead to similar boundary/ interface conditions as in the

coarse mesh. Difficult ies did not arise at the interface

walls due to extrapolation methods in providing boundary

values , but they resulted due to not allowing free exchange
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V of energy and mas s across the interface walls. This caused

V internal reflected fine mesh waves , which eventually de-
V - stroyed the fine mesh solution. The mountain-interface

wall intersection also accounted for some of the problems .

As in the coarse mesh , large vertical velocities developed

at these intersection points , which are partly responsible

- 

- for the vertical meridional oscillations.

Based on the above results , the follow ing is recommended :

(a) expand the channel in the north-south direction suffi-

ciently to allow isolating the mountain . This would
V 

avoid the problems caused by the mountain channel wall

intersection;

(b) simplify the flux forms in the primitive equations for
V use over the whole domain ;

V 

(c) modif y the channel walls to consist of one latitude

t , u row. This leads to an unequal predictive

region for the v-component;

(d) modif y the interface walls in the nested grid to consist

of one latitude (north and south walls) and one longi-

tude (east and west walls) row. Thi s leads to unequal

predictive rows for v and u-components , respectively;

(e) alter linear interpolation scheme to higher order scheme

for providing the nested grid boundary with coarse mesh

values .

Although this thesis was not entirely successful in mathe-
V matically simulating flow over mountains, it did identif y and

detail some specific problems . It is hoped that this study

will prove usefu l to those attempting a similar study in the

future .
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- APPENDIX A

NORTH AND SOUTH BOUNDARY CONSIDERATIONS

The constraint of no net mass flux in the north-south

V direction is a primary factor to consider when determining

boundary conditions for the north and south walls. Due to

the cyclic condition in the east-west direction , the only V

equation of motion needed to be considered is equation (2-3) , -

V

the v-component equation:

V 
~~~~~~~ v) + fr(!~ v) + 

~~~~~~~~~~~~~~~ 
v) + v)

(1) (2) (3) (4)

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
=~~~~ F1

V (5) (6) (7) (8)

To assure no net mass flux , the above equation , integrated

in ~ and ~ , must balance.

Following is an analysis of each term , and what must be

done to accomplish the constraint condition .
V Term (1) :

~fJ ~~~~~ v) dad~ = .

~~~~~ / 

f (~~ )d~ d~

- 
- In the case where no mountain is present , starts at

I zero and should rema in zero as long as the model initiali-
-
, zation is correct. When a mountain is present , there must
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be a shift of mass to another region in order to satisfy

the integral.

V Term (2) :

f f  ~~~~~ v) dad~ = 0 V

This is due to the cyclic condition east-west.

Term (3) :

Jf ~c~ v~dad~ = f f  v ~~~~ )dad~ + 
j f .  V

The first term on the right hand side is taken care of by

reflecting the normal mass flux quantities along the bound-

aries. In the no mountain case , the second term starts at V

zero and remains close to zero as the model advances in t ime .

When a mountain is introduced , this term becomes non-zero.

V This problem is further accentuated by the imbalance in the

pressure gradient term (7) .

Term (4): V

J 
/ 

. (~~~ 
v) dade = 0 

V

If & 0 at a = 1 and a = 0 , this term is sat isf ied.

Term (5) :

J [
~~~~~~

dad
~~

+ O
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This term is not equal to zero , but will primarily be bal-

anced by the pressure gradient term. The term will further

V vary if a mountain is present .

Term (6) :

fJ(v -u
~~~~~~

u
~~~~= !f ~wwd a d~

ffu
2
~~~~~~~~~~~+ O

The first  term on the right hand side starts at zero (v=O) ,
V and will remain close to zero as the model advances in time .

The second term is not zero , because the integrated scaling

factor is non-zero . The contribution , though , is very small

compared to the o ther terms in the equation. Its importance ,

however , increases as the velocity components increase.

Since the other terms are not exactly zero , this term adds

to the imbalance.

Term (7):

ff ’ ~~~~ + act -~~]dad~ + 0

This term is non-zero and primarily balanced by the ~-compo-

nent of velocity . In order to prevent mass variations ,

V though , its initial balance along the boundaries mus t be

maintained. The initial terrain pressure gradient was rela-

tively simple to maintain but the initial geopotential height

gradien t was not so simple.
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Term (8) :

V 

- f I ~~~F~~dad~~~~O
- a

This model is frictionless.
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V APPENDIX B

DIVERGENCE BOUNDARY CONDITION

- - 
Free exchange of mass and energy across the nested grid

interface is a necessity to prevent reflections from the
V walls destroying the fine mesh solutions. In addition to

the two-way interaction scheme, a divergence boundary condi-

tion after Madala (1977) was attempted.

This boundary condition entailed carculating the coarse

mesh divergence along the interface, and interpolating spa-

tially and temporally to determine the fine mesh mass flux

quantity on the outside of the interface. The following

formulas were used for the east and south interfaces respec-

tively : V

~~~ ~~ I, J 
= D

~~coarse + ~~ I-i, J 
- 

~~ ii~ I, J+l

+ 
~~~~~~~~

(iw 
~~~~~ 

= 
~
DIV

~,~~se 
+ (in.i ~

I)ij  - (iiu L)1..i~~

+ 
~‘~~~~ I,J+l

The interface divergence boundary conditions were not applied

along the north and west interfaces , due to the problems men-

tioned in chapter IV . With this boundary condition used
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along the east and south walls, results were still unsatis-

factory. Reflections were still occurring , indicating a

free transfer of mass and energy was not present .

Madala (1977) apparently solved this problem by us ing

weighted extrapolated fine mesh U and V values , along with

coarse mesh values , in determining the mass flux divergence

terms for the fine mesh boundary . This modified the forc-

ing of the coarse mesh divergence fields at the interface.

It should be no ted that Madala used only the -ir , T , and

p row of the scheme C grid for the boundary . In addition ,

he used a simplified flux form , thereby he did not need to

specif y as many external boundary points . Thi s makes the

north and west interface conditions exactly the same as the

east and south, whereas in this research they would have

been different.

H
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in the 6 level model. P~ is 200 mb .
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