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ABSTRACT

This dissertation investigates the problem of automatic

transcription of the hand-keyed Morse signal. A unified

model for this signal process transmitted over a noisy
channel is shown to be a system in which the state of the
Morse process evolves as a memory-conditioned probabilistic
mapping of a conditional Markov process, with the state of
this process playing the role of a parameter vector of the
channel model. The decoding problem is then posed as finding
an optimal estimate of the state of the Morse process, given
a sequence of measurements of the detected signal. The

Bayesian solution to this nonlinear estimation problem is

obtained explicitly for the parameter-conditional linear-
gaussian channel, and the resulting optimal decoder is hown
to consist of a denumerable but exponentially expanding set

of linear Kalman filters operating on a dynamically evolving

trellis. Decoder performance is obtained by computer simula-
tion, for the case of random letter message texts. For
nonrandom texts, further research is indicated to specify
linguistic and format-dependent models consistent with the

model structure developed herein.
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I. INTRODUCTION

The problem of automatically transcribing the hand-keyed
manual morse (HKM) signal with an acceptable error rate,
without exact knowledge of the sender's keying character-
istics and transmitted signal parameters, has, in general,
remained unsolved. The easier companion problem of auto-
matically transcribing a Morse signal sent by a keyboard
(KAM) , and whose transmitted frequency is known, has largely
been solved, and a number of Morse decoders are commercially
available for this task. These decoders also can be used
on the HKM signal, but with considerable loss in performance
except in cases of very good keying quality.

The difficulty of automatically transcribing the HKM
signal (problems in frequency acquisition and detection
aside) is often not recognized by the uninitiated. This
difficulty is analogous to that of designing an automatic
speech recognition device. While the analogy cannot be
taken too far, certain parallels are evident. The HKM
signal, being a human-generated process, has all the char-
acteristics of individuality associated with such a process.
No two senders of Morse send in exactly the same way, just
as no two speakers speak in exactly the same way. Yet a
trained Morse operator can understand what is being sent,
just as a person who understands the language of a speaker

can understand (almost) anyone who speaks that language,

whatever the individual characteristics of his speech. A




Morse transcription machine for HKM which bases its deci-

sions solely on the local Morse symbols (dot, dash, element

space, character space, word space, pause) can, with some

imagination, be likened to a situation in which a person

who does not know English attempts to translate a spoken

English phrase by isolating the syllables of the words.

Clearly the Morse transcription task is not gquite so diffi-

cult as this analogy since there are only six "syllables"

in Morse; yet the analogy is illustrative of the difficulty

of transcribing the HKM process.

On the other hand, the KAM signal can be likened to a

Thus it is

teletype signal with a well-defined structure.

sufficient to decode such a signal on the basis of the baud

structure, since there is a one-to-one mapping from the code

words to the text. This non-singular mapping accounts for

the relative ease of decoding a demodulated KAM signal.

The above analogy has tacitly assumed that the Morse

waveform was perfectly demodulated. In the real world of

imperfect demodulation, it is clear than an HRM transcription

machine which uses only local information, can provide no

error~-correction capability to correct incorrectly demodu-

lated Morse symbols. Thus as a result of a single incorrect

demodulation decision, an entire letter (two letters if the

symbol was a character space) is transcribed incorrectly.

Demodulation, therefore, must be considered as an integral

part of the HKM processor, and this processor must have some




knowledge of the Morse "language" in order to provide error-
correction capability.

This paper reports the results of an investigation into
the problem of automatically transcribing the HKM process.

The problem is attacked from the point-of-view of optimal
estimation and modern information theory. Theoretical results
are derived which can be directly applied to the design of an
optimal HKM transcriber. It is shown that such an optimal
transcriber is unrealizable in the practical sense, but that

a suboptimal transcriber which can be made arbitrarily close
to optimal is realizable. Lower bounds on the theoretical
error-rate performance of an ideal transcriber are obtained

as a function of signal-to~-noise ratio, keying characteristics,
and HKM model complexity. The performance of the suboptimal
transcriber is obtained by computer simulation and compared

to the theoretical results for the optimal transcriber.
Finally, the suboptimal transcriber is tested against a limited
set of field data in order to validate the simulations.

The report is organized into two parts: theoretical and
application. 1In the theoretical section, a unified model
structure for the HKM process is derived which may account for
code symbol dependencies, variation in data rate, operator
sending anomalies, source letter context, message format, and
linguistic dependencies. A channel model is constructed to
account for transmitter, propagation, and receiver effects.
The resulting modeled system is shown to be a system in which

the state of the HKM process evolves as a memory-conditioned

probabilistic mapping of a conditional Markov process, with
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the state of this process playing the role of a parameter
vector of the channel and measurement models. The joint
demodulation, decoding, and translation problem is then
posed as finding an optimal estimate of the discrete state

of the HKM signal process, given a sequence of noisy measure-
ments of the detected signal. The Bayesian solution to this
nonlinear estimation problem is obtained explicitly for the
case of parameter-conditional linear-gaussian channel and
measurement models, and the resulting optimal Morse
transcription machine is shown to consist of a denumerable
but exponentially expanding set of linear Xalman filters i
operating on a trellis defined by the discrete state values
of the parameter vector. Because of the exponential growth,
the optimal estimator is unrealizable, and a realizable

suboptimal solution which adaptively restricts the growth

of the trellis is obtained.

o

The application section shows how a specific model of the
b | HKM process results from the general model constructed in the
theoretical section. It is shown in principle how the

1§ generality of the model readily provides for any level of

E complexity in modeling an actual Morse message, i.e. from a
very simple model of local Morse symbols up to and including

a complex model 6f syntactic and semantic rules for the Morse
| ; "language." It is shown theoretically how context may be used

to provide error-correction capability and reduce the lower- 1

bound on output letter-error rate. Simulation results are

obtained which confirm the expected improved performance for

increasingly complex modeling of the Morse message.

14
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II. PROBLEM DESCRIPTION

The statement of the problem is actually very simple:
Obtain a processor which will transcribe hand-keyed manual
Morse as well as a human operator. The simplicity of the
statement, however, belies the complexity of describing a
"hand-keyed manual Morse" signal and the difficulty of

quantifying the phrase "as well as a human operator."

A. THE HAND-KEYED MANUAL MORSE (HKM) SIGNAL PROCESS

As used throughout this report, the term HKM signal
refers to International Morse Code énd its derivatives sent
manually by key, mechanical bug, or electronic bug. The
baseband HKM process is the output voltage level of the keyer
and is represented by the logic levels 0 and 1, corresponding
go the states "key up" and "key down." The six symbols of

the code are: dot, dash, element-space, character-space,

word-space, and pause. The term element (or baud) refers

to the standard time unit of the code; its actual duration

in seconds will of course vary with sending speed. Standard

Morse code consists of the symbol durations shown in Table I.
The standard word (including word-space) in Morse commun-

ication is 50 elements in length. Thus the standard element

duration in seconds for a given sending speed is 6/5 times

the reciprocal of the speed in words-per-minute. The

instantaneous data rate for an HKM signal is defined to be

6/5 times the reciprocal of the duration of the symbol (in




TABLE I

Standard Morse Symbols

Name Symbol Duration (in elements)
Dot - 1
Dash - 3
Element-space A 1
Character-space uY 3
Word-space W 7
Pause P 14

seconds) divided by the standard duration in elements;
e.g., the instantaneous data rate for a dash of duration
60 msec is (6/5)/(1/.020) = 60 wpm.

An HKM signal differs from the standard Morse signal
in that the instantaneous data rate is a random variable,
resulting in symbol durations which are random. The element
duration is defined to be the mean value of the dot duration;
this mean value is also a random variable. The HKM signal
may exhibit a large variation in both element duration and
instantaneous data rate. The modeling of these random variables
is discussed in section VI.A. The distributions of element
duration and instantaneous data rate are unique to a particu-
lar sending operator, and in most cases depend on the type

of traffic being sent, and on the intended recipient of the

signal as well.
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B. THE HKM SIGNAL CHANNEL

The HKM signal process is usually transmitted at HF by
a transmitter whose final amplifier is on-off keyed (OOK)
by the keyer, although in some cases, the oscillator itself
is on-off keyed. Because of the effect of transients in the
transmitter, the signal is usually chirped to some extent,
the magnitude of the chirp being indicative of the quality
of the transmitter design and state of maintenance. For
well-designed, properly maintained transmitters, the chirp
is on the order of tens of Hertz. Poorly designed or improp-
erly maintained transmitters may exhibit as much as 300Hz
chirp, as well as random drift of the nominal carrier fre-
quency. Thus in most cases, signal detection must be accom-
plished by using an envelope detector since the phase of
the signal is not known.

In addition to the signal uncertainties caused by the
transmitter itself, the signal is also corrupted by both
additive and multiplicative noise in the form of atmospherics,
interference, and fading, which at HF is nonstationary. Thus
demodulation of the OOK Signal must be accomplished in the
face of frequency, phase, and amplitude uncertainty, along

with incomplete knowledge of the noise statistics.

C. OPERATOR PERFORMANCE
The ultimate goal of the Morse transcriber is to provide
output copy with an error rate approaching that which a

typical human operator provides. The human operator rapidly

17
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adapts to changing signal and channel parameters and can
provide reliable copy of a highly variable HKM signal in the
presence of numerous other Morse and non-Morse signals. The
operator is obviously aided by an understanding of the context
of the message, the format, and the Morse "language."

The available data on operator performance is summarized
in Figures 1 and 2. Figure 1 is a plot of error rate vs.
SNR for an actual communications link in the LF band reported
by watt et. al. [l1], while Figure 2 shows the performance
obtained in a laboratory experiment [2]. Both tests were
conducted using random five-letter code groups as the test
message. Table II, from Lane [3], shows the number of dB
which must be added or subtracted from the abscissa of the
performance curve to obtain the performance for different
speeds of transmission. Clearly the laboratory tests show
a better performance capability for the human operator than
that obtained for the actual communication link, with a
difference of about 2-3 dB for equal error rates. Such an
observation indicates that one must design the automated
transcriber using the laboratory performance measurements
in order to obtain the required performance under field
conditions for the same SNR.

The error rates discussed above were obtained using a
text consisting of indepehdent letters (5~letter code groups).
For a text which has more structure than random letters,

whether through linguistic content, known message format,
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TABLE II

OPERATOR PERFORMANCE ADJUSTMENT FACTOR
FOR SENDING SPEEDS
(FROM LANE [3])

RATE FACTOR
(wpm) (aB)
10 -5.0
12 -3.6
14 -2.3
15 -1.8
16 -1.4
18 -0.6
20 0
25 1.6
30 2.6

or increased semantic content, the human operator will take
advantage of the structure to effectively reduce his average
error rate. His error rate, however, for those portions of

a message which exhibit uncertainty equivalent to independent
letters, will remain at that for independent letters. Thus
although his error rate for those portions of a message
which have a high information content will not decrease,

the transcribed message will be much more "readable," and

the more costly errors will be much easier to locate in his
output copy. As an example of "readability", consider the
two messages shown below, each with a 10% error rate, including
spacing errors. The first message is of low information

content and is readable, although with some difficulty; the

second is a message with higher information content. (These




two messages were generated by using a random number generator

to obtain the errors, which may not correspond to typical

morse substituions.)

Message 1l:
THIS IS AN RX A9P LE OF EN G LI SH TE XT
WITH AN ERROR RATE OF 10 PERCENK. THC
ERRORS INCLUDE SPA CING BETWEEN LE TTERS
AS WELL AS THE WP1D SPACE. MS CAN3 E
SEEN, THIS TEXT IS ON TH E THRESHOLDO F
ACC EPTABILRTY AN D REQUIRA 2 S1AE

DIFW8C U LTX TO R EAD.

Message 2:
BM GEZRGE P BURDELL TO JOXN BUUYEL
L123 EASW S T BEW YORK BT
PSE C ALL NAMP HO NE NO 555 1233 AND
TELL SIM WILL NOW DRR IVE KENNE DY
AVTAN 17 38 12 JU LFLT NO 63

WILL DEPANT FOX WAMH AT 231 9 12 JUL.

The obvious point of this exercise is that average letter
error rate alone is not a definitive measure by which the
efficiency of a transcriber (either human or machine) can
be judged, except for messages consisting of random letters.
Secondly, it is clear that an automatic transcriber which

does not use the message context and structure (linguistics,

semantics, format) to decode the received message will not
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be capable of producing a transcript as readable as the

human operator except for random letter texts.




III. LOWER BOUNDS ON ERROR RATE

In this section, information theoretic concepts are
applied to the problem of decoding and translation of the
Morse signal. Lower bounds on the performance of a trans-
cription machine are obtained as a function of signal-to-
noise ratio, keying quality, and decoder complexity. A
channel model appropriate for studying the performance in
this context is derived and its capacity determined. Source
code models for the Morse code are also obtained, and together
with the channel model, are used to derive a lower bound on
decoded letter error rate. Although the average letter
error rate, as argued in the previous section, is not a
sufficient criterion for measuring the utility of a trans-
cription machine in specific cases, it nevertheless provides
a great deal of insight into the problem of determining how
complex a decoder must be in order to approach the perfor-
mance of a human operator. In order to obtain some intuitive
appreciation of the Morse code as a source code, estimates
of the entropy of a Morse-coded source are first determined

under various assumptions about the source and the code.

A. ESTIMATION OF MORSE-CODE ENTROPY
The source entropy for a symbol-by-symbol decoder is
obtained by considering the source to be an ensemble of

Morse symbols each sent independently with probability equal

to the expected relative frequency of occurrence of that

e
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symbol. A decoder which is designed according to a model

of the source as a Markov chain results in a source entropy
calculated on the basis of that same Markov model. Thus
various levels of model complexity result in corresponding
levels of source entropy, as seen by the decoder. For
independent symbol sequences the source entropy for an

alphabet of size M is given by [4]:

o
]
[}
™=

p(i)log p(i) !

i=1

p(i) = relative frequency of occurrence of symbol i.

For Markov sources the entropy is given by [4,p.68]:

g (i)H(u|s=1)
1

H(u) = -
i

L

E—

where g(i) = limiting probability of the state s = i;

S A e i

K
H(u/s=i) = =~ I

k— Pj(ak)log Pj(ak)

b !

Pj(ak) = Pr[uz = a,|s, = jl,

i.e. the probability that source letter A is produced when

the Markov process is in state j at time 2.

25




1. Independent Symbols

Consider first the case of a source modeled by
independent occurrences of the Morse symbols. In this

case the entropy is

H = logP logP P logP

dash ~ “esp Pogplo9P

esp csp

dot ~ Paash

~Paot csp*

The relative frequencies of the symbols in random Morse

are:

.24, P = .36, P = .14;

E esp csp

= .26,

dot Piash =

the entropy is:

.26log(.26) - .241log(.24) - .36log(.36) - .14log(.14)

= 1.927 bits/Morse symbol

Since there are 1.76 bauds per Morse symbol, on
the average, the entropy in bits per channel digit is
H=1.927/1.76 = 1.09 bits.

2. First-Order Markov Prccess on a Symbol Basis

The independent symbol model of Morse is actually
only of passing interest since even the crudest of Morse
models recognizes the fact that in Morse code a mark symbol
(dot or dash) must always be followed by a space symbol

(esp or csp), and vice versa.




A first-order Markov model has the following

approximate transistion matrix and limiting probabilities:

dot dash esp csp g(i) ]
dot ~ 0 0 3 .3 .26 7] .
E
dash 0 0 | .3 .24
esp .55 .45 0 0 .36 ;
csp .5 .5 0 0 .14 ;
= p—

Using the formulas given above for finding the entropy of a

Markov source,

H(u|s=1) = =.7log(.7 - .3log(.3) = .8813

H(u|s=2) = -.7log(.7)- .3log(.3) = .8813

H(u|s=3) = .55log(.55) - .45log(.45) = .9929

H(u|s=4) = -.5l0g(.5) -~ .5log(.5) = 1.0 Q
H(u) = (.26) (.8813) + (.24) (.8813) + (.36) (.9929) + (.14) (1.0)

.938 bits/Morse symbol

.533 bits/channel digit

3. Second-Order Markov Process On A Symbol Basis

A second-order Markov process of the Morse Code has

the approximate transition Matrix and limiting state

probabilities as follows:
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Again, using the formulas for the entropy of a Markov source,

the entropy of the source for this model is foiund to be

o2t
]

.858 bits/Morse symbol

.488 bits/channel digit

4. Independent Letters

The entropy of a source which produces equally
likely independent letters from an alphabet of size 36

(26 alphabet letters, 10 numerals) is

H = -log (.02776) = 5.17 bits/ltr

e sl ciad

The average number of Morse symbols per letter is 7.27,

resulting in an average entropy for the Morse symbols:

Havg = 5,17/7.27 = .711 bits/Morse symbol

= ,404 bits/channel digit ;
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5. English Text (5]

For a model of an English text source, producing
equally independent letters, the entropy is 4.76 bits/letter.
Using the proper relative frequencies for the occurrence
of each letter, the entropy is reduced to 4.03. A first-
order model of English has entropy 3.32, and a second order
model reduces the entropy to 3.1. A model which produces
equally likely words of text has an entropy of 2.14. Thus
if a decoder which properly uses context, linguistics, and
message structure can be designed, then the entropy of the

Morse symbol for English text can be as low as 2.14/7.27

.294 bits/symbol

.167 bits/channel digit

]

In summary, then, it can be seen that there is
considerable merit in using for design purposes a model of
the encoded source based on independent or Markov letters,
rather than a model based on a probabilistic description
of a sequence of Morse symbols. (The various entropies
are tabulated in Table III.) Given an optimal demodulator,
a decoder which fully exploits the letter structure of the
encoded source, then, can be expected to perform as well as
the human operator for a source of independent letters.

As discussed previously, however, any Morse message of

significant interest does not consist of independent letters,

and the human operator easily exploits the decrease in
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TABLE III

ENTROPY OF MORSE CODE SYMBOLS e
AND CHANNEL BITS

MODEL MORSE SYMBOL CHANNEL BIT k
INDEP SYMBOLS 1.927 1.09
FIRST-ORDER .938 .533 ;
MARKOV SYMBOLS
SECOND-ORDER .858 .488
MARKOV SYMBOLS
INDEP SOURCE .711 .404 i
LTRS
ENGLISH TEXT .655 <372
EQUI-PROB LTRS
3
ENGLISH TEXT .457 .260 1
FIRST-ORDER
MARKOV LTRS
ENGLISH TEXT .294 .167 ;
EQUI-PROB 1
WORDS ]
source entropy by knowing the context, linguistics, :

semantics, and format of the message. Conversely, any ;
decoder which does not exploit this decrease in source
entropy can never match the capability of the human

operator, although it may perform well enough in some !

cases to be of value.




B. IDEALIZED HKM CHANNEL MODEL

Since the objective here is to obtain lower bounds on
error rate, and not an estimate of actual performance, it
is appropriate to consider an idealization of the HKM
process, the detection process, and optimum demodulation
in the presence of white gaussian noise. As such, the output
of the detector would be input to a matched filter whose
integration time is equal to the element duration of the
Morse code being received. Exact knowledge of the baud
length is assumed in order that the matched filter can
remain in synchronism with the incoming signal. Obviously
no decoder for HKM can ever have such information with
certainty, thus this idealization represents the best
possible demodulator which can never be achieved in practice.
Secondly, the error crossover probabilities (dot vs. dash;
element-space vs. character space) are idealized to be
discrete probabilities rather than considering duration
densities for these symbols; the word-space is included
as a source letter and the pause symbol is ignored for this
analysis. Under these simplifying assumptions, the
channel can be modeled as a discrete symmetric channel,

as shown in Figure 3.
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Figure 3. Idealized HKM Channel Model

In this model, the crossover probability ¢§ is related
to the Morse symbol crossover probability by defining § to
be the probability which yields the same average letter
error rate as the symbol crossover probability on the
basis of an average encoded letter. Since the average
letter of Morse code consists of 7 symbols and 12 channel

bits, § is defined by the relationship

= A 7
Eg

1-62=a-ep
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where Eé is the average sending letter error rate and Pes
is the corresponding symbol error crossover probability.
It will be convenient to make the following definitions

on the keying quality of a HKM signal:

Goop: E_ = .01 (P_, = .00143, § = .000837)
FAIR: E_ = .1 (P,g = .0149, & = .00874 )
POOR: E_= .25 (P__ = .0403, § = .0237)

S es

that is, a good sending operator sends the Morse symbols
such that the resulting code stream consists of encoded
letters in which 1% contain at least one incorrect Morse
symbol; a fair operator sends with a 10% error rate; and a
poor operator sends with a 25% error rate.

The crossover probability € is just 1 - Pd' where Pd
is the probability that the matched-filter demodulator
announces the correct mark/space decision. This probability
is obtained as a function of SNR by computing Eb/No, where
Eb = signal energy during an element duration and N° = one-
sided noise spectral density. The error probability € is
then obtained from the performance curve for the probability
of error using either coherent or envelope detection, as
appropriate, followed by a matched filter ([6].

The channel shown in Figure 3 may be converted to the

equivalent binary symmetric channel shcwn in Figure 4 by

T IR
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Equivalent HKM BSC

Figure 4.

defining the equivalent crossover probability, Eeq'

o & p(1/0) = p(O/1) = € + & - 26¢

eq = ¢, and if

0 (perfect demodulation), then Eeq = 6.

Since this channel is symmetric, capacity is achieved by

Clearly if § 0 (perfect keying), then ¢

€

assigning equiprobable input binary symbols, and is given

by

4 C=1+ €eq log € + (1 - eeq) log (1 - &__)s

eq eq

Table IV gives the channel capacity as a function of signal

speed and SNR for the KAM signal using envelope detection.

C. CALCULATION OF LOWER BOUNDS FOR LETTER-ERROR PROBABILITY

A lower bound average letter error rate is easily obtained

by using the Straight-line Bound for a binary symmetric

163]. To use this bound, it is necessary to

channel [4, p.

know the number of codewords in the code, and the length
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TABLE IV

HKM Channel Capacity as Function of Speed and SNR

Speed SNR E/No 1-pP C

d
(wpm) ggg%az) (dB) (Envelope Det)

50
12

(in binary digits) of the codewords. Additionally this
bound only applies to stationary block codes, requiring

construction of an equivalent stationary block code for

Morse, which in reality is a code which produces variable

length word sequences. Given an equivalent block code the
appropriate relationship for the probability of codeword

error, Pe' is given by:

I PTANARR




PE—

Sl

N n N-n
+ z € l-¢
n=k+1 () feq (17 Ceq! ¢
where
N = codeword length
M = no. of codewords
(ﬁ); 0 <n < k-1

A =

0 ; k+liniN

and k is chosen so that

k-1
M I (
n=0

N

M
- z

M
N
) B A = 27; 0 < I A o (s
m=1 5 m=1 = k

This result for Pe is for a block code with M codewords,
each of length N bits transmitted over a BSC with error

probability € The problem then is to construct a block

eq
code which is equivalent, in some sense, to the variable-
length~codeword Morse code, then to determine the number of
codewords and the length of the codewords for this equiva-
lent code. Clearly the complexity of this équivalent block

code will depend on how one chooses to model the human Morse-

encoding process for the design of the decoder, i.e., encoding




symbol-by-symbol; symbol pairs, triplets, etc., letter-by-

it

s A R e S R SRR

letter, letter pairs, 3-letter words, 5-letter words, etc. i 3

Additionally the codewords must be chosen so that the ?
resulting encoded sequences are stationary in order to 3
state that the statistical expectation representad by Pe :

1

is the same as the expected letter error rate (expectation
over time). This stationarity can be ensured by requiring

the encoded sequence to begin at a random point within a

G e

source letter [7]. Such a requirement is equivalent to
stating that the decoder is not synchronized with the encoder

on a letter basis; that is, the decoder has no a-priori

knowledge of the beginning and ending of a letter of the
variable-length word sequence produced by the Morse code.

Consider first the construction of an equivalent block
code for Morse which is assumed to be encoded as a symbol
pair. Table V shows the variable-length Morse codewords
for this code. An equivalent set of equal length block
codewords, on the basis of equal average codeword length,
is shown in Table VI. It is to be noted that some code-
words cannot follow other codewords in an encoded sequence.
For example, the sequence 101011 cannot be followed by
any codeword except those beginning with 10 since the
sequence 11 and the sequence 1llll are not allowable Morse
sequences.

In principle, the same procedure can be followed to

obtain the set of codewords for any desired codeword length.
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‘ TABLE V E
Variable-Length Codewords For Symbol Pairs 5
7 Morse Symbol Channel Code
P>t 10
- 1110
g ony 1000
- 111000
; e 01l
| ae 0111
e 0001
= 000111
E Average No. of Channel Bits Per Morse Codeword: 4
TABLE VI
Equivalent Four-Bit Channel Mode For Symbol Pairs
E 0000 1000
;,g 0001 1010
0010 1011
0011 1100
0100 1101
: 0101 1110
1 0111
No. of Codewords: 13
For sequence lengths greater than about 12, however, the
1
; sheer number of possibilities makes this procedure intrac-
table. For obtaining codeword sets for an encoder which
encodes combinations of more than one source letter at a
- 38




time, then, another procedure is used. Although this

procedure does not obtain all the codewords in the equiva-

it obtains almost all of them and

lent block code set,

thus represents a lower bound on the actual number of

codewords.

The average Morse code sequence is 7.27 symbols in

length. For a Morse code, however, the sequence length

in Morse symbols must be an even number (it must begin with

a mark and end with a character space). By choosing an

average of 8 symbols/character for the equivalent block

code, and by requiring that the 8th symbol be a character-

space, then, it can be seen that it is impossible to produce

a sequence of a Morse symbols which does not represent some

It is also obvious that not all characters are

character.

represented by this code. Now, of the four symbols, only

two are allowed in any one position of the sequence (since

space follows mark invariably and vice versa) thus the

possible number of synchronous Morse sequences on this basis

is 27 = 128, and the minimum length of the codewords in

"~

binary digits is 8 x 1.76 = 14. To obtain the full set of

nonsynchronous codewords, each codeword is shifted one bit

at a time and a one or zero appended, if allowable, until

To illustrate, consider the

no new codewords are produced.

synchronous codeword 10111011101000. By right shifting and

appending a zero and one respectively, the two additional

codewords 01011101110100 and 11011101110100 are obtained.

On the next shift, note that the sequence 0110 is not legal,




so only three additional codewords are obtained: 1010...,

0010..., and 1110.... In general, those codewords beginning

with a dot (10) produce eleven additional codewords, and

the codewords beginning with a dash (1110) produce eight

additional codewords. If Ms = number of synchronous code-

words, then Ms/z = no. of codewords beginning with a dot

(dash), so the total number of nonsynchronous codewords

is given by

M=19 Ms/2 M, = 10.5 Ms

Table VII gives the number of binary codewords (M) and the

codeword length (N) for the encoding procedure of interest.

For N < 12, M and N are exact, as computed by the first

procedure discussed above. For N > 12, M and N are lower

bounds obtained by the second procedure. Using these values

of M and N, the lower bound on Pe as a function of eeq is

obtained. This value for Pe is the error rate over a code

of M codewords, and for the case of single character encoding,

is the same as the average letter error rate. For other

cases of source alphabet models, however, Pe does not

represent the letter error rate, since letters consist of

more or fewer than one codeword depending on the length of

the codeword. To determine the letter error rate, Ez'

consider the following arguments.




TABLE VII

Equivalent Block Codeword Set Size And Length For Morse Code

Encoder M N
Symbol Pair 13
] 3-symbol 33
E Single letters (exact) 395 12
4 Single letters (bound) 1,344 14
: Double Letters 139,264 28
; 3-letter words 22,020,096 42

Case 1l: Letters consisting of two or more codewords.

For this case, the distribution of codeword

? error events per letter is binomial with parameter Pe'
Let m be the number of codewords per letter. Then the
probability of exactly k error events per letter is given

K (1 - Pe)m—k, and the probability of at least

| by () P,
B | one error event per letter (i.e. the probability of a
: letter error) is given by El =1- (1 - Pe)m.

Case 2: Codewords consisting of n letters.

In this case, El is lower bounded by assuming
that a codeword error event causes a single letter error
within the codeword; then fl = P, /n.

Figures 5-7 show plots of the lower bound on

average letter error rate, fz' as a function of SNR and

keying quality for several levels of assumption about the

R

Morse encoding process.
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IV. A GENERAL MODEL FOR THE HKM SIGNAL PROCESS

In this section, a general model structure which accounts

for message context, sender operator errors, variation in

date rate, and variability of element duration is constructed.

Further it is shown that various special cases of this

model result in processes for which optimum estimation

algorithms and decoders have been treated in the literature,

some from the point of view of optimal estimation theory

and others from an information theoretic viewpoint.
Fundamentally the model that is constructed is a sliding

block coder (SBC) with infinite memory. However, instead

of encoding the letters of the text into the Morse symbols

either noiselessly or with a fidelity criterion, the

] encoding process is considered as a probabilistic mapping
of the output of the SBC. The complexity of the SBC is i
- determined by the degree to which the Morse message is

desired to be modeled, from the simplest case of independent

| symbols to a highly complex syntatic and semantic model.
While specific complex models of a Morse message are not
developed in this investigation, the structure for imple-
mentation of such models is provided by the general model.
Thus the structure proposed represents a unified approach

to modeling the Morse message from the simplest case to

the most complex.

o mmid




A. BASEBAND HKM SIGNAL PROCESS

The desired representation of the discrete-time baseband
HKM process is a sequence of 1l's and 0's whode pattern of
occurrence closely resembles that of a human operator sending
a Morse text. By considering intuitively how a sending
operator may encode the letters of the text, the random
variables which influence the human encoding procedure can

be recognized. Figure 8 is useful for visualizing this

process.
NOISE NOISE
1
TEXT * ENCODER * KEY ___ff
{r;} {a} {0,1}

Figure 8. Morse Encoding Process

At some time k, one or more letters of the text, &k'
are encoded into a sequence of code words ay s consisting
of the Morse symbols. The human operator, however, does not
always send the proper Morse sequence for a given sequence
of letters; typical mistakes are insertions and deletions

of one or more symbols (particularly dots), and substitutions

of one symbol for another (particularly word-spaces for




character-spaces, and character-spaces for element-spaces).
Additionally the speed at which he is sending may vary over
a period of time, depending on his alertness, proficiency,
fatigue and the importance of the traffic being sent.

The key converts these symbols into the 0,1 logic levels
of duration consistent with the particular Morse symbol
being sent. The length of time that the key is in a 0 or
1 state, however, while determined principally by the Morse
symbol being sent, is a random variable since the human
operator cannot always produce repeatable, precise durations.
The variability of the durations for each symbol, again,
is dependent on the operator's proficiency, alertness, and
individual sending habits. Consideration of these random
influences leads to the model which is now developed.

Let

™
iy
el
("
]

12}, the set of keystates;

a, € {Ai; i 1,2,...6}, the set of code symbols:;

. & {Li; i

X 1,2,...N}, the set of source letters.

Further, define the following finite state memory

functions:

(1) 8, = £,.(x, ,B,_1)+ the memory associated with
k Bk’ "k=1 keying;
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(2) a = £ (a _,a,_ ,.), the memory associated with
k @k’ k-1 encoding;
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