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2
The x goodness of fit test is widely used as a means of validation

of a probability model. Acceptance of a probability model on the basis

of i test is a dangerous procedure in the absence of a thorough know-

ledge of the power of the test for a broad class of reasonable alterna-

tives . The power of the test is examined via simulation at signal

plus noise alternatives to the geometric and the Poisson distribution,

and the power is seen to compare unfavorably with that of the likelihood

ratio test. Likelihood ratio tests are thus advanced as goodness of fit

criteria when signal plus noise alternatives are deemed relevant.

I • INTRODUCTION

The x2 goodness of fit test is by far the most widely used statisti-

cal technique for investigating the “adequacy ” of a probability model in

describing an observable random phenomenon. The procedure has been sub-

jected to a considerable amount of quite justifiable criticism. Among the

arguments against the procedure is the simple observation that no proba-

bility model constitutes an exact description of a stochastic process,

and thus the null hypothesis that a probability model describes a process

is known a priori to be false. Moreover, given a suff iciently large

sample , any null hypothesis that a fixed probability model holds will be

rejected with high probability. Thus, for large samples, departures from

a probability model that are of no practical significance may result in

a strong rejection of the hypothesis that this probability model describes

the random process. Be that as it may , there remains an anomaly of even

greater concern. The most comaon use of the x2 goodness of fit test is 
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the validation rather than the rejection of a given family of probability

distributions. In other words it is coemon practice to interpret the

acceptance of a null hypothesis as a validation of a probability model,

noting that such acceptance has shown that the data is not inconsistent

with the model being entertained. It is a giant step indeed to the

analysis that follows, in which the probability model is tacitly assumed

to hold. The information necessary to justify this step is rarely available.

The crucial information consists of a thorough knowledge of the power of

the test at a fairly broad set of reasonable alternatives to the null

model. In the absence of such information, the experimenter ramains

unsure about the proper interpretation of acceptance, and may be led to

accept a model only because the test procedure amployed is unable to detect

certain types of departures from this model.

Another peculiarity of the ,(2 goodness of fit test is the fact that

a variety of substantially different probability models may be accepted

on the basis of the teat. Crow and Bardwell (1965) examined the fit of a

collection of discrete probability models to several famous data sets.

Models investigated include the Poisson, Neyman type A, Poisson-binomial,

hyper-Poisson and Charlier type B series distributions. The data obtained

by Rutherford and Geiger on the number of alpha particles emitted by a bar

of polonium were fit by these distributions, and it was shown that the

Poisson, type B and hyper-Poisson all fit well, that is, had x2 statistics

with P-values around .20. We have fit a convoluted Poisson distribution

to this data, the convolution of Poisson and Bernoulli distributions, and

obtained a x2 statistic with a P-value in the same neighborhood. The

utility of performing a x2 test might reasonably be questioned in the light

of such ambiguous results. - 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.-
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We propose in this paper to investigate the power of the goodness

of fit test at particular signal plus noise alternatives. Since the

test is not directional, that is, is not designed with particular alterna-

tives in mind, one would expect that there are more powerful tests available.

For the two families of signal plus noise distributions investigated in

this paper, we have estimated the power of likelihood ratio tests for com-

parison purposes. As predicted, the likelihood ratio procedure is superior ,

sometimes strikingly so.

Tests for detecting the presence of signal plus noise distributions

have received attention in a recent paper by Sclove (1977). In that paper,

tests are proposed for the hypothesis of a Poisson-Normal convolution

against the broad alternative of an infinitely divisible distribution. A

test is also proposed for the hypothesis of normality against th. alterna-

tive of a Poisson-Normal convolution. These tests are based on oment

estimators of cuim~lants of the underlying distribut ion , and the power of

these tests remains to be investigated.

In the next section, we derive some results concerning the maximum

likelihood estimates of parameters of the signal plus noise distributions

studied here. These estimates are later used in computing the likelihood

ratio statistic. In particular, we derive the maximum likelihood estimates

of the parameters of the geometric-Bernoulli convolution and establish a

relation between the MLE’s of the parameters of the Poisson-Bernoulli con-

volution which facilitates the numerical search for the MLE’s. In

Section III, we describe the procedures used in the generation of random

samples from these distributions, and make remarks on the numerical methods

used. Tables sumearising our simulation study are given in Section IV,
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followed by a discussion of the simulation and some concluding remarks.

II. MAXDWM LIKELIHOOD ESTIMATI(~J

Two signal plus noise distributions are studied in this paper:

(1) The distribution of the sum X Y + Z of independent variables Y and

Z where Y has a geometric distribution with parameter 11 and Z is a

Bernoulli variable with parameter p. The probability mass function of

the variable X is given by

if x — 0

P(X—xIu ,p) — (l_n)((l_p)T*p)TTX~~ if x—l,2,.••

0 otherwise.

(2) The distribution of the sum X — Y + Z of independent variables where

Y has a Poisson distribution with parameter 9 and Z is Bernoulli with

parameter p. The probability mass function of this variable is given by

-9 x-l
P(X—x 19,p) — ~ ((l-p)9fpx), x—O,l,2,..•

Maximum likelihood estimation for samples from either of these distribu-

tions when the Bernoulli parameter p is known is a simple application of

work in Samaniego (1976) and Samaniego (1977) . We address below the problem

of maximum likelihood estimation of the parameter pairs in these two families

of distributions. Prior to our derivations in this regard , we examine the

question of identifiability of these two-parameter families. Sclove and

Van Ryzin (1969) obtained moment estimators f variety of signal p lus

noise distributions, including the Poisson-binomial convolution, and established

- — . r: I 1. I .~. n — r * n - V!,r- L~~ 
—.-.— .- —.~ - -~ — -—.— -— ~~~~~~~~~~~~~~~ - — .- — — —  —. —~ — —— _ ._ __. _ .— _ —.-—~ — _-._‘——
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the identifiability of this distribution in that paper. We therefore

turn our attention to the geometric-Bernoulli convolution, which can be

shown to be identifiable as follows . If X is distributed as the sum

of independent geometric and Bernoulli variables Y and Z, we show that

the first and second factorial moments of X are in one-to-one corres-

pondence with the parameter pair (n ,p). This is a sufficient condition

for identifiability. We have

2
EY — f1-, EY(Y-l) — 

2i~ 2IT (1-n)

and

EZ — p, EZ(Z-l) — 0.

Let
IT

and

m2 — E(X(X-l))

Zir n

Then
ZnmZ - j-~ 

m~

or

- 

~~l~~2

and thus
m2 Hp - m1 

- 
~~~~~

-

Thus, the pairs (ir ,p) and (m1,m2) are in one-to-one correspondence. 
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Suppose a sample of size n is taken from a geometric-Bernoulli

convolution. Let ~~~~~~~~~~~ be the k distinct integers observed,

with frequencies ~~~~~~~~~~~ We assume that x0 — 0 and will treat the

cases n0 — 0 and a0 > 0 separately. All other nj are assumed positive

k H
with E ni — n The likelihood function for this sample may be written as

Lao

L(x,n,p) 
~La 1

— ~~~~~~~~~~~~~~ ~~((l_p)(l_n)n
Xi + p(l_U)IT i3 i

- (i~p ) k~i_t1)~0 
~i—i

a a0 S-i*n .~n n  f l f l
0

- (i-p) ~k l-n) 11 ~~1-fl1 ~~(l-p)1~fp)

— (1_p)
UO (1_11)fl n~~~~~ k~(1-p)i~~p ) °

k
where S — E ~~~~ that is, S is the sum of the n observations . The

i_i

values of p and 11 for which L >  0 differ for different samples . We

decompose the problem of maximum likelihood estimation into several itually

exclusive and exhaustive cases.

Case 1. S — U - n
0 (that is, all observations are either zero or one).

(a) S — n - a0, n0 
a n. In this case, the likelihood is equal to

n n
L — (l—p) (1—n)

- -



~~TT~7 ~

8

which is positive for ii < 1, p < 1, and is maximized over the unit square

*at IT — 0, p — 0.

(b) S a a - n0, 0 < n~ < a. Here,

L - ( )nO~~~~~~~
1 )

n_n
O

is positive for 0 < ti < 1 and - < p < 1.

Differentiating Ln L one obtains

(n— n0)(l-p)Zn L — - j•
~~ 
+ 

~~ i~ n(l-p) — 0, (2.1)

a0 
(n-n0) (1-n)

tn L = - i•:; + 
~ 
+ n(l-p) 0. (2.2)

Solving (2.2) for p, we have

no
p a 1 - 

n(l-nY

Substituting into (2.1), we obtain

ç n0~~~

O - - +1-yr n~ 
_ _ _1 — n(l—ir ) +

n0(n-n0)
- 1-n + n(l-n) - a0 + n0n

n0(n-n0)
— - in + (n-n0) (1-ir)

_ 
(2.3)

1-it

- -

~

- -

~

- . -

~
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Since (2.3) has no solution, there are no critical points in this case.

Inspecting the boundary of the unit square , one easily obtains that

(fi,~) a (0, S/n) is the NIL . -

(c) S — a - a0, a0 — 0. Here ,

L = (1~IT)~ (p +

which is positive for 0 <t i  < 1, - < p < 1. Differentiating Zn L one

obtains

L _A_ n(1-p)
- 1-n + p + n(l-p) —

n( 1—yr)— L n L —  — 0 ,p + n(l-p)

which, by inspection, has no solution. Again, inspecting the boundary of

the unit square, we find the )ftE to be (ft ,~~) — (0,1).

Case 2. S > n - a0 (that is, at least one observation exceeds 1).

(a) S > n - a0, a0 — 0. The likelihood is given by

L — (l_U) U
IT

S-n((l_P )IT + )n

which is positive for 0 < n < 1 and - < p 
~ 

1. Now

a 5-n n(l-p)

n(i-n)— L n L —  — 0 .(l-p)n + p

These equations have no solution. Inspection of the boundary of the unit

square identifies (1~,~) — (~ fl, 1) as the PUE.



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ., ~~~.,, ,r ,  -‘- ~~~~~~~~~~ ~~ W r  

- - - - -

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

10

(b) S> n - n 0, O < n 0 <n. Here,

a
0 S-i*n 

n-n0
L - (l_n)’~(l_p) n ¶~(l-p)n + p)

which is positive for 0 < it < 1, - < p < 1. Now

S-n+n0 (n-a
0
)(1-p)

tn L a - 

1-it + yr 
- + 

(l-p)n + p 
— 0 (2.4)

n (n-n )(1-Tr)0 
— 0. (2.5)

I-p (i-p)tr + p

Solving (2.5) for p, we obtain

p a 1 - 
~~i

0
it) 

(2.6) - -

Substituting (2.6) in (2.4), we find

S —n+n
f i —  ~~0 (2.7)

and thus

Sn
— 1 - n(n ) ~ (2.8)

We show that this pair (ft ,~~) maximizes L, whether or not (ft ,~~) is in the

unit square, that is, whether or not ~ > 0. The second partial derivatives,

evaluated at (fi,~ ) can be shown to be equal to
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2 [ 2 2 s
2
n 2 1

Zn 
L1 (fi A

) 

= - [(~:~ 
+ S~~fn0 

+

—
~~~~~ Zn L - - 

n3(;_no)

(ft,~) S a0

2 2o— Zn L
n-ne

To show that the Hessian is negative definite at (fiJ), we note that the
diagonal terms are negative, and the determinant of the Hessian is

4 n3(n-n) n fl3 4

n0(n-n0) 
+ n0(5-n+n0) + 2 - 

(n-n0)2

3 3n (n-n0) a (n-n0)
a 

n0(n-n0) + n0(S-n+n0) - 

(n-a0) 2

3 n~ (n-n0)
— + n0(S-n+n0)

which is positive .

Now ~ < 0 if and only if S > n(n-n0)/n0, and in this case, the solution

(l’t,~ ) of the likelihood equations given by (2.7) and (2.8) is not the maximum

likelihood estimate. Since there is no critical point in the unit square,

we check the boundary to obtain the MLE (fi ,~~) — (~~ , 0). It is a useful

coincidence that the inequality
n(n-n~)

5 >  ~~~no
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is equivalent to

~ 
S-u4-n0

The PILE in Case 2 (b) may thus be written

= (mix (~~~, 5 o), ma~(O, 1 - n(n-n0y~ 
(2.9)

One may easily check that (ft,~) given by (2.9) is in fact the NIL for

samples containing at least one nonzero observation (that is , for all cases

except 1 (a)), the NIL being (*,~) — (0,0) otherwise.

We turn our attention to the problem of maxiim.im likelihood estimation

for samples from the Poisson-Bernoulli convolution. We are unable to

display a closed form solution for the PILE here, but we prove that any

nontrivial solution (i.e., such that ~ ,~ 0, 1) of the likelihood equations

satisfies the first moment condition

that is, the condition that results from equating sample and population

first moments. We are thus able to reduce our numerical search for the PILE

to a one-dimensional problem.

Let X1 ...,X be a random sample from a Poisson-Bernoulli convolution.

The likelihood function is given by
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~ ~L(x,9,p) — fl ~ ((l-p)9 +
ial i•

-n99S-n a
— 
e B ((l-p)9 + px~).

1

- 1  

1

- 

- Thus, the likelihood equations are

Zn L — -n + + (l-p) 
~ (l p)9

1
+ PXj 

o (2.10)

U
Zn L — 

~ (l-p)9 + px~ 
a 0. (2.11)

By carrying out the indicated division, equation (2.11) may be rewritten as

- (° + (~~i’~~ ~ 
(l-p)9 + pxi 

a o (2.12)

provided p ~ 0. Assuming p ‘~~ 0, 1, we substitute in for the sum in (2.12)

an expression for this sum obtained from (2.10), yielding

- (9 + ~ (l-p))(j~~ )(n - ~~~) 0.

This is equivalent to

n I n9-S+n) a O

or

a(l-p) - ~~ fS-n
— op

PC 1 P)

—
~~~---~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- - -_ _
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which reduces to the moment condition

p+ 9— S/a.

The moment condition established for solutions (6,) of the likelihood

equations is used in our numerical search for the PILE by substituting

9 — s/n - p into equation (2.11), and searching for solutions of the

equation

n (xi-S/n + p)

~ (S/n - p)(l-p) + px~ 
— 0. (2.13)

It can be shown that the point (6,)  — (S/n, 0) is always a solution of the

likelihood equations, so that our procedure for finding the PILE involves

comparing the likelihood at this point with the likelihood at any point

(ê,)  for which E (0,1] is a solution of (2.13).

III. RA NDOM GENERATION AJD NUMERICAL PROCEDURES

Random samples of size 50, 100 and 200 were generated from the

geometric-Bernoulli and Poisson-Bernoulli convolutions using algorithms

which employ random variables uniformly distributed on (0,1]. Let U

represent an observed uniform variable. Geometric random variables were

obtained as follows:

1. Setka0 .

2. Generate u.

3. If u > ii, deliver k as 0(n); otherwise , set k — 1*1 and

g to 2.

Bernoulli random variable, were generated by

L ~ - ——~~~- - -  -
~~~

---
~~~
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• 1. Generate u.

2. If u < p, deliver k a 1 as B(l,p); otherwise deliver k — 0.

Poisson random variables were generated from a sequence of uniform variables

as follows:

1. Set a a 1, k — 0.

2. Generate u.

3. L e t a — a . u .

4. If a < c 9, deliver k as P(9); if a > c 9, set k — k+l and

go to 2.

It is easy to show that the output k obtained by this algorithm has a

Poisson distribution with parameter 9. The algorithm is based on a technique

proposed by Ahrens, Dieter and Grube (1970).

The numerical procedure used to calculate the PILE for the parameters of

the Poisson-Bernoulli convolution deserves some comsent. Initially, the

Newton-Raphson algorithm was used , but it was found to be inadequate.

Several data sets gave rise to im*ltiple roots, and there is no guarantee that

the Newton-Raphson procedure converges to the PIlE. The fact that

(6,;) — (S/n, 0) is always a solution of the likelihood equations seemed to

cause difficulty. There were a number of examples in which NR converged to

(S/n, 0) when the NIL was elsewhere. This occurred in an .~s—ple where the

sample consisted of zeros and ones, in which case the PILE ii (Ô, )  — (0, S/n) .

The method of moments estimate of (9,p) was used as an initial value for each

sample .

After reducing the problem to one dimension, we opted for a search

procedure which is guaranteed to find a root in (0 ,1] if one exists . Interval

halving and the method of false positions were considered. Barnett (1966)

recoemends the method of false positions , but makes incorrect claims concerning 

-
~~~~

—
~~~
--- --- 
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this method. He claims incorrectly (see p. 159) that one can guarantee

that the computed PILE is within an arbitrarily small distance of the true

PILE . By partitioning an interval into subintervals of length c , and then

applying FP to each subinterval , one may f ind one root in each of several

subintervals. Even if one of these roots is within € of the true PILE

it may happen that among all the roots found , the one at which the likelihood

is largest is not within € of the true PILE. Interval halving suffers from

the same deficiency, of course, but was adopted because of its logical

simplicity. The interval (.0001 , .9999) was partitioned into ten intervals

of equal length. The number ten was selected after partitioning the interval

into 90 subintervals failed to produce more roots in any of 20 data sets on

which we applied the procedure. A subinterval was identified as containing

a root if the function in (2.13) took on different signs when evaluated at

the endpoints of the interval. When the existence of a root was determined,

the interval was halved, and the same criterion applied iteratively until

the root was approximated to the desired level of accuracy. Once the roots

uncovered by our procedure were well approximated, the likelihood was

evaluated at each root and at the endpoints p — 0 and p a 1. The pair

(9,p) among these which maximized the likelihood was dubbed the PILE, and was

used in our calculation of the likelihood ratio statistic.

IV. P~ JER ESTIMATION FOR AND LIKELIHOOD RATIO TESTS

Five hundred samples of sizes 50, 100, 200 were taken from the two

signal plus noise distributions under study at a variety of values of the

parameter pair . The approximate x2 statistic appropriate for each test was

tabulated and compared to the 57. cutoff of the distribution with appropriate 

— - -- -~~~•--- -~~~~ - -  - - -~~~~~
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degrees of freedom. In the case of the x2 goodness of fit test, the limiting

null distribution of the x2 statistic when parameters are estimated by PILE’s

is given by Chernoff and Leh~*’rn (1954). It is shown there that the limiting

distribution is “between” x~~1 and 
~~-r-l where k is the number of cells

and r is the number of estimated parameters . In our sissilation, the test

which uses the 57. cutoff point of was used throughout. This procedure

slightly overestimates the power. For the likelihood ratio procedure,

-2 Zn ) was assumed to have x~ as its 
null distribution, where X is the

likelihood ratio statistic.

For each of the parameter pairs indicated, the proportion of rejections

of the hypothesis H0: p — 0 (postulating a geometric or a Poisson model for

the data) in 500 repetitions was tabulated. The results are as follows:

TABlE I: 0(11) * 8(lp)

N a 50

.35 .50 .65 .80

Ut

.00 .040 • .040 .048 .042 .044 .046 .056 .032

.10 .052 .086 .072 .066 .062 .076 .074 .068

.20 .196 .254 .144 .208 .094 .140 .064 .112

.30 .366 .472 .234 .372 .198 .320 .112 .202

.40 .596 .760 .436 .610 .262 .500 .104 .324

.50 .840 .902 .658 .860 .418 .710 .176 .422

.60 .970 .998 .818 .942 .586 .870 .222 .674

.70 .994 .998 ~~~~~~~~~ .988 .752 .966 .204 .798

.80 .992 1.00 .934 1.00 .772 1.00 .250 .938

.90 .840 1.00 .742 1.00 .588 1.00 .298 .994

1.00 .578 : 1.00 .578 1.00 .484 1.00 .332 1.00
I ‘ _____ ________ _____ ______ 
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N a 100

.35 .50 .65 .80

Ut Ut Ut x2 Ut
• I

.00 .042 : .024 .044 .042 .054 .038 .086 .028
I I

.10 .092: .150 .072 .116 .062 : .074 .076 .084

.20 .300 1 .424 .224 .364 .154 .252 .100 .192

.30 .582 .770 .378 .636 .226 .508 .148 ‘ .340

.40 .882: .956 .708 .874 .428 ‘ .750 .196 .520

.50 .970: .992 .818 1 .984 .686 , .922 .310 .744
• S $

.60 .998: 1.00 .984 1 1.00 .890 .990 .438 : .886
I , S

.70 1.00 • 1.00 1.00 : 1.00 .986 • 1.00 .640 : .990

.80 1.00 
• 

1.00 1.00 1 1.00 .992 1.00 .688 1.00
F .90 .992 1.00 .970 1.00 .898 1 1.00 .604 1.00

1 .00 .900 1.00 .840 1.00 .730 1.00 .498 • 1.00
I _______  _____  ______  _____  I _______  _____  _____

N— 200
ii

p 
~~~~ .50 .65 .80

Ut 2 Ut Ut Ut

.00 .060 .036 .058 .030 .048 .028 .060 .022

.10 .128 .242 .104 .214 .056 .162 .060 
• 

.112

.20 .468 .702 .318 .574 .190 .468 .102 ‘ .300

.30 .882 .966 .676 .910 .410 .740 .166 : .514

.40 .982 1.00 .922 .988 .720 .954 .324 
• 

.832

.50 1.00 1.00 .996 1.00 .938 1.00 .542 .956

.60 .998 1.00 .792 .994

.70 .946 1.00

.80 1.00 1.00 1.00 1.00 1.00 1.00 .990 1.00

.90 .998 1.00 .954 1.00
1.00 1.00 1.00 .990 1.00 .952 • 1.00 .774 1.00

_ _  _  _ _  
S
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TABLE II: P(9) * B(l p)

9 N— 5 0
p 

~~~~~~

.50 1.0 2.0 4.0

Ut Ut Ut Ut

.00 .032 .040 .040 .030 .048 .056

.10 .032 .022 .034 .042 .046 .042

.20 .048 .042 .042 .050 .044 .044

.30 .052 .068 .052 .054 .038 .032

.40 .064 .102 .052 .066 .046 .028
o 0

.50 “ ~ .102 .172 .064 .088 .042 .040
o

.60 .~~ ~ .120 .292 .060 .180 .040 .052

.70 ~ .202 .474 .072 .192 .036 .100

.80 “4 .270 .716 .124 .350 .048 .086

.90 .278 .948 .148 .562 .062 .130

1.00 .308 1.00 .176 .922 .064 .156

.50 

N 

1.~ 2.0 4.0

Ut ZR Ut LR

.00 .052 1 .032 .046 .032 .056 .028 .044 .046

.10 .040 1 .032 .040 .026 .054 .046 .072 .040

.20 .058 1 .042 .056 .052 .030 .038 .050 .036

.30 .082 .146 .056 .092 .052 .058 .060 .054

.40 .166 .288 .064 .148 .056 .090 .050 .048

.50 .364 .602 .140 .320 .054 .114 .034 .088

.60 .654 I .850 .242 .522 .074 .174 .058 .114

.70 .884 .978 .470 .794 .114 .364 .046 .206

.80 .990 .998 .718 .948 .136 .538 .078 .234

.90 .994 1.00 .832 1.00 .254 .816 .096 .362 —

1.00 .852 1.00 .582 1.00 .402 .998 .126 .448

_  —_ ~~~-—~~~~~~—--~~~~~~~~~~~~~~ - -~~-~~ - - -~~~~ 
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N a  200

.50 1.0 2.0 4.0

Ut Ut Ut Ut 
- 

-

.00 .044 .024 .052 1 .038 .066 .030 .046 .034

.10 .064 .040 .068 1 .044 .052 .024 .048 .050

.20 .072 .112 .040 I .062 .048 .050 .042 ‘ .038
S S

.30 .128 .234 .056 1 .132 .044 .056 .044 .054 - -

.40 .348 .588 .110 1 .254 .050 .134 .046 ‘ .086

.50 .652 .868 .260 .514 .052 .202 .072 .108

.60 .952 .998 .490 I .810 .120 .350 .046 1 .134

.70 1.00 1.00 .830 1 .976 .194 .570 .072 .262

.80 1.00 1.00 .972 1 .998 .372 .858 .076 , .372

.90 1.00 1.00 .996 1.00 .538 .976 .112 .602

1.00 1.00 1 1.00 .898 1.00 .716 1.00 .178 .836

The estimates of the power of and likelihood ratio tests tabulated

above lead us to conclude that these tests have the following general

characteristics. For a fixed value of the Bernoulli parameter , the power

of both tests decrease as the geometric parameter it or the Poisson

parameter 9 increases. This agrees with our intuition in that as IT or

9 increases, the spread of the distribution increases, and it is correspond-

ingly more difficult to detect a Bernoulli component. For fixed 9 or IT,

the power of the likelihood ratio test increases with p. It is interesting

to note that the test does not behave similarly. The power curve seems

to be parabolic in p for fixed If or 9, and the power is often seen to

be higher at p a .7 or .8 than it is at p — 1. Insofar as the case p a 1

might be considered the most radical departure from the null hypothesis among

the class of alternative, being considered, this feature of the test is

undesirable.
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The estimated power curves of the likelihood ratio test generally

(but not uniformly) dominate those of the test. The test dominates

only for small values of p, and this is easily explained by the fact that

the likelihood ratio test is somewhat conservative, achieving an actual

significance level in the neighborhood of .03 compared to the nominal level

of .05, while the test is slightly anti-conservative. Thus, the power

curves for the x2 test are generally above those for the ZR test at p — 0,

and the reversal takes place at some p > 0. The superiority of the ZR test

is occasionally striking. If one looks at the ratio of estimated power, one

finds many examples of this ratio exceeding 3. For samples of size 50

generated from the geometric-Bernoulli convolution with it — .8 and p — .7,

we were able to detect a Bernoulli component for only 207. of the samples

using a x2 test, while with the ZR test, it was detected in 807. of the

samples. Similar comparisons can be made from our similation of samples

from the Poisson-Bernoulli convolution.

The class of signal plus noise distributions comprises a huge collection

of probability models which contain the standard models as degenerate cases.

There are many sources in nature of data which might reasonably be modeled

by a signal plus noise distribution. The Geiger counter data set is a

classic example -- a number of other examples are mentioned in Samat
~iego (1976).

The power of the x2 goodness of fit test at signal plus noise alternatives

tends to be low -- at least by comparison with other available tests.
Approximate likelihood ratio testi, where maximum likelihood estimates of

parameters of a signal plus noise distribution are obtained numerically,

provide a means for checking the goodnes. of f i t  of standard probability

models against a large class of alternatives. Our simulation resul ts indicate 
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that the dividends from implementing such tests instead of the test

can be substantial.
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