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ABSTRACT
The projector on a convex set K in a reflexive Banach space X is the mapping
PK assigning to each point x* in the dual space X* the set of points minimizing
I2

* *
%-II xII© + %le II2 -<x ,x> over K. Projectors are discussed and shown to enjoy

most of the properties of nearest point mappings in Hilbert space.
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EXPLANATION

In Hilbert spacé, and therefore in any finite dimensional Euclidean space, the
projector on a closed convex set K is the mapping PK assigning to any x the
nearest point in K . If K is a closed convex cone C with vertex at the origin

then PK = Pc is said to be a conical projector; ordinary linear orthogonal projectors,

obtained by taking linear subspaces for C, are a special class of conical projectors.
A partial ordering is introduced among conical projectors by saying that a conical pro-

jector P is weaker than another P if p_ -P is again a projector. Given an
i s S5 S
increasing conical projector-valued function of a real variable A : X - PC , and a non-
A
negative real-valued function f(}), the integral ff(k) dPC can be defined very
A

much in the way one defines the Stieljes integral of a function with regard to an

increasing function. It is a classical result that if all PC are linear then the
A

integral yields a selfadjoint operator, and conversely, that any selfadjoint operator

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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can be represented in this form.
This report initiates the discussion of the possibility of extending the process

of compounding conical projectors through integration - known as "spectral synthesis"
to reflexive Banach spaces other than the Hilbert space. To this end one defines the
projector as a closed convex set K in a reflexive Banach space X as the mapping

* *
P, assigning to every x in the dual space X the set of points (there may be

K

more than one point) that minimize %-“x'll2 + %-le*ll2 -< x*,x > over K. These new pro-
jectors, it turns out, enjoy properties that extend in a most natural way those enjoyed
by projectors in Hilbert space, to which they reduce when the space is the Hilbert
space. However, the question of whether spectral synthesis is possible in the new set-

ting remains undecided, mainly because it is not known if the above indicated manner

of introducing an ordering does in fact produce a partial ordering in the present case.

afi=

e




PROJECTORS ON CONVEX SETS IN REFLEXIVE BANACH SPACES

Eduardo H. Zarantonello

Selfadjoint operators in Hilbert space can be synthetized out of orthogonal projectors
by the process of forming the integrals of numerical functions with respect to an increasing
one-parameter family of projectors. To be viable such a mechanism - known as spectral syn-
thesis - requires from projectors a certain number of algebraic properties. Not long ago I
have shown [6,7,8] that these properties subsist if the class of linear projectors is en-
larged so as to include projectors on closed convex cones, conceived as nearest point mappings,
and thus I was able to synthetize a new class of operators, mostly nonlinear. But then, having
freed the spectral theory from its original confinement I was faced with the question of how.
far one can go on extendiny it. Would it be valid in spaces other than Hilbert space?, for
instance. It is precisely to thi: question that I am addressing myself in this paper, be-
ginning with the study of projectors in reflexive Banach spaces. A first basic question is to
decide what projectors on convex sets should be. Nearest point mappings certainly do not
qualify, as they form an unruly class devoid of any algebraic structure, nor does any class
of operators mapping the space into itself, since for these many of the required properties
do not even make sense. This realized, one is led to the view that projectors must be mappings,
perhaps multivalued, acting from the dual into the space, view which in Hilbert space is thor-
oughly concealed by the standard identification of the space with its dual. At this stage a
choice offers itself in a most natural way: The projector on a closed convex set K in a real
reflexive Banaéh space X is the mapping PK:X'*-zx assigning to each x. € x' the set of
points minimizing %“x.ﬂz + %ﬂxﬂz - <> over K . A series of familiar looking results
E soon brings out the certainty of being on the right track. So reassured, I have proceeded to
investigate these new mathematical objects, not so much on their own right but rather as pos-
sible instruments for the spectral theory. My results are inconclusive as they failed to
prove or disprove a couple of essential points. It is however apparent that the very existence
of an increasing family of projectors requires from the space a good deal of Hilbert space
structure, and therefore that there is not muqh occasion for the spectral theory to take place

in a reflexive space chosen at random.

§58nsoted by the United States Army under Contract No. DAAG29-75-C-0024.




§1. Projectors on convex sets. All throughout this article we shall be working in a real

£ .
reflexive Banach space X, whose dual we shall denote X . As usual the double bar indicates
the norm in either space, and the angular brackets the bilinear form effecting the pairing of

*
*
X and X . We shall let J : X +2x denote the duality mapping:

* ®* 2 *2
Ix={ x |<x ,x> =lIxl° = Ix1°} ;

*
lzx -r2x,

* -
of X onto X, and J
- * * *
J 1x = {x|<x ,x> = Bxk® = bx “2} %

* 1 2 =1 * Eon ED
the duality mapping of X onto X . Let us recall that Jx = 3z lxl", and 0 "x = 3azlx",
and that the relation

* *
At s Lixi® -<x',x> =0
2 2
* — *
is equivalent to x € J x and to x € J lx . Mappings, even when singlevalued, are con-
sidered here in the context of multivalued mappings, and so the inverses always exist. The
*
conjugate of a proper lower semicontinuous function f : X + (-»,+*] is denoted f . We
®*
shall often use the letter Q for the function x -+ ‘;‘lez, and Q for its adjoint
* *
x - % I x l|2. If K is a closed convex set vpx denotes its indicator function The infra-
convolution of convex functions is indicated by the symbol O.
®
Definition 1. The projector on a closed convex set K in X is the mapping l>K o X e 2x
*
F assigning to each x the set of points minimizing the function
* *
1" e tm®-<x,x>

over K , that is

) copx = fxex| Al - <x'x> < Ly - <x",y> , vy € K}

i Since Ix||2 -< x.,x > is l.s.c. convex function of x tending to +« with f xli
the infimum is always attained and Pxx' is never empty. In Hilbert space PK is simply the
nearest point mapping on K. If K =X then P, = J_l, whereas if K = {tz}t %@ then

* * *
< z z " - &
E Pxx =<x, —llzll > Tzl - In the latter case we recognize Pxx as the ordinary projection
*
of x on a halfline.

| Theorem 1

(2) Px = (x| (@Hy)x + (wa)',{ =<x x> )= @)

Proof. From (1) we obtain
x e P X} (< x x> Hxh? 4 p( i ] =
X ' 2 lix Yy (x)) = m;p(<x Y2 3 Uyl e o+ Ve ()1}

>
(@M + @07 00" « <x"1x>) © (x ¢ agui)* = @eanyhe')
K

«Je




Corollary 1. Py 'is a subdifferential.

*
-l
4 PKx. I for the common value of

]
Corollary 2. The function %lxlz - < x ,x> remains constant over P

This corollary justifies the notation < x.,Pxx’> -

* 1 *
<x ,x> - Ellxll2 on Pyx .

TR

Corollary 3.
* * 1 * * ®
(3) <x ,Px >- zlp.x P = Q+b,) x

2
Proof. The left hand side coincides with the supremum of < x'.y > - (“_)'5“_ + wx(y)) -

:

3

5 vhich is (Q+.) x

i; S (Q WKA) .x .

Corollary 4. 1>K satisfies the subdifferential equation

* * * * 2
4) Px = 3[<x Bex > - %npxx 1“1 .

Corollary S.

(s) . - s .
& ny PK(tx + (1-t)y ) .

Proof. This is just another way of saying that P;lx = Jx + W, x is convex. Onm the

T Ao o e i, . S TR TP £ o

other hand c_ovexity follows from the maximal monotonicity of J + awx -

Corollary 6.
E . o £
E (6) {x ¢ Pxx'} g (:ix‘ edx | < x.—x.,x-y > >0 ,vy € KL

% ! e I ’ - * %
1 . Proof. <8€P‘e¢}'{x eJx+3vK(x)}’{8x € Jx | x -x eawxx}
- * %
; e{xekK x €Ix | <x-x ,xy>20, y € K}

* *
Let us recall a few basic notions. A vector u € X is said to be normal to a closed

convex set K at a point x e K if
rd

*
<u,xy> 20, yekKk;

such vectors are called normals. It is evident that wa(x) is the set of all normals to

K at x .

i A hyperplane is said to support a convex set K if it bounds a minimal halfspace con-

taining K . If K is closed the intersections of a supporting hyperplane with K is called

a face of K ; if the face is not empty the hyperplane is said to support X at any point

of this face, otherwise it supports K at infinity. As intersections of closed convex sets

faces are closed convex sets. The equation of any hyperplane supporting K at finite dis-

* *
tance can be written in the form: <u ,x?> 0, with u normal to K, and

' *
‘ r=sup <u,y> .. It follows that a K-face is the set of points having a common nonvanishing

ﬁ yekK

*
: normal. To also include the case u =0, K itself is considered to be a face, if only an

=3
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impropex one. In this context it is important to bear in mind that Jx is the set of normals
at x to the ball of radius |Ixll centered at the origin with norms all equal to [Ix||, and

*
also the face of the ball of radius lxll in X having x as normal.

®
Theorem 2. Any Pxx is the intersection of a K-face with a face of a ball centered at the

origin, and conversely. The K-face is proper if x' ¢ JK. g

* *
Proof. For fixed u and v we have
* * * ®
x|uw edx} N {x|v € W, ()} C {x [u+v € Jx + Wyx} = Px(u.+v').
Moreover, by definition of Py o
*
Y 1Yy € WK(xl)}

and if x belongs to the intersection set on the left in the previous equation,

* ] L * * *
{xIGPK(n +v)le®{u +v =u1+v;,u € Jx

® ® * * * *
(xltPK(u +v)l={0= <u —ul,x-x1>+ <v -vl,x—x1>)
and by the monotonicity of J and 9y, ,
® * * *
= < - - = - -
0 u u;ex x1> <v G x1>

* *
.x-xl>- <u,x>+<au

1 1
= (3 + Faxp? - <a'ix >0 0Raxl®  Faxp® -

*

* * *
But 0-<u-u1 ,xl>-<u,x >-<u1,x>

*
- <u1,x>] R

*
and since both terms on the right are nonnegative, they vanish, implying that u € Jxl,

*

* * -
u € Jx. Furthermore, from 0 = <v - VieX = X > we deduce for any z € K ,

1

* *
-x> = <v ,x-z> + <v

1

*

*
-_D> 2
X)X + <y vy

* sin W ok *
<v ,x,-z2> = <v ,x-2> + <v ,x ,x-x1>

1 1

*

1

*
whence v ¢ 3’0‘(::1). In conclusion,

*
= <v ,x2z> + <v ,x.-x>>0 .

1
'{xl € P‘(u.w.)} = {u"e Ix) e Wy (x )1,
and therefore
P‘(u'ﬂr') = {x| u e ax)} N {x | v e 3y (x) ).
Of these two last sets the former is the face of the ball through x having u. as normal
and the latter the K-face perpendicular to v'. This concludes the proof because any x.
can be written in the form x' = u.+v., with v‘ normal to K at a point x, and u* normal
at x to the ball through x. It is clear that if x. ¢ JK then u. ¥ 0, and the corres-
ponding K-face is proper. . ;
Corollary 1. If J-l is single valued so is PK for any K .
This corollary can also be stated by saying that if the unit ball in x* is smooth then

Px is singlevalued.
-4~




. *
Corollary 2. The functions 'z"lxl2 and < x ,x > take constant values for x € Pxx 5

*
X > without any ambiguity, because

* *
We can now use the notation 3 IIP‘:: Iz, <x WPy

*
the results do not depend on the representative point in Pxx used to calculate them.

* * ®
Corollary 3. Pxx is a bounded closed convex set for every x € X .

- -
Theorem 3. x‘e JK if and only if P‘x = J lx'ﬂ K .

1

. i .
Proof. It is obvious that if Pxx =J3 XN K then x*e JK. Conversely, if x € K and

* * ® ®* *
x € Jx, then for each y € Pxx there isa y € Jy anda u ¢ WK(y) such that x =

* *
y +u,

and so
* * ®
<x-y ,xy> + <u ,y-x>=0 .
The two terms on the left are nonnegative, the first by monotonicity, and the second be-
] * *
cause u is normal to K at y . Hence both vanish. From < x -y ,x-y> = 0 it follows

1 *

- * * * -
that y e J lx , and hence, since this holds for every y in P_x , that Pxx CJg 'x NK

K

The opposite inclusion being obvious, the theorem is proved.
Corollary 1. R(P‘) =K.
Proof. From the definition of projector R(PK) C K, and from the above theorem PK(JK ) K,

S0 R(PK) =K.

Corollary 2.
(8) Px CPJIPx =3 tmx Nk
KX XK X
Corollary 3.
L * ®
(9) Pex C P o(tx + (1-t)P, JPx), 0<t<1.

Proof. *rom Theorem 1, Corollary 5 and Corollary 2 above.

Theorem 4. A subdifferential operator P : x. > 2x is a projector if and only if it
satisfies

(10) Px =3[<x,px >- 3lex?),

where the notation is construed to mean that < x',x >~ %ﬂx"z takes a constant value for
x € Px., and that the resulting function, assumed equal to += when Px‘ is empty, is a
proper l.s.c. convex function of x..

Proof. Necessity is the content of Theorem 1, Corollary 4. As for sufficiency start out by
remarking that #(P) is convex because by hyp;:thesis it coincides with the domain of a l.s.c.
convex functi‘on. We claim that P is locally bounded about each point in space. Indeed,

* * * *
if it were not there would be a point x and a sequence { x )';C H(P) such that X, X,

.
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- * *
IPxnl 4 +° , and then < xn,Pxn > - '-.‘;lll’xnll2 + -», jmplying, by lower semicontinuity, that

* * 1 * 8
<x ,px> - 2z2lpx llz = -, which is impossible. Then, local boundedness coupled with demi-

continuity (itself a consequence of maximal monotonicity) require that §(P) be closed. Now,

if u is nonna‘l to H(P) at x. thenJ, by maximal monotonicity again, Px' + tu' € Px' ’
t>0, and u =0, since Px. is a bounded set. Having no nonvanishing normal #(P) is
the whole space. (The foregoing argument is a particular case of the theorem that says that
a maximal monotone operator is surjective if and only if its inverse is locally bounded [3]).
Next we observe that (10) amounts to
(<x',px'> - 'é'llPx.llzl - [<yt,l>y'> - %pr'uz] > <x‘~y.,y >, vx',y. € X.,vy € Py.,
that is, to
< x’,Px. > - %IIPx'llz > <x.,y> - -‘z-llyllz,\ix‘,y* € x‘,Vy € Py'.
Hence, since for y € Px* the right hand member of this inequality coincides with the one on
the left,

* * * *
<x,px >- %lpx e sup {<x ,y>- %l!yllz) ’
y € R(P)

As the closure of the range of a maximal monotone operator R(P) is convex [cf. 4), and the

* * * * 1 * 2 o
supremum above ig2 (Q +y T(P_)) (x) = <x 'PR—(T")- x >- 3 IlPi(—p)-x I° . Finally ,

px = I{Lx Px > Liex'3) = af<x o T ) -p 3 E.D
x=[nx,x - 32 lipx ] = x,PR(P)x - 3 P;(p—)x ]—R-—(ﬁx.Q...
Theorem 6. Z Px is a projector if and only if
I
n * n *
(11) i llPx x ll2 e | 2 P, x N2 = const.
« 3 i 1 i
n
In such a case Z PK. = Pn .
1 i ): K
i
1
n * n *
Proof. If 2 PK is a projector then the subdifferential of <x ,(2 PK )x > -
§ TR T
. n * : n * n * * *
L Z P )xﬂz, namely ZP x , is contained in that of ): (<x ,p,x> - $ip x II2],
s 3 1 ! s

and in consequence both convex functions coincide up to an additive constant, that is, (11)
holds. Conversely, if (11) holds, then

Aot * i * 2 2 * * 2

<x,(]P )x >- -;-.ll(ng)x "= § (<x,ppx >- 0P, x ") + const,

« S i 1 i i
and

-
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n

I * n * n * * 1 * 2 *
3[<x‘,(ZPK )x > - 3l ):Px »x'1%) ¢ 1 al<x ,Pxx>-E|IPleI 1=(Zx>x )x .
I Tk 1 =1 1 i i Tg ol
. n
Since the subdifferential of a convex function is maximal monotone, and Z Px is monotone,
% n 1 i
the above inclusion is in fact an equality, and 2 PK is a projector because it satisfies
s ¢

relation. (11). Thus the first part of the theorem is proved. As to the last, note first

1 2 » n n s ¢ *
that if £ (x) = z0xdl“+¥_(x), i=1,2,...,n then | P_ = }3f. = 3 ] f. because the f 's are
i K 1 K 1 1 1t 1

i

. n n o R e
continuous [5)]. Hence R( E.p:i) =e(a—§ £) =8¢ g.fi) =8 (3(£0F,0...0f ), and, as the
domain of the subdifferential of a 1.s.c. convex function is dense in the domain of the func-

tion [1],

Q(B(EICEzD.;.Dfn) = U(ffijD...Dfn) - o(f1)+5(f2)+...1§?fn) = K1+K2+...+Kn .

n
Therefore, R( | Py ) = K, .

n
Now, if X PK is a projector its range is closed and
r of el

Ll e -

n n n n n )

{ K. =R ( X p_)C z K. , whence R( Z P_) = Z K.. The proof concludes by remarking that
i K i K i

1 s 1 1 i 1

any projector is the projector on its range.

§2. Conical projectors. Projectors on closed convex cones with vertex at the origin are

called conical projectors. It is clear that a projector on a convex set is positive homo-
geneous when the set is a cone with vertex at 0 , and only then, so that the class of conical
projectors coincides with that of positive homogeneous projectors. The letter C will be

reserved to designate the above type of cones,so that P_ will always indicate a conical

C
projector.

The dual of a cone CC X is the cone :n x’
(12) C‘lﬂ{x.ex.|<x.,x>10, x€eC}.
Cl is nonempty, closed and convex. The operation of taking duals has the following
properties:
a3 ctt = c, (g cc)e {e; 2 c;1, (?Cz)l =couc .
For linear spaces 1 coincides with the operation of taking anihilators. The indicator
functions of dual cones arec conjugate of each other. We leave to the reader the verifica-

tion of these facts.
The original definition (1) acquires a special form in the case of projectors on cones:
Theorem 6

(14) ch. = {xeC |<x.,x> = "x"z = [ sup < x.,u>]2]
u eC,llull< 1

e




Slolcds & bl

s 1 2 * .
Proof. If x minimizes Elly“ -<x ,y> over C , then, for any x € C , %tzﬂxﬂz - t<x ,x>

as a function of t attains its minimum on the positive real axis at t = 1, and hence

* * *
le2 =< x ,x>. Therefore x € P x if and only if lell2 =<x ,x> and

Cc
2 2
Bxl” _ hxl * * *
S Dl Bl L x> = ine Jy# - <xuy 3) = ing intlgeliyl? - e<x,y>)
yeC yeC t>0

<

*
0, if <x,y> <0 % = 2
= inf & 3 2 - =---2—[sup<x,u>] 5
yeC 'E<" - J—Ml> , if <x ,y> >0 ueC,llull< 1
Q.E.D.

: . 2 * * +
It is worth remarking that any x # 0 in ch is of the form <x ,u> u, where u is a

S NS * + * -
vector in C maximizing <x ,v> , so that P _x is simply obtained by looking for the

C

*
directions in C making the smallest angle with x and projecting on them in the ordinary
sense. This geometrical definition may very well be taken as the poiht of departure for the

theory of conical projectors. It is indeed the idea of "least angle mapping" what lies at the

roots of projectors.
Theorem 7.
* * * *
(15) e x'’ ~ <x',px’> = [ sup<x e g
ueC,llull < 1 C

* *
where 8§ (x ) denotes the distance from x to Cl.

Proof. Only the last equality requires a proof. By Theorem 1, Corollary 3,

<x' x> - Je "W = (r )" (x) = (@ ow

o« % ‘D *
c Y(x ) = (Q 'JJCL)(x)

= 0

* * *
= inf -;—'llx-yllz=--62 (xR s
ot

% y‘ecl ‘
Since <x.,ch. > - -;-HPCx' "2 is equal to both %—Hch' ”2 and %< x.,PCx. >, the theorem is
proved.
Corollary 1. M) =
Corollary 2.
(16) Px = a2 x I” =23 6::‘ x) .

Next theorem establishes a relation between projectors and nearest point mappings.

* * * *
Theorem 8 . (I -JPC)x nc' is the set of points in ¢! closest to x . (I denotes the

*
identity map in X ).

*® * * 1 * * * * * * *
Proof. If z ¢ (I - J'Pc)x NC” then x -z ¢ JPCx and lIx -z |l =|IJch = IIPCx =

* *
8 (x‘), which shows that z minimizes the distance from x to points in ct.

CJ.
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2

* * *
Conversely, if 2z € c‘l realizes the distance from x to cl , then %—6 1(x ) =

(o]
* * * * * * .
-;—le -z llz. Since on the other hand %62 (y) _<_-;—|Iy -z ll2 for all y € x*, and since

X3 *
36 (x ) = P_x .(Corollary above),
2 c.l (=

* * % * 3 2 % * %
L Pl PP - ) <yA e P, ¥ €X ,
2 2 -2 ot 2 ct -
whence by definition of subgradient,
* * * - * *
Px C il K nd iy,
C 2
* * -1 *
that is, z e€ex - J ch , completing the proof.
*
- .
If we let 1 e X =+ 2x denote the nearest point mapping on Cl we can give to this ;
c i
theorem a form suggestive of Moreau's decomposition of a vector in Hilbert space along ortho-
gonal directions in dual cones [2].
* * *
Corollary. For any x € X there are vectors u and v such that
* * 4 *
(17) x =Jutv, uec, v ec, <v,u>=0.

® *
Moreover, if (17) holds then u € ch and v ¢ WX .
C

Proof. The possibility of decomposition (17) follows from Theorem 1, Corollary 6 and the
theorem above. As to the last part notice that if v* € Cl and < v*,u> = 0 then
v e 9, (w), and apply Theorems 1 and 10.

Projectors and nearest point mappings are the same objects in Hilbert space. If the
identification of the space with its dual is made explicit this coincidence can be expressed

by the equation

i = &
(18) nc PCJ
Now, is this relation characteristic of Hilbert space? We don't know, we only conjecture that
it is. The following theorem gives some support to our contention.
*
Theorem 9 let X and X be dual reflexive Banach spaces. Then if the duality mapping
*

J:X 2x is bijective, and

(19) n c” PCJ for all straight lines and hyperplanes cECx,
& * *
(20) n,=p.3 3 for all straight lines and hyperplanes. C CX ,
C C

X is a Hilbert space.

Proof. By Theorem 2, Corollary 1 all projeétots are single valued, and on use of Theorem 10

(19) and (20) can be written in the form
-1 * * -1 *
(I -J P )x=PJx, (I -Jp)x =P J x .
ot C c ct

-9-




If in the first of these equations P X is replaced by its expression derived from the last
[ 54

one obtains

-1
.(I - PCJ)x =J (3 - JPCJ)x

that is,
J(x~Pch) = Jx - JPCJx ¢ 5
In a similar manner
- * - * - * - - *
Jl(x-P.Jlx)=Jlx~J1P,Jlx.

(o C
Making in the above equations the following identifications

*

*
¢ = {tu} ., C = {tJu} xX=v, x =Jv

—o<t <4 ~o<t <o’

where u and v are any two unit vectors, one gets
J(v- < Jv,u > u) = Jv-<Jv ,u > Ju
J({v- < Ju,v > u) =Jv-<Ju,v > Ju .
Set r=v-fu, s =v-au, a=<Ju,v>, 8 =<Jv,u>, and on use of these identities proceed
to the following calculations:
Bri? = < gr,r > = < Jv-83u, v-Bu > = 148°-g-ga = 1-aB
lsl!2 =< Js,s > = < Jv-aJu, v-au > = 1+82—a8—u2 = 1-aB
< Jr,s > = < Jv-BJu, v-au > = l+aB-aB-af = l-aB.
Therefore, < Jr,s> = I|Jr||2 = llsll2 and by definition of J, Jr = Js . This implies r = s,
which in turn yields o=8, that is, < Ju,v > = < Jv,u >. This equation, valid for unitary
uand v, is. at once extended to all u's and v's in X by use of the homogeneity of J.
But then J is a selfadjoint mapping of X onto x', and as such linear. It follows that
lel2 = < Jx,x > is a quadratic form, and the theorem is proved.
Theorem 4 takes a simpler form in the case of conical projectors:

X

L
Theorem10. A positive homogeneous-subdifferential operator P:X - 2" is a conical pro-

jector if and only if it satisfies
2
* *
(21) Px’ = oz lexl .

Proof. It follows from Theorem 4, and Equation (15) that a conical projector sastifies (21).
Conversely, if a positive homogeneous subdifferential P satisfies (21), ther, since it also
L ] 1 *® * * 2 A * * *
satisfies Px = a-2-< x ,Px >, (8], IPx I = < x ,px > (use the fact that PO = 0), that

1 0'2 * * 1, *
is -2-lPx =<x ,Px > =~ -2-IPx I. Hence, (10) holds for P, and P is a projector.

«-10-
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*
Corollary. A positive homogeneous subdifferential operator P:X - 2" is a conical pro-

jector if and only if

(22) ipx12 = <x',px >,V x eB(@) .

Proof. Necessity is contained in Theorem 7. If, on the other hand, P is a subdifferential
operator satisfying (22), then Px. = 3-;‘- <x‘,Px.> = 3%-IIPx* ll2, and I is,a projector by the
above theorem.

Now we turn our attention the the important question of when a sum of projectors is a

projector.
n
Theorem 11l. 2 Pc is a conical projector if and only if
3l i
n *® n *
(23) - 1) chll2= Yip, x 2.
1 i 1 i
In such a case
)
P - P .
C, n
1 i Z Cj_
1

Proof. This is a particular case of Theorem 5. The constant in equation (11) is zero be-

*
cause all Pc 's vanish at x = 0.
i

It may be checked that if all Ci's are rays: {tu ] uill =1, (23) simply says

= i't>0 '
that IxH2 is quadratic over the n-hedron { 2 tiui} , and that the ui‘s are ortho-
1 t,>0
= n
gonal with regard to the induced scalar product, or more briefly, that {Z Ci Jd I} is a

1
2"-tant of an n-dimensional Hilbert space. Based on this remark the system of n cones satis-

fying the Pythagorean relation (23) may be conceived as a generalization of an orthogonal n-
tuple of vectors where the vectors are replaced by cones. Accordingly we shall say that such

cones form an orthogonal n~tuple, and shall use the notation C1 J.C2 1 ewe & Cn or

Pc LPC Lseo J.Pc to denote this fact. It is remarkable how much of the Hilbert space
s 2 n

structure is brought into the space by the requirement that a projector should split into the

sum of others.

Theorem 12, c e, 1...1Cn if and only if
s 2 2
(24) inf Y Ox I° =0xI®, EREE A0, % e 8 .
1 i . 1 2 n
n

X X =X, X, € C i
In such a case the infimum is always attainable.
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Proof. c1 1 C2 S imhicil Cn is equivalent to

2

n * .
Tiue, x'0 1
12 C

=£IP x

=
C
1 i

’
i

whi - g A " 1 s i IS 1 2

ch by taking conjugates and recalling that the conjugate of % lchx = is Ellxﬂ L9 (x)
(Theorem 1, Corollary 3, and (15)) becomes (24). £

To see that the infimum is attained take n sequences (x.(k)): C ¢, , such that

T k)2 o SO . g
Y lxi 1€+ 1xl*, J x.* = x. since the sequences are obviously bounded they can be
i=1 i=1

assumed to be weakly convergent to limits X in Ci respectively. Then, the limit inferior

n
of the norms being larger than the norm of the weak limit, we must have ): ] xi“2 :llxll2 -

n n 2 2 n i=1
Ix =x, that is Jlx I°=yx1°, | x. =x. (Briefer but less direct:

i s i : i
1 i=1 i=1

n nh
R = R =

CEe ¥=Rip ) =Fc
1 i Z 1
s
1
*
For the inversion of the statement: If C11 C21... LCn, then (xi € PC %, =125 0)

n 2 n 2 i
= (I} xill = ):Ib:ill } . we need a couple of lemmas.

1 1 .
Lemma 1. Let C,1C_L1...1C . Then
N — 1 2 n

n n n 2 n 2 n 2 n 2
{3 (:_1'»: x;) N Jc § x'i)} 7 ¢, ng x I° = Z""i" = "% xj© = Euxill X X € Ci,i=1,2,...,n}

implies {in n in b O B DR SRR )

-
n n n n 2

Proof. From ‘J( ) x,) NJ( ] x!) # ¢ it follows Ht( ] x) + (1-t)( | x))“ = const.,
== M £ $ e 3t
for 0 <t < 1. Then,

T T 2 - e .2 7 2 . 3 2
el § x)+-0) ([ x% = el ] x 0% a-o § =] hx % a-elxi® > § lex +Q-t)x!0°,

i i i ¥ 5 i i = i i
1 1 1 1 1 1
0<t<1,

and by Theorem 12, since txi + (l-t)xi € Ci v

n n n n

Faex +-exM2 > 1] (x+0-0x01% =4e § x+0-0) § xu’,

3 7 SN S s : 3 1

n 2 n n 2
Jlex +(1-t)xil° =0t ] x,+(1-t) | x!I° = const.
i i i i
1 1 1 ¢
Now, the sum of the squares of convex functions being constant if and only if the individual

terms are constant, we must have, ltx‘o(l-t)xil2 = const, 0 < t<1l, fromwhich it follows
Ixg N Ixi F 4 &= L,2,..m. Q.E.D.
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Lemma 2. If C.iC 1...1Cn ,» then

D iy
n n n
2 2 * - *
(M x 1= Jux, 1% x, ec,} ={p_x e lox, i=1,2,...,n, v x € I( ] x))}.
i i i i C i i
1 g | i 1
Proof. By Theorems 3 and 13,
n n n
* -1 * * *
P anxn(XCi)-):ch, vx € 3() x,).
i
):C 1 1l i 1 ¢
1 i
* * ®
Hence, if x',x',...,x' are any n points in P_ x ,P_  x ,...,P_ X respectively,
1=2 n Cl C2 Cn

n e = n n
ixiea x, and x €J()]x)NJC]xH.
1 i g

The lemma above then yields Jx, N in # ¢, that is, x! € J-lei, i=1,2,...,n, and since

i i
: * * _ -1
x! is any point in P_x , P _x C€J "Jx,, i=1,2,...,n.
i (:1 C1 i
Theorem 13. 1f cl.l.Czl...J.C , then
n
(25) { Xllxill = 2 llxilz, x; € C,.i=1, 2,...,n} * {x, 1€ P X ,i=1 2 oteleloDly ux e 3 7 X, )}
1 1 i 1

Proof. Assume that the proposition on the left holds. Then, by last lemma,

*
fie, xl =Ux[lM, x eJ():x),andso, since !lxll=!lP xll=snp<x,u>
C i
i i ueci,|lul<1

.
<x ,xi>-|lxi|l2:0, =Y 2 e De

and adding up these 1nequalit_:les,

n % e n n n
D i<x e > - Mxd?) =<x, Tx; >~ ] b P = WY x 0% - 0] x?
1l 1 1 1 1
* 2 * 2 * 2 *
Therefore, < x ,x. > =lIxlI“ =llp, x| = [ sup<x ,u,>)", and by (14) x, € P_x ,
i i Cc i i S,
i uieci,“ ui||_<_ 1 i
proving the implication from left to right. The opposite implication is but a quantification
of (23). ’
Corollary.
L *
=1 * * «
26) ([ p, =2 }={p, x CPp_Jp x CJ g .x €C,, i=1,2,...,n, ¥x €X }.
C n C n C i
s O 1 i i
le Le
1 3
* * *
Proof. Let X.,X.,...,X_be points in P_x ,P_ x ,...,P_ X respectively. Then by Lemma
e h e n n C1 C2 Cn
2 and the theorem above X, € PC J( ): xi) (= J-]'in n € v i=1,2,...,n, whence (26) follows
: T 1 « N &
from the fact that when the xi's range over the sets PC X , ): xi ranges over Pn X .
i 1 2 ci
. 1
- * ®
Remark. By (8) J IJ‘PC x N ci = PC JPC x , so that the right member of (26) can be written
i i
* * %
in the form Pc x € Pc JP, X = PC JPC x . Comparison with (8) prompts the conjecture that
i i ic - T
b
1
«]3e




i

‘the last inclusion is not proper, that is, that P, JP =P _ JP. . However, this is not
+ i

Lol o =]
*O

true in general.- Consider the following example:

*
Let X and X be the dual two dimensional Banach space with norms:

2 2.1/2 2 * * 172 *
e 17 + 16,1077, gg, 20 eyl + Iazl) e By Ey 2B

Ixl = L Ix'n =
* * * *
leg] + lg,l . Eikox0 max([€,[.1€6,1) . £ €, <0

The second and fourth quadrants in X , which we call Cl and c2 respectively, form an

- * *
orthogonal couple, and J s = Pc +Pc . For any x € X in the first gradiant and away from
- 1 * 2 * *
c +C x' = x*. and JPCIx = xi, where x5 is the Euclidean projection of x on the i-axis .
* ®*

*
Moreover, PC J PC + x = Pc x is a singleton x:L .on the 2-axis, whereas P JPC X =
..1 *

the axes JP

3 Sy 1 e

J'x N Cl is a straight line segment through xl across C1 parallel to the first quadrant

* *
bisector. Obviously P x # P, JP X
c, 7 c1+C2 S S

All that has been said of conical projections from Theorem 11 on applies also to projections

on general convex sets, the only difference being the presence of an additive constant all

throughout.
Theorem 14. If C 1€ ...k ¢C then
e 1 2 n
*
(27) P, (tI +(1-t) J P Yo=p. i<t <1, 1 =1,2,...,n .
C, n (o] -
i z c 6 3
J
1
* * * * ®* * *
Proof. For x € X andyeJPn x set z (t) =tx + (1-t)y , 0 <t <1.
Cc
X Ley
Now
sup<z (t),u TG sup<x '“i? + (1-t)sup<y > - tJIP xll + (l—t)IIP yll
ugeC,, s ha l|< 1 i€C ,llu <1 ulcci,llu <1 S -
By (26) uPciy ] =||Pcix I so,
*
sup<z*,ui> f_IIPC x .
uicci.ﬂuini 1 i -
* :
Moreover, by hypothesj,s and choice of y there are points xi € Pc x ,1i=1,2,...,n
&
* n * *
such that y € J E X . Since <x ,xi> = Ixilz by (14), and <y ,x1> = le:i‘“2 by (25), we
1

® . .
have < z (t).xi> = Ixillz = lchlx lz, t=1,2,...,n. In view of what has already been proved

’ * * *
these equations mean that the suprema of <z (t),u1>, <x '“1> , <y .u1> over the ui‘s in

€y with Il < 1 are attained simultaneously and are equal to W r, x*n,

N Then,
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Proof. By Lemma 3, C, €J

SRS 717 SRS

* * * ®* *

¢ = < > = < > =

{vl € PC:L z (t)) {Ilvill sup <z ,u ||Pcix I, <z (), v, IIPCix II'}
ueC,, oMu Il:l
* * 2
'{llvilnsup<x u>=sup<y,u >=|p xll <x,vi> ==IIchI|
uec,llul<1 uec Ja "< 1 i i
- Sl i X . 5
LT, > = Ilvill }
- & - & n} ¢
v, € X, V, € y
i Ci i Ci
and hence
* . . *
P .(tx + (1-t)y ) =P_ x NP_ y, G<t<l $=1,2,..00e0
S b | s y
®* *
Since y is any point in J Pn x ,
( o
Lo
p ®* P * - A Jp *
cj.(t x + (1-t)J 'Z‘ x) = Pcix Pci 'z' x
c
1 ) 19

and an appeal to the previous theorem concludes the proof.

Corollary. For any conical projector,

*
(28) Po(tI + (1-t)J Po) = L 0<t<1l.
Proof. Set in (27) €, =C C=Cy=... = cn = {0}..
The geometrical meaning of the relation Cll C2 ke J.Cn is not sufficiently clear from

defining Pythagorean relation (23), nor from (24). In Hilbert space each cone is the dual of

the sum of the others relatively to the total sum [8, Equation 2.10]. A-similar result holds

in reflexive Banach spaces.

Lemma 3.
(29) T Gkl bk X, C (), = L)
25 2 n 3 i
g i¥j
* -
Proof. let x, € C,, y. € Jx, . Then, since by (8) x, € P y CJle..
PRI = B 3 n 3 j 3
*
ﬂxj+zrcyl I ey ? = uxg? +an y"
iy €4 =1 Gd Voo G
and by definition of J ,
1 i, yj =I|xj+ | pcy;I|2-lejII212<yf, ) pcy;>=2):llpc y;llz.
i73 i#3 it iy i
*
Hence, Pc y.-O, that is, ijCi, i#3j, and JCjC hC';.=( ):Ci)l .
% 7 irj i7j
Theorem 15.
-1
(30) €, 1C. 1:0.4C »C, =3 ((IC)ln(Zc).j=12.....n.
X2 n 3 i¥3 i hai
-1

n
[ c)l.andsincecf-{ c €3 YeTeatincic)
1;):4j Ck irj i 1 k

3




n
This is half of (30). To prove the other half start with an xj in J-ll( Z Ci)lj n ( Z Ck).
i#j 1

and then observe that

-1 * * ks
X, €CHCo+ . ®C x. €J "x for some x, € ( ) C) = N c,/.
1 2 n’ j ! B o
j j j 3 3 i3

3

x, € Jx,. CJ(C, +C_ + ... +
3 ( 1 Cn)

2
and by Theorem 3,

: n
x, e Il n (c, +Cc,+ ... +C)=p . x‘::Z P x.=P_ x.CC
3 3 1 2 n n 3 €. 3 e 3 2
z & 1 k b}
1 k
-1 n
and since x, was any point in J " [( 2 c,) 1 & z (o) [
j S, k
i#j 1
-1 n
a[({c.)lﬂ({ck)cc.. :
i 1 J

concluding the proof.
Corollary. 1In the re;ation Pc = ? Pc any n projectors determine the.remaining one.

We do not know if the arrow in (30) can be reversed. The most that we can say is that
this is the case in Hilbert spaces of dimension not larger than three.

§3. Conclusion and comments. The material set forth in the preceeding pages is essentially

all we know about projectors in reflexive Banach spaces. No doubt the discussion can be
carried further still, and we hope that it will be, for, as it stands the extent of our
knowledge is insufficient for the proper development of a spectral theory. Let us point out
here to some of the most visible shortcomings.

In the first place it is not known if the relation Pc > PC , defined as meaning that
1 2

| ) - is a projector, is a partial ordering for projectors. Indeed, there is no proof

T %

of it being transitive.

Important as transitivity is, spectral theory requires something stronger still, namely
that any sub k-tuple of an orthogonal n-tuple of cones be again orthogonal. This is necessary
if the spectral measure built out of a spectral resolution is to be projector-valued. In
Hilbert space this is a consequence of PC1 > Pc2 being equivalent to PczaPcl = Pcz -

No such equivalence has been established in reflexive Banach spaces, we only know that if

J-1 is single valued P_ > P implies P Jp_ =P (Corollary, Theorem 13 ).
C1 C2 C2 C1 C2

Another important property, which in Hilbert space lies buried under the homogenity of

orthogonality, is the following.




Al i s e

If C1 i C2 l...1C,, and Xy € Ci' i=1,2,...,n, then
n n n n

(yxa?= Jux 1= (0] axt®= Jo x>, a >0

1 i 1 i'i 1 i i &

1 i

i

The whole of functional calculus is based on it. Needless to say that we have no evidence that
it holds in reflexive Banach spaces. ¢ |

These examples should suffice to show the need of further research. Maybe some of the

sought properties are not valid in general. If so, we anticipate serious difficulties in

bringing such facts to light, for the construction of counterexamples is a hard task in this

field.
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