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ABSTRACI

The projector on a convex set K in a reflexive Banach space X is the mapping

~K assigning to each point X in the dual space X the set of points minimizing

x ii + l ix  II - < x ,x > over K. Projectors are discussed and shown to enjoy

most of the properties of nearest point mappings in Hu bert space.
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EXPLANATION

In Hilbert space, and therefore in any finite dimensional Euclidean space, the

projector on a closed convex set K is the mapping 
~K 

assigning to any x the

nearest point in K . If K is a closed convex cone C with vertex at the origin

then = 

~C 
is said to be a conical projector; ordinary linear orthogonal projectors,

obtained by taking linear subspaces for C, are a special class of conical projectors.

A partial ordering is introduced among conical projectors by saying that a conical pro-

jector is weaker than another 
~C 

~~ 
~C ~C 

is again a projector. Given an
1 2 2 1

increasing conical projector—valued function of a real variable A A 
~C 

and a non-
A

negative real—valued function f(X), the integral ff(x) dPC 
can be defined very

A
much in the way one defines the Stieljes integral of a function with regard to an

increasing function. It is a classical result that if all P~ are linear then the
A

integral yields a selfadjoint operator , and conversely , that any selfadjoint operator

Sponsored by the United Statc~n Army under Contract No. DA.AG29—75—C—0024.
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can be represented in this form .

This report initiates the discussion of the possibility of extending the process

of co~~ ounding conical projectors through integration — known as “spectral synthesis” -

to reflexive Banach spaces other than the Hu bert space . To this end one defines the

projector as a closed convex set K in a reflexive Banach space X as the mapping

~K assigning to every x~ in the dual space X~ the set of points ( there may be

more than one point) that minimize ~~
. II x li  + ii x II - < x ,x >  over K. These new pro-

jectors, it turns out , enjoy properties that extend in a most natural way those enjoyed

by projectors in Hilbert space, to which they reduce when the space is the Hilbert

space . However , the question of whether spectral synthesis is possible in the new set-

ting remains undecided, mainly because it is not known if the above indicated manner

of introducing an ordering does in fact produce a partial ordering in the present case.
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P~~ 3ECTORS ON CCtWEX SETS IN REFLEXIVE BANPtCH SPACES

Eduardo H. Zarantonello

Selfadjoipt operators in Hu bert space can be synthetized out of orthogonal projectors

by the process of forming the integrals of numerical functions with respect to an increasing

one-parameter family of projectors. To be viable such a mechanism - known as spectral syn-

thesis — requires from projectors a certain nuther of algebraic properties. Not long ago I

have shown (6 , 7 ,8) that these properties subsist if the class of linear proj ectors is en-

larged so as to include projectors on closed convex cones , conceived as nearest point mappings ,

and thus I was able to syn thetize a new class of operators, mostly nonlinear. But then , having

freed the spectral theory from its original confinement I was faced with the question of how

far one can go on extendiny it. Would it be valid in spaces other than Hu bert space? , for

instance. It is precisely to thi’  question that I am addressing myself in this paper , be-

ginning with the study of projectors in reflex ive Banach spaces. A first basic question is to

decide what projectors on convex sets should be. Nearest point mappings certainly do not

qualify, as they form an unruly class devoid of any algebraic structure, nor does any class

of operators mapping the space into itself , since for these many of the required properties

do not even make sense . This realized , one is led to the view that projectors must be mappings,

perhaps nultivalued, acting from the dual into the space, view which in Hilbert space is thor-

oughly concealed by the standard identification of the space with its dual. At this stage a

choice offers itself in a most natural way: The projector on a closed convex Set K in a real

reflexive Banaâh space X is the mapping P~ : X + 2 ~C assigning to each x € X the set of

1 • 2  i 2 *points minimizing ~ f lx II + IlixU - <X, X> over K . A series of familiar looking results

soon brings out the certainty of being on the right track. So reassured, I have proceeded to

investigate these new mathematical objects, not so much on their own right but rather as pos-

sthle instruments for the spectral theory. My results are inconclusive as they failed to

prove or disprove a couple of essential points. It is however apparent that the very existence

of an increasing family of projectors requires from the space a good deal of Hithert space

structure , and therefore that there is not much occasion for the spectral theory to take place

in a reflexive space chosen at random .
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Si. Projectors on convex sets. All throughout this article we shall be working in a real
*reflexive Banach space X, whose dual we shall denote X . As usual the double bar indicates

F the norm in either space , and the angular brackets the bilinear form effecting the pairing of

X and X • We shall let J : X + 2  denote the duality mapping:

* * 2 * 2Jx { x <x ,x> = II xli II x II } 
/

* — i * xof X onto X , and .7 : X ~ 2

_ l *  * 2 * 2J x = (x)<x ,x >  = (xli 11x 11 I,
* 1 2 _ j *  1

the duality mapping of X onto X • Let us recall that Jx 3yOxII , and .7 x a~~ l i x  ii

and that the relation
1 * 2  

+ ~-ilxU2 < 
s’:

> =

is equivalent to x E .7 x and to x E .7 x . Mappings, even when singlevalued , are con-

sidered here in the context of imiltiva lued mappings, and so the inverses always exist. The

conjugate of a proper lower semicontinuous function f : X -* (—“ ,+“] is denoted f * 
• We

shall often use the letter Q for the function x + ~t x l 2 , and Q for its adjoint

x~ ~ ~ lix fl2~ If K is a closed convex set 
~‘x denotes its indicator function The infra—

convolution of convex functions is indicated by the syobol 0.

* xDefinition 1. The projector on a closed convex set K in X is the mapping P~ : X ~ 2

assigning to each x the set of points minimizing the function

i * 2  1 2 *y lix if + ~- ifx if - < x ,x >

over K , that is

(1) • P~~c E K f U x l I 2 
— < x~,x> < ~~l iy U~ — < x~ ,y > , Vy  C

Since li xil - < x ,x > is l.s.c. convex function of x tending to + with if xli

the infimum is always attained and PKX is never empty. In Hilbert space 
~K 

is simply the

nearest point mapping on K. If K X then 
~K 

whereas if K (tz }
~ > ~ 

then

~~ <~~~~~‘ 
...E

j~
. > ~.!.l[ . In the latter case we recognize PKX as the ordinary projection

of x on a haifline .

Theorem 1

* * *  * _ l *
(2) PKX — {x I (Q+41K

) x  + (Q+*K
) x x ,x > ) — 

~~~~~
Proof. From (1) we obtain

~ 
P~X ) * {< x ,x>— (~~ if x12 + *K (x)) supVx ,y > - ~ (U y*

2 
~

+ (Q+*K ) * (x) * < x *,x > )  * (x c a (Q+g K) * = (.7+~*x)
_ l

x*)
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Corollary 1. is a subditferential.

Corollary 2. The function ~~ 1x 12 
— < z ,Z >  remains constant over P

K
X

~~

This corollary justifies the notation <X IPK
X >  - ~

1lP KX U  for the common value of

* 1 2 *< x ,x > -  IlIxif on PKX .

Corollary 3. /

(3) < X ,P~X > — = (Q+
~K
)x

Proof. The left hand side coincides with the suprenun of < x,y > - (!IL +

~lh ich is 
~~~~~~~ 

X

Corollary 4. P~ sati:fies the subdjfferentia]. equation

(4) P
~
x = B <x ,P

~
x > - ft P~x II ~

Corollary 5.

(5) PK
X 

~1C~
’ C + (l_ t )y *)

Proof. This is just another way of saying that P~~x = Jx + a4I K
X is convex. On the

other hand covexity follows from the maximal monotonicity of J +

Corollary 6.

(6) {x s  PK
x }  ~~x C Jx < X . X ,X~ Y > > O , Y y  E K).

pz~oof. < X  C PKX } • (x e Jz + B*K
(
~~~ 
. (Z x ( lx I x  —x c

_*
• { xe K , x ejx~~~< X _ x ,x_y >~~~0, y c K i

* *
Let us recall a few basic notions. A vector u € X is said to be normal to a closed

convex set K at a point X C K if

< u ,x-y > > 0 ,  y a K :

such vectors are called normals. It is evident that 
~
‘K~
’
~ 

is the set of all normals to

K at x

A hyperplane is said to support a convex set K if it bounds a minimal halfspace con-

taining K . If K is closed the intersections of a supporting hyperplan e with K is called

a face of K ; if the face is not empty the hyperplane is said to support K at any point

of this face, otherwise it supports K at infinity. As intersections of closed convex sets

faces are closed convex sets. The equation of any hyperplane supporting K at finite dis-

* *
tance can be written in the form: < u ,x> ), with u normal to K , and

*r = sup < u ,y > .‘. It follows that a K—face is the set of points having a 
common

ycK *
normal. To also include the case u — 0, K itself is considered to be a face, if only an

— 3—



-
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

imprope r one. In this context it is important to bear in mind that lx is the set of normals

at x to the ball of radius ibc il centered at the origin with norms all equal to lx if, and

also the face of the ball of radius lixU in X having x as normal.

Theorem 2. Any P~x is the intersection of a K—face with a face of a ball centered at the

origin, and conversely. The K—face is proper if x ~ JK

* *Proof. For fixed u and v we have

(x~ U C Jx} 0 (xl V € 
~
‘K~
”
~
1 C (x l  u+v Jx + B4 K

x} = P~
(u + v ) .

Moreover, by definition of

P~ (u + v)) {u + V — u
1 + v1, u1 C 3x

1
,v
1 

€

and if x belongs to the intersection set on the left in the previous equation,

(x
l

c P K (u
* + v *))*{O. < u * _ u , x_ x

l
> + < v * _ v , x _ x

l
> )

and by the a~ notonicity of .7 and

* 
°: <U — u

1
,x - x

1
> = < v —  v1,x — x

1
> 

*But 0 < u - u
1
, x — x

1
> —  < u ,x > + < u

1
,x1

> - < u ,x
1
> - < u

1
,x >

— k lx ~2 + k if x111 2 
— <.u

*
,x
1
> j ÷ c I ‘ix ~

2 
+ I flx111 2 —

-

and since both terms on the right are nonnegative, they vanish, implying that u C TX
1

,

u
1 

£ Jx. Furthermore, from 0 <V  - v1, x — x1> we deduce for any z € K

< v ,x1
— z> — <v ,x—z> + <v ,x

1
-x> — <v ,x—z > + <v1

,x
1
—x> + <v -v

1
,x—x1

>

— <V
*
,x_z> + <v

11x1
- x > > 0

whence V C 
~
‘$K

(x
l

) .  In con:lusion , 
*{x

1 
a P

K
(u +v ) I  (u a Jx

1, 
v €

and therefore

P~
(u +v ) = (x l  u € Jx) 0 (xl V C 

~*K~~
) I. 

*
Of these two last sets tIle former is the face of the ball through x having u as norma l

* *and the latter the K—face perpendicular to v . This concludes the proof because any x

* * * * *can be written in the form x = u +v , with v normal to K at a point x, and u normal

* *at x to the ball through x. It is clear that if x 4 .7K then u ~ 0, 
and the corres-

ponding K-face is proper.

Corollary 1. If is single valued 80 is for any K

This corollary can also be stated by saying that if the unit ball in ~ is s~~~th then

is singlevalued.
—4—
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Corollary 2. The functions ~ 1x1 2 and < x*,x >  t:ke constant values for x a PKx .

We can now use the notation j  NP
J~
X I , <x ,P

~
x > with:ut any ambiguity, because

the results do no: depend on the representative point in P
~

x used to calculate them.

Corollary 3. P
K

X is a bounded closed convex set for every x C X

* * —1 * 
/

Theorem 3. x a .7K if and only if PK.X .7 x ~ K .

* —1 * *Proof. It is obvious that if PKX = .7 * 0 K then x a IX. Conversely, if x C K and

* * * * *x € .1:, then for each y a P
K
X there is a y € .3y and a u a Biji.~(y) such that x =

y + u ,  and so

* * *< x  -y ,x-y> + <u ,y-x > - 0

The two terms on the left are nonnegative, the first by monotonicity, and the second be-

cause U is normal to K at y . Hence both vanish . From <x-y ,x-y> = 0  it follows

that y a J  x , and hence, since this holds for every y in PKx , that P
~

x C . 1  x

The opposite inclusion being obvious, the theorem is proved.

Corollary 1. R(PJ~) = K

Proof. From the definition of projector R(P K) C K , and from the above theorem PK (JX ) D K ,

so R(P
~

) — K

Corollary 2.

* * —l *
(8) p~~ C pj p ~~ - ~ ~

1’X~ 
0 K

Corollary 3.

C p (tx * + (l
~

t)P K J ~~~~~ , 0 t 1

Proof. ~‘rom Theorem 1, Corollary 5 and Corollary 2 above.
* KTheorem 4. A subdifferential operator P : X + 2 is a projector if and only if it

satisfies

(10) P x = 3 ( <x ,Px > — I lpx*if 2]

where the notation is construed to mean that < x ,x > — f f lx I I 2 takes a constant value for

* *x a Px , and that the resulting function, assumed equal to +~~ when Px is empty , is a

*proper l.s.c. convex function of x

Proof. Necessity is the content of Theorem 1, Corollary 4. As for sufficiency start out by

remarking that ~ (P) is convex because by hypothesis it coincides with the domain of a l.s.c.

convex function. We claim that P is locally bounded about each point in space. Indeed,

if it were not there would be a point x and a sequence { x~ fC  ~(P) such that x~ + x~,

—5— 
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IPx I + ÷~ , and then < x ,Px* > - I 11 Px if 2 -P —~~~, implying, by lower semicontinuity, that

- I II Px*12 
— - , which is impossible. Then, local boundedness coupled with demi-

continuity (itself a consequence of maximal monotonicity) require that ~ (P) be closed. Now,

* 
._ * * *

if u is normal to ~ (P) at x then, by maximal monotonicity again, Px + tu a Px

*t > 0, and u = 0, since Px is a bounded set. Having no nonvanishing normal £~ (F) is

the whole space. (The foregoing argument is a particular case of the theorem that says that

a maximal monotone operator is suriective if and only if its inverse is locally bounded 13 3) .

Next we observe that (10) amounts to

* * *~~~ * * * 2  * * * * * *
(<x ,Px > - ~ lI Px Ifl - (<y ,r’y > — I ilPy I) 3 > <x -y ,y >, Y x  ,y a X ,yy £ Py

that is, to

* * 1 * 2  * 2 * * * *< x ,P x > —  ~~1 P x U > < x ,y > -  ~~i f y l l , v x , y c x , V y a Py.

*Hence, since for y € Px the right hand member of this inequality coincides with the one on

the left,

* * 1 * 2  * i 2< x  ,Px > —  ~~flP x fl — sup {< x  ,y >—  yll y ll I
y c  k(P)

As the closure of the range of a maximal monotone operator ~ Ti9~ is convex tcf. 43, and the
* * * * I * 2

supremum above is (Q +4,j~~~) (x ) — < x ~~~~~~ x > — ~ UPjjj .yx U . Finally

Px* — B((x ,P*
*> - Illpx*1l 2 1 B(<x*,P~~~ x~ > - I ~~~~~ x

*
U 2) — ~~~~ x .  Q.E.D.

Theorem 6. 
~ 
P~ is a projector if and only if

1 i

* 2  * 2
(11) - I “~~~ 

x II — II 
~ ~K 

X II = const.
. 1 i 1 i

In suc h a c as e ~~P — P
i K~ 

~~
K
i

proof. If 
~ ~~~ 

is a projecto: then the subdifferential of < x * ,(  
~ PK ) x >  — 

*

-~~‘ ~ ~K 
)x II 2 , namely 

~ ~K 
x , is contained in that of } 1<x ‘~ K ~ 

> - I HP
~ 

x
1 i 1 i 1 i

and in consequence both convex functions coincide up to an additive constant, that is, (11)

‘~olds. Conversely, if (11) holds, then

- 
* 

II 
* 

II * 2  * *< ~ ~ ~K 
)x > - 

~ ~K 
)x  II ~ ( < x  ‘1’K 

x > - 1
~~~K 

x Ii 3 + conat ,
i i  i i  1 i i

and

-6—
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* * ~ 
n * 2  * * 1 *2 n 

*

~ (< x , ( I P1( ) x > - ~if I 
~K ~ 

x if 3 C 5 ((x • x >  — Z 
~K ~ 

= C I 
~K ~ 

x
1 i 1 1 i i 1 i

Since the subdifferential of a convex function is maximal monotone, and 
~ 
P~ is monotone,

the above inclusion is in fact an equality, and I 
~~ 

is a projector because it satisfies
1 i

relation-(ll). Thus the first part of the theorem is proved. As to the last, note first

1 2 * * *that if f. (x) = y fl ,dI +*K (x) , i=l ,2 ,.. ., n then 
~ 

P~ = ~ ~f .  = S ~ f. because the f
1

1s are
1 

- - 1 i i  1 -
- 

- m * - * *
continuous (5). Hence R( I P

1~
.)  =~

R( -I- f i
) ~~~~~~ ~

-
~

) = S ( 5 ( f 1ofp .. .Df ) ) .  and, as the
1 1 1

domain of the subdifferential of a l.s.c. convex function is dense in the domain of the func-

tion Ill ,

5(f
1
Df20...0f~

) — ~(f1Of2
D.. .Df) = ~ (f1

)+~’(f2
)+. - 

~~~~~ 
— K1

+K2+ . .  . +K

n n
Therefore , R (  I ) = ) K~. Now, if I 

~K 
is a projector its range is closed and

_ _ _  
1 i 1 1 i

m n fl fl fl
K =R( I p ) C I K . , whence R( I ) = I K.. The proof concludes by remarking that

1
i l

xi 1 1 i i  1
any projector is the projector on its range.

§2. Conical projectors. Projectors on closed convex cones with vertex at the origin are

called conical projectors. It is clear that a projector on a convex set is positive homo-

geneous when the set is a cone with vertex at 0 , and only then, so that the class of conical

projectors coincides with that of positive homogeneous projectors. The letter C will be

reserved to designate the above type of cones,.so that PC will always indicate a conical

projector. -

The dual of a cone C C x is the cone ~n K

(12) c
j  

= {x~ e < x~,x >  < 0 , x £ C)

C1 is nonempty, closed and convex. The operation of taking duals has the following

properties:

(13) c~ — C , (C C C
2

) * {c~ D C
1), ( 0 C ) 1 

= Co U C1

- 2

For linear spaces j. coincides with the operation of taking anihilators. The indicator

functions of dual cones arc conjugate of each other. We leave to the reader the verifica-

tion of these facts.

The original definition (1) acquires a special form in the case of projectors on cones:

Theorem 6

(14) — (x € C I<x *,x> l1 x 112 
= ( sup < x’,u> 1 2)

u cC,Il uJl < 1

— 7— 
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Proof. If x minimizes 4ny 112 — <x ,y> over C , then, for any x a C , +t
2II x ll2 

-

as a f unction of t attains its minimum on the positive real axis at t = 1, and hence

1x 12 = < x ,x> .. Therefore x € if and only if 11 x 112 = < x , x>  and

— 
~~~~~ ,~~~2 

— <x *,x> m t  ~-(flyII
2 

— < x ,y >1 = inf inf{ft
2lI y ii2 — t < x

*
,y > )

yaC yaC t>0

ro , it < x ,y > < 0 
* 2

in f (  1 * 2 
— 

*
yaC j~--~ 

< x  , ~fr> , if <x ,y> >0 ueC ,II uil <  1

Q.E.D.

* * +
It is worth remarking that any x ~ 0 ~n P

~
x is of the form < x  , u> u, where u is a

* + *vector in C maximizing <x  ,v >  , so that 
~
‘C~ 

is simply obtained by looking for the

directions in C making the smallest angle with x and projecting on them in the ordinary

sense. This geometrical definition may very well be taken as the point of departure for the

theory of conical projectors . It is indeed the idea of  “leas t angle mapping” what lies at the

roots of projectors.

Theorem 7.

*2  * * * 2 2 *
(15) IP x- fl <x  

~~~~~ 
> = sup < x  ,u > )  — 6  C x )

C UCC ,II u Il < 1 C1 . -

* * 
— 

I
where 6 (x ) denotes the distance from x to C

Proof. Only the last equality requires a proof. By Theorem 1, Corollary 3,

* * 1 * 2  * * * * . *  * *
<x ,P~

x > — ~~lP~x ~ = Cx — ~ (x ) = 0 
I~ 
(x

1 *  * 2  1 2  *
= inf 11x —y U = ‘-  6 Cx )

* I ~ C
1

yaC

Since <x ,P~x > — is equal to both ~~~~~~~~ and 
~
<x ,PC

x >, the theorem is

proved.

Corollary 1. ?? ‘~C~ ~
1 

-

Corollary 2.
* 1 * 2  1 2 *

(16) 
~~~ ~ 

— S ‘5 (x
C

Next theorem establishes a relation between projectors and nearest point mappings .

* * .1. 1 * *
Theorem 8 . (I _JP

~
)x 0 C is the set of points in C closest to x - (I denotes the

identity map in X ).

* * * I * * * * * * *
Proof. If z £ (I - JP

~
)x 0 C then x -z a JP

~
x and lix —z =

~~~~C
x- ~ flP

~
x II —

* * * 1
6 (x ) ,  which shows that z minimizes the distance from x to points in C

-8-
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* .1 * I 1 2  *Conversely, if z £ C realizes the distance from x to C , then 6 1(x ) =

1 *  2 1 2  * 1 * * 2  * * C
-~ Ilx -z U - Since on the other hand 

~ 
6~ ~~‘ ~ -z II for all y a X , and since

1 2  * *3~~5 1(x ) = P~x (Corollary above),
C

~~ity _ z * Ii2 
- ~.iIx

*_z* Il? >~~iS
2 (y) - ~~

- 6~1(x) > <
~~~

*_ . * p~~ > y
* 

c ,X

whence by definition of subgradient,

* 1 * * 2  —l * *C 5- - lix -z II — J Cx -z

* * —1 *
that is, z a x — J P x , completing the proof.C 

*
* K IIf we let 11 K 4 2 denote the nearest point napping on C we can give to this

CI

theorem a form suggestive of Moreau ’s decomposition of a vector in filbert space along ortho-

gonal directions in dual cones ( 2) .

* * *Corollary. For any x c X there are vectors u and v auch that

* * * I *(17) x = Ju+v , U £ C, a C , < ~J ~U > 0

Moreover , if (17) holds then u a P
C

X and v £ fl x -

C
I

Proof. The possibility of decomposition (17) follows from Theorem 1, Corollary 6 and the

* I *theorem above. As to the last part notice that if v a C and < v ,u> = 0 then

v a S*~~ ( U ) .  and apply Theorems 1 and 10.

Projectors and nearest point mappings are the same objects in filbert space . If the

identification of the space with its dual is made exp~licit this coincidence can be expressed

by the equation

(18)

Now, is this relation characteristic of filbe rt space? We don’t know, we only conjecture that

it is. The following theorem gives some support to our contention.

*Theorem 9 Let X and K be dual reflexive Banach spaces. Then if the duality mapping

J:X -P is bij ective , and

(19) — 
~~~ 

for all straight lines and hyperplanes C C X

—l * *
(20) 11 

* 
= ~ ~~ 

for all st rai ght lines and hyperplanes C C X
C C

K is a filbert space.

Proof. By Theorem 2, Corollary 1 all projectors are single valued , and on use of Theorem 10

(19) and (20) can he written in the form

— l * — 1 .
( I - J  P ) x = P J x , (I _ J P

c
)x = P 13

Cl C

—9-
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If in the first of these equations P 1x is replaced by its expression derived from the last
C

one obtains

(I - P~J)x = J~
1(3 - JP

c
J)x

that is,

J (x=P
~
Jx) = Jx - JPCJX

In a similar manner

—l * _ l *  _ l *  — 1 _ l *
.7 (x - P ~~J x ) = J x - J  x

C C
Making in the above equations the following identifications

C = 
~~~~~~~~~~ 

, C~ = {tJuJ_.,<~<+,
, x = v , x = Jv

where u and v are any two unit vectors, one gets

J( v— < Jv ,u, > u) = Jv-<Jv .u >  Ju

J(v- < Ju ,v > u) =Jv -<Ju .v > Ju

Set r = v—8u , s = v-au , a < Ju ,v > , 8 = <J v ,u> , and on use of these identities proceed

to the following calculations:

I n N 2 
= < Jr ,r >  = < Jv— BJu , v—Bu > 1+8 2-82—Ba — 1-aB

= < J S , S > — < Jv—aJu , v—au > l+82—ct B-ci2 
— l—aB

< Jr,s > = < Jv—BJu , v-au > — l+aB—aB—aB= 1-aB.

Therefore, < Jr,s> = II ~ir H
2 

= II s fl2 and by definition of .7, Jr .75 . This implies r = s,

which in turn yields a=B, that is, <Ju ,v> = < Jv,u> . This equation, valid for unitary

u and v , is at once extended to all u ’s and v ’s in X by use of the homogeneity of 3.

*But then .1 iVa selfadjoint mapping of X onto K , and as such linear. It follows that

11x 12 
— < Jx,x> is a quadratic form, and the theorem is proved.

Theorem 4 takes a simpler form in the case of conical projectors :
* x

TheoremlO. A positive hoinogeneous-subdifferential operator P:X -* 2 is a conical pro-

jector if and only if it satisfies
* 1 ~~

2
(21) Px — UP x if

Proof. It follows from Theorem 4 , and Equation (15) that a conical projector sastiuies (21).

Conversely, if a positive homogeneous subdifferential P satisfies (21), ther., since it also

* 1 * * * 2  
- 

* * *
satisfies Px — ~~~- < x ,Px >, (8) , iPx II = x ,Px > (use the fact that P0 0), that

1 *~~~~ * * 1 *is -2IPx U — x ,Px > - ~ flPx N . Hence , (10) holds f or P , and P is a projector.

-10- 
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* x
Corollary. A positive homogeneous subdifferential operator P:X ~+ 2 is a conical pro-

jector if and only if

(22) li px
*
8
2 < x~,px~ > , V x~ £ £~(p) -

Proof. Necessity is contained in Theorem 7. If, on the other hand, P is a subdifferential

* 1 * * 1 * 2operator satisfying (22), then Px = <x ,Px > — SjifPx ii , and I is ,a projector by the

above theorem.

Now we turn our attention the the important question of when a sum of projectors is a

projector.
n

Theorem 11. P is a conical projector if and only if
1 Cj

(23) Ii 
~ 

P
C 

xiI~ = 
~ 

Iip
~ 

x~O~
1 i 1 i

In such a case

~ ~
‘C. ~~~

1 z

Proof. This is a particular case of Theorem 5. The constant in equation Cli) is zero be-

cause all 
~C 

s vanish at x = 0.

It may be checked that if all C.’s are rays: (tU.}
~~>0 , f l u l l  = 1 , (23) simply says

that Ix  ii2 is quadratic over the n—hedron { 
~ t. u. I , and that the u. ‘s are ortho-
1 ~~~~~~~~~~~ 1

i— n
gonal with regard to the induced scalar product , or more briefly, that {~ c~ ,ii II I is a

1
2~—tant of an n—dimensional filbert space. Based on this remark the system of n cones satis-

fying the PythaVorean relation (23) may be conceived as a generalization of an orthogonal n-

tuple of vectors where the vectors are replaced by cones. Accordingly we shall say that such

cones form an orthogonal n-tuple, and shall use the notation C1 IC2 I ... I C
n 

or

I P~ I... I to denote this fact. It is rema rkable how much of the filbert space
- l  2 n
structure is brought into the space by the requirement that a projector should split into the

sum of others.

Theorem 12. C1I C 2 I ... I C  if and only if

(24) inf ~ fix . H
2 

— 11x02 , V x a C
1 

+ C + ... + C
1 -

~ 
x~~x,x~~cC~

In such a case the infinium is always attainable.

— 11—
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Proof. C1 
I C

2 
I ... I C~ is equivalent to

* 2  1 * 2—l I P x U — P  x l ,
~~2 C~ 2

1

- 1 1

which by taking conjugates and recalling that the conjugate of 4II PCx
* 112 is 4llxD

2 LIt
~~
(x)

(Theorem 1, Corollary 3, and (15)) becomes (24). /

To see that the infinuxn is attained take n sequences {x~~~) C C . , such that
1 1 3.

+ 11 x12, ) ~~~ = x. Since the sequences are obviously bounded they can be

assumed to be weakly convergent to limits x. in C . respectively . Then , the limit inferio r

of the norms being larger than the norm of the weak limit , we nmst have l i x . 112 
< ~ xli2

~ 
x~ = x, that is ~~ii~~. ii2 

= 11x fl 2 

~ 

x. = x . (Briefer but less direct:

n
P .. ) = R~ p ) = Z C.).

1 ~i 
~~C. 

1 1

1 1 
*

For the inversion of the statement: If C IC I... IC , then {x. € P x , i=l ,2, . .. , n )
1 2 n 1 C.

~ ( I ~ x.1
2 

= 
‘
~flx .li 2 ) , we need a couple of lemmas .

1 1 ._,
Le~~~ 1. Let C IC I ... I C . Then1 2 ii

{.i C:~ x .) n .~ xp i  i~ •, ii~ x .N2 ~~~~~~~ il~ x ’i$ 2 ~ Mx ’ U2, x , x~ £ C ,i 1 ,2.. .. ,n}

implies (.7)1. fl JX ! ~ $, i = 1,2,... ,n)
£ 1 1 -

1~ Proo f. Fnon J (  
~ 

x~ ) 0 j( ) x~) ~ • it follows flt ( ) x~) + Cl—t) ( ) x ’)11 2 
= const.,

for 0 < t < l .  Then ,

It( ~ xi
) + ( l_ t ) ( ~ x ’) i f 2 

= tII~ xii 2+(l—t)Il ~ x ’if 2 ~ (tfl x~Il 2-s-( l—t ) li x1if 2 ) > ~ ll tx.+(l_t)x~fl 2.

0 < t < 1,

and by Theorem 12, since txi 
+ (1-t)x1 £ C~

— ! Itx . +( 1—t) x~II 2 
> U~~~(tx j+( 1_t ) :~ )U 2 

= ~t x~+u_t~ ~ x ’ii
2 

~

} Itx~+ (1_t)x~I 2 — It ~ x~+ (1_ t) } xj II 2

1 1 1

Now, the sum of the squares of convex functions being constant if and only if the individual

terms are constant , we must have , I tx~+(1-t)x~N
2 

— const , 0 c t < 1 , from which it follows

J*~ A j~~
i 
~ •, i = 1,2,. ..,n. Q.E .D.

—12—
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Lemma 2. If C
1 

I C
2 
I ... 1 C~ , then

( I  ) x
~

N2 = ~ N x 1 112 , x~ a c~) 
~~~~~~ 

£ J
1Jx~, i=i ,2,... ,n , y x a J( ~ xU) .

Proof. By Theorems 3 and 13,

P~ x ~~~~ ~ ( ~ C~) = 
~C 

X , yX  £ J( ~ 31 ).

1 i i  i
i 

/

1 * * * .
Hence , if ~~~~~~~~~~~~ are any n points in P~ x * x respectively,

- 1 2 n

and x E J C ~~~x~) f l J C ~~~x~).

The lemma above then yields Jx~ 
(~ Jx~ p~ •, that is, x~ £ J~~Jx1

, i — 1,2,... ,n, and since

* * —l
x is any point in x ‘ x C j  .7x~, i — 1,2,.. .,n.

i i
Theorem 13. If C I C I ... I C , then1 2 a -

(25) ( IIx~l 2 
— ~ fl~~~~~~

2 x~ a C
i
,i 1,2,...,n} ~ {x .a Pc x ,i=l,2,...,n, Vx a JC ) x .)}

Proof. Assume that the proposition on the left holds. Then, by last lemma,

* * 
n * *

x I = H x
i

ii , x a J( ~ x ), and so , since ~i x . ii — 
~~

‘C ~ = SUp < X  ,U~~> ,
i 1 i u.eC ,ilu.lt< 1

1 i 1

* 2x ,x~ > — ifxili < 0 , i 1,2,...

and adding up these inequalities,

, ( < x ~ .x~ > — Iix~R 2
J ;<X , ~ ~ 1

> — ~ = Il~~ X~lI 2 — U~ = 0 

*
Therefore , < x , x1 > = llx ~ll = IIP~ x N = ( sup <x ,u > J  , and by (14) 

~ 
P~ x

i u cC . , f l U f l~~~ 1 i
i 1 1~~~

proving the implication from left to right. The opposite implication is but a quantification

of (23).

O,roliary.
n 

* 
- 

* — l * * *
(26) ( ! 

~C 
— ~m ~ ~

‘C 
X C 

~C 
‘~~~‘~~ x C ~ ~~~ x C C~ , i — l, 2,...,n , yx a X I.

i i  i i
~~~~C 

i

i
i l j 

* * *
Proof. Let x , 2

,...,x be points in x ‘ ‘~ C 
x respectively. Then by Leimas

2 and the theorem above a }
~ ~~~ 

C j~’J~C A C~ , i 1,2,... ,n, whence (26) follows

from the fact that when the x ‘ a range over the sets P
C ~ ‘ ~ 

x~ ranges over P x

—l * * — 

i 1 
~~Ci

Remark. By (8) .3 JP x 0 C~ ~~~~ 3
~
’C x , so that the right men~ er of (26) can be written

* 
Ci 

* 
i i *

in the form PC x C !~~ * C P
C ~~ C 

x . Comparison with (8) prompts the conjecture that
i i~~~~~Cj i i

1 
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‘the last inclusion is not proper, that is, that P .JP = P JP - However , this is not
- C~ Y~ 

C~ C~

true in general.- Consider the following example: - 
- -

*Let K and X be the dual two dimensional Banach space with norms :

+ 

~ 2 1 )  
‘ ~l~2 

> 0 f(k~ + k~I) 112, ~~ 
~ 0

, lI x II = ç

L k11 + k2 1 ‘ 
~~~~~ 

0 max (k1I~ IF;;I) 0

The second and fourth quadrants in X , which we call C
1 and C2 respectively, form an

—l * *orthogonal couple, and ~ = P~ +P~ - For any x £ X in the first gradiant and away from

*
_ 

* 
l~~~2~~ *

the axes 
~~C1+~ 2

X = x  ‘ and = x ~ , where x. isthe Euclidean projectionof x on the i-axis .

Moreover, P j  x — x is a singleton x
1 

on the 2—axi s, whereas P~ x =

* 
1 1 2  1 1

3 1x A C1 is a straight line segment through x1 :cr055 C1 parallel to the first quadrant

bisector. Obviously 
~C ~ ~C •+~~~ 

x 
~ ~C ~~

‘C ~
1 1 2  1 1

All that has been said of conical projections from Theorem 11 on applies also to projections

on general convex sets, the only difference being the presence of an additive constant all

throughout.

Theorem 14. If C IC 1.. .1 C then1 2 n
*(27) P (tI +( l—t)  .7 P ) = P , 0 a t < 1, i = 1,2,... ,n

* 

~~~~~ :i 

* * *Proof. For * a X and y a .7 P~ x set z Ct) = tx + (l—t)y , 0 a t < 1

Now 

* * * * *sup <z Ct)~ u~ > < t sup<x ,u > + Cl—t)sup<y ,u.> = tiP x U + ( l— t ) I l P y II
u~cC~, flu~Il< 1 

* 

u~cC1,Ilu~ < 1 u~cC~,HU/< i Ci i

By (26) UP~ ~
‘ N = HP

~ 
X ii so,

i i 
*sup <z*,u

i
> 

~~
flP
~ 

x f l .
U1

ECj , f l u if l <  1 i

* *Moreover , by hypothesis and ChOiCe of y there are points x . c P~~ x , i 1, 2 , . . .

such that y a .7 
~ 

x
i
. Since <x ,x~ > — Nx iU 2 by ( 1 4 ) ,  and < y .x~ > = lIx~fl 2 by (25), we

* 
1 2 * 2ha ve < z  (t) , x > = Ix  N = H P  x I , t — 1,2,... ,n. In view of what has already been provedCi 

* * I
these equations mean that the supreme of <z ( t ), u

i
> , < , < y ,u

1
> over the u

i
’s in

C1 with Iu~ I ~ 1 are attained simultaneously and a e  equal to N 
~~~~~~~ 

Then ,

_ _  
-I___ - -~~~~~~~_~-~~--- — -.-- —-- —-- -

~ 
— --~~~------



1~
(V

1 
p
c~ 

z (t) ) * (D v ii sup < ~~~~~~ — t lP~~x~li , < z* (t) ,vi > — Iip
c
x
*
Il)

u
i

cCj.f lujll< 1

* {Dv ~1 sup < x
1
,.u.> sup < y

1
1u 1> UP x

*li , < ~~~~~~~~ = HP x
1
p 2 =

u~cC1,fl u~l~ 1 u
1
aC~,Nu.li < ~ 

C~ 
* 2

= l lv 1li }

* * /
*(V € p x , v . a P

C ~~~1

and hence

* * * *PC (tx + ( l—t)y = x A y , 0 < t < 1, i = 1, 2,...
I * i 1

Since y is any point in .7 P~ x

I C
i i

Ct x + (l—t)J P x )  P
C 

~ A 
~~~~ 

~n 
X

I 
IC 

1 ~
1 1

and an appeal to the previous theorem concludes the proof.

Corollary. For any conical projector,

(28) P
c
(tI

*
~ (l—t) .7 

~~~ 
= 0 a t < 1

Proof. Set in (27) C
1 

= C, C
2 

= C
3 

= ... = C = {0}..

The geometrical meaning of the relation C
1 
I C

2 
I ... i. C is not sufficiently clear from

defining Pythagorean relation (23), nor from (24). In Hu bert space each cone is the dual of

the sum of the others relatively to the total sum (8 , Equation 2.10]. A~similar result holds

in reflexive Banach spaces.

Lenma 3.

(29) C~ .IC2
I ... IC ~ (~c~ C ( ~ C1)

1, j  — 1,2,...,n)
i,Ij

Proof. Let X . £ C ., y~ £ Jx~ . Then, since by (8) € 

~C~~j 
C J ’Jx

)~

N x~ + 
~ 

2 
~ I 

~c y
*~ 2 

= x ~ 
2 

+ ~ II 
~c y~ii 2

j~’j j  i=l i i~j I
and by definition of .7

} UP~ y4N
2 

= 11*4 + 
~ 

P~ y411 2 
— 11x 411 2 

> 2 < y ., 
~ 

I’
~ 

y4 > = 2 
~ 

HP~ y~~
2

ip’j i ‘ ~ i,~j  i ~ ip’j i - _  ip~j  i

Hence , I’
~ 

y .  0, that is, y~ C C~, i ~ j ,  and J C C A c~ C ~~ C ) 1 -

i i~’j i,’j ‘

Theorem 15.

(30) C1I C2 I .~~~. IC~ ~~ C~ — 
~ 

C
1)~~ 

A ( ~ C
k
)
~ 

j  = l , 2 , . . . , n .
iYi k=l 

n
Proof. By Lemma 3. C J~1 ( (  

~~~ 

C~)~~h and since C
1 

C- 
~~

Ck~ 
C~ C J

1
I ( IC ~

)
~~1 A C ~~

C
k
)

—15—
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This is half of (30) . To prove the other half start with an x . in J 1 ( (  I C1I~) A ( ~i~’j
and then observe tha t

_ 1 *  * I Ix .  a C + C + ... + C , x. £ .7 x . , for some x. a C ~ C.) A C . -1 2 n 3 1 1

So
*x . a jx . C JCC + C + ... + C )1 2 n

and by Theorem 3,

* 
n 

* *
31. £ .7 x. f) (C + C + ... + C ) = P x =~~ P x . = P x . C C3 ~ 1 2 n n j l C

k j C . )  j
Ic

and since x4 was any point in J 1( (  ) C .) 3 A ( I C
-‘ i~’j

I C .) I C 
~ 
Ck
) C C .

ij~j  1
concluding the proof.

Corollary. In the relation PC = 

~ ~~~ 
any n projectors determine the renam ing one.

We do not know if the arrow in (30) can be reversed. The most that we can say is that

this is the case in Hu bert spaces of dimension not larger than three.

13. Conclusion and comments. The material set forth in the preceeding pages is essentially

all we know about projectors in reflexive Danach spaces. No doubt the discussion can be

carried further still, and we hope that it will be , for, as it stands the extent of our

knowledge is insufficient for the proper development of a spectral theory. Let us point out

here to some of the most visible shortcomings.

In the fi~rst place it is not known if the relation P
C 

> 

~C 
• defined as meaning that

1 2
— 

~C 
is a projector, is a partial ordering for projectors. Indeed, there is no proof

1 2
of it being transitive.

Important as transitivity is, spectral theory requires something stronger still, namely

that any sub k-tuple of an orthogonal n—tuple of cones be again orthogonal. This is necessary

if the spectral measure built out of a spectral resolution is to be projector-valued . In

Hu bert space this is a consequence of > P being equivalent to P
C ~~~ 

=

1 C2 2 1 2
No such equivalence has been established in reflexive Banach spaces , we only know that if

is single valued P > P implies p JP = P (Corollary , Theorem 13 ).
C
1 C2 

C
2

C
1 

C2

Another important property, which in filbert space lies buried under the homogenity of

-

- 
- orthogonality, is the following.

—1 6— 
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I

If C
1 
i C

2 
I. • .1 Cn~ and x~ C C

1
, I — 1,2,... ,n , then -

(U ~ x~H 
2 

— II 
~1 

2 ~ ~~ ~~ ~
2 

, > o~.

The whole of functional calculus is based on it. Needless to say that we have no evidence that

it holds in reflexive Banach spaces.

These examples should suffice to show the need of further research. Maybe some of the

sought properties are not valid in general. If so, we anticipate serious difficulties in

bringing such facts to light, for the construction of counterexanples is a hard task in this

field.
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-- The projector on a convex set K in a reflexive Banach space X is the

mapping 
~K, 

assigning to each point x~ in the dual space X~ the set of
1 * 2  1 2 *

points minimizing ~~I I x  + ~- I I x -<x ,x> over K. Projectors are discus-
- -

sed and shown to enjoy most of the properties of nearest point mappings in
Hu bert space . L. -~~ - - ‘~~ ‘
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