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ABSTRACT
A general index theory for Lie group actions is developed which
applies in particular to subsets of a Banach svace which are invariant
under the action of a compact Lie group G . Important special cases occur

when G is 2z or Sl. This theory should be useful for problems in-

2

volving differential equations which are invariant under G, in particular ;

in obtaining estimates for the number of solutions of these equations. As !
an apolication a bifurcation problem for Hamiltonian systems of ordinary
differential equations is studied and estimates are made on the number of
periodic solutions bifurcating frow an equilibrium solution.
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EXPILANATION
An index theory is developed which in particular can give information
on the number of solutions a nonlinedr differential equation invariant under

a group of symmetries possesses. An avplication of this nature is given to

Hamiltonian systems of differential equations.
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GENERALIZED COHOMOLOGICAL INDEX THEORIES
FOR LIE GROUP ACTIONS WITH AN APPLICATION
TO BIFURCATION QUESTIONS FOR HAMILTONIAN SYSTEMS

Edward R. Fadell and Paul H. Rabinowitz*

1. Introduction

In another work [1] the authors employed a cohomological index
(see also Yang [2,3], Conner-Floyd [4] and Holm-Spanier [5]) in place
of the usual notion of genus [6, 7] which is useful in symmetric situations

with the group of symmetry being Z e.g., in the consideration of (odd)

2
maps f such that f(-x) = -f(x) . Replacing genus by this cohomological
index was dictated by the need of additional property--the piercing property
(Proposition 3.9). In this paper we extend this idea of cohomological index
to the general situation where the symmetry group is an arbitrary compact
Lie group G . It turns out that any cohomology class q ¢ H*(BG) , Where
BG is the universal classifying space for G, gives rise to an integer,
indexax ., where X is an arbitrary paracompact free G-space, and this
index enjoys (§3), quite generally, the usual notions required of such a
theory, including the piercing property. Section 4 is devoted to three
important special cases, namely when o is specialized to the generator of

the cohomology of IFP® , infinite projective space, where T is either the

reals R, the complex numbers €, or the quaternions IH, and the group

*This research was sponsored in part by the Office of Naval Research under
Contract No. N00014-76-C-0300, by the U. S. Army under Contract No.
DAAG2 9~-75-C~-0024, and in part by the National Science Foundation under
Grant No. NSF MCS76-06373. Any reproduction in part or in full for the
purposes of the U. S. Government is permitted.




G is the unit sphere in F . We use the nOtGLUOL 1alon

]}<"‘ ” z:,cexcrjz "

index]HX , for these three cases. The first, index. X , 1s equivalent in a

R
restricted category, to the cohomological index of Yang {2,3]. Thisis

the index employed in [1] and it is designated in Conner-Floyd [4] by
co-indexZZX . In Section 5 we reformulate the theory in the setting of a
normed linear space 8 over IF using the notion Indexn:,X = index]FX +1.

In applications of interest, where the underlying group of symmetry
is Sl , the resulting action may not be free due to the presence of isotropry
subgroups of arbitrary order. Accordingly, in Section ¢, we employ the
index theory developed for free G-spaces, to define index theories in
the general situation, namely the category of paracompact G-spaces
without the assumption of a free action. The basic idea here is to use the
equivariant cohomology H,(X) of A. Borel [8,9] rather than the
cohomology H*(X,/G) of the orbit space which is used 1in the free case.
Section 7 is devoted to the special cases of non-free actions which arise in
our applications.

In our earlier paper [l], the index theory given there (for a free Z:
action) was used to help obtain lower bounds for the number of zeroes an od«
potential operator possesses near a bifurcation point as a function of an
eigenvalue parameter. In §8 (Theorem 8.4) we shall show how the
constructions of [1] in conjunction with the index theories developed here
(for a non-free S1 action) give similar lower bounds in problems involvird

the bifurcation of time periodic solutions from an equilibrium point for

Hamiltonian systems of ordinary differential equations. Bifurcation questio




for Hamiltonian systems have been studied recently by Weinstein [10]

and Moser [ll] from another point of view. While completing the final
draft of this paper, we learned of the work of Chow and Mallet-Paret [I2]
who also observed that the methods of [1] can be applied as we do in §8 .
In particular they obtain a special case of Theorem 8.4 corresponding to a

free S1 action.
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2. Preliminaries

Let G denote a compact Lie Group and & the category of paracompact
free G-spaces. More precisely, an object in ¥ is a paracompact
(Hausdorff) space X together with a continuous (left) action u ; G X X—=X
(where u (g,x) is written gx) suchthat gx=x, ge G, x¢X,
implies g=1, the identity of G . The morphisms of & are equivariant
maps f: X ~-Y, i.e., f(gx)= gf(x) . Given an object X ¢ &, set X=X/G i
the corresponding orbit space with the identification topology and let
p:X -—)? denote the associated identification map.

This category & may be identified with the category Prin G of
locally trivial principal G-bundles with paracompact base by means of the

functor
P:X~(X D0 X G) .

To see this requires a few remarks. First, we recall the ingredients of a

ﬁ locally trivial principal G-bundle with paracompact base, i.e., an object

in Prin G :

2.1. Definition. A locally trivial principal G-bundle
£ = (X, p,B,G) with paracompact base is:

(i) A triple (X,p,B) where p: X =B is a surjectivé map of
topological spaces, and B is paracompact.

(ii) A free right action ¢ : X X G =X (with ((x,g) written

xg and xg = x only when g=1) such that:

g
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(i) Let A= {(x;,%,) XX X:p(x)) -~ p(x,)} . Then
(xl,xz) A if, and only if, there is a (unique) g = ‘_l(xl, XZ) in G such
that X9 = X, and the function ¢ : A - G is continuous.

(iv) p admits local sections, i.e., there is an open cover {Uj}

of B and maps cj : Uj - X such that poj(b) ="b ., B & Uj -

Recall also that for € = (X, p,B,G) - Prin G, all the fibers

p-l(x) 2 bt 0, are homeomorphic to G and we have a local product
structure
@.
-1 ]
Pl age - XG
y q,j

given & @j(x) = \,(v:j(p(x)),x) 4 <pj(b,g) = :;j(b)g .

Returning to the functor © : & — Prin G we transform the left G-space
X to a right space in the conventional manner by setting xg = g-lx « ' Thus,
E = (X, D, >~<, G) satisfies (i) and (ii), leaving the paracompactness of )~(
aside for the moment. Since X is a fortiori completely regular, the now
classical cross section theorem of A. Gleason [13] applies to give both
(iii) and (iv). Now that ¢ 1is locally trivial, it is a simple exercise to
show that X is paracompac! using the paracompactness on X and the
compactness of G . Thus, © provides a bijective correspondence between
the category 3 as asserted. We might note that in both & and Prin G

we are identifying equivalent objects where the morphisms in ¥ are

equivariant maps and those in Prin G are bundle maps.




In the presence of paracompactness of the base B , every
€ = (X,p,B,G) - Prin G is a numerable principal G-bundle in the sense of
Dold [14] and hence there is a universal numerable principal G-bundle

n= (EG,q,BG,G) giving rise to a natural equivalence

T: (B.Bg] ~ Prin.B

where [B,BG] is the set of homotopy classes of maps from B to BG and
PrinGB is the set of (equivalence classes of) principal G-bundles with
base B (see [14]). The transformation T assignsto f:B *BG the
induced bundle f*(n) over B . Thus, given a principal G-bundle

¢ =(E p B G), thereisamap f:B »BG , called the classifying map

which induces ¢ (up to equivalence) and f is unique up to homotopy.
In our case G is a compact Lie group and a universal G-bundle
n= (EG, q, BG,G) may be constructed as follows. First realize G as a

subgroup of some orthogonal group 6(k) for k sufficiently large. Let

Vn K denote the space of orthonormal k-frames in ]Rn+k so that

’

Yy et RS G @
—_— —_ n'k-

Then, V k= v K is the total space of the universal ¢(k)-bundle
0, n=0 n,

¢ = (Vw' k' P Gmlk,(9(k)), where Goo,k is the union of the Grassmannians

Gn,k = Vn’k/G(k) & Voo’k is paracompact and contractible and GO: K is a

’

CW-complex [15,16]. G C 6(k) acts freely on the total space V_ K and

hence if we set EG = Vw' K

q: EG~ BG , we have a principal G-bundle n = (EG,q, BG' G) which is

and BG b ¥ k/G with identification map




numerable because BG is paracompact; and universal for arbitrary

numerable principal G-bundles because E_, is contractible [14]. In

G

particular, because Vw K and G are locally contractible so is BG and
’

hence the singular cohomology of BG and the E:/-ech-Alexander-Spanier

cohomology of B, are isomorphic [17].

G
The cohomology employed, unless otherwise stated, will be

Cech-Alexander-Spanier By

Sl Lolole daln e coaiil i b aii e




3. The u-index

Let G denote a compact Lie group and choose an element

(characteristic class) a in the cohomology group Hq(BG,A) , where

B /G is the base space of the universal bundle n described

e R
at the end of the previous section; and A isa (non~trivial) principal

ideal domain serving as (simple) coefficients.

3.1. Definition. Let Xe¢ % denote a paracompact free G-space.
Let R(X) = (X, p,i, G) denote the corresponding principal G-bundle and let

~

f:X~—- BG denote a classifying map for P(X) . Set

indexOX= max(k : f*(qk) £0, k=0).

3.2. Remarks. H*(}?,A) and H*(BG,A) are rings with the usual
cup product structure [17] and £ above is a ring homomorphism. We set
QO = 1, the unit element, sO that when X is non-empty f*(l) =1#0 and
hence inderX >0 for X#@ . If X=g we set inderX= -1.

If f*(ak) # 0 for infinitely many k , we set indequ = » . Notice, also
that indequ is independent of f since classifying maps for equivalent
pundles are homotopic.

We now proceed to verify the basic properties of indexu 5

3.3. Proposition (Monotonicity). Let ¢ : X—=Y denote a
morphism of & , i.e., ¢ is an equivariant map of paracompact free

G-spaces. Then,

index X = index Y .
[0} u
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Proof. Let f denote a classifying map for 1) = (Y, pY, ?, G) .

Then ¢ induces a bundle map and a diagram

et

|

G

Py

Sty MEr——

Py
£

R =

e
Lol c i
—_—

with f¢ serving as a classifying map for PX = (X, Pyr X.G) . 'Thus,

g*f*(ak) # 0 implies f*(ak) # 0 so that

index X = index Y .
Q Qa

3.4. Corollary. Let ¢ : X =Y denote an equivalence in &, i.e.

an equivariant homeomorphism. Then, indean = indean .

3.5. Proposition (Continuity). Let X denote an object in & and
A a closed invariant subset of X, i.e., gaeA, aceA. ge G. Then,
there exists a closed invariant neighborhood N of A such that

index N = index A .
a Q

Proof. Let h denote the family of invariant neighborhoods of A

directed by inclusion and let © denote the subfamily of paracompact
invariant neighborhoods of A . Givenany Neh, let C denote a closed
neighborhood of A suchthat AC CC N . GSince G is compact GC is
again a closed neighborhood of A and being closed GC is paracompact
with AC GC C N . This shows that P is cofinal in n, and hence

(17, p. 316]




(1) lim_ HYN) ~ HY(A)
p

Since for N =, AC N, we have indexuN = indequ o - EE indequ =
then for every N ¢ P, indexaN = » SO that we may assume indequ =
Let f denote a classifying map for (N, N, Py G), Ne ®, and consider the
maps

fn

1 N > B

& G

with i*f;(qu) = 0 . Using the isomorphism (1) there must exist an

N, € £ such that f; (ak+l) = 0 so that inderN0 =k« Thus,

0
0
indexaN0 = k and the proposition follows.

3.6. Proposition (Subadditivity). Let X denote an object in & and

and A and B closed invariant subsets of X such that X= AU B . Then

index (AU B) = index A + index B+ 1 .
a a Q

Proof. The proof will make use of the cup product in Alexander-

Spanier cohomology ([17], p. 315)
H(X,A) ® H3X,B) - H T5(X,AU B)

which requires that the interiors of A and B cover X . However, in view
of Proposition 3.5 we may assume without loss of generality that this is the
case and proceed. Observe also that we need only concern ourselves with
the case when indexaA = a and index B=b are finite. Consider the

diagram




Y 7 TSI SO
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where il,i2 are inclusions and f is a classifying map for (X, Py % G).

Then, ijf*(@®*h) = 0= 3£ (") sothatif j;: X - (X5,

a+l

X - ()N(', ﬁ) are also inclusions f*(oz ) and f*(ab+1) pull back under

It

b ES
jl and jZ , respectively and then the diagram

~ ~

NE A G —as " a2 u B

H® ® B5%) — BFS®)

with r= (a+l) dim o, s = (b+l) dim ¢ shows that f (c®T2*%)= 0 so that

indequ = a+b+l .
3.7. Proposition (Normalization) 1ndexaG =0,
Proof. This is immediate because G is a point.
3.8. Proposition (Dimension). If Xec 3, X=X/G, then
(index_X)(dim q) = dim ¥

Proof. This is immediate also because the cohomology of X

vanishes in dimensions bigger than dim X ([17], p. 359).




3.9. Proposition (Piercing Property). Let X ¢ & and suppose
X = Xo U Xl where Xo and X1 are closed invariant subsets. Suppose
further that A< & and ¢ : A X I =X is equivariant imbedding, i.e.,
¢o(ga,t) = ge(a,t), g G, a<A, tcI=[0,1]. We assume also that
¢(AXI) isclosedin X . If Aj= ¢(AX {o}) c X, and

A = o(AX {1} c X; + then

mdexu e(A X I)N X0 n Xl = indexa A

Proof. First, there is no loss of generality in assuming that AO = A
and ¢(a,0)=a, acA. Let Y= proj o ¢'1:¢(Ax I) -AXI—A,
C=9AXD)NX,NX and Y. = Y|C: C - A and observe that the maps
Y and YC are equivariant. Thus, indexa @ = indexa A . Now, to prove
equality it suffices to show that YC induces injections
Vo : BY®) = HY®) forall q, where A= A/G and €= C/G .

This is done as follows. Introduce the notation B0 = X0 N e(AXTI),

B1 = Xl N ¢(A X I) and the inclusion maps

k

A
j

IEBI
\/I

BOUB1

!’1:CCB1
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where By N Bl = C . All these sets and maps are equivariant and working
in the corresponding orbit spaces XO = AO/G , etc. we have a
Mayer-Vietoris Sequence

cee —> Hq(§0 UB) e Hq('Eo) & Hq(ﬁ‘l) e PN Hq(ﬁo n §1) —_—

where ¢ = (Tg,-Tl*) P n= 7;; + 71* . We assert first that 'Zg is an
injection for suppose 'Z;(x) = 0 . This implies that n(x,0) = 0 and hence
{(y) = (x,0) for some vy ¢ Hq(‘ﬁ'0 V] ﬁl) . This forces Tl*(y) = 0 and hence
TI*(Y) =0 . But j; and hence Tl :711 —_— E'O u §1 are homotopy equivalences
which forces y = 0 and hence ig‘(y) =x=0. Thus 7: is an injection.
Finally, let YO = Y\ BO s B0 —> A which is a retraction of B0 to A.

The diagram

Z*
o P 0 q
H%By) ——> HY(C)

then exhibits ;’b

c as the composition of injections and the proof is complete.

3.10. Corollary: If in Proposition 3.9, we assume only that ¢

is an equivariant map (not necessarily an imbedding), then

inder e(AX I)N XO n X1 = 1ndexa A




£
B 7 T DU ——
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Proof. Let Y=AX 1, Yy=9 (X)), Y, =¢ (X). Then,
qu:YOﬂY1 - ¢(A X I)nxonxl
is equivariant and
indexa Yo n Y1 = indexa o(A X I)N XO n X1 .
By applying Proposition 3.9 to (Y, YO'YI) we obtain
indexa YO n Y1 = indexa A
and the required inequality.

3.11. Remark. As pointed to us by L. Sonneborn, the result in
Corollary 3.10 for the special case of a free zz-action, is proved and

employed by Yang in the proof of his Generalized Kakutani-Yamabe—Yujob@

Theorem [18].
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4. Specializations

We now consider three special cases of the a-index where the compact

1

Lie Group G is S0 . S8 lor S3 , l.e. G is the unit sphere in F where

F=R,C, H, i.e. T is the reals, complex numbers or quaternions.

4.1. Definition. Define indexn, in the three cases

F=R, C, IH as follows:

(a) F=R . Here G-= S0 = ZZ and & is the category of paracompact
spaces on which ZZ acts freely. The coefficient ring A is ZZ and the
universal classifying space BZ is RP” with H*(R P”; ZZ) the

2
polynomial ring on a single generator w ¢ H'I(R P°°,ZZ). We set

indexR X= indexw 2 Xe &

(b) F=C. Here G= S1 , the complex numbers of norm 1, and

& is the category of paracompact spaces on which S1 acts freely. The
coefficient ring A is Z and the universal classiiying space le is ¢p”
with H*(¢P°°:Z) the polynomial ring on a single generator

c e HA(CP®,Z). We set

indexa:x = indexc X

(c) F=H . Here G= S3 the group of quaternions of norm 1,
and & is the category of free paracompact S3-spaces. The coefficient
ring A is Z and the universal classifying space BS3 is HP® with

H*(I'H P”,Z) the polynomial ring on a single generator o ¢ H4(]H P, Z).




—
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We set

indelex = indexox ; Xed&

4.2. Remarks. The first case (a) is equivalent, in a restricted
category to the index of Yang [2,3]. It appears also in Conner-Floyd [4]
ZZX and also in Holm-Spannier [5].

An alternative development which includes a variant form of the "piercing

where it is denoted by co-index

property" (Proposition 3.9) along with an application to a bifurcation
theorem is contained in [1].

Furthermore, the class w in (a) is the first universal
Stiefel-Whitney class, while ¢ in (b) is the first universal Chern class
[19].

We now proceed to prove some special properties of indexn..

where F=R, C, H .

4.3. Proposition (Stability). Let G denote the unit sphere in IF .
Then, if X< &, let X o G denote the join of X and G with G acting by
a(x,t,y) = (gx,t,9y), xeX, yeG, tel. Then, if X is locally

contractible

index]FX o G = indexn_.x +1

Proof. First we remark that X o G is paracompact, and following a
suggestion of K. Kunen , a proof of this result may be effected using a result
of Michael [20]. Furthermore, X ¢ G is easily seen to be locally

contractible. This forces the orbit spaces X= X/G and B=Xo G/G to

o A NS e A o B B 8
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be paracompact and locally contractible. Then indexIFX o G is defined
and we may equivalently employ singular cohomology ([17]) in dealing

with the notion of inciexIF . Now, we have the following inequalities

index]F.X = index]FX o G = index]PX +1

The first holds because X equivariantly imbeds in X ¢ G and the second
because X ° G can be written as the union of two closed invariant subsets
AO and Al with indexIF AO = index]F X and indexn, Al = 0 and Proposition
3.6 applies. To complete the proof we make use of a standard argument
using the Gysin sequence ([17], p. 260). Recall that our G-bundles are
now orientable sphere bundles since G is O-connected when F= C or H
and we are using Z,-coefficients when F=R . Let B=X° G and
consider the following diagram of Gysin sequences for the bundles

(X.py. X, G) , (B,py,B,G), where i:X—B is the inclusion map

i(x) = [%,0,G], and d=dim G .

::< B

~ W ~
k+d(X) k+d(X) R, Hk(X) .. Hk+d+1(x)
T* i* T* i*
sk *
p ~
PR, k+d(B) --—6 Hk+d(B) N H (B) __) Hk+d+1(B) Sl e

Suppose, as we may, that index]FX = indexlFB = k< » . Then, we would
have a non-zero element u = Hk(g) such that q;z(u) = 0 and hence which
pulls back to H (B) and which also has the property that 1 (u) NG

This forces i to be non=trivial. Butwhen k+d >0, 1 is trivial

e s i Al
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which is a contradiction unless k=0, d=0 . This special case is

disposed by observing that B contains S0 ° SO = Sl as an invariant subset,
L.

and indexR S=1.

4.4. Remark. Proposition 4.3 inthecase IF= R and X is
compact is due to Conner~Floyd [4]. The proof is a simple adaptation

of theirs.

S(d+1)n +d " (d+l)n + d -

4.5. Corollary: index]F
n+l

n, where S
the unit sphere in F and d=dim G .

Corollary 4.5 has the following extension. The special case
F = R is similar to a result of Holm and Spanier [5]. Our proof is different
making use of the transfer map [21]. The action on Fn+1 is scalar
multiplication.

4.6. Proposition. (Boundary of Invariant Neighborhoods). Let M
denote a topological G-manifold of dimension (d + 1) (n + 1) = dim Fm'l' and
U an open invariant set in M with campact closure. Let b il - denote
Euclidean (n + 1)-space over F and ¢ : (G,30) » (F*'L, F*1-0) an
equivariant map, where 03U represents the boundary of U and G acts freely
on JU. Then, if the degree of ¢ is # 0 (using Z, incase F = R),

irﬁexl, U =n .

Proof. We may assume without loss of generality that ¢ is defined on
an equivariant neighborhood V of U and v -(S) = U where S is the unit
sphere in F™*. Thus, we have ¢ : (V,v - 30) » (@ e - 5) and ¢ has

non-zero degree 6§ by assumption, i.e. if B = 3U ard g and og are
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respectively fundamental classes, sp*(oB) = éos. Thus, we are in a position
* * *

to apply the transfer map t : H (B) ~ H (S) with t¢ = §(id). Thus

* * * 5

¢ :H(S) »H (B) injects. Now, look at the bundle map

—__¢_> S
~ &
E‘p—) Fpn

where B = B/G and, of course, FDP" = §/G. Now a simple Gysin sequence
tells us that in the top dimension

032 e {7)

argument (over Z, incase F = R)
r=(d+1ln, ¢ :H(FPY) »H'B) injects which forces index, 3U = n.

4.7. Remark. C. Conley pointed out to us that the special case of
Proposition 4.6 for M = Fn+l and U a bounded open set containing the

origin follows immediately from the Piercing Property (Proposition 3.9).
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5. A Reformulation
Let B8 denote a normed linear spaceover F=1R, €, or H.
Furthermore, if 8 = 8-{0} and G is the unit sphere in F, G acts

freely on B* . Let & denote the family of invariant subsets of 8, .

Then, each X ¢ € is a paracompact free G-space and we define

Index]F X= indexn:. X+1

Letting IN denote the non-negative integers we may summarize the contents

of the previous sections in this setting as follows:

5.1. Theorem. The function Index € ——> IN possesses the

F:
following properties; where X,Y, ** c ¢ :

X=0; if XA, Index.X=1

1° If X=¢@, Index -

F

2@ (Normalization) Index]F G=1

3¢ (Dimension) Index. X * dim IF = dim X

F

40

(Monotonicity) ¢ : X—> Y equivariant implies that
Index]P x= Index]P Y . In particular, equality holds if ¢ is also a

homeomorphism.

(o]

5 (Continuity) If X is closed, there exists a closed invariant

neighborhood N of X such that

AT AL I 20 pa

X = Index. Y

Index]P F

for any invariant set Y, XC YC N . If X is compact N may be chosen

as a uniform neighborhood
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b-X| =58}.

NB(X)= {bz8:

6° (Subadditivity). IndexlF (XU Y) = Index. X + Index_, Y

IF IF

o) n+l

7

open ir-ariant neighborhood of 0, then

(Neighborhood of Zero) If 8= T and U is a bounded

Index]F oU=n +1

(o]

8 (Stability) If X is closed, and X o G is the join of X with

G, realizedin 8 & IF, then

Index X o G= Index.X +1

F I

90 (Piercing Property) Let X0 i X1 , A, denote closed subsets

in € and ¢: AX I —->X0 U X1 an equivariant imbedding, i.e.
o(ga,t) = go(a,t) . Suppose further that ¢(A X I) is a closed subset and

oA x {0}) C X, and ¢(A X {ah c X; - Then

IndexIF e(A X I)N XO n X1 = Indexn:.A

(¢]

10 (Infinity) If 8 has infinite dimension and S is the unit

sphere in 8 ; then Index]Fs = o .

5.2. We need to make a remark about 8° since we did not assume
that X was locally contractible. This is because 5° allows us to replace
X by a locally convex neighborhood. Also 10° follows because
Index S is certainly defined and S contains invariant spheres of

F
arbitrarily high (finite) dimensions.
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6. a-index for Non-Free Actions

In this section we develop the general theory for actions which are

not necessarily free. Our compact Lie Group will be fixed throughout this

section and the notation for our principal G-bundle 7 =(E G)

Gl ql BGI
(Section 2) will be shortened to n = (E,q,B) . We note the important

e il e I W b 5 M S S A N B 50 X35
'

fact that our universal total space E is Vm‘ K which is the union of
countably many compact sets (o-compact). Hence, ([20]) E X X is
paracompact, whenever X is paracompact. Accordingly, we let & . denote
the category of all paracompact (Hausdorff) G-spaces X , making no
assumptions that the action be free or even non-trivial. We also fix once

and for all an element a ¢ Hq(B,A) , where A is a (simple) coefficient

ring.
6.1. Remark. If one wanted to extend these ideas to include more
general topological groups G, the G-space X would have to be

G
is also paracompact. This is the case, e.g., when X is locally compact or

restricted to have the property that if EG is paracompact, then E - X X

o-compact (see Dugundji [22] and Michael [20,23]).

Now, take a G-space X ¢ &y - Then, G acts freelyon EX G

by the usual action

g(e,X)=(eg_l.g1<), geG, ecE, xeX

The resulting orbit space (E X X)/G which is usually designated by

E X X is the total space of the associated bundle (E XG X, px, B) , where

G

px is induced by qj1 where j1 + EX X —-E is projection on the first factor.
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Notice, then that E X X, with this free G-action belongs to our category

¥ of Section 3 and we may introduce the following definition.
6.2. Definition. For Xe &, , set
. % :
index X = index E X X
a Qa

where indexa E X X is as defined in §3 . Alternatively, consider the

diagram

Py
BEX %t —=—>8

where j1 is projection on the first factor and set

indexz X = max {k : p;(ak) #£0, k=0}

Before we investigate the properties of indexz J 3* —-Z

we first check consistency.

6.3. Lemma. If Xc¢&
sk
index X = index X
a Q
Proof. Consider the diagram

j
X i X

s

X/G€—=——E Xg X
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where j?_ is (equivariant) projection on X . Then, one shows easily that

Tz is a locally trivial map with contractible fiber E . This forces TZ to be
P

a homotopy equivalence [14] and hence indexa X= indexOl B XG X= 1ndexu X .

We now proceed to verify the properties of this index on & -

6.4. Propositicn (Monotonicity). Let ¢ : X =Y denote a

morphism of ¥, , i.e., ¢ is an equivariant map of locally compact G-spaces.

Then,
. * : *
1ndexa = mdexa ¥
Proof. Immediate, since 1 X ¢ : EX X =E X Y is equivariant.

Before we establish the Continuity Theorem in this setting we recall

[24,25] that our universal space E = Voo has the property that E is the

-5
ascending union of compact manifolds

Bcgc...cgcg™c...

with the following properties, where XeJ, ,

a) The homotopy groups ﬁi(Em) =0, i<m

b) The inclusion map Em « Em+l induces isomorphisms

(any coefficients)

e
ml)<

q o iyt
HYE o X ~HYUE" xgX), a<m

c) Since E xG X is paracompact

1im HYE™ x .. X) # HYE %~ X)
ki G G
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so that the inclusion map induces

q,.m a e
d  HYE X X) ¥ H(Ex X), q<m

6.5. Proposition (Continuity). Let X denote an object in 3*
and A a closed invariant subset of X, i.e., gac A when ac¢ A and

g ¢ G . Then, there exists a closed invariant neighborhood N on A such

* sk
that index N = index A .
a (9

Proof. The proposition is obvious for index: A=®, so we may
assume that indexz A< ».

First choose a closed invariant neighborhood V of A in X.
Then E X A is a closed invariant subset of EX Ve J . By the Continuity
Theorem for free actions (Proposition 3.5), there is a closed invariant

neighborhcod W of EX A in E X V such that
indexa EX A= indexa w

In particular, if q e Hd(B,A) and indexz A=k , for a classifying map
f:w/G —+B

we have f*(ak+1) = 0. Choose m > d(k+l) . Using the fact that " is

compact, we can find a closed invariant neighborhood N of A.in X

(N C V) such that E™ x NC W . Now, using the diagram

B X W ——— F X V=== FE

|

EMx N —=>EX N

S iRk
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and the fact that Hq(Em XG N) = Hq(E XG N) for g < m we see that the
classifying map

i onE, Xa N =B
has the property that f*(ak+l) = 0 and hence

index* N=index E X N=index EX A= index* A
a a a a

6:6. Proposition (Subadditivity). Let X denote an object in 3,

and A and B closed invariant subsets of X such that X=AUB.
Then,

indexz (AU B) = indesz + index::B +1.

indexZ(AU B) = index_E X (AU B) = index (E X A) U (E X B)
= indexaE X A+ indexaE X B+1
* *
= inderA + indexaB +1
6.7. Proposition (Normalization) index:‘ G=0

Proof. By Lemma 6.3, indexz G=index G=0 , using

Proposition 3.7.

6.8. Remark. The fact that X/G is finite dimensional will not
guarantee that 1ndex2 X is finite. For this reason we don't have a direct

analogue of the Dimension Property 3.8. We will explore this question

further, however, at the end of this section.
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6.9. Proposition (Piercing Property). Let X ¢ 3* and suppose
X= X0 U X1 , where X0 and Xl are closed invariant subsets. Suppose
further that A ¢ ¥, and ¢ : AX I =X is an equivariant imbedding, i.e.,
o(ga,t) = ge(a,t), ge G, acA, tel=[0,1]. We assume also that
¢(AX 1) isclosedin X. If Aj=e(Ax{0})C X and

A; = 9(A X {i}) € X; . then

. * i s
1ndexa (A X I)N X0 n X1 = mdexa A

Proof. If ¢ : AX I —X is an equivariant imbedding,
IX 9:EXAXI—EX X is also and we apply the Piercing Property

Proposition 3.9 to this situation to obtain
indexaE X [¢(AX I)N X0 n X1] = 1ndexa (E X A)
which gives the desired result.

6.10. Corollary. If in Proposition 6.9, we assume only that ¢ is

an equivariant map (not necessarily an imbedding) then

: % 7 %
1ndexa (A X I)N XO n X1 = mdexaA

Contrary to the free situation, where indean is finite when the
dimension of X is finite, indexzx may be infinite even when X is compact
and finite dimensional. In fact, consider the case where the Lie group
G= S1 , the circle group, and we take as coefficients A = @ , the additive

group of rationals. Furthermore, let q ¢ HZ((DP°°;(D) , denote a generator.

Suppose X ¢ &y has a non-empty fixed point set FC X, i.e. x¢ F,
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if and only if, gx = x for every g ¢ Sl . Then, on one hand

index* F = index* X
Qa Q

00

and furthermore EX F=BX F, where E=S , B= C¢P”, and the

G
diagram

BEX Pk

P

Bx F—EBE—3pB

where p = projection, tells us that p* : H*(B,CD) ——H*(B X F) is an

injection so that p*(ak) #0 forall k=1, forcing
index* F=w= index*X
a a

Thus, index% X may not prove useful in the presence of fixed points belonging
“

to X . However, indean is finite quite often, in particular when the

isotropy groups are finite. Recall that for x ¢ X, the isotropy group Gx

is defined by
G, 2 {ge G:gx=x}
Thus, Gx = G implies that x « F, the fixed point set of the action.

6.11. Lemma. Suppose X ¢ &, and all the isotropy groups
Gx , X X, are finite. Then, the map T: B XG X -X/G, induced by

projection j : E X X =X, induces isomorphisms

7 H9x/G, @) ~HYUE x5 X, @)

e




in all dimensions q , over the field of rationals @ .

Proof. The proof we give is standard and is included for the reader's

convenience. We again make use of the filtration

Bcfc...ce®cgc...

of our universal total space E as in the proof of Proposition 6.5.

We consider the diagram, for each m ,
i .m
E"x X —d—> x

~m '
m Lk oo

E7 Xg X X/G
Note that Tm (induced by the projection jm) is a closed map because E"
is compact and furthermore the preimage sets (fibers) of Tm are all of the

form E™/G

i where Gx is a finite isotropy group. Applying the

Vietoris-Begle mapping theorem [17] and noting that Hq(Em/Gx, @) =0

for q < m, we have isomorphisms induced by Tm
HIx/G, @) ~HYE" x; X, @) q<m.

Then, T* is just the composition of this isomorphism and the fsomorphism
q,pm ~ 119 p
HY(E XGX,(D)~H(EXGX,(D) qgs< m.
We are now in a position to state the analogue of the "dimension

property”, Proposition 3.8.

29
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6.12. Proposition (Dimension). Suppose Xe3d, and all the
isotropy groups Gx are finite. Let dim X/G denote the covering

dimension of the orbit space X/G . Then, over the rational field @,

(index:( X) (dim @) = dim X/G

Proof. We may assume dim X/G< «» . Then, by the above lemma,
HUE X X,Q)= 0 for q >dimX/G. Thus, if ae Y, @), and
£3E X X —= B is a classifying map, we have f*(ak) =0 for kd > dim X/G .
Thus,

(indexz X) (dim @) = dim X/G

6.13. Remark. Note that under the hypotheses of Proposition 6.12,

we have for m > dim X/G,
1ndex* X = index Em X X
a a

In fact, this equality holds for m sufficiently large whenever indexz X

is finite.

6.14. Perhaps the simplest criterion for X/G to be finite
dimensional is obtained under the hypothesis that X is a separable metric
space. Then, X/G is again a separable metric space and

dim X/G = dim X (see [26]), so that X/G is finite dimensional whenever
X is .

6.15. Just as in the free case it is sometimes convenient to increase

the index by one and set
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Index* X= index* X+1.
Qa a

* *
It is a simple matter to restate the properties of indexa in terms of Indexa .
The monotone, continuity and piercing properties are verbatim the same,
just capitalize the i . Just as in the free case, we have the following

alterations in the others.
(Subadditivity) Indexz (AU B) = Indexz A+ Index: B
(Normalization) Indexz G=1
(Dimension) (Indexz X) dim g = dim X/G + dim q

whenever X has only finite isotropy groups.

6.16. Remark. We close this section with a simple observation
to be used later. When Indexz X > 1 and all the isotropy groups Gx

are finite, then X/G must be an infinite set.




7. Some Special Cases

We consider now three examples which will be employed in our
applications. Throughout this section our Lie group G is the circle group
S1 and thus our category Fy is paracompact spaces with an Sl-action.

Furthermore our universal S'-bundle (E, p, B) is the inductive limit of the

classical Hopf-fibrations

%)
n
175}
N
N
1%}

&—
c—

e &t e

n
n
5
N

i.e. E=5° and B= CF° . Notice also that if X is an S'-space and

x ¢ X, either the isotropy group Gx is finite or Gx = S1 .  We employ
rational coeificients @ for cohomology and @ will not be displayed when
rational coefficients are understood. Finally, our index theory will be
based on the universal Chern class Gy € Hz(q:PZ, Z) and so we choose

ce H2(<13P°°) corresponding to this class. Following the notation in

section 4 set

* *
Indexc X= IndexC X X e 3*

7.1. Notation. Givena G-space X, set
Fix(X)= {x :gx=x, ge G} . Fix(X) is thus the set of points fixed

under the action. (It is also denoted by XG in the literature.)
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T7.2. Proposition. If Xe ¥, and the orbit space X/S1 is finite

dimensional (e.g. X is separable metric and finite dimensional), then

*

T X is finite if and only if Fix X= ¢ .

Index

Proof. This is immediate from Proposition 6.12 and remarks made

preceding this proposition.

Just as in the free case (§4), Index*< satisfies a stability
C

condition which we formulate as follows. Let X o S1 denote the join of

Ac 3* with Sl and let k denote a non-zero integer. Define an S1

action on X o Sl by

g(x,t,2)=(gx,t,gkz), X e X zeSl, tel

where gkz is ordinary multiplication.

7.3. Proposition. If X is locally contractible and X ¢ F, . then

ZX°SI=Index* X +1

Index T

Proof. The proof is almost identical with the proof of Proposition 4.3

so we content ourselves with a brief sketch. First of all X o s1 € a-’* and

Xe S1 is locally contractible. Hence EX X, EX (X e Sl) are both
locally contractible and singular cohomology may be employed in our
argument. We also note that we may assume that Index:: X is finite so
that all the isotropy subgroups si , X e X are finite.

Just as in 4.3,

* e 3 . . *
Index¢ X = Indexa: Xeoe S = Indexm X+1
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e
5

where a simple computation shows that Indexa: S1 =1 and where S1 is

given the action gz = gkz . k¥ 0.

Now, use the diagram of Gysin sequences as in 4.3 with the :

following replacements

replace X by EX X

<

replace by E xsl X |

replace B by EX (X e Sl)
replace B by ExXgl (X © )

to show that the inequality Index:: X= Index:: Xeo S1 is impossible.

Examgle 1

Let (I:N denote the space of k-tuples (cl, sieie ck) with entries
¢ € c" , where c; may be thought of as an n-vector over the complex

field €. Thus N=nk . Fora given k-tuple of non-zero integers

1

(nl. *re.my ), the circle group S~ acts on cN by

nl nk
g(clo"':ck): (9 cll 9 Ck)

N N

Then, for every invariant set X C (l'J* =C -0, Index* X is defined and

C

or this category of invariant subsets of (I:*I:I # Indexz: satisfies all the
*

properties of Indexa discussed in section 6 as well as the stability

property (Proposition 7.3). In particular, for X C ¢>I: .
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2 Indexfrx < dim X + 2

so that our index is finite over invariant subsets of (I:E:I .
We compute first the index of the unit sphere S = SZN_1 in (]:N v

By definition,

Index*

cS=IndexcEx S

where c is the first rational Chern class. To compute the R.H.S., we

use standard techniques as follows. Consider the bundle map
i
B

where p is induced by equivariant projection ’;; . Then, notice that the

N\

Ex §s —B2

EJSIS —

fiber of the fiber map p is a (2N-l)-sphere. Using the Gysin sequence

[17], we conclude that (for any coefficients)

uiB) —B——> gl(E x ; 5)
gl

is an isomorphism for i =2N-1. Thus, Index’& S = N . On the other

hand, using Lemma 6.11, we have isomorphisms

7 s mYs/sh) —— uE X1 9)

and since HZN(S/SI) =0, we have HZN(E xsl S)= 0. Thus,
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Indexa: S = N and we have verified
7.4. Proposition. Index:(; gN-1. i .
7.5. Corollary. Index CN= N .
T7.6. Corollary. Let K denote an invariant linear subspace of G:N
of (complex) dimension k , then Indexz: K,== = k , where K* = K=0 .
7.7. Corollary. Let K denote an invariant linear subspace of CDN

of dimension k and let X C CE denote a closed invariant subset such that

k + Index’;: X>N. Then XNK#Z@ . More precisely

%* %*
Index . X N K = Index

T q:X-(N-k)>0.

Proof. Let kKt denote the orthogonal complement of K. kb is
invariant and the orthogonal projection 7 : (L'N ——K’L is equivariant.
By continuity (Proposition 6.5), there is a closed invariant neighborhood A
of XN K in X such that Indexz XNK= Index:: A. Let B denote X minus
the interior of A (in X). Then, #|B:B ——K’i tells us that

Indexz: B = N - k and hence using subadditivity

sl
b3

Index>k X = Index

T ¢XﬂK+(N-k)

which is the desired result.

Before we consider the index of the boundary of an invariant neighbor-
hood, we make one more comment. Let cat X denote the Ljusternik-

Schnirelman category of X . Recall that cat X= ) , if X can be covered
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by A open sets each of which is contractible in X and )\ is minimal with

this property.

7.8. Corollary. cats/s'= N .

Proof. The remarks above show that S/s1 has non-trivial cup
products of length N-1, sothat catS = N . To see that catS <N
we proceed by induction on N, representing S as N-tuples
(xp, " ',xN) , X eC, inii =1. Let A denote the orbit containing
(0,0,---,1). Then, by induction cat(S-A)/S1 = N-1 . On the other hand,
S/sl is an ANR ([27]), so that S/S1 is locally contractible at the point
corresponding to the orbit A. Thus, cat S/S1 = N so that our proof is

complete.

7.2. Proposition (Boundary of Invariant Neighborhoods) .

Let M ¢ 3§, denote an orientable 2N-manifold and U an open
invariant set in M with compact closure. Let
v : (U,3U) » (GN,¢§) be an equivariant map of non-zero degree.

*
Then, IndexcaU = N.

Proof. Just as in Proposition 4.6, we assume that ¢ 1is

defined on an equivariant neighborhood V of U and

¢-l(S) = 39U, where S 1is the unit sphere in mN. Thus, we

have ¢ : (V,V - 3U) =~ (¢N,¢N - 8) and, by assumption, ¢ has

non-zero degree 6, i.e. if 0, € H2N(V,V - dU),

o, ¢ HZN(GN,mN - S) are fundamental classes, w*(ol) = 6o,. The

map v also induces a map
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wo = J ¢ 5 B XVl X EN, E =S8

and it suffices to show that for m sufficiently large

~ m m
Qi RS X I == S S
0 gt sl

induces an injection in rational cohomology in dimension 2N - 2.

Now, if u is a fundamental class of the sphere Sm, let

m

5, € H (s (s™ x (a%, e - s))

denote fundamental classes corresponding to u X Cpr M X Oy

x W,V = U}k, 82 e H

m+ 2N m+ 2N

*x -
respectively. Then, ¢O(ol) = 602 and the transfer map
* M ® oM s
t : H (S x 3u,D) » H (S x 5,0) applies to force
* x * .M e : : :
¢ * H (S" x §,0) » H (S x 3U,Q) to inject in all dimensions.

Now, we look at the bundle map

4
s® x 3u 0 S %S
¢ l
s™ x 13U Yol s .S
S S

and proceed, just as in the proof of Proposition 4.6, via a
Gysin sequence argument over the rationals. Keep in mind

that the action of Sl on 99U has all isotropy groups

ey * m * 1
finite so that H (S X 1BU,Q) = H (9dUu/S ,Q). In
S
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particular, qu(Sm X l'c)U,Q) =0 for g > 2N - 1,

S
since dim BU/S1 < 2N - 2.

Example 2

This example is similar to Example 1 except that we allow fixed points.

Let CIZM denote the space of (k+l)-tuples (co,cl, .. "Ck) with c, ¢ c”

i
so that M = (k+l)n= N+ n, where N = nk and (DN , as in Example 1,
is naturally imbedded in (BM . For a given k-tuple of non-zero integers

1

(nl, s, nk) . we define an action of the circle group S§° on GJM by

ny o
g(col cll S ck) = (Col g cll ‘., g Ck)
so that the 0-th coordinate remains fixed. Then, the fixed point set
F= Pix(cM) of this action is the subspace given by c; = (oJFSEE (35 R
Furthermore, the invariant subspace (]:N , defined by c¢

T 0 , is precisely

Example 1. For any invariant subset X C (DM , Just as in Example 1,




st
b3

Indexq: X= Indexc X

where c is the first (rational) Chern class. Thus, we have a index theory
on the invariant subsets of (I:M satisfying the properties in Section 6 , but
which is not finite on sets which intersect the fixed point set F . However,

in the complement of F things still behave nicely. The projection
n (colcll "':ck) T (cll * ":Ck)

takes CM - F equivariantly onto C}:T and this, together with the inclusion

map in the other direction tells us that

T7.10. Proposition.

* M k DN
Indexq:GJ -F—Indexq: m*-N

-1 4enote the unit sphere in cM , S the unit sphere

2M+l1

Now, let S2 M

in CEN , as in Example 1, and FO = FES ' Fo is then the

(2n-1)-sphere given by COEO =1, ¢,=0, i= 1. Clearly SC SZM-1

and p above induces an equivariant map

- 2M-1
'r]:S -FO——-———>S

k - .
n (Cor cll et ck) = (i;l cici) (ci' ey ck)

7.11. Proposition. Let A denote any invariant subset of SZM_1

2M-1 _

such that Fo () S . Then,

YA Y e 82 S s s S AR L e YO

T o
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M=t A= Index* S=N

Ind ex* S2 T

cC

Proof . Use 7 and Proposition 7.4 .

T7.12. Proposition. (Boundary of Invariant Neighborhood of 0).
Let U denote a bounded open invariant set in (EM containing the origin
M

0eC Then if 98U denotes the boundary of U, we have

Indexz: (3U-F) = N

Proof. Let V=UNCY. Then Indexy, 8V= N . Since
9V C 46U - F, we have Index:: (9U-F) = N . On the other hand

n(9U-F) C S so that Indexy (3U-F) = N .

T.13. We close this section with a few remarks concerning
Ljusternik-Schnirelmann category. First of all, n above is an equivariant

homotopy equivalence and hence

a) cat(SZM-l-Po)/S1 = cat(S/S')= N

For ¢ >0, let VE denote the e-neighborhood of PO in (]:M RS Y8

V8={ce¢M : le - p|l < & for some pePo}

2M-1

Then, n:S o V8 ——> S remains an equivariant homotopy

equivalence and

b) cat(sM L) /st = cat(s/s!) = N
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More generally if catXA denotes the category of A in X (open sets
covering A are in X and contractions are in X ), then for any invariant

set AC S we have
c) caty A= cat A= cat, A j

ZMl

where A= ALS o X=a/8 . ¥= \F, y/s' and z= (s2M-1

1
= Va)/ S

Now, the function Y(A) = catYA , defined on invariant subsets of
SZM_I\F0 , where Y= (SZM_I\FO)/Sl , satisfies many of the properties
of Index:; e.g. monotonicity, continuity and subadditivity. However,

we are not sure how Y behaves in relation to the piercing property ‘ i

(Prop. 6.9) (we conjecture against it) and this is one of the reasons why : 1

%
Indexa: is better suited to our techniques.

Example 3

Examples 1 and 2 are finite dimensional versions of the following
infinite dimensional example. First, we identify as usual the reals mod 27

with S1 (t ~— elt) and we denote by Wl'z (Sl) the Hilbert space of real

valued functions z : Sl — R such that z and z= g% are square

integrable with inner product
1 A
(Zl, ZZ) = % [lez + 2z ZZ] dt

1 1,2

S" acts on this space W' (Sl) as follows. For g e Sl set

(92) (e't) = z(gel!)
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where ge1t is ordinary complex multiplication. Alternatively, the action

may be written
(Loz)(t) = z(t+9)

where ¢ corresponds to g = eio € Sl and Lo is the linear transformation
corresponding to the action of the element g on W‘l’ 2(Sl) . This space

o0
Wl’ Z(Sl) can be identified with the space of Fourier series Z cneint

-0

subject to the conditions

. 2 2
Con Cp Z(Hn)lcnl <w, c eC

=00
Consequently, Wl’ 2(Sl) can be identified with the space of infinite

sequences (co, Cle"*4Cpure -) subject to the conditions
0
2 2
¢y € R, %‘J(l+2n )Icn| <o, c eC.
The Sl action translates into
g(Cn,Cyp***,Cr, )= (Ch,9Cq, *** gkc o)
OI ll ’ kl OI ll ’ kl

and it is clear that each g corresponds to a unitary transformation of

WI'Z(SI) :

This action is not free. In fact isotropy groups of all orders appear.

Nevertheless our index theory Indexz: applies to all

2
1, (Sl) .

invariant subsets of W




7.14. We close this section with a few comments concerning the

analogue of section 5, in the non-free case. Let 8 denote any normed

linear space over € . Then, any Sl action on 8 induces an index theory

x
Index¢ on the family € of invariant subsets of ® . Furthermore, the

function
*
Indexc : & —> IN

possesses properties analogous to those in Theorem 5.1, with some obvious

changes. We leave the formalities to the reader.
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8. An application

In this section we shall show how the index theory of sections 6 and 7
can be applied to study the bifurcation of time periodic solutions from an

equilibrium solution for Hamiltonian systems of ordinary differential equations.

Let p,q - R® and H= H(p,q) ¢ C>(R°™, R) with H(0,0)= 0,

Hp(O, g)= 0= Hq(o, 0) . Consider the Hamiltonian system of ordinary

differential equations:

- dq _
(8.1) dt Hq - Hp
Letting z= (p,q) and 7= (? -é) , (8.1) can be rewritten as

(8:2) Q:;H

Our assumptions on Hz(O) imply that (8.2) possesses the trivial
equilibrium solution z = 0 which is periodic with any period. Of interest
is the existence of small nontrivial periodic solutions of (8.2). The
Lyapunov Center Theorem is an old result of this nature [28]. To state it,

observe that if (8.2) is linearized about z = 0 , the resulting equation is

(8.3) ¥ = JH,,(O)w

The Lyapunov result then says that if 7 HZZ(O) possesses purely imaginary

eigenvalues: + Z_,l,t Lye® el gn and if gj/ ;l is not an integer for j# 1,




a family of periodic solutions with periods near 27 gl‘l bifurcates from

z=0.

Lyapunov's irrationality condition on the eigenvalues of 7 HZZ(O) was
eliminated by A. Weinstein [10,29] who assumed instead that H  (0) is a
positive definite matrix. He then showed that for all small £ > 0, the
manifold H = & contains at least n distinct periodic orbits whose periods
are near those of the linearized problem (8. 3).

Recently J. Moser [ll] generalized and simplified Weinstein's
result, relaxing in particular the assumption that sz(o) be positive
definite. More precisely, Moser showed that if ]R?‘r1 = El ® E2 where El
and IE:2 are invariant subspaces for (8.3), if all solutions of (8.3)
with initial data in El have a common period T > 0 while no solutions of
(8.3) in Ez-{O} have period T, and if HZZ(O) is positive definite on
El , then for all small ¢ > 0, (8.1) possesses at least %dim El
distinct periodic orbits on H = & whose periods are near T .

Observe that both the Weinstein and Moser results provide lower
bounds for the number of distinct periodic solutions of (8.1) on H= ¢ .

In contrast in this section we will use the index theory of sections 6 and 7
to obtain lower bounds for the number of distinct small nontrivial periodic
orbits of (8.1) as a function of the period. This procedure will be carried
out under more general hypotheses than those considered by Moser. Given
the index theory of section 6 and 7, the techniques we use to find the

periodic solutions and the results we obtain are closely related to our

earlier paper [1]. However we will give a self contained development here.
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Our main result is:

Phcoreni 8.4 Lot He C (R, B with H0)=0 . H (0)= 0. Let

RZn =K @ E, where El and E, are invariant subspaces for the flow given

by (8.3). Suppose all solutions of (8.3) with initial data in E1 are T
periodic, no solutions of (8.3) with initial data in EZ- {0} are T periodic,
and there are no equilibrium solutions of (8.3) in E - {0} . 1If the
signature 2v of the quadratic form (HZZ(O) L6, Le El , 1is nonzero,
then either: (i) 0 is a nonisolated T-periodic solution of (8.1); or

(ii) there exist a pair of integers k,m = 0 with k +m = |v| , and a left

neighborhood, J and a right neighborhood, 8., of T in R such that

ZI
for all ) ¢ ‘98 (resp. Jr) , (8.1) possesses at least k (resp. m)

distinct non-trivial )-periodic solutions.

Remark 8.5: That the signature is even follows from the hypotheses on El :

A more precise count of the number of distinct nontrivial solutions for fixed

A will be given in the course of the proof of Theorem 8.4. See Theorem 8.48

and Corollary 8.51. Observe that under Moser's hypotheses, since

HZZ(O) is positive definite on E1 , (8.3) possesses no equilibrium solutions

in El-{O} and v = % dim E, # 0 . Thus our result applies to his case.
While completing the final draft of this paper we learned of the work

of Chow & Mallet-Paret [12] who have obtained a special case of Theorem

8.4 for (8.1) where E= {(zl,---,zr,O,-HO,an,o -,zn+r,0,---0)} and
H restricted to El has the form
V4 i
e ! - S | 2 2
H(z) = 5 jlezj +2p4 -3 j=z+lzj +zn+j+o(lz| )
s -
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This form for H on El implies the hypotheses required of E1 are
automatically satisfied with T= 27 and Z_Tr is the minimal period for
solutions of (8.3) in El . This has the effect of inducing a free S1
action on our problem making it tractable by a simple extension of the index
theory of [l]. Chow and Mallet-Paret also have some more refined results
when H is analytic.

The proof of Theorem 8.4 will be carried out in several steps. The
basic idea is to convert the problem to that of finding critical points of a
real valued function g defined near 0 in a finite dimensional space of
periodic functions. Critical points of g then will be obtained using
minimax arguments.

To begin, we normalize the problem by fixing the period at 27 .

Thus let 7= lt. Then (8.2) becomes

(8.6) z=\JH,

where z =dz/dt . Any 271 periodic solution of (8.6) is a 27\ periodic
solution of (8.2). Observe that 92 = -] . For our later purposes it is
convenient to replace (8.6) by the equivalent equation

(8.7) Fz=-\H
Finally set 3(x,z)= 2z + AH, . The solutions of (8.7) will be obtained as

the zeroes of ¥ . To introduce the class of functions in which (8.7) is

studied, we identify R/[0,27] with S1 « L6t WI'Z(SI) denote the real
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Hilbert space of 27 periodic functions which have square integrable first

derivatives and let E = (Wl’z(Sl))Zn . Then E is a real Hilbert space under

the norm

21

Hzn"g=§jo' (| 2(0)1% + |z(0]%) dr

Let Y= (LZ(Sl))'?'n . The smoothness assumptions on H imply

b Cl(R X EY). Let uw=27T"!. The Frechet derivative of 3 with
respect to z at (u,0) is 4
(8.8) Jz(u,O)w = gw+ quz(O)w

Comparing (8.8) to (8.3), we see that 3z(u,0) has a null space h

of dimensicn 2N = dim El of vectors of the form

g ik_}‘r

(8.9) t) = e “e

j=2N )

where kj e Z, k_]. = -kj ; ej 'S G:Zn ¥ e-j = ej , and ej is an eigenvector
of ;HZZ(O) . In fact n is isomorphic to ]E:1 , the isomorphism being given

by 2z(t) = S(t)z(0) where z(0) ¢ El and S(t) is the semigroup for the initial
value problem for (8.3). It is straightforward to check that J‘Z(u, 0) is a
Fredholm map of index zero.

We seek zeroes of ¥ in RX E for A near ¢ and z near 0 . We
already have the trivial family of zeroes {(\,0)|A < R} . Using the method

of Lyapunov-Schmidt, (8.7) can be reduced to a finite dimensional problem.

.



(S GRED 7~ S R

50

(We do not use the same finite dimensional reduction carried out by Moser
but the analogue of [5].) Let nt denote the L2 orthogonal complement
of n in E, i.e.

2T

nt={zcE| [ (2(8), w(t) ap dt= 0 forall wen}
0

Let P and pt denote the (L2 orthogonal) projectors of E onto n and nt

respectively. Then (8.7) is equivalent to the pair of equations:
(8.10) PF(r,z)=0, > 30,z)=0.

Any z ¢ E can be written uniquely as 2= x+y where xeh and y ¢ ni .

Define
(8.11) FO\, x,y) = PL (), 2)

Then F(u,0,0)= 0 and by construction 3y(u,0, 0) is an isomorphism from
h’L to h‘L N'Y . Therefore by the implicit function theorem, there exists a
neighborhood @ of (u,0) in RX n and a mapping ¢ ¢ Cl(n ,nl) such
that F(A,x,y)=0 for A near o and z near 0 is equivalent to

y = ¢(\,X) . Moreover since

(8.12) 0= F(r X, ¢(x, X)) = F (1, 0,0)¢ + o([[x + ¢l ;)
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1

and Fy(x,0,0) is an isomorphism from n'L to n NY forall A near u ,

it follows that

(8.13) e, x) = o[l x] )

at x= 0 uniformly for A near p . E
Thus to solve (8.7), it suffices to solve the finite dimensional

problem
(8'14) Ps()\'lx+ (P()\.lx)): 0 =

Before discussing this question, we observe some invariance properties of
our operators. For z¢ E and ¢¢ [0,27] , set Loz = z(t+ 6) . This
defines an S1 actionon E . (See Example 3 of §7). Itis easy to see that
& commutes with LG , l.e. 3(X,L9z) = LGE(A, z) . Note further that both

n and n-L are invariant under L 0" It then follows from (8.11) that

F(\, *) commutes with L The same is true of ¢(), ) . Indeed

e
F(r, x(t) + y(t)) = 0,

where y = ¢(\,Xx), implies that

0= F(\, x(t+g) + y(t+0)) =F(\,L_ x + Ley) v

0
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Hence by the implicit function theorem L9<p(>\,x) = o(\, Lex) . Following
standard usage, as in earlier sections we will refer to functions with values

in E e, er h'L that commute with L as being equivariant. The same

term will be applied to real valued functioons d for which d(Le(z)) =d(z) -
Sets A such that L 0A= A forall ¢ ¢[0,2m] will be called invariant.

The next step in the proof of Theorem 3.4 is to show that the solutions
of (8.14) can be determined as the critical points of an appropriate function.
Some additional notation is required. If ze¢ E, z= (zl(t), e, zZn(t)).

Let p(t) = Plz = (zl(t), saatert zn(t)) and let q(t) = Pzz = (zn+1(t), L Zzn(t)) .

Define

2t ]
(8.15) 9(x, %) = jo [(p(1), &0, ~ AH(P(D), a()] dt

where z=x+ ¢(A,x) and (-, -)Rn denotes the R" inner product.
Thus g ¢ Cl(fz ,R) and it is easily checked that g(),-) is equivariant.
Moreover for fixed )\ , the critical points of g(),+) satisfy (8.14).
Before showing this, it is technically convenient to renorm h by taking
the LZ norm on h which is equivalent to the E norm on h . Henceforth
we denote the new norm by | - ”h » :
Now suppose x is a critical point of g(»,*) . Then for all ]
§ech, ‘
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| 2T
, s g
‘ (8.16) (GX(A,X), é)h =0= f;) [(p. PZ a (€ + ¢X(K.X)€))Rn

*BUE+ 0,030 8).@) L = MHL(P, ), PY(E + 0,0, 008D
= MH (P, @), Py(E + ¢X(>»,X)€))]Rn] dt

where p = Pl(x + ¢(A,x)) and q-= Pz(x + ¢(A, X)) . An integration by parts

yields:
21 ;
(8.17) = ) U@ -2Hp.@), Pyt + 7 6D g
- (P +AH (P,q) Py(£ + #x (1 x)8)) p] dr
2T
= - fo @, 2), €+ PN E) o dT
Si pt B i1 .
ince F(r,2)=0 and ¢X(A,X)§ eh , (8.17) implies that
i
(8.18) (F(n,2),¢) dt=0
0 ]R?.n

for all £ < nh which is equivalent to (8.14) .

Thus to solve (8.7), it suffices to find small nontrivial critical
points of g(r,+) in n . If 0 is not an isolated critical point of g(u, ),
the first alternative of Theorem 8.4 obtains. Hence for the remainder of this

section, we assume 0 is an isolated critical point of g(u, ) .

{

|

|
|
|
L
|
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To continue several preliminaries are required. Consider the ordinary

differential equation

(8.19) =g (19), WO,x) = x

for x near 0 in n. By (8.16) - (8.18) ,
(8.20) gx(x,X) = PF(\, X + @(X, X))
so g is continuously differentiable in x near (u,0) . Hence (8.19)

possesses a unique solution for all x near 0 in nh . We will show {

is equivariant .

Lemma 8.21: If V(x) is a locally Lipschitz continuous map of n to n

and is equivariant, the solution n(s,x) of
(8.22) 0 - y(n), n(0,x)=x

ds

is equivariant .

Proof: Let w= Len(s,x). Then
w d
(8.23) o= Lo?ilsl= L,V(n) = V(L) = V(w)

and w(0) = Lox .  Therefore w(s) = n(s,Lox) = Len(s,x) .
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Corollary 8.24: (s, x) is equivariant .

Proof: By Lemma 8.21, all we need show is that gx(u,x) is equivariant.

Since g(u,x) 1is equivariant,

(8.25) (9, (1, %), 6), = (gx(“'Lox)'Leg)n

forall € en . 1Itis easy to verify from (8.9) that Le is a unitary
kk * ol
transformation so Le1 = Lo + Thus choosing & = LG a in (8.25)

yields

sk
(8.26) (9, (1, x), Ly a)y = (Lyg (K, %), a) = (9, (1, Lyx), a)y
for all a € h which implies the equivariance of gX(u,x) .

Remark 8.27: The above argument also shows that gx(x, X) is equivariant
for all A near w
With the aid of (s, x), the neighborhood of 0 in n will be

constructed in which we will find critical points of g(\, *) .

Lemma 8.28: There is a constant ¢ > 0 and an open invariant
neighborhood @Q of 0 in h such that

1° If xeQ, |g(u,x)| <c and u(s,x) ¢ Q forall s such that
lg(u, ¥(s,x)| < c .

2° If xe8Q, |g(u,x)| =c or U(s,x) € 8Q for all s satisfying

lg(u, ¥(s,x))| =c .




2o

Proof: Since 0 is an isolated critical point of gx(u, 0) , there is a

neighborhood X of 0 in h in which 0 is the only critical point of
gx(u,O) . We restrict ourselves to X . Let S+ = {x e X|Y(s,x) e X for
all s >0} and S = {xe X|U(s,x) e X forall s< 0} . Itis easyto
see that at least one of these sets is nonempty. In particular if there are
points near 0 where g(i1,*) is positive, S+ # @ for then we can find a
sequence x_ —~0 suchthat g(u,x )>0. If B = {xen IIXHn & &
then for some small r, and all large m , the orbit ¢(—s,xm) will
intersect aBr at s = Sm >0 . Since Xm -0, e A subsequence
of ¢(-sm,xm) converges to X € aBr and our construction implies

U(s,X) € X forall s >0 . A similar argument shows that S~ # @ if
there are points near 0 where g(i.,*) is negative. Let x be near S+ ’
say ||x - S"'l!n =p and x¢£ st . Then for p = p+ there is a b+(p) >0
such that y(s,x) will cross all level sets g(u,+)=b as s increases
provided that b = g(u,x) and |b| = b¥(p) . similarly if

Il x - S-IIrl =p=p and xe S , thereisa b (p)> 0 such that

y(s,x) will cross all level sets g(u,+)=Db as s decreases provided that
b =g(u,x) and |b| =b (p). Thus choosing p = min(p+, p ) and

¢ e (0, min b'( p),b (p)), we cantake Q to be the union of all orbit
segments (s, x) starting in Bp and lying between g(u,+)=c and

g(p,+)=-c. Then Q satisfies 1° and 2°.  Moreover since Le is

unitary, ||L |l = lleh so if x e Bp . eBp . Hence Q is invariant.

ox'n (>3
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Remark 8.29: The index theory of §7 is applicable to invariant subsets of

h. For such Aenh we se. i(A) = Indexz A . Since Q is equivariant
and is a neighborhood of 0 in h with dim h= 2N, it follows from
Proposition 7.7 that i(8Q)= N . Set TlL = SJ‘r N 8Q . The indices of
these sets play an important role in determining the number of critical points

of g(A,*) in Q . The nextresult gives an estimate for these numbers.

Theorem 8.30: (T ) + i(T1) = N .

Proof: Let X be as in Lemma 8.28 and r > 0 such that B, C X.
By the construction of Lemma 8.28 with X replaced by Br , there is a
neighborhood Qb of 0 in n satisfying }9s” of Lemma 8.28 with c¢
replaced by b . Let Qg = {x¢ Bleg(u,x) = b} and
Q;)= {xe aQb[g(u,x) = -b} . If x¢ Q; , there is a unique x(x) >0
such that g(u,$(k(x),x)) = -c . Since
g, Wk (x),x)) = g, Lyd(k(x), x)) = g(1, w(k(x), L x)= =c = g(iL, Yk (L, x), L, x))
by the equivariance of g(u,*) and (s, ), it follows that « is
equivariant. Therefore so is the map v(x) = Y(x(x),x) and
Ve C(Q;, Q;) (where Qz has the obvious meaning). In particular
v(s™ N Q;) =T . Henceby 6.4 and 6.5, there is a neighborhood U of
T  such that (U N Q )= i(T") .

If r is sufficiently small, v(Q.)C UN Q_ for if not, for all

T -0, there exists bm -0 and X, eB, such that g(u,xm) = bm 5.0

m
and v(xm) € Q; -U . Along some subsequence we have v(xm) - W € Q;
and wg£ T . However since X -0, x(xm) -~ « which shows we T ,

a contradiction. Thus we can assume v(Q;) cun Q; "
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By 6.4,
(8.31) i(s™ n Q;) = (T ) =< i(Q;) =i(un Q;) = T ) -
Hence
(8.32) i(Q;) = YT J -
Similarly
(8.33) Q) = 11

Next let x e 9Q,~ Ql-) . Then there exists a unique w(x) = 0 such

that g(u,Ww(x),x))=b . An above argument implies p(x) = Y(w(x),X) is

equivariant and p e C(3Q,~Qp,Qy) - Hence by 6.4
AR S + e

(8.34) 1(8Q,-Qy) = 1(Qy) = i(8Qy~Qy)

Combining (8.32) - (8.34) and using 6.6 yields

(8.35) N = i(8Qy) = 1(Qp) + i(8Q, - Qp) = {(T") + (1)

Remark 8.36: The number of critical points we obtain for g(A,+) in Q

depends on the interplay between g()\, ) near 9Q and g(A,:) near O .

+
The estimates just obtained for i(T") are a quantitative measure of the
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behavior of g(y.,+) near 98Q and therefore of g(\,:) near aQ for A

near |, since such a perturbation does not change the behavior of g near
8Q . On the other hand, the quadratic part of g(i., -) vanishes identically
while for X # yu , the quadratic terms in g(\, *) are dominant near O .
These terms are governed by the quadratic part of H restricted to El .

We will make these statements more precise in what follows. To help
determine the behavior of g(i,*) near 0, we have the following lemma.

We are indebted to Mark Adler who assisted in the proof.

Lemma 8.37: Under the hypotheses of Theorem 8.4, the quadratic form

(HZZ(O) LoE) ke El , 1is nondegenerate.

Proof: From (8.9), we see ¢ has the form

N
{ = jzz—N aje;
where ay= oz—j . Therefore
(8.38) H__(0 oSk o (H. (0 - @
. (H,,(0)¢,¢) = a0 (H,,(0)e,, ej) = (Ha,a)

lif, il =N

N
where Hij = (sz(O)ei,ej) « 'Ehus (HZZ(O)Q, {) is nondegenerate on El

N\
if and only if H has no nontrivial null vectors. If there is an q ¢ CI:?‘N

N
such that Ha= 0, then

O A N
(8.39) |J|>§ iy = 0= (1,00, mé Lgep) = (e Hop(000)

il = N
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where €= Thus HZZ(O)Q is orthogonal to El . Since E1

e, -
lj=n 7’
; ; ‘ = R 3
is invariant under gsz(O) x szz(O)El-—Eland sz(O)E1 =7 E = yEl = g}:l -

Thus H,,(0)e= g8 with SeE and (8.39) implies
(8.40) (E), &)= [EI,E] =0.

Since E, is also invariant under szz(O) 2 [El’EZ] = 0 (See Moser [l1]).

2
Hence e = 0 and the lemma is proved.

Lemma 8.41: If zen,
21

(8.42) fo (H,,(0)z(t), 2(t)) dt = 27 (H,, (0)z(6), 2(6))

forany 6 e [0,27] .

Proof: Let Hz(z) denote the quadratic part of H(z) at z=0, i.e.
H,(z) = 3 (H,_(0)z,2)
2 2 V44 e i

The elements of h are just the solutions of the Hamiltonian system

corresponding to H2 :

(8.43) z= waH,,

having initial data in El . Hence Hz(z(t)) is constant along such
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solutions of (8.43) from which (8.42) follows .

Remark 8.44: Let E-;'El denote the subspaces of E1 on which HZZ(O) is

respectively positive and negative definite. Since if z e n o 2lt)e El for
each te R, we see from Lemma 8.41 that (HZZ(O)z(t), z(t)) is independent
of t. Itthen follows from (8.9) that E;', El- are even dimensional with
dimensions 2f8,2Y respectively. Moreover Lemma 8.37 implies B+ Y= N .
Let n+, n~ denote the subspaces of h of dimension 2f(,2Y corresponding to
EI, El_ . Note that they are equivariant.

With these observations, we can determine the behavior of aln, )

near 0 . Let

(8.45) H(z)

A
Hz(z) + H(z)

so H(z) = 0(\212) at z

0. From (8.15), (8.13), and (8.38) we have

21
5 2
(8‘46) g(K,X) = ‘/;) [(Plxl PZX)Rn i XHZ(PIX' sz)] dT o O(” X” n)

at x=0 . Since x satisfies (8.43), on integrating by parts in (8.46)
and using the homogeneity of HZ we find:

21
1 : 1 : 2
fo [3 (Px, P %) on =3 (X PR)_ o = MH, (Pyx, Pyx)lar+ o ([[x(17)

(8.47) g(r, x)

2m
L
Jy G WP Hy (P, Pyx) 4 (P, Hy g (Pyx, B3]

= AH,(Px, sz)} dt + o] x|l i)

2
(1= A) fo H, (Px, Px)dt + of [ x| %)
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at x=0 . Thus by Lemma 8.4l and Remark 8.44, for A < u ,
g(r,*) >0 on n+ and < 0 on N~ in a deleted neighborhood of 0 ;
if A > p, these inequalities are reversed.

Theorem 8.4 is now a consequence of the following two results:

Theorem 8.48: Suppose that

(8.49) HT ) > ¥

(resp. (8.50) i(T) > B) .

Then thereisa & > 0 such thatif A ¢ (n -6, 1) (resp. A e (u,u +9)),
g(r, -) has at least i(T") - Y (resp. i(T )- B) positive critical values
with a corresponding number of distinct critical points, x(\) such that

x(A) =0 as A = -

Corollary 8.51: Suppose that

(8.52) yrh > v

(resp. (8.53) {TT) > p) .
Then thereisa 6> 0 suchthatif A e (pn,uw + 8) (resp. xe (=25, u),
g(r, +) has at least 1(T+) - Y (resp. i(T+) - B) negative critical values

with a corresponding number of distinct critical points, x(\), such that

X(A\) -0 as A -y .
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Proof of Corollary 8.51; Replace g(r,+) by =g(A,+) . This has the effect

of reversing the roles of T+ and T and changing the sign of the factor
(L -x) in (8.47). Hence the result obtains via Theorem 8.48.

Assuming Theorem 8.48 for now, we can finally give the:

Proof of Theorem 8.4 : We assume 0 is an isolated T periodic solution

of (8.1). Thus we must produce k, m, le , and Jr as in the
statement of the theorem. Since v=pg-Y#0, B# Y. Without loss
of generality, we can take £ > Y and iI(T7) = i(T+) . ¥ KT ) = B

then (8.49) is satisfied so by Theorem 8.48 we can take
Ip=(L=-58,u), d.=§, k= i(T")-Y=v, and m= 0. Thus suppose
{T") < £ . Then by Theorem8.30, N -iThH < p or yTH)>v.

We claim

(8.54) YTy - v +i(thH - v

v
<t

Indeed by Theorem 8.30 again ,

(T)-Y+iTH-vy=N-2Y=v.

\'}

Hence by Theorem 8.48 and Corollary 8.51, we can take Jz =(n~5,90),
8.= (u,u +6),, k=1(T1)~Y, and m=i(TT) - v.

It remains to prove Theorem 8.48. The idea is to obtain the critical
points of g(),-) by taking the minimax of g(\, ) over appropriate subsets
of Q . This requires several additional preliminaries. First we construct

the desired subsets of Q .
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Let €= {Aec Q|A is closed and invariant} . Let KC T and define
8(K) = {U(s,x)|(s,x) e (-o,0)xK} . Thus &(K) is a cone over K. Set
m= {X e CQ,Q)|X is 1-1, equivariant, and X(x)=x if xe T } .
For 1=j=i(T"), define Gj= {x(a(X)[xem, KCT , i(K)=j}.

By Corollary 8.24, &(K)ec € . Hence X(&(K)) e € . Lastly define
I, = {aA-W|Ae G for some k,j =k = i(T°), Weé, and i(W) =< k-j}

Lemma 8.55: The sets I’J. possess the following properties :

e

j+l
If Xelh and Ber‘j, then X(B) ¢ l"j-

CI‘J., 1= 3 < 81} &
2O

3° 1f Belj and Ze & with i(2) =m<j, then B-ZeTj .

Proot : 1° is trivial. Let B= A-W as in the definition of I“J. 2

Then X(A-W)= X(A-W) = X(A)-X(W). Since Ac Gk implies X(A) e Gk
and i(X(W)) = {(W) by 6.4, X(B)e T; and 2° is verified. To check 3°,

again let B= A-W . Then B-Z=A-W-2Z = A-(WUZ). Since Ac Gk

and i(WUZ)=k=-j+m=k-(j-m) by 6.6, B-Zel“j_m.
With the aid of these sets, we define
(8.56) cj(x) = inf max gL, x), l=ji=iT) .

Be Tj xeB

We will show that an appropriate subset of these numbers provides us with

the critical values whose existence was asserted in Theorem 8.48.
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Lemma 8.57: If {(T )>Y and 0< y, - A is small, then c;(r) >0

for Y<I1sSiUT).

Proof: By i of Lemma 8.55, cj = cj+1 . Thus it suffices to show
Cy_.,}(A) >0 . For p sufficiently small and x ¢ asp nnt , it follows

from (8.47) that
2
(8.58) g(r,x) = a(u=-n)p

where a 1is a constant independent of p . (In fact a is a multiple of the
smallest positive eigenvalue of (sz(O)L, t) for ¢ e El) . Since
dimnt=2g, by 7.7, (B ATN=B L let B e T, 80
B=X(2(K)-W with Ke T, i(K)=m= v+, and i(W) =m - (Y+]) .

For s = w dependingon X and K, X(y(-s,k)) C Bp . By the Piercing
Property 6.9 ,

(8.59) HX(([-©.0] xK)) N 8B ) = i(K) = m

Therefore by 6.4 and 6.5

(8.60) i(BN 8Bp) = i((X(2(K)) N 8Bp)-W) =

i(X(®(K)) N aBp)-i(W)zm-m+Y+1=Y+l.

Corollary 7.7 now implies
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Let £eBNaB N nt. By (8.58),
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(8.62) max g(r,x) = g(x, §) = min  g(x,x) = a(y - SIS

xeB xeaBpﬂh

Since (8.6l) - (8.62) are valid for all Be FY+1 ;

2
(8.63) c\le = a(pu-A)p -

it follows that

Corollary 8.64: If i(T')>p and 0 < )\ - u is small, then c;() > 0

for p<j =1i(T) .

Proof: Same as that of Lemma 8.57 with nt replaced by n” .

To show that the cj's of Lemma 8.57 are critical values of g(\, *) ,

requires a variant of a standard result from the calculus of variations.

Let A,y = {xeQlg(r,x) =b} and K,) = {xe Qlgr,x)=Db

¢ 9y (AiX) = 0} .

Lemma 8.65: If A isnear w, be (0,c), €>0, and U is any

neighborhood of K, , then there exists an e (0, &) and
n € C([0,1] X Q,Q) such that

1° n(s,)=e—-e, sel0,]

o

2 n(s,x) = x if g(x,x) ¢ [b-€, b+e]

(o}

3

n(s,x) is a homeomorphism from Q to Q for all s ¢ [0,1]
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Proof: A prooi of Lemma 8.65 (without lo) for the case in which Q is a
real Banach space can be found in [30] or [31]. Thus we merely indicate
the modifications required here to employ the earlier proofs. To satisfy s 3
it suffices to obtain n as the solution of an ordinary differential equation
of the form (8.22) where V is a locally Lipschitz continuous map of n to
n and is equivariant. Let w: lR+ —~R' be defined by w(r) =1 if
0O=r=p, wir)=0 if r=2p, and w(r) is linear between p and 2p .
For the moment, p is free. Define d(x)= | x - E)QHh . Then d(Lex) = d(x)
since X ¢ 8Q implies Lg’f c8Q . Set ¢(x)= w(d(x)) . Thus ¢ is
equivariant and Lipschitz continuous in 6 as is
V) = -p(x)g (11, %) - (1-9(x))g, (A, %) via Remark 8.27.

A vector field ¥ on Q= Q\{x e Q|v(x)= 0} is called a

pseudogradient vector field for v(x) if ¥ is locally Lipschitz continuous

in 6 and
el = 2] vx)|
(8.66) 2
(Y(x), v(x)) = || v(x)]
for all x ¢ 6 . Since gx(u,x) has no critical points near 9Q , neither

does gx(x,x) for A near u . Hence for p sufficiently small, if 9 is
appropriately scaled in {x ¢ Q|d(x) =2p}, ¥ isa pseudogradient vector
field for -gx()x,x) . Multiplication of O by another scalar Lipschitz

continuous equivariant function as in [30] or [31] produces a V for which
o

the corresponding flow satisfies 198
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Lemma 8.67: Under the hypotheses of Lemma 8.57, cj(x) is a critical

value of g(r, "), =j =1i(T"). Moreover if

C. =

y o e R HE N

Proof : It suffices to prove the second assertion. Clearly Kxb ce.
If 1‘K)\b) <r, by 6.5, thereis a neighborhood U of KAb such that
i(U) < r . Choose &= %b in Lemma 8.65. By that lemma with the above

choice of U, thereisan ¢ (0,€) andan ne C([0, 1] x Q,Q) such that

(8.68) WA pp TTIC K -

Choose B € Fj+r-1 so that

(8.69) max g(A,X) =b+e=cy;*+E-
xcB

By 3° of Lemma 8.55, B-Uc¢ I‘j . If ) is close enough to p so that

g(r,x) < 0 for x € T , by 10—30 of Lemma 8.57, n(l,*) €M . Hence

by 2° of Lemma 8.55, n(l,B-U)e I‘j . Therefore

(8.70) max g(h,x) =2 b=c,
x ¢ n(l, B=1) )

which contradicts (8.68) - (8.69) .

Remark 8.7l: A similar argument shows the cj's of Corollary 8.64 are

also critical values of g(x, ) with a corresponding multiplicity statement.
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Observe also that if i(KXb) > 1, by Remark 6.16 , !S\b contains infinitely

many distinct critical points.

Lemma 8.72:  Under the hypotheses of Lemma 8.57 for Y< j = i(T "),

let xj(x) € Q be a critical point of g()\,+) corresponding to cj(x) "
Then X;(x) =0 as A -u .

Proof: Observe that &(T )e I, 1= j = i(T ) and if

xe &(T), g(lL,x)< 0. Since 0¢ &(T ),

max _ g(u,x)=0
xe &(T)

Moreover since g(i,x) - g(u,x) uniformly for x € —Q_ as A —-u ,

(8.73) 0< cj(x) = max ag(n,x) -0
xe &(T)
as A —u . Therefore along a subsequences of \'s converging to u ,

we have x;(A) -x € Q with g(u,x)=0 and g, (1, x)=0 . since 0 is

the unique critical point of g(u,*) in 6 . the result follows.

Proof of Theorem 8.48: Immediate from Lemma 8.67, Remark 8.71, and

Lemma 8.72.
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