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ABSTRACT

A general index theory for Lie group actions is developed which

app lies in particular to subsets of a Banach space which are invariant

• 
- 

under the action of a compact Lie group G . Important special cases occur

when G is or S’. This theory should be useful for problems j~-

volving differential equations which are invariant under G, in particular

in obtaining estimates for the number of solutions of these equations. As

an application a bifurcation problem for Ha~niltonian systems of ordinary

differential equations is studied and estimates are made on the n umber of

periodic solutions bifurcating from an equilibrium solution .

ANS(MOS) Subject Classification — 34c15,34C25 ,d 9A4O ,55C99,57E99,58F05

Key Words Lie Gro up Actions , Cohomological Index Theory, Symmetry Group ,
Bif urca tion , Periodic Solutions, Hamiltonian Systems,
Variational Methods .

Work ~Jnit Number 1 - Applied Analysis

EXPLANATION

An index theory is developed which in particular can give information

on the number of solutions a nonlinear differential equation invariant under

a group of symmetries possesses. An application of this nature is given to

Hamiltonian systems of differential equations.
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GENERALIZED COHOMOLOGICAL INDEX THEORIES

FOR LIE GROUP ACTIONS WITH AN APPLICATIO N

• TO BIFURCATION QUESTIONS FOR HAMILTONIAN SYSTEMS

Edward R. Fadell and Paul H. Rablnowitz*

1. Introduction

In another work [1] the authors employed a cohomological index

(see also Yang [Z , 3], Conner—Floy d [4] and Hoim-Spanier [5]) in place

of the usual notion of genus [6 , 7] which is useful In symmetric situations

with the group of symmetry being Z2 , e.g. , In the consideration of (odd)

maps f such that f(-x) = -f(x) . Replacing genus by this cohomological

index was dictated by the need of additional property--the piercing property

• ( Proposition 3 .9) .  In this paper we extend this Idea of cohomological Index

to the general situation where the symmetry group is an arbitrary compact

Lie group G . It turns out that any cohomology class a € H*(B G) , where

BG is the universal classifying space for G , gives rise to an Integer ,

lndex X , where X Is an arbitrary paracompact free G-space , and thi s

• Index enjoys (~ 3), quite generally, the usual notions required of such a

theory, including the piercing property . Section 4 Is devoted to three

important special cases , namely when a is specialized to the generator of

• the cohomology of 1FP~ , Infinite projective space, where IF is either the

reals R , the complex numbers U ,  or the quaternions IH , and the group

• 
• 

*Thls research was sponsored In part by the Office of Naval Research under
Contract No. N00014-76-C-0300, by the U. S. Army under Contract No.
DAAGZ 9 -75-C—0024 , and In part by the National Science Foundation under
Grant No. NSF MCS76-06373 . Any reproduction In part or In full for the
purposes of the U. S. Government is permitted .
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• G is the unit sphere in ~ . We u sc  t:~~ ot~~tiO~• ~~~~~~~~~~~~~~~~~~

index~~X , for these three cases. The f irst , index RX , is equivalent 1:. d

restricted category, to the cohomological index of Yang [
~
, 3 j .  This is

the index employed in [1] and it is designated in Conner-Floyd [4] by

co-index,,, X . In Section 5 we reformulate the theory in the setting of a
(

~
Jz

normed linear space ~3 over IF using the notion tndex~ ,X = index FX + 1

In applications of interest , where the underlying grou p of symmetr y

is S’ , the result ing action may not be free due to the presence of isotropy

subgroups of arbitrary order . Accordingly, in Section ~
‘ , we employ the

index theory developed for free C-spaces , to define index theories in

the general situation, namely the category of paracompact G-spaces

without the assumption of a free action . The basic idea here is to use the

equivariant cohomology H~~(X) of A. Borel [8 , 9] rather than the

cohomology H~ (X/G )  of the orbit space which is used in the free case.

Section 7 is devoted to the special cases of non-free actions which arise ir~

our applications.

In our earlier paper [1] , the index theory given there ( for a free 
~~~.

action) was used to help obtain lower bounds for the number of zeroes an od

potential operator possesses near a bifurcation point as a funct ion of an

eigenvalue parameter . In §8 (Theorem 8 . 4 )  we shall show how the

constructions of [11 in conjunction with the index theories developed her

(for a non—free S1 action) give similar lower bound s in probl ems involvi r~:

the bifurcation of time periodic solutions from an equi l ibr ium point for

Hamiltonlan systems of ordinary differentia l  equa t ions .  B i fL ~r c~~tion questic

L ~~~~~~ • • - -~~~~~~~~~~~~ .- 
_ _  _ _  _ _  _ _
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- fo r Hamiltonian systems have been studied recently by Weinst e ira [ lO J

and Moser [11] fro m another point of view . While completing the final
- draft of this paper , we learned of the work of Chow and Ma llet— Paret [12 ]

who also observed that the methods of [1] can be applied as we do in §8

In particular they obtain a special case of Theorem 8.4 correspondIng to a
• free S1 action .

~ect~O~ 
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2 . PrelIminaries

Let G denote a compact Lie Group and 3 the category of paracompact

free G-spaces. More precisely, an obj ect In 3 is a paracompact

(Hausdorff) space X together with a continuous (left) action ~ G X  X — X

(where u (g, x) is ~~ ltten gx)  such that gx = x , g € G , x € X ,

Implies g = 1 , the identity of G . The morphisms of 3 are equivarlant

maps f : X~ -Y , I .e . , f(gx) = gf(x) . Given an obj ect XE: 3 , set ~ X/G

the corresponding orbit space with the identification topology and let

p :  X — X  denote the associated identification map.

This category 3 may be Identified with the category Prin G of

locally trivial principal G-bundles with paracompact base by means of the

functor

P : X — ( X ,p, X , G ) .

To see this require s a few remarks. First , we recall the ingredients of a

locally trivial principal G-buridle with paracompact base , i .e .,  an obj ect

in P r i n G :

2 .1. Definition. A locally trivial principal G- bundle

= (X, p, B, G) with paracorspact base is:

(i) A triple (X , p, B) where p :  X -
~~ B Is a surject ive map of

topological spaces , and B Is paracompact .

(ii) A free right action ~b : X X G — X (with 4~(x , g) written

xg and xg x only when g = 1 ) such that :
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( i i i )  Let ~ = ((x1, x2 ) X x  X p(x1~ p(x2)) . Then

• . (x 11 x2 ) ~ if , and only if , there is a (unique )  g - ~(x 11 x2 ) in G such

th at x
1
g = x2 and the function a : ~ — G is continuous.

(iv) p admits local sections , I .e . , there is an open cover {u ~~)

of B and maps : U 3 — X  such that PcJ~(b) = b , b ~ U~

Recall also that for ~ = (X , p, B, G) Prin G , all the fibers

p~~ (x)  , x -~ X , are homeomorphic to G and we have a local product

structure

1p (U~) --‘ tJ. x G
I.4i .

3 /

/

/

1

U )

given 
~~~~

- q ’ ( x )  •, ( (p (x)) , x) , ip
3
(b , g) = : .(b)g

Returning to the functor ~ : 3 — Prin C we transform the left C-space

X to a right space in the conventional manner by setting xg g~
1x . Thus ,

(X , p, X, C) satisfies (i) and (Ii), leaving the paracompactness of X

aside for the moment . Since X is a fortiori completely regular , the now

classical cross section theorem of A. Gleason [131 applies to give both

( iii) and ( i v ) .  Now that ~ Is locally trivial, it is a simple exercise to

show that  ~ is paracompac . . using the paracompactness on X and the

compactness of C . Thus , . provides a bijective correspondence between

the category ~ as asserted . We might note that in both 3 and Pr in G

we are identifying equivalent obj ects where the morphisms in 3 are

equivariant  maps and those in Prin G are bundle maps .

L A  • • •~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
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in the presence of p aracompactn ess of the base B , every

= (X , p . 8, G) Prin G is a numerable principal G-bundle in the sense of

Dold [14] and hence there is a universal numerable principal C-bundle

(E~~~~$ B~~I G) giving rise to a natural equivalence

T :  [B , BG} Pr1nGB

where [B , BG] i s the set of homotopy classes of maps from B to B C and

Prin~~
B is the set of (equivalence classes of) principal G-bundles with

base B (see [14]). The transformation T assigns to I : B the

induced bundle f~ ( 
~~~~) 

over B . Thus , given a principal G-bundle

(E , p, B , C) , there is a map I : B -

~~ 
BG , cal led the c lass i fy ing  ~~~~

which induces ~ ( up to equivalence) and f is unique up to homotopy .

In our case G is a compact Lie group and a universal G-bundle

= (E s, q, BC, G) may be constructed as follows. First realize C as a

subgroup of some orthogonal group ( s (k)  for k sufficiently large. Let

Vn , k denote the space of orthonormal k-frames in ~ n+k so that

V E T V  C~~~” C V  C~~~-~O , k —  l , k —  — n , k —

Then , V k U v k is the total space of the universal ~-(k)-bund le
~~‘ n �O

= (V , p  , G , (~(k) ) ,  where G is the union of the Grassmannians
~~~ , 

k ~ 
-
~

- , k •
~~~, 

k
G~ k ~~ k /~

(k)  ~~ k is paracoinpact and contractible and G~ k is a

CW-complex [15 , 16] . C C (s .(k) acts freely on the tota l space ~~~~~~ k and

hence if we set E = V and B = V /G with identifIcation map • •

C •~, k C c , k
q : EG 

-

~~ 
BG , we have a principal C-bundle i-

~ (E G, q, B
~~s G) which is

I

-•

~ 

-•• _ _  _ _-
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numerable because BG is paracompact ; and universal for arbitrary

numerable principal G-bundles because E
G is contractible [14] . In

particular, because V and G are locally contractible so Is B and

hence the singular cohornology of BC and the ~ ech-Alexander-SpanI er

cohomology of BG are isomorphic [17] .

The cohomology employed, unless otherwise stated , will be

~ ech-Alexander-Spanier [17] .
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3. The ~, — inde x

Let G denote a compact Lie group and choose an element

(characteristic class) u in the cohomology group H~ (B~~,A) , where

B C = V k /G is the base space of the universal bundle i-~ 
described

at the end of the previou s section ; and A is a (non-trivial) principal

ideal domain serving as (simple) coefficients .

3.1. Definitj~ p. Let X € 3 denote a paracomPact free G- space.

Let P(X) = (X , p, X~, G) denote the corresponding principal G-bufldla and let

f : X -
~~ 

BG 
denote a classifying map for ~(X) . Set

index 0X max(k : f*(0k ) ~ 0 , k ~ 0)

*
3 .a .  Remai1S~ . H (X , A) and H (B G, A) are rings with the usual

cup product structure [17] and f* above is a ring homomorPhism. We set

1 , the unit element , so that when X is non-empty ~~( 1) = 1 ~ 0 and

hence iN.lex0X ~ 0 for X �~~ . If X =  ~ we set index 0X -l

If f~(czk ) ~~
‘ 0 for Infinitely many k , we set indexaX = . Notice, also

• that lndex~
X is Independent of f since classifying maps for equivalent

bundles are homotoPic .

We now proceed to verify the basic properties of index
L

3. 3. Proposition (MonotOflicitY) . Let q’ : X — Y denote a

morphism of 3 , i. e. , p is an equivarlant map of paracomPact free

G-spaceS. Then ,

index X ~ index Y
a

L
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Proof. Let f denote a classifying map for f~~.’) = (Y, p.,~,,Y, C)

Then q’ induces a bundle map and a diagram

X ~
‘ > Y

PX \L 
_ _ _ _ _ _ _  _ _ _ _ _ _  

1
_ _ _ _ _  ~ ) B G

with f~ serving as a classifying map for PX = (X, 
~~~~ 

G) . Thus ,

~ *f*(a k ) ~ 0 implies f*(c~~) ~ 0 so that

index X ~ index Y .a a

3.4. Corollary. Let q’ : X -
~~~ Y denote an equivalence In 3 , I. e.

an equlvarl ant homeomorphism. Then , indexaX = IndexaY

3.5. Proposition (Continuity). Let X denote an object In 3 and

A a closed Invariant subset of X , i. e., ga ~ A , a € A . g € G . Then ,

there exists a closed invariant neighborhood N of A such that

index N = index A
0 0

Proof. Let fl. denote the family of Invariant neighborhoods of A

directed by Inclusion and let P denote the subfamily of paracompact

Invariant neighborhoods of A . Given any N € , let C denote a closed

neighborhood of A such that A C C C N . Since G Is compact GC is

again a closed neighborhood of A and being closed GC Is paracompact

with A C GC C N . This shows that P Is cofinal In I—p 
, and hence

[17, p. 316]



10

( 1) lirn~~H~ ( N )
P

Since for N P , A C N , we have index N ~ index A . If index A = x
(1 a

then for every N e P , index0N = so that we may assume index A = k • -
~

Let f denote a classifying map for (N , N , 
~N’ C) , N e 2 , and consider the

maps

f
A ~~~~~~~ 

N

with i*f 1~ (a~ 4 i ) = 0 . Using the isomorphisrn (1) there must exist an

N0 € P such that f * (~ l~~l ) 0 so that index N 0 ~ k . Thus ,

index N0 = k and the proposition follows.

3.6.  ProposItion (Subadditivity). Let X denote an obje ct in ~ and

and A and B closed invariant subsets of X such that X = A U B . Then

index (A U B) ~ index A + index B + 1
0 a a

Proof. The proof will make use of the cup product in Alexander-

Spanler cohomology ([17] , p. 315)

Hr (X , A) ® HS(X I B) -
~~ H~~

5(X , A U B)

which requires that the Interior s of A and B cover X . However , in view

of Proposition 3. 5 we may assume without loss of generality that this is the

case and proceed . Observe also that we need only concern ourselve s with

the case when ind ex A a a and Index B = b are finite . Consider thea a
diagram
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G

where i1, i2 are Inclusions and f is a classifying map for (X , 
~~ ~~~, 

G).

Then , .*f*( a+l ) = 0 = i~ f*(o~~~) so that if j
1

: ~ ~ ~~~
* a+l * b+lX — (X , B) are also inclusions f (cx ) and f (cx ) pull back under

and j
~~~ 

, respectively and then the diagram

~~~~~~ ® u
5

(~~ ,~~~) >~~~
r+S

(~~~~~~U g)

if _
H

r
(~~~~) ® H5

(~~~~ ) >

with r = (a+ 1) dim a , s = (b+ l) dim a shows that f*(cxa +2 ) 0 so that

index X ~ a+b+la

3. 7. Proposition (Normalization) index G 0

Proof. This is Immediate because C is a point.

3. 8. PropositIon (Dimension) . If X € 3 , X/G , then

(lndex X) (dim a) ~ dim ~

Proof . This Is Immediate also because the cohomology of ~
vanishes In dimensions bigger than dim X ([17] , p. 359) .
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3 . 9 .  Proposition (Piercing Property). Let X e 3 and suppose

X = X0 U X1 where X0 and X1 are closed invariant subsets . Suppose

further that A 3 and ~‘ : A x I — X  Is equivariant Imbedding, I .e . ,

q’(ga, t) gq~(a , t ) ,  g -: G, a -~ A , t ‘- I = [0 , 1] . We assume also that

q’(A X I) Is closed in X . If A0 = q’(A x {o)) C X~ and

A1 = q’(A X {l}) X1 , then

index q’(A X I) 1) X0 fl X1 = index0 A

Proof. First , ther e is no loss of generality in assuming that A0 = A

and ~(a , 0) = a , a € A . Let Y proj 1 o : ç(A x 1) — A X  I — A ,

C = q’(A X I) fl X0 fl X1 and = Y~ C : C — A  and observe that the maps

V and 
~C are equivariant . Thus , index C ~ Index A . Now , to prove

equality it suffices to show that V~ induces inj ections

— H~ (~~) for all q , where ~ = A/G and ~ = C/C

This is done as follows . Introduce the notation B0 = X0 fl q’(A X I)

B1 = X1 fl ~(A x I) and the inclusion maps

k 0 k1Ao > B o A~ /
B0 U B 1 B0 U B 1

!0 : C C  B0 P1 : C C  B1
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where B0 0 B1 = C . All these sets and maps are equlvarlant and working

in the corresponding orbit spaces = A0 /G , etc . we have a

Mayer-Vietori s Sequenc e

-
~~~ H ( B 0 U ~1) ~

‘ > H~(g0 ) ~ )- H ( B ~ ~

where ~ = (Ti, -it ) , t~ = + . We assert first that Is an

injection for suppose £~~(x) a 0 . This implies that 1(x , 0) = 0 and hence

T~ (y) = (x, 0) for some y € }1~~~(~~~
0 

U ~
) . This forces T1*(y) = 0 and hence

• T~y) = 0 . But j
~~ and hence : ~ ~o U are homotopy equivalences

which forces y = 0 and hence l~~(y) x = 0 . Thus is an injection .

Finally , let = V~ B
0 
: B0 > A which is a retraction of B0 to A

The diagram

‘

then exhibits as the composition of injections and the proof Is complete .

3. 10. Corollary : If in Proposition 3. 9 , we assume only that q’

Is an equlvarlant map (not necessarily an Imbedding), then

index ~(A X I) 0 X fl X ~ Index A
• cx 0 1 cx 

—~~~~~~~~~~~~~~~ - • - -• •~~~~----.~~~~~--- -•—~~ ~~~~-• - -~~
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Proof. Let y = A X I , = q~~(X0 ) y
1 = q’ 1(X1) . Then ,

ç:Y0 0Y 1 c(AX I)0X 0 0X 1

is equivariant and

indexa Y0 0 Y1 ~ index ço(A X I) 0 X0 0 X1

By applying Proposition 3.9 to (Y, Y0, Y1) we obtain

index y fl Y = index Aa O  1 a

and the required inequality .

3.11. Remark. As pointed to us by L. Sonneborn , the result in

Corollary 3.10 for the special case of a free Z2-action , is proved and

empl oyed by Yang in the proof of his Generalized KakutanI-Yamabe-Yujob~

Theorem [18] .
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4. Specializations

We now consider three special cases of the a—index where the compact

Lie Group G is 50 , S1 or S3 , i .e .  G is the unit sphere in IF where

IF = R , , III , I .e .  IF Is the reals , complex numbers or quaternions.

4.1. DefInition. Define index IF in the three cases

IF = R , , IH as follows :

(a) IF = IR - Here G = S0 = and 3 is the category of paracompact

spaces on which acts freely . The coefficient ring A is and the

* ~universal classifying space B is ]RP with H ( R P  ;Z 2 ) the

polynomial ring on a single generator w € H1( R P °°, Z2 ) . We set

index IR X index~ X , X € ~

(b) IF I .  Here C = S1 , the complex numbers of norm 1 , and

3 is the category of paracompact spaces on which S~ acts freely . The

coefficient ring A is ~ and the universal classifying space B 1 is ~~~
with H*

(cr P
00

;~~~) the polynomial ring on a single generator

c € ~~~~~~~~~~ We set

index~ X = Index
~
X

(c) IF = JR . Here G = S3 the group of quaternions of norm 1

and 3 is the category of free paracompact S3-spaces. The coefficient

ring A is ~ and the universal classifying space B 
~ Is JR ~~ with

H*(IH P°°, ~
) the polynomial ring on a single generator a € H4 (IH P°°, Z). 

- - - - - - • • —~~~~--—-- --~~~—- - — ---- —- ---- •- - • -- - - - -—- -- - -- - - -  - - - - - - - - -- - •
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We set

index JR X =  index a X , X € 3

4 . 2 .  Remarks. The first case (a) is equivalent , in a restricted

• category to the index of Yang [2 , 3] .  It appears also in Conner-Floyd [4]

• where it is denoted by co_Index
~ X and also in Hoim-Spannier [5] .
2

An alterna tive development which includes a variant form of the “piercing

property ” (Proposition 3.9) along with an application to a bifurcation

theorem is contained in [1] .

Furthermore, the class w In (a) is the first universal

Stiefel—Whitney class , while c in (b) Is the first universal Chern class

(19] .

We now proceed to prove some special properties of lndex
~

where IF IR , cr , ii

4. 3. Proposition ( Stability) . Let C denote the unit sphere In IF .

Then , if X 3 , let X o G denote the join of X and G with G acting by

g(x , t ,y )  = (gx , t , gy ) , x € X , y c G , t € I . Then , if X is locally

contractible

indexF X C Index~~X + 1

Proof. First we remark that X o G is paracompact, and following a

suggestion of K . Kunen , a proof of this result may be effected using a result

of Michael [20] . Furthermore, X ° G is easily seen to be locally

contractible . This forces the orbit spaces x = X/G and B = X ° G/G to 

-~~~~



— -—-- -•-- -•-~~~~ -~ —-. -- ----, -—- ,,—-.--•—.-
~~~ 

n.
~~ ~~ 

-
~~~~ 

• ---
. 

- --

• • - 
-

17

be paracompact and locally contractible. Then indexIF X G Is defined

and we may equivalently employ singular cohomology ([17] ) in dealing

with the notion of index~ . Now , we have the following inequalities

indexF X ~ lndex F X o G 
~ 

index F X + 1

The first holds because X equivariantl y imbeds In X o G and the second

because X o C can be written as the union of two closed invariant subsets

A0 and A1 with index
~ ~~ 

= indexIF X and index IF A1 = 0 and Proposition

3. 6 applies. To complete the proof we make use of a standard argument

using the Gysin sequence ([17] , p. 2 60).  Recall that our C-bundles are

now orientable sphere bundles since G Is 0-connected when IF = 1E or Iii

and we are using Z2-coefficlents when IF = JR . Let B a X ° C and

consider the following diagram of Gysin sequences for the bundles

(X , p~ , X , C) , (B , p8, B, C) , where I : X — B is the inclusion map

1(x) = [x , 0, C], and d = dim C

~ H~~
d(X) x > Hk+d (X) > Hk (X) X > H~~~~~(X) >i*’j’ T*1 i*1

) HJ
~~d(B) ~~~ HJ

~~d( B) ) Hk(B) B ) H~~~~ ’(B) >

Suppose , as we may, that index IF X = lndex IF B = k <  . Then , we would

have a non-zero element u Hk(B) such that i4~~(u) = 0 and hence which

pulls back to H J
~~d(B) and which also has the property that T~(u) ~ 0

This forces i to be non-trivial. But when k 4- d > 0 , i~ is trivial

A - -
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which is a contradiction unless k = 0 , d = 0 . This special case is

dIsposed by observing that B contains o = S1 as an invariant subset ,

and lndexR ~
1 = 1

4.4. Remark. Proposition4.3ln the case IF R and X is

compact is due to Conner-Floyd [4] . The proof is a simple adaptation

of theirs .

4. 5. Corollary: indexIF 5(d+l)n + d = n , where 3(d+l)ri + d

the unit sphere in IFn4 -~ and d = dim C

Corollary 4.5 has the following extension. The special case

F = IR is s~~ilar to a result of Holn~ and Spanier t51 . Our proof is dif ferent

making use of the transfer map [211 . The actiiDn on is scalar

nultiplication .

4.6. Proposition. (Boundary of Invariant Neighbor~~ods) . Let M

denote a topological G-mariifold of diit~nsion (d + 1) (n + 1) = dim F’~~~, and

U an open invariant set in M with cavpact closure. Let F~~~ denote

Eix~lidean (n + 1) -spac e over F and ~p (U, aU) ~ (pfl+l :F~~
1 
- 0) an

equivariant map, where ~U represents the bourx3ary of U and G acts freely

on ~U. Then, if the degree of ‘p is * 0 (using 
~2 

in case F =

index~ ~U = n

Proof. We may asstm~ witI~ ut loss of generality that ~ is definel on

an equivariant neighbor1~ od V of U and ~~~~~
1 (S) = ~3tJ where S is the unit

sphere in ~ n4~.
• Thus, we have ip : (V,V - ~U) -

~ 
(~~~~~,(r~~~ - S) and ~p has

non-zero degree ~S by assunption, i.e. if B = au and and are
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respectively fundanEntal classes, ~ * (os) = óo~ . Thus, we are in a position

to apply the transfer map t : H (B) -
~ H (S) with t~p = 6 (id). Thus

* * *H (5) -
~

- H (B) injects . Now, look at the bundle map

B — p 
~~F P’1

where B = B/G and, of course, F P’1 = S/G. t~~ a sinple Gysin sequence

argunent (over in case F = R) tells us that in the top dimansion

r = Cd + 1) n, H r(F ~n) H r(B) injects which forces index1, ~U = n.

4.7. R~~ark. C. Conley point.ed c~it to us that the special case of

Proposition 4.6 far N and U a bounded open set cvntaining the

origin follows inuediately fran the Piercing Property (Proposition 3.9) .

__________ 
~~~~~~~~~~~~~ • - -~~~~~~~~~~
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5. A Reformulation

Let ~3 denote a normed linear space over IF = ~, ~r, or JR

Furthermore , if = ~— {o ) and G is the unit sphere in IF , G acts

freely on . Let ~ denote the fami ly of invariant subsets of J3
~

Then , each x € ~ Is a paracompact free G—space and we define

Index~ X = index~ X + 1

Letting Th.I denote the non-negative integers we may summarize the contents

of the previous sections in this setting as follows :

5.1. Theorem. The function IndexIF : e > IN possesses the

following properties; where X, y, ... € e

1° If X = 0 , Index~ x 0 ;  if X ~‘ , Index~ X � 1

2° ( Normalization) Index~ C = 1

3° (Dimension) Index IF X . dim IF ~ dim X

4
0 (Monotonicity ) 4 : X > Y equivariant implies that

Index~ X ~ Index~ 
Y . In particular , equality holds if 4i Is also a

homeomorphism.

5
0 (Continuity ) If X Is closed , there exists a closed invariant

neighborhood N of X such that

Index F X = Index IF ~
‘

for any Invariant set Y , X C Y C N . If X is compact N may be chosen

as a uniform neighborhood 

~~~~~~ •-- - -- - • •-~~~~~~~~~ —•~~~~—
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N 5 (X) {b B : lb  — X II ~ 6)

6° (Subadditivity). IndexIF(X U Y) ~ Index
~~
X + Index

~~
Y

7
0 (Neighborhood of Zero) If B = IFrI4 J and U is a bounded

open lr”ariant neighborhood of 0 , then

Index IF au = ~~ + i

8° ( StabIlity ) If X is closed, and X e C Is the join of X with

G , real ized in B ~ IF , then

Index
~~
X G = Index

~~
X + 1

9
0 (Pi ercIng Property) Let X0 , X1 , A , denote closed subsets

in e and p : A X I > X0 U X1 an equivarlant Imbedding, I. e.

~(ga , t) gQ(a , t) . Suppose further that q’(A x I) is a closed subset and

q~(A x (0)) C X0 and p(A x (1)) C X1 . Then

Index~ ç’(A x I) fl X0 II X1 = IndexIF A

10° (Infinity) If B has Infinite dimension and S is the unit

sphere in B ;  then Index
~ S =

5 2 .  We need to make a remark about 80 since we did not assume

that X was locally contractible. This is because ~0 allows us to replace

X by a locally convex neighborhood . Also 100 follows because

Index IF S Is certainly defined and S contains invariant spheres of

arbitrarily high (finite) dimensions. 

~~~~~~~---• .--~~~~~~~~~ -- - -— • • - -~~~- -~~~~~~~~~
- - - - -

~~~~~
- 

~~~~
• • - - -  

~~~
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6. a-index for Non-Free Actions

In this section we develop the general theory for actions which are

not necessarily free. Our compact Lie Group will be fixed throughout thi s

section and the notation for our principal C-bundle 1 = (EG, q, BG, C)

(Section 2) will be shortened to 
~~ 

= ( E , q, B) . We note the Important

fact that our universal total space E is V which is the union of
oo , k

countably many compact sets (a-compact). Hence, ([20]) E X X is

paracompact, whenever X is paracompact. Accordingly, we let 
~~ 

denote

the category of all paracompact (Hausdorff) G-spaces X , mak ing no

assumptions that the action be free or even non-trivial. We also fix once

and for all an element a € H~(~,A) , where A Is a (simple) coefficient

ring .

6.1. Remark. If one wanted to extend these ideas to include more

general topological groups G , the C-space X would have to be

restricted to have the property that 11 E
G 

is paracompact , then EC X X

is also paracompact. This is the case, e.g., when X is locally compact or

a—compact (see Dugundji [22] and Michael [20,23]).

Now, take a C—space X € . Then , C acts freely on E X G

by the usual action j
1g(e,x) (eg ,gx) , g € G , e € E , x~~ X

The resulting orbit space (E X X)/G which Is usually designated by

E XG X is the total 
space of the associated bundle (E XG X, ~~~~ 

B) , where

is induced by qJ 1 where j1 : E X X 
-
~~~~ E Is projection on the first factor.
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Notice , then that E X X , with this free C-action belongs to our category

3 of Section 3 and we may Introduce the following definition .

6 . 2 .  Definition. For X € 3~ , set

index* X = index E x Xa a

where ind exa E X X is as defined in §3 . Alternatively, consider the

diagram

E X X  
1

q
pxE X G X

where j 1 is proj ection on the first factor and set

index~ X = max {k : p (ak) ~ 0 , k � o)

Before we investigate the properties of index* 3 __

we first check consistency .

6.3.  Lemma. If X € 3

*Index X =  index Xa a

Proof. Consider the diagram

• j2

~~~~ 
~~~~ 

E X X

x/G’z E X G X

• •- -
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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where j 2 is (equivariant) projection on X . Then , one shows easily that

is a locally trivial map with contractible fiber E . This forc es T2 to be

a homotopy equivalence [14 ] and hence index X = index E XG X = index~ X

We now proceed to verify the properties of this Index on

6.4. Propositic-rl (Monoton&city). Let q’ : X — Y denote a

• morphism or 
~~ 

, i . e . ,  ~ is an equivarlant map of locally compact C-spaces.

Then ,

index* X ~ index* ya a

Proof. Immediate , since 1 X q’ : E X X — E X Y is equivariant.

Before we establish the Continuity Theorem In this setting we recall

[24 , 2 5] that our universal space E = V k has the property that E Is the

ascending union of compact manifolds

E1 C E2 
C ... C E m C E m

~~ C

with the following properties , where X €

a) The homotopy groups ~1(E
m) = 0 , i < rn

b) The inclusion map E m C E m4
~
l Induces Isomorphisms

(any coefficients)

X
C 

X) ~ ~~~~~ XG X), q < m

c) Since E X
C 
X Is paracompact

lim ~~~~~ XG X) ~ H~ (E XG X)

_ _ - • - —-- - - - -~~ -~~~~~~~~~~~~~ - - - - -
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so that the inclusion map induces

d) ~~~~~ XC X) ~~~~ XC X ) ,  q < m

6.5. Proposition (Continuity). Let X denote an object In

and A a closed invariant subset of X , I.e., ga € A when a € A and

g € G . Then , there exists a closed invariant neighborhood N on A such

that index* N = index* Aa

Proof. The proposition is obvious for index* A = ~ , so we may

assume that index* A < ~a
Firs t choose a closed invarian t neighborhood V of A in X

Then E X A is a closed invariant subset of E x V € 3 . By the Continuity
Theorem for free actions (PropositIon 3. 5), there is a closed invariant

neighborhood W of E x A In E x V such that

index E X A = index Wa a

In particular , if a € Hd(B ,A) and lndex * A =  k , for a classifying map

f : W / G — B

we have f*(c~~ l
) = 0 . Choose m > d(k+l) . Using the fact that Em Is

compact , we can find a closed Invariant neighborhood N of A.  in X

(N C V) such that Em x N C w . Now , using the diagram

E X A  ) W ~~~~E X V  >E

1 1
~~~~~~~~~~~~~~~~~~~
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and the fact that ~~~~~ XG N) ~ ~~~~ XG 
N) for q < m we see that the

classifying map

f: E XG N 
— B

has the property that f*(~~~~) = 0 and hence

index* N index E X N = index E X A = index4 A .
a a a a

6.6. Proposition (Subadditivity). Let X denote an obj ect in 3~.

and A and B closed invariant subsets of X such that X = A U B

Then,

index~ (A U B) ~ index~ A + index* B + 1

Proof.

index~~(A U B) = index~ E X ( A U  B) = Index (E X A) U (E x B)

~ index E x A + index E X B + 1a a

~ index~ A + lndex~ B + 1

6.7. Proposition (Normalization) Index* G = 0

Proof. By Lemma 6.3, index~ G = index G = 0 , using

Proposition 3.7.

6.8. Remark. The fact that X/G is finite dimensional will not

guarantee that Ind ex* X is finite. For this reason we don’t have a direct

analogue of the Dimension Property 3 .8. We will explore this question

further , however , at the end of this section. 

•~~~~~~---- --~~ - --~~~~--_-- -- -- ~~~~~~~~~~~~ - ~~~~~~~--~~~ •



-~~~~—-- --— --•--~~~~ 

~

-• - -

~~~~

-- 

~~~~~~~~~~~~~ 

--

~~~~

- • ; :~:T:~~~~

27

6.9 .  Proposition (Piercing Property) . Let X € 3~. and suppose

X = X0 U X1 , where X0 and X1 are closed Invariant subsets . Suppose

further that A c and q’ : A x I —
~~ X is an equivariant imbedding , I. e. ,

q~(ga , t) = gq,(a, t) , g € G , a € A , t € I = [0 , 1]. We assume also that

~(A X I) Is closed in X .  If A0 = q,(A X { 0) ) C X  and

A1 = c(A X {l}) C X1 , then

index* q’(A X I) fl fl X1 = index A

Proof . If ~ : A X I —X is an equlvarlant Imbedding,

lx q~: E X A X  I —‘W E x X is also and we apply the Piercing Property

Proposition 3.9 to this situation to obtain

index E X [ç~(A X I) fl X0 f l X1] = index (E X A)

which gives the desired result .

6.10 . Corollary. If in Proposition 6.9 ,  we as sume only that ~‘ is

an equivariant map (not necessarily an imbeddIng) then

* *index p(A X I) II X fl X � index Aa 0 1 a

Contrary to the free situation, where index X Is finite when the

dimens ion of X is f inite, index~ X may be infinite even when X Is compact

• and finite dimensional. In fact, consider the case where the Lie group

G = S1 , the circle grou p, and we take as coeff icients A = ~ , the additive

group of ra tionals. Furthermore, let a € HZ ( a I ~~; ~ ) , denote a generator .

Suppose x € 3:. has a non-empty fixed point set F C  X , i.e. x € F

A ~~~~~~~~~~-- -— — --—~~~~• - -------~~~-- ~~~~~--- ---~~~ --- --~~~~ --- - —--~~~~~~ -~~~~~— - - - -~~~ ----~
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if and only if , gx = x for every g € S1 
. Then , on one hand

* *index F ~ Index Xa a

and furthermore E XC F = B x F , where E = S~ , B = a~P
cO 

, and the

diagram

E X F

B X F  p

where p projection, tells us that p~ H*(B , ~ ) ~ H*(B x F) is an

Injection so that p*(o k ) ~ 0 for all k � 1 , forcing

* *index F = = index Xa a

Thu s, ind~x X may not prove useful in the presence of fixed points belonging

to X . However , index X Is finite quite often , in particular when the

Isotropy groups are finite. Recall that for x € X , the isotropy group G~
is defined by

Gx {g € C : gx xl

Thus , G~ 
= G implies that x ~ F , the fixed point set of the action.

~.11. Lemma. Suppose X € 3 ~ 
and all the Isotropy groups

x ~ X , are finite . Then , the map ‘1: E XC X — X/C  , Induced by

proj ection j : E X X — X  , Induces Isomorphlsms

J * : H~ (X/G , ~ ) -
~~ H~ (E XG X, ~~)

~ 

~~~~~~~ - . - -  - -
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in all dimensions q , over the field of rationals ~~~~.

Proof. The proof we give Is standard and Is included for the reader ’ s

convenience. We again make use of the filtration

C E2 C ... C Em C Em
~~ C

of our universal tota l space E as in the proof of Proposition 6.5.

We consider the diagram , for each m

Em X X

1 ‘~m 1
Em XG X

Note that j m (induced by the projection J m) is a closed map because E m

is compact and furthermore the preimage sets (fibers) of ~m are all of the

form E m/G~~, where G
~ 

is a finite isotropy group. Applying the

Vietoris-Begle mapping theorem [17] and noting that H~ (E m/G~, ~ ) = 0

for q < m , we have isomorphisms Induced by j m

~~~~~~~ ~p) ~~~~~ X
G X, ~~) q < m.

Then , j Is just  the composition of this Isomorphism and the isomorphism

~~~~~~ X
G 
X, ~~) H~ (E XC X~ ~~) q < m

We are now In a position to state the analogue of the “dimension

• property ” , Proposition 3.8.

- - - - - - -
~~~~~~

- • -
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6.12. ProposItion (Dimension) . Suppose X € ~~ 
and all the

— 
isotropy groups G

~ 
are finite. Let dim X/C denote the covering

dimension of the orbit space X/G . Then , over the rational field ~~ ,

(index* X) (dim a) ~ dim x/G

Proof. We may assume dim X/G < ~~ . Then , by the above lemma ,

• ~~~ xGX.~~)= 0 for q 
> dim X/G . Thus, if a € Hd(B ,~~ ) , and

f :  E XG X — B is a classifying map, we have f*(ak) = 0 for kd> dim X/G

Thus,

(1ndex~ X) (dim a) ~ dim x/G

6.13. Remark. Note that under the hypotheses of Proposition 6.12,

we have for r n >  dim X/G , - -

index* X index Em ~ Xa a

In fact, this equality holds for m sufficiently large whenever index X

is finite.

6.14. Perhaps the simplest criterion for X/G to be finite

dimensional is obtained under the hypothesis that X is a separable metric

space. Then, X/G Is again a separable metric space and

dim x/G ~ dim X (see [26]), so that X/C is finite dimensional whenever

X i s .

6.15. Just as in the free case it Is sometimes convenient to increase

the index by one and set
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Index* X index* X + 1a a

It Is a simple matter to restate the properties of index* in terms of Index*

The monotone, continuity and piercing properties are verbatim the same,

j ust  capitalize the i . Just as in the free case, we have the following

alterations In the others.

(Subadditivity) Index~ (A U B) ~ Index* A + Index* B

(Normalization) Index* C = 1

(Dimension) (Index~ X) dim a ~ dim X/C + dim a

whenever X has only finite Isotropy groups .

6.16. Remark. We close this section with a simple observation

to be used later . When Index* X >  1 and all the isotropy groups G
~

are finite, then X/G must be an infinite set.

_
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7. Some Special Cases

We consider now three examples which will be employed In our

applications . Throughout this section our Lie group C is the circle group

S1 and thus our category 
~~ 

j~ paracompact spaces with an S1-action.

Furthermore our universal S1—bundl e (E , p, B) is the inductive limit of the

classical Hopf—fibrat lons

C S5 C C S2”
~
1C

1 £  I
52 C G ~P2 C C U P ’1 C ”

I .e .  E = 5~ and B = crP~ . Notice also that if X is an S’—space and

x ~ X , either the Isotropy group C is finite or G S’ . We employ

rational coelficients ~ for cohomology and (~ will not be displayed when

rational coefficients are und erstood . Finally, our index theory will be

based on the universal Chern class c1 ~ H2 (r P 2 , Z) and so we choose

c € H
Z

(r P
00

) corresponding to thi s class. Following the notation in

sectIon 4 set

Inde4 X = Index x , x €

7.1. Notation. Given a C-space X , set

Fix (X) {x : gx = x , g € G} . Fix (X) is thus the set of points fixed

under the action . (It is also denoted by In the literature.) 

-~~~~~~~-



• ~~~~~~~~~~~~~~~~~ - - - —- ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ---~~ -~~~~~~~~‘,— - 
- -

33

7 .2 .  Proposition. If X € and the orbit space X/S1 is u nite

dimensional (e .g .  X is separable metric and finite dimensional), then

Index~ X is finite If and only if Fix X = .

Proof. This is immediate from Proposition 6.12 and remark s made

preceding this proposition.

Just as in the free case (~ 4), Inde4 satisfies a stability

condition which we formulate as follows . Let X o denote the join of

X € 3~ with S1 and let k denote a non—zero integer. Define an S~

action on X o 5~ by

g(x , t , z )  = (gx, t, gkz) , x € X , z € S1 
, t € I

where gk z is ordinary multiplication .

7. 3. Proposition. If X is locally contractible and X € , then

Inde4 x ° s1 
Inde4 X + 1

Proof. The proof is almost identical with the proof of Proposition 4 .3

so we content ourselves with a bri ef sketch. First of all X ° S1 € 3* and

X °  S’ Is locally contractible. Hence E x X , E x (X ° S1) are both

locally contractible and singular cohomology may be employed in our

argument. We also note that we may assume that Index~ X is finite so

that all the isotropy subgroups S~ , x € X are finite.

Just as In 4 . 3 ,

Ind ex~ X ~ Inde4 X S1 ~ Inde4 x + 1
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where a simple computation shows that Index~j  S
1 1 and where S1 Is

given the action gz gk z , k ~ 0

Now, use the diagram of Gysin sequences as in 4. 3 with the

following replacements

replace X by E X X

replace X by E xsl X

replace B by E )(  (X o S1)

replace ~ by E X~i (X ° S1)

to show that the inequality inde4 X = Inde4 X ° S1 is impossible .

Example 1

Let denote the space of k—tuples (c1, . . 
~
, Ck ) with entries

Cj € ~~ , where c1 may be thought of as an n-vector 
over the complex

field ~~~~ . Thus N nk . For a given k-tuple of non-zero Integers

(n 1, , nk) , the circle group s1 acts on by

Ck) = (g c1, • , g Ck)

Then, for every Invariant set X C = ~
N 

- 0 , Inde4 X is defined and

or this category of invariant subsets of , Inde4 satisfies all the

properties of Index* discussed in section 6 as well as the stability

property (Proposition 7 .3).  In particular, for X C

~~~_~_ _ _-_ _ - -- _ --__--- - _ -_- — - - ---- - - - — -  - - - ---—— -
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2 Index~ X ~ dim X + 2

so tha t our index is finite over invariant subsets of ~~~

We compute first the index of the unit sphere ~ = 5z~J—l 
~ ~N

By definition,

Inde4 S = Ind exc E x ~

where c is the first rational Chern class. To compute the R . H . S . , we

use standard techniques as follows . Consider the bundle map

E X S

I 
_ _  

I
E X 1 S > B

S

where p is Induced by equivariant projection ~~~~~. Then , notice that the

fiber of the fiber map p Is a (ZN—l )— sphere . Using the Cysin sequence

[17] , we conclude that (for any coefficients)

H’(B) > H1(E 
~~~ 

S)

is an isomorphlsrn for i ~ ZN — i  . Thus , Inde4 S � N . On the other

hand , using Lemma 6.11, we have isomorphlsms

> ~~~ X 1 S)S

and since H~~~(S / S 1) = 0 , we have HZN (E X~~ S) = 0 . Thus ,

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~- •~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~
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Index~ S ~ N and we have verified

7 .4. Proposition. Index~ 52 N 1  = N

7 .5.  Corollary. Index~ L~~~ N .

7 .6 .  Corollary. Let K denote an invariant linear subspace of

of (complex) dimensi on k , then Inde4 K~ = k , where ~ = K - 0

7. 7. Corollary. Let K denote an Invariant linear subspace of

of dimension k and let X C ~~~ denote a closed invariant subset such that

k + I n d e4 X > N .  Then X n K � Ø .  More precisely

Inde4 X fl K � Inde4 X - (N-k) > 0

Proof. Let K1 denote the orthogonal complement of K. K1 Is

invariant and the orthogonal projection ~r : — K1 is equivariant.

By continuity (Proposition 6 .5 ) ,  there is a closed Invariant neighborhood A

of X fl K in X such that Inde4 X fl K = Inde4 A . Let B denote x minus

the interior of A (in X) .  Then , ii B : B — K~ tells us that

Index~ B ~ N - k and hence using subadditivity

Inde4 X ~ Inde4 X fl K + (N-k)

which is the desired result .

Before consider the index of the boundary of an invariant neighbor-

hood , we make one more comment. Let cat X denote the Ljusternl k-

Schnirelman category of X . Recall that cat X = X , if X can be covered 

- •
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by X open sets each of which is contractible in X and X is mini mal with

this property .

7.8. Corollary, cat S/S1 
= N

Proof. The remarks above show that S/S1 has non-trivial cup

products of length N-i , so that cat S � N . To see that cat S ~ N

we proceed by Induction on N , representing S as N-tuples

(x 1, X
N
) , x. € cT , ~~~~ = 1 . Let A denote the orbit containing

(0 , 0 , , 1). Then, by induction cat (S—A)/ 51 
= N—i . On the other hand ,

S/S1 is a n ANR ( [27]),  so that ~/~1 is locally contractible at the point

corresponding to the orbit A. Thus , cat S/S1 
~ N so that our proof is

complete .

7 . 9 .  Proposition (Boundary of Invariant Neighborhoods) .

Let M € 
~~ 

denote an orientable 2N-manifold and U an open

invariant set in M with compact closure . Let

(U ~~ u )  -~ (cEN,t~ ) be an equivariant map of non-zero degree .

Then , Index~~U = N.

Proof. Just as in Proposition 4.6, we assume that ~ is

defined on an equivariant neighborhood V of U and

= ~U, where S is the unit sphere in CEN . Thus, we

have ~a : (V ,V - BU) -~ (UN ,~
N 

- S) and , by assumption , ip has

non-zero degree 6, i.e. if 01 c H 2N (V I V —

02 
€ H 2N

(~
N ,~

N 
- S) are fundamental classes, ~

p
~~(o1) 

= ôO
2~ 

The

map .
~ also induces a map 

-~~~~~~~ • -~~~~~~~-- - —  -~~ ~~~ - - - --  
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N
E X V - ~~E X ~~~ , E S

and it suffices  to show that  for m s u f f ic i e n t l y  la r ge

~p 0
: S m X a u ÷ S

m x i s
S S

induces an injection in rational cohomology in dimension 2N - 2.

Now, if p is a fundamental class of the sphere 5m let

€ H~~~2~~(S~ x (V ,V - ~tJ) ), °2 ~ 
Hm+ 2N (Sm x (~~

N
,~~
N 

- S))

denote fundamental classes corresponding to p x c~~ , p 
x 0

2
1

respe:tively. Then , = and the transfer map

t : H (S X au, v) H (S x 5,Q) applies to force

H*(Sm x S,Q) H*(Sm x au ,Q) to inject in all dimensions .

Now , we look at the bundle map

÷ 5m 
~

~ ~
m

and proceed, just as in the proof of Proposition 4.6, via a

Gysin sequence argument over the rationals. Keep in mind

that the action of S~ on ~U has all isotropy groups

* m *finite so that H (S X 
1 aU ,~D) = H (~U/S ,O). InS



- .., — ---‘~~~~“r-  -- -- -  

~~~~:~r~-

particular , I:~~~Sm x 1au ,Q)  = 0 for q > 2N - 1,

1since dim RU/ S < 2N - 2.

Exampl e 2

This example is similar to Example 1 except that we allow fixed points.
Let ~1~M denote the space of (k+l)-tuples (c0, c1, . , ck ) with c~ €

so that M = (k+l )n = N + n , where N = nk and r N , as in Example 1

is naturally imbedded in ~ M 
• For a given k-tuple of non-zero integers

(n 1, ~ 
n~ ) , we define an action of the circle group s~ on by

g(c0, c1, . 
, ck ) = (c0, g c1, , g ck )

so that the 0-th coordinate remains fixed . Then , the fixed point set

F = FIx(C M ) of this action is the subspace given by c. = 0 , I ~ 1 .

Furthermore , the invariant subspace crN 
, defined by c0 = 0 , is precisely

Example 1. For any invariant subset X C , j ust as in Example 1 , 

-~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~ • - •-~~ -•- - •-- • - - • • -
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Index~ X = Index c~ X

where c is the first (rational) Chern class. Thus , we have a index theory

on the invariant subsets of r M satisfying the properties in Section 6 , but

which is not finite on sets which intersect the fixed point set F . However,

in the complement of F things still behave nicely . The proj ection

(c 0, c1, . . ~,Cj~ ) I ) (c1, . . ~, Ck )

M Ntakes C - F equivariantly onto C~ and this , together with the inclusion

map in the other direction tells us that

7.10 . Proposition.

Index~ ~ M 
- F tndex~ ~~~ = N

ZM —l - . MNow , let S denote the unit sphere in cr , S the uru t sphere

in a N 
, as in Example 1, and F0 = F fl 5ZM~~ . F~ is then the

(Zn-l) -sphere given by c0c0 = 1 , c1 = 0 , i ~ 1 . Clearly S C 52M— l

and 
~~ 

above induces an equlvariant map

— Z M — l _______-F

by

k
. , ck ) = (~~ c1c~) 2 (c1, ~, ck )

7.11. Proposition. Let A denote any invariant subset of s2M~~

such tha t F0 C A c 5
2M~~ - s . Then,



- 
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Index~ 52 M 1  
- A Index~ S = N

Proof . Use 
~~ 

and Proposition 7.4

7.12 . Proposition. (Boundary of Invariant Neighborhood of 0).

Let U denote a bounded open invariant set in ~ M containing the origin

0 € . Then if au denotes the boundary of U , we have

Index~ (au-F) = N

Proof . Let V =  U f l  ~ N Then Inde4 av= N. Since

~V C ~U - F , we have Index~ (au-F) � N . On the oth er hand

~(au-F ) C ~ so that Inde4 (au -F) ~ N

7. 13. We close this section with a few remarks concerning

Ljusternik-Schnirelmann category . First of all , 
~j 

above is an equivariant

homotopy equivalence and hence

a) cat(SZM
~~~F0 )/Sl = cat(S/ S’ ) = N

For ~~~~> 0 , let V denote the €-neighborhood of F0 in rM 
, i .e .

= {c € : I c  — ~ for some P~ F0 }

Then , ~~: 52M~~ - v€ 
-> s remains an equlvariant homotopy

equivalence and

b) cat(SZM*F) /Sl = ca t (S/ S1) = N

LA - - _  - -  -
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More generally if cat~
A denotes the category of A in X (open sets

covering A are in X and contractions are in X ) , then for any invariant

set A C  S we have

c) cat~~~ = cat~~~~ cat~~~

where A = A/S1 
, X = s/s1 

, Y = (S Z M_ l
\F 0 )/Sl and Z = (S

2 M 1  
- V )/ S’

Now, the function Y(A) = cat~ A 1 defined on invariant subsets of

sZM
~~\F 0 , where Y =  (S~M~~ \F 0)/Si 

, satisfies many of the properties

of Inde4 e.g .  monotonicity, continuity and subadditivity . However ,

we are not sure how V behaves in relation to the piercing property

(Prop. 6 .9)  (we conjecture against it) and this is one of the reasons why

Inde4 is better suited to our techniques .

Exampl e 3

Examples 1 and 2 are finite dimensional versions of the following

infinite dimensional example. First , we identify as usual the reals mod Z?T

1 it l , Z iwith S (t — e ) and we denote by W (S ) the Hu bert space of real

valued functions z S~ — R such tha t z and ~ are square

Integrable with inner product

1 27r
(z1, z2) = -

~~
-

~~~
- f [z1

z2 + z1z2] dt

acts on thi s space Wi’ 2 (S1) as follows . For g ~ S’ set

It it(g z ) ( e  ) =  z(ge
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where geit is ordinary complex multiplication . Alternatively, the action

may be written

(L 9 z ) ( t ) = z ( t + O )

where o corresponds to g = e~
9 ~ 51 and L 0 Is the linear transformation

corresponding to the action of the element g on W1’ 2 (S1) . This space

W1’ 2 (S1) can be identified with the space of Fourier series ~ c~ e~~~
subj ect to the conditions

~ —n c~ , Y (l+n 2 ) l c n I
2 

< , c €

Consequently, W1’ 2 (S1) can be identified with the space of infinite

sequences (c0, c1, .
, ck, . . . )  subj ect to the conditions

c0 € R , ~~(1+2n 2 ) I c n I
2 

< , c €

The S1 action translates Into

g(c 0, c1, ~ Ck, ~) = (c0, gc1, . . ., gkc . . .)

and It Is clear that each g corresponds to a unitary transformation of

This action is not free . In fact isotropy groups of all orders appear .

Nevertheless our Index theory Index~ applies to all

invariant subsets of W1’2 (5’)

a - - •~~~ -_ _ _ _~~~~~~~ --~~~~~~~~~~~--~~  

j
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7.14 . We close this section with a few comments concerning the

analogue of section 5, in the non-free case. Let B denote any normed

linear space over Q~ . Then , any S1 action on B induces an index theory

* -Index~ on the family ~ of invariant subsets of ~ . Furthermore, the

function

Index~t : C  > IN

possesses properties analogous to those in Theorem 5.1 , with some obvious

changes. We leave the formalities to the reader . 

•• •
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8. An application

In this section we shall show how the index theory of sections 6 and 7
can be applied to study the bifurcation of time periodic solutions from an

equilibrium solution for Hamiltonlan systems of ordinary differential equations .

Let p, q Rn and H = H(p, q) € C
2(R2”, R) with H(0 , 0) = 0

0) = 0 = Hq (O~ 0) . Consider the Hamiltonian system of ordinary

diffe rential equations :

(8. 1) ~~~ =~~ Hq~ ~~~ = H ~

- , 0 — ILetting z = ( p ,q )  and ~ = o~ 
(8.1) can be rewritten as

(8 2) dz 
—• 

~~~~~d z~

Our assumptions on H (O) imply that (8 . 2 )  possesses the trivial

equilibrium solution z 0 which is periodic with any period . Of interest

is the existence of small nontrivial periodic solutions of (8 . 2 ) .  The

Lyapunov Center Theorem Is an old result of this nature [28] .  To state it ,

observe that If ( 8 . 2 )  Is linearized about z 0 , the resulting equation is

(8 .3 )  = ~ H (0)w

• The Lyapunov result then says that if 2 H (O) possesses purely imaginary

eigenvalues : 
~ ~~~ 

~ 
~~~ 

• . . , + 
~ 

and if 
~~~~~/ ~ 

Is not an Integer for j � 1 

-- - - ~~~~~~~~~~~~~ - - - - - -- - - - --~~~~~~- -- - - -~~~~~~~~ ---
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a family of periodic solutions with periods near Z u  bifurcates from

z =  0

Lyapunov ’s irrationality condition on the eigenvalues of H~~
(O) was

eliminated by A. Weinstein [10 , 2 9J who assumed instead that  H~ 2 (O) is a

positive definite matrix . He then showed that for all small c ~ 0 , the

manifold H = c contains at least n distinct periodic orbits whose periods

are near those of the linearized problem (8.  3) .

Recently J. Moser [11] generalized and simpl ified Weinstein ’ s

result , relaxing in particular the assumption that H (0) be positive

definite . More precisely, Moser showed that if ]RZn 
= E1 ~~~, E2 where E1

and E2 are invariant subspaces for (8 .3 )  , if all solutions of ( 8 . 3 )

with initial data in El have a common period T > U while no solutions of

( 8 . 3)  in E2 —{0} have period T , and if H~~
(O) is posi tive definite on

E1 , then for all small e > 0 , (8.1) possesses at least -
~~

- dim E1

distinct periodic orbits on H = c whose periods are near T

Observe that both the Weinstein and Moser results provide lower

bound s for the number of distinct periodic solutions of (8. 1)  on H =

In contrast in this section we will use the index theory of sections 6 and 7

to obtain lower bounds for the number of distinct small nontrivial periodic

orbits of (8.1) as a function of the period . This procedure will be carried

out under more general hypotheses than those considered by Moser . Given

the Index theory of section 6 and 7, the techniques we use to find the

periodic solutions and the results we obtain are closely related to our

earlier paper [1] . However we will give a self contained development here .

- •- --~~~-~~~~~~ - - - ~~~~~~---•---- • • _ _
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Our main result is :

Theorem 8.4:  Let H € C2 (]R2~ R) with 1-1(0) 0 , H~ (0) = 0 . Let

~ E2 where E1 and E2 are invariant subspaces for the flow given

by (8. 3). Suppose all solutions of (8 . 3) with initial data in E1 are T

periodic , no solutions of (8. 3) with Initial data in E2 
- {o} are T periodic ,

and there are no equilibrium solutions of (8 .3)  in E1— (0} . If the

signature 2v of the quadratic form (H
~~

(O) 
~
, 

~
, )  , ~ , € E1 , is nonzero ,

then either : (I) 0 is a nonisolated T-periodic solution of (8.1) ; or

(ii) there exist a pair of integers k, m � 0 with k + m � ) v I , and a left

neighborhood , J~~, and a right neighborhood , 
~r of T in JR such that

for all A 
~ ‘9 g ( resp. 

~~ 
(8.1) possesses at least k (resp. m)

distinct non-trivial X-periodic solutions .

Remark 8. 5: That the signature is even follows from the hypotheses on E1
A more precise count of the number of distinct nontrivial solutions for fixed

x will be given in the course of the proof of Theorem 8 .4. See Theorem 8 .48

and Corollary 8. 51. Observe that under Moser ’ s hypotheses , since

H~~
(O) Is positive definite on E1 , (8 .3)  possesses no equilibrium solutions

in E1—{0 } and v = -
~~~ dim E1 ~ 0 . Thu s our result applies to his case.

While completing the final draft of this paper we learned of the work

of Chow & Mallet-Paret [12] who have obtained a special case of Theorem

8.4 for (8.1) where Ei = {(Z 11
. . . , Z , 0 , . . • 0 , Z 1, .•. ,Z ,0,. .0)} and

1-I restricted to E1 has the form

H(z) = 
~~~ ~~~~ + Z~~~j 

- ~1
z~ + z~~j + 0 ( 1  z l 2

A - - • - -~~~~~~~~~~~~~~~~~~~~ -—-—~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - •• -—~~~ -— — -- - -  — - -~~~~~ -~~~ - • - - -
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This form for H on implies the hypotheses required of E1 are

automatically satisfied with T = Zir and 2Tr is the minimal period for

solutions of (8 . 3) In E1 . Th is has the effec t of induc ing a free S1

action on our problem making it tractable by a simpl e extension of the index

theory of [1] . Chow and Mallet- Paret also have some more refined results

when H is analytic .

The proof of Theorem 8 .4 will be carried out in several steps . The

basic idea is to convert the problem to that of finding critical points of a

real valued function g defined near 0 in a finite dimensional space of

periodic functions. Critical points of g then will be obtained using

minimax arguments .

To begin , we normalize the problem by fixing the period at ZTr

Thus let T = . Then (8 .2)  becomes

(8.6)  ~21lz

where ~ = dz/d T . Any ZTr periodic solution of (8.6) Is a 2Tr X periodic

solution of (8 .2 ) .  Observe that 2
2 

= ~I . For our later purposes it is

convenient to replace (8 .6)  by the equivalent equation

(8.7) ~~ -XH~

Finally set 
~~~~~~~~~ 

z) = ~ + XH~ • The solutions of (8 .7)  will be obtained as

the zeroes of 3 . To introduce the class of functions in which (8 .7)  is

studied, we Identify IR/ [0 , Zr r ] with S1 . Let W”2(S1) denote the real

~

— -~~~~~ - - -~~~~~~- --- ~~~~~~~~~~~~~ - ~—~~~----- - -~~~ - - • —-• - -
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Hu bert space of 2 Tc periodic functions which have square integrable first

derivatives and let E = (W1’2 (s1))~~ . Then E is a real Hu bert space under

the norm

2ff 
(l± (T)1 2 + ~z(T)I

2
)dT

Let Y =  (L2 (S~)) 2” . The smoothness assumptions on H imply

3 € C1(R X E ,Y). Let ii = ZTr T’
~ . The Frechet derivative of 3 with

respect to z at (P- , 0) is

(8.8) 3~ (L L , O)w 
2~~~~~~

+ ~LH~~ (O) w

Comparing (8.8)  to (8.3) ,  we see that 3z~~ ’ 0
~ 

has a null space ~ t

of dimension ZN dim E1 of vectors of the form

N ik .-r
(8 . 9 )  ‘(t) = ~ e 3 ejj = - N

where k~ € , k~ = —k~ , e~ ~ , e~~ = e. , and e~ is an eigenvector

of 2 H~~
(O) . In fact fl Is Isomorphic to E1 , the isomorphism being given

by z(t) = S(t)z(0) where z(0) € E1 and S(t) Is the semigroup for the initial

value problem for (8 .3) .  It is straightforward to check that i s a

Fredholm map of index zero .

We seek zeroe s of 3 in R x E for x near ~ and z near 0 . We

already have the trivial family of zeroes {(X , 0) 1 X € R) . Using the method

of Lyapunov- Schmj dt , (8.7)  can be reduced to a finite dimensiona l problem . 

~~~~~~~~~~- —• ~~~ - - - - - -~~~~~~~~~~~~~~ 
-

~~~~
— -

~~~~~~~~
---
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(We do not use the same finite dimensional reduction carried out by Moser

1 2but the analogue of [5].) Let h denote the L orthogonal complement

of fl. in E , i. e.

= {z € E~ (z(t) , w( t ))~~~n dt = 0 for all w fl}

Let P and denote the (L2 orthogonal) projectors of E onto fl and

respectively . Then (8.7) is equivalent to the pair of equations :

(8.10) P3(X,z)= 0 , P~~3(X , z ) =  0 .

Any z € E can be written uniquely as z = x + y where x € rL and y €

Define

(8 .11) F(X , x ,y) = P13(X , z)

Then F(it ,0,0) = 0 and by construction 3~(~i~O~O ) is an Isomor phism fro m

to II Y . Therefore by the Implicit function theorem , there exists a

neighborhood ~ of (p ,  0) in JR x ~ t and a mapping q, € C
1
(~ ,Ii~ ) such

tha t F(X , x, y) = 0 for X near ~ and z near 0 Is equivalent to

y = q’(X , x) . Moreover since

(8.12) 0 = F(X,x,q~(X,x)) = Fy(X~Os O)~ + o( l I x + 

~ ‘1 E~ 

— —-- — - - —-— - - --- --•-—-
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and F ( X , 0 , 0) is an isornorphism from to fl Y for all X near

it follows that

(8.13) p(X,x)= o (II x II E)

at x = 0 uniformly for X near ~i

Thus to solve (8.7) , it suffices to solve the finite dimensional

problem

(8. 14) P3(X , x + ~(X , x )) = 0

Before discussing this question, we observe some invariance properties of

our operators . For z € E and 9 € [0 , 2ir ] , set L z  z(t + 0) . This

defines an S1 action on E . (See Example 3 of §7). It is easy to see that

3 commutes with L9 , i .e .  3(X , L9z ) =  L03(X, z) . Note further that both

fl and are invariant under L 9 . It then follows from (8.11) that

F(x,~~) commutes with L 9 . The same is true of ~ (x , .)  . Indeed

F(X ,x(t) + y( t )) = 0 ,

where y = q’(X, x) , implies that

0 = F(X,x( t+~) + y(t+9)) F(~ ,L9
x + L 0 y) .

I

~

• • •

~ 

• •  - •
~~~~~~~~

- •
~~~~~~~~~
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Hence by the implicit function theorem L 0ç(X , x) = q,(x,L
0
x) • Following

standard usage , as in earlier sections we will refer to functions with values

in E , , or it1 that commute with L 0 
as being equivariant. The same

term will be applied to real valued functions d for which d(L 0 ( z)) = d(z)

Sets A such that L 9 A = A for all e € [0 , 27r ] will be called invariant .

The next step in the proof of Theorem 3 .4 is to show that the solutions

of (8.14) can be determined as the critical point s of an appropriate function.

Some additional notation is required . If z € E , z = (z 1(t), • , z~~~( t )) .

Let p(t) P1z (z 1( t) , , zn(t)) and let q(t) P2 z (z~ +i (t), ,

Define

27r
(8. 15) g(~ , x) = J [(p(t), ~(t )) 

~ 
— XH( p(t), q(t)) } dt

0 R

where z = x + q’(X, x) and ( • , • )  denotes the Rn inner product .

Thus g € C
1
R2 ,R) and it is easily checked that g(~ , — )  is equlvariant .

Moreover for fixed X , the critical points of g(x, - ) satisfy (8.14).

Before showing this , it is technically convenient to renorm fl by taking

the L2 norm on ~t which is equivalent to the E norm on fl . Hencef orth

we denote the new norm by .

Now suppose x Is a critical point of g(x ,~~) . Then for all

A --_
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2 ff
(8.16) ~~~~~~~~~~~~~ 0 j’ [(p , P2~~~~(~ + c p (X , x)~~)) n

+ (P 1(~ + ~~~~~~~~~~~~~~ - X (H~ (p , q) , P1(~ + 

~x ’~~~~~JRfl

— X( H q (P~ q),  P2 (~ + q ’ (X , x) 
~]R~

’ dT

where p =  P1( x + ~~(X , x)) and q =  P2 ( x + ~~(X , x)) . An integration by parts

yields :

(8. 17) 0 1
2ff 

- XH~ (p ,q ) , P1(~ +

— (
~ + xH~,(p .q ) , P2 (~, + 

~~~~~~~~~~~ 
d-r

= - (3(X ,z), ~ + ~x (Xl X)
~~)

JR2n dT

Since P13(A , z) 0 and p
~ (x , x)

~ € , (8.17) implies that

(8.18) J (3(X , z) ,~~) d T =  0

for all ~ n which Is equivalent to (8.14 )

Thus to solve (8. 7) , it suffices to find small nontrivial critical

points of g(~ , • )  in fl . If 0 Is not an isolated critical point of g(~j , 
~~ )

the first alternative of Theorem 8.4 obtains . Hence for the remainder of this

section , we assume 0 is an Isolated critical point of g( p ,  ) )
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To continue several preliminaries are required . Consider the ordinary

difi erential equation

(8.19 ) ~~~~= - g ( ~~,~~) , ~(0 , x) x

• for x near 0 in rt . By (8.16) — (8.18)

(8.20) g(X ,x) P3(X ,x + 9 (X,x))

is continuously differentiable In x near (p . , 0) . Hence (8.19)

possesses a unique solution for all x near 0 in fl . We will show t~i

is equivariant

Lemma 8.21: If V(x) is a locally Lipschitz continuou s map of n. to rt

and i~ equivariant , the solution -q (s , x) of

(8.22) 
~~~~~~~ 

= V(~~) , r~(0,x) x

Is equlvariant

Proof: Let w L 9 r 1(s , x).  Then

(8.23) = L9 ~~~~= L
9
V(-r1) = V(L0r1) = V(w)

and w(O) L0
x . Therefore w(s) rl ( s ,L9x) = L

0-ri (s,x)

_
_ _ _  -
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Corollary 8.24: ~(s , x) is equivarlant

Proof: By Lemma 8.21, all we need show is that ~~~~~~~ is equivariarit .

Since g(p . , x) is equivariant ,

( 8 . 2 5 )  ~~~~~~~~~~~ = ~~~~~~~~~~~~~~~

for all ~ € ii . It is easy to verify from (8.9) that L
0 Is a unitary

-l * —1transformation so L = L 0 . Thus choos ing ~ = L
0 c~ in (8.25)

yields

(8.26) (g (p.,x), L~ a)~ = ~~~~~~~~~~~~ = (g~ (~~, L 0 x) , a)~

for all u € ii which implies the equivariance of g~ (~~1 x)

Remark 8 . 2 7 :  The above argument also shows that g~ (x , x) is equivariant

for all ~ near p.

With the aid of ~i(s , x) , the neighborhood of 0 in n will be

constructed in which we will fInd critical points of g(X , .)

Lemma 8 .28:  There Is a constant c > 0 and an open Invariant

neighborhood Q of 0 in ii such that

10 If x € Q , g( p ., x)~ ~-. c and ~(s , x) € Q for all s such that

< c

2
0 If x € 8Q , j g ( u , x)~ = c or i4 ( s , x) € ~Q for all s satisfying

~ c 

-• .-- -- -~~~~~ - - - . • -
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• Proof : Since 0 is an isolated critical point of g (p . , O) , there is a

neighborhood X of 0 in n. in which 0 is the only critical point of

~~~~~~~~~~~~ 
0) . We restrict ourselves to X . Let S~ = {x € X l & j ( s , x) e X for

al l  s > o} and S = {x € x l~~(s , x) € X for all s < 0) . It Is easy to

see that at least one of these sets is nonempty . In particular if there are

points near 0 where g( p ., .) is positive , S~ ~ ~ for then we can find a

sequence X m ~~~ such that g(~~~x~~) > 0 . If Br = € n I l x l l ~ < r}

then for some small r , and all larg e m , the orbit t~
(_ s

~ xm ) will

intersect 8Br at s = 5m > 0 . Since Xm — 0  5m ~~~ . A subsequence

of L~
(_ s m~ x m ) converges to x ~ aBr and our construction Implies

~4 ( s , x) ~ X for all s > 0 . A similar argument shows that S~ ~~

‘ 
$ If

there are point s near 0 wh ere g(Lt , ) is negative . Let x be near S~

say II x - :S p and x / S~ . Then for p ~ p~ there Is a b+( p)  > 0

such that 4 (s , x) will cross all level sets g(p ., . )  = b as s increases

provided that b ~ g(p .,  x) and b~ ~ b+ ( p) . Similarly If

l i x - ~ 
p 
~ 

p~ and x € S , there Is a b ( p )  > 0 such that

~(s , x) will cross all level sets g(p .,  . )  = b as s decreases provided that

b >- g(p ., x) and I b I  ~~ b ( p )  . Thus choosing p = m l n ( p + , p~ ) and

c € (0, mm b+( p), b( p)) , we can take Q to be the union of all orbit

segments 4i(s , x) starting In B~ and lying between g(p .,  . )  = c and

g(p . ,  — )  = -c . Then Q sat isf ies  10 and 20. Moreover since L9 is

unitary, lL 0x~ ~ 
= x l i  ~ so If x € B , L~~ € B • Hence Q is invariant .
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Remark 8.29: The index theory of §7 is applicable to invariant subsets of

• For such A € ii we se~ 1(A) = Index~ A . Since Q is equivariant

and is a neighborhood of 0 in ii. with dim fl = ZN , it follows from

Proposition 7.7 that i (a Q)  = N . Set T± S± fl aQ . The indices of

these sets play an important role in determining the number of critical points

of g(x , ) in Q • The next result gives an estimate for these numbers .

Theorem 8 .30:  1(f) + i(T+ ) � N

Proof : Let X be as in Lemma 8.2 8 and r >  0 such that B C Xr

By the construction of Lemma 8 .28 with X replaced by Br there is a

neighborhood of 0 in ~t satisfying 1
0_ 30 of Lemma 8.28 with c

replaced by b . Let = {x € aQb I g(p .,  x) = b) and

= {x € 

~~b ’ g(p.,x) = -b} . If x € , there is a unique K(x) > 0

such that g(~i ,4 I(K (x), x)) = — c . Since

g( I .i ,~~(K( x), x)) = g(p.,L04(K(x),x))= g(p.,4~(K(x),L9x))= —c = g(~j.,L~i(ic(L0
x),L9

x))

by the equivarlance of g (p . , .)  and .p(s , • )  it follows that i~ is

equivariant . Therefore so is the map v(x) ~~c( x), x) and

v € C(Q ,Q C ) (where has the obvious meaning). In particular

v( S fl Q~~) = f . Hence by 6.4 and 6 .5  , there is a neighborhood U of

T such that i(U fl = i(T ) . -

If r is sufficiently small , v(Qb ) C U fl for if not , for all

rm — 0 , there exists bm — 0 and xm € Br such that g(~i~ x~~) = bm > 0

and V(x m ) € Q~~~ 
-u . Along some subsequence we have V(X m ) — w €

• and w ~~ f . However since X m 0 , K( x )  — ~ which shows w € T

a contradiction . Thus we can assume v(Q b) C U fl
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By 6.4

(8.31) i(S ~ Q~~) = 1(T ) 
~ ~ i( U 11 = i( T )

Hence

(8. 32) i(Qb) 1(T )

Similarly

(8.33) i(Q~)= i(T~)

Next let x € aQb ~ b • Then there exists a unique w(x) ~r 0 such

that g(p ., iIi (~~(x) , x)) b • An above argument implies p(x) = ~~~~x), x) is

equlvariant and p € C(8Qb~~
Qb ,Q~

) . Hence by 6.4

(8 . 34) ~ i(Q~ ) ~ l(aQ b~~Q )

Combining (8. 32) - (8. 34) and using 6. 6 yields

(8 .  35) N ‘8
~~b~ ~ + l(aQ b — 

~~~ 
= I ( )  + i(T~)

Remark 8. 36: The number of critical points we obtain for g(X,- ) In Q

depend s on the interplay between g(~ , .)  near &Q and g(X , .)  near 0 .

The estimates just obtained for i(T
± ) are a quantitative measure of the 

-~~~ -- - -- • --~~~~~~~~~~~~~ - - - - •~~~~~~ - - - - - - — ~~~~~~~~~~~~~~~~~~~~~~~~ _
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behavior of g(p . ,  ) near 3Q and therefore of g(X , .)  near 8Q for X

near p. since such a perturbation does not change the behavior of g ne~r

• . On the other hand , the quadratic part of g(p ., .)  vanishes identically

while for A * p , the quadratic terms ~n g(~ , ) are dominant near 0 .

These terms are governed by the quadratic part of H restricted to

We will make these statements more precise in what follows. To help

determine the behavior of g(X ,~~) near 0 , we have the following lemma .

We are indebted to Mark Adler who assisted in the proof .

Lemma 8.37:  Under the hypotheses of Theorem 8.4 , the quadratic form

(Hzz (O)~~s~~) , 
~
, € Li ,  is nondegenerate .

Proof: From (8. 9) , we see ~ , has the form

N

~~~ 
‘
~‘ u - s .

j=— N

where u~~ aj . Therefore

(8.38 ) (H (O) ~~,~~ ) =  a~a . ( H~~ (O) ei , e .) (Ha,a)
II, ii ~ N

where 
~~ 

(hi
~~

(O)e 1, e.) . Thus (H (O)~,, ~, )  is nondegenerate o n E 1
If and only if H has no nontrivial null vectors. If there is an a € ~r

such that Ha = 0 , then

I-’(8 .3 9) H~~u. = 0 = (H (0)e~. ~ a-e ) = (e
~
,H (0)e)

I J H N  j I~~ N 
ZZ

N

_ _  ~~~~~~~ -~~~ -- - - •~~~~~~~~~~~
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where ~~
‘
= ~~ a ’e. . Thus H (0)~

’ is orthogonal to E1 . Since E1
l j I ~~~~~N ~~~~

is invariant under 2H~~
(O) , 2H~~ (0) Ei=E i arx~ H~~

(0)E i = 2
1E1 = — E 1 = 2E1 .

Thus H
~~
(0)
~
’= 2~~~

’ with e € E1 and (8.39) implies

(8.40) (E1,2~~~~[E1,eJ = 0

Since E2 is also Invariant under 2H~~ (O) , [E1, E2] = 0 (See Moser [11]).

Hence = 0 and the lemma is proved .

Lemma 8.41: If z € rt

(8.42) f  (H zz (O)z(t) , z(t))dt = 2~~(H ~(O) z(9) , z( 9) )

for any 9 € [0,2ir ]

Proof: Let }12(z) denote the quadratic part of H(z) at z = 0 , i . e .

H2(z) = ~~
- (H2~ (0)z, z) .

The elements of fl are just the solutions of the Hamiltonian system

corres ponding to H2 :

(8.43) z p.~~H22

having initial data in E1 . Hence H2(z(t)) is constant along such
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solutions of (8 .43) from which (8 .42)  follows

Remark 8.44: Let 
4 

, Ej denote the subspaces of E1 on which H
~~

(O) is

respectively positive and negative definite . Since if z € rt , z(t) € E1 for

each t ~ JR , we see from Lemma 8.41 that (H zz (O) z(t), z(t))  Is independent

of t . It then follows from (8. 9)  that E~ , E1 are even dimensional with

dimensions 2~ , 2y respectively. Moreover Lemma 8.37 implies ~ + V = N

Let lt +
, i1 denote the subspaces of h of dimension 2~ , 2Y corresponding to

+ -

E1 ,E 1 . Note that they are equivariant .

With these observations , we can determine the behavior of g(~ , •)

near 0 . Let

(8.45)  H(z) H2 (z) + ~ (z)

so fi(z) = O ( l z i 2 ) at z =  0 . From (8.15), (8.13), and (8 . 38) we have

(8.4 6) g(X , x) 1
2n 

[(P1x, 
~Z~~JRn - XH 2 (P 1x , P2x)] dT + o ( l x I l ~ )

at x = 0 . Since x satisfies (8.43),  on integrating by parts in (8 .46)

and using the homogeneity of H2 we find :

(8.47) g(X , x) = f

2 f f  

[~~ 
(P 1x, P2k) 

~ 
- 4 ( P 1x, 1~~JRfl 

XH 2 (P 1x, P2x ) ] d T + o ( I t x I l 2 )

= 
ZTr 

{
~~

[(Plx s Hzp (Plx s Pzx))
Rn + (Pz X~ HZq (PlX I Pz X))

JRn J

- X H 2 (P 1x , P2x) } d T +  o ( l l x I j ~ )

(it - A) f  H2 (P1x , P2 x )dT + o( I I x f ~~~) 

—-~~- • -—— _ _ • - — ---~~~~~~-—  - - --- -~~~~ ------
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at x = 0 . Thus by Lemma 8.41 and Remark 8.44 , for A < ~i

g(x ,~~) > 0 on lt~ and < 0 on ri In a deleted neighborhood of 0

if A > p. , these inequalities are reversed .

Theorem 8.4 is now a consequence of the following two results :

Theorem 8.48 : Suppose that

(8 . 49 )  i(f)  > V

(resp. (8 .50) i(T ) >

Then there is a 8 > 0  such that if X € ( p . — 6 , p . )  (resp. X € ( L i , p . + ô ) ) ,

g(X , .) has at least i (f)  - V (resp. 1(f) — ~~) positive critical values

with a corresponding number of distinct critical points , x(X) such that

x(~ ) — 0  as A — p .

Corollary 8. 51: Suppose that

( 8.52) i(T +) > V

(resp. (8.53) i(T~ ) > 
~~)

Then there is a 6 >  0 such that if A € (p . ,  p. + 8) (resp. x € (it 
- 6 , Li)

g(A , .) has at least i(T + ) - V (resp. i(T + ) - 
~~

) negative critical values

with a corresponding number of distinct critical points , x(X) , such that

x(~ ) — O  as A — p .
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Proof of Corollary 8. 51: Replace g(A , )  by -g(X , - )  . This has the effect

of reversing the r~ 1es of T+ and f and changing the sign of the factor

(p .  - A) in (8.47) . Henc e the result obtains via Theorem 8.48 .

As suming Theorem 8 .48 for now, we can f inally give the:

Proof of Theorem 8.4: We assume 0 is an isolated T periodic solution

of (8 . 1). Thus we must produce k , m , , and t9r as in the

statement of the theorem. Since v — V ~ 0 , ~~ V . Without loss

of generality, we can take ~~~> V and 1(f) � i(T + ) . If i(f ) ~
then (8.49) is satisfied so by Theorem 8.48 we can take

= (p. - 6, p.) 
~r 

0 , k = i(T ) — V ~ v , and m = 0 . Thus suppose

i(T ) ~ . Then by Theorem 8.30 , N - i(T+) < ~ or l(T+) >  V

We claim

(8. 54) i(T ) - V + i(T~ ) - ~~~ v

Indeed by Theorem 8 . 30 again

i(T ) 
- V + i(T~ ) - V N - Z V =

Hence by Theorem 8.48 and Corollary 8.51, we can take = (p. - 6, 6)

= (p., p. + 6), , k = 1(f) - V , and m l(T + ) - V

It remains to prove Theorem 8.48 . The idea Is to obtain the critical

poi nts of g(x , .)  by taking the minimax of g(X , .) over appropriate subsets

of Q . This requires several additiona l preliminaries. First we construct

the desired subsets of Q 

-- _ • • _ _ • - - •~ - - • - _ - _ _ - • _ _ _ • _ - • • _ • - -
__ _ _ • • _ • - _ • __ _ _ __
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Let e = {A € Ql A is closed and invariant) . Let K C T and define

~~(K) = {~ (s , x ) I ( s , x) € ( - c~, 0)xK} . Thus ~ (K) i s a  cone over K . Set

= {x € C ( Q , Q ) j  X is 1-1 , equivariant, and X(x) x if x € T }

For 1 ~ j ~~ i(T ) , define G~ = (X(~ (K) ) I X € ~ , K Cf , i(K) � j }

By Corollary 8.24 , ~ (K) € . Hence X(~~(K)) € e . La stly define

F, = { A- W I A  € for some k , j  ~ k ~~ i(f)  , W € , and i(W) ~ k-j }

__________________
Lemma 8. 55: The sets F~ possess the following properties:

10 I’
~~1 C F~ 1 

~~ i < i(f )

20 If A € fl. and B € F~ then X(B) € r~

3° If B € and Z € ~ with 1(Z) ~ m < j , then B- Z € Fj r n

Proof: 10 Is trivial . Let B = A - W as in the definition of r~
Then X(A —W ) X(A - W) X(A) - X(W) . Since A € Gk 

Implies X(A) € Gk

and 1(X(W)) = i(W) by 6.4 , X(B) e F~ and 2
0 Is verified . To check 3

0

again let B = A - W . Then B - Z = A - W - Z = A - (W U Z) . Since A € Gk

and i(W U Z ) 5 k - j + m k - (j - m ) by 6.6 , B~~Z € F ~~m~
With the aid of these sets , we define

(8.56)  c1(X) = inf max g(x , x) , 1 ~ j ~ 1(f)B € F ~ x€ B

We will show that an appropriate subset of these numbers provides us with

the critical values whose existence was asserted In Theorem 8.48 .

_ _  -
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Lemma 8.57:  If 1(T ) > V and 0 < p. - A is small , then c~(A) > 0

for V < j :5 i(T )

Proof: By 10 of Lemma 8. 55, C
j ~~ 

c
~+i . Thus It suffices to show

cV~~
( A )  > 0 . For p sufficiently small and x e 8B fl y~+ 

, it follows

from (8.47) that

(8.58 ) g(X , x) � a ( p .— A ) p2

where a is a constant independent of p . (In fact a Is a multiple of the

smallest positive eigenvalue of (H
~~

(O) ~~, ~
, ) for r~ € E1) . Since

dim h~ = Z~ , by 7.7, i(a B fl fl + ) = . Let B € FV+l SO

B X(~~(K)) -w with K € f , 1(K) = m ~~
- V+l , and i(W) ~ m - (V+l )

For s � ~ depending on X and K , X(4(-s , k)) C B . By the Piercing

Property t . 9

(8. 59) i(X(4~( [— c ~,0J xK)) fl a B ) =  1(K) = m

Therefore by 6.4 and 6.5

(8. 60) i(B fl 8 B ) =  i( (x (I (K)) fl 8B )—W) � 
-

I (X(~~~ ) ) f l  8 B ) -  1(W) ~ m - m + y + l =  V + 1 .

Corollary 7.7 now Implies

• ~~-~~~~~~- - •~~~~•--- -—~~~~ ---- _ _ -- _ _ _ - _- --- - • •~~~~~~~~~—-~~~~
_ • _ ---- -•- - - •• _ 
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(8.61) B f l  aB~~n it~~�0

• Let ~ € B fl 3B fl . By (8.58)

(8.62) max g(A , x) � g(A , 
~~~) 

� ~~~ + 
g(A,x) � a(p. - A)p

2

x~~B x€ 8B flh

Since (8.61) — (8 .62)  are valid for all B € F V+l , it follows that

2(8.63) cV+l � a (p . -A )p

Corollary 8.64: If i(T ) > ~ and 0 < A — p. is small , then c . (X )  > 0

for ~ < j ~ i(T )

Proof: Same as that of Lemma 8.57 with fl~ replaced by i1 -

To show that the C
1

’ s of Lemma 8. ~,7 are critical ~1ues of g(X , - )

requires a variant of a standard result from the calculus of variations.

Let A Ab = {x € Q~ g(A , x) b} and K Ab {x c ~~l g(A , x) = b , g ( x , x) = o} -

Lemma 8.65: If A Is near p. , b € (0 , c) , ~~~> 0 , and U is any

neighborhood of K Ab , then there exists an € € (O , E) and

€ C([ 0, l J  x Q, Q) such that

10 r~(s , .)~~~~~— e , s € [ 0 , l ]
0 — —

2 r i (s , x) = x If g ( A , x) € [b —€ , b+€]

3° ,~ (s , x) Is a homeomorphism from ~~ to ~~ for all s € [0 , 1]

_ _ _  _ __ _ _
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4° 
~~

(l , A A b+F\U ) C A
~ b-€

5° If K x b = O  ‘ 1(l , A x b +E ) C A x , b _ E

Proof: A prooi of Lemma 8. 65 (without 10) for the case in which Q is a

real Banach space can be found in [30] or [31] . Thu s we merely indicate

the modifications required here to employ the earlier proofs. To satisfy 10

it suffices to obtain ri as the solution of an ordinary differential equation

of the form (8 .22 )  where V is a locally Lipschitz continuous map of fl to

ri and is equivariant . Let w :  ]R+ JR+ be defined by w(r) = 1 if

0 r s p ,  w(r) = 0 if r � 2 p ,  and w(r) is linear between p and 2 p

For the moment , p is free. Define d(x) = l ix  
— aQ Il~ • Then d(L 9x) = d(x)

since € FJQ implies L92 € aQ - Set ~(x) = w(d(x)) - Thus q’ is

equivarlant and Lipschitz continuous in Q as is

Q( x )  = _
~ (x)g~ (p .~ x) - (1_ ’p(x))~~ (A~ x) via Remark 8.27 .

A vector field I’ on Q = Q\ {x € QI v(x) = o} is called a

pseudogradient vector field for v(x) If ‘1~ is locally Llpschitz continuous

in ~ and

I Ii ~~(x) :5 2 11 v(x) ii
( 8 .66)  2I..__ (~~~(x), v(x)) > Ii v(x) II

for all x € - Since g~ (i i , x) has no critical points near ~~ Q , neither

does g~ ( A ~ x) for A near i . Hence for p sufficiently small , if is

appropriately scaled In {x € Ql d(x) ~ 2 p } , is a pseudogradient vector

field for _g~ ( A , x) - Multiplication of ~ by another scalar Lipschltz

continuous equivarlant function as in [30] or [31] produces a V for which

the corresponding flow satisfies l0_ 5 0 
-
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Lemma 8. 6_7: Under the hypotheses of Lemma 8.57, c1
(~ ) is a critical

value of g(A , )  , V j ~~ i( f)  - Moreover If

C
1 

= Cj +r_ l b , i(K Ab ) � r .

Proof: It suffices to prove the second assertion . Clearly KAb € e

If 
~~~~~ 

< r , by 6.5 , there is a neighborhood U of K~~, such that

i(U)  < r - Choose ~ -~~b In Lemma 8.65. By that lemma with the above

choice of U , there is an € € (0 , e) and an T~ € C([0 , 1] x 
~~~

,Q) such that

(8.68) TI0. Ax , b+E
1J) C A

X b...~ 
-

Choose B € Fj +r l so that

(8 .69)  max g(A, x) b + c
~~~~ 

Cl+r_ l + €

x~~~B

By 30 of Lemma 8.55 , B - U  € F
1 

- If A is close enough to p. so that

g(A, x) < 0 for x € f , by l
O _ 3 0 of Lemma 8.57, TI( 1, )  € ~ . Hence

by 20 of Lemma 8.55 , ,-1(1 , B -U )  € F
1 

- Therefore

(8.70) max — g(A , x) ~ b c.
• x ~~ ~(i , B— U)

which contradicts (8 .68)  - (8.69)

Remark 8. 71: A similar argument shows the Cj ’ 5 of Corollary 8. 64 are

also critical value s of g(X , - )  with a corresponding multiplicity statement . 

• • •
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Observe also that if l(K Ab ) > 1 , by Remark 6. 16 , 

~~b contains Infinitely
- ma ny distinct critical points .

- Lemma 8.72 : Under the hypotheses of Lemma 8.57 for V < j 1(f)

let x1(A) € Q be a critical point of g(X , .) corresponding to c
1

(A) -

- Then x~(x ) — 0  as A — p .

Proof: Observe that ~ ( T )  € F~ , 1 j ~ i(f) and if

x € ~(f)  , g(p . , x) < 0 . Since 0 €

- max g(p.,x) = 0
x € ~~~( T )

- Moreover since g(A, x) — g ( p . ,x) uniformly for x € Q as A — p.

(8.73) 0 < c.(X) :5 max g(A , x) — 0
x € ~~~( T )

- as A — p .  . Therefore along a subsequences of A ’ s converging to p.

we have x1(A) — x  € Q with g(p ., x) = 0 and ~~~~~~~ = 0 - Since 0 is

the unique critIcal point of g( p., .) in ~~~~~~, the result follows .

Proof of Theorem 8.48: Immediate from Lemma 8.67, Remark 8.71, and
• Lemma 8 .72 .  - 

- - -
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