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8 Abstract

A certain pebble game on graphs has been studied in various contexts
as a model for the time and space requirements of computations [1,2,3%,8].
In this note it is shown that there exists a family of directed acyclic

SL 5y e such: that

graphs Gn and constants ¢y S5 5

(1) Gv1 has n nodes and each node in Gn has indegree at most 2 .

(2) Each graph Gn can be pebbled with cl\/H pebbles in n moves.

(3) Each graph G, can alco be pebbled with CQ\/; pebbles, ¢, < ¢ ,

cNn
5D

but every strategy which achieves this has at least moves,
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Let S(k,n) be the set of all directed acyclic graphs with n nodes

where each node has indegree at most k . On graphs Ge S(n,k) the
following one person game is considered. The game is played by putting

pebbles on the nodes of G according to the following rules:

(i) an input node (i.e., a node without a predecessor) can always be
pebbled;

(Eab) if all immediate predecessors of a node c¢ have pebbles one
can put a pebble on c ;

(iii) one can always remove a pebble from a node.

The goal of the game is to put a pebble on some output node (i.e.,
a node without a successor) of G in such a way that the total number
of' pebbles which are simultaneously on the graph is minimized.

The game models the time and space requirements of computations in
the following sense. The nodes of G correspond to operations and the
pebbles correspond to storage locations. If a pebble is on a node this
means that the result of the operation to which the node corresponds is

stored in some storage location. Thus the rules have the following meaning:

(1) input data are always accessible;

(ii) if all operands of an operation are known and stored somewhere, the
operation can be carried out and the result be stored in a new
location;

(iii) storage locations can always be freed.

By the rules a single node can be pebbled many times. This corresponds to

recomputation of intermediate results.
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In particular the game has been used to model time and space of
Turing machines [1,2] as well ac length and storage requirements for
straight line programs [8].

Known results about the pebble game include

A:  Every graph Ge S(k,n) can be pebbled with ¢ n/log n pebbles where

the constent c, depends only on k [2].

K
B: There is a constant ¢ and a family of graphs Gn c 8(2,n) such that
for infinitely many n , Gn cannot be pebbled with less than

cn/log n pebbles [k].

For more results see [1,3,4,7,8].

By putting pebbles on the nodes of a graph G in topological order

(i.e., it there is an edge (rom node to node ¢' , then ¢ is pebbled
first) one can pebble each graph Ge S(k,n) with n pebbles and n moves,
However the stragegy known to achieve 0(n/log n) pebbles on every graph
uses exponential time. Thus it is a natural question to ask if there are
graphs G, € S(k,n) such that every strategy which achieves a minimal

number of pebbles requires necessarily exponential time. This is indeed

the case.

Theorem. There existe a family ol graphs ‘:, c SlPn) 3 N e L@« and
e i
constants €. 5 €. y C G .0 such that for infinitely many n

] y z 3 ) 1 y

(Gl G, can be pebbled with (-1»-’3 pebbles in n moves,

-
(2) G, can also be pebbled with c./n pebbles.

(3) Every strategy which pebbles G using only c,Nn pebbles has at

c;/n
A
least 2 moves.

Thus saving only a constant fraction of the pebbles forces the time required

to grow from linear to exponential.

N

e |




I root” of' the theorem: As building blocks tor the graphe @ we need
n

certain special graphs. A directed bipartite graph is a graph whose nodes

N

can be partitioned into two disjoint sclg »
=4

Nl ’ such that all edges lead

from nodes in Nl to nodes in N A directed bipartite graph is an

&
n-i/j -expander if INll = |N2| =n ( |A] denotes the cardinality

of A ) and for all subsets N' of N, of size n/i the following holds:

|{c |crNl and there is an edge from c¢ to a node in N'}| > n/j

Lemma 1. For n large enough there exist n-8/2 -expanders where the

indegree of each node in N? is exactly 16 .

Iroof. With every function f: {1,...,en} - {1,...,n} we

acsociate a bipartite graph (:t' « 8(¢y,on) with n  inputs and n  ouljut:

in the following way: The inputs and outputs are numbered from 1 to n
and if f(j) =i then there is an edge from input i to output (j mod n) .
Different functions may produce the same graph. A function f is bad

il" therc is a set 1 of n/2 inputs and a set O of n/8 outputs such
that all edges into O come from I . Otherwise the function f is

called good. Clearly if f is good G, is an n-8/2 -expander with the

T
desired properties.

In order to prove the existence of a good function we prove that the
fraction of® bad function: Lo all such funclions tends with growing n to
z2ero [Yy0].

o Cn 0y

There are functions f: {1,...,en} - {1,...,n} . There are
(“/ )(l,,) ways to choose n/2 inputs T and n/8 outjuts 0 .

enft s Y3 S - :
For cvery choice ol | and O Lhere arc (n/ﬁ) / '-n( / Function:

such that [ is bad because in Gf all edges into O come from 1 .




o]
Hence there are at most o o -(n/?)cn/8 .nYCn/b
n/: n/8

¢ Thus the fraction we want to estimate is

( n79) (1178) g (n/g)cn/é} . n7cn/8/ncn

complete binary tree with 16 leaves, identifying v with

l‘.“ C nl(. ,l' m)

Let H

b,d
where for 2 < i <d , the input nodes of E;
output nodes of E;-l . ‘Thus H e S(2, (15d+1)b)
b, d

it
nodes of Eb form level O .

b, d

Troof. We say level i is full if all nodes of level i
The strategy is to fill the levels one after another. FEach
set. Thus once a new level i has been filled all pebbles
can be removed. Hence at most ©2b pebbles have to be kept
levels. In the process of filling level i+l if level i

16, extra pebbles are uced on the trees between the levels.

(nr/l'a )(nI/IB)/?’cn/k = 0(1) for e >16 ., (]

Let F! be an n-8/2 -expander as in Lemma 1. Construct E, from

Eﬁ by replacing for every output node v the 16 incoming edges by a
the tree and the predecessors off v with the leaves. Obviously

be the graph consisting of d copies of Eb: Eb""’Eb

are identified with the

The set of output nodes of 1,; is called the i-th level. The input

bad functions.

the root of

i d

Lemma 2. H can be pebbled with 2b+1l6 pebbles and (15d+1)b moves,

have pebbles,
level is a cut
above level i

on two successive
is full, the

Because all

trees are disjoint except for the leaves each node is pebbled exactly once. U
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Lemma 5. L can be pebbled with  hdt2  pebbles.,

b, d

Prooft. The depth of a node v is the number of edges in the longest
path into v . 1In a graph Ge S(2,n) every node of depth t can be
pebbled with t+2 pebbles (this follows easily by induction on t ).
Every node in By g has depth at most L4d . U

The crucial point is

Lemma 4, For all ic {0,1,...,d} the following statement holds: If C
is any configuration of at most b/B pebbles on Hb,d y N is any subset
of level i s.t. |N| =Db/k, and M is any sequence of moves, which
starts in configuration C , never uses more than b/8 pebbles, and
during the execution of this sequence of moves each node in N has a

pebble at least once, then M has at least 21 moves.

Froof. By induction on i . For i = O there is nothing to prove.
Suppose the lemma is true for i-1 . 1In configuration C at most b/8
pebbles are on the graph. Thus for at least b/8 of the nodes v in N,
no pebble is on v nor anywhere on the tree which joins v with level i-1
except possibly on the leaves. Let N' be a subset of these nodes of

size b/8 and let P be the set of nodes in level i-1 which are

conneeted to N . By conctruction of il |Il > b/2 . Because

{006 [
none of the nodes in N' nor any node ot their trees have pebbles except
tor the leaves, during the execution off M each node in P must have a
pebble at some time (possibly right at the start).

Divide the strategy M into two parts M1 ’ MP at the earliest move

such that during M, some b/% nodes of ' have or have had pebbles

and the remaining b/h or more nodes of J have never had a pebble.
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Ior Ml the hypothesic of the lemma applies; thus Ml has at
moves. Because M; leaves at most b/8 pebbles on the graph
also never uses more than  b/8 pebbles Lhe hypothesis alao ap
:\I-

Henee M, has al least moves: Loo and Lhie Lemna Follows

Choose b such that Ld+2 <b/8 , e.g. b =32d+16 .
strategy which pebbles any b/4 output nodes of Hb,d using
Ld+2 pebbles has at least o% moves. Thus for at least one
nodes v pebbling v alone with hdi2  pebbles must require
Dd/(b/h) > D(l-e)d moves since b = 0(d) . Now n = (1bd+l)b
of nodes of Hb,d . Hence d = O(J;) and b = OQJ;) and the
follows. U

The above construction also yiclds:

i-1
least 2

and M,
plics: bo M,
o
Then any
at mos

of these

is the number

theorem

Corollary. There exists a Family ol graphs Gn’ s(e,n) such that for

every ¢ > 0 the following holds: any strategy which pebbles

nl-E pebbles has more than polynomially many moves.

nl-l/log log n

Proof'. Choose Gn = Hh,d with b = and d =

G usin
Jn &

nl/log log n,

of

An interesting open problem is: does there exist a family of' graphs

G,e8(2,n) , n=12,... such that petbling the graphs G/
pebbles requires more than polynomially many moves? As a firs
resolving thic quecstion, Pippenger [7] has exhibited a family
which require a non-linear number of moves when pebbled with

pebbhlevis,

with 0(n/log n)
t step toward
ol' graphc

o(n/log n)

i it

b il
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