NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF
DATA ACQUISITION SYSTEM FOR UNSTEADY AERODYNAMIC INVESTIGATION. (U) AD-A046 468 JUN 77 C D ENGLEHARDT UNCLASSIFIED NL 1 OF 2 ADA 046468 0

DDC FILE COPY

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

DATA ACQUISITION SYSTEM FOR UNSTEADY
AERODYNAMIC INVESTIGATION

by

Cleveland Duane Englehardt

June 1977

Thesis Advisor:

Louis V. Schmidt

Approved for public release; distribution unlimited.

COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGISLE PRODUCTION

unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitio)	5. TYPE OF REPORT & PERIOD COVE
DATA ACQUISITION SYSTEM FOR UNSTEADY AERODYNAMIC INVESTIGATION	Master's Thesis June 1977 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)	S. CONTRACT OR GRANT NUMBER(s)
Cleveland Duane Englehardt	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940	10. PROGRAM ELEMENT, PROJECT, TA AREA & WORK UNIT NUMBERS
Naval Postgraduate School Monterey, California 93940	June 1977
	130
Naval Postgraduate School	Unclassified
Monterey, California 93940	154. DECLASSIFICATION DOWNGRADII
16. DISTRIBUTION STATEMENT (of this Report)	
To control to the state of the	Recent
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from	n Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from the supplementary notes	n Report)
	· ·
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Microprocessor, Circulation Control Rotor, Wind 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This paper describes the design and implement processor based high-speed digital data acquisit	Tunnel Data Acquisition entation of a micro- ion and reduction
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Microprocessor, Circulation Control Rotor, Wind 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This paper describes the design and implementations.	Funnel Data Acquisition entation of a micro- ion and reduction nalysis as encountered rocessor, flexible odule were the main annel, 12 bit resolution

251450

unclassified

SECURITY CLASSIFICATION OF THIS PAGE WHEN DATE Entered

storing over 250,000 bytes of data on magnetic diskette. Subsequent to the data logging process, the same system was capable of serving as a general purpose computer utilizing the popular BASIC scientific programming language.

The system was qualified for accuracy and functional performance through a series of controlled exercises, and was then applied to an actual investigative task to further determine its utility and value. \land

NTIS	The Section V
DDC	Section 🖂
UNANNOU	NC D
JUSTIFICA	
DV	
BY DISTRIBU	ITION/AYAILABILIT y co des
BY DISTRIBU	
BY DISTRIBU	ITION/AYAILABILIT y co des

DD Form 1473

DATA ACQUISITION SYSTEM FOR UNSTRADY AERODYNAMIC INVESTIGATION

by

Cleveland Duane Englehardt Lieutenant, United States Navy BSEE, San Jose State College

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the NAVAL POSTGRADUATE SCHOOL
June 1977

Author:	(h English out)
Approved by:	Louis V. Schmidt
	Thesis Advisor
	Lecond W. Fell
	Chairman, Department of Aeronautics
	Sheet 1. From
	Dean of Science and Engineering

ABSTRACT

This paper describes the design and implementation of a microprocessor-based high-speed digital data acquisition and reduction system suitable for use in time varying signal analysis as encountered unsteady aerodynamic investigation. A microprocessor, flexible disk drive and an analog-to-digital conversion module were the main components which were integrated to form a 32 channel 12 bit resolution data acquisition system capable of 1000 Hz sampling rate and permanently storing over 250,000 bytes of data on magnetic diskette. Subsequent to the data logging process, the same system was capable of serving as a general purpose computer utilizing the popular BASIC scientific programming language.

The system was qualified for accuracy and functional performance through a series of controlled exercises, and was then applied to an actual investigative task to further determine its utility and value.

TABLE OF CONTENTS

I.	Intr	roduction	9
II.	Syst	tem Design	11
	A.	Definition of the "Need"	11
	В.	Determination of Performance Specifications	13
		1. Analog to Digital Conversion (A/D)	13
		2. Number of Analog Channels	15
		3. Sample Resolution (Quantization Error)	17
		4. Conversion Rate	17
	c.	The Processor	18
		1. A/D Control	18
III.	Hard		22
	Α.	MDS-800 Microcomputer Development System	22
		1. Random Access Memory (RAM)	24
		2. Disk Operating System (DOS)	26
			26
		4. SINETRAC-800 A/D Converter Module	27
IV.	Soft	tware	30
	Α.	Languages	30
		1. 8080 Assembly Language	30
		2. PL/M	31
		3. BASIC	32
	P.	Programs and Diskette Files	32
		1. CCNTROL	33
		2. ACQUIRE	33
		3. PROTECT	35
		4. DATA.nnn	36
		5. CONVERT	37
		6. REDUCE	37
		7. IFACES	38
٧.	Syst		39

	A.	DC	Cali	brat	ion.										 39
	В.	Sin	usoi	dal	Sign	al	Rec	onti	cuc	tio	n				 42
	c.	squ	are	Wave	Res	por	ise.	• • • •							 46
VI.	Syst	em.	Appl	icat	ion.										 51
	A.	Ope	rati	ng C	ondi	tic	ons.								 51
VII.	Conc	lus	ions	and	Rec	om	mend.	atio	ons						 66
	A.	Int	erch	anne	1 Sa	mp1	Ling	Lag	j • •						 66
		1.	Int	erch	anne	1 1	Dela	у							 67
		2.	Ind	ivid	ual	Sai	mple	a no	1 н	old	Ci	rcu	itr	y	 67
	В.	Sys	tem	Acqu	isit	ion	n Sp	eed.							 69
	c.	Dat	a Re	duct	ion.			• • • •							 70
Appendi	x A:	G.	loss	ary.				• • • •							 72
Appendi	x E:	P	rogr	am F	10w	Dia	agra	ms.					• • •		 75
Appendi	x C:	P	rogr	am L	isti	ngs	3	• • • •							 80
Appendi	x D:	S	ampl	e Ou	tput			• • •							 122
Appendi	x E:	0	pera	ting	Ins	tru	ıcti	ons.				• • •			 124
Appendi	x F:	S	ampl	e CO	NTRO	L	File	• • • •							 126
LIST OF	REF	ERE	NCES					• • • •							 127
INITIAL	DIS	TRI	BUTI	ON L	IST.			• • • •							 129
LIST OF	FIG	URE	s												 7

LIST OF FIGURES

1.	Typical Analog to Digital Data Acquisition Module	14
2.	CCR Experimental Signal Flow	16
3.	MDS-800 Microcomputer Development System	20
4.	16KByte Random Access Memory Module	23
5.	SINETRAC-800 Analog to Digital Converter Module	25
6.	"Aliasing" Effect	29
7.	DC Voltage Calibration Results	41
8.	Sinusoidal Signal Reconstruction Test Circuit	43
9.	Sinusoidal Gain Qualification Test Results	44
10.	Sinusoidal Phase Qualification Test Results	45
11.	Phase Error Due to Interchannel Sampling Lag	47
12.	Square Wave Reconstruction Harmonic Spectrum	49
13.	Effect of Compensation on Induced Phase Error	50
14.	System Application Configuration	53
15.	Coanda Sheet Pressure Profile (3.7 Hz)	54
16.	Coanda Sheet Pressure Profile (5.1 Hz)	55
17.	Coanda Sheet Pressure Profile (6.4 Hz)	56
18.	Coanda Sheet Pressure Profile (8.5 Hz)	57
19.	Coanda Sheet Pressure Profile (10.7 Hz)	58
20.	Coanda Sheet Pressure Profile (13.7 Hz)	59

21.	Coanda	Sheet	Phase	Distribution	(3.7	Hz)	60
22.	Coanda	Sheet	Phase	Distribution	(5.1	Hz)	61
23.	Coanda	Sheet	Phase	Distribution	(6.4	Hz)	62
24.	Coanda	Sheet	Phase	Distribution	(8.5	Hz)	63
25.	Coanda	Sheet	Phase	Distribution	(10.7	Hz)	64
26.	Coanda	Sheet	Phase	Distribution	(13.7	И Н 2)	65
27.	Single	vs Mul	tiple	Sample and Ho	old Co	oncept	68

I. INTRODUCTION

Data acquisition systems have historically been both costly and cumbersome for the investigator to use. Acquisition of unsteady experimental data, as in the case of oscillatory flow investigation, was only possible with the aid of expensive digital computer systems used in conjunction with elaborate analog recording devices.

Within the past four years, a new form of computing power has become available to the engineer accompanied by such a reduction in cost that its use has spread rapidly throughout the realm of engineering design. The revolutionary device alluded to is the microprocessor, which in its basic form contains all the arithmetic and logical functions normally found in the central processing unit (CPU) of a large scale computer. Concurrent advances in solid state memory and other large scale integrated (LSI) circuitry has enabled entire computing systems to be encased in table-top enclosures at a fraction of the cost of the previously available minicomputers.

This document describes the use of one microprocessor-based microcomputer system, the INTEL MDS-800 Microcomputer Development System, as a central component of data acquisition system . The MDS was integrally connected with various peripheral devices including an analog to digital converter, input-output devices, and a dual flexible disk drive unit to form a data acquisition system. The system was then qualified using known input signals of controlled harmonic content. Subsequently the system was applied to an actual experimental situation,

where unsteady analog signals were digitized, recorded, and later analyzed on the same self-contained computing system.

A glossary of terms commonly used in the instrumentation engineering, data processing and computing disciplines is presented in Appendix A.

II. System Design

An engineering design is, in general, the result of a directed effort in meeting a recognized human need or desire. The value of the design is usually determined by how well the design product satisfies a set of performance criteria. In most cases, several methods of achieving the goal will be available, thus requiring the designer to choose among the alternative approaches. This choice will be governed or influenced by constraints imposed by the environment, funding and production schedule.

This section deals with the definition of the need, specification of the desired performance attributes, determination of viable alternatives, and the decision process by which the final product was developed. Although most of the desired performance requirements were achieved, the project served as an educational experience revealing many areas which could be improved. Section VII discusses the design in retrospect and proposes additional alternatives which could further enhance the system's performance.

A. Definition of the "need"

The "need" was a precipitant of the Circulation Controlled Rotor (CCR) aerodynamic investigation being conducted by Naval Postgraduate School personnel. Existing wind-tunnel data acquisition systems were designed to operate in the steady-state flow-field environment. The

desire to study the dynamic nature of the flow about an airfoil of radical design, while experiencing the effects of an oscillatory flow-field, required a departure from the traditional hand logging or slow-speed automatic acquisition methods. More important, however, experimental process not only required investigation of the CCR at various angles of attack and air speeds, as in the case of steady-state wind tunnel experimentation, additionally in troduced frequency, cavity pressure modulation amplitude and phase relative to flow field oscillation as variables. Thus, the CCR experiment required experimental investigation throughout an operating envelope bounded by 5 independent variables rather than the usual 2 associated with steady-state flow problems. This obviously increased the magnitude of the data acquisition problem far beyond the point of practicability for the conventional data logging methods at hand. A high-speed automatic data logging technique was clearly in order. Additionally, order for large amounts of data to be efficiently analyzed, it was imperative that all information be recorded in a form which could be directly utilized by a digital computer.

The above rationale then became the basis for the following statement of the "need":

- * A high-speed digital data acquisition system exhibiting performance attributes necessary to allow numerical analysis of the flow pattern about the surface of a CCR airfoil section, operating in the Naval Postgraduate School 2-foot by 2-foot oscillatory flow wind tunnel
- * Function as a controlling device capable of automatically sequencing the Scanivalve mechanical multiplexors without operator intervention
- * Perform the algebraic calculations necessary in reducing the data to analytic form

B. Determination of Performance Specifications

Anticipating a significant investment in equipment, and realizing that the CCR research project would some day be complete, it was determined that the system design should take future applications into consideration. For this reason, flexibility was incorporated as a major design goal, which necessarily resulted in a modification of the specifications from those actually required for the CCR task.

1. Analog to Digital Conversion (A/D)

In a typical data-sampling system, signal voltages representing varying physical parameters; e.g., pressure, temperature, position, velocity and acceleration, are sampled and converted via A/D converters into digital form. A/D conversion has become an engineering discipline in itself and an entire vocabulary associated with the field has resulted. To assist the reader in understanding the following treatment of A/D performance requirements, a brief glossary of A/D terminology is included within Appendix A. In the interest of brevity, the discussion herein is limited to the most important facets of A/D conversion. For a more complete treatment of the subject, the reader is directed to ref. 12, an outstanding collection of A/D related articles.

As a prelude to the below listed performance parameters, Fig 1 depicts all of the elements found in a typical A/D conversion system and illustrates the type of errors associated with each stage of the process.

FIGURE 1 - TYPICAL ANALOG-TO-DIGITAL DATA ACQUISITION MODULE

2. Number of Analog Channels

The CCR experimental set up had one analog channel dedicated to each of the below listed signal sources:

- * Scanivalve ONE
- * Scanivalve TWO
- * Cavity Pressure Transducer
- * Hot Wire Annemometer

A schematic of the signal flow is depicted in Fig 2. The four channels were to be sampled in fast succession at a specified periodic rate. The A/D module had provisions for 32 single-ended channels or 16 differential channels. The single-ended mode was employed in this application.

FIGURE 2 - CIRCULATION CONTROL ROTOR EXPERIMENTAL SIGNAL FLOW

- 3. Sample Resolution (quantization error)

When the analog signal is digitized, the resulting digital quantity can take on only certain discrete values. The number of bits in the digitized datum word determines the number of possible states that the word may have. An 8 bit A/D, for example, can exhibit 2 to the 8th or 256 states. If the range of operation of the A/D is minus 5 to plus 5 volts, (10 volts full scale), then each bit represents an increment of .0391 volts. This amounts to a resolution or quantization error of 0.391 percent. The more bits in the digitized word, the better the resolution; however, the price paid for increased accuracy is a decrease in conversion speed. Of course, speed and accuracy may be obtained concurrently with a corresponding increase in cost.

The A/D module exhibited 12 bit accuracy, yielding a quantization error of 0.024 percent over full range operation. This corresponded to a sensitivity of approximately 0.00244 volts during 10 volt full scale operation. The 12 bit converter offers moderate accuracy and relatively high speed, e.g. 75,000 conversions per second, for a reasonable cost.

4. Conversion Pate

The amount of time required for the A/D module to sample and digitize the analog input is defined as the conversion time. The A/D module was capable of 75,000 12-bit conversions per second, or one conversion every 13 microseconds. This conversion rate was only obtainable if the Direct Memory Access (DMA) mode were utilized. Since the SINETRAC-800 module was operated in the program control

mode, the conversion rate was limited by the microprocessor instruction sequence execution time to 74.5 microseconds per conversion. The resulting throughput was 13,400 conversions per second. The induced lag between channels caused significant problems in signal reconstruction and is discussed in detail in section IV.

C. The Processor

The digital processor was the heart of the system design, and added the flexibility needed to make the A/D conversion, data acquisition and storage process applicable to the problem at hand. The desired functional performance requirements of the processing unit are discussed in this section.

1. A/D control

During the acquisition phase of operation, the processor's main task was that of controlling the A/D module. By controlling the acquisition process under programmed logic, adjustments to the sampling rate, channel sampling sequence, and real-time filtering of the data could be easily effected.

The reconstruction of time-varying analog signals from a set of discrete datum points represents a problem of significant magnitude. Probably the single most important consideration during the acquisition phase is the period at which samples are to be taken. When investigating periodic signals, frequency content is generally a matter of prime interest. Nyquist's sampling theorem states that equi-spaced data, with two or more points per cycle of the

highest frequency, will allow reconstruction of band-limited functions. If this principle were not observed, a phenomenon termed "aliasing" could occur. The concept of aliasing is shown in Fig 3 which depicts a signal sampled at two different rates. The curves drawn through the two sets of points represent possible reconstructions of the original signal. The frequency change implied by the dotted curve is an "alias" of the frequency described by the solid curve.

FIGURE 3 - "ALIASING" EFFECT

Other considerations related to sampling rate are the number of data points required for adequate analysis, the amount of memory, permanent as storage, and computation time required in processing the data.

In the CCR application, it was predicted that fundamental driving frequencies in the range of 1 to 20 Hz should be investigated; and that frequency content up to the fifth harmonic would be of possible interest. This meant that the system must be capable of sampling the analog channels at a minimum rate of 200 Hz. The resulting design achieved a 500 Hz sampling rate over 8 channels.

III. HARDWARE

A. MDS-800 MICROCOMPUTER DEVELOPMENT SYSTEM

In its basic configuration, the INTEL MDS-800 Microcomputer Development System consists of a CPU, 16K RAM, peripheral interface controller, front panel controller, power supply and enclosure. With the exception of the enclosure and the power supply, each of the aforementioned items is in the form of one or more printed circuit modules which may be inserted into the mainframe of the MDS. The MDS may be directly connected to the following peripheral devices with minimal interfacing: CRT and keyboard console, high speed line printer, standard Teletype with paper tape reader and punch, high speed paper tape reader, and a high speed paper tape punch. This section describes the essential hardware elements of the system, an overall view of which is shown in Fig 4.

FIGURE 4 - MDS-800 MICROCOMPUTER DEVELOPMENT SYSTEM

1. Random access memory (RAM)

The basic block of RAM is a 16K byte module of high access rate volatile dynamic memory, where 1K denotes 2 to the 10th cr 1024 bytes. The MDS is capable of addressing 4 such modules or 64K bytes of memory. Of the 64K of RAM only 62K are actually usable due to the coexistence of a 2K block of read only memory (ROM) containing the MDS Monitor program.

Due to the requirement for rapid recording of large blocks of data, the maximum number of RAM modules was installed. A RAM module is illustrated in Fig 5 and serves as an example of the typical insertable printed circuit modules referred to throughout this paper.

FIGURE 5 - 16K BYTE RANDOM ACCESS MEMORY MODULE

2. DISK OPERATING SYSTEM

The INTEL Disk Operating System (DOS) consisted of three major components, a dual floppy disk drive unit, a disk controller, and the DOS support software. The addition of the DOS provided dramatic increases in the flexibility, speed, and mass memory storage available.

Each 7.5-inch diameter floppy disk (diskette) had a capacity of 256K bytes of semi-random access storage. With the dual drive, over 0.5 million bytes of data, program, or other information could be accessed with relative ease and moderate speed.

The software support package offered by INTEL, called ISIS, was evaluated along with the Digital Research CP/M disk operating system. The Digital Research software package was chosen over the INTEL package due to the higher speed it demonstrated and its compatibility with the BASIC-E package used in the data reduction phase.

CP/M consists of several utility routines in addition to the Basic Disk Operating System (BDOS). These routines allow the user to form and edit disk files, programs or data files, to assemble and load assembly language programs, and a powerful debug routine. A more complete description of the CP/M BDOS is contained in ref. 9.

3. GENERAL PURPOSE INPUT OUTPUT MODULE (I/O)

The basic MDS-800 was further expanded with the installation of a general purpose I/O module. This module

provided four input ports and four output ports of eight bits each. The need for the I/O module was anticipated for control applications, digital input or outputs, controlling an X-Y plctter, or other general purpose applications. This module was actually intended for controlling the Scanivalve positioning under automatic channel sequencing. However, it was later decided that system flexibility would have been sacrificed had this feature been implemented.

4. SINETRAC-800 ANALOG TO DIGITAL CONVERTER MODULE

The Datel Sinetrac-800 A/D converter module is a 32 channel, 12 bit resolution analog to digital module specifically designed for use with the INTEL MDS-800. Being buss compatible with the MDS system, the module was installed within the MDS chassis and the wiring harness was brought to the backplane of the MDS enclosure.

The main elements of the A/D module were:

- 32 channel analog multiplexor
- sample and hold
- A/D converter sub-module
- addressing and hand-shaking logic circuitry
- Direct Memory Access control circuitry

The A/D module had three fundamental modes of operation:

- program control
- program control with automatic sequencing
- Direct Memory Access mode

Reference 1 contains a complete description of the A/D module including operating instructions and programming techniques.

Although the DMA mode was not utilized because of its requirement of an INTEL DMA module for support, future development of the system will make the addition of the DMA module indispensable. The use of DMA would allow the A/D module to operate at its full capability of 75 KHz sampling rate. This increase in acquisition rate would significantly extend the range of the system in terms of signal frequency component reconstruction.

The Sinetrac-800 also provided user options in certain operational parameter selection. Selectable by jumper wire were input signal voltage range (5, 10, or 20 volts), single ended or differential operation, and interrupt or non-interrupt operation. The options in use were: plus and minus 5 volt single ended, non-interrupt operation. Details concerning the use of jumper options are specified in ref. 1. The SINETRAC-800 is depicted in Fig 6.

FIGURE 6 - SINETRAC-800 ANALOG TO DIGITAL CONVERTER MODULE

IV. SOFTWARE

The software development was accomplished in four distinct phases and involved the use of three different programming languages. This section briefly describes each language and the individual program modules created.

A. LANGUAGES

Every computer language has a level of application for which it was designed. The three languages discussed in this section were used to accomplish varying degrees of program control. A high level programming language allows the programmer to use nearly literal or sentence form expressions or equations. FORTRAN is an example of a high level language. A low level language on the other hand, is closely related to the machine code actually used by the computer. Machine code is, of course, the lowest level programming language but is rarely used. Low level languages provide the programmer with complete control over memory usage and CFU instruction sequences.

1. 808C Assembly Language

This low-level language was specifically developed for use with the 8080 microprocessor. It is, however, similar in form to assembly languages in use with other computers. The form of the language is described fully in ref. 10, therefore only the merits of the language are

discussed herein.

The use of assembly language offers the programmer direct control over the CPU instruction sequence. Very efficient utilization of available program memory and optimization of program execution time may be accomplished when employed. These features form the basis for the use of assembly language in the construction of the data acquisition and ASCII conversion programs, where execution time and memory allocation are importrant considerations.

One distinct disadvantage to the use of assembly language is that the amount of work required in producing a relatively short program may be significant. Several pages of documentation are necessary to make the program readable, even to the author of the program. Obviously, tracing another's assembly language program is very difficult even with excellent documentation.

2. PL/M

PL/M is a medium-level language again designed for microprocessor use. It offers moderate control over the CPU instruction sequence while providing the user with many of the features available only in high-level languages. In other words, PL/M is a language which permits the user to determine, within limits, the degree of control he desires. The amount of machine code produced by PL/M compilation is about half again that resulting from a functionally equivalent assembly language program. PL/M is ideal for use when floating point mathematical operations are not required, or when time and memory efficiency are not important factors.

PL/M was used in the construction of the

communications interface program called IFACE which linked the MDS-800 to the IBM-360 via telephone line. PL/M may be assembled on either the IBM-360 or locally on an MDS-800 when equipped with the full complement of 64K of RAM.

3. EASIC

BASIC is a high level language which is gaining wide acceptance throughout the scientific community. Similar to FORTRAN, BASIC provides the user with facility in programming mathematically complex routines in fairly familiar algebraic format. The BASIC-E compiler and run time monitor were developed for 8080 implementation to be used in conjunction with CP/M, and are fully described in ref. 5.

BASIC-E was used in the data analysis routine which may be easily modified to suit the user's needs. A summary of the commands available and syntax of BASIC-E can be found in ref. 6.

B. PROGRAMS AND DISKETTE FILES

The data acquisition and reduction process was a multiphase sequence, each phase consisting of one or more program executions. Each program resided on the system diskette under its individual file name. The system diskette also contained the CP/M BDOS and each of its associated utility routines, the BASIC-E compiler and run time monitor. The system diskette was inserted into disk drive A, while the data diskette was inserted into disk drive E. Each program module and its associated support files is described within this sub-section, and Appendix E

contains a description of the operating procedures.

1. CONTROL

A control file called CONTROL was formed prior to each acquisition run. This file was edited and maintained on the system diskette and contained both text and control parameters that were used by the acquisition program, ACQUIRE. The use of a control file eliminated the need for the operator to re-enter control parameters for successive A sample CONTROL file is contained in Appendix F. The order of the passed parameters was significant; however, the vertiage or content of the string variables could be entered free-form. The ACQUIRE program would only recognize and use the integer value of parameters which were preceded by a colon and followed by a carriage return linefeed combination. The information following the first two colons was ignored, allowing the date and run number to be entered but not passed to the ACQUIRE program. The meanings of the parameters are self-evident from the sample shown in Appendix F, and are therefore not explained here.

2. ACQUIRE

ACQUIRE was the main program which performed the data acquisiton function. It would first read the CCNTROL file from disk drive A and display it on the CRT for the operator's review. Should corrections or alterations be required, they could be effected at this time by editing the CONTROL file. With the CONTROL file in order, ACQUIRE proceeded to extract the necessary control parameters and duplicated the CONTROL file on the diskette in drive B. Using the extracted control parameters, this program then managed the operation of the SINETRAC-800 module, CRT, and

disk drive unit so as to scan the specified analog channels at the specified rate and number of repetitions, and record the data on the data diskette in disk drive B. The ACQUIRE program accomplished this task by issuing commands to the SINETRAC-800, followed by data to be written or read. SINETRAC-800 was issued the initial and final numbers, a start scan command, and a start conversion command. When an analog to digital conversion was complete, the SINETRAC-800 changed its status word to indicate an end of conversion (EOC). The processor would then read in the two bytes of data resulting from the conversion. Upon receipt of a subsequent start of conversion command, the A/D module would automatically step to the next analog channel to be sampled and perform a conversion. When the entire range of channels was converted, the A/D would change the status word to indicate an end of scan, simultaneously resetting the channel selection register to the initial channel.

The generation of the scan period timing pulse is a topic which deserves explanation as it was one of the most difficult portions of the ACQUIRE routine from a programming standpoint. The MDS-800 front panel controller module includes an interrupt timer which may be turned on or off programmatically. The timer is actually a series of solid state counters which, after receiving a certain number of pulses from the 9.8 MHz system clock, issues a pulse to the CPU. This interrupts the operation of the 8080 CPU, causing the program to execute a subroutine. This subroutine then counts the number of interrupts received in this manner. When the number of interrupts counted reaches a value which matches that prescribed by the scan period control parameter entered by the CONTROL file, a scan instruction is issued to the SINETRAC-800 and a scan sequence is initiated. Each interrupt occurs at 0.977 ms. The fact that the timer interrupts at nominal 1 ms intervals became the limiting

factor on scan rate. In order to increase the scan rate, some other means of initiating the scan must be used. The rationale for using the interrupt timer in the first place was that it provided, at no additional expense, a highly accurate time base, an important requirement for dynamic signal analysis.

Data from each conversion were stored in sequential RAM locations. When the specified number of scans had been performed, the data stored in RAM were formatted and transferred to the data diskette in disk drive B. Each block of scans was written into a file called DATA.nnn, where nnn was the decimal sequence number for that file.

The process continued until all Scanivalve channels were sampled and logged, the diskette space was exhausted, or the process was terminated by the user. If the process were completed without mishap, a file called PROTECT could be written on the data diskette at the users option. The PROTECT file prevented further data from being recorded on an unprocessed diskette.

3. PROTECT

The FROTECT file, if it existed on a data diskette, prevented additional data from being written to the diskette. Normally the PROTECT file was only removed from a diskette upon successful completion of the reduction process. This procedure prevented unprocessed data from being inadvertently destroyed or overwritten. The PROTECT file could also be removed by typing "ERA B:PROTECT" at the console.

4. DATA.nnn

Fach time the SCAN subroutine within the ACQUIRE program was executed, a DATA.nnn file was created on the data diskette. This file contained the data stream which resulted from one run. At the completion of all the runs the data diskette would contain several DATA files. For example, a completed data disk directory might be as follows:

CONTROL

DATA.000

DATA.001

DATA.002

PROTECT

The first 16 bytes of data on each DATA file form a header for that file, and contained the control information relevant to that file. The meaning of each byte within the header is listed below:

Byte O Initial Analog Channel

Byte 1 Final Analog Channel

Byte 2 Scanivalve One setting

Byte 3 Scanivalve Two Setting

Byte 4 No. of scans (LSB)

Byte 5 No. of scans (MSB)

Byte 6 Scan period (LSB)

Byte 7 Scan period (MSB)

Byte 8 Frequency (LSB)

Byte 9 Frequency (MSB)

Byte A through F not used

Subsequent data words formed the body of the DATA file. A DATA file was composed of binary information, and

therefore required translation into ASCII characters prior to being read by the BASIC reduction routine.

5. CONVERT

The CCNVERT program was an assembly language routine which read the desired DATA.nnn file into RAM, converted the binary values to ASCII decimal integers and created a file called DATA.ASC on the data diskette. This was necessary prior to each execution of the REDUCE program, as the BASIC-E file handling would only accommodate ASCII coded disk files. This process could have been made a part of the ACQUIRE program function; however, the additional number of bytes required for each data point would have severely limited the amount of data on each diskette.

The program was executed by typing "CCNVERT DATA.nnn" at the console. The resulting ASCII type file could be viewed in raw unformatted form by typing "TYPE B:DATA.ASC".

6. REDUCE

The REDUCE program was written in BASIC and was executed by typing "RUN REDUCE" on the console. Its function was to read the DATA.ASC file from the data diskette and perform the required numerical analysis necessary to extract the Fourier coefficients of the signal wave form represented by the data. The program used is contained in Appendix C and a discussion of the reduction algorithm is presented in ref. 11.

It is important to note that the BASIC routine used in this application may be easily modified to suit the

user's needs. For that matter, an entirely different analysis algorithm could be substituted with equal facility. In effect, the function of the program was not of significance, however, it served as a vehicle for development and testing of the system. The demonstrated flexibility and ease in programming afforded by incorporation of the BASIC language are the meaningful features.

7. IFACE

This PL/M program was originally written by an unknown author but was adapted for use with the MDS-800 through modification of the interfacing routines.

Its purpose was to allow the user to operate the CRT console as a remote time-share terminal in conjunction with the W.R. Church IBM-350 operating under the Cambridge Monitoring System (CMS). The program listing is included for documentary purposes in Appendix C. It also provided for automatic bi-directional transfer of disk files between the IBM and MDS systems, a useful feature.

V. SYSTEM QUALIFICATION

Any design, whether hardware, software or a combination of both, must be thoroughly evaluated for performance under controlled conditions prior to its introduction in an actual field environment. The test which the design should undergo must exercise the device throughout its expected range of operation so that actual performance limitations may be determined. Qualification testing also provides the designer with quantitative and qualitative measures of the system's conformance to the design criteria. This section discusses the qualification tests conducted on the data acquisition system, and an interpretation of the results obtained.

The main objective of the qualification testing procedure conducted was to provide a level of confidence in the system's ability to faithfully track the input signals, thereby permitting the reduction routine to accurately perform numerical operations which would reconstruct the desired parameters of magnitude and phase, while filtering undesirable frequency components. The three basic qualification tests conducted in the determination of the system's performance characteristics are discussed below.

A. DC CALIERATION

Accompanying the SINETRAC-800 D/A module was a voltage calibration and scan test software package. This program allowed verification of the accuracy of the A/D conversion

system when known (accurately measured) DC voltage levels were applied to the individual input channels of the A/D module. The results of this test, with the voltage range of the device set at plus and minus five volts full scale, are shown in Fig 7. This voltage range was chosen over the 20 or 5 volt full scale range because the outputs of the signal conditioning amplifiers had historically exhibited bias and excursion characteristics which remained well within this range. Had a 20-volt full-scale range been utilized, sensitivity would have been sacrificed, whereas a 5-volt range would have resulted in an overvoltage condition on the A/D converter circuit.

B. SINUSOIDAL SIGNAL RECONSTRUCTION

This test was designed to evaluate the system's ability to accurately acquire, store, and reconstruct a sinusoidal input signal of known amplitude and phase relationship to a reference sinusoidal signal.

The test was conducted using the simple operational amplifier circuit illustrated in Fig 8, representing a low-pass filter.

The gain and phase of the output signal relative to the input signal were measured by using the Ballantine true RMS meter and an AD-YU phase meter, respectively. These data were hand logged and plotted in Figs 9 and 10 for comparison with the gain and phase parameters extracted by the analysis algorithm discussed in section IV. A very high correlation between the extracted parameters and the analog measurements is clearly observable.

FIGURE 8 - SINUSOIDAL SIGNAL RECONSTRUCTION TEST CIRCUIT

FIBURE 9 - SINUSDIDAL GAIN RECONSTRUCTION TEST RESULTS

C. SQUARE WAVE RESPONSE

This test was designed to evaluate the accuracy of the data acquisition system in reconstructing the higher harmonics contained within a periodic signal. Since a square wave is known to be composed of only odd harmonic components, with known relative amplitudes, the Fourier coefficients derived from this test were easily compared to theoretical results.

By injecting the square wave input into more than one A/D input channel simultaneously, a measurement of the interchannel sampling delay was possible through observation of the resulting phase shift between adjacent channels. Compensation for the artificially induced phase lag was accomplished within the BASIC data reduction algorithm. Referring to Fig 11, which illustrates the phase shift problem graphically, delta t was the amount of time required to switch from one A/D channel to the next and complete a conversion. The software steps for the switching process amounted to 74.5 micro-seconds of apparent phase lag. By adding this value to the time term within the reduction algorithm, the phase shift problem was nearly eliminated.

FIGURE 11 - PHASE ERROR DUE TO INTERCHANNEL SAMPLING LAG

The results of the harmonic reconstruction test are shown in Fig 12, which compares the extracted harmonic content of the square wave as produced by the REDUCE routine, with the theoretical expected values. The test was actually performed for several input frequencies ranging from 5 Hz to over 100 Hz, however, the resulting harmonic spectrum is shown only for the 10 Hz signal so as to illustrate as many harmonics as possible.

For comparison purposes, the phase shift realized with and without compensation within the analysis program are plotted as a function of frequency in Fig 13.

FIGURE 12 - SOUARE WAVE RECONSTRUCTION HARMONIC SPECTRUM

FIGURE 13 - EFFECT OF COMPENSATION ON INDUCED PHASE ERROR

VI. SYSTEM APPLICATION

Subsequent to the qualification tests and refinement of the reduction algorithm, the system was applied to the actual experimental environment for which it was intended. The system was integrated into the CCR airfoil experimental set-up as illustrated in Fig 14. This phase of the development was conducted for two important reasons:

- * Evaluate the performance of the system under actual laboratory conditions in search of further improvment areas.
- * Examine the Coanda sheet pressure profile with respect to phase and amplitude while sinusoidally modulating the plenum pressure of the airfoil section.

A. OPERATING CONDITIONS

The wind tunnel was configured to operate with steady flow during this initial evaluation run. Only the plenum pressure of the airfoil section was modulated sinusoidally with various driving frequencies ranging from 3.7 Hz to 13.7 Hz.

Previous work, presented in Refs 7 and 8, produced measurements of the Coanda sheet pressure profile using data from a true RMS meter. These data were hand logged and plotted. A measurement of the phase relationship was not possible using this technique, as the phase meter was inaccurate in the low frequency range investigated.

Digital data acquisition, therefore, provided the first opportunity for observing the phase shift between the driving force and the pressure reaction on the surface of the airfoil. Included in Appendix F is the CONTROL file used in this experimental run. 600 datum points were recorded at 5-millisecond intervals for each analog channel. The channels sampled were:

- 1. Ch 0.....Plenum reference pressure
- 2. Ch 1....Scanivalve pressure (channels 10 thru 17)
- 3. Ch 2..... Hot wire annemometer

At each frequency, the Scanivalve was cycled along each of the indicated channels which corresponded to stations 23 through 30 of the airfoil. The actual logging of the more than 86,000 data points required approximately 45 minutes, of which approximately 35 minutes were devoted to effecting adjustment of the tunnel operating conditions and driving frequency.

Figures 15 through 20 show the graphical results of the data reduction which followed. Credibility is lent to the results by the close correlation achieved with the previous investigative efforts, and the consistency displayed among results of individual runs.

The graphical results of the phase extraction process are presented for documentary purposes in Figs 21 through 26. It was not within the scope of this work to analyze in detail the aerodynamics of the CCR. Therefore, the reader is directed to refs. 8 and 11 for more explicit information regarding the CCR analysis.

FIGURE 14 - SYSTEM APPLICATION CONFIGURATION

VII. CONCLUSIONS AND RECOMMENDATIONS

During the course of the acquisition system development, modifications were constantly made with the intent of improving the performance or operator interface. System qualification and implementation disclosed several additional areas in need of improvement and, based on the experienced gained up to the time of this writing, the upgrade items discussed in this section are believed to be worthy of inclusion in any further development or future generations of the subject system. In some cases alternative solutions to existing shortcomings are presented, taking into consideration current industry developments in compatible hardware modules.

A. INTERCHANNEL SAMPLING LAG

As previously discussed, the finite amount of time required for the processor to switch from one analog channel to the next, and make a conversion, caused an apparent phase shift in the resulting reconstruction of two or more adjacent channel signals. This problem was partially overcome by time adjustments within the reduction algorithm. However, inaccuracies were still attributable to this problem.

Two additional approaches to the problem remain:

1. Interchannel Delay

Effecting a reduction in the interchannel delay time, thereby reducing the relative influence of the lag, is one possible solution. This could be accomplished by the inclusion of a DMA module within the MDS mainframe to augment the capabilities of the SINETRAC-800. This solution although not absolute, would achieve a decrease of the interchannel delay from 74.5 microseconds to 15 microseconds.

2. Individual Sample and Hold Circuitry

The system as described herein contained only one sample and hold circuit which was located downstream of the multiplexor unit. Since each channel shared the same sample and hold circuit, it was impossible to strobe all channels simultaneously. Inclusion of an independent sample and hold circuit element dedicated to each analog channel input would eliminate the phase shift problem completely, since all channels would be sampled at precisely the same instant when triggered by a common source. The sample and hold circuit would maintain the DC level until the A/D was able to poll the individual inputs through the multiplexor. This concept is illustrated in Fig 27.

Single Sample and Hold

Multiple Sample and Hold

FIGURE - 27 SINGLE VS MULTIPLE SAMPLE AND HOLD CONCEPT

B. SYSTEM ACQUISITION SPEED

As presented, the acquisition system was limited to an absolute maximum sampling rate of 500 Hz for more than one analog channel input. This rate could be improved for a few more channels to a maximum of 1 KHz with modifications to the timer interrupt and use of the program interrupt mode on the SINETRAC-800.

For any significant improvement, however, the actual start of scan trigger would require alternate sourcing. The A/D board provided for an on-board control of the scan clock or external triggering. A modification to the triggering of the scan clock could be effected with minimal additional circuitry of local design, utilizing a general purpose proto-typing circuit board for generation of a strobe or sensing of an external syncronization pulse. It is important to realize that any such design should attempt to retain software control over the sampling rate so as not to lose this flexibility feature.

Tremendous reductions in software could be realized with the addition of the Direct Memory Access module. This addition would increase the maximum scan rate attainable from .5 KHz to approximately 11 KHz for 6 channels or from 1 KHz to 33 KHz for 2 channels of input.

In short, the addition of a DMA module is highly recommended in consideration of the multiple improvements in system performance that it affords for a modest expenditure.

C. DATA REDUCTION

The concept of locally reducing the data has many advantages, and likewise disadvantages, which must be considered in future modifications to the system. decision to locally reduce data was based upon two major factors. First, it was desired that the feasibility of local reduction on a microprocessor be investigated. Secondly, during the design stages the only communications link available to the W.R. Church computer facility IBM-360 for remote processing was via Teletype speed (110 baud) modem. Anticipating the generation of words of data each experimental transmission over the existing time-share system network was deemed unreasonable. Transfer of this volume of data would have required at best 7 hours real time, assuming minimal handshaking and system interruptions. The potential of generating several data diskettes during one experimental session renders a slow transmission rate link totally impractical. The CP/CMS system did not, at that time, exhibit the reliability necessary for such a link to be used effectively. At the time of this writing the computer center was completing the installation of communication links capable of 9600 baud. transmission rates. At this rate, a full diskette (250K bytes) could be transmitted in as few as 5 minutes. This capability would greatly enhance the computing power of the system, considering the increased sophistication of reduction techniques and output facilities (plotters, high speed printers, etc.) which would then be made available.

Should the autonomy of the system be an over-riding consideration, it is recommended that a high speed printer,

Digital to Analog (D/A) module and an X-Y plotter be included as suplementary system peripherals. The inclusion of an external mathematics module would further improve the system's computational speed and efficiency. Such a module, commercially available, would perform all floating-point mathematical operations (add, subtract, multiply and divide) in circuitry external to the 8080 microprocessor at approximately ten times the speed currently available. The addition of these modules and peripherals would upgrade the system into a completely independent, highly flexible data acquisition and computational device capable of a multitude of data logging or analytical tasks.

APPENDIX A

GLOSSARY

- accuracy: The ability of a measurement system to determine the true level or state of a variable in terms according to standards of reference.
- A/D: analog to digital (adjective or noun)
- 3. Alias: When varying signals are sampled at equally spaced intervals, two frequencies are considered to be aliases of one another if they cannot be distinguished from each other by an analysis of their equally spaced values.
- 4. ASCII: American Standard Code for Information Interchange. This is a seven-bit-plus-parity code established by the American National Standards Institute to achieve compatibility between data services. Also called USASCII.
- 5. assembly: A listing which contains both source code and machine code.
- 6. BAUD: A data transmission rate expressed in BITs per second.
- BIT: BInary digit. A single unit of information in a binary word.
- 8. buffer: A group of memory locations used to store specific data (input data, constants, output data, etc.).

- byte: An eight-BIT word which is processed as a single quantity.
- 10. CPU: Central Processing Unit. The area of the microprocessor which computes and sequences all logic and arithmetic functions.
- 11. CRT: Cathode Ray Tube A television-like picture tube used in visual display terminals.
- 12. D/A: The inverse of the A/D process.
- 13. DMA: Direct Memory Access a facility that permits I/O transfers directly into or out of memory without passing through the processor's general registers; either performed independently of the processor or on a cycle-stealing basis.
- 14. EPRCM: erasable/programmable read only memory
- 15. Folding Frequency: The lowest frequency which is its own alias, or that which is one-half the sampling rate when samples are continuously made at equal intervals.
- 16. I/O: input/output
- 17. K: A suffix which indicates a group of 1024 (2) items as in '4K of memory' meaning 4096 memory locations.
- 18. Lag: A difference in time of occurrence between two events.
- 19. machine code: The BIT patterns actually used by the U-P in order to carry out its assigned logic functions.
- 20. MODEM: MOdulator DEModulator an electronic device which modulates signals transmitted over communications circuits.
- 21. MUX: a multiplexing device
- 22. . nibble: The upper or lower four BITs in one byte.

- 23. page: a 256 byte segment of memory
- 24. RAM: Random access memory. Volatile memory used for variable storage and data manipulation.
- 25. register: A storage location located in the CPU.
- 26. Resolution: The ability to determine signal differences in varying signals.
- 27. ROM: read only memory, non-volatile
- 28. Sample and Hold: A device for sampling the amplitude of a signal at a given time and holding that amplitude.
- 29. Sampling Theorem: Nyquist's result that equi-spaced data, with two or more points per cycle of highest frequency, allows reconstruction of band-limited functions.
- 30. software: The program which resides in the U-P's memory.
- 31. source code: The program written by the user.
- 32. U-P: microprocessor

APPENDIX B

PROGRAM PLOW DIAGRAMS

RCQUIRE PROGRAM FLOW DIRGRAM

ACQUIRE PROGRAM FLOW DIRECTA (CONT)

ACQUIRE PROGRAM FLOW DIRERAM (CONT)

CONVERT PROGRAM FLOW CHART

APPENDIX C

PROGRAM LISTINGS

```
*************
                     EQUATES FOR DATA ACQUISITION MODULE
              **************
                             PORT ASSIGNMENTS
              PORTO
                     EQU
0000 =
                             0
                     EQU
0001 =
              PORTI
                             1
0002 =
              PORT2
                     EQU
                             2
                     EQU
                             3
              PORT3
0003 =
                     SINETRACK 800 ADDRESS ASSIGNMENTS
             BASE
0010 =
                     EQU
                            10H
                     EQU
                            BASE
0010 =
              DSTAT
0011 =
                     EQU
                            BASE+1
              DDATA
                     EQU
                            BASE + 1
0011 =
              START
0013 =
                            BASE + 3
              CONV
                     EQU
0012 =
                            BASE +2
             FINAL
                     EQU
0012 =
              RDCUR
                     EQU
                            BASE+2
0013 =
             RDFNL
                     EQU
                            BASE+3
0001 =
              EOC
                     EQU
                            1
0080 =
              EOS
                     EQU
                            80H
              DCMD
                     EQU
0000 =
                            0
                     GENERAL I/O ASSIGNMENTS
00F4 =
              TDATA
                     EQU
                            OF 4H
                                    :ITY DATA
                                    TTY STATUS
                            OF 5H
00F5 =
              TSTAT
                     EQU
                                    ;TTY CONTROL
00F5 =
                     EQU
                            OF5H
              TCMD
00F6 =
                                    CRT DATA
              CDATA
                     EQU
                            OF 6H
                                   CRT STATUS
                     EQU
                            OF 7H
00F7 =
              CSTAT
00F7 =
             CCMD
                     EQU
                            OF 7H
                                 ;INTERUPT MASK
OOFC =
             INTMSK EQU
                            OFCH
                     EQU
                            OFFH
                                   REAL TIME CLOCK
OOFF =
             RCLK
                     GENERAL EQUATES
                                    :BDOS ENTRY POINT
                     EQU
0005 =
              ENTRY
                            005H
                                    ; BOOT POINT
                     EQU
0000 =
              BOOT
                            OOH
005C =
                            05CH
                                    : DEFAULT FCB
                     EQU
              TFCB
                                    :DEFAULT BUFFER
              TBUFF
                     EQU
0080 =
                            080H
0001 =
                     EQU
              TXRDY
                            1
             RXRDY
                     EQU
                            2
0002 =
              CR
                     EQU
                            ODH
000D =
                     EQU
             LF
                            OAH
000A =
              **************
                            BUFFER ALLOCATION &
```

DATA ORGANIZATION ************* ORG 100H : VARIABLE AREA 0100 BEGIN 0100 C30004 JMP 'READ ERROR S' 0103 5245414420MSG1: DB 'WRITE ERROR 5' 010F 5752495445MSG2: DB 'DISK FULL S' 011C 4449534B20MSG3: DB 'DIRECTORY FULL 5' 0127 4449524543MSG4: DB 'INVALID INPUT PARAMETER \$' 0137 494E56414CMSG5: DB ODH, ODH, ODH, 'ANY CHANGES? Y/N \$ ODH, ODH, ODH, 'EDIT CONTROL FILES ODH, ODH, ODH, 'DATA DISK PROTECTE 0150 ODODOD414EMSG6: DB 0165 ODODOD4544MSG7: DB 017B ODODOD4441MSG8: DB 'TIME 0193 54494D4520MSG10: DB SVO SV1 5' 'DATA TRUNCATED 5' 01AE 4441544120MSG11: DB 'GOOD RUN? Y/N \$ 01BE 474F4F4420MSG12: DB :,0,0,0,0,0,0,0 01CD 00434F4E54CNTRL: DB O, 'CONTROL ,0,0,0,0,0,0,0 O, 'PROTECT 01E0 0050524F54PRTCT: DB O, CALVALU ,0,0,0,0,0,0,0 01F3 0043414C56CALIB: DB O, DATA 0206 0044415441DATA: ,0,0,0,0,0,0,0,0 DB 0 021A 00 DB EOFLG: 0 0215 0000 TIME: DW 0 021D 0000 TIMO: DW 0 021F 0000 GOTO: DW POINT: 0 :BUFFER POINTER 0221 0000 DW ;SCAN COUNTER 0 0223 0000 SCNTR: DW 0225 0000000000WORK: 0,0,0,0,0,0 : WORKING AREA DB 0 ; PAGE COUNTER 022B 0000 PAGER: DW RCDS: DB 0 ; RECORDS STORAGE 022D 00 0 :INITIAL SCANIVALVE O B 022E 00 SV00: DB 022F 00 SV01: 0 :FINAL SCANIVALVE O POS DB 0230 00 SV10: DB 0 ; INITIAL SCANIVALVE 1 B ;FINAL SCANIVALVE 1 POS 0 0231 00 SVII: DB ;FLAGO 0 0232 00 FLAGO: DB 0 :FLAGI DB 0233 00 FLAG1: 2000H ;START OF DATA AREA ORG 2000 DBUF: ICHNL: DB 0 2000 00 FCHNL: DB 0 2001 00 0 SVO: DB 2002 00 0 SVI: DB 2003 00 0 2004 0000 SCANS: DW 0 SCNRT: DW 2006 0000 0 2008 0000 FREQ: DW 200A 0000 0 DUMY: DW 2000 00000000 DW 0,0 START OF PROGRAM AREA ORG 400H 0400 BEGIN: 0400 31FF1F LXI SP, IFFFH; INITIALIZE STACK

LXI

0403 214207

H,TSVC ; LOAD INTERUPT VECTOR

```
0406 3EC3
                       MVI
                               A,003H
0408 320800
                       STA
                               08H
                               OSH
040B 220900
                       SHLD
040E CD1404
                       CALL
                               AUTO
                       JMP
                               BOOT
0411 C30000
               ***************
                       AUTO - AUTOMATIC CONTROL SEQUENCE
                       USES THE EXISTING CONTROL FILE IF
                       IF VALID, SCANS THE SPECIFIED ANALOG
                       CHANNELS AND RECORDS DATA ON DISK
               *************
               AUTO:
                              PRLOAD ; VALID CONTROL FILE? H, DATA+9 ; ADDR OF EXTENSION
0414 CD1705
                       CALL
0417 210F02
                      LXI
                               A,'0'
                                     :ASCII ZERO
041A 3E30
                      MVI
041C 77
                              M,A
                      MOV
                               H
                      INX
041D 23
                               M,A
                      MOV
041E 77
                               H
041F 23
                      INX
0420 77
                     MOV
                              M,A
                               SVOO ; FETCH INITIAL CHANNEL
0421 3A2E02
                     LDA
0424 320220
                     STA
                              SVO
                                    ;INITIALIZE SVO
                    LDA
                              SVIO
                                       :FETCH INITIAL CHANL
0427 3A3002
042A 320320
                      STA
                              SVI
                                       :INITIALIZE SVI
                                       ; CARRIAGE RET LN FEED
                              CRLF
042D CD4108
                      CALL
                               D,MSG10 ;"TIME,SVO,SV1"
0430 119301
                     LXI
0433 CD1108
                      CALL
                              PRINT
0436 AF
                      XRA
                                       :CLEAR ACCUMULATOR
                               Α
                      STA
                              FLAGO ; CLEAR FLAGO
0437 323202
043A 323302
                      STA
                              FLAGI :CLEAR FLAGI
               AUTIO:
                      LXI
                              D, 4000H ; SET HIGH ADDRESS
043D 110040
0440 211020
                              H, DBUF+10H
                      LXI
0443 OEOO
                      MVI
                              C,0
0445 CDE1F9
                      CALL
                              OFSEIH
0448 CDE808
                              SETVLV
                      CALL
044B 2A1B02
044E CD3408
                                       :FETCH CURRENT TIME
                              TIME
                      LHLD
                      CALL
                              PRHL
                                      ;PRINT H,L ON CRT
0451 CD0B05
                      CALL
                              TAB
0454 3A0220
                              SVO
                     LDA
                                       :FETCH
0457 CD2708
                              PHEX
                     CALL
                                      :PRINT ASCII PAIR
045A CD0B05
                     CALL
                              TAB
045D 3A0320
                     LDA
                              SVI
                              PHEX
0460 CD2708
                     CALL
0463 CDOE05
                      CALL
                              TAB
0466 CDC405
                              SCAN
                      CALL
                                      :FETCH BUFFER POINTER
0469 2A2102
                              POINT
                      LHLD
046C 7C
                      MOV
                              A.H
046D D620
                      SUI
                              20H
046F 67
                      MOV
                              H,A
0470 29
                      DAD
                              H
                                      :SHIFT LEFT ONE
```

```
JNC
                                 AUT20
0471 D27E04
                                 H.OFFH :SET MAX FILE LENGTH
0474 26FF
                        MVI
0476 E5
                         PUSH
0477 11AE01
                        LXI
                                 D,MSG11 ;"DATA TRUNCATED"
047A CD1108
                         CALL
                                 PRINT
047D E1
                        POP
                AUT20:
047E 7C
047F 3C
                         MOV
                                 A.H
                                          :NUMBER RCDS TO WRITE
                                          : INCREMENT BY ONE
                         INR
                                 A
                                          STORE IN RCD COUNTER POINT TO BEG OF DATA
0480 322D02
                         STA
                                 RCDS
0483 210020
                         LXI
                                 H, DBUF
                         LXI
                                 D.DATA
                                          :DATA FCB
0486 110602
                                 WRFILE
                                          ; WRITE THE DATA FILE
0489 CD9507
                         CALL
                                          FETCH LST TO BE SCND
                                 SVOI
048C 3A2F02
                        LDA
048F 47
                        MOV
                                 B.A
                                          :FETCH CURRENT SVO
0490 3A0220
                        LDA
                                 SVO
0493 B8
                        CMP
                                 В
                                          :SAME?
                                          :NO - DON'T SET FLAGO
                                 AUT22
0494 C2A604
                        JNZ
                AUT21:
                        MVI
                                 A,OFFH
0497 3EFF
                         STA
                                 FLAGO
                                          ;SET FLAGO
0499 323202
                                          FETCH FIRST TO SCAN
                        LDA
                                 SVOO
049C 3A2E02
                         DCR
                                 A
049F 3D
                         STA
                                 SVO
                                          :RESET CURRENT CHNL
04A0 320220
04A3 C3AB04
                        JMP
                                 AUT24
                AUT22:
04A6 FE18
                         CPI
                                 24
                                          :MAX VALUE EXCEEDED?
04A8 CA9704
                         JZ
                                 AUT21
                                          ;YES - SET FLAGO
                AUT24:
04AB 3A3102
                         LDA
                                 SVII
                                          :LAST SVI TO SCAN
04AE 47
                         MOV
                                 B.A
                                          FETCH CURRENT SVI
                                 SVI
04AF 3A0320
                         LDA
04B2 B8
                         CMP
                                 В
                                          ; SAME?
                                          :NO - DON'T SET FLAGI
04B3 C2C504
                                 AUT32
                         JNZ
                AUT31:
                        MVI
                                 A.OFFH
04B6 3EFF
                                          :SET FLAGI
04B8 323302
                         STA
                                 FLAG1
                                 SVIO
                                          :FETCH IST TO SCAN
04BB 3A3002
                         LDA
04BE 3D
                         DCR
                                 A
04BF 320320
                                          RESET CURRENT CHNL
                         STA
                                 SVI
04C2 C3CA04
                        JMP
                                 AUT34
                AUT32:
04C5 FE30
                        CPI
                                 48
                                          :MAX VALUE EXCEEDED?
04C7 CAB604
                        JZ
                                 AUT31
                                          :YES - SET FLAGI
                AUT34:
                                          :FETCH FLAGO
04CA 3A3202
                        LDA
                                 FLAGO
                        MOV
                                 B.A
04CD 47
                        LDA
                                 FLAGI
                                          :FETCH FLAGI
04CE 3A3302
                        MOV
                                 C,A
04D1 4F
                                          : BOTH SET?
04D2 A0
                        ANA
                                 B
04D3 C2F504
                        JNZ
                                 EXIT
                                          :YES - EXIT AUTO MODE
```

```
NEXT:
04D6 3A0220
                       LDA
                               SVO
                                       STEP ONCE
04D9 3C
                       INR
                               A
                               SVO
04DA 320220
                       STA
04DD 3A0320
                       LDA
                               SVI
04E0 3C
                       INR
                               Α
                                       STEP ONCE
                       STA
                               SVI
04E1 320320
                               H, DATA+11 ; LOAD ADDR OF EXT
04E4 211102
                       LXI
               NEXTI:
                               A,M ;FETCH ASCII VALUE OF LSB
                       MOV
04E7 7E
04E8 3C
04E9 77
                                       :INCREMENT IT
                       INR
                               A
                               M,A
                                       :RESTORE IN MEMORY
                       MOV
                               ':'
04EA FE3A
                       CPI
                                       :EXCEED 9?
                               AUTIO
                                       :NO - SCAN AGAIN
O4EC DA3DO4
                       JC
                       MVI
                                       ; RESTORE IN MEMORY
04EF 3630
                               M,30H
                                       GET NEXT MSB
04F1 2B
                       DCX
                               H
                       JMP
                               NEXT 1
                                       : ADJUST NEXT MSB
04F2 C3E704
               EXIT:
                               D.MSG12 : "GOOD RUN Y/N"
04F5 11BE01
                       LXI
                               PRINT
04F8 CD1108
                       CALL
                               CRTIN
                                       GET CHAR FROM CONS
04FB CDFC07
                       CALL
04FE FE59
                       CPI
                               . Y.
                                       :YES RESPONSE?
0500 CO
                                       : NO - RETURN
                       RNZ
                               D.PRTCT
0501 11E001
                       LXI
0504 CD5106
                       CALL
                               SETFCB
                                        : WRITE PROTECT FILE
0507 CDAE08
                       CALL
                               MAKE
050A C9
                       RET
               TAB:
                       MVI
                                       :COUNTER FOR 8 BLANKS
050B 0608
                               B,8
               TAB1:
                                       :ASCII BLANK
050D 3E20
                       MVI
                               HOS. A
                                      :SEND TAB CHAR TO CRT
050F CD0508
                       CALL
                               CRIOUT
0512 05
                       DCR
                               B
0513 C20D05
                               TABI
                       JNZ
0516 C9
                       RET
               **************
                       PRLOAD - READS IN CONTROL FILE AND
                               EXECUTES IF VALID
               PRLOAD:
0517 CD5008
                       CALL
                               LOGA
                                      :LOGIN DISK A
                               D.CNTRL :PT TO CNTRL FILE BLK
051A 11CD01
                       LXI
                               H, DBUF+10H ; PT TO DATA BUFFER
051D 211020
                       LXI
                       CALL
                               RDFILE : RD CNTRL FILE
0520 CD7007
0523 111020
                               D, DBUF+10H
                       LXI
                       PUSH
0526 D5
                               D
                                       :SAVE
                               PRINT
                                       :DISPLAY CONTROL FILE
0527 CD1108
                       CALL
052A E1
                                       RESTORE H
                       POP
                               H
                               COLON
052B CDDB06
                       CALL
                                     ;LOOK FOR FIRST COLON
052E CDDB06
                      CALL
                                      :LOOK FOR 2ND COLON
                               COLON
```

```
CALL
                                COLON
                                        :FIND THIRD COLON
0531 CDDB06
                        PUSH
0534 E5
                                Н
                                        :FLOATING TO HEX
                        CALL
                                FLTHX
0535 CDE306
                        SHLD
                                SCANS
                                        STORE HEX IN SCANS
0538 220420
                        POP
                                H
053B E1
                                        :FIND NEXT COLON
053C CDDB06
                        CALL
                                COLON
053F E5
                       PUSH
                                H
                                FLTHX
                        CALL
                                        :FLOATING TO HEX
0540 CDE306
                                        STORE IN SCAN RATE
                        SHLD
                                SCNRT
0543 220620
0546 E1
                       POP
                                H
                                        :FIND NEXT COLON
                                COLON
0547 CDDB06
                        CALL
054A E5
                        PUSH
                                Н
                                        : CONVERT
                                FLTHX
                        CALL
054B CDE306
                                        FETCH RETURNED VALUE
                       MOV
                                A.L
054E 7D
                                ICHNL
                                        :PUT IN INITIAL CHNL
054F 320020
                        STA
                       POP
0552 E1
                        CALL
                                COLON
0553 CDDB06
0556 E5
                       PUSH
                                H
0557 CDE306
                                FLTHX
                       CALL
                                        :FETCH RETURNED BYTE
055A 7D
                       MOV
                                A,L
                                        STORE IN FINAL CHNL
                       STA
                                FCHNL
055B 320120
                       POP
                                Н
055E E1
055F CDDB06
                       CALL
                                COLON
0562 E5
                       PUSH
                                H
                       CALL
                                FLIHX
0563 CDE306
                       MOV
                                A,L
0566 7D
                                        : IST SCANIVALVE O SET
                                SVOO
0567 322E02
                       STA
056A E1
                       POP
                       CALL
                                COLON
056B CDDB06
056E E5
                       PUSH
                                Н
                       CALL
                                FLTHX
056F CDE306
                       MOV
0572 7D
                                A.L
                                        :LST SCANIVALVE O SET
0573 322F02
                       STA
                                SVOI
0576 E1
                       POP
                                H
0577 CDDB06
                       CALL
                                COLON
                       PUSH
057A E5
                                Н
057B CDE306
                       CALL
                                FLTHX
                       MOV
057E 7D
                                A.L
057F 323002
                       STA
                                SVIO
                                        : IST SCANIVALVE I SET
0582 E1
                       POP
                                H
0583 CDDB06
                       CALL
                                COLON
                       PUSH
0586 E5
                                H
0587 CDE306
                                FLIHX
                       CALL
058A 7D
                       MOV
                                A.L
                                        :LST SCANIVALVE I SET
0585 323102
                       STA
                                SVII
                       POP
058E E1
                                H
               ***************
                       CHECK WITH OPERATOR FOR VALID CONTROL
```

```
D,MSG6 ;"ANY CHANGES?"
058F 115001
                     LXI
0592 CD1108
                     CALL
                            PRINT
                     CALL
0595 CDFC07
                             CRTIN
                                    :GET CHAR FROM CONS
                                    "NO" RESPONSE?
                             .N.
                     CPI
0598 FE4E
                                    "EDIT CONTROL FILE"
                     LXI
                             D,MSG7
059A 116501
                            ERREX ; EXIT PROGRAM
059D C2DA07
                     JNZ
              ********************
                     WRITE THE CONTROL FILE ON DISK B
              TFCB+15 :FETCH RECORD COUNT
05A0 3A6B00
                     LDA
05A3 3C
                     INR
                            Α
                                    STORE IN MEMORY
                     STA
                            RCDS
05A4 322D02
                            LOGB
                                   ;LOGIN DISK B
                     CALL
05A7 CD5808
                            D.PRICT :PT TO PROTECT BLOCK
                     LXI
05AA 11E001
                            SETFCB :SET FCB
05AD CD5106
                     CALL
                     CALL
                            SEARCH
                                   :SEARCH FOR PROTECT
05B0 CDBE08
                                    ; DOES IT EXIST?
05B3 3C
                     INR
                            D, MSG8 ; "DATA DISK PROTECTED"
                    LXI
05B4 117B01
                                    :YES - EXIT PROGRAM
05B7 C2DA07
                     JNZ
                            ERREX
                            D.CNTRL :PT TO CONTROL BLOCK
05BA 11CD01
                     LXI
                            H, DBUF+10H ; PT TO STORED INFO
05BD 211020
                     LXI
                            WRFILE ; WRITE CONTROL TO B
05C0 CD9507
                     CALL
05C3 C9
                     RET
              *************
                     SCAN - COMPLETES N SCANS OF M CHNLS
                     ENTRY:
                            SCANS = NUMBER OF SCANS
                            ICHNL =INITIAL CHNL TO SCAN
                            FCHNL = FINAL CHANNEL TO SCAN
                            TIME = 2 BYTE TIME IN MS
                            EXIT:
                                  REGISTERS UNCHANGED
              SCAN:
05C4 E5
                     PUSH
                            H
                     PUSH
05C5 D5
                            D
05C6 C5
                     PUSH
                            B
05C7 F5
                     PUSH
                            PSW
                     LDA
                                    :FETCH INITIAL CHANNEL
05C8 3A0020
                            ICHNL
                            START
05CB D311
                    OUT
                                    SET IT
                                    :FETCH FINAL CHANNEL
05CD 3A0120
                    LDA
                            FCHNL
05D0 D312
                    OUT
                            FINAL
                                    SET IT
05D2 2A0620
                    LHLD
                            SCNRT
                                    :FETCH SCAN RATE
                                    STORE IN TIME FACTOR
05D5 221D02
                     SHLD
                            TIMO
05D8 21FD05
                            H, SCANA ; GET INT SVC JUMP
                    LXI
                                    ; ENABLE INT TIMER
O5DB CD2EO7
                     CALL
                            TIMER
                    LHLD
                                    ;FETCH # OF SCANS
05DE 2A0420
                            SCANS
                                   PUT IN SCAN COUNTER
05E1 222302
                    SHLD
                            SCNTR
05E4 2A1B02
                     LHLD
                            TIME
                                    :FETCH TIME
05E7 211020
                            H, DBUF+10H ; GET BUFFER LOCAT
                     LXI
05EA 222102
                     SHLD
                            POINT :STORE IN POINTER
             SCAN8:
```

```
:FETCH SCAN COUNT
                              SCNTR
                      LHLD
05ED 2A2302
                      MOV
                              A,H
05F0 7C
                              L
                                      :FINISHED?
                      ORA
05F1 B5
                                     ; NO - KEEP SCANNING
                              SCAN8
05F2 C2ED05
                      JNZ
                              TIMOFF
                                      :KILL INTERUPT ROUTINE
05F5 CD6907
                      CALL
                      POP
                              PSW
05F8 F1
                      POP
                              В
05F9 C1
O5FA DI
                      POP
                              D
                              Н
                                     ; RETORED
05FB E1
                      POP
05FC C9
                      RET
              SCANA:
OSFD E5
                      PUSH
                              H
05FE D5
                      PUSH
                              D
05FF C5
                      PUSH
                              В
                             PSW
0600 F5
                      PUSH
                                     GET SCAN RATE
0601 2A0620
                      LHLD
                              SCNRT
                                    RESET TIMOUT FACTOR
                      SHLD
0604 221D02
                             TIMO
0607 2A2102
                     LHLD
                             POINT
                                     GET BUFFER POINTER
                              A, DCMD ; INITIALIZATION CMD
060A 3E00
                      MVI
                                     SET FLIP FLOPS
060C D310
060E 3A1E02
                      OUT
                              DSTAT
                      LDA
                              TIME
                      MOV
                              M,A
                                     STORE IN BUFFER
0611 77
0612 23
                      INX
                              H
                                     MOVE POINTER
                              TIME+1 :GET 2ND BYTE OF TIME
0613 3A1C02
                      LDA
                              M,A ;STORE IN DATA CELL
0616 77
                      MOV
0617 23
                              H
                                     :MOVE POINTER
                      INX
             SCANO:
                                     START CONVERSION
0618 D313
                      OUT
                              CONV
                                      ;SET DELAY COUNTER
061A 3E02
                      MVI
                              A,2
061C 00
                      NOP
                                      :EXTRA DELAY
              SCANI:
                                     ;QUIT LOOP?
                      DCR
061D 3D
                              A
                                     ; NO - KEEP COUNTING
061E C21D06
                      JNZ
                              SCANI
                                     ;FETCH STATUS
                              DSTAT
                      IN
0621 DB10
                              EOC
                      ANI
0623 E601
                                    ;YES - GO READ DATA
                              SCAN3
0625 023106
                      JNZ
                              M,OOH ; INSERT ERROR FLAG
0628 3600
                      MVI
                              Н
                                      MOVE POINTER
062A 23
                      INX
062E 3600
                              M,OOH
                                      ; INSERT ERROR FLAG
                      MVI
                                      :MOVE POINTER
                              H
062D 23
                      INX
062E C33906
                              SCAN4
                                     :READ NEXT CHANNEL
                      JMP
              SCAN3:
                              DDATA
                                     GET LSB OF DATA
0631 DB11
                      IN
0633 77
                      MOV
                              M,A
                                     STORE
                      INX
                              H
                                     MOVE POINTER
0634 23
                              DDATA
                                     GET MSB OF DATA
0635 DB11
                      IN
0637 77
                      MOV
                              M,A
                                     :STORE
                                     MOVE POINTER
0638 23
                      INX
              SCAN4:
                              DSTAT
                      IN
                                     :FETCH STATUS
0639 DE10
                                     END OF SCAN?
063B E680
                              EOS
                      ANI
```

```
SCANO ; NO - CONV NEXT CHNL
                    JZ
063D CA1806
                    SHLD POINT
                                   STORE POINTER
0640 222102
                           SCNTR
                                  FETCH SCAN COUNT
                     LHLD
0643 2A2302
                           Н
                                  COUNT DOWN ONE
                    DCX
0646 2B
                           SCNTR
                     SHLD
                                  :RESTORE UPDATED COUNT
0647 222302
064A F1
                    POP
                           PSW
                     POP
064B C1
                            Б
064C D1
                    POP
                            D
064D E1
064E C35C07
                     POP
                            H
                                  ; RETURN
                     JMP
                            TSVCO
              ***************
                     SETFCB - MOVES AN INITIAL FCB INTO
                            TFCB AREA
                            ENTRY: D,E = FILNAME BLOCK
              ***************
             SETFCB:
                           Н
                     PUSH
                                  ;SAVE
0651 E5
                          H,05CH ; DEFAULT FCB
0652 215000
                     LXI
                          B,19 SET C
0655 C5
                     PUSH
                                  SET COUNTER
0656 0613
                     MVI
             SETF1:
                    LDAX D
MOV M,A
                                   ;FETCH BYTE TO MOVE
0658 1A
0659 77
                                   STORE IN TECH AREA
                     INX
                           H
                                   ; INCREMENT H
065A 23
                           D
                                   :INCREMENT D
                     INX
065B 13
                          В
                    DCR
                                   :FINISHED?
065C 05
                    JNZ SETF1
                                   : NO -GET ANOTHER BYTE
065D C25806
                                   CLEAR ACCUM
0660 AF
                     XRA
                           A
                           TFCB+32
0661 327000
                     STA
0664 C1
                    POP
                           В
                     POP
0665 E1
0666 C9
                     RET
              DECHX - CONVERTS 6 BCD BYTES TO 2 HEX
                            ENTRY: SIX BCD BYTES STARTING
                                   AT 'WORK'
                            EXIT: TWO HEX AT 'WORK+4'
             DECHX:
                          H, WORK ; POINT TO WORK AREA
0667 212502
                     LXI
                            D,H ; DUPLICATE IN D
066A 54
                     MOV
                                   ; DUPLICATE IN E
                            E,L
066B 5D
                     MOV
066C CD8506
                           HEXBIN ; CONVERT IST PR TO HEX
                     CALL
                                   ;STORE IN WORK
066F 12
                     STAX
                           D
0670 13
                    INX
                           D
                                   :MOVE STORAGE POINTER
                    CALL HEXBIN ; CONVERT SECOND PAIR STAX D ; STORE IN WORK+1 INX D ; MOVE POINTER CALL HEXBIN ; CONVERT THIRD PAIR
0671 CD8506
0674 12
0675 13
0676 CD8506
```

```
0679 12
                       STAX
                               D
067A 13
                       INX
                               D
                                       CLEAR ACCUMULATOR
067B AF
                       XRA
                               A
                                       ;LOAD ZERO IN WORK+3
067C 12
                       STAX
                               D
                                       MOVE POINTER
067D 13
                       INX
                               D
                               H, WORK
067E 212502
                       LXI
                               BCD2HX
0681 CD8E06
                       CALL
0684 C9
                       RET
                                       ; RETURN
               :SUBROUTINES - BCD2HX AND HEXBIN
               *************
               HEXBIN:
0685 7E
                       MOV
                               A.M
                                      :FETCH IST BYTE
0686 17
                       RAL
0687 17
                       RAL
                       RAL
0688 17
                                       SHIFTED TO HIGH NIB
0689 17
                       RAL
068A 23
                       INX
                               H
                                       :MOVE POINTER
                       ORA
                                       ; BRING IN LOW NIBBLE
068B B6
                               M
068C 23
                       INX
                                       :MOVE POINTER
                               H
068D C9
                       RET
                                       :RETURN
               BCD2HX:
068E CDC906
                       CALL
                               BCDBN
0691 23
                       INX
                               H
0692 CDC906
                       CALL
                               BCDBN
0695 23
                       INX
0696 CDC906
                       CALL
                               BCDBN
0699 CD9D06
                       CALL
                               MULT
069C C9
                       RET
               MULT:
069D 3A2502
                       LDA
                               WORK
06A0 5F
                       MOV
                               E,A
06A1 1600
                               D,0
                       MVI
06A3 210000
                       LXI
                               H,0
06A6 CDC106
                       CALL
                              MULIO
06A9 EB
                      XCHG
06AA 210000
                      LXI
                               H,0
OGAD CDC106
                      CALL
                              MULIO
06B0 3A2602
                      LDA
                               WORK+1
06B3 1600
                      MVI
                               D,0
06B5 5F
                      MOV
                               E,A
                      CALL
                              MULIO
06B6 CDC106
                               WORK+2
06B9 3A2702
                      LDA
06BC 1600
                      MVI
                               D.0
06BE 5F
                      MOV
                              E,A
06BF 19
                       DAD
06C0 C9
                      RET
              MULIO:
                      MVI
                              B.100
06C1 0664
```

```
MUL20:
                           D
                    DAD
06C3 19
                    DCR
                           B
0604 05
                    JNZ
                           MUL20
06C5 C2C306
                    RET
06C8 C9
             BCDBN:
                    MOV
06C9 7E
                           A.M
O6CA 4F
                    MOV
                           C,A
OGCB EGOF
                    ANI
                           OFH
06CD 5F
                    MOV
                           E,A
06CE 79
06CF E6F0
                    MOV
                           A.C
                    ANI
                           OFOH
06D1 OF
                    RRC
                    RRC
06D2 OF
                    MOV
                           C.A
06D3 4F
                    RRC
06D4 OF
                    RRC
06D5 OF
                           C
06D6 81
                    ADD
06D7 07
                    RLC
                           E
06D8 83
                    ADD
06D9 77
                    MOV
                           M,A
06DA C9
                    RET
             COLON - FINDS THE NEXT COLON ":"
IN MEMORY STARTING AT H,L
                           EXIT:
                                 H,L POINTS TO MEMORY
                                  POSITION AFTER ":"
             **************
             COLON:
                          A, ':'
06DB 3E3A
                    MVI
             COLIO:
                    CMP
OGDD BE
                           M
                    INX
                           H
06DE 23
06DF C2DD06
                    JNZ
                           COLIO
06E2 C9
                    RET
             FLTHX - SCANS A BLOCK OF MEMORY FOR
                           BCD ASCII CHARACTERS AND
                           CONVERTS THEM TO A PAIR OF
                           HEX BYTES
             FLTHX:
                           B,6 ;SET LOOP COUNTER
06E3 0606
                    MVI
                           H
B
06E5 E5
                    PUSH
                                  ; SAVE
06E6 C5
                    PUSH
                                  ; SAVE
                           H, WORK ; INITIALIZE
06E7 212502
                    LXI
OGEA AF
                    XRA
                           A
                                  ; WORK
             FLTO4:
                           M , A
06EB 77
                    MOV
                                         AREA
06EC 23
                    INX
                           H
                                           TO
```

```
ZEROS
                       DCR
06ED 05
                               В
                               FLT04
                       JNZ
OGEE CZEBOG
                                        ; RESTORE
                       POP
06F1 C1
                               В
                       POP
                                        ; RESTORE
                               H
06F2 E1
               FLT05:
                               A,M
                                        :FETCH FIRST CHAR
06F3 7E
                       MOV
                                        :IS IT A BLANK?
                       CPI
06F4 FE20
                               FLTIO
                                        :YES - IGNORE IT
O6F6 CAOFO7
                       JZ
                                        :IS IT A CARRIAGE RIN
O6F9 FEOD
                       CPI
                               CR
                                        YES QUIT SCANNING MASK OFF LOW NIBBLE
06FB CA1307
                       JZ
                               FLT20
OGFE EGFO
                       ANI
                               OFOH
                                        ; IS IT IN HEX RANGE?
0700 FE30
                       CPI
                               30H
                                        :NO - IT IS AN ERROR
0702 C22807
                       JNZ
                               FLT30
                       MOV
                                        :FETCH THE WORD AGAIN
0705 7E
                               A.M
                       CPI
                                        : IS IT > 9
0706 FE3A
                               3AH
                                        :YES - IT IS AN ERROR
                       JP
0708 F22807
                               FLT30
                                        COUNT AS A VALID HEX
                       DCR
070B 05
                               В
070C FA2807
                               FLT30
                                        :ERROR IF > 6 NUMBERS
                       ML
               FLT10:
070F 23
                       INX
                                        :STEP MEMORY POINTER
                               FLT05
                                       SCAN AGAIN
0710 C3F306
                       JMP
               FLT20:
                       MVI
0713 3E06
                               A,6
                                        ; COMPUTE # DIGITS
                               В
                       SUB
0715 90
                       MOV
                               B,A
                                        STORE IN B
0716 47
                                        :BACK SPACE POINTER
0717 2B
                       DCX
                               Н
                               D. WORK+5: POINT TO WORK AREA
0718 112A02
                       LXI
               FLT25:
071B 7E
                       MOV
                                        FETCH NEXT LSB
                               A.M
071C E60F
                       ANI
                                       :CONVERT TO BCD
                               OFH
071E 12
                       STAX
                               D
                                        STORE IN WORK AREA
                                       MOVE POINTER
MOVE SOURCE POINTER
071F 1B
                       DCX
                               D
0720 2B
                       DCX
                               H
0721 05
                       DCR
                               B
                                       COUNT DOWN
0722 C21B07
                                      ;DO AGAIN
                       JNZ
                               FLT25
                               DECHX : CONVERT TO HEXBYTE
0725 C36706
                       JMP
               FLT30:
0728 113701
                       LXI
                               D.MSG5 ;"INVALID INPUT FIELD"
072B C3DA07
                       JMP
                               ERREX
               **************
                       TIMER - INTERUPTS TO SPECIFIED
                               ROUTINE AFTER NN MILLISECONDS
                       ENTRY:
                              H.L = STARTING ADDR
                               OF INTERUPT SERVICE ROUTINE
                               D,E = TIMEOUT IN MS
                       EXIT:
                               REGISTERS REMAIN UNCHANGED
                               SERVICE ROUTINE IS EXECUTED
                               INTERUPT ROUTINE SHOULD LOOK
                               LIKE NORMAL SUBROUTINE
               ************************
```

```
TIMER:
                       DI
072E F3
                                        STORE JUMP ADDRESS
                       SHLD
                               GOTO
072F 221F02
                                       FETCH INT MASK
                       IN
                               INTMSK
0732 DBFC
                                        ; ENABLE TIMER INT
                               OFDH
                       ANI
0734 E6FD
                                        ; SET INTERUPT MASK
                               INTMSK
                       OUT
0736 D3FC
                       MVI
                               A,12H
0738 3E12
                                        :INIT INT CONTROLLER
                       OUT
                               OFDH
073A D3FD
073C 3E02
                       MVI
                               A,02H
                                        START TIMER
073E D3FF
                       OUT
                               OFFH
                       EI
0740 FB
0741 C9
                       RET
                               TIMER INTERUPT SERVICE
               ;
               TSVC:
0742 F3
                       DI
                                       :DISABLE INTERUPTS
                               PSW
0743 F5
                       PUSH
                                       :SAVE A
                       PUSH
0744 E5
                               H
                               A,02H
0745 3E02
                       MVI
0747 D3FF
                                       ; RESET TIMER
                       OUT
                               OFFH
                                       GET TIME
0749 2A1B02
                       LHLD
                               TIME
                                       ; UPDATE
074C 23
                       INX
                               H
074D 221B02
                       SHLD
                               TIME
                                       :RESTORE
                                       GET TIMOUT COUNT
0750 2AID02
                       LHLD
                               TIMO
                                       COUNT DOWN
0753 2B
                       DCX
                               H
                               TIMO
                                       : RESTORE IT
0754 221D02
                       SHLD
                                       GET MSB OF COUNT
0757 7C
                       MOV
                               A,H
0758 B5
                                       OR WITH LSB OF COUNT
                       ORA
                               TSVCI
                                       ;TO INT ROUTINE IF O
0759 CA6507
                       JZ
               ISVCO:
                       POP
                                       : RESTORE
075C E1
                               H
075D F3
                       DI
                               A,20H
                                       RESTORE INT LEVEL
075E 3E20
                       MVI
                               OFDH
0760 D3FD
                       OUT
                       POP
                               PSW
                                       : RESTORE
0762 F1
                                       ; ENABLE INTERUPTS
                       ΞI
0763 FB
0764 C9
                       RET
                                       :RETURN
               ISVC1:
                                       :FETCH JUMP ADDRESS
0765 2A1F02
                       LHLD
                               GOTO
                       PCHL
                                       : EXECUTE JUMP
0768 E9
                ***************
                       TIMOFF - TURNS OFF INTERUPT SERVICE
               **************
               TIMOFF:
                               PSW
                       PUSH
0769 F5
076A 3E01
                       MVI
                               A.OIH
                               OFFH
076C D3FF
                       OUT
076E F1
                       POP
                               PSW
076F C9
                       RET
```

```
*************
                      RDFILE - READ AN ENTIRE FILE INTO
              ;*
                              MEMORY
              ;*
              ;*
                      ENTRY: STARTING ADDR OF MEMORY BLOCK
              ;*
                            IN H,L
              ;*
                             ADDR OF FILENAME BLOCK IN D.E
              *************
              RDFILE:
                                     :STORE POINTER
0770 222E02
                      SHLD
                             PAGER
                             SETFCB
0773 CD5106
                      CALL
0776 CD6008
                      CALL
                             OPEN
                                     : OPEN FILE
                                     :CLEAR ACCUM
0779 AF
                      XRA
                             A
                                     CLEAR EOF FLAG
                      STA
                             EOFLG
077A 321A02
              RDF10:
                                     :FETCH POINTER
                      LHLD
077D 2A2B02
                             PAGER
                                     :PUT POINTER IN D.E
                      XCHG
0780 EB
0781 CDC608
                      CALL
                             SETDMA
                                     :READ A RECORD
                      CALL
                             READ
0784 CD7008
                                     :MOVE PAGE INDEX
0787 CDC907
                      CALL
                             HAFPG
                                     ;FETCH EOF FLAG
078A 3A1A02
                      LDA
                             EOFLG
                                     :EOF FOUND?
                      ORA
078D B7
                             RDF10
                                     :NO - READ NEW PAGE
078E CA7D07
                      JZ
                                     :CLOSE FILE
0791 CD6808
                      CALL
                             CLOSE
                                     ; RETURN
0794 C9
                      RET
              WRFILE - WRITE A ELOCK OF MEMORY
                      ENTRY: NUMBER OF RECORDS+1 TO WRITE
                             STARTING ADDRESS IN H.L
              WRFILE:
                                     :SET UP PAGER
                      SHLD
                             PAGER
0795 222B02
                                     :SET FCB
                             SETFCB
0798 CD5106
                      CALL
                      LXI
079B 118000
                             D,80H
079E CDC608
                      CALL
                             SETDMA
                                     ; SEARCH FOR EXISTING
                      CALL
                             SEARCH
O7A1 CDEEOS
                                     : WAS THERE A MATCH?
07A4 3C
                      INR
                             A
                                     ; YES - SKIP MAKE
                             WRF05
07A5 C2AB07
                      JNZ
                      CALL
                             MAKE
                                     :MAKE DIRECTORY ENTRY
07A8 CDAE08
              WRF05:
                     CALL
                             OPEN
                                     OPEN FILE
07AB CD6008
              WRF10:
                                     ;FETCH CURRENT POINTER
07AE 2A2B02
                      LHLD
                             PAGER
07B1 EB
                      XCHG
                                     :PUT POINTER IN D.E
07B2 CDC608
                      CALL
                             SETDMA
              WRF15:
07B5 CD8A08
                      CALL
                             WRITE
                                     : WRITE A RECORD
07B8 CDC907
                      CALL
                             HAFPG
                                     :MOVE PAGE INDEX
07BB 3A2D02
                      LDA
                             RCDS
                                     : RECORDS TO WRITE
                             H,TFCB+15
07BE 216B00
                      LXI
```

```
CMP
O7CI BE
                                  ; NO-WRITE NEW RECORD
07C2 C2B507
                    JNZ
                           WRF15
07C5 CD6808
                           CLOSE
                                  CLOSE THE FILE
                    CALL
                                       RETURN
07C8 C9
                    RET
             SUBROUTINE HAFPGE - ADJUSTS DMA ADDRESS
                           HALF PAGE OF MEMORY
             **************
             HAFPG:
                                 ; SAVE
                    PUSH
07C9 E5
                          H
                          PAGER
07CA 2A2B02
                    LHLD
                    LXI
                           D,0128
07CD 118000
                                 ; ADD 128 TO PAGER
07D0 19
                           D
                    DAD
                                  RESTORE UPDATD PAGER
07D1 222B02
                    SHLD
                          PAGER
                                  ;SWITCH H,L WITH D.E
                    XCHG
07D4 EB
07D5 CDC608
                    CALL
                          SETDMA ; SET DMA
                    POP
                          H
07D8 E1
                    RET
07D9 C9
             *************
                    ERREX - FATAL ERRORS EXIT VIA THIS
                    ENTRY: D,E CONTAIN MESSAGE ADDRESS
                    EXIT: BOOT TO DOS
             ERREX:
07DA CD1108
                    CALL
                          PRINT
                                  PRINT THE MESSAGE
07DD 115C00
                    LXI
                          D.TFCB : TEMPORARY FCB
                          CLOSE :CLOSE THE FILE
07E0 CD6808
                    CALL
                                 ;BOOT TO DOS
07E3 C30000
                    JMP
                           BOOT
             DRIVERS - I/O SUBROUTINES CONTAINING
                            TTY, CRT, DISK, I/O PORTS
             *************
                          TTY DRIVERS
             TTYIN:
                                 ;FETCH STATUS
07E6 DBF5
                          TSTAT
                    IN
                    ANI
                          RXRDY
                                 :IS RECEIVER READY
07E8 E602
                                 :NO KEEP LOOKING
                          TTYIN
O7EA CAE607
                    JZ
                                 :FETCH DATA BYTE
O7ED DEF 4
                          TDATA
                    IN
07EF C9
                    RET
                                  :RETURN W/ EYTE IN A
             TTYOUT:
07F0 F5
                    PUSH
                          PSW
                                 :SAVE DATA BYTE
O7F1 DBF5
                                 :FETCH STATUS
                    IN
                          TSTAT
07F3 E601
                    ANI
                          TXRDY
                                 :TRANSMITTER RDY?
07F5 CAF007
                          TTYOUT
                    JZ
                                 :NO - WAIT UNTIL RDY
07F8 F1
                   POP
                          PSW
                                 ; BRING BACK DATA BYTE
07F9 D3F4
                          TDATA
                                 :OUTPUT TO TTY
                   OUT
07FB C9
                   RET
                                  : RETURN
```



```
CRTIN:
                                          :FETCH CRT STATUS
                                  CSTAT
O7FC DEF7
                         IN
                                           ; RECEIVER READY ?
                         ANI
                                  RXRDY
07FE E602
                                           ; NO - WAIT UNTIL RDY
                                  CRTIN
0800 CAFC07
                         JZ
                                           FETCH INPUT BYTE
                                  CDATA
0803 DBF6
                         IN
                CRTOUT:
                                           :SAVE DATA BYTE
0805 F5
                         PUSH
                                  PSW
                CRT1:
0806 DBF7
                                           :FETCH CRT STATUS
                         IN
                                  CSTAT
                                          :TXMITTER READY ?
                                  TXRDY
0808 E601
                         ANI
                                           ; NO - WAIT UNTIL RDY
                                  CRTI
080A CA0608
                         JZ
                                           BRING BACK DATA
                         POP
                                  PSW
080D F1
                                           ; OUTPUT DATA
                                  CDATA
                         OUT
080E D3F6
                         RET
                                           : RETURN
0810 C9
                PRINT:
                                           SET UP FOR BOOS CALL
                         MVI
                                  C,9
0811 0E09
                         JMP
                                  ENTRY
                                           :JUMP TO BDOS
0813 C30500
                PNIB:
                         ANI
                                           :MASK LOW 4 BITS
0816 E60F
                                  OFH
                         CPI
0818 FEOA
                                  10
                                  P10
                         JNC
081A D22208
                                  .0.
                         ADI
081D C630
081F C30508
                         JMP
                                  CRIOUT
                P10:
                                  'A' - 10
                         ADI
0822 C637
                         JMP
                                  CRIOUT
0824 C30508
                PHEX:
0827 F5
                         PUSH
                                  PSW
0828 OF
                         RRC
0829 OF
                         RRC
082A OF
                         RRC
082B OF
                         RRC
                                  PNIB
082C CD1608
                         CALL
                         POP
                                  PSW
082F F1
0830 CD1608
                         CALL
                                  PNIB
0833 C9
                         RET
                PRHL:
                         PUSH H
0834 E5
0835 7C
                         MOV
                                  A,H
0836 CD2708
                         CALL
                                  PHEX
                         POP
                                  H
0839 E1
                         PUSH
                                  H
083A E5
                                  A,L
                         MOV
083B 7D
                                 PHEX
                         CALL
083C CD2708
                         POP
                                  H
083F E1
                         RET
0840 C9
                CRLF:
                         MVI
                                  A,ODH
                                          :CARRIAGE RETURN
0841 3EOD
0843 CD0508
                         CALL
                                  CRIOUT
                         MVI
                                  A,OAH
                                          :LINE FEED
0846 3EOA
0848 C30508
                         JMP
                                  CRIOUT
```

```
INTIAL:
                         MVI
                                  C,13
OB 4B OE OD
                                  ENTRY
084D C30500
                         JMP
                 LOGA:
                         LXI
                                  D,00H
0850 110000
0853 OEOE
                         MVI
                                  C,14
                                  ENTRY
0855 C30500
                         JMP
                 LOGB:
                         LXI
                                  D,01H
0858 110100
085B 0E0E
                         MVI
                                  C,14
                                  ENTRY
085D C30500
                         JMP
                 OPEN:
                                  D,05CH
0860 115000
                         LXI
0863 OEOF
                                  C,15
                         MVI
0865 C30500
                         JMP
                                  ENTRY
                 CLOSE:
                                  D.05CH
0868 115000
                         LXI
086B 0E10
                         MVI
                                  C,16
                         JMP
                                  ENTRY
086D C30500
                READ:
0870 115C00
                         LXI
                                  D,05CH
                                  C,20
0873 OE14
                         MVI
0875 CD0500
                         CALL
                                  ENTRY
0878 B7
                         ORA
                                  A
0879 C8
                         RZ
                                           ; RETURN IF NO ERRORS
                                           ; IS IT AN EOF?
087A 3D
                         DCR
                                           ; NO -UNWRITTEN DATA
0875 C28408
                         JNZ
                                  RDOIO
                                           ;SET EOF FLAG
087E 3EOF
                         MVI
                                  A,OFH
                                  EOFLG
0880 321A02
                         STA
0883 C9
                         RET
                RDOIO:
                                           : 'READ ERROR'
                         LXI
                                  D.MSGI
0884 110301
0887 C3DA07
                                  ERREX
                         JMP
                 WRITE:
                                  D,05CH
                         LXI
088A 115C00
                                  C,21
088D 0E15
                         MVI
                                  ENTRY
088F CD0500
                         CALL
0892 B7
                         ORA
                                           RETURN IF NO ERRORS
0893 C8
                         RZ
                         DCR
0894 3D
                                  Α
                                  WR010
0895 C29E08
                         JNZ
                                  D,MSG2
                                           : 'WRITE ERROR'
0898 110F01
                         LXI
089B C3DA07
                         JMP
                                  ERREX
                WRC10:
                         DCR
089E 3D
089F C2A808
                                  WR 020
                         JNZ
                                           ; 'DISK FULL'
08A2 111C01
                         LXI
                                  D,MSG3
08A5 C3DA07
                         JMP
                                  ERREX
                WR020:
08A8 112701
                         LXI
                                  D.MSG4
                                           : 'DIRECTORY FULL'
                                  ERREX
OSAB C3DAO7
                         JMP
```

```
MAKE:
                      LXI
08AE 115C00
                              D,05CH
08B1 0E16
                       MVI
                              C,22
                       CALL
                              ENTRY
08B3 CD0500
                       INR
08B6 3C
08B7 CO
                       RNZ
                              D,MSG4
                                       : 'DIRECTORY FULL'
08B8 112701
                       LXI
                       JMP
                              ERREX
OSBB C3DAO7
               SEARCH:
                       LXI
                              D,05CH
08BE 115C00
                       MVI
                              C,17
08C1 0E11
08C3 C30500
                       JMP
                              ENTRY
               SETDMA:
                              C,26
                       MVI
08C6 0E1A
08C8 C30500
                       JMP
                              ENTRY
               *************
                      SETVLV - ALLOWS USER TO SET UP PROPER
                       SCANIVALVE POSITION BEFORE CONTINUING
               *************
                              'INPUT FREQUENCY TYPE RETURN S'
08CB 494E505554MESS:
                       DB
              SETVLV:
                       CALL
                              CRLF
08E8 CD4108
                              D.MESS
08EB 11CB08
                      LXI
08EE CD1108
                      CALL
                              PRINT
OSF1 CDFC07
                      CALL
                              CRTIN
                              OFH
                      ANI
08F4 E60F
                               WORK+2
                      STA
08F6 322702
                              CRTIN
O8F9 CDFCO7
                      CALL
OBFC EGOF
                      ANI
                              OFH
08FE 322802
                      STA
                               WORK+3
0901 CDFC07
                      CALL
                              CRTIN
0904 E60F
                              OFH
                      ANI
0906 322902
                      STA
                               WORK+4
0909 CDFC07
                      CALL
                              CRTIN
090C E60F
                      ANI
                              OFH
                              WORK+5
090E 322A02
                      STA
                              CRTIN
0911 CDFC07
                      CALL
0914 E67F
                       ANI
                              7FH
                      CPI
                              CR
0916 FEOD
                              SETVLV
0918 C2E808
                      JNZ
091B AF
                      XRA
                              A
0910 322502
                              WORK
                      STA
091F 322602
                              WORK+1
                      STA
0922 CD6706
                      CALL
                              DECHX
0925 7D
                      MOV
                              A,L
0926 320820
                              SCNRT + 2
                      STA
                      MOV
                              A,H
0929 7C
092A 320920
                              SCNRT+3
                      STA
092D C9
                      RET
                      END 100H
092E
```

```
;**
                                 EQUATES FOR CONVERT MODULE
                                 GENERAL I/O ASSIGNMENTS
                                          ;TTY DATA
00F4 =
                        EQU
                                 OF 4H
                TDATA
                                 OF5H
                                          :TTY STATUS
00F5 =
                TSTAT
                        EQU
                                          ;TTY CONTROL
                                 OF5H
00F5 =
                TCMD
                        EQU
                                          ;CRT DATA
                                 OF 6H
00F6 =
                CDATA
                        EQU
                                 OF 7H
                                          CRT STATUS
00F7 =
                CSTAT
                        EQU
                                 OF7H
                                          :CRT CONTROL
00F7 =
                CCMD
                        EQU
                                 GENERAL EQUATES
                                          : EDOS ENTRY POINT
                        EQU
                                 005H
0005 =
                ENTRY
                                 HOO
                                          ; BOOT POINT
0000 =
                        EQU
                BOOT
                TFCB
                                 O5CH
                        EQU
                                          :DEFAULT FCB
005C =
0080 =
                TBUFF
                        EQU
                                 H080
                                          :DEFAULT BUFFER LOCATIO
0001 =
                TXRDY
                        EQU
                                 1
                                 2
0002 =
                RXRDY
                        EQU
                                 ODH
                CR
                        EQU
000D =
000A =
                LF
                        EQU
                                 HAO
                : **
                                 BUFFER ALLOCATION &
                                 DATA ORGANIZATION
0100
                         OR G
                                 100H
                                          ; VARIABLE AREA
0100 C30004
                         JMP
                                 BEGIN
                                  'READ ERROR S'
0103 5245414420MSGI:
                         DB
                                  WRITE ERROR S'
010F 5752495445MSG2:
                         DB
                                  'DISK FULL S'
011C 4449534E 20MSG3:
                        DB
                                 'DIRECTORY FULL S'
0127 4449524543MSG4:
                        DB
                                 'DATA TRUNCATED S'
0137 4441544120MSG11:
                        DB
                                 O, DATA
                                                 ',0,0,0,0,0,0,0,0
0147 0044415441DATA:
                        DB
                EOFLG:
015B 00
                        DE
                TIME:
015C 0000
                        DW
                                 0
015E 0000
                                 0
                TIMO:
                        DW
                                 0
0160 0000
                GOTO:
                        DW
                                          :BUFFER POINTER
0162 0000
                POINT:
                        DW
                                 0
                                          SCAN COUNTER
0164 0000
                SCNTR:
                        DW
                                 0
0166 0000000000work:
                                 0,0,0,0,0,0
                                                  : WORKING AREA B
                        DB
                        DW
                                         ; PAGE COUNTER
0160 0000
                PAGER:
                                 0
016E 00
                RCDS:
                        DB
                                 0
                                          RECORDS TO BE WRITTENS
016F 0000
                LASTM:
                        DW
                                 00
                                          :LAST WRITTEN LOCATION
```

```
ORG 2000H :START OF DATA AREA
2000
              DBUF:
                     ORG 400H :START OF PROGRAM AREA
0400
             BEGIN:
0400 31FF1F
                     LXI
                            SP.1FFFH
                                         :INITIALIZE STE
0403 CD0904
                     CALL
                            TRANS
0406 C30000
                            BOOT
                     JMP
              ****************
                     TRANS - READS IN DATA FILE FROM DISK B
                            CONVERTS BINARY DATA TO ASCII &
                            REQUIRED BY EASIC ROUTINE
                            ENTRY: THIS PROGRAM IS CALLED &
                                   SUBMIT FILE
                                   CONTROL IS RETURNED TOS
                                   FILE
              SET UP FILE CONTROL BLOCK - READS IN SE
                     ETER ISSUED BY SUBMIT FILE
              TRANS:
                            D,082H ; ADDRESS OF PARAMETER L
0409 118200
                     LXI
                                   ; CHARACTER COUNTER
040C 0604
                     MVI
                            B,4
                            H,05CH ; ADDRESS OF TFCB
040E 215C00
                    LXI
0411 3600
                    MVI
                            M,0
0413 23
                     INX
                            H
             TRANI:
                            D
                                   :FETCH CHARACTER
0414 1A
                    LDAX
0415 77
                     MOV
                            M,A
                                   STORE IN FCB
                            D
0416 13
                     INX
                                   ;STEP POINTER
                                   STEP DESTINATION POINE
0417 23
                     INX
                            H
                                   ;FINISHED?
                     DCR
                            B
0418 05
                            TRANI ; NO KEEP TRANSFERRING
0419 C21404
                     JNZ
041C 13
                    INX
                            D
041D 3E20
                    MVI
                            A,20H
041F 77
                    MOV
                            M,A
0420 23
                            H
                    INX
0421 77
                    MOV
                            M.A
0422 23
                    INX
                            H
                    MOV
0423 77
                            M,A
                    INX
                            H
0424 23
0425 77
                    MOV
                            M.A
0426 23
                    INX
                            H
0427 1A
                    LDAX
                            D
0428 77
                    MOV
                            M.A
0429 23
                    INX
                            H
                            D
042A 13
                    INX
042E 1A
042C 77
                    LDAX
                            D
                            M,A
                    MOV
042D 23
                    INX
```

```
042E 13
                     INX
                            D
042F 1A
                     LDAX
                            D
0430 77
                     MOV
                            M,A
0431 0618
                     MVI
                             B,24
0433 AF
                     XRA
                            Α
                                   ;CLEAR A
              TRAN2:
0434 23
                     INX
                            H
0435 77
                     MOV
                            M, A
0436 05
                     DCR
                            В
0437 C23404
                     JNZ
                            TRAN2
              **************
                    READ IN DATA FILE
              ***************
                            LOGB
                                   ;LOGIN DISK B
043A CDC 405
                     CALL
                     CALL LOGB ;LOGIN DISK LXI H,DBUF ;BUFFER AREA SHLD PAGER ;SET PAGER
043D 210020
0440 226001
0443 CDCC05
                     CALL
                            OPEN ; OPEN FOR READ
                                   CLEAR A
                    XRA
0446 AF
                            Α
                            EOFLG ; RESET END OF FILE FLAG
0447 325B01
                    STA
                          D, DBUF
044A 110020
                    LXI
044D CD3A06
                    CALL
                            SETDMA
                            RDF10 ; READ FILE INTO MEMORY
0450 CD6206
                    CALL
0453 2A6C01
                    LHLD
                            PAGER
0456 117EFF
                            D.OFF7EH
                     LXI
0459 19
                     DAD
                            D
                     SHLD LASTM ; SAVE LAST MEMORY LOCAT
045A 226F01
              *************
                     SET UP TRANSITION BUFFER IN DEFAULT LOG
              *************
                  LXI D,080H ;ADDRESS OF TBUFF CALL SETDMA ;SET DMA ADDRESS
045D 118000
0460 CD3A06
0463 215001
                     LXI
                            H, DATA+9 ; ADDRESS OF EXE
0466 3641
                     MVI
                            M, 'A'
0468 23
                     INX
                            H
                            M, 'S'
0469 3653
                    MVI
                    INX
046B 23
                            H
                   MVI
                           M, 'C'
046C 3643
                            D, DATA
046E 114701
                    LXI
                            SETFCB ; SET FILE CONTROL BLOCK
0471 CD3F06
                    CALL
0474 CD1A06
                   CALL
                            DELET
0477 CD2206
                    CALL
                           MAKE
                            OPEN
047A CDCC05
                    CALL
                            H,080H ; ADDRESS OF TEUFF
0470 218000
                    LXI
                            POINT SET EUFFER POINTER TOT H, DEUF ADDRESS OF DEUF
0480 226201
0483 210020
                    SHLD
                    LXI
                    SHLD
0486 226001
                            PAGER
0489 CDBA04
                            GTONE
048C CDEA04
                    CALL
                            GTONE
048F CDBA04
                    CALL
                            GTONE
0492 CDBA04
                    CALL
                            STONE
```

```
LHLD LASTM
0495 2A6F01
                   XCHG
0498 EB
            CONVT:
                   CALL
                          GTTWO
0499 CDCE04
049C 2A6F01
                   LHLD
                          LASTM
                   XCHG
049F EB
04A0 2A6C01
                   LHLD
                          PAGER
04A3 7B
                   MOV
                          A,E
                          L
04A4 95
                   SUB
04A5 7A
04A6 9C
04A7 D29904
                   MOV
                          A.D
                   SBB
                          H
                          CONVI
                   JNC
                         POINT
04AA 2A6201
                   LHLD
                  MVI
                         A. 'O'
04AD 3E30
           CONIO:
                          STUFF
                   CALL
O4AF CDF504
                   INR
04B2 2C
                         L
                   JNZ
                          CONIO
04E3 C2AF04
04B6 CDD405
                          CLOSE
                   CALL
04B9 C9
                   RET
            ***************
               GTONE - TAKES ONE BYTE FROM DATA BUFFER
                          CONVERTS TO ASCII IN TBUF
                          TBUF IS EMPTIED WHEN FULL
            GTONE:
                          PAGER
04BA 2A6C01
                   LHLD
                   VOM
04BD 7E
                         A,M
04BE 23
                   INX
                         Н
04BF 226C01
                         PAGER
                   SHLD
                               ; MOVE TO L
04C2 6F
                   MOV
                         L,A
                                CLEAR H
                   MVI
04C3 2600
                         H,0
                  CALL BD5 CONVERT TO ASCII
04C5 CDODO5
04C8 3E2C
                 CALL STUFF
04CA CDF504
O4CD C9
                  RET
                                : RETURN
            *************
               GTTWO - TAKES TWO BYTES OF BINARY DATAA
                         CONVERTS THEM TO ASCII IN TBUF
                         TBUF IS DUMPED WHEN FULL:
            ************
            GTTWO:
04CE 2A6C01
                   LHLD
                         PAGER
04D1 5E
                   MOV
                         E,M
                               GET LSE
                        Н
                                STEP POINTER
0402 23
                   INX
                         D,M
                               GET MSB
                   MOV
04D3 56
                        Н
                               MOVE POINTER
04D4 23
                   INX
                   SHLD PAGER ;STORE IN PAGER
04D5 226C01
04D8 EB
                  XCHG
                   XRA A ;CLEAR A ORA H ;IS IT NEGATIVE?
04D9 AF
O4DA E4
```

```
:NO - DO NOT INSERT MIN
                      JP
04DB F2ECO4
                             GTT10
04DE 2B
                      DCX
                             H
                                     : DECREMENT
                             A,H
                                     GET MSB
O4DF 7C
                      VOM
                             OFFH
04E0 EEFF
                                     : COMPLEMENT
                      XRI
                             H,A
                      MOV
04E2 67
                                     GET LSB
04E3 7D
                     MOV
                             A,L
                                     : COMPLEMENT
04E4 EEFF
                     XRI
                             OFFH
                                     :RESTORE LSB
04E6 6F
                     MOV
                             L,A
                             A, '-'
                                     :MINUS SIGN
04E7 3E2D
                     MVI
                                     ; INSERT '-'
                             STUFF
04E9 CDF504
                     CALL
              GTT10:
                             BD5
A,','
04EC CDODO5
                     CALL
                                     CONVERT TO ASCII
04EF 3E2C
                     MVI
                             STUFF
04F1 CDF504
                     CALL
04F4 C9
                     RET
              STUFF - TAKES CHARACTER PRESENT IN A
                             INSERTS INTO TBUFF AT LOCATION
                             POINTED TO BY POINT
                             WHEN POINT = 100H, BUFFER IS DU
              ; ***********************************
              STUFF:
04F5 E5
                     PUSH
                             H
04F6 D5
                     PUSH
                             D
04F7 C5
                     PUSH
                             B
04F8 2A6201
                     LHLD
                             POINT
04FB 77
                     MOV
                                    STORE IN BUFFER
                             M.A
04FC 2C
                     INR
04FD C20605
                     JNZ
                             STUIO
0500 CDF605
                     CALL
                             WRITE
0503 218000
                     LXI
                             H,80H
              STUIO:
                             POINT
0506 226201
                     SHLD
                     POP
0509 C1
                             B
050A DI
                     POP
                             D
050B E1
                     POP
                             H
050C C9
                     RET
              ******************
                     BINDEC - CONVERTS ONE OR TWO BYTES OF
                              BINARY DATA TO 5 OR 3 ASCII DE
                              CHARACTERS
                             ENTRY: STORAGE ADDRESS IN D,E
                                    VALUE IN H,L
              ***************
              BD5:
050D AF
                     XRA
050E 326601
                             WORK
                     STA
0511 01F0D8
                             B,ODSFOH
                     LXI
0514 CD3005
                     CALL
                             BDA
              BD4:
```

```
B.OFC18H
0517 0118FC
                         LXI
051A CD3005
                         CALL
                                 BDA
                BD3:
051D 019CFF
                         LXI
                                 B,OFF9CH
0520 CD3005
                         CALL
                                 BDA
                BD2:
                                 B, OFFF 6H
0523 01F6FF
                         LXI
                         CALL
                                 BDA
0526 CD3005
                BD1:
                         MOV
0529 7D
                                 A,L
                         ORI
                                 30H
052A F630
052C CDF504
                         CALL
                                 STUFF
052F C9
                         RET
                BDA:
0530 AF
                         XRA
                                 A
                                          CLEAR A
                BDB:
                        MOV
0531 5D
                                 E,L
0532 54
                        MOV
                                 D,H
                                 A
0533 3C
                         INR
0534 09
                         DAD
                                 B
                                 BDB
0535 DA3105
                         JC
0538 3D
                         DCR
                                 A
0539 6B
                        MOV
                                 L,E
053A 62
                                 H,D
                        MOV
                                 B,A
                                          ; SAVE IN B
053B 47
                        MOV
053C FE00
                        CPI
                                 0
                                          ; IS IT A ZERO?
                                 BDC
                                          ; NO - STUFF IT
053E C24705
                        JNZ
                                 WORK
0541 3A6601
                        LDA
                                          :FETCH FLAG
0544 B7
                        ORA
                                          :IS IT SET?
0545 C8
                        RZ
                                          :NO - RETURN WITHOUT ST
0546 78
                        MOV
                                 A,B
                BDC:
0547 F630
                        ORI
                                 30H
0549 CDF504
                        CALL
                                 STUFF
054C 3EFF
                        MVI
                                 A,OFFH
054E 326601
                                 WORK
                                          ;SET FLAG
                        STA
0551 C9
                        RET
                ; **
                         DRIVERS - I/O SUBROUTINES CONTAINING
                                   TTY, CRT, DISK, I/O PORTS
                ;**
                                 TTY DRIVERS
                TTYIN:
0552 DBF5
                        IN
                                 TSTAT
                                          ; FETCH STATUS
                                         ; IS RECEIVER READY WITH
0554 E602
                        ANI
                                 RXRDY
                                         ; NO KEEP LOOKING
0556 CA5205
                        JZ
                                 TTYIN
                                         FETCH DATA BYTE
0559 DEF 4
                        IN
                                 TDATA
055B C9
                                          : RETURN WITH BYTE IN A
                        RET
                TTYOUT:
```

```
PUSH
                                          :SAVE DATA BYTE
055C F5
                                 PSW
                                          FETCH STATUS
                        IN
                                 TSTAT
055D DBF5
                                          ;TRANSMITTER READY FORB
055F E601
                        ANI
                                 TXRDY
0561 CA5C05
                                          :NO - WAIT UNTIL READY
                         JZ
                                 TTYOUT
                        POP
                                 PSW
                                          BRING BACK DATA BYTE
0564 F1
                         OUT
                                 TDATA
                                          :OUTPUT TO TTY
0565 D3F4
                        RET
0567 C9
                                          :RETURN
                CRTIN:
0568 DBF7
                                          ;FETCH CRT STATUS
                        IN
                                 CSTAT
056A E602
                        ANI
                                          :RECEIVER READY WITH BY
                                 RXRDY
056C CA6805
                         JZ
                                          :NO - WAIT UNTIL READY
                                 CRTIN
056F DBF6
                                          :FETCH INPUT BYTE
                         IN
                                 CDATA
                CRIOUT:
                        PUSH
0571 F5
                                 PSW
                                          :SAVE DATA BYTE
                CRT1:
0572 DBF7
                        IN
                                 CSTAT
                                          :FETCH CRT STATUS
0574 E601
                        ANI
                                 TXRDY
                                          :TXMITTER READY FOR BYE
                                          ; NO - WAIT UNTIL READY
0576 CA7205
                        JZ
                                 CRT!
0579 F1
                        POP
                                 PSW
                                          BRING BACK DATA
                                          ; OUTPUT DATA
057A D3F6
                        OUT
                                 CDATA
057C C9
                        RET
                                          : RETURN
                PRINT:
057D 0E09
                        MVI
                                 C,9
                                          ;SET UP FOR BDOS CALL
057F C30500
                        JMP
                                 ENTRY
                                         :JUMP TO BDOS
                PNIB:
0582 E60F
                        ANI
                                 OFH
                                          :MASK LOW 4 BITS
0584 FEOA
                        CPI
                                 10
0586 D28E05
                        JNC
                                 PIO
                                 .0.
0589 C630
                        ADI
058E C37105
                        JMP
                                 CRIOUT
                P10:
                                 'A' - 10
058E C637
                        ADI
0590 C37105
                        JMP
                                 CRIOUT
                PHEX:
0593 F5
                        PUSH
                                 PSW
0594 OF
                        RRC
0595 OF
                        RRC
0596 OF
                        RRC
0597 OF
                        RRC
0598 CD8205
                        CALL
                                 PNIB
059B F1
                        POP
                                 PSW
059C CD8205
                        CALL
                                 PNIB
059F C9
                        RET
                PRHL:
05A0 E5
                        PUSH H
05A1 7C
                        MOV
                                 A,H
05A2 CD9305
                        CALL
                                 PHEX
05A5 E1
                        POP
                                 H
05A6 E5
                        PUSH
                                 H
05A7 7D
                        MOV
                                 A,L
05A8 CD9305
                        CALL
                                 PHEX
```

```
POP
                                  H
OSAB E1
05AC C9
                         RET
                 CRLF:
                                           :CARRIAGE RETURN
                         MVI
                                  A,ODH
OSAD 3EOD
05AF CD7105
                                  CRIOUT
                         CALL
                                           ;LINE FEED
                                  A,OAH
                         MVI
05B2 3E0A
                                  CRIOUT
05B4 C37105
                         JMP
                 INTIAL:
05E7 0E0D
                         MVI
                                  C,13
                         JMP
                                  ENTRY
05B9 C30500
                 LOGA:
05BC 110000
                         LXI
                                  D,OOH
OSBF OEOE
                                  C,14
                         MVI
                         JMP
                                  ENTRY
05C1 C30500
                 LOGE:
                                  D,01H
05C4 110100
                         LXI
05C7 0E0E
                         MVI
                                  C,14
                                  ENTRY
0509 030500
                         JMP
                 OPEN:
05CC 115C00
05CF 0E0F
                                  D,05CH
                         LXI
                                  C,15
                         MVI
                                  ENTRY
05D1 C30500
                         JMP
                CLOSE:
                                  D,05CH
05D4 115C00
                         LXI
05D7 0E10
                         MVI
                                  C,16
05D9 C30500
                         JMP
                                  ENTRY
                READ:
                                  D,05CH
05DC 115C00
                         LXI
05DF 0E14
                         MVI
                                  C,20
05E1 CD0500
                         CALL
                                  ENTRY
05E4 B7
                         ORA
                                  A
                                           ; RETURN IF NO READ ERRB
05E5 C8
                         RZ
                                           ; IS IT AN EOF?
05E6 3D
                         DCR
                                  Α
                                           NO MUST BE UNWRITTEN A
                                  RDOIO
05E7 C2F005
                         JNZ
                                           ;SET EOF FLAG
OSEA SEOF
                         MVI
                                  A,OFH
05EC 325B01
                                  EOFLG
                         STA
05EF C9
                         RET
                RDOIO:
                                           ; 'READ ERROR'
05F0 110301
                         LXI
                                  D,MSG1
05F3 C3BF06
                         JMP
                                  ERREX
                 WRITE:
05F6 115C00
                         LXI
                                  D,05CH
05F9 0E15
                         MVI
                                  C,21
                                  ENTRY
05FB CD0500
                         CALL
05FE B7
                         ORA
                                  A
05FF C8
                                           ; RETURN IF NO WRITE ERB
                         RZ
0600 3D
                         DCR
                                  A
0601 C20A06
                                  WR010
                         JNZ
                                           ; 'WRITE ERROR'
0604 110F01
                         LXI
                                  D,MSG2
0607 C3EF06
                         JMP
                                  ERREX
                 WRO10:
```

```
060A 3D
                      DCR
060B C21406
                      JNZ
                              WR020
060E 111C01
                      LXI
                              D,MSG3 ; 'DISK FULL'
0611 C3BF06
                      JMP
                              ERREX
              WR020:
                      LXI
                              D,MSG4 ; DIRECTORY FULL'
0614 112701
                      JMP
0617 C3BF06
                              ERREX
              DELET:
                      MVI
061A 0E13
                              C,19
061C 115C00
                      LXI
                              D,05CH
061F C30500
                              ENTRY
                      JMP
              MAKE:
0622 115000
                      LXI
                              D,05CH
0625 OE16
                              C,22
                      MVI
0627 CD0500
                              ENTRY
                      CALL
062A 3C
                      INR
                              A
062E CO
                      RNZ
                              D,MSG4 ; DIRECTORY FULL'
062C 112701
                      LXI
062F C3BF06
                      JMP
                              ERREX
              SEARCH:
0632 115000
                              D,05CH
                      LXI
0635 OE11
                      MVI
                              C,17
0637 C30500
                      JMP
                              ENTRY
              SETDMA:
                      MVI
                              C,26
063A 0E1A
063C C30500
                      JMP
                              ENTRY
              SETFCB - MOVES AN INITIALIZATION BLOCKI
                              TFCB AREA
                              ENTRY: D,E = FILNAME BLOCK
              SETFCB:
                      PUSH
063F E5
                                     ; SAVE
                             H
                             H,05CH
                                    ; DEFAULT FILE CONTROL B
0640 215000
                      LXI
                      PUSH
                             В
0643 C5
                                     :SAVE
                                     ;SET COUNTER
                      MVI
                              B,19
0644 0613
              SETF1:
                      LDAX
                             D
                                     :FETCH EYTE TO BE TRANS
0646 1A
0647 77
                                     STORE IN TECE AREA
                      MOV
                             M. , A
0648 23
                                     ; INCREMENT H
                      INX
                             H
                                     ; INCREMENT D
0649 13
                      INX
                             D
064A 05
                      DCR
                                     ; FINISHED?
                             SETF1
                                     ; NO - JO FOR ANOTHER $
064B C24606
                      JNZ
                                     CLEAR ACCUM
064E AF
                      XRA
                             A
064F 327C00
                      STA
                             TFCB+32
0652 CI
                      POP
                             B
0653 E1
                      POP
0654 C9
                      RET
                      RDFILE - READ AN ENTIRE FILE INTO CONTS
              ;*
```

```
MEMORY
               ;*
               ;*
                               ENTRY: STARTING ADDRESS OF MEMB
               ;*
                                      IN H,L
               ;*
                                       ADDRESS OF FILENAME BLO
               ***************
               RDFILE:
                                       STORE CURRENT POINTER
                       SHLD
                               PAGER
0655 226C01
0658 CD3F06
                       CALL
                               SETFCB
065B CDCCO5
                               OPEN
                                       OPEN FILE
                       CALL
                                       ;CLEAR ACCUM
                       XRA
                               Α
065E AF
                       STA
                               EOFLG
                                       :CLEAR EOF FLAG
065F 325E01
               RDF10:
                       LHLD
                              PAGER
                                       :FETCH CURRENT POINTER
0662 2A6C01
0665 EB
                       XCHG
                                       :PUT POINTER IN D.E
                               SETDMA
0666 CD3A06
                       CALL
                                       ; READ A RECORD
                       CALL
                              READ
0669 CDDC05
                              HAFPG
                                       MOVE PAGE INDEX
O66C CDAEO6
                       CALL
                                       ; FETCH EOF FLAG
066F 3A5B01
                               EOFLG
                      LDA
0672 B7
                       ORA
                                       :EOF FOUND?
                               RDF10
                                       ; NO - READ ANOTHER PAGE
0673 CA6206
                       JZ
                       CALL
                               CLOSE
                                       CLOSE FILE
0676 CDD405
                                       ; RETURN
                       RET
0679 C9
                ****************
                       WRFILE - WRITE A BLOCK OF MEMORY IN A E
                                     NUMBER OF RECORDS+1 TOW
                               ENTRY:
                                       STARTING ADDRESS IN H,L
               *************
               WRFILE:
                                       ;SET UP PAGER
067A 226C01
                       SHLD
                              PAGER
                                       :SET FCb
067D CD3F06
                       CALL
                              SETFCB
                               D,80H
0680 118000
                       LXI
0683 CD3A06
                       CALL
                               SETDMA
                                       ; SEARCH FOR EXISTING FL
                              SEARCH
0686 CD3206
                       CALL
                                       ; WAS THERE A MATCH?
0689 30
                       INR
                                       :YES - SKIP MAKE FUNCTO
                              WRF05
068A C29006
                      JNZ
                                       :MAKE DIRECTORY ENTRY
068D CD2206
                      CALL
                              MAKE
               WRF05:
0690 CDCC05
                      CALL
                              OPEN
                                       : OPEN FILE
               WRF10:
0693 2A6COI
                      LHLD
                              PAGER
                                       :FETCH CURRENT POINTER
0696 EB
                      XCHG
                                       :PUT POINTER IN D.E
0697 CD3A06
                      CALL
                              SETDMA
               WRF15:
                                       ; WRITE A RECORD
069A CDF 605
                      CALL
                              WRITE
                              HAFPG
069D CDAE06
                      CALL
                                       :MOVE PAGE INDEX
                                       :FETCH NUMBER OF RECORD
06A0 3A6E01
                      LDA
                              RCDS
                              H,TFCB+15
                      LXI
06A3 216B00
OGAG EE
                      CMP
                              M
                                      :NO - WRITE ANOTHER REO
06A7 C29A06
                      JNZ
                              WRF15
```

06AA CDD405 06AD C9		RET		;CLOSE THE FILE ; RETURN
	;	SUBROUT	INE HAFP HALF PA	**************************************
	HAFPG:			
06AE E5 06AF 2A6C01 06B2 118000 06B5 19 06B6 226C01 06B9 EB	nari d.	PUSH LHLD LXI DAD SHLD XCHG	H PAGER D,0128 D PAGER	; ADD 128 TO PAGER ; RESTORE UPDATED PAGER ; SWITCH H,L WITH D,E
06BA CD3A06 06BD E1 06BE C9		CALL POP RET	SETDMA H	;SET DMA
	; ** ; ; ; **	ERREX -	ENTRY:	RRORS EXIT VIA THIS ROUT D,E CONTAIN MESSAGE ADDE EOOT TO DOS
06BF CD7D05 06C2 115C00 06C5 CDD405 06C8 C30000 06CB	ÉRREX:		PRINT D,TFCB CLOSE BOOT	TEMPORARY FCB

```
REM********************
      REDUCE - EXTRACTS FOURIER COEFFICIENTS
REM
              OF ODD HARMONICS FROM GIVEN DATA FILE
REM
REM**********************
DELTA.T = 85E-6
PI = 3.141592654
CONTRS="B:CONTROL"
DATUM.PTS$="B:DATA.ASC"
OUTPUT$="B:OUTPUT"
TABS =
FILE DATUM.PTS$
IF END # 1 THEN 200
READ # 1; ICHNL, FCHNL, SVO, SV1, SCANS, SCAN. PERIOD, RECORD. FREQ
SCAN.PERIOD = SCAN.PERIOD * .9765625E-3
PRINT "INITIAL ANALOG CHANNEL", ICHNL
PRINT "FINAL ANALOG CHANNEL", FCHNL
PRINT
PRINT "SCANIVALVE ZERO SETTING", SVO
PRINT "SCANIVALVE ONE SETTING ",SVI
PRINT
PRINT "NUMBER OF SCANS ", SCANS
PRINT "SCAN PERIOD", SCAN . PERIOD; " SECONDS"
PRINT "SCAN RATE", 1/SCAN. PERIOD; " HZ
RECORD.FREQ=RECORD.FREQ/10
PRINT "RECORDED REFERENCE FREQUENCY ", RECORD. FREQ
REM**********************
      READ IN ASCII DATA FILE
REM
REM*********************
DIM DAT(FCHNL+1,SCANS),PHASE(FCHNL+1),A(FCHNL+1),B(FCHNL+1)
READ # 1: DUMMY . DUMMY . DUMMY
PRINT
FOR I = 1 TO SCANS
READ #1: TIME
FOR J=ICHNL TO FCHNL
READ #1: DAT(J.I)
NEXT J
NEXT I
COMPUTE LAST DATA SAMPLE NUMBER TO BE USED
REM*******************
OMEGA = 2*PI*RECORD.FREQ
DRIVE.PERIOD = 1/RECORD.FREQ
N = INT((DRIVE.PERIOD/SCAN.PERIOD)\
      *INT((SCANS*SCAN.PERIOD)/DRIVE.PERIOD))
PRINT "NUMBER OF DATA POINTS USED "; N, "AVAILABLE "; SCANS
REM**********************
      COMPUTE FOURIER COEFFICIENTS
HIHARMONIC = INT(DRIVE.PERIOD/SCAN.PERIOD/2)
IF HIHARMONIC > 5 THEN HIHARMONIC = 5
PRINT "HIGHEST HARMONIC EXTRACTED "; HIHARMONIC
```

```
FOR INDEX = 0 TO HIHARMONIC
FOR J=ICHNL TO FCHNL
A(J)=0
B(J)=0
NEXT J
FOR I = 1 TO N
FOR J=ICHNL TO FCHNL
      X1= INDEX*OMEGA*((I-1)*SCAN.PERIOD+DELTA.T*J)
      B(J)=B(J)+DAT(J,I)*SIN(X1)
      A(J)=A(J)+DAT(J,I)*COS(X1)
NEXT J
NEXT I
OUTPUT
REM
REM********************
PRINT "FOURIER COEFFICIENTS FOR HARMONIC ", INDEX PRINT"CHANNEL", "COS", "SIN", "PHASE ", "MAG"
FOR J=ICHNL TO FCHNL
PHASE(J) = ATN(B(J)/A(J))
IF A(J) < O AND B(J) > O THEN PHASE(J) = PHASE(J) + PI
IF A(J) < O AND B(J) < O THEN PHASE(J) = (PHASE(J) - PI)
IF INDEX = 0 THEN A(J) = A(J)/2
MAG= SQR((ABS(A(J))) \uparrow 2 + (ABS(B(J))) \uparrow 2)/2.048/I
IF INDEX = 1 AND J = 0 THEN FASE = PHASE(0)
PHASE(J)=PHASE(J)-FASE
IF PHASE(J) <-PI THEN PHASE(J) = PHASE(J) + 2*PI
IF PHASE(J)>PI THEN PHASE(J)=PHASE(J)=2*PI
PRINT J.A(J)/2.048/I,B(J)/2.048/I,180*PHASE(J)/PI,MAG
NEXT J
PRINT
NEXT INDEX
200 STOP
END
```

```
/* CP/CMS INTERFACE PROGRAM */
DECLARE BODT LITERALLY 'OH', BDOS LITERALLY 'OFFI:
DECLARE BODT LITERALLY 'LITERALLY',
OPADO LITERALLY 'LITERALLY',
OPADO UNDER STOOSEND */
OPADO UNDER STOOSEND */
PAD LIT 'OTH',
OPADO UNDER OF PAD CHARS TO SEND */
PAD LIT 'OTH',
OPADO UNDER OF PAD CHARS AFTER PROMPT */
BEEP LIT 'OTH',
OFFI:

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DECLARE FCBA LIT '5CH',
FCBADR ADDRESS INITIAL (FCBA),
FCB BASEU FCBADR BYTE,
BUFFA ADDRESS INITIAL (80H),
MAXMBP ADDRESS INITIAL (05H),
MAXM BASED MAXMBP ADGRESS,
100H:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       /* DISK OUTPUT ROUTINES */
MON1: PROCEDURE(F,A);
DECLARE F BYTE, A ADDRESS;
GO TO BOOS;
END MON1;
```

*

LIFTHEAD: PROCEDURE;

CALL MON!(12,0);
END LIFTHEAD;

MON2: PROCEDURE(FA) BYTE;
GCCLARE FBYTE, A ADDRESS;
GO TO BOOS;
END MON2;

DECLARE DCNT BYTE;

OPEN: PROCEDURE(FCB);
END OPEN;
CLOSE: PROCEDURE(FCB);
ECLARE FCB ADDRESS;
DCNT = MON2(15, FCB);
ECLARE FCB ADDRESS;
DCNT = MON2(16, FCB);
ECLARE FCB ADDRESS;
CALL MON!(19, FCB);
ECLARE FCB ADDRESS;
CALL MON!(19, FCB);

DISKWRITE: PROCEDURE(FCB);
CECLARE FCB ADDRESS;
DCNT = MON2(21, FCB);
CALL LIFTHEAD;
END DISKWRITE;
MAKE: PROCEDURE(FCB);
DECLARE FCB ADDRESS;
END MAKE;

DISKREAD: PROCEDURE(FCB); CECLARE FCB ADDRESS; DCNT = MON2(20,FCB); CALL LIFTHEAD; END DISKREAD; DECLARE DCOPY BYTE, /* 0 IF NO COPY 1 IF RECEIVING 2 IF SUSPENDED RECEIVE 3 IF TRANSMITTING

TTC LIT 'OF5H'; CRC LIT 'OF7H'; CRS LIT 'OF 7H', DECLARE MBP ADDRESS; /* MEMORY BUFFER POINTER */ LASTLF BYTE: /* OUTPUT BUFFER POINTER */ TII LII "0F4H", TTO LII "0F4H", CRI LII "0F6H", CRTRD: PROC BYTE: /* CRT DATA IN */
RETURN INPUT(CRI) AND 7FH; END CRTRD; CRTINR: PROC LOGICAL; /* CRT INPUT DATA READY */ RETURN ROR(INPUT(CRS),1); END CRTINR; TTYINR: PROC LOGICAL;
/* TTY INPUT READY */
RETURN ROR (INPUT(TTS),1);
END TTYINR; 4 IF SUSPENDED TRANSMIT DECLARE
PROC LIT 'PROCEDURE',
LOGICAL LIT 'BYTE',
FIXED LIT 'ADDRESS',
TRUE LIT 'I',
FALSE LIT 'O',
FOREVER LIT 'WHILE TRUE', /* CRT AND TTY DRIVERS */ CRTOUTR: PROC LOGICAL;
/* CRT OUTPUT READY */
RETURN INPUT(CRS);
END CRTOUTR; TTYOUTR: PROC LOGICAL;
/* TTY OUTPUT READY */
RETURN INPUT(TTS);
END TTYOUTR; /* 1/0 CONSTANTS */ CR LIT '00H'; LF LIT '0AH';

```
CRIWR: PROC(B);

CRIWR: PROC(B);

Ye CHR B BYTE;

Ye CHR WITE #/

IF B >= " OR B = CR OR B = LF THEN

IF B = LF THEN OPADV = OPAD;

END CRIWR;

TTYRD; PROC BYTE;

AETURN INPUT(ITI) AND 7FH;

FROC(B);

CLARE B BYTE;

CLARE B BYTE;

CALL TTYWR B);

CRIOUT: PROC COURE (B):

DO WHILE NOT ITYOUTR;

CALL TTYWR B);

CRIOUT: PROC (B);

CALL CRIWR B);

CALL CRIWR B);

CALL CRIWR B);

CALL CRIVIT(CR);

CALL CRIVIT(CR);
```

```
/* TRUE IF "BEEPED" CRT */
/* CHARS TRANSMITTED SINCE LF */
/* MAITING FOR ">! */
/* SEND XOFF */
/* RESPOND TO "> " */
/* PAD CHARACTERS REMAINING AFTER PROMPT*/
/* PUFFER FOR CRT INPUT */
/* BUFFER FOR CRT INPUT */
/* NUMBER OF BUFFERED CHARS */
/* NUMBER OF BUFFERED CHARS */
/* NEXT CHARACTER TO TRANSMIT */
/* NEXT CHARACTER TO FILL */
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     INTBPL: PROC;

/* INCREMENT LAST POSITION OF TTY BUFFER */

/* INCREMENT LAST POSITION OF TTY BUFFER */

ITYN := TTYN + 1) > LAST(TTYBUFF) THEN

DO: CALL CRIPR(.*BUFFER OVERFLOW **);

TTYN, TTYBPF, TTYBPL = 0;

IF (TTYBPL := TTYBPL + 1) > LAST (TTYBUFF) THEN

END INTBPL:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          INTBPF: PROC;
/* INCREMENT TTY FRONT POINTER */
TTYN = TTYN - 1;
IF (TTYBPF := TTYBPF + 1) > LAST (TTYBUFF) THEN
TTYBPF = 0;
END INTBPF;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            BUFFITY: PROC:

/* BUFFER CHARACIER FROM TTY TO CRT
TTYBUFF(TTYBPL) = CHAR;
CALL INTBPL;
END BUFFITY;
                                                                                                                                                                                                                                                                                                                                                                      /* TTY BUFFERS - FROM TTY TO CRT */
TTYBUFF(254) BYTE,
TTYN
TTYBPF
BYTE,
TTYBPF
BYTE;
DO WHILE M <> '$';
CALL CRTOUT(M); A=A+1;
END;
CALL CRLF;
END CRTPR;
                                                                                                              DECLARE
BEEPED LOGICAL,
NCHARS BYTE,
WAITRESP LOGICAL,
SENDXOFF LOGICAL,
RESPOND LOGICAL,
NPAD BYTE,
CHAR BYTE,
CRIBUF(254) BYTE,
CRIBPF BYTE,
CRIBPF BYTE,
                                                                                                                                                                                                                                                                        8Y1E,
8Y1E,
8Y1E,
8Y1E,
```

```
0
ZERC: PROC:
BEEPED, WAITRESP, SENDXOFF, RESPOND = FALSE:
NPAD, NCHARS, CAÍN, CRÍBPF, CRÍBPL, TIYN, TÍYBPF, TIYBPL
CPADY = 0;
END ZERO;
                                                                                                            INC BPF: PROC:
/* INCREMENT CRIBPF */
CRIN = CRIN - 1;
IF (CRIBPF := CRIBPF + 1) > LAST(CRIBUFF) THEN
CRIBPF = 0;
END INCBPF;
                                                                                                                                                                                                                                          INC BPL: PROC:

/* INCREMENT CRIBPL */
CRIN = CRIN + 1;
IF (CRIBPL := CRIBPL + 1) > LAST(CRIBUFF) THEN
CRIBPL = 0;
END INCBPL;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FILLBUFF: PROCEDURE(I):

CECLARE I BYTE: /* FILL BUFFER WITH CHAR I
BUFF(0BP) = I;
If (0BP := 0BP + 1) >= 80H THEN
DO: CALL DISKWRITE(FCBA);
IF UCNT <> 0 THEN
IF OCNT <> 0 THEN
CALL CKTPR(.*DISK WRITE ERROR $');
CALL CKTPR(.*DISK WRITE ERROR $');
END;
END;
END;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DUMPMEM: PROCEDURE;
/* DUMP MEMORY BUFFER */
DECLARE I ADDRESS;
                                                                                                                                                                                                                                                                                                                                                                                                                                               PUTCHAR: PROCEDURE;
CRIEUFF(CRIBPL)
CALL INCBPL;
END PUTCHAR;
                                                                                                                                                                                                                                                                                                                                                                          SETFCBR: PROCEDURE;
FCB(32) = 0;
END SETFCBR;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      OBP = 0;
END;
END FILLBUFF;
```

```
CALL BUFFITY:

RESPOND = RESPOND AND NOT( LASTLF AND (CHAR = EOBLOCK!);

RESPOND = RESPOND AND NOT( LASTLF AND (CHAR = EOBLOCK!);

IF LAST THEN

DO; NCHAR = 0; /* AUTO RESPONSE */

CHAR = EOL; CALL PUTCHAR;

CHAR = EOL; CALL PUTCHAR;

WAITRESP = FALSE; NPAD = PAD;

END;

LASTLF = CHAR = LF;

END;

LASTLF = CHAR = LF;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GETCHAR: PROCEDURE;
CHAR = 0;
IF DCOPY = 3 THEN /* TRANSMIT DATA */
IF DB0: /* READ NEXT CHARACTER FROM INPUT BUFFER */
IF OBP >= 80H THEN
D0: 08P = 0;
CALL DISKREAD(FCBA);
IF DCNT = 1 THEN BUFF, DCOPY = 0; ELSE
IF DCNT > 1 THEN
                                                                                                                                                                                   CRTCHAR: PROCEDURE;

DECLARE LAST BYTE;

LAST = (CHAR = PROMPT) AND LASTLF;

LAST = (CHAR = PROMPT) AND LASTLF;

LAST = LAST THEN CALL DUMPMEM;

MEMORY(MBP) = CHART

IF (MRP := MBP + 1) > MAXMBP THEN

CALL DUMPMEM;

CALL CRTPR(.:FORCED WRITE$');

END;
O;

DG WHILE MBP <> O;

MBP = MBP - 1;

CALL FILLBUFF (MEMORY(I));

I = I + 1;

FND;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CRLFD: PROCEDURE;
CHAK = CR; CALL CRTCHAR;
CHAR = LF; CALL CRTCHAR;
END CRLFD;
                                                                                                                            DUMPMEM:
                                                                                                                          END
```

```
RECEIVE: PROCEDURE;

If DCOPY = 2 THEN DCOPY = 1; ELSE

If DCOPY <> 0 THEN CALL CRIPR(.'OUTPUT IN PROGRESS*!);

ELSE

DO;

CALL SETECBR;
CALL OPEN(FCBA);
CALL OPEN(FCBA);

CALL OPEN(FCBA);
LONT = 255 THEN

CALL OPEN(FCBA);
LASTLF = FALSE; OBP, MBP = 0;
END RECEIVE;
00; CALL CRIPR(.'DISK READ ERROR$');
DCOPY = 0;
FND;
                                                                                                                                                                                                                                                            /* IGNORE LINE FEEDS (MAY BE FROM FILE) */
IF CHAR = LF THEN CHAR = 0;
IF (SENDXOFF := (CHAR = CR)) THEN
DO: CHAR = EOL;
END; ELSE
IF (CHAR <> 0) AND HALFDUP THEN CALL CRICHAR;
END GETCHAR;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FINIS: PROCEDURE:

IF DCOPY = 0 THEN

CALL CRIPR(.'NU I/O IN PROGRESS$'); ELSE

IF DCOPY < 3 THEN

DO: CALL DUMPMEM;

CALL FILLBUFF(ENDFILE);

END:
                                                    IF (CHAR := BUFF(OBP)) = ENDFILE THEN CHAR, OCOPY = 0;

OBP = OBP + 1;
                                                                                                                                                                           CHAR = 0 AND CRIN > 0 THEN DO; CHAR = CRIBUFF(CRIBPF); CALL INCEPF; END;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CALL CLOSE(FCBA);
END;
                                                                                                                                              END:
                                                                                                                                                                                 1
```

DCOPY = 0;

TRANSMIT: PROCEDURE;

TRANSMIT: PROCEDURE;

IF DCOPY = 4 THEN DCOPY = 3; ELSE

IF DCOPY = 5 THEN DCOPY = 3; ELSE

CALL OPENCECTOR (**ITO IN PROGRESS**);

CALL OPENCECTOR (**ITO IN PROGRESS**);

ELSE

CALL OPENCECTOR (**ITO IN PROGRESS**);

END;

```
DOI: CALL ZERO; CALL TYYOUT (ATTEN);

FROGOTY = 1 OR DCOPY = 3 THEN

COAR = 1 CORY = 1 THEN

END; ELSE

CALL PUTCHAR;

END; ELSE

END; ELSE

END; CALL PUTCHAR;

END;

IF TTYINR THEN /* TTY KEYBOARD IS READY */

DOI: IF NADAD > 0 THEN NPAD = NPAD - 1; ELSE

END;

IF TYOUTR AND (NOT WAITRESP) AND (NPAD = 0) THEN

DOI: SENDXOFF = FALSE;

END;

IF CHAR = CTLR THEN /* RECEIVE */

IF CHAR = CTLR THEN /* RECEIVE */

IF CALL SECEIVE;

IF CALL RECEIVE;

IF CHAR = CTLB THEN

RESPONSOR = TRUE; CALL RECEIVE;

IF CHAR = CTLB THEN

RESPONSOR = CTLB THEN
```

```
RESPOND = FALSE;

END; ELSE

If CHAR = CILW THEN DCOPY = 2; ELSE

If DCOPY = 3 THEN DCOPY = 4; ELSE

CALL CRIPR(..NO I/O IN PROGRESS$');

END; ELSE

CALL FINIS;

SO TO BOOT;

END; ELSE

DO; NCHARS = NCHARS + 1;

END;

END;

END;

IF CRIOUTR THEN /* CHECK FOR BUFFERED OUTPUT */

DO; OPADV = 0PADV - 1; CALL CRIWR(O);

END;

END;

OO; CALL CRIWR(ITYBUFF(ITYBPF));

CALL INTERPROMENTIANDED);
```

END; /* OF DO FOREVER */

APPENDIX D

SAMPLE CUTPUT

INITIAL ANALOG CHANNEL FINAL ANALOG CHANNEL	0 4		
COORDINATION NUMBER	1		
NUMBER OF SCANS SCAN PERIOD 2.929688E-03 SCAN RATE 341.3333 HZ RECORDED REFERENCE FREQUENC		10.1	
NUMBER OF DATA POINTS USED	371	AVAILABLE 400	
FOURIER COEFFICIENTS FOR HE CHANNEL COS 0 2.49391 1 2.434844 2 2.329837 3 2.211704 4 2.316711	ARMONIC O SIN O O O O	PHASE O O O O	AA3 2.493908 2.434645 2.329638 2.211705 2.315713
FOURIER COEFFICIENTS FOR HE CHANNEL COS 0 -654.6378 1 -653.8682 2 -653.5261 3 -652.9547 4 -652.5599	STN	PHASE 0 5.260612E-02 C.171639E-02 .1192551 .142625	MAG 1046.66 1046.629 1046.746 1046.688 1046.59
2 1.54163 3 1.567927	ARMONIC 2 SIN -3.062779 -3.034472 -2.995208 -2.935155 -2.995277	PHASE 63.2825 63.21033 65.55031 66.8261 65.46475	MAG 3.367631 3.33459 3.366662 3.327692 3.354616

APPENDIX E

OPERATING INSTRUCTIONS

- A. ACQUISITION PROCEDURE INSTRUCTIONS
- 1. Interconnect the following with the MDS-800 using the appropriate cables:
 - * Disk Drive
 - * CRT
 - * BNC Patch Panel
 - * Teletype (optional)
- 2. Attach analog sources to the desired patch panel BNC fitting using coaxial cables. Up to 16 channels may be attached. Ensure voltage limits on analog inputs do not exceed plus or minus 5 volts.
- 3. With disk drive doors open, power up all equipment.
- 4. Install the program diskette in Drive A and a blank or uprotected diskette in Drive B, then close the doors.
- 5. Depress the BOOT switch and momentarily depress the RESET switch.
- 6. Depress the space bar on the CRT keyboard.
- 7. Reposition the BOOT switch The CRT will display the following message: 32K CP/M VERS 1.3
- 8. Enter ACQUIRE and a carriage return. The program will respond by displaying the current CONTROL file and ask:

"ANY CHANGES?".

- 9. Respond with a Y for yes or a N for no.
- 10. If yes, you must then edit the CONTROL file by entering:
 - * ED CONTROL CT
 - * #A CT

Use the editing commands specified in ref. 9.

11. If nc, the program will ask for a 4 digit frequency to be entered. The decimal point is understood to be between the first and second significant digits,

ex: 0105 is equivalent to 10.5 Hz.

- 12. When ready to record data, enter a carriage return.
- 13. Repeat steps 11 and 12 until the CONTROL file terminates and asks "GOOD RUN?".
- 14. Enter Y if you wish to protect the disk from being written to.
- 15. Entering a N will not protect the diskette nor will it destroy data on the disk.
- B. DATA ANALYSIS PROCEDURE INSTRUCTIONS
 - 1. With the DATA diskette in Drive B and the program diskette in Drive A, type in CONVERT DATA.xxx; where xxx is the decimal ID of the data file,

CONVERT DATA.001

 When prompted with an A>, enter RUN REDUCE. Output will appear on the selected console device.

APPENDIX F

SAMPLE CONTROL FILE

```
DATE: 6/15/77
RUN#: SIN REDUCTION TEST
SCANS PER CHANNEL: 400
SCAN PERIOD: 2
FIRST CHANNEL: 0
LAST CHANNEL: 2
SCANIVALVE 0: 1
SCANIVALVE 0: 6
SCANIVALVE 1: 1
SCANIVALVE 1: 6
CHANNEL 1 = INPUT FROM WAVETEK
CHANNEL 2 AND 3 = OUTPUT FROM OF AMP FILTER
         DATA.000 = 10HZ SIN WAVE ZERO OFFSET
              .001 = 25HZ SIN WITH ZERO OFFSET
              .002 = 35HZ SIN WITH ZERO OFFSET
              .003 = 50HZ SIN WITH ZERO OFFSET
              .004 = 65HZ SIN WITH ZERO OFFSET
              .005 = 75HZ SIN WITH ZERO OFFSET
 $
```

LIST OF REFERENCES

- Datel Systems, Inc., <u>Sinetrac Series Model ST-800</u>
 <u>Analog Peripheral Systems Instruction Manual</u>, Document No. ST8-MH1609, 1976.
- 2. Intel Corporation, MDS-800 Intellec MDS Microcomputer

 Development System Hardware Reference Manual, 1975.
- 3. Intel Corporation, <u>Intellec 800 Microcomputer</u>

 <u>Development System Operator's Manual</u>, 1975.
- 4. Intel Corporation, <u>Diskette Operating System Microcomputer Development System MDS-DOS Operator's</u> Manual, 1975.
- 5. Eubanks, G.E. Jr., <u>BASIC-E Reference manual</u>, Naval Postgraduate School, Monterey, 1976.
- 6. Eubanks, G.E. Jr., <u>An Extended BASIC Language</u>

 <u>Processing System</u>, M.S. Thesis, Naval Postgraduate
 School, Monterey, December, 1976.
- 7. Lancaster, Emmett John, III, <u>Initial Flow Measurements</u>
 of the <u>Unsteady Aerodynamics on a Circulation Control</u>
 <u>Airfeil and an Oscillatory Wind Tunnel</u>, M. S. Thesis,
 Naval Postgraduate School, Monterey, June, 1977.
- 8. Kail, Karl A., IV, <u>Unsteady Surface Pressure and Near-Wake Hot Wire Measurements of a Circulation Control Airfoil</u>, Engineer Thesis, Naval Postgraduate School, Monterey, June, 1977.
- 9. Digital Research Corp., An Introduction to CP/M Features and Facilities, 1976.

- 10. Intel Corporation, <u>8080 Assembly Language Programming Manual</u>, 1976.
- 11. Pickelsimer, B. M., <u>Data Reduction for the Unsteady Aerodynamics on a Circulation Control Airfoil</u>, M.S. Thesis, Naval Postgraduate School, Monterey, March, 1977.
- 12. Gordon, Bernard M., <u>The Analogic Data Conversion</u>

 <u>Systems Digest</u>, Analogic Corporation, 1977.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0142 Naval Postgraduate School		2
3.	Monterey, California 93940 Department Chairman, Code 67 Department of Aeronautics		1
	Naval Postgraduate School Monterey, California 93940		
4.	Professor L. V. Schmidt, Code 67SX Department of Aeronautics Naval Postgraduate School		1
	Monterey, California 93940		
5.	Professor J. A. Miller, Code 67Mo Department of Aeronautics Naval Postgraduate School Monterey, California 93940		1
6.			1
	Washington D.C. 20361		

7. Commanding Officer
Attn: Dr. H. Chaplin, Code ASED
Mr. J. Wilkerson, Code ASED
David W. Taylor Naval Ship Research
and Development Center
Bethesda, Maryland 20084

2

8. LT Cleveland D. Englehardt, USN
27 Greenbrae Court
El Sobrante, California 94803