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ABSTRACT

In manned systems, performance can change significantly
with changes in display design. With today's computer and display
technology, it is possible to provide virtually any display function
desired including automating many of the information processing tasks
previously performed by the human operator. However, the relation-
ship between display design and total system (people and machine)
performance must be known in order to systematically select display
features. The object of this research program was to investigate
system performance models for ship control as an aid to ship display
and control design.

A human operator model, which represents the total
system response by identifying the criteria optimized by that response,
was developed to represent the ship control performance of the Officer
of the Deck (OOD). In addition, a sensitive contact (ship) avoidance
measure was developed which detects conditions leading to ship
collisions and near collisions. The OMAC and performance measure
were used to demonstrate that significantly improved performance
can be obtained with a new display design that automates information
processing previously required of the OOD.

OMAC models representing performance obtained with
each display design reveal that performance differences are explained
by differences in a constraint self-imposed by the operator to select
only a portion of the display information in order to control the ship.
Constraint differences are equivalent to differences in the amount of
information processed by the OOD with each display design. Further,
the hypothesis that OOD participants using different displays attempt to
perform according to invariant performance criteria was confirmed
for superior performances. The hypothesis was not confirmed for less
than superior performances.




1.0 INTRODUCTION

This report i1s the final report on contract number
NO0014-75-C-0810 between Omnemii, Inc. and Engineering
Psychology Programs, Office of Naval Research. The contract ‘
was initiated on 1 April 1975 and completed on 30 May 1977.

The objectives of the research were to:

1. Develop a ship display/control design tool i
which would permit a designer to select !
alternative display features based on their ’

effect on system performance.

2 Develop a method of representing operator

control actions and resulting ship responses

T e np——

by the criteria optimized by those ship
responses. This type of model is called
"operator measures and criteria" (OMAC)
model. !
3. Devise a method of using the OMAC model to
predict operator control actions and resultant
ship responses in a variety of problem situations. ﬁ

4. Develop a sensitive measure of contact (ship)

avoidance performance.




This research program used data which had been
previously collected during a seriles of experiments in which
participants acting as Officer of the Deck (OOD) controlled a
simulated ship in a simulated environment. The task was to direct
a ship transit from the initial point to the terminal point within
a pre-specified time interval while avoiding simulated contacts
along the way. The experiment, using equipment known as the
Surface Ship Bridge Console System (Beary; Gawitt), was run by
personnel of NSRDC, Annapolis, Maryland, for purposes other than
this research program. The data from that experiment were used
in the research reported here.

Reports describing the research are listed in the section

on reports distributed. Results of the research are summarized in

the following paragraphs.

S




2.0 MAJOR RESULTS OF THE RESEARCH

21 Contact Avoildance Performance Measurement

Performance of manned systems is typically measured
with summary measures, i.e., measures that summarize performance
over the total simulated or actual mission. Examples of such measure
components applied to ship control are:

e iiransit tirne:

2. Average deviation from a reference course;

3. Number of collisions or near collisions;

4. Fuel efficiency; and

5. Number of course and speed changes.

These components are usually welghted and summed to form the
composit summary measure. However, such summary measures

did not reveal the performance differences that existed with different
displays tested in the ship control experiments referred to previously.
Fortunately, a sensitive contact avoidance measure was developed as
part of the research on this program to identify OMAC's that represent
operator performances. With this measure, the performance differences
with different displays were revealed.

Of importance here is not only discovery of improved
performance with the advanced displays, but also the development of

the sensitive contact avoidance performance measure. The success of




the measure supports the measurement principle: measures that
detect responses leading to a critical condition (a ship collision)
are more sensitive than measures that detect only the critical condition.

2.2 OMAC Modeling Concept

Performance prediction models have long been sought to
aid in system design and to better understand how display designs
affect performance. Present modeling methods (Connelly; Kleinman;
McRuer; Preyss; Sheridan) which typically represent the human
operator's moment-to—moment control response, have not provided
the necessary predictive models. There are several difficult pro-—
blems to overcome.. One problem is that performance models should
be applicable to operational or near operational settings and not
limited to laboratory problems. Operational settings frequently
require non-linear operator response functions - thus prohibiting the
use of linear models. Another problem is that prediction of human
response or human controlled system response on a moment—-by-moment
basis does not permit prediction of present response based on present
conditions and the anticipated or planned activity by the operator. The
modeling method used in the analysis reported here employs a construct

based on optimal control theory to provide performance prediction.




Optimal control theory provides a means for determining

the system response whica, within the constraints imposed, is best

according to the specified criteria. Given criteria and constraints,
optimal control theory permits evaluation of all possible responses
that satisfy the constraints, and in doing so identified the response
that is best according to the criteria. Its property of interest here

is that it relates system responses to criteria and vice versa. With

this capability, it is possible to model a response by identifying the
l criteria optimized. This modeling process 1s the inverse of the
process used by the designer of an automatic control system wherein
criteria are selected first followed by determination of system responses
that optimize those criteria. The inverse process used In this study
starts with observed responses and seeks to i1dentify the criteria
optimized by these responses.

For manned systems, the OMAC criteria found to be
optimized by observed responses should be distinguished from task

criteria typically established by the system designer to specify

desired system performance. Whnile the OMAC criteria and the task
criteria may be identical or similar, they are not necessarily the

same; differences would reflect a lack of mutual understanding of task
performance requirements. Also regarding manned systems, constraints
can be imposed by the equipment (e.g., limited rudder deflection) or

imposed by the operator (e.g., use of only a portion of the display information).




The control task considered here is a ship control
problem where the OOD is to direct the ship from a starting location
to an objective location and arrive at the objective in 90 minutes.

The ship is to be controlled so as to avoid all contacts (other ships)
by at least 3.70 kilometers (2 nautical miles). A task performance
measure for this problem was developed using measures of transit
time and contact avoidance. This task measure penalizes for excessive
transit time and for passing contacts closer than 3.70 kilometers

(2 nautical miles). The ship control involves equipment constraints
such as an upper limit to speed and a lower limit to turning radius.
Using the OMAC criteria analysis described, ship transiting responses
which included contact avoidance maneuvering were modeled by the
criteria optimized.

2.3 OMAC Representation of Operator Performances

OMAC's were 1dentified for each operator performance. The
ability of the OMAC's to represent individual performances was shown
to be a function of the level of operator performance, i.e., superior
performers were represented more accurately than were less skillful
performers. In spite of difference in accuracy of representation, the
representation is sufficiently accurate to permit prediction of operator

performance, i.e., prediction of operator performance using OMAC's

in a statistically significant manner.
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A major result of the research was that for the ship
control problem considered, OMAC must include both the criteria
optimized and a purview constraint. Without both criteria and
constraint, accurate modeling was not possible. The purview
constraint found useful in the OMAC model represents a radius
from own ship within which all contacts are considered. Contacts
outside that radius are not considered for ship control. Other
constraints such as considering a limited number of contacts may
be useful but some type of purview function is necessary.

2.4 OMAC Representation of Performance With OLD
and PACS Displays

OMAC's representing operator performance with two
different display types (QLD and PACS1) for two population groups
@ll_participants and superior participants) were identified. From
the results, several conclusions were possible.

1. A greater proportion of the performers were
rated superior with the PACS display than with the OLD display.

This suggests that with the PACS display there would be more superior

performers 1n the general OOD population.

2. Superior performers with PACS and OLD displays

are represented by the same OMAC criteria (the relative weighting

1 ’ : :

OL.D display is a conventional radar PPI display, PACS (Possible Area of
Collision) is an advanced display that provides among other features the locus
of collisions with all contacts for all possible own ship courses.

2=5
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between contact avoidance and transit time). The average performance
level with the two displays is different but the criteria optimized are
the same. This suggests that consistent '"target" criteria (the criteria
sought by the operator) were the goal of superior performers with both
displays; but, the operators were better able to reach that performance
goal with the PACS display. This result suggests that the '"target"
criteria might be used in training where operators could be rated not
only on performance but also on the criteria they apparently optimize.
3. Performance differences with different display types

obtained from the superior performances are explained by a difference

contact data). The logic is: OMAC predicts operator performance;
OMAC has two parts: criteria and purview; but, the criteria are
constant while purview changes with changes in display. Indeed, the
OMAC performance data show clearly the effect of purview on per-
formance.

4. The purview rating for the OLD display was found
to be 17.77 kilometers (9.6 nautical miles) while the PACS display

was found to be 22.22 kilometers (12 nautical miles). Purview rating

may be a function of contact density and thus the ratings given should

in purview (the range from own ship within which the operator processes
not be considered absolute; but, only apply for the experimental control task. 1
1
1




5. The average number of contacts within purview in
the experimental problem was a linear function of purview area. Thus,
OOD ship handling performance may be a function oF the number of
contacts that the OOD can process with a given display design. If a
display feature automates one or more information processing tasks,
the OOD may be able to process more contacts, thus expanding his
purview. According to the results discussed above (8), this would
result in improved performance. This logic suggests that an
analysis of the information processing required of the OOD per
contact may permit direct prediction of OOD ship handling performance.

2.9 Representation of Human Performance by the OMAC Optimized

Based on the overall results obtained with the OMAC, it
is concluded that the criteria modeling approach offers a practical way
to model human performance in an operational or near operational
problem setting. The generality of the method to other manned system
problems should be investigated.

With this modeling method, the operator's output at each
instant of time is represented by taking into account both the instantaneous
problem state and planned operator outputs as a result of projections of
controlled device responses. Projections of controlled device responses
are the expected future responses of the device(s) or expected behavior

of disturbing factors such as the contacts of the ship control problem.

o
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Representative OMAC's reveal the target criteria of the
human controller and permit evaluation of the ability to perform
according to those criteria. OMAC's also reveal the constraints
that may be self-imposed or are inherent, but which limit the
operator's performance level.

OMAC's can be developed for individuals working with
complex and non-linear tasks. The complexity of the task or the

device being controlled does not limit the identification of the

apparent OMAC.
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