“ AD=AO46 458 MHONEYWELL INC MINNEAPOLIS MINN SYSTEMS AND RESEARCH ==ETC F/¢ 9/2
A GRAPH THEORETIC APPROACH TO FAULT TOLERANT COMPUTING. (V)
SEP 77 W L HEIMERDINGER, Y W HAN Fat620=75=C=0053
UNCLASSIFIED AFOSR=TR=77-1285 NL

1
I
1§
I WBaeass

!

o

Il

Il

N
O

Il

8

lllL [j e

—————

AFOSR-TR- 77- 1255

NCA
. \ r/ / } /';} |
4-‘/"/“"’/#
| g A GRAPH THEORETIC APPROACH
i <t
éﬁo T0 FAULT TOLERANT COMPUTING
&S
<< :
= Final Report
SEPTEMBER 12, 1977
| e et
' W. L. Heimerdinger, Y. W. Han
| | B
v AIR FORCE OFFICE OF
[L=‘C SCIENTIFIC RESEARCH
| — (AFSC) B OC
== EREM TR
' R Bolling Air Force Base, D.C. 20332 ’:1 WOV 18 ‘977@
| Contract No. F44620-75-C-0053 EEUBU 2
|
|

Honeywell

prveia - ST
) ACKLISION i
é s Wi Section K 1

00c Butt Section 7 |
| #NAXNOUNCED O i

JUSTIFICATION...............

BISTRIBUTION /AYAILARILITY CODES

Bl AVAIL ant o SPEGIAL

2

rormation orficer

A GRAPH THEORETIC APPROACH

TO FAULT TOLERANT COMPUTING

Final Report

September 12, 1977

Contract No. F44620-75-C-0053 5 g & S
= [) PrA2ann
(AFSC [A

NOV 15 1977

L alitede

Systems & Research Center

2700 RIDGWAY PARKWAY
MINNEAPOLIS, MINNESOTA 55413

Printed in U.S.A.

SECTION 1.

SECTION IT.

SECTION III.

SECTION IV.

TABLE OF CONTENTS

INTRODUCTION AND SUMMARY
Introduction
Summary

DATA REPRESENTATION

Background

Separate vs Combined Data Graphs

Data Flow Procedure Language Features
Comparison of Single vs Double Graph Models
Procedure Calls

DATA CONTAMINATION ANALYSIS

Background

Transformation of Petri Net-Like Labeled
Graphs to Directed Graphs

Data Contamination Analysis

LABELED GRAPH MODELS WITH TIME

Background

Representations for Time in a Labeled Graph
Model

Effects of Adding Time to the Model

29

37

38

a4

52

55
56

N

SECTION I

INTRODUCTION AND SUMMARY

INTRODUCT ION

This report documents the activities in the second year of a two year
investigation of a graph theoretic approach to fault tolerance for the Air
Force Office of Scientific Research. This is part of a continuing effort also
sponsored by the Office of Naval Research and by Honeywell, Inc. to develop a
unified approach to the analysis of fault tolerant digital systems based on
graph theory. Earlier efforts have examined existing graphical models and
found a number of them to be suitable for fault tolrance modeling. Two
models, Petri Nets and LOGOS were found to be particularly suitable. A
subsequent effort examined available results in Petri net theory for properties
and relationships applicable to fault tolerance phenomena.

Previous investigations have concentrated on the sequencing and control aspects
of systems and did not explicitly consider time as a parameter in the model.
The effort documented here focused on the incorporation of data aspects of

the system in the model and on an explicit representation of time in the model.

In Section II, the work on data representation considers data modeling approaches
that use special value tokens to trace the flow of data in a single graph and
two-qraph modeling approaches in which data interactions are represented in a
separate data graph. We conclude that the two-graph approach is more appealing
for fault tolerance analysis because of its ability to more closely approximate
the data structure at lower levels in a system.

We have concluded that an effective approach to fault tolerant system

analysis must begin at the functional level of system description. At this
level, it is important to be able to model software structures such as arrays,
lists, and queues in a natural way. At the next lower level of abstraction
we become concerned with software intercommunication mechanisms, including
procedure calls and parameter passing schemes. Thus, we conducted a number
of modeling exercises in which we use the two-graph model to represent
variables with hierarchically nested scope, procedure calls, and a variety of
parameter passing mechanisms.

In Section III of this report, we describe a procedure for applying a data
flow analysis procedure originally developed for compiler optimization to the
tracing of data contamination in a fault tolerant system. We describe a
transformation scheme to convert our labeled graph model to a direci.ed graph
representation compatible with data flow analysis algorithms and a number of
other directed graph results.

In Section IV, we discuss the inclusion of time in a labeled graph fault
tolerance model. This recognizes the fact that a system which sequences
correctly but does not complete critical sequences within time deadlines must
be considered faulty in a real time environment. We conclude that we may
modify a Tabeled graph to associate two real numbers with each transition or
operator to denote upper and lower bounds on the firing time of the transition
or operation time of the operator. This provides us with a model having
greater representation capability than a simple Petri net.

SUMMARY

The above results have convinced us that a two-graph labeled graph model that

associates two time parameters with each transition or operation is a feasible
and effective method of representing a fault tolerant digital system for

e~

analysis purposes. We have not specified the exact syntax of a single model

in this effort, but we feel such a definition can be made using these results

in a straightforward way. Additional work is needed to identify data attributes
critical to fault tolerance and to include them in the model. This is the
subject of an ongoing effort.

We conclude that the two-graph labeled graph approach to fault tolerance
modeling is viable and promising.

R T £A935 P it e § - . - N

SECTION II

DATA REPRESENTATION

BACKGROUND

The majority of digital systems amenable to fault tolerance analysis perform
sequences of operations on stored data. For analysis purposes, we separate
the control (sequencing and coordination) and data (retention and manipulation
of stored data) aspects of these systems. A number of labelled graph models
have been developed to represent coordination and sequencing activities, but
few existing models include both control and data information in the same
model.

The earlier tasks in our study of graphical approaches to the analysis of
fault tolerant systems have concentrated on the control aspects of systems.
This years' effort began the development of a data representation for the
fault tolerance model. The goal is the creation of a data representation
that allows examination of three issues involved in the manipulation and
storage of a data item:

1) Data value - the current value of a data element
2) Data access - the mechanisms used to link the reference
to a data item by a programmer to the actual image of

the data element as stored in the system

3) Data transformation - the operations allowed on the
given data element.

Maye Wame wWawm

a———.

In this section, we first review the relative advantages of a single graph
and a two graph approach to data representation. We conclude that both are
adequate and that the two graph approach provides better insight into data
interactions.

We then use the two graph approach to verify that common data constructs
can be effectively represented.

SEPARATE VS COMBINED DATA GRAPHS

There are two major approaches for combining control and data information
into a single graphical model. The two graph approach augments a Petri Net-
like control graph representing control in the system with a second graph
portraying the connectivity of data items and data operations in the system.
In this scheme, data operations are sequenced by pairing operators in the
data graph with operators in the associated control graph.

The single graph approach essentially interleaves a control graph with a
data graph in a single graph which uses two types of links to carrv infor-
mation. Control links carry control tokens to sequence operations in the
model as in the two graph model, while data links carry special data tokens
to represent data values.

The first activity in this study of data representation compared the single
graph and two graph approaches. Two existing labelled graph models were
used as the basis for the comparison. The Data Flow Procedure Language
developed at MIT was used as the prototype single graph model, and LOGOS,
one of the models used earlier in this study was used as the prototype two
graph model. A brief summary of the features of Data Flow Procedure

Language follows. LOGOS is summarized in our previous report [36]. The two
models are defined in detail in [31] and [19].

DATA FLOW PROCEDURE LANGUAGE FEATURES

Data Flow Procedure Language (DFP) models, like Petri nets, are graphical
models in which tokens circulate to indicate the state of the system. In
order to represent data driven events, DFP defines data dependent actors.
These include operators, T-gates, F-gates, Boolean actors (AND, NOT, and OR),
and decider and merge operators as shown in Figures la & b. Actors are inter-
connected with links, represented by one or more connected edges in the
graph. A link acts like a place in a Petri net or a counter cell in a

LOGOS model to hold a token. Each edge in a link can contain either one
token or no token, just as a place in a safe Petri net can contain at most
one token. Tokens in data flow procedures are classified as data tokens

or control tokens. Data tokens denote operands of functions (actors and
links) and control tokens are used to determine control sequences.

In contrast to Petri net tokens, DFP tokens always have a value; control
tokens assume the values TRUE or FALSE and data tokens assume values

allowed for the data item being represented. Links correspond to the type
of token they carry; control links, represented by arcs with open arrow-
heads, carry only control tokens, while data Tinks, represented by arcs with
solid arrowheads, carry data tokens.

Except for control actors (T-gate, F-gate and merge), a link or an actor

is enabled when tokens are present on input arcs (edges) and no token is on
any output arc. The firing of the actor or the link absorbs the tokens
from the input arcs and places tokens on the output arcs.

3sivd

EREL

Nyl

“1 84nbLy

(9)

3svd

J1vo-L

Indl

(e)

et SRRRR SRRERT O WEEES W e e

The gate and merge actors (Figure 1b) permit the outcomes of tests to affect
the flow of values to operators and deciders. A T-gate, for example, passes

a value on to its output arc if it receives the value true at its control
input arc; the received data value is discarded if false is received. The
The merge node allows a control value to determine which of two sources
supplies a data value to its output arc. If the control value false arrives
at the control arc the merge passes on the value present or next to arrive
at the F-input arc. A value present at the T-input arc is left undisturbed.
The complementary action occurs for the control value true.

Figure 2denotes a switch which works as follows: If there exists a token in
the square cell (E signifies that the token exists), then the token on link
b passes to link d; otherwise (N signifies no token) Tink c tokens pass to
link d. We feel it is better to invent an assign operator, denoted in Figure
3, to replace this switch. This assign symbo]l indicates that the initial
value of d comes from link b; after that it can only be reassigned through
link ¢. We emphasize that both DFP and LOGOS were conceived as design tools
to create well structured digital systems. Consequently, some features of
existing systems do not necessarily have straightforward representations in
DFP or LOGOS. Since we were primarily concerned with structural and
philosophical issues, we deviated from the exact syntax of each model for
convenience and simplicity in the following comparisons.

EXAMPLES:

Two examples, one a software algorithm and the other a hardware example
based on a hypothetical machine, were used to contrast the two models.

Example One is a simple software table look-up algorithm selected to create
a situation in which the value of a data item 1s used to access the next
data item.

S

D
e
® E N
d
Figure 2.
J:
S | e
e

ASS denotes an Assignment Operation.

Figure 3.

Example One:

PROCEDURE EXAMPLE (M, N, K, W) ;
INTEGER: M, N, W ;

INTEGER CONSTANT: K

INTEGER ARRAY: A[0:23], B[0:23]

BEGIN
WHILE N # K DO
BEGIN
M€B(M);
NEA(M);
END;
WeEA(M);
END;

Figure 4shows a DFP representation of Example One. Note that ARRAY and
CONSTANT work as a memory cell; i.e., although we can envision a token being
moved out as the related operators activate, there is another token with the
same value to replenish it (just as values are rewritten in core memory cells
after a destructive read). It is important to note that a token on a data
link has a value (or values for structured data) associated with it and

that a token on a control link has a Boolean value: true or false.

The same example expressed in LOGOS is shown in Figures 5a and 5b. It
consists of two parts: the data graph contains the information on data access
and data transformation, and the control graph depicts the control flow of

the modeled system.

Examnie Two is a hardware example based on a hypothetical machine shown in

Figures 6a and 6b. This example executes an ADD instruction. Details of the
steps executed are listed below.

10

auQ adwexy jo uonyejudsaiday dda P aandig
M Indino
(WV
as[eyq
4 hi] LOdATES L0d7dS LOdTdS
| b A)
>
N d N)< e]
LNVISNOD uaxoL ua)o, AVHYV AVHYV

renu| renug

11

Output

w

|

ARRAY 0:23

ARRAY 0:23

CONSTANT |

A

B

\

K

Y

1

\

< SELECT > SELECT

)

3

Data Graph
Figure 5a.

12

G 8unby4

HdWVY9D TOYLNOD (9)

/ ana \

13

(a) Hypothetical Machine Structure

IR

ADDER

/ DECODE \

|

Bhioatn. =

-
-

A: Register A
B: Register B

IR:

IAR: Instruction Address Register
: Instruction Register

MS: Memory Storage
SAR: Storage Address Register
SDR: Storage Data Register

(b) Instruction Format

oP
Code

Address of Operand Address of Operand
One Two

Figure 6. Hypothetical Machine

14

—— e —— o s~ ko - ko L

Example Two:
IAR—P> SAR
1AR+1-9> IAR
MS [SARFP IR
Decode OP Code (ADD)
IR[Addr. of Operand 219 SAR
MS [SARTP SDR
SDR—P B
IR[Addr. of Operand 13— SAR
MS [SARTP SDR
SDR—P> A
A+ BpA
A — SDR
SOR—» MS [SAR]

Figure?7 illustrates DFP representation of Example Two. We deviated from the
original DFP notation by using sequence links, denoted as“‘c> , to specify

the precedence relationships between related operators. The operator at the
open arrow end of a sequence link cannot start until the other operator
completes its operation. Sequence links will be discussed in greater detail
later when the construction of a modified single graph model is discussed. The
representation of Example Two in LOGOS is shown in Figures 8a and 8b.

COMPARISON OF SINGLE VS DOUBLE GRAPH MODELS

In comparing the two models, we were most interested in the relationship
between the data and control portions of the models, the degree to which the
models follow the actual Togical structure of the system, and the ability

of the models to expose parallelism and concurrency in systems. Eight aspects
of the models were specifically considered:

15

B e

Initial 1AR Value True
Token

SAR FETCH

e

EXTRACT

DECODE

Create
a False
Token

Sequence Link®

presentation of Example Two

16

Figure 7. DFP Re

om], aidwexyg jo uonBluasatday SOHOT

17

*eg aJnbi4
404 ydeuy ejeq
01 6 L 11 9 4 a1 £ S 8 1 Z
aav SSV SSV Amm«wv :Bwv pooa(d A:Sm yoiyad SSVY wmcv Awm< I+
X))] 4 & 4
L o
C
. y \
11 i1 L
) S v Vi
g @do | (mao | epod . .
aav aav do YOLIOIA
I

e aaieind

2)

3)

7)

Control Signal Selection of Data Values--The mechanism in the

graph by which control signals determine which data item is used
from a data structure.

Data Steering of Control Sequences--The mechanism by which
data values influence the flow of control in the system.

Deviation from Real Systems--The degree to which the structure

and sequencing of the labelled graph model mirrors the structure
and behavior of the actual hardware or software system being
represented.

Exposure of Parallelism--The extent to which any parallelism or

concurrency in the architecture being modeled is reflected in
the structure and behavior of the model.

Representation of Data Instances--Some models directly represent

data storage elements which can be referenced by "read" operations
and can receive data with "write" operations. Other models create
a new "read-only" data element following each data operation.

Determinancy--Determinancy is a labelled graph property relating
to the certainty in the control sequence of a graph. Given an
initial marking, a graph is determinant if its firing sequence
of the transition is unchangeable.

Safeness--Safeness is a labelled graph property relating to the
number of tokens in a place. A labelled graph is called safe if
there can be at most a single token in each of its places at any
time.

19

Representation of Synchronous Systems~-Synchronous or asynchronous

systems differ mostly in the way activation condition is specified;
i.e., whether it is a signal coming from a central clock or a signal
produced at the completion of the preceding or a combination of both.
Labelled graphs are usually used to represent asynchronous systems
or events, while it is also possible to represent synchronous

systems or events by labelled graphs.

The single graph DFP models combined both data and control information in a

single, somewhat complex graph. We observed the following features in these

models:

1)

2)

3)

4)

Control Signal Selection of Data Values--T-gate, F-gate and merge

actors permit the outcomes of deciders to decide the flow of values.
If an operator has an input control arc, this operator cannot be
enabled until the arc contains a control token.

Data Steering of Control Sequences--Decider elements accept data

tokens as inputs and use these to output control tokens to initiate
control sequences.

Deviation from Real Systems--An actor cannot fire if any one of its

input arcs contains no token. This does not correspond completely
with realistic hardware systems in which every memory cell contains
information no matter if it is the desired information or a left-
over from previous calculations. On the other hand, this model
seems able to model software programs reasonably well by envisioning
every token placement as a snapshot of the program conditions.

Exposure of Parallelism--From the examples illustrated, the computa-
tions represented by the data flow programs deviate from the original

20

5)

6)

7)

algorithms. Hidden parallelism of the original algorithms are
uncovered during the process of constructing data flow programs.
As a consequence, this construction of a data flow program from a
system description or an algorithm is not straightforward.

Destructive Read (Dynamic Memory Cell)--Since the firing of an actor

or a link removes all the tokens on the input arcs, it can be
envisioned as destructive read. Tokens to be used more than once
are replicated by links.

Safeness--Safeness is enforced by the DFP firing rules

Determinancy--Also because of the firing rules, data flow programs
are deterministic.

Representation of Synchronous Systems--Synchronous systems or events

can be represented by adding a control token generator which has an
output arc connecting to every operator. This control token genera-

tor generates control tokens as the clock of the simulated systems.
It functions as a clock.

In LOGOS, control and data are separated and are represented by a control graph
and a data graph, respectively. Although it may be redundant, sometimes the
separation does increase clarity. Features observed in LOGOS are Tlisted below:

1) Control Signal Selection of Data Values--Every d-operator (data

operator) in a data graph is associated with at least one atomic
operator in the corresponding control graph. When the atomic actor
is activated, all of its associated data operators start to perform
their data access and data transformation. When all the data
operators complete their operations, the operation of the atomic
actor is then completed, It is importart to note that in the

21

3)

4)

5)

6)

7)

original LOGOS [17]every d-operator is uniquely associated with only
one atomic operator. This change is introduced to increase the
clarity.

Data Steering of Control Sequences--PRED (predicate) operators in

LOGOS are the counterpart of deciders in data flow programs. They
are data dependent control branches whose data operator performs

a test on its input d-cells (data cells). The outcome of the test
decides which control branch will be taken.

Deviation from Real Systems--The deviation problem of data flow
programs does not exist in LOGOS.

Exposure of Parallelism--Hidden parallelism need not be found to
construct a LOGOS model. Note that it is possible to identify
hidden parallelism after constructing a LOGOS model, if desired.

Determinancy--It is not necessary that a control graph be
deterministic.

Safeness--Safeness is not necessarily observed in control graphs.
In data graphs, operands are stored in data cells and it is non-
destructive read. Thus token content does not play a role in data
graphs.

Representation of Synchronous Systems--Synchronous systems or events
can be represented by adding a token generator which has an output
arc connecting to every operator of the control graph only. This
token generator functions as a clock.

22

e s

It is hard to judge objectively whether LOGOS or DFP is more suitable in
general. After all, they were developed for different goals. We feel

that the use of a static data cell (memory) for every variable and the non-
restriction in the safeness of the firing rules of LOGOS are more pertinent
and natural for modeling. On the other hand, others may consider a one graph
approach to be more readable. We have constructed a new one graph model with
the desirable features of LOGOS (static data cells and unrestricted firing
rules).

The new model introduces sequence links for specifying the precedence relation-
ships in a control sequence. If a transition (operation) has input sequence
Tinks, then it cannot be activated until there exists one or more token(s)

in every one of these sequence links. If a transition has output sequence
links, then, after the transition operation is completed and its outputs are
stored in the corresponding data cells, a token is placed on every one of

its output sequence links. Example One and Example Two are reconstructed

using sequence links in Figures 9 and 10, respectively. Note that we can also
add some operations on sequence links to specify complex control sequences.

For systems with simple control sequences, a one graph approach may increase
the conciseness of the model, since it does not need two operators, one for
control and the other for data, to specify the same event. But on the other
hand, for systems with complex control sequences, the addition of sequence
links and their operations may clutter the diagram and reduce the clarity.
In general, we think the two graph approach is a reasonable one for modeling
complicated systems. In some cases we may even need more specifications

and descriptions of every individual graph to make it clear.

23

K s R O e, | — -

e - S i . g e E_ P R

auQ a1dwexy jo uoryBjuasatday [9po) ydedn auQ 31BUIdY 6 aandig

julg aduanbag O
W onuoy o
YU Bed e——— ~
4| 103Tds §
D T e T e ar R e e O S e e et e A s)
| _ -
| ~
{
|
" LOATES ,.
| q s v
forompeiee e di e SR A e S A -
|
“ 10d7ds 3
Wv» B 77
uaNoL T8N
g
A g v M |
UwISU0D £2:0 AVHHV £2:0 AVHYEV inding i

R ad

-

R Ao o

om] ardwsxy jo uolysjussaiday [opoy ydedr) auQ a38UIS)Y (] 34NbL4

— —— —— — — — —— — —

-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1
|
|
|
|
|
|
|

i

-

[
|
_
I
~
o

e e s s s e o ——— — ——— —— —

(Vo)
o
“ 1000 dO (2)do |
s Sl A S |
KR oo g g i %3
VS _ _ _
OIS _ | |
A “ _
$. y
[SRS
] :
P HO1dd
[y _
§ Loas allldgn o o et ou
SSV -
]
|
|
|
-
HVI rlllw S
gusns

o - 2% ——

REPRESENTATION OF HIGH LEVEL SOFTWARE CONSTRUCTS

Before concluding that the two graph model is the most suitable for fault
tolerance analysis, it was necessary to demonstrate that this scheme could

adequately support a top-down approach to system representation and analysis.

Since the functional fault approach to fault tolerance concentrates on the
representation of faults at the highest possible level of abstraction, it is
imperative that the fault tolerance model be able to effectively represent
abstract data structures, including arrays and list structures (queues,
rings, etc). The model must also be able to expose the operation of common
conventions for sharing and communicating data, including scope rules for
block structured data and parameter passing conventions for procedure calls.

REPRESENTATION OF BLOCK-STRUCTURED DATA

We shall illustrate the representation of data nested in blocks through the
following example:

26

&

ey 00 W e

PROGRAM A;
INTEGER: a, b,
»
()
0
PROCEDURE B;
REAL: ¢, d;
°
[}
[
PROCEDURE C;
INTEGER: e, f;
[
@
]
END;
END;
[
]
]
PROCEDURE D;
INTEGER: g, h:
]
(]
®
END;

END.

The nested block structure of the above program is shown in Figure 1lla.

27

D(g,h)

Figure 1la.
BLOCK POINTER
A alb
|"L |_L
:B cld ' Djg|h
I_ BLOCK POINTER '\BLOCK POINTER
:C_ elp
_\\BLOCK POINTER
Figure 11b.

28

The data cells for this example are depicted in Figure 11b. For ease of
illustration, the data cells of a block are grouped as a row--let us call it
a data row. In most implementations, the individual data items would be
stored contiguously in the form of an array or a stack. Each data row has

a block pointer data cell associated with it which points to the immediate
higher level block. Pointer data elements are essential for up-level
addressing, but they are usually inaccessible and invisible to the user at
the programmer level, so we represent block pointers as dotted-line data
cells at the beginning of the data row with an arc to the higher level block.
For further convenience, we label the block pointer for each data row with
the name of the corresponding block.

Linked together by these block pointers, the data cells of a program are

now structured as atree. When the control of a program is in a block, then

the available data cells are the ones belonging to this block and to all higher
level blocks. These cells are linked and can be traced via the block pointers
starting from the data row of the current block to the root of the tree. For
instance, if the control enters block B of the preceding example, then the
available data cells are the ones of Block A and of block B. It is important
to note that there is one and only one path from a node (data row) of a tree

to its root [35].

PROCEDURE CALLS

The transfer of control and data parameters to and from procedures that are
shared by more than one user have always been a problem for graphical system
models. In some cases, we may be able to treat the shared procedure as if
it were an open subroutine by providing a separate copy of its data graph
and control graph to each potential user, This process becomes difficult
when a reasonably complex procedure is shared by many users because of the

29

problem of including so much redundant information in the model. Also, we
will often require a model in which a change in the structure of a commonly
used procedure, possibly due to a fault, immediately affects all users of
the procedure. In such cases, we want to use a single copy of the shared
procedure control graph and link it to each of the potential users.

There are two kinds of procedures we must handle for procedure calls, serially
reusable procedures and reentrant |rocedures. Serially reusable procedures
(or programs) are the procedures which only allow one calling procedure to

call it each time. This means that nobody else can execute this procedure
until the current user, if existent, finishes his execution. The other kind
of procedure is reentrant. A procedure is reentrant if, while it is being
executed, anybody else may also begin executing it. (This is most useful in
a multiprogramming or time-sharing environment, where several programs may
call, say, a Sine routine which is reentrant. Only one copy of the routine
need be kept in memory, no matter how many people are executing it.)

In general, most procedures are serially reusable. For simplicity, assume
that the term procedure denotes a serially reusable procedure. This case
is discussed first. Subsequently, with the use of colored tokens, we shall
present a method for handling reentrant procedure calls.

The easiest way to explain the handling of procedure calls may be through the
use of an example. Figure 12 shows the control graph of a program before
executing the procedure-call operator. If a procedure-call operator is
encountered it is assumed that a system routine (procedure) which handles
procedure calls in invoked. In Figurel3, a dynamic link is used to link

the system routine with the procedure-call transition. Dynamic links are
denoted by 1inks with dotted lines. Dynamic l1inks are the links which do not
exist unti]l a specific operator is executed and the linking information about
the source and the destination, which has been stored in a corresponding data
cell(s) 1s fetched to construct the link dynamically.

30

BEGIN
CALL PROCEDURE B

x
\ / END

CONTROL GRAPH BEFORE EXECUTION
OF A PROCEDURE CALL

Fiqure 12.

31

BEGIN

CALL

]
’

Fiqure 13.

PROCEDURE o |
B

PASS STORE RETURN
PARA- POINTER
METERS

|
PROCEDURE B
BEGINS
FETCH PARAMETERS
|
U
RETURN VIA RETURN

POINTER

32 PROCEDURE B END

Before linking to the called procedure, B, via another dynamic link, this
routine provides parameter passing and storage of the pointer pointing to the

' control graph of procedure B. If the system to be modeled has some other
capabilities, for instance security checking, these operations are also

‘ performed by this routine.

‘ There are three common ways of passing parameters: call by name, call by
value and call by reference [34]. If a parameter is passed through call by

. name or value (see Figure 14), the name or value is stored in a buffer first.

This buffer is allocated as the mailbox of the called procedure, to store

i the parameters passed from the calling procedure. When the called procedure
acquires control, it will fetch the name or value from this buffer and store
it in its data cell.

If a parameter is passed by reference, then the data item passed in as the
i formal parameter from the calling procedure and the receiving counterpart in
the called procedure share the same data storage location. This same type
b of data aliasing occurs when two variables are linked through the FORTRAN
COMMON statement or when the EQUIVALENCE statement is used in an assembly
language environment. In this case the two parameters are Tinked by an
address link, as showr in Figure 15 to indicate that they have the same
address. In this figure, i1 the value of e is changed, the value of b follows.
The pair (f,a) is similarly bound.

As discussed earlier, reentrant procedures allow more than one user to
execute them simultaneously. We shall treat reentrant procedures in the
same fashion as serially reusable procedures with the following extension:

1) In the control graph, identify different calls by different

color tokens. A color can be assigned to a user according to
his order entering the called procedure or preassigned priority.

33

e R —

A I - 4L = 1

A PARAMETER BEING PASSED THROUGH
CALL BY NAME (VALUE)

CALL BY NAME (VALUE) PASS

A BUFFER STORING NAME (VALUE)

FETCH THE PARAMETER

DATA CELL IN THE DATA GRAPH OF THE
CALLED PROCEDURE

DATA GRAPH PART FOR PARAMETER PASSING
THROUGH- CALL BY NAME (VALUE)

Fiqure 14.

34

"G 3unbi4

STIEVINVA TVI07

FANA3II0Y¥d AFTTVI FHL
404 S1132 viva

34NA300Ad ONITTIVI FHL
404 ST130 vivd

S¥3LINVAV
VY04

y

-

3

3

3
!
_

ANIT SSI¥aay |
gy 54

A 4

L,

LY
|
|
_
AR
=7

b

q

. 18
e

Lo i

1

2

T
v

35

il

2)

Provide a copy of data cells which corresponds to each color of
the tokens in the control graph.

36

-

SECTION III

DATA CONTAMINATION ANALYSIS

BACKGROUND

One of the main reasons for developing a representation for data in our fault
tolerance model is to provide a vehicle for tracing the spread of data conta-
mination in a system following a data fault. We are also interested in
determining the location of data items that are ancestors of a particular
critical data item in a system and hence may need extra monitoring or
protection to guarantee the integrity of the critical data item. Both
problems involve the tracing of the influence of individual data items for
the time they are defined until their eventual use. Labelled graphs have

not been extensively applied in this area, but conventional directed graphs
have been used extensively for data flow analysis, principally for the
optimization of code generated by compilers. We found the work of Allen

and Cocke [9] in this area to be particularly relevant.

Directed graphs have been applied to fault tolerance analysis by a number of
investigators. Ramamoorthy [2] pioneered the application of graph theory
to fault tolerance. His work provided a systematic method to segment a
digital system, to insert test points, and to open certain edges of the
graph to make it loop-free for fault diagnosis. By considering that each
unit did test the other units of a system and by implicitly assuming that
each of the units had the same reliability, Preparata, Metze and Chien [3]
and later Hakimi and Amin [4] used a graph model to derive the necessary and
sufficient conditions for the system to be multiple-fault diagnosable with
some connection assignments. With the same graph model, Russell and Kime
and Barni, et al [5] modified some assumptions and extended the results in
Preparata's paper [3] . Akers[7,8] pointed out that one of the most famous

37

graph theory problems--namely the coloring problem--is closely related to the
test generation problem of fault diagnosis, although the examples given are
only loop-free graphs (combinational circuits) .

To exploit these analysis schemes based on conventional digraphs, we developed
a procedure to convert a Tabeled graph system model into a directed graph
model. The transformation procedure also allows us to determine if the
original labeled graph will be unbounded, dead or deadlocked due to design
errors. Subsequently, we shall use data flow analysis results originally
developed for compiler optimization for the analysis of data contamination,
which is the spread of erroneous data resulting from a fault or a set of
faults. We also shall apply these data flow analysis results to study the
other aspects of fault tolerance, i.e., tracing crucial input data and
analyzing the effects of control sequence errors.

TRANSFORMATION OF PETRI NET-LIKE LABELED GRAPHS TO DIRECTED GRAPHS

In the following section we present a method for transforming a Petri net-
like labeled graph tu a directed graph which preserves the transitfon firing
sequence of the original labeled graph. This method follows very closely
Karp and Miller's [22] rooted tree approach for obtaining the reachable
states of vector addition systems. A vector addition system represents the
system state by recording the assianment of tokens to nodes in a vector
having an element for every node. In these systems the firing of the next
transition from any state is independent of the way by which the state was
reached. As a result, we can very easily derive the reachable states. Since
" each transition is interpreted as an operation in our model, we prefer that a
node in the transformed directed graph denote the firing of a transition.
This can be done by performing another graph-to-graph transformation after
obtaining a directed graph in which every node is a state in the vector
addition system.

38

Before the discussion of our method, we briefly introduce vector additicn
systems.

Definition: An r-dimensional vector addition system V is a pair V =
(s,W) where

(1) se N" , N= {0, 1,..3 . This is the initial state.

(2) Wis a finite set of r-dimensional integer vectors

W=fu, oowd o w €, 41, 42,3

This is the set of firing rules.

The reachability set R(V) is the set of vectors given by:

R(V)= 5(1_/)(1,=5+w1..|+w1.2+....+w_“3where
W T

2
dieedks ANA 'S + Wi +w §2 e W 0

AL 2
» ik

1J
The reachability set is the set of all points that can be reached by some
path from s using vectors from W and which have no negative elements in
their position vectors.

Example - As an example of a vector addition system, consider

V= (s,WN)

where s = (1,1,0,0)

W= Wy = (<10, +1, 0), Wy = (-1, -1, +1, +1), wy =_(0, -1, 0, +1)
Wy = (+1, 0, -1, 0), Wg = (0, +1, 0, -1)

The reachability set R(V) of this vector addition system consists of four

vectors {11,1,0,0), (0,0,1,1), (0,1,1,0) (1,0,0,1i} . Note that al) elements

of vectors in the reachability set are non-negative.
Figures 16a and 16b are the reachability diagram and its corresponding

Petri net representation for the vector addition system, respectively. If
the reachability set of a vector addition system is finite, then the

39

(0,0,1,1)

(1,1,0,0) w
A 4 ;/)B
F

w W
4 4
C D
(0,1,1,0) (1,0,0,1)
(a)
P
2 (. 3\’%

W \ W Wy Yy W Y W
e iRl Yoss 2 3 K a8
P, 6’ iﬁ
(b)

Y

YpB 4BD
(U=
Where Wonc corresponds to the edge W in Figure 4(a), from node B
to node C, etc.
(e)
Figure 16.

40

O .

reachability diagram is a finite machine, as in Figure 16a. On the other
hand, if the system is unbounded, we need a method to detect it and stop the
transformation. For this purpose, the following notation and definitions are
introduced:

A vector addition system (Petri net) is called unbounded if it contains an
infinite number of tokens; it is called dead if it is free of tokens; and it
is called deadlocked if it contains tokens but cannot fire any transition.
For example, Fiqure 17 shows a net which will be deadlocked if a vector Vis

p
Xk.z'yk’ 14 k £ r, then certainly at v, we can repeat the process which has

(xl, XopeooX), can be reached from another vector vj, (yl- yz,...yr), and

brought Vj to Vs Thus, for the elements for which Xk > Yo X can be
increased monotonically to infinity. Therefore, this system (or Petri net)

is unbounded. Also if x, = Yir 1% k4 r, we can stop the process which

k
generates other vectors (or states) from Vj'

The procedure for generating a reachability diagram of a given vector addition
system is summarized in Algorithm 1. This algorithm can determine if a given
vector addition system will be unbounded, dead, or deadlocked. If not, the
algorithm generates a directed graph in which every node is a state in the
sense of vector addition systems and every edge corresponds to a transition
firing.

Algorithm 1:

Define a new state as a state which has not appeared yet in the previous gener-

ation of the reachability diagram.

Step 1: [Is there any new state left? If no, STOP.

Step 2: Can this state, say state A, have any successor? If yes, GO TO
step 3. If not, it is either a dead state or a deadlock. If this
state is free of tokens then it is a dead state; otherwise, it is a
deadlock. STOP.

41

Fiqure 17.

Figure 18.

42

Step 3: Determine whether there is any successor remaining, if no, GO TO
step 1, if a successor remains, remove the first such succes o+
(call it state B) from the rest of the remaining successors and
determine if state B has appeared before. If not, state B is a
new state; otherwise it is an old one. Trace the ancestors of
state B to see whether it has a smaller ancestor, if so, it is
unbounded, so STOP. Note that if state B is an old state, only
state A and the ancestors of state A have to be traced, because
the others have been traced already. GO TO step 3.

End Algorithm 1.

The process of transformation is not complete yet, however, because we want |
every transition in the labeled graph to correspond to a node in the directed |
graph, while in the diagram resulting from algorithm 1 it is an edge. This

reachability diagram has to be transformed to another directed graph in which

every node, say node a, corresponds to an edge, say edge a, in the diagram and

there is an edge from node a to node b in the graph, if there is a node which

edge a enters and which edge b exits in the reachability diagram. The

algorithm for this portion of transformation can be found in [23] . In the

previous example, the reachability diagram, Figure [a , is transformed to

the directed graph, Figure 16 ¢ , thus, completing the process of transforming

a Petri net-like labeled graph to a directed graph while preserving the same

firing sequence of transitions.

Not all the Petri nets can be represented as a vector addition system unless
we add some modification to ordinary vector addition systems. For instance,
there is no vector addition system counterpart to a Petri net that contains
the net shown in Figure 18 . This modification is beyond the scope of
this discussion.

43

The above transformation, transforms our labeled graph model, a Petri net-
like graph, to a directed graph. Every node of the directed graph corresponds
to a transition of the control graph, which, in turn, corresponds to a set of
data information. In the transformation, the data information is transferable
if desired. This data information can be used to trace the spread of data
contamination.

DATA CONTAMINATION ANALYSIS

Given a directed graph in which each node performs a data operation, this
section proposes an approach for tracing data contamination due to either
faulty input data or incorrect data operations at some nodes. This approach
utilizes some data flow analysis results which will be introduced first.

For compiler optimization, it is frequently desirable to know where data
items are defined and where they are used. Some examples are "reaching
definitions," "upwards exposed uses" [24] , “live variables," “very busy

variables,” (257, etc. These problems, because they can be solved basically

in the same manner, are called "global data flow analysis problems."

Allen and Cocke[9] wuse an "interval analysis" approach to solve these
problems and Kildall [2¢] suggests an obvious method to handle them. It has
been proven [24] that this obvious method is as good as the interval
algorithm for solving all known global data flow problems. Also, a "node
splitting" method must be used when graphs cannot be partitioned into inter-
vals (irreducible graphs); the simple algorithm [24] proposed by Kildall
still works on irreducible graphs. Kou [27] proposes a linked-1ist implemen-
tation scheme instead of the conventional bit-vector one for these problems
and contrasts the computational complexities of difficult approaches. But,
note that there are some deviations in definitions in[9] and [27] . Here,

44

it is not intended to propose new algorithms or to compare their complexities
for the data flow analysis problems; rather our concern is to show tha' :cn»
of these results can be utilized for fault tolerance.

Before discussion, we define the terms we are going to use. Most of these
definitions follow the ones in [9].

A data definition 1is an expression or part of an expression which specifies

a data item. A data use is an expression or part of an expression which
references a data item without modifying it. Let DBi denote the set of
definitions defined at node i and UBi denote the set of definitions used at
node i. A basic block is a linear sequence of program instructions having

one entry point (the first instruction executed) and one exit point (the

last instruction executed). The nodes of the control flow graph can represent
the basic blocks of a program. A locally available definition of node i,
denoted as UBi is the last definition of the data items in the basic block.

A definition X in basic block n; is said to reach basic block U y £ 4

1. X is a locally available definition from Nys

g N is a successor of n; and
3. There is at least one path from n; to N which does not contain
a node having a redefinition of the same data item; that is, X

is preserved on some path from Ny to Ny

The set of definitions reaching node i is called reaching definitions of node
i and is denoted as Ri‘

Figures 19a and 19b illustrate these definitions.

45

(a)

INPUT X,Y

(x,Y)

X # fs(Z)

Node

w N

N O &

DB. UB

i i i
Xy,Y,) 9
9 X,Y X, Y
) Y X, XY, Z,
z, X XYYz,
Xg Z X XY 2,
) X X XY 2,
X, Y X X;Y,2,
(b)

Where the subindex of a variable indicates the node number in which the variable

is related.

Fiqure

46

19.

Data contamination can result from input errors, system program malfunctions,
corresponding hardware failures, etc. Now, consider the following prot ei:
given a data flow analysis graph, how does contaminated data propagate.

One major difference between the data constant propagation studied extensively
for compiler optimization and contaminated data propagation in faulty systems
is that once a data item is contaminated, it may affect other data items,
thereby propagating the contamination further in the system.

In discussing this propagation of contamination, we will use the following
notation:

CID = contaminated variables

CIDi = with order contaminated variables. If i = o then it is the
original contaminated input data.

Obviously, (Ril\ UBi) is the set of input data used at node i. Take node 2
of Figure 19 a as an example.

RZ/\ UB2 = (Xl, Yl’ Z4) A (X, ¥) = (Xl, Yl)' This tells us that at node 2,
the variable X defined at node 1 and the variable Y defined at node 1 are
used.

As an example of contaminated data propagation, consider the graph of Figure
19a again. Suppose that, due to a transient error in the transmission, the
value of X received at node 4 is contaminated. It is also important to

note that if f4 (X) is miscoded due to a design error and the data item X
available at node 4 is correct, the consequence is the same as in the previous
case. MWe want to see which operations are affected and which variables are
contaminated.

47

Obviously,
CID0 = 8(at node 4, transient error}
CID1 = {?;&

Note that neither X1 nor x5 is contaminated yet. But as Z4 propagates

and UBSIW R5 = Z4

So the operation in node 5 is affected and

e, = {o8% = {x.}

Still, this contaminated X5 propagates and

UBG/W R6 = X5

Besides node 6, node 4 uses X5 too, but it has been counted already. Now

the operation in node 6 is affected but no variable is modified. This
operat . uin can be a test operation and whether the contaminated input X5 causes
the dive 'qence of the control stream needs a sensitivity analysis.
Now, we obtain

CID3 = {ﬂg , S0 we do not need to proceed further.

Therefore, for the transient error of X at node 4 the affected operations
are {4. 5, 61 and the contaminated variables are CID, U CID, = 524, Xsi

The process for identifying affected operations and variables due to a set
of contaminated data is summarized in the following algorithm. For simplicity,

48

ey MOwen $Swe $TERE 0 ARE 20 AR 0 MR e Tl e T e

it is assumed that there is only one operation at every node. This assumption
can be removed very easily be modifying the algorithm. Given a graph, UBi,
UBi and Ri of every node i, and a set of contaminated data, this algorithm
identified all the operations and variables by these contaminated data.
Algorithm 2:
Let A, B be a set of all the nodes and a null set, respectively.
Let CID0 be the set of originally contaminated data.
Step 1 Initialization: n = o; CID, = @ for k 2 1.
Step 2 Scan through all the nodes in A, if it is @, GO TO step 3.
If node i & A and Rifl UB; & CID,
then A=A - node i, B 4= BV node i, and CIDn+14~ CIDn+1U DB1.
Step 3 If CID,4q = @, then GO TO step 4
Otherwise
n& nt+lj;
GO TO step 2.

= w
Step 4 CID ClDo CIDl ol CID,

The affected operations (their node numbers) are stored in B
and the affected variables are stored in CID.

49

END algorithm 2.

In interpreting our graphical model, we consider a fault associated with a
ncde as a data contamination error, while we consider faults due to missing
edges or to extra edges as control sequence errors involving incorrect

control paths. Generally, data contamination errors do not affect the
sequencing of control until the contaminated data propagates to a node in
which a conditional branching of control occurs. Contaminated data at a
conditional branch node may cause faulty control sequences to be generated
which use control paths that are not intended to be active under current
system conditions. Whether this occurs depends on the error margin, i.e.,

the margin between normal data values and the threshold at which the branch
decision changes, and a sensitivity analysis must be conducted to determine
this error margin. In turn, a control sequence error with an incorrect

path due to a missing edge or an extra edge can cause contaminated data, since
the precedence relationship of executions may be changed. To analyze the
consequences of a missing or an extra edge of a given graph and DBi and UBi,
for each node i, a recalculation of Ri is needed. At a node, if X1 is
received and it should be Xg, the consequence is the same as with contaminated
data discussed in the foregoing section. While if Xg should be received at

a node and it does not, it is equivalent of use of an undefined variable.
Again, it also can be as another form of data contamination.

In order to predict what kind of incorrect paths as well as contaminated

data are created because of hardware failures, the model should have the
following feature: A labeled graph model must contain information to identify
the associated hardware with each data operation and each control operation;

A directed graph model must contain information to identify the associated
hardware with each node and each edge. Thus, given a 1ikely failure node of
an unreliable hardware component, we can trace the possible missing or extra
edges. Through the analysis of the model, the consequence of failure can be
derived.

50

e R R il e ey s | www pe—— s e k. o R

Usually certain subsystems of a system are much more crucial than the rest
in terms of system reliability, security or protection. Given a set of
crucial operations, we may want to identify the corresponding hardware

and inputs of these operations. The method for identifying all the related
inputs of a given set of operations is presented below.

The approach for identifying all the crucial input data is similar to algorithm
2, but algorithm 2 traces the outputs and we now trace backwards to find the
inputs. Let us use the graph shown in Figure 19a again as an example. Suppose
that the operation performed by node 5 is crucial and we want to find all

the inputs which affect this operation.

From Figure 19p.
Rsfﬁ UB; = Z,
So we know the input is Z and provided by node 4.
Now, R, UB, = X;Xg
But node 5 has been scanned already, hence we only trace node 1.
Finally, Ry UB, = 9
From this example we observe that as long as there is no control sequence

error, only nodes 1 and 4 need function correctly to provide correct inputs
to node 5.

51

SECTION IV

LABELED GRAPH MODELS WITH TIME

BACKGROUND

Our original set of functional fault classes included only asynchronous
conditions in a system. Loss of control was represented by the loss of a token
from the system, multiple instances of control were represented by the occur-
rence of spurious tokens in the system, and control deadlock was represented
by Petri net structures with deadlock. Our committment to analyze the fault
tolerance of real time control systems soon forced us to admit another type
of functional fault, which we initially referred to as “tardiness of control”.
This refers to a condition in which a system sequences correctly and produces
correct data values but does not complete its operations within the time
constraints imposed by the real time environment. This may occur as the
result of degradation of physical units in the system or as the result of the
execution of unplanned, but legal sequences. A design error discovered in

an actual operating system dramatically illustrates the latter situation.
Engineers testing a dual-redundant real time control situation encountered

a situation where the two channels would repeatedly fail to synchronize,
although tests of both the system hardware and software showed them to be
operating exactly as designed. The problem was finally traced to the system
reaction to a transient fault sufficient to trigger a reinitialization
sequence in only one of the two channels. The affected channel would
complete its initialization sequence and, with the transient fault condition
no longer present, would operate normally according to design. Unfortunately
the design used a timer in each channel which would signal an error condition
when the channel failed to complete its processing sequence in a specified
time interval - an interval which was not large enough to allow the execution

52

TR weeRer O WERRE O TR RS e ARee 0 SIS O S e 0 e

.

— — e e e— e —

) . um— s s — e A B s o ;. e -

of both the initialization sequence and the subsequent normal processing
sequence. The resulting timeout error caused another initialization se~uenre
in the next processing cycle, thus perpetuating the error condition. From a
functional point of view, the errant channel was operating correctly, but not
within system time constraints.

We also encountered problems with time in our efforts to model recovery
schemes from loss of control faults. Although it was possible to develop
schemes to detect this condition by monitoring the total token population in
a subsystem, we had difficulties with models of detection schemes employing
the familiar interval timer mechanism. Petri net models have "permissive"
firing rules that allow an enabled transition to wait an arbitrarily long
period of time before firing. Thus, it is impossible to create a convincing
model of an interval timer that can be guaranteed to fire after a specified
time interval without adding time parameters to the Petri net firing rules.

In a similar context, Merlin [29] studied two types of faults in Petri nets;
loss of a token and gain of a token. Each net has a specified initial marking
(or markings) and hence, a set of markings which are reachable from the initial
marking. For any specified place, the "fault" would transform the markings

of the Petri net by the removal of a token from the place (if it had one) or
by the addition of a token to the place. He then defined a net to be recover-
able from the fault if, in a finite number of transition firings, the net
would return to a marking reachable from the initial marking in the normal

net. On the other hand, if there is some infinite sequence of transition
firings which leave the net in markings not reachable from the initial marking,
then the net does not recover from the fault.

This approach could be applied to other types of "faults" which are, in fact,

a transform of the net‘'s markings. A fault is detectable if it transforms the
"legal"” markings of the net into “illegal” markings, i.e., markings not reach-

53

|
|

P <

able from the initial marking. Recoverability would be defined the same as
for loss of token or gain of token.

The concept of detectability could be important in itself. If a system is to
be designed so that a certain class of faults are detectable, in the classical
sense, then the design could be approached in a two step process. First, a
Petri net must be specified for which each fault in the class is detectable

as defined above. Secondly, the net must be specified so that all illegal
markings cause the occurrence of one or more recognizable output events.

These ideas apply directly to some of the functional type faults. For example,
multiple instances of control and loss of control are faults which lead to
illegal markings and hence, by definition, are detectable. The multiple
instances of control would be a fault, from which the system may or may not
recover; however, by its definition, the system cannot recover from loss of
control. Other classes of control faults, such as diversion of control and
skew of control, may or may not be detectable for the given Petri net.

Merlin has shown that if a Petri net without time associated with transitions,
is recoverable from loss of token faults, then the net has a "degraded"
operation after the fault. It is "degraded" operation in the sense that not
all markings which could occur before the fault can occur after the fauit even
though the net remains in legal markings. Time was introduced into the net

to retain recoverability without the "dggradéd" operation. For example, his

investigations indicate that therg/da”hot exist practical recoverable asynchron-

ous communication protocols untéss the execution time of events are known a
priori.

> 2
"

54

—

REPRESENTATIONS FOR TIME IN A LABELED GRAPH MODEL

Labeled graph models are generally interpreted so that transitions denote
events or sets of operations. Thus it is natural to link time parameters

with the firing of transitions. There are several alternatives for specifying
the firing time of a transition. These include:

Specification of a fixed time interval for the transition firing

Specification of upper and lower bounds for the transition firing
time interval

Specification of a probability density function describing the
distribution of transition firing time interval values

- An enumeration of a set of possible transition firing times

- The specification of some "absolute" time before which the transition
must fire, if enabled.

The last alternative requires the establishment of a system time reference

and becomes a problem when a transition is in a loop. The first alternative
is difficult to implement in a model that hierarchically models details of
lower level system operations inside high level operators. In such a system,
a high level transition may be expanded into a lower level graph that has more
than one path from input to output. If two of these paths have different
traversal times, then we must at Teast enumerate these alternatives for the
higher level transition. The problem of enumeration becomes increasingly
difficult in systems with a number of hierarchical levels.

The bounds approach and the probabilistic approach are the more practical
alternatives, although probability distribution functions for multi-level

).

55

systems with several alternative lower level paths will often be difficult to
obtain. The bounds a.proach has the advantage that we only need know the
best and worst case times of sequence at lower levels.

We follow Merlin's approach and assign two real numbers, ti-min and ti-max’

to a transition, ti‘ We then require that a transition can only fire if it
has been enabled for ti-m' seconds, and that the transition must fire if it

in
has been enabled for t. seconds. If t, * ty_ jax® then the transition
seconds after it is enabled.

i-max i-min

always fires exactly akin

If all transition firing times are fixed with t, then, for

i-min ~ ti-max’
finite nets, we can use the results of Ramchandandi [28] to determine

firing schedules and computation rates. The process rapidly becomes complica-
ted when ti-min 7 ti-max’ and simulation may be necessary to characterize the
operation of these systems.

EFFECTS OF ADDING TIME TO THE MODEL

The addition of time constraints to the model increases the representation
power of the model. The addition of time parameters to a Petri net model
without time constraints removes certain firing sequences from the set of
allowable firing sequences. The sequences removed may be sequences leading
to deadlocks, in which case a previously K-live net may become immortal. The
interesting situations occur when time parameters are assigned to two transi-
tions sharing a single place in a conflict situation, as in Figure 20

Clearly, if t
within tlmin - t?max
rate for P3 is a functicn of the number of tokens in the system and the firing
times of the transitions in circuits of the graph that include P3. It appears
that, in nets with finite token populations, the ratios of transition firing

twin” t?max' and the supply of tokens to place P3 is replenished

seconds, transition tl will never fire. The replenishment

56

-

L T B S

Conflict in timed net

Figure 20.

57

times may be adjusted to obtain the equivalent of a Petri net with priority
between transitions sharing places. If this is true, then we may add time to
simple Petri nets and obtain the ropresentation power of a Petri net with
negation if the nets involved all have finite token populations. We are
continuing to investigate this area.

On the more pragmatic side. the increase in ability of a model with time to
represent the behavior of actual digital systems is considerable. Although
they sometimes risk problems from race conditions, present day digital

systems designers continually rely on time delays to quarantee correct system
operation. Some designers exploit the cumulative effects of gate delays in an
arithmetic/logic unit to use the same register for both the output of the

unit and one of the inputs to the unit. Others use delays in wiring to
establish priorities in bus requests, etc. A conventional Petri net model of
such a system would allow sequences that could not happen in the actual system.
The timed model introduced here not only behaves like the real system, but also
explicitly shows how the designer is using time to achieve his objectives.

The objective of this long-term project is modeling and analyzing fault

tolerance aspects of real-time systems. In these systems, to satisfy time

requirements is crucial for the success of the systems. Therefore, the

transition firing times of the labeled graph model are specified tor handling
time-related faults such as race conditions and tardiness of control. In

this section, we enumerate all the alternatives of specifying times of the

labeled graph model, and observe the effect of adding time to the model.

However, this is only a start of an urgently needed but hard area. We

strongly suggest that further research should be conducted especially in

analyzing the effects caused by the addition of time in transition firing]
sequences. |

58

Fopaeos

REFERENCES

(1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

(13]

(14]

B. W. Boehm, "Software and Its Impact: A Quantitative Assessment,"
Datamation, pp. 48-59, May 1973.

C. V. Ramamoorthy, "A Structural Theory of Machine Diagnosis," AFIPS
Proc. SJCC, Vol. 39, 1967.

F. P. Preparata, G. Metze, and R. T. Chien, "On the Connection
Assignment Problem of Diagnosable Systems," IEEETC, Vol., EC-16, No. 6,
December 1967.

S. L. Hakimi and A. T. Amin, "Characterization of Connection Assignment
of Diagnosable Systems," IEEETC, January 1974.

J. Russell and C. Kine, "System Fault Diagnosis: Closure and Diagnosa-
bility with Repair,” IEEETC, Vol. C-24, No. 11, November 1975.

F. Barni, F. Grandoni, and P. Maestrini, "A Theory of Diagnosability of
Digital Systems," IEEETC, Vol. C-25, No. 6, pp. 585-593, June 1976.

S. B. Akers, Jr., "A Logic System for Fault Test Generation," IEEETC,
Vol. C-25, No. 6, pp. 620-630, June 1976.

S. B. Akers, Jr., "Fault Diganosis as a Graph Coloring Problem," IEEETC,
Vol. C-23, No. 7, pp. 706-712, July 1974.

F. E. Allen and J. Cocke, “A Program Data Flow Analysis Procedure,"
CACM, Vol. 19, No. 3, pp. 137-146, March 1976.

C. A. Petri, "Kommunikation Mit Automation," Sohilften des Rein/sch-
West and det Universitat Bonn, No. 2. Bonn 1962, Translated by C. F.
Greene, Applied Data Research, Ltd., Technical Report No. RADC-TR-65-371.
M. Hack, "Petri Net Languages," Technical Report 159, Laboratory for
Computer Science, MIT, March 1976.

J. D. Noe and G. J. Nutt, "Macro E-Nets for Representation of Parallel
Systems," IEEETC, Vol. C-22, No. 8, August 1973.

J. D. Noe, "Pro-Nets: For Modeling Processes and Processors," University
of Washington, Tech. Report 75-07-15, Revised: 15 July 1975.

A. W. Hold and F. Commoner, "Events and Conditions: An Approach to
the Description and Analysis of Dynamic Systems,” Third Semi-Annual

59

(15]

[16]

7]

[18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

Technical Report, Part II, for the Project "Research in Machine-Independ-
ent Software Programming," Applied Data Research, Inc., April 1970.

M. Jagayeri, "A Programmed Introduction for Users of a Computer Aided
Desiagn System," Report No. 1130, Case Western University, January 1974.
C. W. Rose and M. Albarran, "Modeling and Design Description of
Hierarchical Hardware/Software Systems," Proceedings of 12th Design
Automation Conference, 1975.

C. W. Rose, F. T. Bradshaw and S. W. Katzke, "The LOGOS Representation
System," Digest Comcon 1972, September 1972.

D. R. Slutz, "The Flow Graph Schemata Model of Parallel Computation,"
Project MAC, TR-53, Ph. D. Thesis, September 1968.

J. B. Dennis, "First Version of a Data Flow Procedure Lanquage," Project
MAC, Group Memo 93-1, August 1974.

J. B. Dennis and J. B. Fosseen, "Introduction to Data Flow Schemas,"
Project MAC, Group Memo 81-1, September 1973.

A. Pritaker, B. Alan, and W. W. Happ, "GERT: Graphical Evaluation and
Review Technique - Part 1 Fundamentals," The Journal of Industrial Eng.,
Vol. XVIII, No. 5, 1966.

R. M. Karp and R. E. Miller, "Parallel Program Schemata," Journal of
Computer and System Sciences, 1969.

N. J. A. Sloane, "On Finding the Paths Through a Network," The Bell
System Technical Journal, Vol. 41, No. 2, February 1972.

M. S. Hachet and J. D. Ullman, "Analysis of a Simple Algorithm for
Global Flow Problems,” Conf. Record, ACM Symp. on Principles of
Programming Languages, Boston, Mass., pp. 207-217, October 1973.

M. Schaefer, “A Mathematical Theory of Global Program Optimization,"
Prentice-Hal, Englewood Cliffs, N. J., 1973.

G. A. Kildall, "A Unified Approach to Global Program Optimization,"
Conf. Record, ACM Symp. on Principles of Programming Languages, Boston,
Mass., pp. 184-206, 1973.

60

— e W WS e

(27]

(28]

[29]

[30]

[31]

(32]

(33]

(34]

(35]
[36]

L. T. Kou, "On Live-Dead Analysis for Global Data Flow Problems,"

IBM Research Rep. RC 5278, Thomas T. Watson Research Center, Yorktown
Heights, N. Y. 1975.

C. Ramchandani, "Analysis of Asynchronous Concurrent Systems by Petri
Nets," MAC TR-120, Ph.D. Thesis, MIT, February 1974.

P. M. Merlin, "A Study of the Recoverability of Computer Systems,"
Ph.D. Dissertation, University of California, Irvine, California, 1974.
J. B. Dennis and N. P. Misunas, "The Design of a Highly Parallel
Computer for Signal Processing Applications," Computation Structures
Group Memo 101, Project MAC, MIT, august 1974.

C. W. Rose, "A System of Representation for General Purpose Digital
Computer Systems," Jennings Computing Center, Report No. 1113, Case
Western Reserve University, Cieveland, Ohio, August 1970.

D. Knuth, "Structured Programming with GO TO Statements", Computing
Surveys, Vol. 6, No. 4, pp. 261-302, 1974.

0. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, "Structured Programming",
London, Academic Press, 1972.

P. Wagner, "Programming Languages Information Structures and Machine
Organization", McGraw Hill Series in Computer Science, 1968.

F. Harary, "Graph Theory", Addison Wesley, 1968.

L. A. Jack, W. L. Heimerdinger, and M. D. Johnson, "Theory of Fault
Tolerance 1974-75 Annual Report," Sponsored by ONR under contract
N00014-75-C-0011, September 1975.

61

-4

wTT Al 91Ok

\\\

e e

_ UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED)
< I./f ;.EPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOV'T ACCESSION NUMBER

- nonr%__j
AFOSRITR=7 7—125 5/

P

3. RECIPIENT'S CATALOG NUMBER

= |
. TITLE (AND SUBTITLE)

~

N (

/A GRAPH THEORETIC APPROACH TO

-

: ()

/ TYPE OF REPORT/PERIOD COVEREC
\/z Final Hepewt . (
6. RFO 1 7 ORTY NUMB |

F@357 2 -

7. AUTHOR(S) e

W. L./Heimefﬁinger amd Y. W.[Han

[Fad620-75-C-0p53) —

e ———

9. PERFORMING ORGANIZATIONS NAME ADDRESS
Honeywell Systems & Research Center

i0. PROGRAM ELEMENT PROJECT .TASK AREA
& WORK UNIT nuumet

Air Force Office of Scientific Research (NM)
Building 410, Bolling AFB
Washington, D. C. 20332

/4 i

S

) |
2600 Ridgway Parkway N.E. v 102F 111%(/1’1
Minneapolis, Minnesota 55413 [23ph/n6 -

11 CONTROLLING OFFICE NAME/ADDRESS 12, RERORI (DAFE

12 Sep tawhes Y977
T NOWEEROF PAGES

61

14. MONITORING AGENCY NAME/ADDRESS (IF OIFFERENT FROM CONT. OFF

15. SECURITY CLASSIFICATION (OF THIS REPORTY)

UNCLASSIFIED

(/// "'/) 6%:;
&

15a. DECLASSIFICATION DOWNGHADING SCHEDULE

T
16 DISTRIBUTION STATEMENT (OF THIS REPORT)

Approved for public release--distribution unlimited.

1/ DISTIIBUTION STATEMENT (OF THE ABSTRACT ENTERED INBLOCK 20, \F D

IFFERENT FROM REPORT)

18 SUPPLEMENTARY NOTES

Petri Net
fFault Models
functional Fault Classes

Directed Graph Theory
Fault Tolerance
Physical Fault

Environmental Errors Graph Properties Traps
Siphons Invariants Liveness
[70 ABSTRACT (CONTINUE ON REVERSE SIDE IF N CESSARY IDENTIFY LOCK NU R)

19 ®EY WORDS (CONTINUE ON REVERSE SIDE (F NECESSARY AND IDENTIFY BY BLOCK NUMBE R)

This report documents the activities in the second year of a two year=2investigation of a

Labelled Graphs
Functional Fault Models
Design Errors

examined existing graphical models
Two models, Petri
A subsequent effort examined

N

and relationships applicable to fault

graph tneoretic approach to tault tolerance,for the Air Force Office of Scientific Researc
4This. is part of a continuing effort also sponsored by the Office of Naval Research and by
Honeywell, Inc.$to develop a unified approach to the analysis of fault tolerant digital
systems based on graph theory. Earlier efforts have
and found a number of them to be suitable for fault tolerance modeling.
Nets and LOGOS were found to be particularly suitable.
available results in Petri net theory for properties
(s]0) 1'12:.:; 1473 €OITION OF | NOV 55 15 OBSOLETE

UNCLASSIFIED

Yo 347

D) r.:u/f S, {B

SECURITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED)

e

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED)

Abstract - (Continued)

—tolerance phenomena.

The effort documented here focuses on the incorporation of data aspects of the system in
the model and on an explicit representation of time in the model.

This year's study results have convinced us that’a two-graph labeled araph model that
associates two time parameters with each transition or operation is a feasible and
effective method of representing a fault tolerant digital system for analysis purposes.
«¥We have not-specified the exact syntax of a single model;in this effort, but we—feet—v
such a definition can be made using these results in a straightforward way. Additional
work is needed to identify data attributes critical to fault tolerance and to include

them in the model.
i

SECURITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED)

