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SECTION 1

INTRODUCTION AND SUMMARY

I
INTRODUCTION

This report documents the activities in the second year of a two year
investigation of a graph theoretic approach to fault tolerance for the Air
Force Offi ce of Scientifi c Research. This is part of a continuing effort also

sponsored by the Office of Naval Research and by Honeywell , Inc. to develop a
unified approach to the analysis of fault tolerant dig ital systems based on
graph theory. Earlier efforts have exami ned existing graphical models and
found a number of them to be suitable for fault tolrance modeling. Two
models, Petri Nets and LOGOS were found to be particularly suitable. A
subsequent effort examined available results in Petri net theory for properties

and relationships applicable to fault tolerance phenomena.

Previous investigations have concentrated on the sequencing and control aspects
of systems and did not explicitly consider time as a parameter in the model .
The effort documented here focused on the incorporation of data aspects of
the system in the mo de l and on an explicit representation of time in the model.

In Sec tion It , the work on data representation considers data modelin g approaches
that use special value tokens to trace the flow of data in a sinqie graph and
two-graph modelinq approaches in which data interactions are represented in a

separate data graph . We concl ude that the two-graph approach is more appealing
for fault tolerance analysis because of its ability to more closely approximate

the data structure at lower levels in a system.



We have concluded that an effective approach to fault tolerant system
analysis must begin at the functional level of system description . At this
l evel , it is important to be able to model software structures such as arrays ,

lists, and queues in a natura l way. At the next lower level of abstraction
we become concerned wi th software intercomunication mechanisms , including
procedure calls and parameter passing schemes. Thus , we conducted a number
of modeling exercises In which we use the two-graph model to represent
variables with hierarchically nested scope , procedure calls , and a variety of
parameter passing mechanisms .

In Section III of this report, we describe a procedure for app lying a data
flow analysis procedure orfglnally developed for compiler optimization to the
tracing of data contamination in a fault tolerant system. We describe a
transformation scheme to convert our labeled graph model to a directed graph

representation compatible wi th data flow analysis algorithms and a number of 
*

other directed graph results.

In Sec ti on IV , we di scuss the incl usion of time in a labeled graph faul t
tolerance model. This recognizes the fact that a system which sequences
correctly but does not complete critical sequences wi thin time deadlines must
be considered faulty in a real time environment. We conclude that we may
modify a labeled graph to associate two real numbers wi th each transition or
operator to denote upper and lower bounds on the firing time of the transition
or operation time of the operator. This provides us with a model having
greater representation capability than a simple Petri net. )

SUMMARY

The above results have convinced us that a two—graph labeled graph model that
associates two time parameters wi th each transition or operation is a feasible
and effective method of representing a fault tolerant digital system 

for2



analysis purposes. We have not specified the exact syntax of a single model
In this effort, but we feel such a definition can be made using these results
in a straightforward way. Additional work is needed to identify data attributes
critical to fault tolerance and to Include them in the model. This is the
subject of an ongoing effort.

We conclude that the two—graph labeled graph approach to fault tolerance
modeling is viable and promising.

I
I
I
I
I
I
I
I
I

3

I 
* . ~~~~~~~~~~~~ .



I
I

SECTION II

DATA REPRESENTATION

BAC KGROUND

The majority of digital systems amenable to fault tolerance analysis perform

sequences of operations on stored data. For analysis purposes, we separate

the control (sequencing and coordination) and data (retention and manipulation

of stored data) aspects of these systems. A number of labelled graph models

have been developed to represent coordination and sequencing activities , but

few existing models include both control and data information in the same

model.

The earlier tasks in our study of graphical approaches to the analysis of

fault tolerant systems have concentrated on the control aspects of systems .

This years’ effort began the development of a data representation for the

fault tolerance model. The goal is the creation of a data representation

that allows examination of three issues involved in the man ipulation and

storage of a data item:

1) Data val ue - the current value of a data element

2) Data access - the mechanisms used to link the reference

to a data Item by a prograniner to the actual image of

the data element as stored In the system

3) Data transformation - the operations allowed on the

given data element.

4



In this section , we first review the relative advantages of a single graph

and a two graph approach to data representation . We conclude that both are
adequate and that the two graph approach provides better insight Into data

interactions .

We then use the two graph approach to verify that comon data constructs
can be effectively represented.

SEPARATE V S COMBINED DATA GRAPHS

There are two major approaches for combining control and data information
i nto a single graphical model . The two graph approach augments a Petri Net-
like control graph representing control in the system with a second graph
portraying the connectivity of data i tems and data operations in the system.

In this scheme, data operations are sequenced by pairing operators in the
data graph with operators In the associated control graph.

The single graph approach essentially interleaves a control graph with a
data graph in a single graph which uses two types of links to carry infor-

mation . Control links carry control tokens to sequence operations in the
model as in the two graph model , while data links carry special data tokens
to represent data values.

The first activity in this study of data representation compared the single
graph and two graph approaches . Two existing labelled graph models were

used as the basis for the comparison . The Data Flow Procedure Language
developed at MIT was used as the prototype single graph model , and LOGOS ,
one of the models used earlier in this study was used as the prototype two
graph model . A brief sumary of the features of Data Flow Procedure

I
5
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Language follows . LOGOS is suninarized in our previous report [36]. The two
models are defi ned in detail in [31] and [19].

DATA FLOW PROCEDURE LANGUAGE FEATURES

Data Flow Procedure Language (DFP) models , like Petri nets , are graphical
models in which tokens circulate to indicate the state of the system . In
order to represent data driven events , OFP defines data dependent actors .
These incl ude operators , T-gates , F— gates, Boo lean ~ctnrc (AND , NOT , and OR),
and decide r and m erge operators as shown in Figures la & b. Actors are inter-
connected with links , represented by one or more connected edges in the
graph. A link acts like a place in a Petri net or a counter cell in a
LOGOS model to hold a token. Each edge in a link can contain either one
token or no token , just as a place in a safe Petri net can contain at most
one token. Tokens in data flow procedures are classified as data tokens
or control tokens. Data tokens denote operands of functions (actors and
links) and control tokens are used to determine control sequences.

In contrast to Petri net tokens , DFP tokens always have a value ; control
tokens assume the va l ues TRUE or FALSE and data tokens ass ume va lues
allowed for the data item being represented. Links correspond to the type
of token they carry ; control links , represented by arcs with open arrow-
heads , carry only control tokens , whtle data links , represented by arcs with
solid arrowheads, carry data tokens.

Except for control actors (1-gate , F-gate and merge), a link or an actor
is enabled when tokens are present on input arcs (edqes) and no token is on

~ny output arc . The firing of the actor or the link absorbs the tokens
from the Input arcs and places tokens on the output arcs.

6
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The ~~~~~~~~~~ and merge actors (Figure lb) permit the outcomes of tests to affect
the flow of values to operators and deciders . A T-gate , for example , passes
a value on to its output arc if it receives the value true at its control
input arc ; the received data value is discarded if false is received. The
The merge node allows a control value to determine which of two sources
suppli es a data val ue to its output arc . If the control value false arrives
at the control arc the merge passes on the value present or next to arrive

at the F-input arc . A va l ue present at the 1—input arc is left undistu rbed.

The compl ementary action occurs for the control value true.

Figure 2denotes a swi tch which works as follows : If there exists a token in
the square cell (E signifies that the token exists), then the token on link
b passes to link d; otherwise (N signifies no token) link c tokens pass to
link d. We feel it is bette r to invent an assign operator, denoted in Figure
3, to replace this switch. This assign symbol indicates that the initial
va l ue of d comes from link b; after that it can only be reassigned through
link c. We emphasize that both DFP and LOGOS were conceived as design tools
to create well structured digital systems. Consequently, some features of
existin g systems do not necessarily have straightforward representations in
DFP or LOGOS. Since we were primari ly concerned wi th structura l and
philosophica l Issues , we deviated from the exact syntax of each model for
convenience and simplicity in the following comparisons .

EXAMPLES:

Two examples , one a software algorithm and the other a hardware example

based on a hypothetica l machine , were used to contrast the two models.

Example One is a simple software table look-up algorithm selected to create

a situation in whi ch the value of a data I tem is used to access the next

data i tem.

8
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Figure 2.

H
ASS denotes an Assignment Operation.

Figure 3.
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Example One :

PROCEDURE EXA MPLE (M, N , K, W )
INTEGER : M , N . W
INTEGER CONSTANT: K
INTEGER ARRAY : A [O:23], B[O:23]
BEGIN

WHILE N �  KDO
BEGIN

M+B(M);

END ;

END ;

Figure 4 shows a DFP representation of Example One. Note that ARRAY and

CONSTANT work as a memory cell; i.e., although we can envision a token being
moved out as the related operators activate , there is another token wi th the
same value to replenhh it  (just as values are rewritten in core memory cells
after a destructive read). It is Important to note that a token on a data
link has a va l ue (or values for structured data) associated wi th it and
that a token on a control link has a Boolean va l ue : true or false.

The same example expressed in LOGOS is shown in Figures 5a and 5b. It
consists of two parts : the data graph contains the information on data access
and data transformation , and the control graph depicts the control flow of
the modeled system.

Examole Two Is a hardware example based on a hypothetical machine shown In
Figures 6a and 6b. This example executes an ADD instruction . Details of the
steps executed are listed below.

10
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I
(a) Hypothetical Machine Structure I

I
tAR SAR I A I  [ B ~7 I

________ 
MS 

_________________ 

I
[J R  ] I ADDER I

SDR I
_ 1

/~~~~CODE\

I l l  I
I

A: Register A
B: Register B
I AR: Instruction Address R egister
IR: Instruction Register
MS: Memory Storag e
SAR: Storage Address Register
SDR: Storage Data Register

I
1

(b) Instruction Format

OP Address of Operand ] Address of Operand I
Code One I Two

Figure ~~~. Hypothetical Machine

I
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Example Two:
IAR—~ SAR

I IAR+14’ TAR
MS[SARW IR

I Decode OP Code (ADD )
IR[Addr. of Operand 2) ~ SAR

I MS [SAR] *’
SDR 4 B

I IR[Addr. of Operand i.—~ SAR
MS [SAR1~* SDR
SDR Ø’ A

I A + B — ~~A
A —* SDR

I SDR—P

I Figure 7 illustrates DFP representation of Example Two . We deviated from the
original DFP notation by using sequence links , denoted as~~~~’ , to specify

the precedence relationships between related operators . The operator at the
open arrow end of a sequence link cannot start until the other operator

I completes its operation . Sequence links will be discussed in greater detail
later when the construction of a modified single graph model is discussed. The
representation of Example Two in LOGOS is shown in Figures 8a and 8b.

I COMPARISO N OF SINGLE VS DOUBLE GRAPH MODELS

In comparing the two models , we were most Interested in the relationship
between the data and contro l portions of the models , the degree to which the

I models follow the actua l logical structure of the system , and the ability
of the models to expose parallelis m and concurrency in systems. Eight aspects

of the models were specifically considered:
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tn it ial t A R Value True 
MS

Toke n

tAR

÷1 ASS

SAR FET CH

EX TRA C T EXTRACT EX TRA CT

c~~e 
OP (2) 0P(1)

DECOUE ASS ASS

SAR I

I 

~SequeflCe

ADD’ 

AR
FET CH

Yes
FET CH

( a PalSe j 
SDR L~~-~

Token 

ASS

ASS

I
ADD

A

ASS

STORE

Sequence LInk 

SDR

Figu re 1. DFP Repr eSefltat~0~ 
of ExamP Le Two
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1) Control Signal Selection of Data Values--The mechanism in the

I graph by wnicn control signals determine which data Item is used
from a data structure.

2) Data Steering of Control Sequences--The mechanism by which
data va lues  infl uence the flow of control in the system.

3) Deviation from Real Systems--The degree to which the structure

I and sequencing of the labelled graph model mirrors the structure
and behavior of the actual hardware or software system being

I represented.

I 4) Exposure of Parallelism- -The extent to which any parallelism or
concurrency in the architecture being modeled is reflected in
the structure and behavior of the model .

5) Representation of Data Instances--Some models directly represent

I data storage elements which can be referenced by “read ” operations
and can receive data with “write ” operations. Other models create

I a new read-only data element followi ng each data operation .

1 6) Determi nançy--Determi nancy is a labelled graph property relating
to the certainty in the control sequence of a graph. Gi ven an
initial marking , a graph is determinant if its firing sequence

I of the transition is unchangeable.

1 7) Safeness—-Safeness is a labelled graph property relating to the
nunter of tokens in a place. A labelled graph is called safe if

I there can be at most a single token in each of its places at any
time .

I
I
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8) Representation of Synchronous Systems--Synchronous or asynchronous
systems differ mostly in the way activation condition is specified;
i.e. , whether it is a signal coming from a central clock or a signal
produced at the completion of the preceding or a combination of both.
Labelled graphs are usually used to represent asynchronous systems
or events , while it is also possible to represent synchronous
systems or events by labelled graphs.

The single graph DFP models combined both data and control information in a
single , somewhat complex graph . We observed the followi ng features in these
models:

1) Control Signal Selection of Data Values- -T-gate , F-gate and merge
actors permi t the outcomes of deciders to decide the flow of va lues.
If an operator has an input control arc, this operator cannot be
enabled until the arc contains a control token.

2) Data Steering of Control Sequences--Decider elements accept data
tokens as inputs and use these to output control tokens to initiate
control sequences .

3) Deviation from Real Systems--An actor cannot fire if any one of its
input arcs contains no token. This does not correspond completely
with realistic hardware systems in which every memory cell contains
Information no matter if it is the desired information or a left-
over from previous calculations. On the other hand , this model
seems abl e to model software programs reasonably well by envisioning
every token placement as a snapshot of the program conditions.

4) Exposure of Parallelism- —From the examples illustrated , the computa-

tions represented by the data flow programs deviate from the original

20



algorithms . Hidden parallelism of the original algorithms are
uncovered during the process of constructing data flow programs .
As a consequence , this construction of a data flow program from a
system description or an algorithm is not straightforward.

5) Destructive Read (Dynamic Memory Cell)--Since the firing of an actor
or a link removes all the tokens on the input arcs , it can be

envisioned as destructive read. Tokens to be used more than once
are replicated by links.

6) Safeness--Safeness is enforced by the DFP firing rules

7) Determi nancy—-Also because of the fi ring rules , data flow programs
are deterministic.

8) Representation of Synchronous Systems--Synchronous systems or events
can be represented by adding a control token generator whi ch has an
output arc connecting to every operator. This control token genera-
tor generates control tokens as the clock of the shiulated systems.
It functions as a clock.

In LOGOS , control and data are separated and are represented by a control graph
and a data graph , respectively. Al though it may be redundant, sometimes the
separation does increase clarity . Features observed in LOGOS are listed below:

1) Control Signal Selection of Data Values--Every d-operator (data
operator) in a data graph is associated with at least one atomi c
operator in the corresponding control graph . When the atomi c actor
is activated , all of its associated data operators start to perform
their data access and data transformation . When all the data
operators complete their operations, the operation of the atomic
actor is then completed. It is importar.t to note that in the

I
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original LOGOS [l7]every d-operator is uniquely associated with only
one atomic operator. This change is Introduced to increase the
clarity .

2) Data Steering of Contro l Sequences-—PRED (predicate) operators in
LOGOS are the counterpart of deciders in data flow programs . They
are data dependent control branches whose data operator performs
a test on its input d-ce lls (data cells). The outcome of the test
decides which control branch will be taken.

3) Deviation from Real Systems--The deviation problem of data flow
programs does not exist in LOGOS.

4) Exposure of Parallelism——Hidden parallelism need not be found to
construct a LOGOS model . Note that it is possible to identify
hidden parallelism after constructing a LOGOS model, if desired .

5) Determinancy—-It is not necessary that a control graph be
deterministic.

6) Safeness--Safeness is not necessarily observed in control graphs.
In data gra phs , operands are stored in data cells and It is non-
destructive read. Thus token content does not play a role in data
graphs.

7) Representation of Synchronous Systems--Synchronous systems or events
can be represented by adding a token generator which has an output
arc connecti ng to every operator of the control graph ~~~ 

This
token genera tor func tions as a c lock .

22



It is hard to judge objectively whether LOGOS or DFP is more suitable in
general. After all , they were developed for different goals. We feel
that the use of a static data cell (memory) for every variable and the non-
restriction in the safeness of the firing rules of LOGOS are more pertinent
and natural for modeling. On the other hand , others may consider a one graph
approach to be more readable. We have constructed a new one graph model with
the desirable features of LOGOS (static data cells and unrestricted firing
rules).

The new model introduces sequence links for specifying the precedence relation-
ships in a control sequence. If a transition (operation) has input sequence
links , then it cannot be activated until there exists one or more token(s)
in every one of these sequence links. If a transition has output sequence
links , then , after the transition operation is completed and Its outputs are
stored in the corresponding data cells, a token is placed on every one of
its output sequence links. Example One and Example Two are reconstructed
using sequence links in Figures 9 and 10, respectively. Note that we can also
add some operations on sequence links to specify complex control sequences.

For systems wi th simple control sequences , a one graph approach may increase
the conciseness of the model , since it does not need two operators, one for
control and the other for data , to specify the same event. But on the other
hand , for systems with complex control sequences, the addition of sequence
links and their operations may clutter the diagram and reduce the clarity .
In general , we think the two graph approach is a reasonable one for modeling
complicated systems. In some cases we may even need more specifications
and descriptions of every individual graph to make it clear.

I
I
I
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I
I

REPRESENTATION OF HIGH LEVEL SOFTWARE CONSTRUCTS

P
Before concluding that the two graph model is the most suitable for fault
tolerance analysis , it was necessary to demonstrate that this scheme could
adequatel y support a top-down approach to system representation and analysis.
Since the functional fault approach to fault tolerance concentrates on the
representation of faults at the highest possible leve l of abstraction , it is
imperative that the fault tolerance model be able to effectively represent
abstract data structures , includi ng arrays and list structures (queues ,
rings , etc). The model must also be able to expose the operation of common
conventions for shari ng and communicating data , including scope rules for I
block structured data and parameter passing conventions for procedure calls.

I
REPRESENTATION OF BLOCK-STRUCTURED DATA

We shall illustrate the representation of data nested in blocks through the

following example:

I
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,.1

PROGRAM A;
INTEGER: a , b;

I S

S

I
PROCEDURE B;

I REAL : c, d;

I
PROCEDURE C;

I NTEGER : e , f;
S

S

S

END ;
END;

I S

S

I S

I PROCEDURE 0;
INTEGER : g, h:

I S

END;

I
END.

I The nested block structure of the above program is shown in Figure h a.

I
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“A c a ,b
B ( c,d)

[C 

~
D (g ,h)

Figure h a .

BLOCK POINTE R 
_ _ _ _ _ _

~~1~4a I b J

TI_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

II 4
I B i c  Id I D~~g I h I

~~~~~~~~~ BLOCK POINTER \LOcK POINTER
i C [ e ~~p]

~~~~BLOCK POINTE R

Figure lib.
28



The data cells for this exa mple are depicted in Figu re hib. For ease of
illustration , the data cells of a block are grouped as a row--let us call it
a data row. In most implementations , the individual data i tems would be
stored contiguously in the form of an array or a stack. Each data row has
a block pointer data cell associated with it which points to the immediate
higher level block. Pointer data elements are essential for up-leve l
addressing, but they are usually inaccessible and invi sible to the user at
the programmer level , so we represent block pointers as dotted-line data
cells at the beginning of the data row wi th an arc to the higher leve l block .
For further convenience , we label the block pointer for each data row with
the name of the corresponding block.

Linked together by these block pointers , the data cells of a program are
now structured as atree. When the control of a program is in a block , then
the available data cells are the ones bel onging to this block and to all higher
level blocks. These cells are linked and can be traced via the block pointers
starting from the data row of the current block to the root of the tree. For
ins tance, if the control enters block B of the preceding example , then the
available data cells are the ones of Block A and of block B. It Is important
to note that there is one and only one path from a node (data row) of a tree
to Its root [35.].

PROCEDURE CALLS

I
The transfer of control and data parameters to and from procedure s that are
shared by more than one user have always been a problem for graphical system

models. In some cases , we may be able to treat the shared procedure as if
it were an open subroutine by providing a separate copy of its data graph
and control graph to each potential user . This process becomes difficult

when a reasona bly compl ex procedure is shared by many users because of the

29
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problem of including so much redundant Information in the model . Also , we
will often requi re a model in which a change in the structure of a conmonly
used procedure, possibly due to a fault , immediately affects all users of
the p rocedure . In suc h cases , we want to use a single copy of the shared
procedure control graph and link it to each of the potential users.

There are two kinds of procedures we must handle for procedure calls, serially
reusable procedures and reentrant rocedures. Serially reusable procedures
(or programs) are the procedures which only allow one calling procedure to
call it each time . This means that nobody else can execute this procedure
until the current user , if existent , finishes his execution . The other kind
of procedure is reentrant. A procedure is reentrant if , while it is being
executed , anybody else may also begin executing it. (This is most useful in
a multiprogrammi ng or time-sharing environment , where severa l programs may
cal l , say, a Sine routine which Is reentrant. Only one copy of the routine
nced be kept in memory, no matter how many people are executing it.)

In genera l, most procedures are serially reusable. For simplicity , assume
that the term procedure denotes a serially reusable procedure. This case
Is discussed fi rst. Subsequently, with the use of colore d tokens , we shall
present a method for handling reentrant procedure calls.

The easiest way to explain the handling of procedure calls may be through the
use of an example. Figure 12 shows the control graph of a program before
executing the procedure-call operator. If a procedure—call operator is
encountered It  is assumed that a system rout ne (procedure) which handles
procedu re cal l s in invoked. In Figure 13 , a dynami c link is used to link
the system routine with the procedure—call transition . Dynamic links are
denoted by links with dotted lines. Dynami c links are the links which do not
exist until a specific operator is executed and the linking information about

the source and the destination , which has been stored in a corresponding data
cell(s) Is fetched to construct the link dynamically.

30
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Before linking to the called procedure , B, via another dynami c link , this
routine provides parame ter passing and storage of the pointer pointing ~n the
control graph of procedure B. If the system to be modeled has some other
capabilities , for instance security checking, these operations are also
performed by this routine.

There are three common ways of passing parameters : call by name , call by

value and call by reference [34]. If a parameter is passed through call by

name or va l ue (see Figure l4)~ the name or value is stored in a 
buffer first.

This buffer is allocated as the mailbox of the called procedure , to store
the parameters passed from the callin g procedure. When the called procedure

acqui res control , it will fetch the name or value from this buffer and store
it in its data cell.

If a parameter is passed by reference, then the da ta i tem passed in as the
formal parameter from the calling procedure and the receiving counterpart in
the called procedure share the same data storage location . This same type
of data aliasing occurs when two variables are linked through the FORTRAN
COMMON statement or when the EQU IVALENCE statement is used in an assembly
language environment. In this case the two parameters are linked by an
address link , as showr in Figure 15 to Indicate that they have the same
address. In this figure , 11 the value of e is changed , the value of b follows .
The pair (f ,a) is similarly bound.

As discussed earlier , reentrant procedures allow more than one user to
execute them simultaneousl y. We shall treat reentrant procedures in the

same fashion as serially reusable procedures wi th the following extension :

1) In the control graph , identify different calls by different
color tokens. A color can be assigned to a user according to

his order entering the called procedure or preassigned priority .
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2) Provide a copy of data cells which corresponds to each color of I
the tokens in the contro l graph .

I

I
I

I
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SECTION III

DATA CONTAMINAT ION ANALYSIS

BACKGROUND

I
One of the main reasons for develop ing a representation for data in our fault
tolerance model is to provide a vehicle for tracing the spread of data conta-
mination in a system following a data fault. We are also interested in
determining the location of data i tems that are ancestors of a particular
critical data item in a system and hence may need extra monitoring or
protection to guarantee the integri ty of the critical data i tem. Both
problems involve the tracing of the influence of individual data i tems for
the time they are defined until their eventual use. Labelled graphs have

not been extensively applied in this area , but conventional directed graphs

have been used extens ively for data flow analysis , principally for the
optimization of code generated by compilers . We found the work of Allen

and Cocke ( 9 ] in this area to be particularly relevant.

Directed graphs have been applied to fault tolerance analysis by a number of
investigators . Ramamoorthy { 2 ] pioneered the application of graph theory

to fault tolerance . His work provided a systematic method to segment a
digital system, to insert test points , ~nd to open certain edges of the
graph to make it loop-free for fault diagnosis. By considering that each
unit did test the other units of a system and by implicitly assuming that

each of the units had the same reliability , Preparata , ~~tze and Chien [ 3 ]

and later Hakimi and Amin [4] used a graph model to deri ve the necessary and

sufficient conditions for the system to be multiple -fault diagnosable with

some connection assignments . With the same graph model , Russell and Kime

an d Ba rn i , et al [5] modified some assumptions and extended the results in
Preparat&s paper [3] . Akers[7,8] pointed otit that one of the most famous

I
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graph theory problems--namely the coloring problem --is closely related to the
test generation problem of fault diagnosis , although the examples given are
only l oop-free graphs (combi national circuits )

To exploit these analysis schemes based on conventional digraphs , we developed
a procedure to convert a labeled graph system model into a directed graph
model . The transformation procedure also allows us to determine if the
original labeled graph will be unbounded , dead or deadlocked due to design
errors . Subsequently, we shall use data flow analysis results originally
deve loped for compiler optimization for the analysis of data contami nation ,
which is the spread of erroneous data resulting from a fault or a set of
faults. We also shall apply these data flow analysis results to study the
other aspects of fault tolerance , i.e., tracing crucial input data and
analyzing the effects of control sequence errors.

I
TRANSFORMATION OF PETRI NET-LIKE LABELED GRAPHS TO DIRECTED GRAPHS

In the following section we present a method for transforming a Petri net-
like labeled graph to a directed graph which preserves the transition firi ng

sequence of the original labeled graph. This method follows very closely
Karp and Miller ’s [22] rooted tree approach for obtaining the reachable
states of vector addition systems. A vector addition system represents the
system state by recording the assignment of tokens to nodes In  a vector
having an element for every node . In these systems the firing of the next
transition from any state is i ndependent of the way by which the state was
reached. As a result , we can very easily derive the reachable states. Since
each transition Is interpreted as an operation in our model , we prefer that a
node in the transformed directed graph denote the firing of a transition.
This can be done by performing another graph-to-graph transformation after

obtaining a directed •jraph in which every node Is a state in the vector
addition system.

38



I
..

Before the discussion of our method, we briefly introduce vector addit1~.n
systems .

Definition : An r-dimensiona l vector addition system V Is a pair V =

(s ,W ) where
( 1 ) s~ Nr , N = ~1, i, . . .3  . This is the Initial state.
(2) W is a finite set of r—d imensional integer vectors

W = ~~ ,.. .w,3 , W
1 6 ~~, 4- 1, + 2 ,.. .3

Thi s is the set of firing rules .

The reachability set R(V) is the set of vectors given by:
R ( v)  = S + w.~1 + W i2 + + w.1 13 where
w13 

e W , j = 1 , 2,...k, and s + w~1 + w i2 + . . .  + w ik~~ 
o

The reachability set is the set of all points that can be reached by some
path from s using vectors from W and which have no negative elements in
their position vectors.

Exançle - As an example of a vector addition system , consider
V = (s ,W)
where s = (1,1,0,0)
W = = (-1 ,0, +1 , 0), w2 = (-1 , -1 , +1 , +1), w3 (0, -1 , 0, +1)

= (+1, 0, -1 , O)~ w5 (0, +1 ,0 , -1)3

The reachability set R(V) of this vector addition system consists of four
vectors ~(l ,l ,0,O), (0,0,1 ,1), (0,1 ,1 ,0) ( 1 ,0,0,1)3 . Note that all elements
of vectors in the reachability set are non-negatIve .

Figures 16a and 16b are the reachability diagram and its corresponding
Petri net representation for the vector addition system, respectively. If

the reachability set of a vector addition system is finite , then the
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FI gure 16 .
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reachability diagram is a finite machine , as in Figure 16a. On the other
hand , if the system is unbounded , we need a method to detect it and stop the
transfo rmation . For this purpose , t he fol l ow i ng no ta t ion  an d de f in i t i ons  are
introduce d :

A vecto r addition system (Petri net) is called unbounded if it contains an

infinite number of tokens; it is called dead if it is free of tokens; and it

is called deadlocked if it contains tokens but cannot fire any tran~ition .

For example , Figure 17 shows a net which will be deadlocked if a vector
(x 1, x2,.. •x r)~ 

can be re3ched from another vector v~ , (y1, y2,. . ~-~
‘r~’ 

and

X k~~ ~k’ 
1 ~~ k ~~. r , then certainly at v 1 we can repeat the process which has

brought v . to v~ . Thus , for the elements for which xk > ~k’ 
Xk can be

increased monotonica lly to infinity . Therefore , this system (or Petri net)

is unbounded. Also if X
k 

= 

~k’ 
1 ~ k ~ r , we can stop the process which

generates other vectors (or states) from v~.

The procedure for generating a reachability diagram of a given vector addition

system is summarized in Algorithm 1. This algorithm can determine if a given

vector a dd iti on system w i l l  he un boun ded , dead , or deadlocked. ~f not, the

al gorithm generates a directed graph in which every node is a state in the

sense of vector addition systems and every edge corresponds to a transition

firing.

Algorithm 1:

Define a new state as a state which has not appeared yet in the previous gener-

ation of the reachability diagram.

Step 1: Is there any new state left? If no , STOP .

St!p 2: Can this state , say sta te A , have any successor? If yes, GO TO
step 3. If not , it is either a dead state or a deadlock. If this

state is free of tokens then It is a dead state ; otherwise , it is a
deadlock , STOP .
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P 1
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Step 3: Determine whether there is any successor remaining, i f  no , GO TO

step 1, if a successor remains , remove the first such succes-~-
(call it state B) from the rest of the remaining successors and
determine if state B has appeared before. If not, state B is a
new state; otherwise it is an old one. Trace the ancestors of
state B to see whether it has a smaller ancestor , if so , it is
unbounded , so STOP. Note that if state B is an old state , onl y
state A and the ancestors of state A have to be traced , because
the others have been traced already . GO TO step 3.

End Algorithm 1.

The process of transformation is not complete yet, however, because we want

every transition in the labeled graph to correspond to a node in the directed
graph , while in the diagram resulting from algorithm 1 it is an edge. This
reachability diagram has to be transformed to another directed graph in which

every nodc , say node a , corresponds to an edge , say edge a , in the diagram and
there is an edge from node a to node b in the graph , if there is a node which
edge a enters and which edge b exits in the reachab ility diagram. The

algori thm for this portion of transformation can be found in [23] . In the
previous example , the reachability diagram , Figure ,~ a , is transformed to

the directed graph , Figure 16 c , thus , completing the process of transforming

a Petri net-like labeled graph to a directed graph while preserving the same

firing sequence of transitions .

Not all the Petri nets can be represented as a vector addition system unless

we add some modification to ordinary vector addition systems. For instance ,

there is no vector addition system counterpart to a Petri net that contains
the net shown in Figure 18 . This modification is beyond the scope of

this discussion.

I
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The above transformation , transforms our labeled graph model , a Petri net-
like graph , to a directed graph. Every node of the directed graph corresponds
to a transition of the control graph , which , in turn , corresponds to a set of
data information . In the transformation , the data information is transferable
if desired. This data information can be used to trace the spread of data
contamina tion .

DATA CONTAMINATION ANALYSIS

Gi ven a directed graph in which each node performs a data operation , this
section proposes an approach for tracing data contamination due to either
faulty input data or incorrect data operations at some nodes . This approach
utilizes some data flow analysis results whi ch will be introduced first.

For compiler optimization , it is frequently desirable to know where data
i tems are defi ned and where they are used . Some examples are “reaching
definitions ,” ‘upwards exposed uses” (24], ‘live variables ,” “very busy

variables ,” [253’ etc . These problems , because they can be solved basically
in the same manner , are called “global data flow analysis problems .”

Allen and Cocke[9] use an “interval analysis ” approach to solve these
problems and Ki l dall [26] suggests an obvious method to handle them. It has
been proven [24] that this obvious method is as good as the interval
algorithm for solving all known globa l data flow problems. A~so , a “node
s p l i t t i n g ” method must be used when graphs cannot be partitioned into inter-
vals (irreducible graphs); the simple algorithm (24] proposed by Ki l dall
stil l works on i rreducible graphs. Kou [27] proposes a linked—list implemen-
tation scheme instead of the conventional bit-vector one for these problems
and contrasts the computational complexities of difficult approaches. But ,
note that there are some deviations in definitions in~ 9) and [27) . Here ,
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I

it is not intended to propose new algorithms or to compare their complexities

I 
for the data flow analysis problems ; rather our concern is to show tha ’ ‘:~n
of these results can be utilized for fault tolerance .

I Before discussion , we define the terms we are going to use. Most of these
definitions fol low the ones In [ 9 3.

I
A data definition is an expression or part of an expression which specifies

a data item. A data use is an expression or part of an expression which
references a data i tem without modifying it. Let DB

~ 
denote the set of

definitions defined at node i and UB1 denote the set of definitions used at
node i. A basic block is a linear sequence of program instructions having

one entry point (the first instruction executed) and one exit point (the

I last instruction executed). The nodes of the control flow graph can represent
the basic blocks of a program. A locally ava ilable definition of node 1 ,

I denoted as UB1 is the last definition of the data i tems in the basic block.
A definition X in basic block n1 is said to reach basic block n k If

1. X is a locally available definition from ~~

2. nk is a successor of n1 and

1 3. There is at least one path from n1 to nk which does not contain
a node having a redefinition of the same data i tem; that is , X

I is preserved on some path from n 1 to nk.

The set of definitions reaching node i is called reaching definitions of node

I and Is denoted as R1.

Figures 19a and 19b illustrate these definitions.

I
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Where the subindex of a variable indicates the node number in which the variable
is related.

Figure 19.
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Data contamination can result from input errors , system program malfunctions ,
corresponding hardware failures , etc. Now , consider the following prot e~i:
given a data flow analysis graph , how does contamina ted data propagate.

One major diffe rence between the data constant propagation studied extensively
for compiler optimization and contaminated data propagation in faulty systems
is that once a data Item is contam inated , it may affect other data i tems ,
thereby propagating the contamination furthe r in the system.

In discussing this propagation of contamination , we will use the following
notation :

CID = contami nated variables

CID1 = with order contaminated variables . If I = o then it is the
original contaminated input data.

Obviously, (R i 
I.
~ 1JB1 ) is the set of input data used at node i. Take node 2

of Figure 19 a as an example.

R2I’I UB2 (X 1, V1, Z4) 
(
~ (X , Y ) = (X 1, Y1). This tells us that at node 2,

the variable X defined at node 1 and the variable Y defined at node 1 are

used.

As an example of contaminated data propagation , consider the graph of Figure

19a again. Suppose that, due to a transient error in the transmission , the

va l ue of X received at node 4 is contaminated. It is also important to

note that if f4 (X) is miscoded due to a design error and the data i tem X
available at node 4 Is correct, the consequence is the same as In the previous

case. We want to see which operations are affected and which variables are

contaminated .
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1
Obviously,

d O 0 = at node 4, transient erroJ 
I

C1D 1 
= 

~j4
.\ 1

Note that neither nor is contaminated yet. But as Z4 propagates I
and UB f~ R = Z5 5 4 1

So the operation in node 5 is affected and

CID2 = {DB~ = {x 5~
Still , this contaminated X5 propagates and 

I

UB6
,’~ R6 =

Besides node 6, node 4 uses X5 too, but it has been counted already. Now
the operation in node 6 is affected but no variable is modified. This
operatH~ can be a test operation and whether the contaminated input X5 causes I
the dive ience of the control stream needs a sensitivity analysis.

Now, we obtain

C I D 3 
= , so we do not need to proceed further.

Therefore, for the transient error of X at node 4 the affected operations
are 5, 6~ and the contaminated variables are CID1 U d O 2 ~ Z4, X5~

The process for identifying affected operations and vari ables due to a set
of contaminated datu is sunvnarized In the fol lowing algorithm. For simplicity , I
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it is assumed that there is only one operation at every node. This assumption

can be removed very easily be modifying the algorithm. Given a graph , ‘)B1,
UB1 and R~ of every node i , and a set of contaminated data , this algorithm

identified all the operations and variables by these contaminated data .

Al gorithm 2:

Let A , B be a set of all the nodes and a null set, respectively.

Let C I D0 be the set of originally contaminated data .

step 1 Initial ization : n = 0; CIO k 0 for kZl .

Step 2 Scan through all the nodes in A , if it is 0, GO TO step 3.

If node i .~ A and R1 
/1 UB1 ~ CID~,

then A 4 — A  - node i , 84—RU node i , and CIDn+i4~
- CID~~1L’ DB1

Step 3 If CIO,~.,,1 
= 0, then GO TO step 4

Otherwise

n 4 n + 1;

GO TO step 2.

~~~~~ 
C I D ~~~~ dID 1 . . . LI CID~

The affected operations (their node numbers ) are stored in B

and the affected variables are stored in d O .
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END algorithm 2.

In interpreting our graphical model , we consider a fault associated wi th a
node as a data contamination error , while we consider faults due to missing
edges or to extra edges as control sequence errors involving incorrect
control paths. Generally, data contamination errors do not affect the
sequencing of control until the contami nated data propagates to a node in
which a conditional branching of control occurs. Contaminated data at a
conditional branch node may cause faulty control sequences to be generated
which use control paths that are not intended to be active under current
system conditions. Whethe r this occurs depends on the error margin , i.e.,
the margin between norma l data va l ues and the threshold at which the branch
decision changes , and a sensitivity analysis must be conducted to determine
this error margin. In turn , a control sequence error with an Incorrect
path due to a missing edge or an extra edge can cause contaminated data , since
the precedence relationship of executions may be changed. To analyze the
consequences of a missing or an extra edge of a given graph and DB~ and UB~,
for each node i , a recalculation of R~ is needed. At a node , if  X 1 is
received and it should be Xg~ the consequence is the same as with contaminated
data discussed In the foregoing section. While if Xg should be received at
a node and it does not, it is equivalent of use of an un defined variable.
Again , it also can be as another form of data contamination .

In order to predict what kind of incorrect paths as well as contaminated
data are created because of hardware failures , the mode l should have the
following feature : A labeled graph model must i~ontain information to identify
the associated hardware with each data operation and each control operation ;
A directed graph model must contain information to identify the assoc~~ted
hardware with each node and each edge. Thus , given a likely failure node of
an unreliable hardware component, we can trace the possible missing or extra
edges. Through the analysis of the model , the consequence of failure can be
derived.
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Usually certain subsystems of a system are much more crucial than the rest
in terms of system reliability , security or protection . Given a set of
crucial operations , we may want to i dentify the corresponding hardwa re

I and inputs of these operations . The method for identify ing all the related
inputs of a given set of operations is presented bel ow.

The approach for identifying all the crucial input data is similar to algorithm

I 2, but algorithm 2 traces the outputs and we now trace backwards to find the
inputs . Let us use the graph shown in Figure 19a again as an example. Suppose
that the operation performed by node 5 is crucial and we want to find all

I the inputs which affect this operation .

I From Figure 19b.

R5I~~UB5 =

So we know the input is Z and provided by node 4.

Now, R4t
’
~ UB4 X1X5

But node 5 has been scanned already , hence we only trace node 1.

Finally, R1
t’
~ UB1 = 0

From this example we observe that as long as there is no control sequence

I erro r, only nodes 1 and 4 need function correctly to provide correct inputs
to node 5.

I
I
I
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SECTION IV

I
LABELED GRAPH MODELS WITH TIME

I
BACKGROUND

Our original set of functional fault classes included only asynchronous
conditions in a system. Loss of control was represented by the loss of a token J
from the syste~n, multi ple instances of control were represented by the occur-
rence of spurious tokens in the system , and control deadlock was represented
by Petri net structures wi th deadlock. Our committment to analyze the fault

tolerance of real time control systems soon forced us to admit another type
of functional fault , which we initially referred to as “tardiness of control” .
This refers to a condition in which a system sequences correctly and produces
correct data values but does not complete its operations within the time
constraints imposed by the real time environment. This may occur as the
result of degradation of physical units in the system or as the result of the
execution of unplanned , but lega l sequences. A design error discovered in
an actual operating system dramatically illustrates the latter situation .
Engineers testing a dua l —redundant real time control situation encountered
a situation where the two channels would repeatedly fail to synchronize ,
although tests of both the system hardware and software showed them to be
operating exactly as designed . The problem was finally traced to the system
reaction to a transient fault sufficient to trigger a reinitia lization
sequence in only one of the two channels. The affected channel would
complete Its initialization sequence and , with the transient fault condition
no longer present, would operate normally according to design . Unfortunately
the design used a timer in each channel which would signal an error condition
when the channe l fai l ed to complete its processing sequence in a specified

time Inte rval - an interval which was not large enough to allow the execution

I
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of both the initialization sequence and the subsequent normal processing
sequence. The resulting timeout error caused another initializat ion sc’~uen’e
in the next processing cycle, thus perpetuating the error condition . From a
functiona l point of view , the errant channel was operating correctly, but not

I within system time constraints .

We also encountered problems with time in our efforts to model recovery
schemes from loss of control faults. Although it was possible to develop

I schemes to detect this condition by monitoring the total token population in
a subsystem , we had difficulties wi th models of detection schemes employing

I 
the familiar inte rval timer mechanism. Petri net models have “permissive”
firing rules that allow an enabled transition to wait an arbitrarily long
period of time before firing . Thus , it is impossible to create a convincing
model of an interval timer that can be guaranteed to fire after a specified
time interval without addin g time parameters to the Petri net firing rules .

I
In a similar context , Merlin [29] studied two types of faults in Petri nets ;

I loss of a token and gain of a token . Each net has a specified initial marking

(or markings) and hence , a set of markings which are reachable from the initial

I marking . For any specified place , the “fault” would transform the markings
of the Petri net by the removal of a token from the place (if it had one) or
by the addition of a token to the place . He then defined a net to be recover-
able from the fault if , in a finite number of transition firings , the net

would return to a marking reachable from the initial markina in the normal

( net. On the other hand , if the e is some infinite sequence of transition
firings which leave the net in markings not reachable from the initial marking,

I then the net does not recover from the fault.

I 
This approach could be applied to other types of “faults ” which are, in fact,

a transform of the net’s markings. A fault is detectable if it transforms the

“legal” markings  ~f the net into “illegal ’ markings , i.e., markings not reach-
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I
able from the initial markin g. Recoverability would be defined the same as

for loss of token or gain of token.

The concept of detectability could be important in itself. If a system is to
be designed so that a certain class of faults are detectable, in the classical
sense , then the design could be approached in a two step process. First, a
Petri net must be specified for which each faul t in the class is detectable
as defined above . Secondly, the net must be specified so that all illega l
markings cause the occurrence of one or more recognizable output events.

These i deas apply directly to some of the functiona l type faults. For example ,
multiple instances of control and loss of control are faults which lead to
illegal markings and hence , by definition , are detectable. The multiple
instances of control would be a fault, from which the system may or may not
recover; however , by its definition , the system cannot recover from loss of
control . Other classes of control faults , such as diversion of control and
skew of control , may or may not be detectable for the given Petri net.

Merlin has shown that if a Petri net without time associated with transitions ,
is recoverable from loss of token faults , the n the net has a “degraded”
operation after the fault. It is “degraded” operation in the sense that not
all markings which could occur before the faul t can occur after the fault even
though the net remains in l egal markings . Time, was introduced into the net
to retain recoverability without the “degraded” operation . For example , his
investigations Indicate that there do iot exist practical recoverable asynchron-
ous coninunication protocols unless the execution time of events are known a
priori.
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RE PRESE NTATIONS FOR TIME I N A LABE LED GRAPH MODEL

Labeled graph models are generally interpreted so that transitions denote
events or sets of ope rations. Thus it is natural to link time parameters
with the firing of transitions. There are several alternatives for specifying
the firing time of a transition . These include :

- Specification of a fixed time i nterval for the transition firing

- Specification of upper and lower bounds for the transition fi ring
time interval

- Specification of a probability density function describing the
distribution of transition firing time interval values

- An enumeration of a set of possible transition firing times

- The specification of some “absolute ” time before which the transition
must fire , if enabled.

The last alternative requires the establishment of a system time reference
and becomes a problem when a transition is in a loop . The first alternative
is di fficult to imp l ement in a model that hierarchically models details of
l ower level system operations inside high level operators. In such a system,
a high level transition may be expanded into a l ower level graph that has more
than one path from input to output. If two of these paths have different
traversal times , then we must at least enumerate these alternatives for the
higher l evel transition . The problem of enumeration becomes increasingly
difficult in systems with a number of hiera rchica l levels.

The bounds approach and the orobabil istic approach are the more practica l

alternatives , although probability distribution functions for multi-leve l
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systems with several alternative l ower leve l paths will often be difficult to
obtain. The bounds a~’proach has the advantage that we only need know the
best and worst case times of sequence at lower levels.

We follow Merlin’ s approach and assign two real numbers , ~ mm and ti max~
to a transition , t1. We then requi re that a transition cat~ only fi re if it
has been enabled for t~ mm secon ds , and that the transition must fire if it
has been enabled for t

~
_
~~>~ 

seconds. If tj mm + t118~
, then the transition

always fires exactly ti_m m seconds after it is enabl€d.

If all transition firing times are fixed with ti_m m ~ 
ti _ma~ 

then , for

finite nets , we can use the results of Ramchandandi [28] to determine
firing schedules and computation rates. The process rapidly becomes complica-
ted when ti_ mm ~ tj I a ~ 

and simulation may be necessary to characterize the
operation of these systems.

EFFECTS OF ADDING TIME TO THE MODEL

The addition of time constraints to the model increases the representation
power of the model. The addi tion of t ime parameters to a Petri net model
without time constraints removes certain firing sequenr.es from the set of
allowable fi ring sequences. The sequences removed may be sequences leading
to deadlocks , In which case a previously K-live net may become ininortal. The
interesting situations occur when time parameters are assigned to two transi-
tions sharing a single place In a confl i ct situation , as In Figure 20

Clearly , if t1mjn~ t2max~ 
and the supply of tokens to place P3 Is replenished

within timin — t2max seconds, transition t1 will never fire. The replenishment
rate for P3 is a functicn of the number of tokens in the system and the firing

times of the transitions In circuits of the graph that incl ude P3. It appears
that , In nets with finIte token populations , the ratios of transit ion firing
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times may be adjusted to obta in the equivalent of a Petri n~t with priority

between transitions sharin cj places. If this is true , ~hen we may add time to
simple Petri nets and obtain the rc~presentat ion power of a Petri net w i t h

negation if the nets involved all have finite token populations. We are

continuing to investigate this area .

On the more pragmatic side , the increase in ability of a model with time to

represent the behavior of actual diq ital systems is considerable. Althou gh
they sometimes risk problems from race conditions , present day di g ita l
systems designers continually rely on time delays to guarantee correct system
operation . Some designers exploit the cumulative effects of gate delays in an
arithmetic/logic unit to use the same register for both the output of the

unit and one of the inputs to the unit. Others use delays in wiring to
establish priorities in bus requests , etc. A conventional Petri net model of
such a system would allow sequences that could not happen in the actua l system.
The timed model introduced here not only behaves like the real system , but also
explici tl y shows how the designer is using time to achieve his objectives.

The objective of this long-term project is modeling and analyzing fault
tolerance aspects of real-time systems . In these systems , to satisf y time

requirements is crucial for the success of the systems . Therefore , the
transition firing times of the labeled graph mode l are specified tor handling
time- related faults such as race conditions and tard i ness of control. In

this section , we enumerate all the alternatives of spec i fying times of the
labeled graph model , and observe the effect of adding time to the model.
However, this is only a start of an urgently needed but hard area . We
strongly suggest that further research should be conducted especially in
analyzing the effects caused by the addition of time in transition firing
sequences.
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