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Closed-loop control systems for many chemicél processes
require accurate modeling of the system. Typically, such models
are generated by assuming that a set of differential equations
can be found which describe system dynamics. (In chemical pro-
cesses, a kinetic analysis is applied to chemical species reactions
(system dynamics) which may be linear (first-order) or non-linear
(second-order) [1,2].) The differential equations are then imbedded
in the modeling behavior of the closed-loop control system.

Generally, a least squares fit is performed on empirical data

to identify reaction models with a set of differential equations
which are then used in the control phase [3]. During on-line
control operations, these differential equations are solved by
iterative numerical methods such as (Runge-Kutta, Adams-Moulton)
to identify point-wise values upon which the model values are
compared to the on-line data. The result of this comparison is
an error or feedback signal which drives the control system of
the chemical process. An inherent drawback of this technique

is that employment of differential equations requires recursive

numerical calculations which may amplify modeling errors as time

proceeds, eventually causing the system to diverge. It thus [:) [:) (::
appears desirable to minimize or at least identify modeling [] ~H]Eﬂ][1[z[fi
NOV 15 1977

uncertainties a priori.
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An alternative procedure, described herein, is to curve

fit the data with a (smooth) piecewise polynomial with known TION/AYAILABILITY CODER

Dist. AVAIL aad/or SPECIAL |

error bounds. Since the modeling errors for curve fitting tech-

niques of this paper can be determined beforehand, a prescribed f%

tolerance band or error bound can be identified at the onset,

and (in general) piecewise polynomial approximations can be

found satisfying this tolerance. This procedure uses algorithms
described in [4,5] for curve fitting which splice Nth degree
polynomials together meeting user defined smoothness and error
tolerances. The points at which this splicing occurs are called
knots. The knots (where and how many) and the individual poly-
nomials are the free parameters. This technique differs from
previous methods in that the error tolerances are specified

first and the knots are automatically placed. The application of
this algorithm in an interactive mode which could make use of an |
operator controlled CRT strategy for initially specifying knot
locations and terminally overriding the algorithm's automatic
features, if past experience with the particular data indicates

otherwise.

II. Algorithm

Our algorithms compute smooth piecewise polynomial approxi-

mations within a user selected tolerance to a given data set using

best (discrete) L2 approximations or best restricted range uniform
approximations; the number and location of the "knots" or "joints"

of the polynomial pieces are automatically determined by the

algorithms. More specifically, suppose we wish an approximation
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to the data

m
{(tv’ yv)}v=0’ where t,

< tv’ o L 2 ey Bl

-1
Our algorithms will distinguish 2 + 1 of the tv's, say to = Xg»

G aaey XL SE, V= 1, 2, ..., %) as knots and

2 m (xv-l
associated with these knots the algorithms will find (or at

X)s X 2
least attempt to find) polynomials, Pys Pys +es Py with the
following properties:

i) Each Py has degree less than or equal to N-1, where N
is a user defined positive integer. (N represents the allowable
number of coefficients for any pi);

11) pij)(xi) - pj(ii (x,) for i =1, 2, ..., & - 1, and for
j=0,1, ..., SMTH, where SMTH is a user defined integer (SMTH < N)
which represents the number of continuous derivatives required of
the piecewise polynomial approximation.

iii) a) If we are using the L2 algorithm, and if x t, < x

gy < g S ®p
then we have that Ipi(tj) - le < TOL, where TOL is a positive
quantity representing the tolerance the user requires the approxi-
mation to satisfy. Moreover, Py is the best (discrete) L2 approxi-

mation to the data {(tv’ yv): < xi} of degree less than

St=1 < tv
or equal to N - 1, subject to the interpolatory constraints imposed
by ii) above.
iii) b) If we are using the restricted range algorithm, the
m m
user supplies numbers {Lv}vso and {Uv}v=0 such that L <y < U,
v=20,1, ..., m (which, in effect, define an allowable tolerance

at each data point. We shall refer to these numbers as restraining

curves) and the polynomials, pi, have the property that whenever




tj is such that xi_1 < tj 5

Moreover, Py is the best restricted range uniform polynomial

< x for some fixed i, L

i 2Ryt 2

g

approximation to {(tv' yv): x < xi} of degree less than

3 = 5
or equal to N - 1 subject to the interpolatory constraints imposed
by ii) above.

For complete descriptions and FORTRAN listings of these

algorithms see [4], and [5].

III. Numerical examples and suggestions for effective use

As an example, in this paper, we have applied our technique
to the problem of the mathematical modeling of the kinetics of
oil shale pyrolysis [6]. The Hubbard and Robinson data set [6]
was utilized to fit piecewise polynomials of degree 5 with two
continuous derivatives to the oil and gas yield data and bitumen
yield data at 475° and 425° isotherms.

Because there are only 15-20 points in each data set, which
is too few for effective use of these algorithms, we linearly
interpolated the data and then discretized these curves so that
we approximated on a set of 200 to 500 data points in each of
these examples. Since our algorithms do not require the data
points to be equally spaced, we packed points more densely where
the data is complicated, and more sparsely where the data is smooth.
Although it is computationally more expensive, in general, better
approximations result if one approximates on more (densely packed)
data points. In fact, often if an algorithm returns an approxi-
mation with oscillatory problems, or if an algorithm cannot meet
a specified tolerance, these problems can be overcome by adding
more (densely packed) data points by means of this simple linear

interpolation scheme.




We now give several examples. In all of the following
graphs, the data points being approximated are indicated by
; "x", and the small boxes indicate the location of the knots.

When using the restricted range algorithm, the restraining curves

have been hand fitted or fitted using a simple algorithm which

sets the restraining curves according to the complexity of the

function.
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Note that in the above examples we were able to force the shape
of the approximation to more closely follow the shape of the functions
being approximated but at a cost of more knots. By setting tolerance
bands containing the data as in the following example, we take
advantage of the restricted range algorithm's capability of forcing
the approximation to lie within certain bounds while still allowing

the approximation a much higher degree of freedom than in the above

We also illustrate our choice of restraining curves.
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For clarity we repeat this example without the restraining curves.
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Next we show the same example with much tighter tolerances.
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As noted above, we required approximations determined by the
restricted range algorithm to agree very clecely to the function
being approximated where
the function was '"nice'". The following example illustrates that

setting the tolerances too small in these areas can be costly in

terms of numbers of knots. By setting the tolerances as small
as we did throughout the "smooth' regions of the function, we
essentially required our approximation to be nearly linear since

we were approximating linearly interpolated data.
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The restricted range algorithm, though more complicated than
the L2 algorithm, allows the user much more flexibility in setting
tolerances the approximation must satisfy. By appropriately
setting the numbers {Uv} and {Lv}’ the user can vary the tolerance
requirement throughout the domain of the approximation and, to
a large extent, determine the shape of the resulting approximation.
Ideally, these restraining curves would be determined in an
interactive setting using a graphics terminal with a pen-light,
as follows. First, one would make a rough initial guess at
what the restraining curves should be (by some simple algorithm
or otherwise), then allow the algorithm to compute the first
piece of the approximation. One would next display the data,
the current approximation and the current restraining curves
and then modify the restraining curves on the relevant subin-
terval as desired so that when this first piece is recomputed
using the updated restraining curves, it behaves as desired.

After the user is satisified with the first piece, he would repeat
the above strategy on each successive subinterval determined by
the algorithm.

As is the case with any smooth piecewise polynomial approxi-
mation algorithm, 'good" placement of the knots is critical for
""good" approximations. While our algorithms attempt to find
""good" locations for the knots, sometimes the user may be able
to find by inspection locations which would be more optimal.
Again, if the interactive mode and a graphics terminal is available
to the user, the straight-forward left to right joining strategy

of our algorithms facilitate the implementation of a scheme
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whereby the user could choose the location of the next knot
(or the general vicinity of the knot and have the algorithm
optimize the location in that vicinity), overriding the algorithms'
automatic choice, when he can identify a "better'" knot location.

We recommend these curve fitting algorithms when one wishes
to approximate data with an a priori error estimate. If the
user needs an approximation to reflect certain features of the
approximant, or when approximating data in which there are vary-
ing levels of noise, the restricted range algorithm should be
used. When a more automatic and simple to use algorithm is

desired, the L2 algorithm should be used.
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