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Adaptive Curve Fitting for Chemical Processes
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I. Introduction 
~~~

_
~~~~~~~~~~~~> 

/ V / - )
Closed—loop control systems for many chemical processes 

require accurate modeling of the system. Typically , such models

are generated by assuming that a set of differential equations

can be f ound which descr ibe system dynamics. (In chemical pro-

cesses, a kine tic analysis is appl ied to chemical species reac tions

(system dynamics) which may be linear (first—order) or non—linear

(second—order) [1,2].) The differential equations are then imbedded

in the modeling behavior of the closed—loop control system.

Generally , a least squares fit is performed on empirical data

to identify reaction models with a set of differential equations

which are then used in the control phase [3]. During on—line

con trol opera tions , these differential equations are solved by

• iterative numerical methods such as (Runge—Kutta , Adams—Moulton)

to identify point—wise values upon which the model values are

compared to the on—line data. The result of this comparison is

an error or feedback signa l which dr ives the con trol sys tem of

J the chemical process. An inherent drawback of this technique
w

• ~~~ is that employment of differential equations requires recursive

numerical calculations which may amplify  modeling errors as time

proceeds , eventually causing the system to diverge. It thus ID
appears desirable to minimize or at least identify modeling fl r~j~nr . Ti
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An alternative procedure , described herein, is to curve ~~~~~~~~~~~~~ -

fit the data with a (smooth) piecewise polynomial with known •~ruiu~ ~~~~AU.A ILITT cODEI

error bounds. Since the modeling errors for curve fitting tech— ~~

niques of this paper can be determined beforehand, a prescribed

tolerance band or error bound can be identified at the onset,

and (in general) piecewise polynomial approximations can be

found satisfying this tolerance. This procedure uses algorithms

described in [4,51 for curve fitting which splice Uth degree

polynomials together meeting user defined smoothness and error

tolerances. The points at which this splicing occurs are called

knots. The knots (where and how many) and the individual poly-

nomials are the free parameters. This technique differs from

previous methods in that the error tolerances are specified

first and the knots are automatically placed . The application of

this algorithm in an interactive mode which could make use of an

operator controlled CRT strategy for ini tially spec ifying knot

locations and terminally overr iding the algor ithm’s automatic

fea tures , if past experience with the particular data indicates

otherwise.

II. Algorithm

Our algorithms compute smooth piecewise polynomial approxi-

mations within a user selected tolerance to a given data set using

best (discrete) L
2 
approximations or best restricted range uniform

approximations; the number and location of the “knots” or “joints”

of the polynomial pieces are automatically determined by the

algorithms. More specifically, suppose we wish an approximation 

- - - - -~~~~~~~~ -•.~~~~~~~~~
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to the data

{(t , y ) } m 0, where t~~~ < t , v 1, 2, ..., m.

Our algorithms will distinguish t + 1 of the t
v
’s, say t

0 
x0,

x
1
, x

2
, ..., x~ t (x,~,1 

< x~ , v 1, 2, ...~~ i) as knots and

associated with these knots the algorithms will find (or at

leas t attempt to f ind) polynomials , p1, p2, ..., p~ •~ith the

following properties:

1) Each p~ has degree less than or equal to N—l , where N

is a user defined positive integer. (N represents the allowable

iiumber of coefficients for any

ii) p~~~ (x
1) 

= 
~~~~ 

(x
i
) for i 1, 2, ..., L — 1, and for

j = 0, 1, ..., SMTH, where SMTH is a user defined integer (SMTH < N)

which represen ts the number of continuous derivatives required of

the piecewise pol ynomial approximation.

iii) a) If we are using the L
2 
algorithm , and if x~~1 

< t . < x~ ,

then we have that IP 1(t~) 
— y

~~j 
< TOL, where TOL is a posit ive

quantity representing the tolerance the user requires the approxi-

mation to satisf y. Moreover, p~ is the best (discrete) L
2 
approxi-

mation to the data ((t , y): 5jl 
< t < x~ J of degree less than

or equal to N — 1, subject to the interpolatory constraints imposed

by ii) above.

iii) b) If we are using the restricted range algorithm, the

user supplies numbers {L }
m 

and {U 1
m such that L < y < U‘v v—O v v O  v —  v —  v

v = 0, 1, ... , m (which, in effect, define an allowable tolerance

at each data point. We shall refer to these numbers as restraining

curves) and the polynomials, p1, have the property that whenever 

~~~~~~~~~~~ -~~~~~~~~~--~~~~~~~~~
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t~ is such that x~~1 < t~ 
< x

1 
for some fixed 1, L~ < Pi

(t
j
) < U~~.

Moreover, p~ is the best restricted range uniform polynomial

approximation to {(t , y
~
): x~_1 < t < x~ } of degree less than

or equal to N — 1 subject to the interpolatory constraints imposed

by ii) above.

For complete descriptions and FORTRAN listings of these

algorithms see [41, and [5].

III. Numerical examples and suggestions for effective use

As an example , in this paper , we have applied our technique

to the problem of the mathematical modeling of the kinetics of

oil shale pyrolysis L61 . The Hubbard and Robinson data set [6]

was utilized to fit piecewise polynomials of degree 5 with two

continuous derivatives to the oil and gas yield data and bitumen

yield da ta ut~ 475~ and 425° isothe rms .

Because there are only 15—20 points in each data set, which

is too few for effec tive use of these algorithms, we linearly

interpolated the data and then discretized these curves so that

we approximated on a se t of 200 to 500 data points in each of

these examples. Since our algorithms do not require the data

points to be equally spaced , we packed points more densely where

the data is complica ted, and more sparsely where the data is smooth.

Although it is computationally more expensive, in general, better

approximations result if one approximates on more (densely packed)

data points. In fact, often if an algorithm returns an approxi-

mation with oscillatory problems, or if an algorithm cannot meet

a specified tolerance, these problems can be overcome by adding

more (densely packed) data points by means of this simple linear

interpolation scheme.

—
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We now give several examples. In all of the following

graphs, the data points being approximated are indicated by

“x ’, and the small boxes indicate the location of the knots.

When using the restricted range algorithm, the restraining curves

have been hand fitted or fitted using a simple algorithm which

sets the restraining curves according to the complexity of the

function.
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Figure 1
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Figure 4

Note that in the above examples we were able to force the shape

of the approximation to more closely follow the shape of the functions

being approximated but at a cost of more knots. By setting tolerance

bands containing the data as in the following example, we take

advantage of the restricted range algorithm ’s capability of forcing

the approximation to lie within certain bounds while still allowing

the approximation a much higher degree of freedom than in the above

examples. We also illustrate our choice of restraining curves.

• •. -.. •- .-.-—.~~~ -•“ —., ‘a - 
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For clarity we repeat this example without the restraining curves. 

-
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Next we show the same example with much tighter tolerances.

_ _
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1.2

As noted above, we required approximations determined by the

restricted range algorithm to agree very clocely to the function

being approximated where

the func tion was “nice”. The following example illustrates that

setting the tolerances too small in these areas can be costly in

terms of numbers of knots. By setting the tolerances as small

as we did throughout the “smooth” regions of the function , we

essentially required our approximation to be nearly linear since

we were approxinating linearly interpolated data .
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The restricted range algorithm , though i-are complicated than

the L2 algorithm, allows the user much more flexibility in setting

tolerances the approximation must satisfy. By appropriately

setting the numbers {U
~
} and (L

V
}, the user can vary the tolerance

requirement throughout the domain of the approximation and , to

a large extent , determine the shape of the resulting approximation .

Ideally, these res training curves would be determined in an

interactive setting using a graphics terminal with a pen—light,

as follows. First , one would make a rough initial guess at

what the res training curves should be (by some simple algorithm

or otherwise), then allow the algorithm to compute the f irs t

piece of the approximation. One would next display the data,

the current approximation and the current restraining curves

and then modify the restraining curves on the relevant subin—

terval as des ired so that when this f irs t piece is recomputed

using the updated restraining curves , it behaves as desired .

Af ter the user is satisif led with the first piece, he would repeat

the above strategy on each successive subinterval determined by

the algorithm .

As is the case with any smooth piecewise polynomial approxi-

mation algorithm , “good” placemen t of the knots is critical for

“good” approximations. While our algorithms attempt to find

“good” locations for the knots, some times the user may be able

to find by inspection locations which would be more optimal.

Again, if the interactive mode and a graphics terminal is available

to the user, the straight—forward left to right joining strategy

of our algorithms facilitate the implementation of a scheme

_ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _  -~~~- - . . - - .~~~~~~~~~~~ -- _ --- -~~~~~~
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whereby the user could choose the loca tion of the next knot

(or the general vicinity of the knot and have the algorithm

optimize the location in that vicinity), overriding the algorithms ’

automatic choice , when he can identify a “better ” knot location.

We recommend these curve fitting algorithms when one wishes

to approximate data with an a priori error estimate. If the

user needs an approximation to reflect certain features of the

approximant, or when approximating data in which there are vary—

ing levels of noise, the restricted range algorithm should be

used . When a more automatic and simple to use algorithm is

desired, the L2 algorithm should be used .

¶ 1
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