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ABSTRACT i

A bisection-transposition algorithm is described
for the recursive computation of the Moore-Penrose inverse
of a large matrix.
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b Definitions

Let A be a rectangular real (mxn) matrix, and X be a
(nxm) real matrix satisfying the following conditions (t de-
notes transpose):

AXA = A (1)

XAX = X (2)

ax)* = ax (3)

(xaF = xa (4)

If X satisfies only (1) it is called a generalized in-

g
verse, and will be denoted by A 1. X. [1l]; when X satisfies

g
(1) and (2) we call X = A 2

a reflexive generalized inverse;
when X satisfies (1), (2), (3) and (4) it is denoted by at ana
is called the Moore-Penrose pseudoinverse.

The partitioning of a matrix A into submatrices A, and

Az along the column (or row) direction will be denoted by

A
A =Aaa, f[or X,/




2. Partitioning Methods

The computation of the pseudoinverse of a large matrix
is very important for several applications in image processing
and filtering [2]. Since the matrices involved in these prob-
lems are very large, it becomes necessary to use block par-
titioning schemes for this purpose. Unfortunately, however,
the various methods used for block partitioning have several
theoretical limitations, if one wants to set up a recursive
scheme.

For instance, consider the conventional partitioning

(1]

where All' Alz' A21, Azz are arbitrary rectangular matrices.

Then
g g )3 a3
r 2 5 2 1
9, Q Q" A, Ay .
A =
9 92 92 g1 g1 s
_"“22 Ay @ Ay * Ay 21° “12 22
g —
F o i A 1
i 12 222 o
ala ot | at sal a ot a Al
22 22 22*822 Ay 12 %22
9

For these expressions to be valid, the following con-

ditions are necessary:




(i) A should be positive semi-definite for using (6)
(ii) A should be positive semi-definite and Rank (A) =

Rank (All) + Rank (Azz) for using (7).

Therefore, if we want to compute A+ recursively, by a
successive partitioning procedure involving smaller matrices,
then at any stage the intermediate partitions or block matrices
should also satisfy the above conditions. It is clear that
while it is possible to make A positive definite by starting

with Aht and computing A+ using the formula

+

9
At = At(AAt-AAt) et

AA

it cannot always be guaranteed that every further su' -

partition would satisfy the above conditions. Therefore, in
order to recursively Partition A through several stages, we
must insure that at least the semi-definiteness condition is
satisfied by suitable multiplication. This makes the partition-
ing procedure very complex.

In order to obviate this difficulty, a recursive bi-
section-transposition algorithm is suggested below pased on
the available results on g-inverses [l]. This algorithm does
not depend upon the conditions (i) and (ii) since at any stage
either a row or column partitioning of the matrix is carried

out (and not both).
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3. Bisection-Transposition Algorithm

a. Principle

Let the given matrix A _, (mxn) be partitioned as
Bpar = [ArIBr]

where Ar(mxs) and Br(mxhrs)Xs<n). Then it is easily proved

that [1]
+ + +
5 Ar - ArBr(Cr + Dr)
r-1 +
Cr + Dr
where
c. = (1-an.%) B (11)
r r'r r
PR e T (R +
D, = (1 crcr) Q. Br(Ar) Ar(I Brcr ) (12)
+ t +.t
Hr = (I-CrCr ) Br(Ar ) (13)
- t
P, = U H (14)
Qr = (I + Pr) (15)
Remarks

-1

. and

(i) When A, is non-singular, we get C, =0 and A: = A

+ .t +
r) Ar. When Br is a

column vector, Cr is also a cr’ v vector and

i toat tate =1 _t
D, = (I +B (A)"AB.) " B (A

+
hence crcr = 1 and hence Dr = 0.

Therefore, we get

e o §




TR o

T e PSP TR I T N T T S TR TR, SN T

TN T T R T SN W YT S T Ty

I A O Sy

+ .+
5 A, - ABC
A = (16)
r-1 +
C
r

Equation (16) corresponds to the discrete Kalman
filtering equations. (Kalman filtering is used ex-
tensively to estimate the intermal state variable
of a linear system based on noisy measurements of
output variables.)

ii) In (12) and (13) certain matrices need not be con-
formable; this is taken care of by appending the
required zero rows and columns to the smaller matrices

[31.

b. Algorithm _
Let A, be the given (mxm) matrix and let (pxp) be

the order to which we finally desire to reduce this matrix.

Then the number of partitions involved is r = 2 log2 (g) ; the

number of transpositions required is (r-1). The algorithm

uses any one of the standard procedures for computing

+
Ai [‘l 5] .

In this algorithm + indicates the partitioning operation
and +« the use of (10) to obtain the pseudoinverse of the pre-
ceding larger matrix.

Step 1: Set i = 1; A, ~+ [Ailni]

Step 2: A§ + [Ai+1|ni+1]
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Step 3: Set i = i+l
Step 4: Is i s r; if yes go to Step 2; otherwise go go Step
5.
Step 5: Set j = r; compute A; -
t +
S : : « B.).
tep 6 (AJ_l) (Ajl j)
Step 7: Set j = j-1
Step 8: Is j = 0?2 If yes, go to Step 9; otherwise go to Step
6.
Step 9: Result = A;. Stop.
Note:

In partitioning, it is not required to carry out exact

bisection of the matrix Ai; however, it is convenient to have

exact bisection, and to have the order of Ao be a power of 2.
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4. Example
A e G e .
AO A 1110 §
0111 \

1011 N
\

\.
A\

\
: P Zars \
Ao is not positive semi-definite and r(All) + r(Azz) # r(A).

\

If we take Al = 11 ; A12 = 1 \
11 10 \
Y

01

Aa® o

cal four partitioning scheme will fail.

e

Azz = [;i] . Therefore, the classi-

We now use the successive bisection-transposition al-

gorithm; here m= 4, p= 2, r = 2,

Take
(11 01
A, = 11 o Bs 10
1 01 1 11
10 11

Al




Sk fon ]
2 1l -1

N+

§ spuisgs yps 3
2 = (I -CC) By(Ay) ™ =7 [1 1]

H =
2 £ . 1LFra
Pp=HH," =3 [1 1
r -1 _t,.t, .+ + A S
P [1 1 -2 3]
1 By 1 3 =2

Using AI, Al and Bl we get

E | 4
a X + -kf 2
‘ C; = (I -AA) B) =53

3
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5. Concluding Remarks

(1)

(ii)

(iii)

(iv)

The above algorithm is useful when one deals with
matrices having certain special block features.
A fast algorithm for transposition is available in
[6].
The numerical stability of the above procedure is
not established.

It is well-known that the numerical algorithms
for computing pseudoinverses lack numerical stability,
and accordingly, error-free exact calculations are
desirable [5]; see also [7].

The computational complexity of the above algorithm

is to be established [8].
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